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TRANSMISSION, REFLECTION, AND SECOND-HARMONIC
GENERATION IN A NONLINEAR WAVEGUIDE∗

ROBERTO CAMASSA† , ALP FINDIKOGLU‡ , AND GRANT LYTHE§

Abstract. We present an experimental, analytical, and numerical investigation of the passage of
electromagnetic signals through a device with voltage-dependent differential capacitance. This depen-
dence gives rise to the device’s nonlinear response, which can then be tuned by an externally applied
static electric field. The system is modeled with a wave equation for the current and the charge
density with continuity conditions at the boundaries between two linear regions and the nonlinear
medium they sandwich. We derive asymptotic formulae for transmission and reflection coefficients
of a monochromatic signal and its nonlinearity-induced second harmonics. Predictions based on this
analysis are then compared with numerical and experimental results, across a range of parameter
values, including those tuning the nonlinearity by means of an imposed voltage. The experiments
are carried out at microwave frequencies using 1cm2 devices consisting of a superconducting thin
film meandering waveguide on a nonlinear dielectric substrate.
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1. Introduction. In this paper we study transmission, reflection, and generation
of harmonics when an electromagnetic signal passes through a finite-length region,
which represents a nonlinear medium coupled via realistic boundary conditions to
its environment. Our theory is developed with actual experimental devices in mind,
but it is applicable to any system where waves pass through a medium with voltage-
dependent differential capacitance; i.e., the charge does not simply increase linearly
with voltage [1] and where losses are not so strong as to overwhelm nonlinear effects.
Of particular interest in this class of media is the consequence that the functional form
of nonlinearity is tunable: the device response can be controlled with an external bias
voltage, which enables exploration of dynamical behaviors characteristic of quadratic
and cubic nonlinear media within the same apparatus [2, 3, 4, 5, 6, 7, 8, 9, 10, 11].

The experimental data we collect are obtained by sending electromagnetic signals
along an 8cm length meandering waveguide consisting of superconducting electrodes
on the surface of a 10mm × 10mm × 0.5mm nonlinear dielectric crystal of strontium
titanate [10, 11, 12, 13, 14, 15]. Electromagnetic waves in the waveguide with wave-
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lengths of a few cm have frequencies of a few hundred MHz (microwaves). We model
this experimental setup with a wave equation coupling the evolution of voltage and
current through a distributed capacitance that depends on voltage and temperature
throughout the nonlinear region. Section 2 formulates this model in its nondimen-
sional form used for analytical and numerical studies. After introducing the nonlinear
wave equation and the definition of differential capacitance, we express it in terms
of its characteristic variables and the corresponding Riemann invariants [16]. Be-
cause of the boundary conditions, this form cannot be immediately used to provide
closed form solutions. We then proceed by carrying out an asymptotic expansion in
these variables in the limit of low-amplitude incident signals, through a corresponding
expansion of the boundary conditions. The analysis is simplified by the absence of
dispersion and dissipation in the nonlinear wave equation and produces closed form
expressions for the nonlinear contributions to experimentally measurable quantities
such as transmission and reflection coefficients.

In section 3, we study the concrete case of a sinusoidal input from the left of
the region. In the weakly nonlinear regime, we carry out an asymptotic expansion
of the characteristics solution in the parameter a/v∗, where a is the amplitude of
the input signal and v∗ is the characteristic voltage associated with the variation
of the differential capacitance in the nonlinear central region. The calculation of the
second-harmonic generated signal is given in some detail in section 3 and Appendix A,
since this establishes a basis for further research on this class of system. The analysis
yields explicit formulae that characterize the frequency-doubling response caused by
nonlinearity.

Section 4 reports on numerical simulations of the governing equations: two cou-
pled PDEs for the charge and current fields in three regions. The charge and current
fields are updated in such a way as to keep current and voltage continuous across
the boundaries, even though the charge-voltage relationship has a discontinuity. Si-
nusoidal signals and noise, band-limited or white, are continuously input from the
left. Fourier transforms of numerical time series in the steady state, at points in the
left and right regions, are used to evaluate the transmitted and reflected signals. We
find good quantitative agreement with analytical results. In particular, we are able
to predict the amplitude of the second harmonic generated by the nonlinearity.

In section 5 we compare the analytical and numerical results with experimental
data. These are collected for microwave signals and noise passing through a compact
device that operates at temperatures that are easily attained using liquid nitrogen
or helium and whose response can be tuned with a bias voltage of a few volts. The
waveguide is a patterned superconducting thin film; because its lateral dimensions are
much smaller than the wavelengths of the input signals, wave propagation is effectively
one-dimensional. The source of the nonlinearity is the nonlinear dielectric substrate
that the superconducting waveguide rests on [19, 20, 21]. We find very good agreement
with all the major measurable quantities of interest, while qualitative agreement is
achieved when effects neglected by our model, but known to become relevant in certain
regimes (like high frequencies), come into play.

2. The governing equations. The dynamics of wave propagation along the
transmission line is described by the wave equation for the current i(x, t) (Coulomb
s−1) and the charge density q(x, t) (Coulomb m−1)

∂q(x, t)

∂t
= − ∂i(x, t)

∂x
,
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L
∂i(x, t)

∂t
= − ∂v(x, t)

∂x
,(2.1)

where L is the inductance per unit length. A relationship between q(x, t) and the
voltage v(x, t) is needed to close the set of equations (2.1). Let

q(x, t) = Q(v(x, t)).(2.2)

The “differential capacitance” [1] is the derivative of Q(v):

Cd(v) =
dQ(v)

dv
.(2.3)

In a linear medium q(x, t) = Cv(x, t), where C is constant. Then the differential
capacitance is the constant C and the wave equation (2.1) is linear:

∂2

∂t2
v(x, t) = (LC)−1 ∂2

∂x2
v(x, t).(2.4)

The nonlinear wave equation we study in this work can be written as

LCd(v(x, t))
∂2

∂t2
v(x, t) + L

∂Cd(v(x, t))

∂v

∂v(x, t)

∂t
=

∂2

∂x2
v(x, t).(2.5)

Motivated by the configuration of the experiments and by analogy with classi-
cal transmission-reflection problems, we study the propagation of waves through a
nonlinear region (region II, 0 ≤ x ≤ l) sandwiched between two semi-infinite regions
(region I, −∞ < x < 0 and region III, l < x < ∞) where the wave equation is linear.
Current and voltage are continuous at the boundaries. The situation is illustrated in
Figure 2.1.

We shall assume that the relationship (2.2) is such that we can define its inverse:
v(x, t) = Q−1(q(x, t)). The inductance and differential capacitances per unit length
are as follows:

L =

{
LI,

LII,
Cd(v) =

{
CI, regions I and III,

Cm(v), region II,
(2.6)

where LI, LII, and CI are constants. We assume that Cm(v) is a positive even function
with maximum at v = 0. See Figure 2.2. Since C ′

m(0) = 0 and C ′′
m(0) < 0 we define

the characteristic voltage associated with the differential capacitance curve by

v∗ =

(
2Cm(0)

|C ′′
m(0)|

) 1
2

.(2.7)

A constant “bias” voltage vb is applied across the three regions. The voltage
at time t and position x is thus the sum of vb and the time-dependent voltages due
to the input signals and their interactions. The input signals consist of one or more
sinusoidal signals and broadband noise. Noise effects are interesting in their own right
[11], but in this paper we shall use noise input as a technique to explore simultaneously
the response at numerous frequencies.

In section 3 we consider the case where the input signal (the right-going wavetrain
in region I) is given by vin = a cos(2πf(t − x/u)). Our analysis is based on the
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Fig. 2.1. Schematic diagram for solution of the nonlinear wave equation in three one-
dimensional regions. A constant bias voltage vb is applied across all three regions and the right-going
wavetrain in region I is the input signal, vin. The late-time solution has the form of an incident
and reflected wavetrain in region I and a transmitted wavetrain in region III.

Cm(v)

v
v∗

Fig. 2.2. A typical graph of differential capacitance versus voltage. The voltage v∗ is defined
in (2.7).

assumption that a/v∗ � 1. The bias voltage is not assumed small but is fixed for
any one experimental or numerical run. Thus the voltage values attained in any one
experiment are in a small interval of the differential capacitance curve, but the full
catalogue of nonlinear behaviors can be explored by performing runs at various values
of the bias voltage.

We define the dimensionless fields

V (x, t) =
v(x, t)

v∗
,

Q(x, t) =
q(x, t)

CIIv∗
,(2.8)

I(x, t) =

(
LII

CII

) 1
2 i(x, t)

v∗
,
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where

CII = Cm(0).(2.9)

In these variables, (2.1) is

∂

∂t

(
Q(x, t)
I(x, t)

)
= − (LIICII)

− 1
2

∂

∂x

(
I(x, t)
V (x, t)

)
,(2.10)

where V (x, t) is given as a function of Q(x, t) by

V (x, t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

LIICII

LICI

Q(x, t), regions I and III,

1

v∗
Q−1(CIIv

∗Q(x, t)), region II.

We also nondimensionalize space and time by dividing by the length l of the
waveguide and the transit time at the velocity of light in a vacuum, c:

X =
x

l
, T = t

c

l
.(2.11)

So region I is −∞ < X < 0, region II is 0 ≤ X ≤ 1, and region III is 1 < X < ∞.
Then (2.10) becomes

∂

∂T

(
Q(X,T )
I(X,T )

)
= −U

∂

∂X

(
I(X,T )
V (X,T )

)
,(2.12)

where

U =
1

c
(LIICII)

− 1
2 .(2.13)

The propagation speed of small-amplitude signals in region II, um(vb), is

um(vb) = (LIICm(vb))
− 1

2 ;(2.14)

the constant U = um(0)/c is the dimensionless speed at zero bias. In our numerical
work, we solve the nonlinear PDEs in the form (2.12).

Our analytical work, using the method of characteristics, proceeds by rewriting
(2.12), using

dQ

dT
=

dQ

dV

dV

dT
,(2.15)

in the form

∂

∂X

(
I
V

)
= −U−1

(
0 G(V )
1 0

)
∂

∂T

(
I
V

)
,(2.16)

where the arguments (X,T ) for the fields V and I have been suppressed and

G(V ) =

⎧⎨
⎩

Gl, regions I and III,

Gn(V ), region II,
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where

Gl =
LICI

LIICII

,(2.17)

a constant, and

Gn(V ) =
Cm(v∗V )

CII

.(2.18)

As V → 0, Gn(V ) → 1 − V 2 + O(V 4).
In order to use the method of characteristics [16] in region II, we introduce the

fields Γ+(X,T ) and Γ−(X,T ), defined as

Γ± = H(V ) ± I,(2.19)

where

H ′(V ) = (Gn(V ))
1
2 .(2.20)

The fields Γ±(X,T ) are constants on two characteristic curves in the (X,T )-plane
defined by the solutions T±(X) of the equations

dT±
dX

= ±U−1(Gn(V (X,T+)))
1
2 .(2.21)

We shall impose conservation of the fields Γ±(X,T ) along characteristics using “initial
times functions”: given that a characteristic curve passes through X = 1 at time S,
the time at which it passes through X = 0 is

τ±(S) = T±(0)|T (1)=S .(2.22)

Then

Γ±(0, τ±(S)) = Γ±(1, S).(2.23)

See Figure 2.3. At the boundary between region I and region II, X = 0, we denote

V (0, T ) = VI(T ),

I(0, T ) = II(T ).(2.24)

At the boundary between region II and region III, X = 1, we denote

V (1, T ) = VIII(T ),

I(1, T ) = IIII(T ).(2.25)

The conditions (2.23) can be rewritten

H(VI(τ±(S))) ± II(τ±(S)) = H(VIII(S)) ± IIII(S).(2.26)

In section 3, we evaluate the transmitted signal as a function of the input signal using
(2.26).
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Fig. 2.3. The “initial times” functions. The two characteristic curves that cross at (1, S) follow
paths that intersect X = 0 at times τ+(S) and τ−(S).

3. Transmission, reflection, and harmonic generation: Analytical re-
sults. Let the input signal be sinusoidal with amplitude a at frequency f , that is,

vin(x, t) = a cos(2πf(t− x/u)),(3.1)

where u = (LICI)
− 1

2 . We nondimensionalize the input amplitude and bias voltage,

A =
a

v∗
and Vb =

vb

v∗
,(3.2)

where v∗ is defined in (2.7). The solution of (2.16) can be expanded as

V (X,T ) = Vb + AV (0)(X,T ) + A2V (1)(X,T ) + O(A3).(3.3)

Thus

VI(T ) = V (0, T ) = Vb + AV
(0)

I (T ) + A2V
(1)

I (T ) + O(A3);(3.4)

II(T ), VIII(T ) and IIII(T ) will be written in a similar way.
The function H(V (X,T )) is expanded as

H(V (X,T )) = H(Vb) + H ′(Vb)(V (X,T ) − Vb) +
1

2
H ′′(Vb)(V (X,T ) − Vb)2 + O(A3)

=H (Vb) + Gn(Vb)
1
2

(
AV (0)(X,T )

+ A2V (1)(X,T ) +
1

4
A2G

′
n(Vb)

Gn(Vb)
(V (0)(X,T ))2

)

+ O(A3),
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and the characteristic curves and initial times functions as

T±(X) = T
(0)
± (X) + AT

(1)
± (X) + O(A2)(3.5)

and

τ±(S) = τ
(0)
± (S) + Aτ

(1)
± (S) + O(A2).(3.6)

Finally, the equality (2.26) is expanded as

Gn(Vb)
1
2

[
AV

(0)
I (τ

(0)
± (S) + Aτ

(1)
± (S))

+A2

(
V

(1)
I (τ

(0)
± (S)) +

1

4

G′
n(Vb)

Gn(Vb)
V

(0)
I (τ

(0)
± (S))2

)]

±
[
AI

(0)
I (τ

(0)
± (S) + Aτ

(1)
± (S)) + A2I

(1)
I (τ

(0)
± (S))

]
(3.7)

= Gn(Vb)
1
2

[
AV

(0)
III (S) + A2

(
V

(1)
III (S) +

1

4

G′
n(Vb)

Gn(Vb)
V

(0)
III (S)2

)]

±
[
AI

(0)
III (S) + A2I

(1)
III (S)

]
+ O(A3).

In section 3.1, we shall impose (3.7), keeping only terms proportional to A. The
result is the classical transmission-reflection relation for finite-length linear media:
perfect transmission is found at frequencies such that the length of region II is a
multiple of half the wavelength of the input sinusoid. In section 3.2, we shall also
keep terms proportional to A2 in (3.7).

3.1. Lowest order. To order A, the characteristic curves (2.21) and (2.21) are
straight lines:

T
(0)
± (X) = T

(0)
± (0) ± X

Um
,(3.8)

where the normalized speed of propagation in region II is

Um = Gn(Vb)−
1
2U =

1

c
(LIICm(Vb))

− 1
2 .(3.9)

Thus the initial times functions at order A are simply

τ
(0)
± (S) = S ∓ U−1

m .(3.10)

To order A, the invariant functions along the characteristics are

Γ
(0)
± (X,T ) = Gn(Vb)

1
2V (0)(X,T ) ± I(0)(X,T )(3.11)

and the condition (2.26) is

Gn(Vb)
1
2V

(0)
I

(
S ∓ U−1

m

)
± I

(0)
I

(
S ∓ U−1

m

)
= Gn(Vb)

1
2V

(0)
III (S) ± I

(0)
III (S) .(3.12)

Notice that (3.8) and (3.12) apply to the following linear wave equation:

∂

∂X

(
I(0)

V (0)

)
= −U−1

(
0 G(Vb)
1 0

)
∂

∂T

(
I(0)

V (0)

)
.(3.13)
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The function G(Vb) is piecewise constant, so the speed of propagation in region II
depends on bias voltage.

With a continuous sinusoidal input, (3.1), the solution of (3.13) after a transient
has the form of an incident and reflected wavetrain in region I and a transmitted
wavetrain in region III. In region I, as T → ∞, let

V (0)(X,T )=
1

2

(
exp

(
iΩ

(
T − X

UI

))
+ R(0)(Ω) exp

(
iΩ

(
T +

X

UI

))
+ c.c.

)
and(3.14)

I(0)(X,T )=

(
LIICI

LICII

) 1
2 1

2

(
exp

(
iΩ

(
T − X

UI

))
−R(0)(Ω) exp

(
iΩ

(
T +

X

UI

))
+ c.c.

)
,

where c.c. indicates complex conjugate and we have used the freedom to set the origin
of T . The normalized speed of propagation in region I is

UI =
1

c
(LICI)

− 1
2 ,(3.15)

and the normalized signal frequency is

Ω = 2πf
l

c
.(3.16)

Similarly, in region III, let

V (0)(X,T ) =
1

2

(
T (0)(Ω) exp

(
iΩ

(
T − (X − 1)

UI

))
+ c.c.

)
and(3.17)

I(0)(X,T ) =

(
LIICI

LICII

) 1
2 1

2

(
T (0)(Ω) exp

(
iΩ
(
T − (X − 1)

UI

))
+ c.c.

)
.

Notice that the phase at X = 1 is absorbed into T (0)(Ω).
The lowest-order transmission and reflection coefficients T (0)(Ω) and R(0)(Ω) are

found by imposing the condition (3.12). Using (3.10), (3.14), and (3.17) gives explicit

expressions for the functions V
(0)

I (T ), I
(0)
I (T ), V

(0)
III (T ), and I

(0)
III (T ) introduced in

(2.24) and (2.25). Thus (3.12) is

1 + R(0)(Ω) ± β
1
2

(
1 −R(0)(Ω)

)
= e±iΩU−1

m T (0)(Ω)
(
1 ± β

1
2

)
,(3.18)

where

β =
LIICI

LICm(vb)
=

LIICI

LICII

1

Gn(Vb)
.(3.19)

In the experimental system β � 1 because the impedance in region II is higher than
that in regions I and III.

The pair of equations (3.18) can be solved to yield

R(0)(Ω) = −
(1 − β) sin( Ω

Um
)

(1 + β) sin( Ω
Um

) − 2iβ
1
2 cos( Ω

Um
)
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= −
(1 − β2) sin2( Ω

Um
) − 2iβ

1
2 (1 − β) sin( Ω

Um
) cos( Ω

Um
)

(1 + β)2 sin2( Ω
Um

) + 4β cos2( Ω
Um

)
,(3.20)

T (0)(Ω) = − 2iβ
1
2

(1 + β) sin( Ω
Um

) − 2iβ
1
2 cos( Ω

Um
)

= −
4β cos( Ω

Um
) + 2iβ

1
2 (1 + β) sin( Ω

Um
)

(1 + β)2 sin2( Ω
Um

) + 4β cos2( Ω
Um

)
.(3.21)

These coefficients, also found in the quantum-mechanical problem of a potential step
[17], satisfy the energy constraint |R(0)(Ω)|2 + |T (0)(Ω)|2 = 1. Perfect transmission,
i.e., |T (0)(Ω)| = 1, is found at resonant frequencies Ω satisfying

sin

(
Ω

Um

)
= 0.(3.22)

3.2. Next order. In order to impose the equality (3.7) to order A2 we write

AV
(0)

I (τ
(0)
± (S) + Aτ

(1)
± (S))

= AV
(0)

I (S ± U−1
m ) + A2V ′

I (S ± U−1
m )τ

(1)
± (S) + O(A3),(3.23)

where V ′
I (T ) = d

dT
V

(0)
I (T ). The current I

(0)
I (τ

(0)
± (S) + Aτ

(1)
± (S)) is expanded in the

same way. To find the solution at order A2, we therefore need an explicit form for the
initial times function to order A. The relationship that gives the initial times for the
two characteristics that cross at (1, S) is

S = τ±(S) ± 1

U

∫ 1

0

(Gn(V (X,T±(X)))
1
2 dX

= τ
(0)
± (S) + Aτ

(1)
± (S)

± 1

Um

∫ 1

0

(
1 +

1

2

G′
n(Vb)

Gn(Vb)
AV (0)(X,T

(0)
± (X))

)
dX + · · · .(3.24)

Using (3.10) yields

τ
(1)
± (S) = ∓1

2
U−1

m

G′
n(Vb)

Gn(Vb)

∫ 1

0

V (0)(X,T
(0)
± (X))dX.(3.25)

In Appendix A, we construct the explicit form of V (0)(X,T
(0)
± ) and perform the

integral in (3.25), leading to the expansion (A.8) of (3.7) to order A2.
The only sinusoidal terms on the right-hand side of (A.8) have frequency 2Ω,

so there is a transmitted second-harmonic signal with amplitude proportional to the
square of the input amplitude [11]. We therefore let the nonconstant terms of order
A2 in the expansion (3.4) be

V
(1)

I (T ) =
1

2

[
R(1)(Ω) e2 iΩT + c.c.

]
, I

(1)
I (T ) = −

(
LIICI

LICII

) 1
2 1

2

[
R(1)(Ω) e2 iΩT + c.c.

]
,

V
(1)

III (T ) =
1

2

[
T (1)(Ω) e2 iΩT + c.c.

]
, I

(1)
III (T ) =

(
LIICI

LICII

) 1
2 1

2

[
T (1)(Ω) e2 iΩT + c.c.

]
.
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Then (A.8) becomes

(1 ± β
1
2 )T (1)(Ω) − (1 ∓ β

1
2 )R(1)(Ω)e∓2iΩU−1

m

=
1

8

G′
n(Vb)

Gn(Vb)
T (0)(Ω)2

[(
cos

Ω

Um
− iβ

1
2 sin

Ω

Um

)2

e∓2iΩU−1
m − 1

∓ i

(
(1 ± β

1
2 )2 Ω

Um
+ (1 − β)

1

2

(
sin

(
2

Ω

Um

)
± i

(
1 − cos

(
2

Ω

Um

))))]
.(3.26)

Explicit expressions for T (1)(Ω) and R(1)(Ω) can now be obtained by inverting
the pair of complex equations (3.26). The result simplifies considerably at resonant
frequencies, (3.22), when (3.26) reduces to

(1 ± β
1
2 )T (1)(Ω) − (1 ∓ β

1
2 )R(1)(Ω) = ∓ i(1 ± β

1
2 )2 1

8

G′
n(Vb)

Gn(Vb)

Ω

Um
.(3.27)

The solution of (3.27) is

T (1)(Ω) = − 1

16

i

β
1
2

G′
n(Vb)

Gn(Vb)

Ω

Um
(1 + 3β),(3.28)

R(1)(Ω) = − 1

16

i

β
1
2

G′
n(Vb)

Gn(Vb)

Ω

Um
(1 − β).(3.29)

Note that G′(0) = 0 and G′(V ) < 0 when V �= 0. A relatively simple form is also
found in the limit Ω

Um
� 1, where

(1 ± β
1
2 )T (1)(Ω) − (1 ∓ β

1
2 )R(1)(Ω)e∓2iΩU−1

m

= ∓T (0)(Ω)2i(1 ± β
1
2 )2 1

8

G′
n(Vb)

Gn(Vb)

Ω

Um
.(3.30)

The solution of the system (3.30) is

T (1)(Ω) = − i

8
T (0)(Ω)2G

′
n(Vb)

Gn(Vb)

Ω

Um

(1 + 3β) cos 2 Ω
Um

+ i(3β
1
2 + β

3
2 ) sin 2 Ω

Um

2β
1
2 cos 2 Ω

Um
+ i(1 + β) sin 2 Ω

Um

,

(3.31)

R(1)(Ω) = − i

8
T (0)(Ω)2G

′
n(Vb)

Gn(Vb)

Ω

Um

1 − β

2β
1
2 cos 2 Ω

Um
+ i(1 + β) sin 2 Ω

Um

.

At the nth resonance, Ω
Um

= nπ, so (3.31) is a rather good approximation in typical
experimental situations where n ≥ 4.

The factors on the right-hand side of (3.31) have simple interpretations. The
factor T (0)(Ω)2 means that the amplitude of the second harmonic is maximized when
the frequency of the input signal is at resonance. The factor G′

n(Vb)/Gn(Vb) gives the
explicit dependence on bias voltage; because G′

n(0) = 0 there is no second-harmonic
generation at order A2 for zero bias. The factor Ω = 2πfl/c means that the second-
harmonic amplitude is proportional to the “effective length” of the waveguide, the
number of wavelengths over which the nonlinearity has time to act. The final factor
involving transcendental functions is complicated. However, it can be seen that the



12 ROBERTO CAMASSA, ALP FINDIKOGLU, AND GRANT LYTHE

dependence on 2Ω/Um will produce secondary maxima in the second-harmonic ampli-
tude at frequencies halfway between resonances of the input signal. Finally, we remark
that the constant terms (zero-frequency “DC-component”) of amplitude A2, also gen-
erated by the quadratic component of nonlinearity, can always be absorbed into the
bias voltage, and hence their effects are already accounted for by Vb-variations.

4. Comparison with numerical solutions. The response of a finite-length
nonlinear device was modeled by dividing the space into three one-dimensional re-
gions. In the central region (region II) the wave equation, two coupled PDEs for
the charge and current fields (2.12), is nonlinear. The numerical runs described in
this section used values of the capacitances and inductances, length of region II, and
input frequencies, chosen to be similar to those found in the experiments described in
section 5 below [23].

In the interior of each region, timestepping is performed according to the Lax–
Wendroff method described in section B.1. At the boundaries between region I and II
and between regions II and III, we impose continuity of voltage and current. In section
B.2 we describe how this is made consistent with the different relations between charge
and voltage functions that hold to the left and to the right of the boundary. In the
numerics, we can examine the whole configuration of current and charge at any time.
An example numerical configuration (a“snapshot” at one instant of time) is shown in
Figure 4.1.

0.95

1

1.05

-1 0 1 2

V (X,T )

X

Fig. 4.1. Numerical voltage field as a function of X for T = 1000. In regions I and III (X < 0
and X > 1), the wave equation is linear; in region II (0 ≤ X ≤ 1), the wave equation is nonlinear.
A sinusoidal signal was input at f = 250MHz with a = 0.1V. The parameters are LICIc2 = 9,
LIICIIc2 = 2500, and l = 6cm, vb = 1V, and v∗ = 10V. The partial differential equations (2.12)
were solved with ΔX = 0.001 and ΔT = 0.001.

Regions I and III, semi-infinite in the PDE (2.12), are of finite length in the
numerical scheme. In region I, which stretches from X = −L to X = 0, there is a
prescribed input signal; the update employed at the leftmost extremity for producing
it is derived in section B.3. Fourier transforms of numerical time series at points in
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amplitude
/ Vol t

f
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incident plus reflected

Fig. 4.2. The solid lines are modulus of the transmission coefficient T (0)(Ω) and of 1+R(0)(Ω)
as a function of frequency at (3.21). The dots are the Fourier transforms of numerical time series
with white noise input.

regions I and III are used to evaluate the transmitted and reflected signals. Sinusoidal
input signals may be accompanied by noise, either white or with constant power in a
window of frequencies. The latter “band-limited” noise is generated either by filtering
white noise or by explicitly constructing a signal as a sum of Fourier components with
constant power in the frequency window.

Our analytical and numerical methods are not altered by changes in the form of
the function C(V ), assuming that it is a positive even function with maximum at 0.
In the numerical runs producing the results displayed in Figures 4.1–4.5, we used the
following form:

Cm(v) = CII

(
1 +

( v

v∗

)2
)−1

,(4.1)

giving the convenient explicit form V (x, t) = tan(Q(x, t)) in region II and

Gn(V ) =
1

1 + V 2
.(4.2)

The parameter values used in the numerical runs reported in this section were
as follows. The length of region II was taken to be l = 6cm and the characteristic
voltage v∗ = 10V. The L and C constants in the regions were given by LICIc

2 = 9,
LIICIIc

2 = 2500. Thus the speed of light in regions I and III was one third of that in a
vacuum, c. The corresponding speed in region II and the factor β are bias-dependent;
at zero bias the speed was c/50 and β = 0.0036.

The results of one numerical experiment are shown in Figure 4.2. The input
was broadband white noise with small amplitude, so that all frequencies have equal
average amplitude in the input. The solid lines are the predictions obtained from
(3.21). Assuming a flat input spectrum, we obtain the transmission coefficient T (0)(Ω)
as the Fourier transform of the time series in region III, showing resonances when
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1e-05

0.001

0.1

amplitude
/ Volt

0 50 100 150 200 250 300 350 400
f / MHz

Fig. 4.3. Transmission and second-harmonic generation as a function of input frequency. The
transmitted amplitudes at f and 2f are shown on a logarithmic scale. Numerical results are shown
as solid circles and analytical results as lines. In particular, the dashed line corresponds to the high
frequency limit (3.31), and, as seen, it becomes accurate past frequencies of about 50MHz.

Ω/Um was a multiple of π. (With l = 6cm, resonant frequencies are at multiples
of 50MHz.) The numerical results, shown as dots, fluctuate about the theoretical
line as expected. In region I, the time-dependent voltage is the sum of incident
and reflected signals; the Fourier amplitude in this case, shown in the figure, is 1 +
R(0)(Ω). At resonant frequencies (3.22), there is perfect transmission and R(0)(Ω) =
0. Halfway between resonant frequencies, at frequencies satisfying sin

(
Ω
Um

)
= ±1, we

find minimum transmission

|T (0)(Ω)|2min =
4β

(1 + β)2
(4.3)

and

R(0)(Ω) = −1 − β

1 + β
= −1 + 2β + O(β2);(4.4)

at these frequencies R(0)(Ω) 
 −1, and the reflected and incident signals almost
cancel each other out. This feature is clearly visible in the numerical results. No
nonlinear effects are displayed in Figure 4.2, but the run serves as a stringent check
on the numerical algorithm over several orders of magnitude in voltage.

The effect of the nonlinearity in generating an output at twice the input frequency
is shown in Figure 4.3, which summarizes the results of a series of numerical runs,
each with a single sinusoidal input. The input amplitude a = 0.1V was fixed, and all
runs were performed with bias voltage vb = 2.01; the frequency f of the input signal
was changed from run to run. At the chosen bias voltage, resonant frequencies are
multiples of 51MHz. The figure shows the transmitted amplitude at frequencies f
and 2f , along with the analytical predictions. The amplitude at f is given by (3.21).
The prediction at 2f , obtained by inverting (3.26), is remarkably accurate over many
orders of magnitude in the transmitted amplitude. The asymptotic formula for high
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Fig. 4.4. Transmission and harmonic generation as a function of bias voltage. In the upper
graph the output amplitudes at f , 2f , and 3f are shown on a logarithmic scale. In the lower graph
the amplitude at 2f is shown on a linear scale. Numerical results are shown as solid circles. The
solid lines use (3.21) and (3.26). The dotted line, using (3.31), differs visibly from (3.26) only at
low frequencies. In each case f = 150MHz and a = 0.1V.

frequency (3.31), shown in this figure as a dashed line, is indistinguishable from the
full inversion of (3.26) and the numerical data past frequencies of about 50MHz.

The features of the second-harmonic amplitude predicted by (3.31) are clearly
evident in the numerical results. The amplitude of the second harmonic is maxi-
mized when the frequency of the input signal is at resonance. Local maxima of the
second-harmonic amplitude are also found at frequencies halfway between resonances
of the input signal. The height of the maxima coinciding with the nth resonance is
proportional to n because the second-harmonic amplitude is proportional to Ω.

A similar series of runs was used to produce Figure 4.4, this time with all param-
eters except bias voltage held fixed. The input frequency is chosen to be at resonance
at zero bias. The top graph shows the transmitted amplitude at f , 2f , and 3f on a
logarithmic scale. (We have not attempted to calculate the 3f amplitude but conjec-
ture that it is proportional to C ′′(Vb), and hence nonzero at Vb = 0.) In the lower
graph we plot the transmitted second-harmonic (2f) amplitude and the approxima-
tion (3.31) on a linear scale. At zero bias voltage, it is zero at order A2 because
C ′(0) = 0. The second-harmonic amplitude at first increases with bias voltage, and
then decreases as the bias voltage is further increased, as the resonant frequency is
shifted away from the input frequency. For sufficiently large bias voltage, the shift in
resonant frequencies is such that the input frequency can once again be at resonance.

The convenient analytical forms (3.31), for the amplitudes and phases of the trans-
mitted and reflected second harmonic at order A2, give several intriguing possibilities
if the input signal consists of two or more sinusoids. For example, in addition to a
sinusoidal input at frequency f , another at frequency 2f can be chosen so that the
total transmission at 2f is zero to order A2 by cancellation of the second harmonic
produced by the nonlinearity with the transmitted signal at 2f . This cancellation
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transmitted
amplitude

Fig. 4.5. Transmitted amplitude at f (dashed) and 2f (solid) versus phase φ, logarithmic
scale. The input signal is given by (4.5), with the amplitude b chosen to be equal to that of the
second harmonic generated by the nonlinearity from the input at frequency f with amplitude a. The
parameters are f = 51MHz and a = 0.01.

can be produced for any input frequency and will be explored further below in the
case where f is a resonant frequency. Alternatively, for an input frequency slightly
off resonance, it is possible to choose a combination such that the reflected signal is
free of harmonics to order A2.

In Figure 4.5 we show the transmitted amplitude at f and 2f , as a function of
the phase φ, when the input signal is given by

vin = a cos(2πft) + b cos(4πft + φ),(4.5)

where f is chosen to be the lowest resonant frequency at a nonzero bias voltage. At
lowest order, the transmitted signal is equal to the input signal, since 2f is also a
resonant frequency. There is another source of transmitted power at 2f , the gener-
ated second-harmonic signal with amplitude, given by (3.28), proportional to a2/v∗.
We choose b in (4.5) to be equal to that amplitude. (With the parameters in Fig-
ure 4.5, |T (1)(Ω)| 
 1.3, so b = |T (1)(Ω)|a2/v∗ 
 0.000013.) According to (3.28),
the phase of the generated 2f signal is 1

2π. Thus when φ = − 1
2π, the generated and

directly transmitted outputs have equal amplitude and opposite phase; the result is
to eliminate the total transmitted 2f signal to order A2. (Also shown in Figure 4.5,
as a dashed line, is the transmitted amplitude at f , which is independent of φ and
indistinguishable from the input amplitude.)

The procedure of producing a pure transmitted signal with frequency f from
a mixed input can in principle be carried to nth order, using an input signal with
amplitudes and phases chosen to eliminate n multiples of f from the transmitted
signal. The result would be a unique multifrequency input that gives a pure single
frequency transmitted signal through a given device. This uniqueness property, and
its dependence on the external bias field, might have encoding implications in signal
transmission protocols.
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Fig. 5.1. Device top view and schematic diagram. The input circuitry, device, and output
circuitry are modeled as regions I, II, and III. The time-dependent voltage in region I is a sum of the
incident and reflected sinusoidal signals, Vin and Vre. In the central region, region II, the wave equa-
tion is nonlinear. Signals travel along the meandering waveguide patterned into a superconducting
thin film. The transmitted signal in region III, Vtr, is measured and analyzed.

5. Comparison with an experimental system. In this section we report
on experimental results. Microwave signals and noise were passed through a small
device whose properties depend on operating temperature and applied voltage. A
schematic diagram is shown in Figure 5.1. The devices are 1cm × 1cm × 0.5mm,
consisting of 0.4μm-thick superconducting YBa2Cu3O7 (YBCO) film on single-crystal
substrates [22]. They are manufactured with two parallel meandering gaps (width
15μm) patterned into the superconducting thin film. The result is a waveguide with a
narrow meandering centerline (length l 
 8cm and width 20μm) and two groundplanes
(the rest of the superconducting film).

A constant voltage difference, the “bias” voltage, is maintained between the cen-
terline and the groundplane. Because the lateral dimensions of the waveguide are
much smaller than the wavelengths of the input signals, wave propagation is effec-
tively one-dimensional. In the superconducting state, below the transition tempera-
ture Tc 
 85K, resistive losses of the YBCO film are negligible. Working temperatures
were in the range 20K–60K. The source of the nonlinearity in the experiment is the
substrate that the superconducting waveguide rests on, a single crystal of strontium
titanate, SrTiO3 (STO), with large permittivity. Due to the nonlinear dielectric prop-
erties of STO [19, 20], the shunt capacitance per unit length of the waveguide depends
on temperature and on voltage. The resulting voltage-dependent differential capac-
itance produces behavior that combines resonance effects with harmonic generation
and frequency mixing. More details can be found in [3], [10], and [11].

Our quantitative studies begin with a measurement of the differential capaci-
tance as a function of temperature and voltage. We assume that the inductance per
unit length, LII, is unaffected by changes in temperature and voltage. (The value
LII = 505.7pH/mm is deduced from measurements of the capacitance and resonant
frequencies of the devices [11].) Measurement of the differential capacitance is con-
veniently carried out using a small-amplitude broadband noise input at various tem-
peratures and bias voltages. The dominant feature of the transmitted spectrum is a
series of maxima at resonant frequencies. The resonant frequencies at bias voltage vb
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Fig. 5.2. Experimental and theoretical results: Transmission versus frequency. The experi-
mental results were obtained at operating temperature 40K. In the upper graph, bias voltage = 0.
In the lower graph, bias voltage = 10V. The solid lines are the theoretical curve (3.21) for linear
lossless transmission. The parameters are LICI/LIICII = 9/2500 and l = 7.8cm. The positions of
the resonance peaks are well predicted, but successive experimental peaks are of reduced height due
to losses in the device.

are fn(vb), where

fn(vb) =
n

2

um(vb)

l
, n = 0, 1, 2, . . . ,(5.1)

and the propagation speed for small-amplitude signals, um(vb), is given by (2.14):

um(vb) = (LIICm(vb))
− 1

2 .
Experimental results for the transmitted signal as a function of input frequency

are shown in Figure 5.2. The input in each case was broadband white noise and
the operating temperature was 40K. Because Cm(vb) is a decreasing function on vb,
the distance between resonant peaks increases when a bias voltage is applied. The
theoretical curve accurately gives the position of the resonant peaks in transmission
but does not predict their decreasing height as a function of frequency. The reason is
that the model PDEs (2.12) do not include losses whose effect is to reduce transmission
by a factor that increases with frequency.

The decreasing height of resonant peaks does not prevent us from accurately
determining their position. Using (2.14) determines the differential capacitance as
a function of voltage; Cm(vb) is related to the frequency fn of the nth peak in the
transmission versus frequency curve by

LIICm(vb) =

(
n

2

1

l

)2

f−2
n (vb).(5.2)

The upper plot in Figure 5.3 is the position of the third resonance as a function of
bias voltage at operating temperature 40K. The function used to obtain the fit shown
as a solid line is

f(vb) = f(0) + c1vb tanh(c2vb),(5.3)
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Fig. 5.3. Experimental results at operating temperature 40K and best fit using (5.3). Upper
graph: Frequency at the n = 3 peak as a function of bias voltage. Lower graph: Differential capaci-
tance as a function of bias voltage divided by CII = Cm(0).
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Fig. 5.4. Experimental results at operating temperature 20K and best fit using (5.3). Upper
graph: Frequency at the n = 4 peak as a function of bias voltage. Lower graph: Differential capaci-
tance as a function of bias voltage divided by CII = Cm(0).

where the two parameters c1 and c2 are adjusted once to obtain a fit through all the
experimental points. The lower plot in Figure 5.3 is the ratio Cm(vb)/CII, deduced
from the upper curve using (5.2). In Figure 5.4, similar results are shown for operating
temperature 20K. At this lower temperature, differential capacitance is a more rapidly
varying function of bias voltage. As the graphs in Figure 5.4 show, the functional
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Fig. 5.5. Experimental results and theoretical curves: Transmitted amplitudes at f (empty cir-
cles), 2f (filled circles), and 3f (crosses) versus bias. The input is of fixed amplitude and frequency
f = 215MHz. The lines are the theoretical curves using asymptotic analysis of the lossless nonlinear
PDE (2.12). The dashed line is the transmission coefficient from the linear equation. The solid line
shows the order A2 second-harmonic amplitude (3.31).

form (5.3) appears quite suitable for the purpose of modeling the medium’s nonlinear
response within the range of voltage amplitudes we have considered.

Figure 5.5 summarizes experimental data taken at 40K using an input signal of
fixed amplitude at f = 215MHz. The frequency is chosen to be at the sixth resonance
peak for zero bias voltage. The upper part of the plot shows the transmitted amplitude
at f , normalized to its value at zero bias. As bias voltage increases away from zero,
there is a shift in the resonance frequency (compare Figure 5.2) so that the input
frequency is no longer a resonant frequency and the transmitted power decreases.
The decrease is less rapid in the experiment (empty circles) than in the theoretical
curve (dotted line) because losses have the effect of widening (as well as reducing
the height of) resonant peaks. Dielectric losses are also known to decrease with bias
voltage [22, 24]. The solid line and filled circles show the transmitted amplitude at
2f as a function of bias. The reason for the initial rapid increase with bias is that the
amplitude of the second-harmonic signal is proportional to C ′

m(vb) and C ′
m(0) = 0.

The subsequent decline is due to the decrease of the transmitted power at frequency
f (compare (3.31)). Also shown is the third-harmonic power, which has a nonzero
value at zero bias voltage and then decreases slowly [11].

6. Conclusion. A few points emerge from our side-by-side modeling and experi-
mental investigation of electromagnetic propagation in a class of nonlinear waveguides.
First, our simple voltage-current model seems to capture most of the physical features
of the experimental device, including the tunable nonlinearity via an externally ap-
plied electric field. We find quantitative agreement with most measurable quantities.
Some effects we neglect, such as dissipation, do show up in the data, but at least for
the experimental regimes we have focused on, they can be considered secondary.

Second, transmission of sinusoidal signals through a linear medium is maximized
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when the length of the region is equal to a multiple of half the wavelength. This
remains the dominant feature in transmission through the nonlinear region we stud-
ied, because the signal amplitude is small enough and the nonlinear region is short
enough that nonlinear and dispersive effects have a subdominant role. The main ef-
fect of the nonlinearity is to produce a second-harmonic output, with amplitude that
is well predicted by an expansion that assumes that the input signal is sufficiently
weak. The explicit and, especially near resonance, relatively simple formulae we have
derived using an asymptotic approach perform well against both numerical solutions
of our model equation and experimental results, thus giving us confidence that the
theoretical building blocks we have established can be used in other studies of this
class of materials.

Third, the numerical simulations in which we mix the input signal with a second
harmonic show that it is possible to achieve transparency (or total reflection) at
second order in the input amplitude. In principle the expansion we have set up
could be carried out to higher orders, thus eliminating all higher harmonics from the
transmitted signal. Such transparency, and its dependence on the external bias field,
might be exploited for technological applications such as signal transmission protocols.

The main difference between our system and optical systems [25] is the absence of
frequency dispersion. Future work will apply and extend the tools we have developed
in this paper to study arrays of similar devices, where the longer effective length will
permit nonlinear pulses of permanent form (or “solitons”) because of the dispersive
effects that such configurations generate. Distributed (or spatially extended) non-
linear arrays have intrinsic broadband capability (at least several hundred GHz) in
contrast to electronic circuits based on discrete elements and high-dimensional com-
plexity, governed by PDEs or coupled ODEs, in contrast to low-dimensional systems
whose dynamics are governed by ODEs. Thus, distributed nonlinear arrays have the
potential to handle wider data bandwidth at a high level of security in communication.

Appendix A. The initial times function.
In this appendix we find the explicit lowest-order solution for the voltage in region

II, evaluate the integral (3.25) that gives the initial times function, and explicitly
expand (3.7) to order A2.

Consider a point (T,X) in region II. It is the intersection of the two characteristics
that intersect X = 0 at (T±(0), 0), where

T
(0)
± (0) = T ∓ X

Um
.(A.1)

Now the solution is constructed using

V (0)(X,T ) = (2Gn(Vb)
1
2 )−1

(
Γ

(0)
+ (X,T ) + Γ

(0)
− (X,T )

)
.(A.2)

Using the property of the characteristics, Γ±(X,T ) = Γ±(0, T±(0)), and the explicit
forms,

V
(0)

I (T ) =
1

2

(
(1 + R(0)(Ω))eiΩT + c.c.

)
,

I
(0)
I (T ) =

(
LIICI

LICII

) 1
2 1

2

(
(1 −R(0)(Ω))eiΩT + c.c.

)
,

V
(0)

III (T ) =
1

2

(
T (0)(Ω)eiΩT + c.c.

)
,
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I
(0)
III (T ) =

(
LIICI

LICII

) 1
2 1

2

(
T (0)(Ω)eiΩT + c.c.

)
,(A.3)

we obtain

V (0)(X,T ) = Gn(Vb)−
1
2
1

2

[
Gn(Vb)

1
2V

(0)
I

(
T − X

Um

)
+ I

(0)
I

(
T − X

Um

)

+ Gn(Vb)
1
2V

(0)
I

(
T +

X

Um

)
− I

(0)
I

(
T +

X

Um

)]

=
1

2

[
exp

(
iΩ

(
T − X

Um

))
+ R(0)(Ω) exp

(
iΩ

(
T − X

Um

))

+β
1
2

(
exp

(
iΩ

(
T − X

Um

))
−R(0)(Ω) exp

(
iΩ

(
T − X

Um

)))

+ exp

(
iΩ

(
T +

X

Um

))
+ R(0)(Ω) exp

(
iΩ

(
T +

X

Um

))

−β
1
2

(
exp

(
iΩ

(
T +

X

Um

))
−R(0)(Ω) exp

(
iΩ

(
T +

X

Um

)))
+ c.c.

]

=
1

2

[
eiΩT

(
(1 + R(0)(Ω)) cos

(
Ω

Um
X

)

− iβ
1
2 (1 −R(0)(Ω)) sin

(
Ω

Um
X

))
+ c.c.

]
.

Thus

V (0)(X,T ) = |1 + R(0)(Ω)| cos

(
Ω

Um
X

)
cos(ΩT + φ1)

− β
1
2 |1 −R(0)(Ω)| sin

(
Ω

Um
X

)
sin(ΩT + φ2) ,(A.4)

where φ1 = arg(1 + R(0)(Ω)) and φ2 = arg(1 − R(0)(Ω)). In the case of resonance,
Ω = Um nπ, R(0)(Ω) = 0, and the solution in region II is simply

V (X,T ) = Vb + A
(
cos(nπX) cos(ΩT ) − β

1
2 sin(nπX) sin(ΩT )

)
.(A.5)

To evaluate the integral in (3.25), we need the quantity V (0)(X,T
(0)
± (X)). Insert-

ing

T
(0)
± (X) = S ∓ 1 −X

Um
(A.6)

and using (3.18) gives

V (0)(X,T
(0)
± (X)) =

1

4

[
eiΩ(S∓U−1

m )

(
1 + R(0)(Ω) ± β

1
2 (1 −R(0)(Ω))
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+

(
cos

(
2

Ω

Um
X

)
± i sin

(
2

Ω

Um
X

))(
1 + R(0)(Ω) ∓ β

1
2 (1 −R(0)(Ω))

))
+ c.c.

]

=
1

4

[
eiΩST (0)(Ω)

(
1 ± β

1
2 + (1 ∓ β

1
2 )e∓2i Ω

Um

(
cos

(
2

Ω

Um
X
)
± i sin

(
2

Ω

Um
X
)))

+ c.c.

]
.

Thus, the next-to-lowest order term in the initial times function is explicitly

τ
(1)
± (S) = ∓ U−1

m

1

8

G′
n(Vb)

Gn(Vb)

[
eiΩST (0)(Ω)

(
1 ± β

1
2

+
1

2

Um

Ω
(1 ∓ β

1
2 )e∓2i Ω

Um

(
sin

(
2

Ω

Um

)
± i ∓ i cos

(
2

Ω

Um

)))
+ c.c.

]
.(A.7)

The full expression for (3.7), up to order A2 with (3.14) and (3.17), is

AGn(Vb)
1
2

(
1 ± β

1
2

) 1

2

(
T (0)(Ω)eiΩS + c.c.

)
+ A2Gn(Vb)

1
2V

(1)
III (S) ±A2I

(1)
III (S)

+ A2Gn(Vb)
1
2
1

8

G′
n(Vb)

Gn(Vb)

(
|T (0)(Ω)|2 +

1

2
(T (0)(Ω)2e2iΩS + c.c.)

)

= AGn(Vb)
1
2
1

2

[
eiΩ(S∓U−1

m )
(
1 + R(0)(Ω) ± β

1
2 (1 −R(0)(Ω))

)
+ c.c.

]
+ A2Gn(Vb)

1
2V

(1)
I (S ∓ U−1

m ) ±A2I
(1)
I (S ∓ U−1

m )

+ A2Gn(Vb)
1
2
1

8

G′
n(Vb)

Gn(Vb)

(
|1 + R(0)(Ω)|2 +

1

2

[
(1 + R(0)(Ω))2 e2iΩ(S∓U−1

m ) + c.c.
])

+ A2Gn(Vb)
1
2
1

2
Ω
[
ieiΩ(S∓U−1

m )
(
1 + R(0)(Ω) ± β

1
2 (1 −R(0)(Ω))

)
+ c.c.

]
τ

(1)
± (S).

To order A we regain (3.18). With (A.7), we obtain the following expression for (3.7)
at order A2:

V
(1)

III (S) ±Gn(Vb)−
1
2 I

(1)
III (S) − V

(1)
I (S ∓ U−1

m ) ∓Gn(Vb)−
1
2 I

(1)
I (S ∓ U−1

m )

=
1

16

G′
n(Vb)

Gn(Vb)

[(
− |T (0)(Ω)|2 − T (0)(Ω)2 e2iΩS + |T (0)(Ω)|2

(
cos2 Ω

Um
+ β sin2 Ω

Um

)

+ T (0)(Ω)2

(
cos2 Ω

Um
− iβ

1
2 sin2 Ω

Um

)2

e2iΩ(S∓U−1
m ) + c.c.

)

∓ Ω

Um
(1 ± β

1
2 )

((
1 ± β

1
2 +

1

2

Um

Ω

(
sin

(
2

Ω

Um

)

± i

(
1 − cos

(
2

Ω

Um

))))
iT (0)(Ω)2e2iΩS + c.c.

)]
.

(A.8)
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Appendix B. Numerical techniques.

B.1. Lax–Wendroff finite-difference method. The fields Q and I are up-
dated on a grid with spacing ΔX. In the first-order Lax–Wendroff method, the values
at T + ΔT are obtained from those at T using [18]:

Q(X,T + ΔT ) =
1

2
(Q(X + ΔX,T ) + Q(X,T ))

−1

2
U

ΔT

ΔX
(I(X + ΔX,T ) − I(X − ΔX,T )) ,(B.1)

I(X,T + ΔT ) =
1

2
(I(X + ΔX,T ) + I(X,T ))

−1

2
U

ΔT

ΔX
(V(Q(X + ΔX,T )) − V(Q(X − ΔX,T ))) .(B.2)

We use the following second-order adaptation [18]:

Q(X,T + ΔT ) = Q(X,T ) − 1

2
U

ΔT

ΔX
(I(X + ΔX,T ) − I(X − ΔX,T ))

+
1

2

(
U

ΔT

ΔX

)2

(V(Q(X + ΔX,T )) + V(Q(X − ΔX,T ))) ,(B.3)

I(X,T + ΔT ) = I(X,T ) − U
ΔT

ΔX

[
V
(

1

2
(Q(X + ΔX,T ) + Q(X,T ))

−1

2
U

ΔT

ΔX
(I(X + ΔX,T ) − I(X,T ))

)

−V
(

1

2
(Q(X,T ) + Q(X − ΔX,T ))

−1

2
U

ΔT

ΔX
(I(X,T ) − I(X − ΔX,T ))

)]
.(B.4)

B.2. Discretized boundary conditions. At the interface between different
media it is important to implement numerical boundary conditions that are of the
same order of the scheme and do not produce artificial reflections [26]. Consider the
boundary between regions I and II. Let Q1(nΔX,T ) and I1(nΔX,T ) be the values of
the last point in region I; let Q2(0, T ) and I2(0, T ) be the values of the first point in
region II. We cannot immediately implement the Lax–Wendroff scheme because the
neighboring points to the boundary points are in different regions, where the equation
of motion takes different forms: V(Q) = Vl(Q) and V(Q) = Vn(Q).

Because Q1(nΔx, T ) and Q2(0, T ) correspond to the same position,

I1(nΔx, T ) = I2(0, T ) and Vl(Q1(nΔx, T )) = Vn(Q2(0, T )),(B.5)

with Vl and Vn as defined in (2.11). As (B.5) is true for any T , we also have the
equalities

∂

∂T
I1(nΔx, T ) =

∂

∂T
I2(0, T )(B.6)
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and

∂

∂T
Vl(Q1(nΔx, T )) =

∂

∂T
Vn(Q2(0, T )).(B.7)

Therefore, from the equation of motion (2.12),

∂

∂X
Vl(Q1(nΔx, T )) =

∂

∂X
Vn(Q2(0, T ))(B.8)

and

V ′
l (Q1(nΔx, T ))

∂

∂X
I1(nΔx, T ) = V ′

n(Q2(0, T ))
∂

∂X
I2(0, T ),(B.9)

where

V ′
l (Q) =

∂

∂Q
Vl(Q), V ′

n(Q) =
∂

∂Q
Vn(Q).(B.10)

The discrete approximation to the partial derivatives on the right-hand side of
(B.9) is

∂

∂X
I1(nΔx, T ) = (2Δx)−1 (3I1(nΔx) − 4I1((n− 1)Δx) + I1((n− 2)Δx)) ,(B.11)

∂

∂X
I2(0, T ) = (2Δx)−1 (−3I2(0) + 4I2(Δx) − I2(2Δx)) ;(B.12)

the derivatives in (B.8) are evaluated similarly. The discretized version of (B.8)–(B.9)
is therefore

Vl(Q1(nΔx, T )) = Vn(Q2(0, T ))

=
1

6

(
4Vl(Q1((n− 1)Δx, T )) − Vl(Q1((n− 2)Δx, T ))

+ 4Vn(Q2(Δx, T )) − Vn(Q2(2Δx, T ))
)
,

I1(nΔx, T ) = I2(0, T )

=
1

3

(
1 +

V ′
n(Q2(0, T ))

V ′
l (Q1(nΔx, T ))

)−1 (
4I1((n− 1)Δx) − I1((n− 2)Δx)

+
V ′

n(Q2(0, T ))

V ′
l (Q1(nΔx, T ))

(4I2(Δx) − I2(2Δx))

)
.

B.3. Input signal. At the left-hand extremity of region I, X = −L, the solution
of the field equation (2.12) can be written as a superposition of two fields: a prescribed
incident wave Qin(X − cT ), Iin(X − cT ), and an (unknown) outgoing wave Qout(X +
cT ), Iout(X + cT ) (c > 0). Thus, the incoming field satisfies the unidirectional wave
equation

∂

∂T

(
Qin

Iin

)
= −c

∂

∂X

(
Qin

Iin

)
,(B.13)
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while the outgoing field satisfies

∂

∂T

(
Qout

Iout

)
= +c

∂

∂X

(
Qout

Iout

)
.(B.14)

Hence, for the total field Q(X,T ), I(X,T ),

∂

∂T

(
Q
I

)
=

∂

∂T

(
Qin

Iin

)
+

∂

∂T

(
Qout

Iout

)

=
∂

∂T

(
Qin

Iin

)
+ c

∂

∂X

(
Qout

Iout

)

=
∂

∂T

(
Qin

Iin

)
+ c

∂

∂X

(
Q−Qin

I − Iin

)
.(B.15)

Using (B.13), the governing equation of the total field in the left linear region can
then be rewritten as

∂

∂T

(
Q
I

)
= 2

∂

∂T

(
Qin

Iin

)
+ c

∂

∂X

(
Q
I

)
;(B.16)

this is used with one-sided spatial derivatives to construct the field at X = −L from
the knowledge of the field at the previous time step.

For example, consider a sinusoidal input signal, as in (3.1). Then, using (3.2),

Vin(X,T ) = A cos(Ω(T −X/UI)).(B.17)

The incident Q and I fields are given by

Qin(X,T ) =
CI

CII

A cos

(
Ω

(
T − X

UI

))
,(B.18)

Iin(X,T ) =

(
LIICI

LICII

) 1
2

A cos

(
Ω

(
T − X

UI

))
.(B.19)

Thus the (lowest-order) increments at the left extremity of region I are

Q1(−L, T + ΔT ) = Q1(−L, T ) + ΔT

(
2

d

dt
Qin(−L, T )

−UI(2Δx)−1
(
3Q1(0) − 4Q1(−L + Δx) + Q1(−L + 2Δx)

))
,

I1(−L, T + ΔT ) = I1(−L, T ) + ΔT

(
2

d

dt
Iin(−L, T )

−UI(2Δx)−1
(
3I1(0) − 4I1(−L + Δx) + I1(−L + 2Δx)

))
.
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(SEMI)CLASSICAL LIMIT OF THE HARTREE EQUATION WITH
HARMONIC POTENTIAL∗

RÉMI CARLES† , NORBERT J. MAUSER‡ , AND HANS PETER STIMMING§

Abstract. Nonlinear Schrödinger equations (NLS) of the Hartree type occur in the modeling of
quantum semiconductor devices. Their “semiclassical” limit of vanishing (scaled) Planck constant is
both a mathematical challenge and practically relevant when coupling quantum models to classical
models. With the aim of describing the semiclassical limit of the three-dimensional (3D) Schrödinger–
Poisson system with an additional harmonic potential, we study some semiclassical limits of the
Hartree equation with harmonic potential in space dimension n ≥ 2. The harmonic potential is
confining and causes focusing periodically in time. We prove asymptotics in several cases, showing
different possible nonlinear phenomena according to the interplay of the size of the initial data and
the power of the Hartree potential. In the case of the 3D Schrödinger–Poisson system with harmonic
potential, we can give only a formal computation since the need for modified scattering operators
for this long-range scattering case goes beyond current theory.

We also deal with the case of an additional “local” nonlinearity given by a power of the local
density—a model that is relevant when incorporating the Pauli principle in the simplest model given
by the “Schrödinger–Poisson-Xα equation.” Further we discuss the connection of our WKB-based
analysis to the Wigner function approach to semiclassical limits.

Key words. Schrödinger–Poisson, Hartree equation, semiclassical limit, harmonic potential

AMS subject classifications. 35B33, 35B40, 35C20, 35Q40, 81Q20, 81S30

DOI. 10.1137/040609732

1. Introduction. Nonlinear Schrödinger equations (NLS) are important both
for many different applications and as a source of rich mathematical theory, with
several hard challenges still open. The NLS in the most common meaning contains a
“local” nonlinearity given by a power of the local density, in particular the (de)focusing
“cubic” NLS which arises, e.g., in nonlinear optics or for Bose–Einstein condensates.
In one dimension this NLS is an integrable system, and the “semiclassical limit”
(“high wave number limit”) can be performed by methods of inverse scattering (see,
e.g., [20] and [22] for results on the defocusing and focusing cases). A class of NLS
with a “nonlocal” nonlinearity that we call “Hartree type” occurs in the modeling
of quantum semiconductor devices. Their “semiclassical” limit of vanishing (scaled)
Planck constant is both a mathematical challenge and practically relevant when cou-
pling quantum models to classical models.

Incorporating the Pauli principle for fermions in the simplest possible model yields
the case of a Hartree equation with an additional “local” nonlinearity given by a power
of the local density, the “Schrödinger–Poisson-Xα equation” (see [25]).
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In this paper we deal with the “semiclassical limit” of nonlinear Schrödinger
equations of Hartree type, with a harmonic potential and a “weak” nonlinearity which
is a convolution of the density with a more or less singular potential.

In three space dimensions, for the case where we convolute with the Newtonian
potential 1/|x|, the Hartree equation is the Schrödinger–Poisson system with harmonic
potential: ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
iε∂tu

ε +
1

2
ε2Δuε =

|x|2
2

uε + V (x)uε ,

ΔV = |uε|2 ,
uε|t=0 = uε0 ,

(1.1)

with x ∈ R3.
This equation typically arises if we consider the quantum mechanical time evolu-

tion of electrons in the mean field approximation of the many body effects, modeled
by the Poisson equation, with a confinement modeled by the quadratic potential of
the harmonic oscillator.

The limit ε → 0 in such a quantum model corresponds to a “classical limit” of
vanishing Planck constant � = ε → 0. We adopt the term “semiclassical limit” for
what should properly be called “classical limit” (see the discussion in [31]), the term
“semiclassical” being actually more appropriate for the situation of the homogeniza-
tion limit from a Schrödinger equation with periodic potential (see, e.g., [2]).

The problem of the mathematically rigorous “classical limit” of the Schrödinger–
Poisson system is highly nontrivial. First results of weak limits ε → 0 to the Vlasov–
Poisson system were given in [23] and [24] using Wigner transform techniques for the
“mixed state case,” where additional strong assumptions on the initial data can be
imposed (which are necessary to guarantee a uniform L2 bound on the Wigner func-
tion). In [31] this assumption was removed for the 1D case, and the classical limit for
the “pure state” case was performed, where the notorious problem of nonuniqueness
of the Vlasov–Poisson system with measure valued initial data reappeared. For an
overview of this kind of “semiclassical limits” of Hartree equations see [26]. For an
introduction to Wigner transforms and their comparison to WKB methods for the
linear case see [11] and [29].

Up to a constant, (1.1) is equivalent to the Hartree equation

iε∂tu
ε +

1

2
ε2Δuε =

|x|2
2

uε +
(
|x|−1 ∗ |uε|2

)
uε, uε|t=0 = uε0 .(1.2)

We restrict our attention to small data cases with uε0 = εα/2f , where f is independent
of ε and α ≥ 1.

Notice that we can allow for more general data with initial plane oscillations,

uε
|t=0 = εα/2f(x)ei

x.ξ0
ε for ξ0 ∈ R3,(1.3)

since the change of variables given in [6],

uε(t, x) = uε(t, x− ξ0 sin t)ei(x−
ξ0
2 sin t).ξ0 cos t/ε ,(1.4)

yields the solution of (1.2). This change of variable could also be used in (1.6) below,
and hence our results also hold for the more general ε-dependent class of data (1.3).
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Note that “small data” can be equivalently written as “small nonlinearity,” since
with the change of the unknown uε = ε−α/2uε, (1.2) becomes

iε∂tu
ε +

1

2
ε2Δuε =

|x|2
2

uε + εα
(
|x|−1 ∗ |uε|2

)
uε, uε

|t=0 = f .(1.5)

We will consider the more general “semiclassical Hartree equation”

iε∂tu
ε +

1

2
ε2Δuε =

|x|2
2

uε + εα
(
|x|−γ ∗ |uε|2

)
uε, uε

|t=0 = f ,(1.6)

with γ > 0, α ≥ 1, and x ∈ Rn, where the space dimension n ≥ 2 may be different
from 3.

The first point to notice is that in the linear case, the harmonic potential causes
focusing at the origin (resp., at (−1)kξ0 in the case (1.4)) at times t = π/2 + kπ for
any k ∈ N. The solution uε

free of the linear equation

iε∂tu
ε
free +

1

2
ε2Δuε

free =
|x|2
2

uε
free, uε

free|t=0 = f ,(1.7)

is initially of size O(1). At time t = π/2, the solution focuses at the origin and is of
order O(ε−n/2); it is of order O(1) for t = π, and so on (for a more precise analysis,
see [6]). This phenomenon is easy to read from Mehler’s formula (see, e.g., [10, 18]):
for 0 < t < π, we have

uε
free(t, x) =

e−inπ
4

(2πε sin t)n/2

∫
Rn

e
i

ε sin t

(
x2+y2

2 cos t−x·y
)
f(y)dy .(1.8)

Essentially, one can apply a stationary phase formula for t ∈ ]0, π/2[ ∪ ]π/2, π[ (uε
free

is O(1)), while it is not possible at t = π/2 (uε
free is O(ε−n/2)). Following the same

approach as in [3], we get the following distinctions.

α > γ α = γ

α > 1 linear WKB, linear WKB,
linear focus nonlinear focus

α = 1 nonlinear WKB, nonlinear WKB,
linear focus nonlinear focus

The expression “linear WKB” means that the nonlinear Hartree interaction term
is negligible away from the focus (when the WKB approximation is valid); “linear
focus” means that the nonlinearity is negligible near the focus; the WKB regime
(resp., the focus) is “nonlinear” when the Hartree term has a leading order influ-
ence away from (resp., in the neighborhood of) the focus, in the limit ε → 0. This
terminology follows [19].

We did not obtain a rigorous description of the case α = γ = 1, which corresponds
to the Schrödinger–Poisson system (1.1) when n = 3. This problem seems out of
reach for the methods currently available in this field. On the other hand, we study
rigorously the other three cases in an exhaustive way.

In section 3, we prove that the Hartree term has no influence at leading order when
α > γ = 1. Back to (1.2), this shows that initial data of size εα/2 with α > 1 yield a
linearizable solution. The expected critical size is

√
ε; this heuristic is reinforced by

the next three sections.
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In section 4, we study the case α = 1 > γ. We prove that the nonlinear term must
be taken into account to describe the solution uε. It is so through a slowly oscillating
phase term. On the other hand, no nonlinear effect occurs at leading order near the
focus.

In section 5, we show that when α = γ > 1, nonlinear effects occur at leading
order at the foci, while they are negligible elsewhere. This phenomenon is the same
as in [6] for the nonlinear Schrödinger equation; each focus crossing is described in
terms of the scattering operator associated to the Hartree equation

i∂tψ +
1

2
Δψ =

(
|x|−γ ∗ |ψ|2

)
ψ .(1.9)

In section 6, we perform a formal computation suggested by the results of sections
4 and 5. This can be seen as further evidence that nonlinear effects are always relevant
in the case α = γ = 1, along with a precise idea of the nature of these nonlinear effects,
which we expect to be true. We add a brief discussion of the case of an additional
local nonlinearity in the equation and some remarks on the Wigner measures in view
of the ill-posedness results of [5].

This program is very similar to the one achieved in [3]. We want to underscore at
least two important differences. First, we have to adapt the notion of oscillatory inte-
gral to incorporate the presence of the harmonic potential (see section 4.1). Second,
the power-like nonlinearity treated in [3] is replaced by a Hartree-type nonlinearity.
This yields different and less technical proofs (we do not use Strichartz estimates in
sections 3 and 4) and makes a more complete description of the above table possible;
the case “nonlinear WKB, linear focus” was treated very partially in [3] due to the
lack of regularity of the map z �→ |z|2σz for small σ > 0. This technical difficulty
does not occur in the present case, and the main result of section 4 (Proposition 4.1)
is proved with no restriction.

The content of this article is as explained above, plus a paragraph dedicated to a
quick review of the facts we will need about the Cauchy problem (1.6) (see section 2).

We will use the following notation throughout this paper.

Notation. If (aε)ε∈]0,1] and (bε)ε∈]0,1] are two families of numbers, we write

aε � bε

if there exists C independent of ε ∈ ]0, 1] such that for any ε ∈ ]0, 1], aε ≤ Cbε.

2. The Cauchy problem. Before studying semiclassical limits, we recall some
known facts about the initial value problem (1.6). We will always assume that the
initial datum f is in the space Σ defined by

Σ :=
{
φ ∈ H1(Rn) ; ‖φ‖Σ := ‖φ‖L2 + ‖xφ‖L2 + ‖∇φ‖L2 < +∞

}
.

This space is natural in the case of Schrödinger equations with harmonic potential,
since Σ is the domain of

√
−Δ + |x|2 (see, for instance, [27]). Local existence results

for (1.6) follow, for instance, from Strichartz inequalities (one can do without these
inequalities; see [27]). Global existence results then stem from conservation laws (see
(2.3) below). From Mehler’s formula (1.8), Strichartz type estimates are available for

e−i t
2ε (−ε2Δ+x2) =: Uε(t) .
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Definition 2.1. Let n ≥ 2. A pair (q, r) is admissible if 2 ≤ r < 2n
n−2 (resp., 2 ≤

r < ∞ if n = 2) and

2

q
= δ(r) ≡ n

(
1

2
− 1

r

)
.

Following [6], we have the following scaled Strichartz inequalities.
Proposition 2.2. Let I be a finite time interval.
(1) For any admissible pair (q, r), there exists Cr(I) such that

ε
1
q ‖Uε(t)φ‖Lq(I;Lr) ≤ Cr(I)‖φ‖L2 .(2.1)

(2) For any admissible pairs (q1, r1) and (q2, r2), there exists Cr1,r2
(I) such that

ε
1
q1

+ 1
q2

∥∥∥∥∥
∫
I∩{s≤t}

Uε(t− s)F (s)ds

∥∥∥∥∥
Lq1 (I;Lr1 )

≤ Cr1,r2(I) ‖F‖
Lq′2 (I;Lr′2 )

.(2.2)

The above constants are independent of ε.
The main result of this section follows from [7, 12]. Denote

Y (I) = {φ ∈ C(I,Σ) ; φ, |x|φ, ∇xφ ∈ Lq
loc(I, L

r
x) ∀(q, r) admissible} .

Proposition 2.3. Fix ε ∈ ]0, 1] and let f ∈ Σ. Then (1.6) has a unique solution
uε ∈ Y (R). Moreover, the following quantities are independent of time:

Mass: ‖uε(t)‖L2 ,

Energy:
1

2
‖ε∇xu

ε(t)‖2
L2 +

1

2
‖xuε(t)‖2

L2 + ε

∫
Rn

(
|x|−γ ∗ |uε|2

)
|uε(t, x)|2dx.

(2.3)

It was noticed in [6] that this result can be retrieved very simply thanks to the
following lemma, which we will use to prove asymptotics.

Lemma 2.4 (see [6]). Define the operators

Jε(t) =
x

ε
sin t− i cos t∇x, Hε(t) = x cos t + iε sin t∇x .(2.4)

Jε and Hε satisfy the following properties.
• They are Heisenberg observables:

Jε(t) = −iUε(t)∇xUε(−t), Hε(t) = Uε(t)xUε(−t) .(2.5)

• The commutation relation:[
Jε(t), iε∂t +

ε2

2
Δ − |x|2

2

]
=

[
Hε(t), iε∂t +

ε2

2
Δ − |x|2

2

]
= 0 .(2.6)

• Denote Mε(t) = e−i x2

2ε tan t and Qε(t) = ei
x2

2ε cot t; then

Jε(t) = −i cos tMε(t)∇xM
ε(−t), Hε(t) = iε sin tQε(t)∇xQ

ε(−t) .(2.7)

• The modified Sobolev inequalities. Let 2 ≤ r ≤ 2n
n−2 ( 2 ≤ r < ∞ if n = 2);

there exists Cr independent of ε such that, for any φ ∈ Σ,

‖φ‖Lr ≤ Cr| cos t|−δ(r)‖φ‖1−δ(r)
L2 ‖Jε(t)φ)‖δ(r)

L2 ,

‖φ‖Lr ≤ Cr|ε sin t|−δ(r)‖φ‖1−δ(r)
L2 ‖Hε(t)φ‖δ(r)

L2 .
(2.8)
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• Action on nonlinear Hartree term: for φ = φ(t, x),

Jε(t)
((
|x|−γ ∗ |φ|2

)
φ
)

=
(
|x|−γ ∗ |φ|2

)
Jε(t)φ + 2 Re

(
|x|−γ ∗

(
φJε(t)φ

))
φ .(2.9)

The same holds for Hε(t).
Remark 2.5. Property (2.6) follows from (2.5), which is the way Jε and Hε

appear in the linear theory (see, e.g., [30, p. 108]). Property (2.8) is a consequence of
Gagliardo–Nirenberg inequalities and (2.7). Finally, (2.9) stems from (2.7).

3. “Very weak nonlinearity” case. In this section, we study the semiclassical
limit of uε when γ = 1 and α > 1, which is equivalent to “very small” data in our
context (cf. (1.2)). This case includes the 3D Schrödinger–Poisson equation with “very
small data.” We prove that the Hartree term plays no role at leading order.

Proposition 3.1. Let f ∈ Σ, n ≥ 2, and assume α > γ = 1. Then for any
T > 0,

‖uε − uε
free‖L∞([0,T ];L2) = O

(
εα−1 ln

1

ε

)
as ε → 0 ,

and for any δ > 0 (α− 1 − δ > 0),

‖Aε(t) (uε − uε
free)‖L∞([0,T ];L2) = O

(
εα−1−δ

)
as ε → 0 ,

where Aε is either of the operators Jε or Hε, and uε
free is the solution of (1.7).

Remark 3.2. Using modified Sobolev inequalities (2.8), we can deduce Lp esti-
mates for uε − uε

free for 2 ≤ p ≤ 2n/(n − 2) (2 ≤ p < ∞ if n = 2) from the above
result.

Remark 3.3. We could probably get the logarithmic estimate for the second part
of the statement as well, using Strichartz estimates. The proof given below is not
technically involved and suffices for our purpose; we do not seek sharp results.

Proof. Denote wε = uε − uε
free. It solves the initial value problem

iε∂tw
ε +

1

2
ε2Δwε =

|x|2
2

wε + εα
(
|x|−1 ∗ |uε|2

)
uε, wε

|t=0 = 0 .

Standard energy estimates for Schrödinger equations yield

ε∂t‖wε(t)‖L2 � εα
∥∥(|x|−1 ∗ |uε|2

)
uε

∥∥
L2 .(3.1)

From Hölder’s inequality, we have

∥∥(|x|−1 ∗ |uε|2
)
uε

∥∥
L2 ≤

∥∥|x|−1 ∗ |uε|2
∥∥
Lr ‖uε‖Lk for

1

r
+

1

k
=

1

2
.(3.2)

From the Hardy–Littlewood–Sobolev inequality,

∥∥|x|−1 ∗ |uε(t)|2
∥∥
Lr � ‖uε(t)‖2

Lp for 1 < r,
p

2
< ∞ and 1 +

1

r
=

2

p
+

1

n
.(3.3)

Therefore, (3.1) yields

ε∂t‖wε(t)‖L2 � εα‖uε(t)‖2
Lp ‖uε(t)‖Lk ,(3.4)

where p and k satisfy the properties stated in (3.2) and (3.3). For k = 2, r = ∞, and
p = 2n/(n − 1), the algebraic identities stated in (3.2) and (3.3) are satisfied. Now
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since the conditions 1 < r < ∞ and 1 < p/2 < ∞ are open, a continuity argument
shows that we can find p and k satisfying all the properties stated in (3.2) and (3.3).
Notice that they imply the relation 2δ(p) + δ(k) = 1 and hence δ(p), δ(k) < 1; this
allows us to use weighted Gagliardo–Nirenberg inequalities.

We have wε
|t=0 = 0, and from Proposition 2.3, wε ∈ C(R+; Σ). Therefore, there

exists tε > 0 such that

‖Jε(t)wε‖L2 ≤ 1(3.5)

for 0 ≤ t ≤ tε. The argument of the proof then follows [28] (see also [6]). Recall that
from (2.5), ‖Jε(t)uε

free‖L2 = ‖∇f‖L2 .
Because of (2.6), Jεuε

free solves the linear Schrödinger equation with harmonic
potential, and ‖Jε(t)uε

free‖L2 ≡ ‖∇f‖L2 . So long as (3.5) holds, we have, from (2.8),

‖uε(t)‖Lp ≤ C0

| cos t|δ(p)
, ‖uε(t)‖Lk ≤ C0

| cos t|δ(k)

for some C0 independent of ε and t. Then (3.4) yields

ε∂t‖wε(t)‖L2 � εα

| cos t|2δ(p)+δ(k)
=

εα

| cos t| .

Integration in time on [0, t] yields, so long as (3.5) holds,

‖wε‖L∞([0,t];L2) � εα−1

∫ t

0

dτ

| cos τ | .

For t < π/2, we get, so long as (3.5) holds,

‖wε‖L∞([0,t];L2) � εα−1
∣∣∣ln(π

2
− t

)∣∣∣ .
From (2.6), Jε(t)wε solves

iε∂tJ
εwε +

1

2
ε2ΔJεwε =

|x|2
2

Jεwε + εαJε
((
|x|−1 ∗ |uε|2

)
uε

)
, Jεwε

|t=0 = 0 .

By use of (2.9), the energy estimate for Jεwε yields

ε∂t‖Jε(t)wε‖L2 � εα
(∥∥(|x|−1 ∗ |uε|2

)
Jε(t)uε

∥∥
L2 +

∥∥|x|−1 ∗ (uεJεuε) · uε
∥∥
L2

)
� εα

(∥∥|x|−1 ∗ |uε|2
∥∥
L∞ ‖Jε(t)uε‖L2 +

∥∥|x|−1 ∗ (uεJεuε) · uε
∥∥
L2

)
.

For the first term of the right-hand side, use the easy estimate∥∥|x|−1 ∗ f
∥∥ � ‖f‖L(n−)′ + ‖f‖L(n+)′ ,

where n− (resp., n+) stands for n− η (resp., n + η) for any small η > 0. We have

∥∥|x|−1 ∗ |uε|2
∥∥
L∞ � ‖uε(t)‖2

Lκ− + ‖uε(t)‖2
Lκ+ , with κ =

2n

n− 1
·

It is at this stage that we lose the logarithmic rate (we cannot use Hardy–Littlewood–
Sobolev inequality when an exponent is infinite): using Strichartz estimates (see sec-
tion 5), we believe that we could recover that rate, with a more technically involved
proof.
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For the second term, we proceed as in the beginning of the proof. From Hölder’s
inequality,

∥∥(|x|−1 ∗ uεJεuε
)
· uε

∥∥
L2 ≤

∥∥|x|−1 ∗ (uεJεuε)
∥∥
Lr ‖uε‖Lσ , with

1

r
+

1

σ
=

1

2
·(3.6)

From the Hardy–Littlewood–Sobolev inequality, this is estimated, up to a constant,
by

‖uεJεuε‖Lp ‖uε‖Lσ , with 1 +
1

r
=

1

p
+

1

n
for 1 < r, p < ∞ .(3.7)

Use of Hölder’s inequality again yields an estimate by

‖uε‖Lk ‖Jεuε‖L2 ‖uε‖Lσ , with
1

p
=

1

2
+

1

k
·(3.8)

Take r = n, σ = 2n/(n − 2), k = 2, and p = 1; the algebraic identities from (3.6),
(3.7), and (3.8) are satisfied, but not the bound p > 1. Decreasing σ slightly increases
p (take σ large but finite when n = 2), so we can find indices satisfying (3.6), (3.7),
and (3.8) by a continuity argument. Note that they satisfy δ(k) + δ(σ) = 1, and each
term is positive.

Gathering all these estimates together we get the energy estimate

ε∂t‖Jε(t)wε‖L2 � εα
(
‖uε(t)‖2

Lκ− + ‖uε(t)‖2
Lκ+ + ‖uε‖Lk ‖uε‖Lσ

)
‖Jε(t)uε‖L2 .

So long as (3.5) holds, we deduce from (2.8) that

ε∂t‖Jε(t)wε‖L2 � εα
(

1

| cos t|2δ(κ−)
+

1

| cos t|2δ(κ+)
+

1

| cos t|δ(k)+δ(σ)

)

� εα
(

1

| cos t|2δ(κ+)
+

1

| cos t|

)
� εα

| cos t|1+ .

Integrate this, so long as (3.5) holds:

‖Jεwε‖L∞([0,t];L2) � εα−1
(π

2
− t

)0−

.

Fix δ,Λ > 0. So long as (3.5) holds, we infer, for t ≤ π/2 − Λε,

‖Jεwε‖L∞([0,t];L2) � εα−1 (Λε)
−δ

.

Therefore, there exists εΛ > 0 such that, for 0 < ε ≤ εΛ, (3.5) holds up to time
π/2 − Λε, with the estimates

‖wε‖L∞([0,π/2−Λε];L2) � εα−1 ln
1

ε
, ‖Jεwε‖L∞([0,π/2−Λε];L2) � εα−1−δ .(3.9)

An estimate similar to that of Jεwε then follows for Hεwε, since from the conservation
laws (2.3), ‖Hε(t)uε‖L2 � ‖f‖Σ.

Denote IεΛ = [π/2 − Λε, π/2 + Λε]. Mimicking the above computations, we have

‖wε‖L∞(Iε
Λ;L2) �

∥∥∥wε
(π

2
− Λε

)∥∥∥
L2

+ εα−1

∫
Iε
Λ

‖uε(τ)‖2
Lp‖uε(τ)‖Lkdτ ,
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where p and k satisfy (3.2) and (3.3). Recall that they satisfy 2δ(p) + δ(k) = 1.
Using the conservations of mass and energy (2.3), along with Gagliardo–Nirenberg
inequalities, we have, for any t,

‖uε(t)‖Lp � ε−δ(p), ‖uε(t)‖Lk � ε−δ(k) .

We deduce

‖wε‖L∞(Iε
Λ;L2) �

∥∥∥wε
(π

2
− Λε

)∥∥∥
L2

+ εα−1ε−2δ(p)−δ(k) |IεΛ| � εα−1 ln
1

ε
+ Λεα−1 .

The same method yields, since (2.3) shows that ‖Hε(t)uε‖L2 � ‖f‖Σ,

‖Hεwε‖L∞(Iε
Λ;L2) � εα−1−δ for any δ > 0 .

To treat the case of Jεwε, introduce

zε(t) = sup
π
2 −Λε≤τ≤t

‖Jε(τ)wε‖L2 .

Proceeding as above, we have

zε(t) �
∥∥∥Jε

(π
2
− Λε

)
wε

∥∥∥
L2

+ εα−1

∫ t

π
2 −Λε

∥∥Jε(τ)
(
|x|−1 ∗ |uε|2uε

)∥∥
L2 dτ

� εα−1+

+ εα−1

∫ t

π
2 −Λε

ε−1+

(zε(τ) + ‖Jε(τ)uε
free‖L2) dτ .

(3.10)

We can then apply the Gronwall lemma (recall that ‖Jε(τ)uε
free‖L2 ≡ ‖∇f‖L2):

zε(t) � εα−1+

.

Gathering this information we get, for any δ > 0,

‖wε‖L∞(Iε
Λ;L2) � εα−1 ln

1

ε
,

‖Jεwε‖L∞(Iε
Λ;L2) + ‖Hεwε‖L∞(Iε

Λ;L2) � εα−1−δ .

For t ∈ [π/2 + ε, π], we can use the same proof as for t ∈ [0, π/2 − ε] to obtain

‖wε‖L∞([0,π];L2) � εα−1 ln
1

ε
,

‖Jεwε‖L∞([0,π];L2) + ‖Hεwε‖L∞([0,π];L2) � εα−1−δ .

Repetition of the same argument a finite number of times covers any given time
interval [0, T ] and completes the proof of Proposition 3.1.

4. Nonlinear propagation and linear focus. In this paragraph, we assume
α = 1 and γ < 1. We define

g(t, x) = −
(
|x|−γ ∗ |f |2

)
(x)

∫ t

0

dτ

| cos τ |γ .(4.1)

This function is well defined for any t, since γ < 1. We will see later how this function
appears.



38 R. CARLES, N. J. MAUSER, AND H. P. STIMMING

Proposition 4.1. Let n ≥ 2, f ∈ Σ, and assume γ < α = 1. Let Aε be one of
the operators Id, Jε, or Hε.

• For 0 ≤ t < π/2, the following asymptotic relation holds:

sup
0≤τ≤t

∥∥∥∥Aε(τ)

(
uε(τ, x) − 1

(cos τ)n/2
f
( x

cos τ

)
e−i x2

2ε tan τ+ig(τ, x
cos τ )

)∥∥∥∥
L2

x

−→
ε→0

0 .

• For π/2 < t ≤ π,

sup
t≤τ≤π

∥∥∥∥Aε(τ)

(
uε(τ, x) − e−inπ

2

(cos τ)n/2
f
( x

cos τ

)
e−i x2

2ε tan τ+ig(τ, x
cos τ )

)∥∥∥∥
L2

x

−→
ε→0

0 .

• For t = π/2,∥∥∥∥Bε

(
uε

(π
2

)
− 1

εn/2
F
(
feig(

π
2 )
)( ·

ε

))∥∥∥∥
L2

−→
ε→0

0 ,

where Bε is one of the operators Id, x
ε , or ε∇x, and the Fourier transform is defined

by

Fφ(ξ) = φ̂(ξ) =
1

(2π)n/2

∫
Rn

e−ix·ξφ(x)dx .(4.2)

Remark 4.2. We can also prove estimates for arbitrarily large time intervals, with
the same proof as below.

Remark 4.3. The difference between the asymptotic behavior before and after
the focus is measured only by the Maslov index, through the phase shift e−inπ/2; no
nonlinear phenomenon occurs at leading order near the focus. On the other hand,
nonlinear effects are relevant outside the focus, as shown by the presence of g.

4.1. Oscillatory integrals. The main tool for proving Proposition 4.1 is the
same as in linear cases ([9]; see also [21, 3] for applications in nonlinear settings); we
represent the solution uε as an oscillatory integral. Recall that uε ∈ C(R; Σ) and that

e−i t
2ε (−ε2Δ+x2) = Uε(t) is a unitary group on L2. Define aε by

aε(t, x) = Uε(−t)uε(t, x) .(4.3)

We first seek a limit as ε → 0 for aε before the focus. This is suggested by a formal
computation as in [4] and by the following lemma.

Lemma 4.4. For t ∈ [0, π/2[ ∪ ]π/2, π], define Vε by

Vε(t)φ(x) =

⎧⎪⎪⎨
⎪⎪⎩

1

(cos t)n/2
φ
( x

cos t

)
e−i x2

2ε tan t if 0 ≤ t < π/2 ,

e−inπ/2

| cos t|n/2
φ
( x

cos t

)
e−i x2

2ε tan t if π/2 < t ≤ π .

(4.4)

For any φ ∈ H1(Rn), any θ ∈ ]0, 1/2], and any t ∈ [0, π/2[ ∪ ]π/2, π],

‖Uε(t)φ− Vε(t)φ‖L2 ≤ 2|ε tan t|θ‖φ‖H1 .

Proof. Notice that from Mehler’s formula (1.8), we can write, for 0 < t < π,

Uε(t) = Mε
tD

ε
tFMε

t , where Mε
t (x) = e−i x2

2ε tan t , Dεtφ(x) =
1

(iε sin t)n/2
φ
( x

sin t

)
,
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and the Fourier transform is defined by (4.2). We infer

‖Uε(t)φ− Vε(t)φ‖L2 =

∥∥∥∥ 1

(2iπ tan t)n/2

∫
ei

|x−y|2
2ε tan t f(y)dy − f(x)

∥∥∥∥
L2

.

From the Parseval formula,

1

(2iπ tan t)n/2

∫
ei

|x−y|2
2ε tan t f(y)dy =

1

(2π)n/2

∫
e−iε tan t ξ2

2 +ix·ξFf(ξ)dξ ;

therefore

‖Uε(t)φ− Vε(t)φ‖L2 =
1

(2π)n/2

∥∥∥∥
∫ (

e−iε tan t ξ2

2 − 1

)
eix·ξFf(ξ)dξ

∥∥∥∥
L2

=

∥∥∥∥
(
e−iε tan t ξ2

2 − 1

)
Ff(ξ)

∥∥∥∥
L2

from the Plancherel formula. The lemma then follows from the estimate |eis − 1| ≤
2|s|θ for 0 ≤ θ ≤ 1/2.

From Duhamel’s principle, we have

uε(t) = Uε(t)f − i

∫ t

0

Uε(t− s)
((
|x|−γ ∗ |uε|2

)
uε

)
(s)ds .

Using (4.3), we deduce

∂ta
ε(t) = −iUε(−t)

((
|x|−γ ∗ |uε|2

)
uε

)
(t) .(4.5)

Now the formal computation begins. Assume aε → a as ε → 0, in some suitable sense.
Then uε(t) ∼ Uε(t)a(t), and from Lemma 4.4,

uε(t, x) ∼
ε→0

1

(cos t)n/2
a
(
t,

x

cos t

)
e−i x2

2ε tan t for 0 ≤ t < π/2 .

Plugging this into (4.5) and using Lemma 4.4 again (with Uε(−t) instead of Uε(t),
the result still holds), we find

∂ta(t, x) =
−i

| cos t|γ
(
|x|−γ ∗ |a|2

)
a(t, x) .

Recall that a|t=0 = uε
|t=0 = f and notice that from the above ordinary differential

equation, ∂t|a|2 = 0; we have a(t, x) = f(x)eig(t,x), where

∂tg(t, x) =
−1

| cos t|γ
(
|x|−γ ∗ |f |2

)
(x), g|t=0 = 0 .

Integration of this equation yields the definition of g(t, x) given in (4.1).
Proposition 4.1 stems from the more precise following proposition, Lemma 4.4,

and a density argument. In view of a rigorous justification, denote

bε(t, x) = aε(t, x)e−ig(t,x) = e−ig(t,x)Uε(−t)uε(t, x) .(4.6)

Proposition 4.5. Let f ∈ Σ ∩H2(Rn). Fix δ > 0. There exists Cδ such that

sup
0≤t≤π

‖bε(t) − f‖Σ ≤
∫ π

0

‖∂tbε(t)‖Σdt ≤ Cδε
1−γ−δ .

The first inequality is trivial. We prove the second one in three steps:
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(i) On [0, π/2 − Λε] for any Λ > 0, with a constant depending on δ and Λ;
(ii) On [π/2 − Λε, π/2 + Λε], with a constant depending on δ and Λ;
(iii) On [π/2 + Λε, π], with a constant depending on δ and Λ.

As in section 3, the parameter Λ > 0 is arbitrary, while it has to be large in the case
α = γ > 1 (see section 5 and [6]). This situation is typical for a case where the focus
is “linear.”

4.2. Asymptotic behavior before the focus. Fix Λ, δ > 0. We prove that
there exists CΛ,δ such that

∫ π
2 −Λε

0

‖∂tbε(t)‖Σdt ≤ CΛ,δε
1−γ−δ .(4.7)

Denote

yε(t) =

∫ t

0

‖∂tbε(τ)‖H1dτ .

From (4.5) and the definition (4.6),

‖∂tbε(t)‖L2 =

∥∥∥∥Uε(−t)
((
|x|−γ ∗ |uε|2

)
uε

)
(t) − 1

| cos t|γ
(
|x|−γ ∗ |f |2

)
aε(t)

∥∥∥∥
L2

=

∥∥∥∥(|x|−γ ∗ |uε|2
)
uε(t) − 1

| cos t|γ U
ε(t)

((
|x|−γ ∗ |f |2

)
aε
)
(t)

∥∥∥∥
L2

.(4.8)

Lemma 4.4 suggests that we can replace Uε with Vε in the last expression, up to a
controllable error. Before going into further details, we prove two lemmas which will
be of constant use in the proof of Proposition 4.5.

Lemma 4.6. Assume γ < 1, and let 0 < δ < 2(1 − γ). There exist p and q with

2δ(2p′) = γ +
δ

2

(
< 1

)
, p <

n

γ
, δ(2q′) =

γ + 1

2
+

δ

4

(
< 1

)
, q <

n

γ + 1
,

and such that there exists C such that for any φ ∈ C∞
c (Rn),∥∥|x|−γ ∗ φ

∥∥
L∞ ≤ C (‖φ‖L1 + ‖φ‖Lp′ ) ,∥∥∇ (

|x|−γ ∗ φ
)∥∥

L∞ ≤ C (‖φ‖L1 + ‖φ‖Lq′ ) .

Proof. We have 2δ(2p′) = γ when p = n/γ, and δ(2q′) = γ+1
2 when q = n/(γ+1).

Therefore p < n/γ and q < n/(γ + 1) if 2δ(2p′) = γ + δ/2 and δ(2q′) = γ+1
2 + δ

4 .
Let χ ∈ C∞

c (R+, [0, 1]) with χ ≡ 1 on [0, 1]. We have

‖|x|−γ ∗ φ‖L∞ ≤
∥∥(χ|x|−γ

)
∗ φ

∥∥
L∞ +

∥∥((1 − χ)|x|−γ
)
∗ φ

∥∥
L∞

≤
∥∥χ|x|−γ

∥∥
Lp ‖φ‖Lp′ + ‖(1 − χ)|x|−γ‖L∞‖φ‖L1

≤ C (‖φ‖Lp′ + ‖φ‖L1) ,

where we have used x �→ |x|−γ ∈ Lp
loc(R

n) because p < n/γ. The other estimate is
similar, since ∇|x|−γ = O(|x|−γ−1).

Lemma 4.7. Let γ < 1 and f ∈ Σ ∩ H2(Rn). Recall that g is defined by (4.1).
We have

|x|−γ ∗ |f |2 ∈ W 2,∞; g ∈ L∞
loc(R;W 2,∞); feig,

(
|x|−γ ∗ |f |2

)
feig ∈ L∞

loc(R;H2) .
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Proof. From Lemma 4.6 and Sobolev embeddings,∥∥|x|−γ ∗ |f |2
∥∥
L∞ � ‖f‖2

L2 + ‖f‖2
L2p′ � ‖f‖2

H1 ,∥∥∇|x|−γ ∗ |f |2
∥∥
L∞ � ‖f‖2

L2 + ‖f‖2
L2q′ � ‖f‖2

H1 ,∥∥∇2|x|−γ ∗ |f |2
∥∥
L∞ �

∥∥∇|x|−γ ∗
(
∇|f |2

)∥∥
L∞

� ‖f‖L2‖∇f‖L2 + ‖f‖L2q′ ‖∇f‖L2q′ � ‖f‖2
H2 .

Since t �→ | cos t|−γ ∈ L1
loc(R), we infer that g ∈ L∞

loc(R;W 2,∞). The last two proper-
ties follow easily.

We can now replace Uε with Vε in (4.8), up to the following error. From Lemmas
4.4, 4.6, and 4.7,∥∥(Uε(t) − Vε(t))

((
|x|−γ ∗ |f |2

)
aε
)
(t)

∥∥
L2 � |ε tan t|θ

∥∥(|x|−γ ∗ |f |2
)
aε(t)

∥∥
H1

� |ε tan t|θ
∥∥|x|−γ ∗ |f |2

∥∥
W 1,∞ ‖aε(t)‖H1

� |ε tan t|θ (‖aε(t)‖L2 + ‖∇xa
ε(t)‖L2)

� |ε tan t|θ
(
‖f‖L2 +

∥∥∇x

(
bεeig

)∥∥
L2

)
� |ε tan t|θ (1 + ‖∇xb

ε(t)‖L2)

� |ε tan t|θ (1 + ‖∇x (bε(t) − f)‖L2)

� |ε tan t|θ
(

1 +

∫ t

0

‖∂tbε(τ)‖H1 dτ

)

for 0 < θ ≤ 1/2 to be fixed later. Plugging this estimate into (4.8) we find

‖∂tbε(t)‖L2 �
∥∥∥∥(|x|−γ ∗ |uε|2

)
uε(t) − 1

| cos t|γ V
ε(t)

((
|x|−γ ∗ |f |2

)
aε
)
(t)

∥∥∥∥
L2

+
|ε tan t|θ
| cos t|γ (1 + yε(t)) .

(4.9)

We check that

1

| cos t|γ V
ε(t)

((
|x|−γ ∗ |f |2

)
φ
)

=
(
|x|−γ ∗ |Vε(t)f |2

)
Vε(t)φ .(4.10)

Since we expect Vε(t)aε(t) to be close to Uε(t)aε(t) = uε(t) as ε → 0, we estimate the
difference∥∥∥(|x|−γ ∗ |Vε(t)f |2

)
(Vε(t)aε(t) − Uε(t)aε(t))

∥∥∥
L2

�
∥∥|x|−γ ∗ |Vε(t)f |2

∥∥
L∞

∥∥(Vε(t) − Uε(t)) (bεeig)
∥∥
L2

�
(
‖Vε(t)f‖2

L2 + ‖Vε(t)f‖2
L2p′

)
(ε tan t)θ

∥∥∥bε(t)eig(t)
∥∥∥
H1

�
(
1 + | cos t|−2δ(2p′)

)
|ε tan t|θ (‖bε(t) − f‖H1 + ‖f‖H1)

using the modified Sobolev inequality (2.8). Since 2δ(2p′) = n
p > γ, we infer from

(4.9) that

‖∂tbε(t)‖L2 � |ε tan t|θ
| cos t|2δ(2p′)

(1 + yε(t))

+
∥∥(|x|−γ ∗

(
|uε(t)|2 − |Vε(t)f |2

))
uε(t)

∥∥
L2 .

(4.11)
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From Lemma 4.6, the last term is estimated, up to a constant, by∥∥|uε(t)|2 − |Vε(t)f |2
∥∥
L1 +

∥∥|uε(t)|2 − |Vε(t)f |2
∥∥
Lp′

�
∥∥∥uε(t) − Vε(t)

(
feig(t)

)∥∥∥
L2

(
‖uε(t)‖L2 +

∥∥∥Vε(t)(feig(t)
)∥∥∥

L2

)
+
∥∥∥uε(t) − Vε(t)

(
feig(t)

)∥∥∥
L2p′

(
‖uε(t)‖L2p′ +

∥∥∥Vε(t)(feig(t)
)∥∥∥

L2p′

)
.

(4.12)

For the first term of the right-hand side, we have, since Uε is unitary on L2,

∥∥Uε(t)
(
bεeig

)
− Vε(t)

(
feig

)∥∥
L2 � ‖bε(t) − f‖L2 +

∥∥∥(Uε(t) − Vε(t))
(
feig(t)

)∥∥∥
L2

� yε(t) + |ε tan t|θ
∥∥∥feig(t)

∥∥∥
H1

.

In addition, notice that ‖uε(t)‖L2 = ‖Vε(t)f‖L2 = ‖f‖L2 . The second term is esti-
mated thanks to the modified Gagliardo–Nirenberg inequality (2.8):

∥∥∥uε(t) − Vε(t)
(
feig(t)

)∥∥∥
L2p′

� | cos t|−δ(2p′)
∥∥∥uε(t) − Vε(t)

(
feig(t)

)∥∥∥1−δ(2p′)

L2

×
∥∥∥Jε(t)

(
uε(t) − Vε(t)

(
feig(t)

))∥∥∥δ(2p′)

L2
.

The first L2-norm was estimated just above. For the second one, notice that

Jε(t)Uε(t) = −iUε(t)∇x, Jε(t)Vε(t) = −i Vε(t)∇x;

therefore∥∥∥Jε(t)
(
uε(t)−Vε(t)

(
feig(t)

))∥∥∥
L2

�
∥∥∥Uε(t)∇

(
bε(t)eig(t)

)
− Vε(t)∇

(
feig(t)

)∥∥∥
L2

�
∥∥∥∇(

bε(t)eig(t) − feig(t)
)∥∥∥

L2
+
∥∥∥(Uε(t) − Vε(t))∇

(
feig(t)

)∥∥∥
L2

� yε(t) + |ε tan t|θ ,

where we have used Lemmas 4.4 and 4.7. We infer that∥∥∥uε(t) − Vε(t)
(
feig(t)

)∥∥∥
L2p′

� | cos t|−δ(2p′)
(
yε(t) + |ε tan t|θ

)
.

We have explicitly∥∥∥Vε(t)(feig(t)
)∥∥∥

L2p′
= | cos t|−δ(2p′)‖f‖L2p′ � | cos t|−δ(2p′) .

Proceeding as above, we have

‖uε(t)‖L2p′ � | cos t|−δ(2p′)‖uε‖1−δ(2p′)
L2 ‖Jε(t)uε‖δ(2p′)

L2 ,

with ‖Jε(t)uε‖L2 � ‖bε(t) − f‖H1 + ‖f‖H1 . These estimates will eventually lead to
an inequality of the form y′ε(t) ≤ a(t)yε(t)+ b(t)yε(t)

κ + c(t) for some κ > 1. To avoid
that situation, we proceed as in section 3; there exists tε > 0 such that

‖bε(t)‖H1 ≤ 2‖f‖H1(4.13)
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for t ∈ [0, tε]. So long as (4.13) holds, we have from the above estimates

‖∂tbε(t)‖L2 � | cos t|−2δ(2p′)
(
yε(t) + |ε tan t|θ

)
.(4.14)

To prove that (4.13) holds up to time π/2 − Λε for 0 < ε ≤ εΛ along with the error
estimate (4.7), we estimate the L2-norm of ∇x∂tb

ε. From (4.5) and (4.6),

∇x∂tb
ε(t) = −i∇xg(t)∂tb

ε(t)

−ie−ig(t)∇x

(
Uε(−t)

((
|x|−γ ∗ |uε|2

)
uε

)
(t) − 1

| cos t|γ
(
|x|−γ ∗ |f |2

)
aε(t)

)
.

The first term is controlled thanks to Lemma 4.7 and (4.14). For the other term, we
notice that since Uε is unitary on L2, from (2.5) its L2-norm is equal to∥∥∥∥Jε(t)

((
|x|−γ ∗ |uε|2

)
uε

)
(t) +

i

| cos t|γ U
ε(t)∇x

((
|x|−γ ∗ |f |2

)
aε(t)

)∥∥∥∥
L2

.

We proceed as before: we first replace Uε with Vε in the last term, up to an error of
| cos t|−γ times:∥∥∥(Uε(t) − Vε(t))∇x

((
|x|−γ ∗ |f |2

)
aε
)∥∥∥

L2
�

�
∥∥(Uε(t) − Vε(t))∇x

((
|x|−γ ∗ |f |2

)
(bε − f)eig

)∥∥
L2

+
∥∥(Uε(t) − Vε(t))∇x

((
|x|−γ ∗ |f |2

)
feig

)∥∥
L2 .

For the first term, we do not use Lemma 4.4, but roughly the fact that Uε and Vε are
unitary on L2. It is not larger than

2
∥∥∇x

((
|x|−γ ∗ |f |2

)
(bε − f)eig

)∥∥
L2 � ‖bε(t) − f‖H1 ,

from Lemma 4.7. The second term is controlled thanks to Lemmas 4.4 and 4.7:∥∥(Uε(t) − Vε(t))∇x

((
|x|−γ ∗ |f |2

)
feig

)∥∥
L2 � |ε tan t|θ .

We now have, so long as (4.13) holds,

‖∂tbε(t)‖H1 � | cos t|−2δ(2p′)
(
yε(t) + |ε tan t|θ

)
+
∥∥∥Jε(t)

((
|x|−γ ∗ |uε|2

)
uε

)
+

i

| cos t|γ V
ε(t)∇x

((
|x|−γ ∗ |f |2

)
aε(t)

)∥∥∥
L2

.
(4.15)

Using the identity Jε(t)Vε(t) = −i Vε(t)∇x and (4.10), we have to estimate∥∥∥∥Jε(t)

(((
|x|−γ ∗ |uε|2

)
uε

)
− 1

| cos t|γ V
ε(t)

((
|x|−γ ∗ |f |2

)
aε(t)

))∥∥∥∥
L2

=
∥∥Jε(t)

((
|x|−γ ∗ |uε|2

)
uε −

(
|x|−γ ∗ |Vε(t)f |2

)
Vε(t)aε

)∥∥
L2

�
∥∥(|x|−γ ∗ |uε|2

)
Jε(t)uε −

(
|x|−γ ∗ |Vε(t)f |2

)
Jε(t)Vε(t)aε

∥∥
L2

+ | cos t|
∥∥∇x

(
|x|−γ ∗ |uε|2

)
uε −∇x

(
|x|−γ ∗ |Vε(t)f |2

)
Vε(t)aε

∥∥
L2 .

(4.16)

We replace Vε with Uε in the first term of the right-hand side, up to the error∥∥(|x|−γ ∗ |Vε(t)f |2
)
Jε(t) (Vε(t) − Uε(t)) aε

∥∥
L2

�
(
‖Vε(t)f‖2

L2 + ‖Vε(t)f‖2
L2p′

)
‖(Vε(t) − Uε(t))∇xa

ε‖L2

�| cos t|−2δ(2p′)
∥∥(Vε(t) − Uε(t))∇x

(
(bε − f)eig

)∥∥
L2

+ | cos t|−2δ(2p′)
∥∥(Vε(t) − Uε(t))∇x

(
feig

)∥∥
L2

�| cos t|−2δ(2p′)
(
‖bε(t) − f‖H1 + |ε tan t|θ

)
,
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from the above computation. Therefore, the first term of the right-hand side of (4.16)
is estimated by

| cos t|−2δ(2p′)
(
yε(t) + |ε tan t|θ

)
+
∥∥(|x|−γ ∗

(
|uε|2 − |Vε(t)f |2

))
Jε(t)uε

∥∥
L2 .

So long as (4.13) holds, ‖Jε(t)uε‖L2 � 1, and the last term is estimated by∥∥|x|−γ ∗
(
|uε|2 − |Vε(t)f |2

)∥∥
L∞ ,

which already appeared above and was estimated in (4.12). We are left with the
second term of the right-hand side of (4.16). Using Lemma 4.6 with q instead of p
now, we see∥∥∇x

(
|x|−γ ∗ |Vε(t)f |2

)
(Vε(t) − Uε(t)) aε

∥∥
L2 �

�
(
‖Vε(t)f‖2

L2 + ‖Vε(t)f‖2
L2q′

)
‖(Vε(t) − Uε(t)) aε‖L2

� | cos t|−2δ(2q′)
(
yε(t) + |ε tan t|θ

)
.

The final term to estimate is∥∥∇x

(
|x|−γ ∗

(
|uε|2 − |Vε(t)f |2

))
uε

∥∥
L2 �

∥∥|uε|2 − |Vε(t)f |2
∥∥
L1

+
∥∥|uε|2 − |Vε(t)f |2

∥∥
Lq′ .

The right-hand side was already estimated in (4.12) with p instead of q. We finally
have, so long as (4.13) holds,

y′(t) �
(
| cos t|−2δ(2p′) + | cos t|1−2δ(2p′)

) (
yε(t) + |ε tan t|θ

)
.

Now recall that given δ > 0, δ(2p′) and δ(2q′) are explicit; hence

y′(t) � | cos t|−γ− δ
2

(
yε(t) + |ε tan t|θ

)
.

It is now time to fix θ. In view of (4.7), it is natural to take θ = 1 − γ − δ. This
yields, so long as (4.13) holds,

y′ε(t) � | cos t|−γ− δ
2

(
yε(t) + |ε tan t|1−γ−δ

)
� | cos t|−γ− δ

2 yε(t) +
ε1−γ−δ

| cos t|1− δ
2

.(4.17)

The maps t �→ | cos t|−γ− δ
2 and t �→ | cos t|−1+ δ

2 are locally integrable (we can assume
γ + δ/2 < 1 − δ/2; otherwise (4.7) is of no interest). From the Gronwall lemma, so
long as (4.13) holds, we infer

yε(t) � ε1−γ−δ .(4.18)

Therefore, there exists εΛ > 0 such that for 0 < ε ≤ εΛ, (4.13) holds up to time
π/2−Λε, with (4.18). The estimate for x∂tb

ε then is easy, and we leave out this part;
this proves (4.7).

Remark 4.8. One might believe that we could deduce Proposition 4.5 in one shot
from (4.17) and wonder why we split the proof into three steps. The reason is that we
cannot apply Lemma 4.4 (which was used to get (4.17)) near t = π/2. On the other
hand, we will see below that computations near t = π/2 are far simpler.
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4.3. Near the focus and beyond. Keep Λ, δ > 0 fixed. We prove that there
exists CΛ,δ such that

∫ π
2 +Λε

π
2 −Λε

‖∂tbε(t)‖Σdt ≤ CΛ,δε
1−γ−δ .(4.19)

A rough estimate in (4.8) yields

‖∂tbε(t)‖L2 �
∥∥(|x|−γ ∗ |uε|2

)
uε(t)

∥∥
L2 +

1

| cos t|γ
∥∥(|x|−γ ∗ |f |2

)
aε(t)

∥∥
L2

�
(
‖uε(t)‖2

L2 + ‖uε(t)‖2
L2p′

)
‖uε(t)‖L2 +

1

| cos t|γ ‖uε(t)‖L2 .

(4.20)

The conservation of mass yields ‖uε(t)‖L2 = ‖f‖L2 . The conservations of mass and
energy (2.3) yield, along with Gagliardo–Nirenberg inequalities,

‖uε(t)‖L2p′ � ε−δ(2p′) .

Using this estimate (which is sharp near the focus and only near the focus) and
integrating (4.20), we get

∫ π
2 +Λε

π
2 −Λε

‖∂tbε(t)‖L2dt � Λε1−2δ(2p′) +

∫ π
2 +Λε

π
2 −Λε

dt

| cos t|γ

� ε1−γ− δ
2 + ε1−γ .

The term ‖x∂tbε(t)‖L2 is estimated the same way, since the conservation of energy
yields an a priori bound for Hεuε. For ‖∇x∂tb

ε(t)‖L2 , we proceed as in section 3,
(3.10) to get an estimate from the Gronwall lemma; the details are left to the reader.

Finally, one can prove that there exists CΛ,δ such that

∫ π

π
2 +Λε

‖∂tbε(t)‖Σdt ≤ CΛ,δε
1−γ−δ

by mimicking the computations performed in section 4.2, and the proof of Proposi-
tion 4.5 is complete.

5. Linear propagation and nonlinear focus. We now consider the case where
α = γ > 1 in (1.6). Our results are similar to those of [6]. Before stating the main
result, we recall some points of the scattering theory for (1.9).

Proposition 5.1 (see [13, 17]). Assume ψ− ∈ Σ and 1 < γ < min(4, n). If
γ > 4/3 or if ‖ψ−‖Σ is sufficiently small, then we have the following:

• There exists a unique ψ ∈ C(Rt,Σ) which is solution to (1.9), such that

lim
t→−∞

‖ψ− − U(−t)ψ(t)‖Σ = 0 , where U(t) = ei
t
2 Δ .

• There exists a unique ψ+ ∈ Σ such that

lim
t→+∞

‖ψ+ − U(−t)ψ(t)‖Σ = 0 .
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The scattering operator is defined as the map S : ψ− �→ ψ+.
Our main result in this section follows.
Proposition 5.2. Suppose n ≥ 2. Let f ∈ Σ, 1 < γ = α < min(4, n), and

k ∈ N. Assume either γ > 4/3 or ‖f‖Σ is sufficiently small. Then the asymptotic
behavior of uε for π/2 + (k − 1)π < a ≤ b < π/2 + kπ is given by

sup
a≤t≤b

∥∥∥∥Aε(t)

(
uε(t, x) − e−ink π

2

| cos t|n/2

(
F ◦ Sk ◦ F−1

)
f
( x

cos t

)
e−i x2

2ε tan t

)∥∥∥∥
L2

x

−→
ε→0

0 ,

where Aε is one of the operators Id, Jε, or Hε, and Sk denotes the kth iterate of S
(which is well defined under our assumptions on f). At the foci,∥∥∥∥Bε

(
uε

(π
2

+ kπ
)
− e−ink π

2

εn/2

(
F ◦ Sk

)
f
( ·
ε

))∥∥∥∥
L2

−→
ε→0

0 ,

where Bε is one of the operators Id, x
ε , or ε∇x.

With Lemma 4.4 in mind, this shows that nonlinear effects are negligible away
from foci, while they have an influence at leading order near the foci: each caustic
crossing is described in average by the nonlinear scattering operator S (the phase shift
e−ink π

2 is the Maslov index, present in the linear case [9]).
The proof of Proposition 5.2 is very similar to the one in [6], which relies on

(scaled) Strichartz estimates. We will refrain from repeating everything in detail and
limit ourselves to proving the main technical proposition and presenting an outline
for the rest of the proof. One main difference compared to the problem in [6] is the
action of the operators Jε(t), Hε(t) on the Hartree nonlinearity as described by (2.9).

We start by reformulating (1.6) by Duhamel’s formula:

uε(t) = Uε(t− t0)u
ε
0 − iεγ−1

∫ t

t0

Uε(t− s)F ε(uε)(s)ds

− iε−1

∫ t

t0

Uε(t− s)hε(s)ds.

(5.1)

This equation generalizes (1.6) to the case of an additional source term and a general
nonlinear term F ε. The main technical result which is used throughout the proof of
Proposition 5.2 is as follows.

Proposition 5.3. Let t1 > t0, with |t1 − t0| ≤ π. Let q, r, s, k ∈ [1,∞] be such
that ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)
1

r′
=

1

r
+

2

s
+

γ

n
− 1 and s <

2n

n− γ
,

(b)
1

q′
=

1

q
+

2

k
,

(c) (q, r) is an admissible pair,

(d) 0 <
1

k
< δ(s) < 1 .

(5.2)

Assume that there exists a constant C independent of t and ε such that for t0 ≤ t ≤ t1,

‖F ε(uε)(t)‖Lr′
x

≤ C

(| cos t| + ε)
2δ(s)

‖uε(t)‖Lr
x
,(5.3)
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and define

Aε(t0, t1) :=

(∫ t1

t0

dt

(| cos t| + ε)
kδ(s)

)2/k

.

Then there exists C∗ independent of ε, t0, and t1 such that for any admissible pair
(ρ, σ),

‖uε‖Lq(t0,t1;Lr) ≤C∗ε−1/q‖uε
0‖L2 + Cq,ρε

−1− 1
q−

1
ρ ‖hε‖Lρ′ (t0,t1;Lσ′ )

+ C∗ε2(δ(s)− 1
k )Aε(t0, t1)‖uε‖Lq(t0,t1;Lr).

(5.4)

Mostly the following corollary is applied.
Corollary 5.4. Suppose the assumptions of Proposition 5.3 are satisfied. As-

sume moreover that C∗ε2(δ(s)− 1
k )Aε(t0, t1) ≤ 1/2, which holds in either of the follow-

ing two cases:
• 0 ≤ t0 ≤ t1 ≤ π

2 − Λε, with Λ ≥ Λ0 sufficiently large,
• t0, t1 ∈ [π2 − Λε, π

2 + Λε], with t1−t0
ε ≤ η sufficiently small.

Then

‖uε‖L∞(t0,t1;L2) ≤ C‖uε
0‖L2 + Cq,ρε

−1− 1
ρ ‖hε‖Lρ′ (t0,t1;Lσ′ ).(5.5)

To prove Proposition 5.3, we first prove the following algebraic lemma.
Lemma 5.5. Let n ≥ 2, and assume 1 < γ < min(4, n). Then there exist

q, r, s, k ∈ [1,∞] satisfying the conditions (5.2).
Proof. Note that (a) is equivalent to demanding γ/2 = δ(r)+δ(s) and γ/2 > δ(s).
Case γ ≤ 2. Suppose γ/2 = δ(s). Then by the first half of (a), δ(r) = 0, and

(q, r) = (∞, 2) by (c). With k = 2, (b) and (d) are satisfied. Now choose s such that
1/2 < δ(s) < γ/2, but close enough to γ/2 for (5.2) still to be valid by continuity (for
example, δ(s) = 1

2 + 1
2 (γ2 − 1

2 )). Then (5.2) is satisfied.
Case γ > 2. In this case take s such that δ(s) = 1, e.g., s = 2n

n−2 . Up to a
continuity argument as in the previous case, δ(s) < 1, and (5.2) is satisfied.

Proof of Proposition 5.3. Application of the (scaled) Strichartz estimates (Propo-
sition 2.2) to (5.1) yields

‖uε‖Lq(t0,t1;Lr) ≤Cε−1/q‖uε
0‖L2 + Cq,ρε

−1− 1
q−

1
ρ ‖hε‖Lρ′ (t0,t1;Lσ′ )

+ Cεγ−1− 2
q ‖F ε(uε)‖Lq′ (t0,t1;Lr′ ).

Then by the assumptions on F ε(uε), after an application of Hölder inequality in time,
the statement follows.

Proof of Corollary 5.4. The additional assumption implies that the last term in
(5.4) can be absorbed by the left-hand side, and we get

‖uε‖Lq(t0,t1;Lr) ≤ Cε−1/q‖uε
0‖L2 + Cε−1− 1

q−
1
ρ ‖hε‖Lρ′ (t0,t1;Lσ′ ).(5.6)

Another application of Strichartz estimates to (5.1), with indices (∞, 2) on the left
and (ρ, σ), respectively (q, r), on the right, yields

‖uε‖L∞(t0,t1;L2) ≤C‖uε
0‖L2 + Cε−1− 1

ρ ‖hε‖Lρ′ (t0,t1;Lσ′ )

+ Cεγ−1− 1
q ‖F ε(uε)‖Lq′ (t0,t1;Lr′ ).
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As before,

εγ−1− 1
q ‖F ε(uε)‖Lq′ (t0,t1;Lr′ ) ≤ Cε

1
q ε2(δ(s)− 1

k )Aε(t0, t1)‖uε‖Lq(t0,t1;Lr)

≤ Cε
1
q ‖uε‖Lq(t0,t1;Lr),

and the statement now follows from (5.6).
The proof of Proposition 5.2 consists of three parts: the propagation before the

focus, the matching between the two regimes, and proof that near the focus, the
harmonic potential is negligible. In all parts the main tool used to derive the major
statements is Proposition 5.3. Since the proof is very similar to the one in [6], we do
not repeat everything in detail but give a detailed proof only for the first part to show
how the methods of [6] are applied.

We now show the proof for the propagation before the focus, that is, the approx-
imation of uε(t) by uε

free(t) for 0 ≤ t ≤ π
2 − Λε, in the limit Λ → +∞. We prove

that

lim sup
ε→0

sup
0≤t≤π

2 −Λε

∥∥∥Aε(t) (uε(t, x) − uε
free(t, x))

∥∥∥
L2

x

−→
Λ→+∞

0 ,

with Aε(t) being one of the operators Id, Jε, or Hε.
Define the remainder wε = uε − uε

free. It solves⎧⎨
⎩iε∂tw

ε +
1

2
ε2Δwε = V (x)wε + εγ

(
|x|−γ ∗ |uε|2

)
uε ,

wε
|t=0 = 0 .

From Duhamel’s principle, this can be written as

wε(t) = Uε(t)rε − iεγ−1

∫ t

0

Uε(t− s)
(
|x|−γ ∗ |uε|2

)
uε(s)ds.(5.7)

Since uε
free solves the linear equation (1.7), so does Jε(t)uε

free from (2.6), and

‖uε
free(t)‖L2 = ‖f‖L2 , ‖Jε(t)uε

free‖L2 = ‖∇f‖L2 .

From the Sobolev inequality (2.8),

‖uε
free(t)‖Ls ≤ C

| cos t|δ(s)
‖f‖1−δ(s)

L2 ‖∇f‖δ(s)
L2

for any s ∈ [2, 2n
n−2 [ . Therefore there exists C0 such that

‖uε
free(t)‖Ls ≤ C0

| cos t|δ(s)
·(5.8)

From Proposition 2.3, for fixed ε > 0, uε ∈ C(R,Σ), and the same obviously holds for
uε

free. Therefore, wε ∈ C(R,Σ), and there exists tε > 0 such that

‖wε(t)‖Ls ≤ C0

| cos t|δ(s)
(5.9)

for any t ∈ [0, tε]. So long as (5.9) holds, we have

‖uε(t)‖Ls ≤ 2C0

| cos t|δ(s)
,



(SEMI)CLASSICAL HARTREE EQUATION 49

and we can apply Proposition 5.3.
Take hε = εγ

(
|x|−γ ∗ |uε|2

)
uε

free and F ε(wε) =
(
|x|−γ ∗ |uε|2

)
wε and let q, k, r, s ∈

[1,∞] satisfy the assumptions of Proposition 5.3. Now by Hölder’s inequality,

‖F ε(wε)(t)‖Lr′ ≤
∥∥|x|−γ ∗ |uε(t)|2

∥∥
Lβ‖wε(t)‖Lr ,

with β such that 1
r′ = 1

r + 1
β . By the Hardy–Littlewood–Sobolev inequality and the

above estimate,

‖F ε(wε)(t)‖Lr′ � ‖uε(t)‖2
Ls‖wε(t)‖Lr

� (2C0)
2

| cos t|2δ(s)
‖wε(t)‖Lr .

Note that the second statement of (5.2)(a) ensures that s, β ∈ (1,∞) so the Hardy–
Littlewood–Sobolev inequality is applicable here. Assume (5.9) holds for 0 ≤ t ≤ T ε.
If 0 ≤ t ≤ T ε ≤ π

2 −Λε, then ε � cos t, and the above estimate shows that F ε satisfies
assumption (5.3).

From Corollary 5.4, if Λ is sufficiently large, we get for 0 ≤ t ≤ T ε ≤ π
2 − Λε

‖wε‖L∞(0,T ;L2) ≤ Cσε
γ−1− 1

ρ

∥∥(|x|−γ ∗ |uε|2)uε
free

∥∥
Lρ′ (0,T ;Lσ′ )

for any admissible (ρ, σ). Now take (ρ, σ) = (q, r) and proceed as above in space and
apply Hölder inequality in time:∥∥(|x|−γ ∗ |uε|2

)
uε

free

∥∥
Lq′ (0,T ;Lr′ )

≤ Cγ,n‖uε‖2
Lk(0,T ;Ls)‖uε

free‖Lq(0,T ;Lr).

The first term of the right-hand side is estimated through (5.8) and (5.9):

‖uε‖2
Lk(0,T ;Ls) ≤

C(
π
2 − T

)2(δ(s)−1/k)
.

The last term is estimated the same way, for (5.8) still holds when replacing s with r:

‖uε
free‖Lq(0,T ;Lr) ≤

C(
π
2 − T

)δ(r)−1/q
.

We infer

∥∥(|x|−γ ∗ |uε|2
)
uε

free

∥∥
Lq′ (0,T ;Lr′ )

≤ C(
π
2 − T

)γ−1− 1
q

;

thus

‖wε‖L∞(0,T ;L2) ≤ C

(
ε

π
2 − T

)γ−1− 1
q

.(5.10)

Now apply the operator Jε to (5.7). This yields, since Jε and Uε commute,

Jε(t)wε = Uε(t)Jε(0)rε − iεγ−1

∫ t

0

Uε(t− s)Jε(s)
((
|x|−γ ∗ |uε|2

)
uε

)
(s)ds.
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The action of Jε on the nonlinear term is described by (2.9). In order to apply
Proposition 5.3 as before, we now take

hε = εγ−1
(
|x|−γ ∗ |uε|2

)
Jε(t)uε

free + εγ−1 2Re
(
|x|−γ ∗ (uεJε(t)uε

free)
)
uε

and

F ε(wε) =
(
|x|−γ ∗ |uε|2

)
Jε(t)wε + 2Re

(
|x|−γ ∗ (uεJε(t)wε)

)
uε .(5.11)

The first term on the right-hand side of (5.11) leads to an equation which is very
similar to (5.7), with wε replaced by Jεwε, and is treated by the same computations
as above. For the second term, we estimate by Hölder, by the Hardy–Littlewood–
Sobolev inequality, and then again by Hölder:∥∥∥2Re

(
|x|−γ ∗ (uεJε(t)wε)

)
uε

∥∥∥
Lr′

� ‖|x|−γ ∗ (uεJε(t)wε) ‖Lβ1‖uε(t)‖Ls

� ‖uε(t)‖Ls‖Jε(t)wε(t)‖Lr‖uε(t)‖Ls ,

with r, s as stated in (5.2) and 1
r′ = 1

β1
+ 1

s . Here the condition to use the Hardy–

Littlewood–Sobolev inequality is γ > δ(r) + δ(s), which is always satisfied by (5.2).
By applying (5.9) now we continue to estimate:

≤ (2C0)
2

(| cos t|)2δ(s)
‖Jε(t)wε(t)‖Lr .

Then we apply, as before, Proposition 5.3 and estimate the term for hε as above, to
obtain

‖Jεwε‖L∞(0,T ;L2) ≤ C‖∇rε‖L2 + C

(
ε

π
2 − T

)γ−1− 1
q

.(5.12)

Combining (5.10) and (5.12) along with (2.8), we see that

∀t ∈ [0, T ], ‖wε(t)‖Ls ≤ C

| cos t|δ(s)

(
‖rε‖H1 +

(
ε

π
2 − t

)γ−1− 1
q

)
.

Therefore, choosing ε sufficiently small and Λ sufficiently large, we deduce that we
can take T = π

2 − Λε. With the result of Lemma 4.4 on the limit of uε
free, this yields

Proposition 5.2, away from the focus, for Aε = Id and Jε. The case Aε = Hε on this
time interval is now straightforward.

The remaining parts of the proof for Proposition 5.2 are done as in [6] with the
method changed as in the part shown above. It remains to show that the approxima-
tions in the two different regimes match at t∗ = π

2 −Λε and that the influence of the
harmonic potential is small near the focus so that the propagation there is given by

vε(t, x) =
1

εn/2
ψ

(
t− π

2

ε
,
x

ε

)
,(5.13)

where ψ is the solution of (1.9) subject to the following initial condition at t = −∞:

U(−t)ψ(t)
∣∣
t=−∞ = ei

nπ
4 f̂ .
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This solution exists according to Proposition 5.1.
Then the following asymptotic relation is proven:

lim sup
ε→0

sup
π
2 −Λε≤t≤π

2 +Λε

∥∥∥Aε(t) (uε(t, x) − vε(t, x))
∥∥∥
L2

x

−→
Λ→+∞

0 ,

with Aε(t) being one of the operators Id, Jε, or Hε. Since these parts are quite
similar to the treatment in [6], we do not repeat them.

After the crossing of the first focus, the solution is again propagated linearly, and
at subsequent focusing points this process is iterated.

6. Formal computations and discussion.

6.1. The case α = γ = 1 (in 3D: Schrödinger–Poisson). We saw in
section 5 that when α = γ > 1, the nonlinear term in (1.6) has a leading order
influence near the foci and only in these regions. On the other hand, if α = 1 and
γ < 1, section 4 shows that the Hartree term cannot be neglected away from the foci.
These two cases suggest that when α = γ = 1, the nonlinear influence is relevant
everywhere. The aim of this final section is to give convincing arguments that this is
the case.

For the influence near the foci, we need the scattering theory for (1.9) at γ = 1.
In this long-range scattering case, modified scattering operators are needed instead
of the ones described in Proposition 5.1. Hayashi and Naumkin [16] obtained an
asymptotic completeness result for n ≥ 2 with smoothness assumptions which are
applicable to our situation. On the other hand, they could not obtain wave operators.
Ginibre and Velo [14, 15] obtained modified wave operators for (1.9) with γ = 1 using
Gevrey spaces by a technically involved method. A drawback of both results is that
they include a loss in regularity.

To show how the long-range scattering theory fits into our framework we report
(a particular case of) the result of Hayashi and Naumkin [16].

Proposition 6.1 (see [16]). Assume n = 3, ϕ ∈ Σ, and δ = ‖ϕ‖Σ is sufficiently
small. Let ψ ∈ C(R,Σ) be the solution of (1.9) with ψt=0 = ϕ. Then there exists a
unique function ψ+ ∈ Hσ,0 ∩H0,σ, 1

2 < σ < 1, such that∥∥∥ψ(t) − exp
(
i
(
|x|−1 ∗ |ψ̂+|2

)(x
t

)
log |t|

)
U(t)ψ+

∥∥∥
L2

−→
t→+∞

0 ,

where Hα,β = {φ ∈ S ′ ∣∣ ‖(1 + |x|2)β/2(1 + Δ)α/2φ‖L2 < ∞}.
To summarize very roughly, the results in [14, 15] consist of showing that given

some ψ+ (or ψ− for an asymptotic behavior for t → −∞), one can find ψ solving
(1.9) such that the above asymptotic relation holds.

Analogously to the treatment of long-range scattering in [4], one can now define
gε(t, x) :=

(
|x|−1 ∗ |f |2

)
(x) log( cos t

ε ) (compare with (4.1)) and add the phase gε
∣∣
t=0

to the initial data in (1.6). This yields

uε
∣∣
t=0

= f(x)e−i(|x|−1∗|f |2)(x) log ε .

Using the modified scattering operators from the results of [14, 15] we get, at
least formally, for 0 ≤ t < π/2,

uε(t, x) ∼ 1

(cos t)3/2
f
( x

cos t

)
e−i x2

2ε tan t+igε(t, x
cos t ) as ε → 0 .
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This asymptotic relation also stems from the same computations as those performed
in section 4.1. Notice that the matching for |t − π

2 | = O(ε) is similar to the one
in [6], except that we now have to take the presence of gε into account. This is where
changing the integration from 0 to t in (4.1) into the above definition of gε makes the
matching possible. Indeed, for |t − π

2 | = O(ε), we compare uε with the function vε

given by (5.13), where ψ is now the solution given by the long-range wave operators
constructed in [14, 15]. To make this statement more precise and the link between
(4.1) and the definition of gε more explicit, notice that we have, as t → π

2 ,

gε
(
t,

x

cos t

)
∼

(
|x|−1 ∗ |f |2

)( x
π
2 − t

)
log

( π
2 − t

ε

)
(phase shift for vε)

∼ −
(
|x|−1 ∗ |f |2

) ( x

cos t

)∫ t

arccos ε

dτ

cos τ
(compare with (4.1)) .

The effects of the nonlinearity show up in gε. Using the scaling (5.13) we can
then (formally) continue with Proposition 6.1: for π/2 < t < 3π/2,

uε(t, x) ∼ e−i 3π
2

| cos t|3/2

(
F ◦ S̃ ◦ F−1

)
f
( x

cos t

)
e−i x2

2ε tan t+ihε(t, x
cos t ) as ε → 0 ,

where S̃ is the map S̃ : ψ− �→ ψ+, where ψ− is the asymptotic state of the result
of [14], which yields some solution ψ to (1.9), and ψ+ is provided by Proposition 6.1.
hε is given by

hε(t, x) := −
(
|x|−1 ∗ |F ◦ S̃ ◦ F−1f |2

)
(x) log

(
| cos t|

ε

)
.

The action of F ◦ S̃ ◦F−1 on f accounts for nonlinear effects taking place at the focus,
and the term hε accounts for nonlinear effects after the focus. So the influence of the
nonlinearity will be relevant at all times.

The impossibility of defining a scattering operator for this case is one of the
reasons this argument is only formal.

Remark 6.2. A rigorous result could be obtained with the same approach as
in [3]. It would consist of studying the system of linear equations with a nonlinear
coupling, ⎧⎪⎪⎨

⎪⎪⎩
iε∂tu

ε +
1

2
ε2Δuε =

|x|2
2

uε ,

iε∂tu
ε +

1

2
ε2Δuε =

|x|2
2

uε + ε
(
|x|−1 ∗ |uε|2

)
uε .

The first equation is solved explicitly thanks to Mehler’s formula, and the second
is a linear Schrödinger equation with a harmonic potential and a time-dependent
perturbation. With the oscillatory integral used in section 4, and adapting the results
of [8], one could prove similar asymptotic relations to those stated above.

6.2. The case of an additional local strong nonlinearity. We now consider
(1.6) with an additional nonlinear term that is a multiplication operator with a power
of the density |uε|2.

Such equations arise in the modeling of effective one-particle Schrödinger equa-
tions where “exchange terms” like in the Hartree–Fock equation are simplified to
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functionals of the local densities, i.e., time-dependent density functional theory, with
the Schrödinger–Poisson-Xα equation as the simplest of such models (see [25] and [1]
for a heuristic derivation and numerical simulations). Note that the additional “local”
term has the opposite sign from the Hartree term (corresponding to the physical fact
that the “exchange-correlation hole” weakens the direct Coulomb interaction).

We will hence consider the following class of semiclassical Hartree equations:

iε∂tu
ε +

1

2
ε2Δuε =

|x|2
2

uε + εα
(
|x|−γ ∗ |uε|2

)
uε − εβ |uε|2σuε,(6.1)

with α ≥ 1, β ≥ 1, γ > 0 for x ∈ Rn and with a σ that is subcritical with respect to
finite time blow-up, i.e., 2

n > σ > 0.
We can now discern the influence of the two nonlinear terms in the classical limit

in terms of
• the size of the scaling exponents α, β with respect to the critical value;
• the relation between the scaling and the “strength” of the nonlinearities de-

termined respectively by γ and σ.
If we take α > 1 and β > 1, by [6] and section 5 we find that the classical limit is given
by the linear propagation as long as no focusing occurs. At the focus, the relevant
discrimination is σ = β/n or < β/n for the power nonlinearity and γ = α or < α for
the Hartree term. If σ = β/n and γ < α, the crossing of the focus will be described by
the scattering operator for NLS (when it is defined); if, on the other hand, σ < β/n
and γ = α (and the assumptions of Proposition 5.1 are satisfied), focus crossing will
be determined by the scattering operator of Proposition 5.1. If both nonlinearities
are at the critical strength (σ = β/n and γ = α), then both will have an influence in
crossing the caustic. If, on the other hand, both σ < β/n and γ < α, the nonlinear
influence will be negligible everywhere.

If at least one of the scaling exponents α and β is equal to 1 and, at the same
time, both σ < β/n and γ < α, the corresponding nonlinear term will be relevant in
the WKB propagation before the focusing. At the focus, the nonlinear terms will not
be relevant and the crossing of the focus will be as in Proposition 4.1. If σ = β/n and
γ = α, then there will be a nonlinear influence everywhere and long-range scattering
for NLS and/or Hartree has to be taken into account.

The influence of the nonlinear action for the single power NLS and the Hartree
equation is summed up in two tables; for Hartree the table is given in the introduction,
and for the single power nonlinear Schrödinger equation it is stated in [3]. The
behavior of (6.1) can be described by independently superposing these two tables.
The following table is an extract from that superposition:

α > γ and β > σn α = γ or β = σn

α > 1 and β > 1 linear WKB, linear WKB,
linear focus nonlinear focus

α = 1 or β = 1 nonlinear WKB, nonlinear WKB,
linear focus nonlinear focus

Here, “nonlinear WKB,” respectively, “nonlinear focus,” stands for an influence from
at least one of the nonlinear terms away from the focus or close to the focus.

6.3. Wigner measures. We already mentioned, in the introduction, the work
of Zhang, Zheng, and Mauser [31], where the (semi)classical limit of the Schrödinger–
Poisson equation with no smallness assumption (on the initial data or the nonlinearity)
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is studied by means of Wigner measures. Wigner measures have proven to be efficient
tools for linear semiclassical problems and for homogenization limits; see [26] for an
overview on Wigner measure limits of Hartree equations. Wigner measures have the
merit that in phase space the caustics of physical space are somewhat unfolded and
that generally, results globally in time are possible.

In [5], the Wigner measure of the nonlinear Schrödinger equation with power-like
nonlinearity studied in [3] is investigated. It is shown that the Wigner measure leads
to an ill-posed problem whenever nonlinear effects at the focal points come into play.
In other words, the Wigner measure can be valid only as long as no caustic appears.
We briefly discuss the Wigner measures of (1.6) in view of these results.

The Wigner measure of the family (uε(t))0<ε≤1, which is bounded in L2, is the
weak limit under ε → 0 (up to an extraction) of its Wigner transform,

W ε(uε)(t, x, ξ) =
1

(2π)n

∫
uε

(
t, x− vε

2

)
uε

(
t, x +

vε

2

)
eiξ·vdv.

This limit is a positive radon measure μ and is in general not a unique limit.
– Linear case: Case α > γ, α > 1.

By the result of Proposition 3.1 and the asymptotic behavior of ufree in Lemma 4.4,
the Wigner measure μ− for t < π/2 of the family (uε(t))0<ε≤1 is

μ−(t, x, ξ) =
1

| cos t|n
∣∣∣f ( x

cos t

)∣∣∣2 dx⊗ δξ=x tan t.

For π/2 < t < π, the Wigner measure of (uε(t))0<ε≤1 (denoted by μ+) is the same:
μ+(t, x, ξ) = μ−(t, x, ξ). At t = π/2, the limits from above and below are

lim
t→π/2−

μ−(t, x, ξ) = lim
t→π/2+

μ+(t, x, ξ) = |f(ξ)|2dξ ⊗ δ(x).

– Nonlinear WKB, linear focus: Case γ < α = 1.
The asymptotic behavior of uε is stated in Proposition 4.1. The additional phase
term g is of order 1 and does not change the Wigner measure of (uε(t))0<ε≤1, so in
this case μ− and μ+ are the same as in the previous case; the Wigner measure does
not “see” the nonlinear effect g.

– Linear WKB, nonlinear focus: Case γ = α > 1.
The asymptotic relations of Proposition 5.2 involve, for t ≥ π/2, the scattering oper-
ator associated with the unscaled equation (1.9). For t < π/2, the Wigner measure
of (uε(t))0<ε≤1 is still the same as above, but for π/2 < t < π, we have

μ+(t, x, ξ) =
1

| cos t|n
∣∣∣F ◦ S ◦ F−1f

( x

cos t

)∣∣∣2 dx⊗ δξ=x tan t,

where S is the scattering operator for (1.9) and F is the Fourier transform.
– Nonlinear WKB, nonlinear focus: Case γ = α = 1.

The asymptotic behavior for this case of (the formal computation) Proposition 6.1
includes an additional phase term which is of order log ε and a modification of the
initial data of the same order of magnitude. Both do not alter the Wigner measure,
since they are dominated by the scaling of the Wigner transform, and thus the Wigner
measure is the same as in the previous case.

For the last two cases, the limits at t = π/2 are

lim
t→π/2−

μ−(t, x, ξ) = |f(ξ)|2dξ ⊗ δ(x),

lim
t→π/2+

μ+(t, x, ξ) = |F ◦ S ◦ F−1f(ξ)|2dξ ⊗ δ(x).
(6.2)
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The idea of [5] is to find now two profiles f1 and f2 for which |f1|2 ≡ |f2|2, but at
the same time |F ◦ S ◦ F−1f1|2 �≡ |F ◦ S ◦ F−1f2|2. Then the Wigner measures of
the corresponding families (uε

j(t))0<ε≤1, j = 1, 2, will be equal up to the focus but

different after the focus, i.e., μ−
1 = μ−

2 but μ+
1 �= μ+

2 . So after the caustic point the
Wigner measure will not be unique anymore in the case where the nonlinearity is
relevant at the focus. These profiles were constructed using an expansion of S around
the origin. Since our problem is very similar to the one studied there, we expect
a similar result to hold for (1.6), i.e., we expect the Wigner measure to lead to an
ill-posed problem if there is a nonlinear influence at the caustic.

In view of the result of [31], note that the nonuniqueness of the weak solutions for
Vlasov–Poisson with measures as initial data and the nonuniqueness of the Wigner
measure of a given ε-dependent family of solutions coincide, such that there is no con-
tradiction with the global and unique semiclassical limits of the Hartree-type equations
obtained here.
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[15] J. Ginibre and G. Velo, Long range scattering and modified wave operators for some Hartree
type equations. III. Gevrey spaces and low dimensions, J. Differential Equations, 175
(2001), pp. 415–501.

[16] N. Hayashi and P. Naumkin, Asymptotics for large time of solutions to the nonlinear Schrö-
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WEAKLY INTERACTING PULSES IN SYNAPTICALLY COUPLED
NEURAL MEDIA∗
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Abstract. We use singular perturbation theory to analyze the dynamics of N weakly interacting
pulses in a one-dimensional synaptically coupled neuronal network. The network is modeled in
terms of a nonlocal integro-differential equation, in which the integral kernel represents the spatial
distribution of synaptic weights, and the output activity of a neuron is taken to be a mean firing rate.
We derive a set of N coupled ordinary differential equations (ODEs) for the dynamics of individual
pulses, establishing a direct relationship between the explicit form of the pulse interactions and the
structure of the long-range synaptic coupling. The system of ODEs is used to explore the existence
and stability of stationary N -pulses and traveling wave trains.

Key words. neural networks, localized spiral patterns, traveling pulses, integro-differential
equations
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1. Introduction. Synaptically coupled neuronal networks provide an important
example of spatially extended excitable systems with nonlocal interactions. The net-
work dynamics is usually modeled in terms of an integro-differential equation, in which
the integral kernel represents the spatial distribution of synaptic weights and the out-
put activity of a neuron is taken to be a mean firing rate [41, 12]. As in the case of
nonlinear PDE models of diffusively coupled excitable systems [23], neuronal networks
can exhibit a variety of coherent pulse-like structures including both stationary and
traveling solitary pulses. Traveling pulses tend to occur when synaptic connections are
predominantly excitatory and there is some form of slow local adaptation or recovery
[34, 7], whereas stationary pulses occur in the presence of lateral inhibition [1, 35, 40].
Analogous solutions are found in integrate-and-fire networks, where the output of a
neuron is taken to be a sequence of spikes rather than a firing rate [13, 4, 24]. The
formation of localized activity states can be used to model a number of neurobiologi-
cal phenomena. For example, traveling pulses have been observed in disinhibited slice
preparations [6, 20, 42] using voltage-sensitive dyes and multiple electrodes. An indi-
vidual pulse is generated by a brief current stimulus, whereas a train of pulses occurs
in the case of repeated stimulation. A second example is given by a delayed response
task, in which an animal is required to retain information about a sensory cue across a
delay period between the stimulus and behavioral response. Physiological recordings
in prefrontal cortex have shown that spatially localized groups of neurons fire during
the recall task and then stop firing once the task has finished [18, 39]. Thus persis-
tent localized states of activity are thought to be neural correlates of spatial working
memory. An interesting question then concerns the nature of the interactions between
multiple regions of localized activity induced by more complex stimuli.

Although there are an increasing number of studies regarding the behavior of soli-
tary pulses in excitable neural media, there is relatively little known about multipulse
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solutions. One approach to studying stationary N -pulse solutions in rate models is
to convert the integro-differential equation into a corresponding fourth-order PDE by
an appropriate choice of weight distribution, and then to search for global homoclinic
connections [25, 26, 7] or bifurcations from single-pulse solutions [27]. This approach
has established, for example, that stable N -pulse solutions can occur when lateral
inhibition is modulated by a spatially oscillating component.

In this paper we analyze multipulse solutions of a one-dimensional neuronal net-
work with a Heaviside firing rate function, under the assumption that the individual
pulses are well separated so that their mutual interactions are weak. We use singular
perturbation theory to derive equations of motion for the pulse positions, in order to
investigate the existence and stability of stationary and traveling N -pulse solutions.
Our analysis provides a nontrivial extension of previous studies of weakly interact-
ing pulses in nonlinear PDE models of diffusively coupled excitable media and fluids
[9, 10, 2, 3, 37, 33]. First, it applies to a nonlocal integro-differential equation that
cannot be reduced to a finite-order PDE except for very specific choices of the synap-
tic weight distribution. Second, using a Heaviside firing rate function, it is possible to
obtain exact solutions for single-pulse profiles and to carry out explicit calculations in
the derivation of the dynamical equations for weakly interacting pulses. Third, and
most significantly from a biological perspective, there is a direct relationship between
the nature of the pulse interactions and the form of the long-range synaptic coupling.

We focus in this paper on three distinct but related models that correspond to
three distinct experimental paradigms. In section 2, we analyze stationary pulses in
a network with symmetric lateral inhibition, which can be interpreted as a simple
model of persistent working memory. Assuming that the weights decay exponentially
at large distances, the corresponding single-pulse profile also decays exponentially so
that widely separated pulses interact weakly. Using singular perturbation theory, we
show how the existence and stability of stationary N -pulses reduces to the problem
of finding fixed points of a set of N coupled ODEs describing the motion of individual
pulses. This is considerably simpler than looking for multipulse solutions of the full
nonlocal equation [25, 26, 7]. Consistent with these other studies, we find that in the
presence of pure lateral inhibition well separated pulses repel each other, so that a
stable N -pulse solution cannot exist. On the other hand, in the case of a spatially
decaying oscillatory weight distribution, stable N -pulses can occur. In section 3,
we extend our analysis to the case of a network with asymmetric lateral inhibition,
which has been proposed as a model of direction selective neurons in visual cortex
[38, 30, 32, 43]. Localized activity pulses now tend to propagate unidirectionally rather
than remain stationary. Extending the analysis of section 2 by working in the moving
frame of a single traveling pulse, we derive the corresponding system of ODEs for
N weakly interacting traveling pulses. These equations are then used to explore the
existence and stability of traveling wave trains, with the separation between successive
pulses characterized by a lattice map [10]. In the case of spatially oscillatory weights,
such a map could potentially exhibit both regular and chaotic behavior. In section 4,
we consider an excitatory network with an additional adaptation variable, which has
been used to model wave propagation in disinhibited cortical slices [34]. In contrast
to the asymmetric lateral inhibition network, waves can now travel in both directions.
The resulting system of ODEs for N interacting pulses is identical in form to the
previous case, but the asymptotic behavior of a single pulse profile is different. In
particular, the leading edge of the pulse decays much more rapidly than the trailing
edge, which also typically holds for traveling pulses in diffusively coupled excitable
systems [23]. This difference in decay rates can be used to reduce the dynamics to a
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kinematic form [11, 33].

2. Stationary pulses in symmetric lateral inhibition networks. Let u(x, t)
represent the local activity of a population of neurons at position x ∈ R in a one-
dimensional neuronal network. Suppose that u evolves according to the integro-
differential equation

τm
∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)H[u(x′, t) − κ]dx′,(2.1)

where τm is a membrane or synaptic time constant, κ is a threshold, H(u) denotes
the output firing rate, and w(x−x′) is the strength of connections from neurons at x′

to neurons at x. We assume that w is a continuous function satisfying w(−x) = w(x)
and

∫∞
−∞ w(x) < ∞. The nonlinearity H is taken to be the Heaviside function

H[u] =

{
0 if u ≤ 0,
1 if u > 0.

(2.2)

In the following we treat length and time in dimensionless units. First, we set τm = 1
so that the unit of time is of the order 10msec. Second, the range of the synaptic
coupling introduces a fundamental length scale, which we use to set the unit of length
to be of the order 200μm.

Equation (2.1) was first analyzed in detail by Amari [1], who showed that there
exist stationary solitary pulse solutions when the weight distribution w(x) is given by
a Mexican hat function:

(i) w(x) > 0 for x ∈ [0, x0) with w(x0) = 0,
(ii) w(x) < 0 for x ∈ (x0,∞),
(iii) w(x) is decreasing on [0, x0],
(iv) w(x) has a unique minimum on R+ at x = x1 with x1 > x0 and w(x) strictly

increasing on (x1,∞).
More recently, it has been established that (2.1) can also support stable stationary
N -pulse solutions, provided that the weight distribution has additional zeros, which
would occur if there were an oscillatory modulation of the long-range connections
[25, 26, 27]. We will refer to any network that has long-range inhibition (possibly
alternating with long-range excitation) as a lateral inhibition network. In this section
we use singular perturbation theory to analyze the dynamics of N -pulse solutions of
(2.1), under the assumption that the interactions between pulses are weak. We show
that in the case of a Mexican hat weight distribution, the pulses mutually repel each
other so that stable N -pulse solutions cannot occur. On the other hand, when the
weight distribution consists of decaying spatial oscillations, there exist configurations
of the pulse locations (up to a global translation) corresponding to stable N -pulse
bound states. This result is consistent with the findings of Laing et al. [25] and Laing
and Tray [26, 27].

2.1. Stationary solitary pulses. Suppose that U(x) is a stationary solution
of (2.1): u(x, t) = U(x) with

U(x) =

∫ ∞

−∞
w(x− x′)H[U(x′) − κ]dx′.(2.3)

Let M[U ] = {x|U(x) > κ} be the region over which the activity U is excited (su-
perthreshold). Equation (2.3) can then be rewritten as

U(x) =

∫
M[U ]

w(x− x′)dx′.(2.4)
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Fig. 2.1. Construction of stationary pulses for a Mexican hat weight distribution. (a) Plot of
w(x) given by the difference-of-exponentials (2.8) with σE = 1.8, σI = 1.0, and Γ = 0.5. (b) Plot of
corresponding function W (x). Horizontal line shows the threshold κ whose intersections with W (2a)
determine the allowed pulse widths.

We define a single pulse solution of width 2a to be one that is excited over the interval
(−a, a); any pulse solution can be arbitrarily translated so that it is centered at the
origin. If we set

W (x) =

∫ x

0

w(y)dy,(2.5)

then (2.4) reduces to the form

U(x) = W (a + x) −W (x− a).(2.6)

Note that W (0) = 0 and W (−x) = −W (x). Since U(±a) = κ, we obtain the following
necessary condition for the existence of a stationary pulse of width 2a:

W (2a) = κ.(2.7)

Amari [1] showed that in the case of a Mexican hat weight distribution this condition
is also sufficient. He also established that a stationary pulse is stable, provided that
W ′(a) ≡ w(a) < 0; otherwise it is unstable.

The stable and unstable pulses can be determined graphically, as illustrated in
Figure 2.1 for a Mexican hat function w given by the difference-of-exponentials

w(x) = e−σE |x| − Γe−σI |x|,(2.8)

with σE > σI > 0 and 0 < Γ < 1. Here σ−1
E and σ−1

I determine the range of excitatory
and inhibitory synaptic coupling, respectively. If one neglects long-range horizontal
connections (see below), then such coupling tends to extend up to around 0.8mm in
cortex [29]. Integrating (2.8), we have

W (x) =
1

σE

[
1 − e−σEx

]
− Γ

σI

[
1 − e−σIx

]
(2.9)

for x ≥ 0. The existence of single-pulse solutions depends on the relative sizes of
Wm,W∞, and κ, where

Wm = max
x>0

W (x), W∞ = lim
x→∞

W (x) =
1

σE
− Γ

σI
.(2.10)
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Fig. 2.2. Construction of a stationary pulse for a spatially decaying oscillatory weight distribu-
tion. (a) Plot of w(x) given by (2.11) with σ = 0.25. (b) Plot of corresponding function W (x). The
horizontal line shows the threshold κ whose intersections with W (2a) determine the allowed pulse
widths.

If 0 < W∞ < κ < Wm, then there exists an unstable pulse of width a1 and a
stable pulse of width a2 with a2 > a1, whereas there is only an unstable pulse when
0 < κ < W∞. In the latter case the network is in a bistable regime, where the
unstable pulse acts as a separatrix between a stable uniform resting state (U ≡ 0)
and a traveling front. If W∞ < κ < 0 < Wm, then there is a stable pulse but no
unstable pulse. Outside these parameter regimes there are no pulses.

In Figure 2.2, we illustrate the corresponding graphical construction for a spatially
decaying oscillatory weight distribution of the form [25]

w(x) = e−σ|x| [cos(x) + σ sin |x|] .(2.11)

Integrating (2.11), we have

W (x) =
2σ

1 + σ2

[
1 − e−σx cos(x)

]
+

1 − σ2

1 + σ2
e−σx sin(x), x ≥ 0,(2.12)

with W (−x) = −W (x). It can be seen from Figure 2.2 that, as κ is reduced below Wm,
an increasing number of stable/unstable pairs of pulses are generated, assuming that
condition (2.7) is sufficient to ensure U(x) > κ for |x| < a and U(x) < κ for |x| > a.
This has not been proven analytically for the weight distribution (2.11), although
the existence of stable pulses has been confirmed numerically by Laing et al. [25].
These authors have also suggested that an anatomical substrate for the oscillatory
weight distribution (2.11) might be the long-range horizontal connections found in
superficial layers of cortex. Such connections extend several millimeters across cortex
and are broken into discrete patches with a very regular size and spacing [36, 19, 28].
Although the horizontal connections arise almost exclusively from excitatory neurons,
20% of them terminate on interneurons that can generate significant inhibition [31].
Whether the horizontal connections have a net inhibitory or excitatory effect does not
appear to be a simple function of cortical separation, however, since it also depends
on the local level of activity of neurons innervated by the long-range connections [29].
Therefore, certain care has to be taken in the biological interpretation of the weight
distribution (2.11).

2.2. Singular perturbation theory. Suppose that (2.1) has a stable stationary
pulse solution U(x) of width 2a centered at the origin such that in the large-|x| limit,
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the activity of the pulse decays exponentially, |U(x)| ∼ e−ρ|x|. For example, ρ = σI

in the case of the Mexican hat function (2.8), and ρ = σ in the case of the spatially
decaying oscillatory function (2.11). This suggests that if two or more such pulses are
placed on the real line such that the characteristic separation d between the centers
of any two pulses satisfies e−ρd = ε � 1, then the interactions between the pulses will
be weak. In the weakly interacting regime, we can carry out a perturbation analysis
of the dynamics along lines analogous to those used by Elphick, Meron, and Spiegel
[10] by treating ε as a small parameter.

Following [10], we look for an N -pulse solution with individual pulses having
centers at xn = nd + φn(τ), where φn(τ) is a slowly varying phase and τ = εt. That
is, we consider a train of pulses

u(x, τ) =

N∑
n=1

U(x− nd− φn(τ)) + εR(x, τ).(2.13)

The remainder term εR takes into account the fact that a superposition of widely
separated pulses cannot be an exact solution, even when we allow for slowly drifting
phases φn. Substituting (2.13) into (2.1) with ∂t → ∂t + ε∂τ , and using (2.3), gives

ε2∂τR− ε

N∑
n=1

φ̇nU
′
n = −εR + w ∗H

(
N∑

n=1

Un + εR− κ

)
− w ∗

N∑
n=1

H(Un − κ),

(2.14)

where Un(x) = U(x− nd− φn(τ)) and w ∗ g denotes the convolution

w ∗ g =

∫ ∞

−∞
w(x− x′)g(x′)dx′.(2.15)

We now carry out a perturbation expansion in ε by formally Taylor expanding with
respect to εR inside the convolution integral:

w ∗H
(

N∑
n=1

Un − κ + εR

)
= w ∗

[
H

(
N∑

n=1

Un − κ

)
+ εδ

(
N∑

n=1

Un − κ

)
R + O

(
ε2
)]

,

(2.16)

where δ is the Dirac delta function. This formal series expansion can be interpreted
along the following lines. First, we assume that in the case of widely separated
pulses, the multibump function V ≡

∑
n Un(x) has N pairs of threshold crossing

points x±
m ≈ xm ± a such that V (x) > κ for x−

m < x < x+
m, V (x±

m) = κ and V (x) < κ
otherwise. It follows that

δ(V (x) − κ) =

N∑
m=1

[
δ(x− x+

m)

|V ′(x+
m)|

+
δ(x− x−

m)

|V ′(x−
m)|

]
.(2.17)

Similarly, the function V + εR is assumed to have threshold crossing points at x±
m +

εΔ±
m. The convolution integral then has the explicit form

w ∗H
(

N∑
n=1

Un − κ + εR

)
(x) =

N∑
n=1

∫ x+
n +εΔ+

n

x−
n +εΔ−

n

w(x− x′)dx′

=

N∑
n=1

∫ x+
n

x−
n

w(x− x′)dx′(2.18)

+ ε
[
w(x− x+

n )Δ+
n − w(x− x−

n )Δ−
n

]
+ O(ε2),
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Fig. 2.3. Illustrative sketch of a multibump solution in which the nth activity bump (region
above threshold κ) is localized within the domain Λn. In a neighborhood of the mth activity bump
we assume that Un(x) ∼ ε|m−n| for m �= n, where Un(x) = U(x − xn) and xn is the center of the
nth bump.

where we have Taylor expanded with respect to the perturbations εΔ±
m in the locations

of the activity bump boundaries. Substituting (2.17) into (2.16) shows that the latter
is equivalent to (2.18) with Δ+

m = R(x+
m)/|V ′(x+

m)| and Δ−
m = −R(x−

m)/|V ′(x−
m)|.

Substituting (2.16) into (2.14) and collecting first-order terms in ε leads to the
following inhomogeneous equation for R:

L̂R =

N∑
n=1

φ̇nU
′
n +

1

ε
w ∗

[
H

(
N∑

n=1

Un − κ

)
−

N∑
n=1

H(Un − κ)

]
,(2.19)

where L̂ is the linear operator

L̂ψ = ψ − w ∗
(
δ

(
N∑

n=1

Un − κ

)
ψ

)
(2.20)

for any function ψ ∈ L2(R). We now show that the term in square brackets on the
right-hand side of (2.19) is O(ε). First, partition the real line into nonoverlapping
domains such that the mth activity bump lies entirely in the domain Λm, as illustrated
in Figure 2.3. More specifically, take R = ∪N

m=1Λm with Λm = [x̄m−1, x̄m) for
m = 2, . . . , N − 1, Λ1 = (−∞, x̄1), and ΛN = (x̄N−1,∞). Here x̄m = (xm+1 − xm)/2
is the midpoint between neighboring bumps. The characteristic pulse separation d is
assumed to be sufficiently large such that Un(x) ∼ ε|m−n| in a neighborhood of the
mth activity bump for m = n. The given partition then allows us to carry out a
formal perturbation expansion along lines similar to (2.16):

∫ ∞

−∞
w(x− x′)H

(∑
n

Un(x′) − κ

)
dx′ =

∞∑
m=−∞

∫
Λm

w(x− x′)H

(∑
n

Un(x′) − κ

)
dx′

=

∞∑
m=−∞

∫
Λm

w(x− x′)H

⎛
⎝Um(x′) +

∑
n �=m

Un(x′) − κ

⎞
⎠ dx′

=

∞∑
m=−∞

∫
Λm

w(x− x′)

(
H(Um(x′) − κ) + δ(Um(x′) − κ)

∑
n=m±1

Un(x′) + O(ε2)

)
dx′.

(2.21)
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Only nearest neighbor bumps contribute to the O(ε) term. The delta function
δ(Um(x) − κ) can be simplified using the threshold condition Um(±a + xm) = κ:

δ(Um(x) − κ) =
δ(x− a− xm)

|U ′(a)| +
δ(x + a− xm)

|U ′(−a)| .(2.22)

Since Um(x) < κ for all x /∈ Λm, we can replace the integral domain Λm in each of
the integrals in (2.21) by the whole real line (−∞,∞). Thus we find

w ∗H
(

N∑
n=1

Un − κ

)
= w ∗

[
N∑

n=1

H(Un − κ) +

N∑
n=1

δ(Un − κ)[Un+1 + Un−1] + O(ε2)

]

(2.23)

with UN+1, U0 ≡ 0.
In order for the above perturbation expansion to be valid, we require that the

correction term R be finite everywhere. Following Elphick, Meran, and Spiegel [10],
we will show how this implies a set of solvability conditions on (2.19), which in turn
determine the leading-order dynamics of the phases φn or, equivalently, the pulse
positions xn. In order to gain insights into the analytical properties of the linear
operator L̂ it is useful to consider the simpler operator L̂n, where

L̂nψ = ψ − w ∗ [δ(Un − κ)ψ].(2.24)

The latter has zero as an eigenvalue with corresponding eigenfunction Q = U ′
n, which

can be seen by differentiating (2.3). Therefore, the eigenvalue equation L̂Q = λQ

has approximate solutions of the form Q =
∑N

i=1 cnU
′
n, where cn are constants, with

associated eigenvalues λ = O(ε). Assuming the standard inner product of functions
P,Q on R,

〈P |Q〉 =

∫ ∞

−∞
P (x)Q(x)dx,(2.25)

we define the adjoint operator L̂† according to

〈P |L̂Q〉 = 〈L̂†P |Q〉,(2.26)

so that

L̂†ψ = ψ − δ

(
N∑

n=1

Un − κ

)
w ∗ ψ.(2.27)

The existence of N null vectors of L̂n suggests that its adjoint should also have N
null vectors, which can then be used to construct eigenfunctions of L̂† with O(ε)

eigenvalues. However, since the operator L̂n is not self-adjoint, one cannot assume a
priori that it has index zero. The situation is further complicated by the fact that L̂†

involves distributions. Therefore, we will proceed by searching for weak solutions P
of the equation

〈L̂†P |Q〉 = O(ε)(2.28)

for any bounded function Q.
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Comparison of (2.17) and (2.22) shows that in the weakly interacting regime,

∫
ψ(x)δ

(∑
n

Un(x) − κ

)
dx =

∫
ψ(x)

N∑
n=1

δ (Un(x) − κ) dx + O(ε)(2.29)

for arbitrary ψ. This leads to the formal decomposition of the adjoint operator given
by

L̂†ψ = L̂†
nψ −

∑
j �=n

δ(Uj − κ)w ∗ ψ + O(ε)(2.30)

for any n = 1, . . . , N , with δ(Un − κ) satisfying (2.22). Without loss of generality, set

x0 = 0 and look for solutions of L̂†
0P = 0, which can be written as

P(x) =

[
δ(x + a)

U ′(−a)
+

δ(x− a)

|U ′(a)|

] ∫ ∞

−∞
w(x− x′)P(x′)dx′.(2.31)

The formal solution is P(x) = p1δ(x−a)−p2δ(x+a), with coefficients p1, p2 satisfying
the pair of algebraic equations

p1 =
1

|U ′(a)| [p1w(0) − p2w(2a)] ,

p2 = − 1

U ′(−a)
[p1w(2a) − p2w(0)] .

Differentiating (2.6) shows that

U ′(−a) = −U ′(a) = w(0) − w(2a),(2.32)

and hence p1 = p2. This establishes that L̂†
0 has the null vector

P(x) = δ(x− a) − δ(x + a).(2.33)

From translation symmetry, it follows that L̂†
n has the null vector Pn(x), where

Pn(x) ≡ P(x− xn).(2.34)

Hence, using the decomposition (2.30) and the result L̂†
nPn = 0, we have

〈L̂†Pn|Q〉 = −
∑
j �=n

〈δ(Uj − κ)w ∗ Pn|Q〉 + O(ε)(2.35)

for any bounded function Q. Since w(x) decays as e−ρ|x| for large |x|, we see that
w(xn − xj) ∼ ε|n−j| for n = j, so that the inner product on the right-hand side of
(2.35) is also O(ε). We conclude that (2.28) has the set of solutions Pn, n = 1, . . . , N .
Interestingly, these solutions are independent of the choice of weight function w.

We now take the inner product of (2.19) with respect to Pm and use (2.23).
Keeping only leading-order terms in ε then yields the following solvability condition:

φ̇m 〈Pm |U ′
m〉 +

1

ε
〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉 = O(ε).(2.36)
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Substituting (2.33) into (2.36) and using (2.22), (2.32) shows that

〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉= U(a + xm − xm+1) + U(a + xm − xm−1)

− U(−a + xm − xm+1) − U(−a + xm − xm−1)

(2.37)

and

〈Pm |U ′
m〉 = [U ′

m(a + xm) − U ′
m(−a + xm)] = −2|U ′(a)|.(2.38)

We thus obtain the following system of differential equations for the pulse positions
xm(t) = md + φm(εt):

ẋm = f(xm+1 − xm) − f(xm − xm−1), 1 < m < N,

(2.39)

ẋ1 = f(x2 − x1), ẋN = −f(xN − xN−1)

with

f(x) =
1

2|U ′(a)| [U(x− a) − U(x + a)] .(2.40)

2.3. Stationary N-pulses. Equations (2.6) and (2.40) show that the explicit
form of the interaction function f(x) for large x is determined by the asymptotic
behavior of the weight distribution w. In the case of the Mexican hat function (2.8),
equations (2.6), (2.9), and (2.40) imply that for large x

f(x) = −Γ cosh(σIa)

σI |U ′(a)|

[
e−σI(x−a) − e−σI(x+a)

]
= −Ae−σIx(2.41)

with

A =
Γ sinh(2σIa)

σI |U ′(a)| > 0.(2.42)

Similarly, in the case of a spatially decaying oscillatory function (2.11), we find that
for large x,

f(x) =
2e−σx

(1 + σ2)|U ′(a)| [A1(a, σ) cos(x) + A2(a, σ) sin(x)](2.43)

with

A1(a, σ) = (1 − σ2) sinh(σa) sin(a) + 2σ cosh(σa) cos(a) − 2σ,(2.44)

A2(a, σ) = 2σ sinh(σa) sin(a) − (1 − σ2) cosh(σa) cos(a) + 1 − σ2.(2.45)

The function f can be written in the more compact form

f(x) = Be−σx cos(x− Φ)(2.46)
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Fig. 2.4. Plot of phase separation Φ for a pair of pulses as a function of pulse width a in the
case of the spatially decaying oscillatory weight distribution (2.11) with σ = 0.25.

with

Φ = tan−1 A2

A1
, B =

2
√

A2
1 + A2

2

(1 + σ2)|U ′(a)| .(2.47)

The dependence of the phase Φ on pulse width for fixed decay rate σ is shown in
Figure 2.4. Note that for σa � 1 we have Φ ≈ a− φ with tanφ = (1 − σ2)/2σ.

The existence and stability of stationary N -pulse solutions can now be investi-
gated in terms of the fixed point solutions of (2.39) for a given weight distribution.
Let us first consider a pair of pulses, whose positions satisfy the pair of equations

ẋ1 = f(x2 − x1), ẋ2 = −f(x2 − x1).(2.48)

Defining the separation variable Δ = x2 − x1, we have

Δ̇ = −2f(Δ).(2.49)

It immediately follows from (2.41) that mutual interactions between pulses are repul-
sive for a Mexican hat weight function, since f(Δ) < 0 for all Δ. Hence, the pulses
repel each other and cannot form a bound 2-pulse state. A similar result holds for more
than two pulses. Note that Amari [1] originally suggested that pulses were attractive
at short distances, repulsive at intermediate distances, and neutral at sufficiently large
distances. Our analysis suggests that repulsion actually persists to arbitrarily large
distances, but that the rate of separation is slow since f(Δ) ∼ e−σIΔ � 1. Following
the results of Laing and colleagues [25, 27] and analogous results for PDEs [2], one
expects a stable N -pulse solution to exist when the weights have an oscillatory tail.
This is easily seen in the case for a pair of pulses by substituting (2.46) into (2.49):

Δ̇ = −2Be−σΔ cos(Δ − Φ).(2.50)

Such an equation has a countable set of stable/unstable pairs of fixed point solutions:
Δ = Δ±(p) = Φ ± π/2 + 2πp for integers p � 1 (so that pulses are well separated)
with Δ−(p) stable and Δ+(p) unstable.
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Higher-order N -pulse solutions can be constructed by taking the separations
Δm = xm − xm−1 to be zeros of f for all m = 2, . . . , N . Stability is determined
by the eigenvalues of the tridiagonal matrix

AN =

⎛
⎜⎜⎜⎜⎜⎝

−2f ′(Δ2) f ′(Δ3) 0 . . . 0
f ′(Δ2) −2f ′(Δ3) f ′(Δ4) 0 . . .

0 f ′(Δ3) −2f ′(Δ4) f ′(Δ5) 0
...

...
...

...
...

0 . . . 0 f ′(ΔN−1) −2f ′(ΔN )

⎞
⎟⎟⎟⎟⎟⎠ .(2.51)

Note that the matrix coefficients satisfy ai,i+1 = ai+1,i > 0 for all i so that the
eigenvalues are all real and simple. Moreover, by the Gerschgorin disk theorem (see
[22]), the eigenvalues of AN are contained in the union of disks defined according to
∪i{|λ− aii| ≤

∑
j �=i |aij |}. Consider the simplest case in which all pulse spacings are

equal, Δm = Δ for all m = 2, . . . , N . We then obtain the pair of conditions

|λ + 2f ′(Δ)| ≤ f ′(Δ), |λ + 2f ′(Δ)| ≤ 2f ′(Δ).(2.52)

These are circles contained within the left-half complex plane, provided that f ′(Δ) >
0. One can also show that there are no zero eigenvalues by noting that in the uniform
case the determinant DN = det[AN − λI] satisfies the iterative equation

Dm(λ) = (−2f ′(Δ) − λ)Dm−1 − f ′(Δ)2Dm−2, 2 ≤ m ≤ N,(2.53)

with D1 = 1 and D0 = 0. This has the solution

DN (λ) =
ΛN

+ − ΛN
−

Λ+ − Λ−
,(2.54)

where

Λ± =
1

2

(
−2f ′ − λ±

√
λ2 + 4f ′λ

)
.(2.55)

Since DN (0) = 0, it follows that zero is not an eigenvalue. Therefore, there exists a
stable uniformly spaced stationary N -pulse solution if f(Δ) = 0 and f ′(Δ) > 0.

One can also analyze the stationary states of N pulses arranged on a ring of
length L. Now the dynamics is described by the cyclic system of ODEs

ẋm = f(xm+1 − xm) − f(xm − xm−1), m = 1, . . . , N,(2.56)

with x0 = xN and xN+1 = x0. The evenly spaced solution Δ = L/N is automatically
a fixed point of the dynamics, and its stability can be determined by linearizing (2.56)
with xm = mΔ + θm:

θ̇m = −f ′(Δ) [2θm − θm−1 − θm+1] .(2.57)

This has eigensolutions of the form θm(t) = eλ(k)teimk with wavenumber k = 2πp/N
for p = 1, . . . , N and

λ(k) = −2f ′(Δ)[1 − cos(k)].(2.58)

The zero eigenvalue at k = 0 reflects the translation invariance of the system. Hence,
the N -pulse solution on the ring is (marginally) stable if f ′(Δ) > 0; otherwise it is
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unstable. It then follows from (2.41) and (2.46) that a ring network with a Mexican
hat weight distribution supports stable N -pulse solutions independently of the length
L of the ring, whereas a spatially decaying oscillatory distribution supports such a
solution only for certain ranges of L. This example illustrates how the existence and
stability of multipulse solutions depends on the topology of the network as well as its
weight distribution.

3. Traveling pulses in asymmetric lateral inhibition networks. In section
2 we considered a lateral inhibition network with a weight distribution that is sym-
metric, w(−x) = w(x). Although this is usually a reasonable modeling assumption
regarding the large-scale anatomy of cortical circuits, there are some examples of more
specialized circuits where lateral inhibition may be asymmetric. In particular, asym-
metric coupling has been suggested as providing a possible mechanism for direction
selective neurons in the visual cortex [38, 30, 32, 43]. Networks with asymmetric lat-
eral inhibition support unidirectional wave propagation rather than stationary activity
pulses. If a moving external stimulus is presented to a one-dimensional network, then
a superthreshold response is elicited only if the velocity of the stimulus approximately
matches the direction and speed of the intrinsic waves. Here we extend the singu-
lar perturbation theory of stationary pulses in order to investigate traveling N -pulse
solutions of (2.1) in the case of asymmetric lateral inhibition.

3.1. Traveling solitary pulses. Suppose that (2.1) with asymmetric w has a
right-moving traveling pulse solution of the form u(x, t) = U(x − ct), c > 0, where
U(±∞) = 0 and U(−a) = U(0) = κ. Substituting into (2.1) with ξ = x− ct gives

−c∂ξU(ξ) + U(ξ) =

∫ ∞

−∞
w(ξ − ξ′)H(U(ξ′) − κ)dξ′

= W (ξ + a) −W (ξ),(3.1)

with W defined by (2.5). Multiplying both sides of (3.1) by the integrating factor
−c−1e−ξ/c and integrating from −a to ξ using the threshold condition U(−a) = κ
leads to the result

U(ξ) = eξ/c

[
κea/c − 1

c

∫ ξ

−a

[W (ξ′ + a) −W (ξ′)]e−ξ′/cdξ′

]
.(3.2)

Finiteness of the solution in the limit ξ → ∞ requires that the term in square brackets
vanish. Hence, we can rewrite the solution for U(ξ) as

U(ξ) =
1

c

∫ ∞

0

(W (ξ′ + ξ + a) −W (ξ′ + ξ))e−ξ′/cdξ′.(3.3)

Enforcing the threshold conditions U(0) = κ and U(−a) = κ then generates a pair of
equations that determine existence curves relating the speed c to the pulse width a
for a given threshold κ.

A typical way to model asymmetric lateral inhibition is to take w(x) = w0(x−x0)
with w0 a symmetric weight distribution such as a Mexican hat function. If x0 > 0,
then short-range coupling is predominantly excitatory to the right and inhibitory to
the left, which leads to right-propagating waves, as illustrated in Figure 3.1. The
function W (x) of (2.9) may be expressed in terms of w0 as

W (x) = W0(x− x0) + W0(x0), W0(x) =

∫ x

0

w0(y)dy,(3.4)
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Fig. 3.1. (a) Shifted weight distribution w(x) = w(x − x0) in the case of asymmetric lateral
inhibition. (b) Illustration of a right-moving traveling pulse of width a.

so that the wave profile becomes

U(ξ) =
1

c

∫ ∞

0

(W0(ξ
′ + ξ + a− x0) −W0(ξ

′ + ξ − x0))e
−ξ′/cdξ′.(3.5)

Equation (3.5) can be used to determine the asymptotic behavior of the solitary pulse
for any exponentially decaying weight distribution. In particular, suppose that

w0(x) = e−σ|x|g(x),

with g(x) bounded for all x and limx→±∞ g(x) = g±∞. If ξ > x0, then there is a
common factor of e−σξ on the right-hand side of (3.5), which can be taken outside
the integral. Hence, in the limit ξ → ∞,

U(ξ) ∼ g∞
c

∫ ∞

0

(e−σ(ξ′+ξ+a−x0) − e−σ(ξ′+ξ−x0))e−ξ′/cdξ′ ∼ −e−σξ.(3.6)

On the other hand, when ξ < x0, we have to partition the integral of (3.5) into the
separate domains ξ′ > ξ + x0, ξ + x0 − a < ξ′ < ξ + x0, and ξ′ < ξ + x0 − a so that
in the limit ξ → −∞,

U(ξ) ∼ −
[
U1e

σξ + U2e
ξ/c
]
.(3.7)

Therefore, the leading edge of the pulse profile decays at the rate σ determined by
the weight distribution w0, whereas the trailing edge decays at the rates σ and c−1.
The activity profile U(ξ) of both the leading and trailing edges is negative due to the
effects of inhibition; see Figure 3.1b. If g(x) is taken to be an oscillatory function,
then the asymptotic terms e−σ|ξ| will also be oscillatory.

In Figure 3.2 we show existence curves for a traveling pulse of width a and speed
c with w0 given by the difference-of-exponentials (2.8). The pulse profile is given by
U(ξ) = UσE

(ξ) − ΓUσI
(ξ) with

σUσ(ξ) =
e−(ξ−x0)σ

cσ + 1
− e−(ξ+a−x0)σ

cσ + 1

for ξ > x0,

σUσ(ξ) = 2 − e−(ξ+a−x0)σ

cσ + 1
−
[(

2c2σ2

c2σ2 − 1

)
e−(x0−ξ)/c − e−(x0−ξ)σ

cσ − 1

]
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Fig. 3.2. Existence of right-moving traveling pulses in the case of a shifted weight distribution
w(x) = w0(x − x0) with w0(x) given by the difference-of-exponentials (2.8) for σE = 1.8, σI =
1.0,Γ = 0.5, and x0 = 0.5. (a) Plot of pulse width a against threshold κ. (b) Plot of wave speed c
against threshold κ. Black (gray) curves denote stable (unstable) branches.

for x0 − a < ξ < x0, and

σUσ(ξ) =

[(
2c2σ2

c2σ2 − 1

)
e−(x0−ξ−a)/c − e−(x0−ξ−a)σ

cσ − 1

]

−
[(

2c2σ2

c2σ2 − 1

)
e−(x0−ξ)/c − e−(x0−ξ)σ

cσ − 1

]

for ξ < x0−a. Note that there are two existence branches corresponding, respectively,
to narrow fast waves and wide slow waves. Given that wide pulses are stable in the
stationary case (see Figure 2.1), we expect the slow branch to be stable, as can be
confirmed numerically. This should be contrasted with traveling pulses in excitatory
networks, where the fast branch is stable (see section 4). For the parameter values
chosen in Figure 3.2, a stable pulse has a speed lying within the interval 0.6 < c < 0.8
so that σI < c−1 < σE . Thus the dominant rate of decay for both the leading and
trailing edges is σI . Note that if the units of length and time are taken to be 200μm
and 10ms, respectively, then c = 1 corresponds to a wave speed of 2cms−1, which is
consistent with the range of speeds observed experimentally in cortical slices [20].

3.2. Singular perturbation theory. Suppose that there is a set of well sep-
arated exponentially decaying right-moving pulses. Following Elphick, Meron, and
Spiegel [10], we now extend the singular perturbation theory of stationary pulses by
working in the moving frame ξ = x−ct, where c is the speed of an isolated pulse. That
is, we search for a traveling N -pulse solution with individual pulses having centers at
ξn = nd + φn(τ), where τ = εt and ε = e−ρd with ρ = min{σ, c−1}:

u(ξ, τ) =
N∑

n=1

U(ξ − nd− φn(τ)) + εR(ξ, τ).(3.8)

Substituting (3.8) into (2.1) with ∂t → ∂t + ε∂τ , and performing an expansion in ε
along lines identical to those of section 2, leads to the inhomogeneous equation (2.19),
with the modified linear operator

L̂ψ = ψ − c∂ξψ − w ∗
[
δ

(
N∑

n=1

Un − κ

)
ψ

]
.(3.9)
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The corresponding adjoint operator is now

L̂†ψ = ψ + c∂ξψ − δ

(
N∑

n=1

Un − κ

)
wT ∗ ψ,(3.10)

where wT (ξ) = w(−ξ) = w(ξ), since w is asymmetric. By differentiating (3.1), it can
be seen that for largely separated pulses the functions U ′

n are O(ε) null vectors of the

operator L̂. This motivates us to seek O(ε) null vectors of the adjoint operator (3.10).

Proceeding along lines identical to those of section 2, we first decompose L̂†

according to (2.30) with

L̂†
nψ = ψ + c∂ξψ − δ(Un − κ)wT ∗ ψ(3.11)

and

δ(Un − κ) =
δ(ξ + a)

U ′(−a)
+

δ(ξ)

|U ′(0)| .(3.12)

We then look for null vectors P of L̂†
0 with ξ0 = 0:

P(ξ) + c∂ξP(ξ) =

[
δ(ξ + a)

U ′(−a)
+

δ(ξ)

|U ′(0)|

] ∫ ∞

−∞
w(ξ′ − ξ)P(ξ′)dξ′.(3.13)

This has the formal solution

P(ξ) = p1H(ξ + a)e−(ξ+a)/c − p2H(ξ)e−ξ/c,(3.14)

with

p1c =
1

U ′(−a)

[
p1

∫ ∞

0

w(ξ)e−ξ/cdξ − p2

∫ ∞

0

w(ξ + a)e−ξ/cdξ

]

and

p2c = − 1

|U ′(0)|

[
p1

∫ ∞

0

w(ξ − a)e−ξ/cdξ − p2

∫ ∞

0

w(ξ)e−ξ/cdξ

]
.

Up to a scalar multiplication, the pair of algebraic equations for the coefficients p1, p2

has the solution

p1 =

∫ ∞

0

w(ξ + a)e−ξ/cdξ, p2 =

∫ ∞

0

w(ξ − a)e−ξ/cdξ.(3.15)

In order to prove this, differentiate (3.3) with respect to ξ using (2.5):

U ′(ξ) =
1

c

∫ ∞

0

(w(ξ′ + ξ + a) − w(ξ′ + ξ))e−ξ′/cdξ′.(3.16)

Setting ξ = 0 and ξ = −a then leads to the following equations for U ′(−a) and |U ′(0)|:

U ′(−a) =
1

c

∫ ∞

0

[w(ξ) − w(ξ − a)] e−ξ/cdξ,

|U ′(0)| =
1

c

∫ ∞

0

[w(ξ) − w(ξ + a)] e−ξ/cdξ.(3.17)
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It is now straightforward to verify (3.15).

Following the same arguments as section 2, we conclude that (2.28) has solutions
of the form Pn(ξ) = P(ξ − ξn), with P given by (3.14) and (3.15). A dynamical
equation for the pulse positions ξn can then be derived by taking the inner product of
(2.19) with Pn, which yields an equation of the form (2.36). Substituting (3.14) and
(3.12) into (2.36), we find that

〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉
= p1c (U(−a + ξm − ξm+1) + U(−a + ξm − ξm−1))

− p2c(U(ξm − ξm+1) + U(ξm − ξm−1)),(3.18)

and 〈Pm|U ′
m〉 = 〈P|U ′〉 = K, where

K = p1

∫ ∞

0

e−ξ/cU ′(ξ − a)dξ − p2

∫ ∞

0

e−ξ/cU ′(ξ)dξ.(3.19)

Hence, (2.36) reduces to the form

ξ̇m = fR(ξm+1 − ξm) + fL(ξm − ξm−1),(3.20)

for ξm(t) = nd + φm(εt), with

fR(ξ) =
c

K
[p2U(−ξ) − p1U(−ξ − a)] , fL(ξ) =

c

K
[p2U(ξ) − p1U(ξ − a)] ,

(3.21)

and U(ξ) determined from the underlying weight distribution according to (3.5).

3.3. Traveling wave trains. Lattice equations of the form (3.20) have been
studied in considerable detail within the context of diffusive excitable systems and
fluids [10, 2, 37]. Here we illustrate some of the basic results by explicitly calculating
the interaction functions fL, fR. We define a traveling wave train as an N -pulse
solution of (3.20) in which ξ̇m = δc independently of m, where δc is a constant
velocity in the frame of an isolated pulse. The spacings between pulses are then fixed,
and we obtain the so-called pattern map [10]

δc = fR(Δm+1) + fL(Δm), Δm = ξm − ξm−1.(3.22)

As a further simplification, we impose periodic boundary conditions by taking the
pulses to be moving on a ring of length L with ξ0 = ξN and ξN+1 = ξ0. The
simplest solution of (3.22) is then the fixed point Δm = Δ = L/N for all m. The
fixed point equation δc = fR(Δ) + fL(Δ) determines the relationship between the
total speed of the wave train c + δc and the uniform spacing Δ between neighboring
pulses. Linearizing (3.20) about the uniformly spaced wave train by setting ξm =
mΔ + δct + θm gives

θ̇m = f ′
R(Δ) [αθm−1 − (1 + α)θm + θm+1](3.23)

with α = −f ′
L(Δ)/f ′

R(Δ). This has eigensolutions of the form θm(t) = eλ(k)teimk
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Fig. 3.3. Plot of δc = fL(Δ) + fR(Δ) against Δ (thick curves) in the case of a shifted weight
distribution w(x) = w0(x − x0), with w0(x) given by the difference-of-exponentials (2.8) for σE =
1.8, σI = 1.0,Γ = 0.5. Also shown are the plots of fL(Δ) (dashed curves) and fR(Δ) (thin curves).
(a) x0 = 0.5, a = 5, and c = 0.65. (b) x0 = 1, a = 4, and c = 1.58. In both cases, the pulse width
and speed of an isolated pulse are chosen to lie on the stable existence branch.

with wavenumber k = 2πp/N for p = 1, . . . , N and

λ(k) = −f ′
R(Δ) [(1 + α)(1 − cos(k)) ± i(1 − α) sin(k)] .(3.24)

The condition for (marginal) stability of the uniformly spaced wave train is thus
f ′
R(Δ) > f ′

L(Δ). For the sake of illustration, consider the case of an asymmetric
Mexican hat weight distribution w(x) = w0(x− x0), with w0 given by the difference-
of-exponentials (2.8). Let the unperturbed pulse width a and speed c correspond to
a solitary wave on the stable slow branch; see Figure 3.2. Two examples of dispersion
curves δc versus Δ are shown in Figure 3.3. In (a), one sees that there exists a finite
range of separations Δ for which f ′

R(Δ) > f ′
L(Δ), corresponding to a finite band of

stable wave trains. Similarly, (b) shows an example of a semi-infinite band of stable
wave trains. In both examples, a given wave train moves more slowly than an isolated
pulse, since δc = fL(Δ) + fR(Δ) < 0. Which wave train is actually selected will
depend on initial conditions.

Suppose that we now allow for the possibility of an oscillatory weight distribution
such as (2.11). If σI < c−1, then the leading and trailing edges both consist of
exponentially decaying spatial oscillations, so that for widely separated pulses the
lattice dynamics takes the form

ξ̇m = ARe−σ(ξm+1−ξm) cos(ω(ξm+1 − ξm) − ΦR)

+ALe−σ(ξm−ξm−1) cos(ω(ξm − ξm−1) − ΦL).(3.25)

In the case of oscillatory interaction functions, the associated pattern map (3.22) can
generate nontrivial sequences of pulse intervals {. . .Δm−1,Δm,Δm+1, . . . }, including
possibly chaotic sequences [17]. From a dynamical systems perspective, such wave
trains can be reinterpreted in terms of nearly homoclinic orbits [2].

4. Traveling pulses in excitatory networks with adaptation. As our final
example, let us return to the case of a symmetric weight distribution w, but now take
w to be purely excitatory, as in the case of a disinhibited cortical slice [34]. In the
absence of lateral inhibition, the scalar equation (2.1) no longer supports localized
persistent states of activity but does exhibit traveling front solutions. In order to
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obtain traveling localized pulses, it is necessary to introduce some form of adaptation.
Therefore, following Pinto and Ermentrout [34], we extend the basic Amari model by
considering the following system of equations:

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− x′)H(u(x′, t) − κ)dx′ − βv(x, t),

∂v(x, t)

∂t
= γ[−v(x, t) + u(x, t)],(4.1)

where v(x, t) represents some form of negative feedback mechanism such as spike fre-
quency adaptation or synaptic depression, with β, γ determining the relative strength
and rate of feedback. We will extend the singular perturbation theory of section 3
in order to investigate traveling N -pulse solutions of (4.1) in the case of a positive
exponentially decaying weight distribution w.

4.1. Traveling solitary pulses. In contrast to the asymmetric lateral inhibi-
tion network of section 3, the excitatory network given by (4.1) supports bidirec-
tional wave propagation. Without loss of generality, let us consider a right-moving
traveling pulse solution of the form (u(x, t), v(x, t)) = (U(x − ct), V (x − ct)) with
U(±∞), V (±∞) = 0 and U(−a) = U(0) = κ. Substituting into (4.1) with ξ = x− ct
gives

−c∂ξU(ξ) + U(ξ) + βV (ξ) =

∫ ∞

−∞
w(ξ − ξ′)H(U(ξ′) − κ)dξ′,

−c∂ξV (ξ) + γ[V (ξ) − U(ξ)] = 0.(4.2)

It is useful to rewrite (4.2) in the matrix form(
1 β
−γ γ

)(
U
V

)
− c∂ξ

(
U
V

)
= [W (ξ + a) −W (ξ)]

(
1
0

)
.(4.3)

We proceed by diagonalizing the left-hand side of (4.3) using the right eigenvectors v
of the matrix

M =

(
1 β
−γ γ

)
.(4.4)

These are given by

v± =

(
γ − λ±

γ

)
,(4.5)

with corresponding eigenvalues

λ± =
1

2

[
1 + γ ±

√
(1 + γ)2 − 4γ(1 + β)

]
.(4.6)

Note that v±eλ±ξ/c are the corresponding null vectors of the linear operator on the
left-hand side of (4.3); that is, they generate the complementary solution. Performing
the transformation (

Ũ

Ṽ

)
= T−1

(
U
V

)
, T =

(
v+ v−

)
,(4.7)
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then gives the pair of equations

−c∂ξŨ + λ+Ũ = η+[W (ξ + a) −W (ξ)],

−c∂ξṼ + λ−Ṽ = η−[W (ξ + a) −W (ξ)],(4.8)

with η± = ∓1/(λ+ − λ−). Integrating the equation for Ũ from −a to ∞, we have

Ũ(ξ) = eλ+ξ/c

[
Ũ(−a)eaλ+/c − η+

c

∫ ξ

−a

e−λ+ξ′/c[W (ξ′ + a) −W (ξ′)]dξ′

]
.(4.9)

Finiteness of Ũ in the limit ξ → ∞ requires that the term in square brackets cancel.
Hence, we can eliminate Ũ(−a) to obtain the result

Ũ(ξ) =
η+

c

∫ ∞

0

e−λ+ξ′/c[W (ξ′ + ξ + a) −W (ξ′ + ξ)]dξ′.(4.10)

Similarly,

Ṽ (ξ) =
η−
c

∫ ∞

0

e−λ−ξ′/c[W (ξ′ + ξ + a) −W (ξ′ + ξ)]dξ′.(4.11)

Performing the inverse transformation U = (γ − λ+)Ũ + (γ − λ−)Ṽ , we have

U(ξ) =
1

c

∫ ∞

0

[
χ+e−λ+ξ′/c + χ−e−λ−ξ′/c

]
[W (ξ′ + ξ + a) −W (ξ′ + ξ)]dξ′,(4.12)

with χ± = (γ − λ±)η±. Using λ+ + λ− = 1 + γ, we can rewrite χ± as

χ+ =
1 − λ−
λ+ − λ−

, χ− =
λ+ − 1

λ+ − λ−
.(4.13)

The threshold conditions U(−a) = κ and U(0) = κ then yield a pair of equations
whose solutions determine existence curves relating the speed c and width a of a
pulse to the threshold κ [34].

For the sake of illustration, let w be given by the exponential function (2.8) with
Γ = 0 and σE = σ; that is, w(x) = e−σ|x|. In the domain ξ > 0, there is a common
factor of e−σξ in the integrand of (4.12) so that U(ξ) = κe−σξ for ξ > 0, provided
that

κ =
(cσ + γ)(1 − e−aσ)

c2σ2 + cσ(1 + γ) + γ(1 + β)
.(4.14)

On the other hand, when ξ < 0, one has to partition the integral of (4.12) into the
separate domains ξ′ > |ξ|, |ξ| − a < ξ′ < |ξ|, and ξ′ < |ξ| − a. This then determines
the second threshold condition as well as the asymptotic behavior of U(ξ) in the limit
ξ → −∞:

U(ξ) = U+eλ+ξ/c + U−eλ−ξ/c + U0e
σξ,(4.15)

where the amplitudes U± and U0 can be determined from matching conditions at the
threshold crossing points [34, 15]. Note that the leading edge of the pulse is positive,
whereas the trailing edge is negative due to the effects of adaptation. One finds that
for sufficiently slow negative feedback (small γ) and large β there exist two pulse
solutions, one narrow and slow and the other wide and fast. This is illustrated in
Figure 4.1. Numerically, the fast solution is found to be stable [34]. Its stability can
also be established analytically using Evans function techniques [44, 8, 16].
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Fig. 4.1. Existence of right-moving traveling pulses in the case of the excitatory network (4.1)
for an exponential weight distribution with w(x) = e−σ|x|. Here σ = 1, γ = 0.01, and β = 2.5.
(a) Plot of pulse width a against threshold κ. (b) Plot of wave speed c against threshold κ. Stable
(unstable) branches indicated by black (gray) curves.

4.2. Singular perturbation theory. Suppose that (4.1) has a stable right-
moving pulse solution U(ξ) of width a and speed c. Following the model set by
section 3, we search for a traveling N -pulse solution with individual pulses having
centers at ξn = nd + φn(τ), where τ = εt and ε = e−ρd with ρ = min{c−1λ±, σ}:

u(ξ, τ) =

N∑
n=1

U(ξ − nd− φn(τ)) + εR(ξ, τ),

v(ξ, τ) =

N∑
n=1

V (ξ − nd− φn(τ)) + εR(ξ, τ).(4.16)

Substituting (4.16) into (4.1) with ∂t → ∂t + ε∂τ , and using (4.2), gives

− cε∂ξR + ε2∂τR− ε

N∑
n=1

φ̇nU
′
n

= −ε(R + βR) + w ∗H
(

N∑
n=1

Un + εR− κ

)
− w ∗

N∑
n=1

H(Un − κ),

− cε∂ξR + ε2∂τR− ε

N∑
n=1

φ̇nV
′
n = −εγ(R−R).(4.17)

Performing an expansion to O(ε) along lines identical to section 2 leads to the inho-
mogeneous equation

L̂

(
R
R

)
=

N∑
n=1

φ̇n

(
U ′
n

V ′
n

)
+

1

ε
w ∗

[
H

(
N∑

n=1

Un − κ

)
−

N∑
n=1

H(Un − κ)

](
1
0

)
,

(4.18)
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with the linear operator L̂ given by

L̂ψ =

(
1 β
−γ γ

)
ψ − c∂ξψ − w ∗

[
δ

(
N∑

n=1

Un − κ

)(
1 0
0 0

)
ψ

]
,(4.19)

where ψ now denotes a two-vector rather than a scalar. Differentiating (4.2) and
using arguments similar to those of section 2, it is straightforward to show that
L̂(U ′

n, V
′
n)tr = O(ε) for all n = 1, . . . , N . This again motivates us to seek O(ε)

null vectors of the adjoint operator.
In order to determine the corresponding solvability conditions on (4.18), we seek

weak solutions (P, P ) of the equation〈
L̂†
(

P
P

) ∣∣∣∣
(

Q
Q

)〉
= O(ε)(4.20)

for arbitrary bounded functions Q,Q, where L̂† is the adjoint operator

L̂†ψ =

(
1 −γ
β γ

)
ψ + c∂ξψ − δ

(
N∑

n=1

Un − κ

)
w ∗

[(
1 0
0 0

)
ψ

]
.(4.21)

The inner product is defined by first taking the dot product of the two vectors and
then integrating over R. Using the perturbation expansion (2.29) with δ(Un − κ)
given by (3.12), we obtain the following formal decomposition:

L̂†ψ = L̂†
nψ −

∑
j �=n

δ(Uj − κ)w ∗
[(

1 0
0 0

)
ψ

]
+ O(ε)(4.22)

for any n = 1, . . . , N , with

L̂†
nψ =

(
1 −γ
β γ

)
ψ + c∂ξψ − δ(Un − κ)w ∗

[(
1 0
0 0

)
ψ

]
.(4.23)

We now look for null vectors of L̂†
0 with ξ0 = 0. We proceed by partially diagonalizing

L̂†
0 using the left eigenvectors ṽ of the matrix M (see (4.4)):

ṽ± =

(
γ

1 − λ±

)
.(4.24)

Introducing the transformation(
Q
Q

)
= T̃−1

(
P
P

)
, T̃ =

(
ṽ+ ṽ−

)
,(4.25)

then leads to the following pair of equations:

c∂ξQ + λ+Q = χ+δ(U − κ)w ∗ [Q + Q],(4.26)

c∂ξQ + λ−Q = χ−δ(U − κ)w ∗ [Q + Q],(4.27)

with χ± defined by (4.13). Using an analysis similar to that of section 3, we obtain
the solution

Q(ξ) = χ+

[
p1H(ξ + a)e−λ+(ξ+a)/c − p2H(ξ)e−λ+ξ/c

]
,

Q(ξ) = χ−

[
p1H(ξ + a)e−λ−(ξ+a)/c − p2H(ξ)e−λ−ξ/c

]
,(4.28)
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with p1, p2 given by (3.15) and U ′(0), U ′(−a) satisfying the self-consistency conditions

c =
1

U ′(−a)

∫ ∞

0

[w(ξ) − w(ξ − a)]
[
χ+e−λ+ξ/c + χ−e−λ−ξ/c

]
dξ,

c =
1

U ′(0)

∫ ∞

0

[w(ξ + a) − w(ξ)]
[
χ+e−λ+ξ/c + χ−e−λ−ξ/c

]
dξ.(4.29)

The latter follow immediately from differentiating (4.12) and setting ξ = 0,−a. Fi-
nally, we perform the inverse transformation on Q,Q to obtain P,P:(

P(ξ)
P(ξ)

)
= χ+

(
γ

1 − λ+

)[
p1H(ξ + a)e−λ+(ξ+a)/c − p2H(ξ)e−λ+ξ/c

]
(4.30)

+χ−

(
γ

1 − λ−

)[
p1H(ξ + a)e−λ−(ξ+a)/c − p2H(ξ)e−λ−ξ/c

]
.

From translation symmetry, it follows that L̂†
n has the null vector (Pn, Pn) with

Pn(ξ) = P(ξ − ξn), Pn(ξ) = P(ξ − ξn).(4.31)

Hence, applying the decomposition (4.22), we see that〈
L̂†
(

Pn

Pn

) ∣∣∣∣
(

Q
Q

)〉
= −

∑
j �=n

〈δ(Uj − κ)w ∗ Pn|Q〉 + O(ε).(4.32)

Equations (4.30) and (4.31) imply that Pn, Pn are zero for ξ < ξn−a and exponentially
decaying for ξ > ξn−a. Evaluating the inner product on the right-hand side of (4.32)
establishes that it is also O(ε). We conclude that (4.20) has the set of solutions
(Pn, Pn), n = 1, . . . , N . We now take the inner product of (4.18) with respect to the
vector (Pm, Pm) for some integer m,m = 1, . . . , N , and use (2.23):

φ̇m

〈(
Pm

Pm

) ∣∣∣∣
(

U ′
m

V ′
m

)〉
+

1

ε
〈Pm |w ∗ δ(Um − κ)[Um+1 + Um−1]〉 = O(ε).(4.33)

Evaluating the various inner products using (4.30) and (3.12) leads to the same (3.20)
and (3.21) as the scalar case, with

K = γ−1

〈(
P
P

) ∣∣∣∣
(

U ′

V ′

)〉
.(4.34)

However, there is a significant difference in the asymptotic behavior of the interaction
functions fL, fR when compared to the scalar case. This is due to the fact that adap-
tation is slow (γ � 1) so that λ− ≈ 0, and thus the leading edge decays much faster
than the trailing edge; see (4.6) and (4.15). Hence, we can neglect the interaction
term fL in (3.20) to obtain

ξ̇m = fR(ξm+1 − ξm)(4.35)

with fR(Δ) ∼ −e−λ−Δ/c. In this case the dynamics of the pulse position ξm depends
only on the distance to the proceeding pulse Δm = ξm+1 − ξm and can thus be
reformulated within a kinematic framework [11, 33]. This is based on the observation
that the function fR directly determines the dispersion relation between the speed
C and the pulse separation Δ of a uniformly spaced wave train, C(Δ) = fR(Δ) + c.
Thus

˙ξm = C(Δm) − c.(4.36)

The condition for stability of a uniform wave train on a ring is then f ′
R(Δ) > 0.
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5. Discussion. In this paper we have used perturbation methods to develop a
theory of weakly interacting pulses in one-dimensional neuronal networks. We have
shown how the pulse interactions explicitly depend on the form of the long-range
synaptic coupling, and investigated how this determines the existence and stability of
multipulse solutions. For simplicity, we have assumed throughout that the network
is homogeneous: the coupling depends only on the distance between interacting el-
ements in the network, and external inputs have been ignored. In a recent series of
papers, we have shown that introducing a localized inhomogeneous input can gener-
ate oscillatory coherent states in the form of standing and traveling breathing pulses
[5, 15, 16]. It would be interesting to develop a theory of weakly interacting breathers
and to determine under what conditions long-range synaptic coupling can provide a
mechanism for synchronizing the oscillations between breathers. This would provide
an alternative way of thinking about stimulus-induced coherent oscillations in cortex,
which are observed in vivo during periods of sensory processing [21, 14].
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BLOCKING PROBABILITIES FOR AN UNDERLOADED OR
OVERLOADED LINK WITH TRUNK RESERVATION∗

CHARLES KNESSL† AND JOHN A. MORRISON‡

Abstract. A single link in a circuit-switched network is considered. The link has C circuits,
R of which are reserved for the primary traffic. Offered calls arrive in independent Poisson streams
with mean rates λ and ν for the primary and secondary traffic, respectively, and corresponding
independent and exponentially distributed holding times with means 1 and 1/κ. Both primary and
secondary calls require 1 circuit. A primary call is blocked on arrival if all C circuits are busy,
whereas a secondary call is blocked if more than C − R − 1 circuits are busy. Blocked calls are lost
to the link. It is assumed that R = O(1) and λ � 1, ν = O(λ) and C = O(λ), and that the link is
either underloaded, corresponding to λ + ν/κ < C, or overloaded, corresponding to λ + ν/κ > C.
Asymptotic approximations to the blocking probabilities B1 and B2 of the primary and secondary
calls, respectively, are derived. Numerical results are presented to illustrate the accuracy of the
approximations.
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1. Introduction. The concept of trunk reservation is of fundamental impor-
tance in circuit-switched communication networks. On any link of the network, which
has a fixed number of circuits, some of them may be reserved for the primary traffic
which is offered directly to the link. Secondary traffic, which is rerouted because of a
busy link on its direct route, is accepted on an alternate link only if there are enough
unreserved links available. State-dependent routing on symmetric loss networks with
trunk reservation has been investigated by Mitra, Gibbens, and Huang [4], [5] and
Mitra and Gibbens [3]. Basic to the investigations is an analysis of a single link. The
network is then analyzed by means of fixed point approximations [1], [2] which are
based on the assumption that each link acts independently; the traffic streams which
are Poisson when offered to the network remain Poisson when offered to the links by
virtue of this assumption.

The investigation of a single link with trunk reservation is also of interest when
integrated traffic is considered. Thus, some classes of traffic may have less stringent
blocking requirements than others, e.g., voice as compared to data. It is crucial for
practical applications to investigate the effect of trunk reservation on the blocking
probabilities, since this is a prime quality of service (QoS) requirement. In this paper
we obtain asymptotic approximations to these probabilities for two classes under
appropriate traffic conditions. The approximations provide insight into the effect of
trunk reservation, and they are easily evaluated numerically.
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A different aspect has been considered by Hunt and Laws [7] who investigated
control policies for a single link in heavy traffic. They allowed for several classes of
traffic with different capacity requirements, which earn different rewards for being
accepted, rather than blocked and lost. The goal is to maximize the expected reward
per unit time. They show that the optimal policy for accepting or rejecting calls
offered to the link is of (generalized) trunk reservation from. However, their results
do not provide a concrete guideline for setting trunk reservation parameters, but they
do suggest an insensitivity to the value of such parameters.

In this paper we consider a single link with C circuits, R of which are reserved for
the primary traffic. The offered calls arrive in independent Poisson streams with mean
rates λ and ν for the primary and secondary traffic, respectively, and corresponding
independent and exponentially distributed holding times with means 1 and 1/κ. Both
primary and secondary calls require 1 circuit. A primary call is blocked on arrival if
all C circuits are busy, whereas a secondary call is blocked if more than C − R − 1
circuits are busy. Blocked calls are lost to the link.

When κ = 1, the single link corresponds to the one investigated by Mitra and
Gibbens [3]. Exact expressions for the blocking probabilities B1 and B2 of the primary
and secondary calls, respectively, may be obtained. Mitra and Gibbens [3] derived
asymptotic approximations to B1 and B2 under the assumptions λ � 1, C − λ =
O(

√
λ ), R = O(

√
λ ), and ν = O(

√
λ ). Since C − λ − ν/κ = O(

√
λ ), the link is

critically loaded. Morrison [6] investigated the single link when κ �= 1, for which no
exact solution is known, by means of singular perturbation techniques. For ν = γ

√
λ,

he derived the first two terms in the power series expansion in γ of the leading term
in the asymptotic approximations to B1 and B2. For R = O(1) and ν = O(

√
λ ),

Morrison [6] obtained explicit expressions for B1 and B2.
In this paper we consider R = O(1) and the asymptotic regime λ � 1, ν = O(λ),

and C = O(λ) for both an underloaded link, corresponding to λ+ν/κ < C, and for an
overloaded link, corresponding to λ+ ν/κ > C. It is assumed that (λ+ ν/κ−C)

/
λ is

not small. The leading term in the asymptotic approximations to B1 and B2 is derived.
Numerical results are presented to illustrate the accuracy of the approximations.

The paper is organized as follows. In section 2 the problem is formulated, and
the asymptotic regime is introduced. An underloaded link is investigated in section 3,
and an overloaded one in section 4. The leading term in the lowest order asymptotic
approximation to the joint steady-state distribution of the number of primary and
secondary calls is investigated for an overloaded link in section 5. Numerical results
are presented in section 6. In section 7 we discuss in more detail the ranges of validity
of the asymptotic approximations.

2. Formulation. For the model described in the previous section, let p(n1, n2)
denote the steady-state probability that n1 primary and n2 secondary calls are in
progress, and let I(·) be the indicator function. Then, by standard arguments,

[λI(n1 + n2 + 1 ≤ C) + νI(n1 + n2 + 1 ≤ C −R) + n1 + κn2]p(n1, n2)

= λI(n1 ≥ 1)p(n1 − 1, n2) + νI(n1 + n2 ≤ C −R)I(n2 ≥ 1)p(n1, n2 − 1)

+ I(n1 + n2 + 1 ≤ C)(n1 + 1)p(n1 + 1, n2)

+κI(n1 + n2 + 1 ≤ C)I(n2 + 1 ≤ C −R)(n2 + 1)p(n1, n2 + 1),

n1 ≥ 0, 0 ≤ n2 ≤ C −R, n1 + n2 ≤ C.(2.1)
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The normalization condition is

C−R∑
n2=0

C−n2∑
n1=0

p(n1, n2) = 1.(2.2)

The terms on the right-hand side of (2.1) correspond to different transitions that
leave the system with n1 primary and n2 secondary customers. The first term corre-
sponds to a primary arrival, the second to a secondary arrival, the third to a primary
departure, and the fourth to a secondary departure. The indicator functions show
when such a transition is possible; their use allows us to avoid writing down a large
number of “boundary equations.”

The blocking probabilities B1 and B2 of the primary and secondary calls, respec-
tively, are

B1 =

C∑
n1=R

p(n1, C − n1), B2 =

R∑
�=0

C−R+�∑
n1=�

p(n1, C −R + �− n1).(2.3)

We let

n1 = m, n1 + n2 = C −R + �, p(n1, n2) = P�(m).(2.4)

Then, from (2.1)–(2.3), we obtain

[λI(� ≤ R− 1) + νI(� ≤ −1) + m + κ(C −R + �−m)]P�(m)

= λI(m ≥ 1)P�−1(m− 1) + νI(� ≥ 0)I(C −R + �−m ≥ 1)P�−1(m)

+ I(� ≤ R− 1)[(m + 1)P�+1(m + 1) + κI(m ≥ � + 1)(C −R + �−m + 1)P�+1(m)],

0 ≤ m ≤ C, R− C + m ≤ � ≤ R, R ≥ 0,(2.5)
R∑

�=R−C

C−R+�∑
m=max(�,0)

P�(m) = 1,(2.6)

and

B1 =

C∑
m=R

PR(m), B2 =

R∑
�=0

C−R+�∑
m=�

P�(m).(2.7)

We consider the asymptotic regime in which

C −R =
σλ

κ
, ν = (ρ− κ)λ > 0, λ � 1, R = O(1),(2.8)

and let

m = ζλ + x
√
λ, P�(m) = p�(x), x = O(1), � = O(1),(2.9)

where ζ is to be determined, with 0 < ζ < σ/κ. Then (2.5) becomes

[λI(� ≤ R− 1) + (ρ− κ)λI(� ≤ −1) + (1 − κ)(ζλ + x
√
λ ) + σλ + κ�]p�(x)

= λp�−1

(
x− 1√

λ

)
+ (ρ− κ)λI(� ≤ 0)p�−1(x)

+ I(� ≤ R− 1)

{(
ζλ + x

√
λ + 1

)
p�+1

(
x +

1√
λ

)

+ [(σ − κζ)λ− κx
√
λ + κ(� + 1)]p�+1(x)

}
, � ≤ R.(2.10)
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We assume that

p�(x) = A(λ)

[
p

(0)
� (x) +

1√
λ
p

(1)
� (x) + O

(
1

λ

)]
.(2.11)

Then, from (2.10), we obtain at the first two orders

[I(� ≤ R− 1) + (ρ− κ)I(� ≤ −1) + σ + ζ − κζ]p
(0)
� (x)

= [1 + (ρ− κ)I(� ≤ 0)]p
(0)
�−1(x) + I(� ≤ R− 1)(σ + ζ − κζ)p

(0)
�+1(x), � ≤ R,(2.12)

and

[I(� ≤ R− 1) + (ρ− κ)I(� ≤ −1) + σ + ζ − κζ]p
(1)
� (x) + (1 − κ)xp

(0)
� (x)

= [1 + (ρ− κ)I(� ≤ 0)]p
(1)
�−1(x) −

dp
(0)
�−1

dx

+ I(� ≤ R− 1)

[
(σ + ζ − κζ)p

(1)
�+1(x) + (1 − κ)xp

(0)
�+1(x) + ζ

dp
(0)
�+1

dx

]
, � ≤ R.(2.13)

It will be shown that p
(0)
� (x), 0 ≤ � ≤ R, is proportional to exp(−βx2), where β >

0. Hence, from (2.7), (2.9), and (2.11), the blocking probabilities are asymptotically
given by

B1 ∼
√
λA(λ)

∫ ∞

−∞
p

(0)
R (x)dx, B2 ∼

√
λA(λ)

R∑
�=0

∫ ∞

−∞
p

(0)
� (x)dx.(2.14)

The constant A(λ) will be ultimately determined by the normalization condition (2.6).

3. Underloaded link. We here consider the case ρ < σ, so that λ+ν/κ < C−R,
and the link is underloaded. In the interior of the admissible region, p(n1, n2) is
given asymptotically by the solution corresponding to C = ∞, since the blocking
probabilities will be exponentially small. Hence,

p(n1, n2) ∼ e−λe−ν/κλ
n1(ν/κ)n2

n1!n2!
, 0 ≤ n1 + n2 	 C −R.(3.1)

The precise range of validity of (3.1) is discussed in section 7. If we use Stirling’s
formula, we find that p(n1, n2) attains its maximum for n1 ∼ λ, n2 ∼ ν/κ. Also, for
n1 ∼ ζλ and n1 +n2 = σλ/κ, we find that p(n1, n2) attains its maximum for ζ = σ/ρ,
which is the appropriate choice for ζ in (2.9). For

n1 =
σλ

ρ
+ x

√
λ, n1 + n2 =

σλ

κ
+ �,(3.2)

we obtain from (3.1)

p�(x) ∼ A(λ)
( ρ

σ

)�

exp

[
− ρ2x2

2σ(ρ− κ)

]
, −� � 1,

−�√
λ
	 1,(3.3)

where

A(λ) =
e(σ−ρ)λ/κ

(
ρ
σ

)σλ
κ +1

2πλ
√

ρ
κ − 1

.(3.4)
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From (2.12), with ζ = σ/ρ, we have(
1 +

σ

ρ

)
p

(0)
� (x) = p

(0)
�−1(x) +

σ

ρ
p

(0)
�+1(x), � ≤ −1.(3.5)

Hence, matching with the interior solution (3.3) for −� � 1 and noting that ρ < σ,
we obtain

p
(0)
� (x) =

( ρ

σ

)�

exp

[
− ρ2x2

2σ(ρ− κ)

]
+ H0(x), � ≤ 0.(3.6)

Here H0(x) is to be determined shortly. If R ≥ 1, then, from (2.12) with ζ = σ/ρ, we
have [

I(� ≤ R− 1) +
σ

ρ
(1 + ρ− κ)

]
p

(0)
� (x)

= p
(0)
�−1(x) + I(� ≤ R− 1)

σ

ρ
(1 + ρ− κ)p

(0)
�+1(x), 1 ≤ � ≤ R.(3.7)

Hence,

p
(0)
� (x) = ã�F0(x), 0 ≤ � ≤ R,(3.8)

where

ã =
ρ

σ(1 + ρ− κ)
< 1,(3.9)

since κ < ρ < σ.
It follows from (3.6) and (3.8), by continuity at � = 0, that

F0(x) = exp

[
− ρ2x2

2σ(ρ− κ)

]
+ H0(x).(3.10)

But, from (2.12) with ζ = σ/ρ,[
I(R ≥ 1) +

σ

ρ
(1 + ρ− κ)

]
p

(0)
0 (x)

= (1 + ρ− κ)p
(0)
−1(x) + I(R ≥ 1)

σ

ρ
(1 + ρ− κ)p

(0)
1 (x).(3.11)

Hence, from (3.6) and (3.8)–(3.11), since ρ < σ, we obtain H0(x) = 0, and

p
(0)
� (x) = ã� exp

[
− ρ2x2

2σ(ρ− κ)

]
, 0 ≤ � ≤ R.(3.12)

From (2.14), (3.4), and (3.12), we obtain the asymptotic approximations to the block-
ing probabilities,

[
B1

B2

]
∼

√
κ

2πσλ
e(σ−ρ)λ/κ

( ρ

σ

)σλ/κ
[

ãR

(1−ãR+1)

(1−ã)

]
,(3.13)

and ã is given by (3.9). We note that B1 and B2 become exponentially small as
λ → ∞.
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We now illustrate the matching of this result for an underloaded link with the one
for a critically loaded link [6] when R = O(1). In the notation of [6], C−R = λ−β

√
λ

and ν = γ
√
λ. We let

ω = β +
γ

κ
, −ω � 1, − ω√

λ
	 1.(3.14)

Then, from (2.8), we have

σ = κ +
γ − κω√

λ
, ρ = κ +

γ√
λ
.(3.15)

Hence,

σ

κ
∼ 1, 1 − ρ

σ
∼ − ω√

λ
,

λσ

κ

[
1 − ρ

σ
+ log

( ρ

σ

)]
∼ −ω2

2
.(3.16)

Also, from (3.9), ã ∼ 1 so that ãR ∼ 1 and (1 − ãR+1)/(1 − ã) ∼ R + 1, and from
(3.13) we obtain

[
B1

B2

]
∼ e−ω2/2

√
2πλ

[
1

R + 1

]
.(3.17)

But, from (7.16)–(7.18) in [6], with t = 1,[
B1

B2

]
∼ 1

W0(ω)
√
λ

[
1

R + 1

]
,(3.18)

where

W0(ω) = eω
2/2

∫ ∞

ω

e−u2/2du ∼
√

2πeω
2/2, −ω � 1.(3.19)

Hence the results match asymptotically.
To summarize, we have obtained the blocking probabilities for the underloaded

case; cf. (3.13) with (3.9) and (2.8). The joint probability distribution is given,
asymptotically, by (3.3) with (3.2) and (3.4) for � < 0, and by (3.12) with (2.11)
for 0 ≤ � ≤ R.

4. Overloaded link. We now consider the case

ρ > max(κ, σ) > 0,(4.1)

so that λ+ ν/κ > σλ/κ = C −R, and the link is overloaded. We note that the link is
underloaded or overloaded, by the primary traffic alone, according as σ > κ or σ < κ,
respectively. If R ≥ 1, then, from (2.12), we have

[I(� ≤ R− 1) + σ + ζ − κζ]p
(0)
� (x)

= p
(0)
�−1(x) + I(� ≤ R− 1)(σ + ζ − κζ)p

(0)
�+1(x), 1 ≤ � ≤ R.(4.2)

We let

a =
1

(σ + ζ − κζ)
> 0,(4.3)
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since 0 < ζ < σ/κ. It follows from (4.2) that

p
(0)
� (x) = a�F0(x), 0 ≤ � ≤ R,(4.4)

where F0(x) is to be determined.
From (2.12), we have

[1 + ρ + σ − κ + (1 − κ)ζ]p
(0)
� (x)

= (1 + ρ− κ)p
(0)
�−1(x) + (σ + ζ − κζ)p

(0)
�+1(x), � ≤ −1.(4.5)

We let

b =
(1 + ρ− κ)

(σ + ζ − κζ)
> a,(4.6)

from (4.3), since ρ > κ. We will show that b > 1. Then, the solution of (4.5) which
decreases geometrically as −� increases is

p
(0)
� (x) = b�F0(x), � ≤ 0.(4.7)

If we sum on � in (2.10), neglect exponentially small terms, and expand p�−1(x−
1/
√
λ ) and p�+1(x + 1/

√
λ ) in powers of 1/

√
λ, we obtain

R∑
�=−∞

[√
λζ

dp�
dx

+
ζ

2

d2p�
dx2

+ x
dp�
dx

+ p�(x)

]

=

R−1∑
�=−∞

(√
λ
dp�
dx

− 1

2

d2p�
dx2

)
+ O

(
1√
λ

)
.(4.8)

Hence, from (2.11), we have

ζ

R∑
�=−∞

dp
(0)
�

dx
=

R−1∑
�=−∞

dp
(0)
�

dx
.(4.9)

It follows from (4.4) and (4.7) that

h(ζ) ≡ ζ

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]
−
[

1

(b− 1)
+

(1 − aR)

(1 − a)

]
= 0,(4.10)

where a and b are functions of ζ, as given by (4.3) and (4.6). The limiting values as
a → 1 are to be taken in (4.10) if a = 1.

In Appendix A we show that there is a solution of (4.10) with b > 1 and 0 < ζσ/κ.
In fact, 0 < ζ < min(1, σ/κ) if σ < 1 + ρ − κ, and 0 ≤ ζ∗ < ζ < min(1, σ/κ) if
σ ≥ 1 + ρ− κ, which implies κ > 1, where

ζ∗ =
(κ + σ − 1 − ρ)

(κ− 1)
.(4.11)

Moreover, in the next section, we show that F0(x) is proportional to exp(−γx2/2),
where γ > 0, and without loss of generality we may take

∫∞
−∞ F0(x)dx = 1. Then,

from (2.6), (2.9), (2.11), (4.4), and (4.7), we obtain

1 ∼
√
λA(λ)

R∑
�=−∞

p
(0)
� (x)dx =

√
λA(λ)

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]
.(4.12)
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Hence, from (2.14), the blocking probabilities are asymptotically given by

[
B1

B2

]
∼

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]−1
[

aR

(1−aR+1)
(1−a)

]
,(4.13)

where a and b are given by (4.3) and (4.6).
We now illustrate the matching of this result for an overloaded link with the one

for a critically loaded link [6] when R = O(1). Now ω, as defined in (3.14), satisfies
ω � 1 and ω/

√
λ 	 1. With ζ ∼ 1 − δ/

√
λ, it follows from (4.3) and (4.6) that

a− 1 ∼ 1√
λ

[κω − γ + (1 − κ)δ] , b− 1 ∼ 1√
λ

[κω + (1 − κ)δ] .(4.14)

After some straightforward algebra, it is found from (4.10) that δ = ω. Hence a ∼
1, b− 1 ∼ ω/

√
λ, and (4.13) implies that[

B1

B2

]
∼ ω√

λ

[
1

R + 1

]
.(4.15)

However,

W0(ω) =

∫ ∞

0

e−v2/2e−ωvdv =
1

ω

∫ ∞

0

exp

[
− η2

2ω2

]
e−ηdη ∼ 1

ω
, ω 	 1,(4.16)

and (4.15) is consistent with (3.18).
To summarize, we have obtained the blocking probabilities for the overloaded

case; cf. (4.13) with (4.3), (4.6), and (4.10). The joint probability distribution is
given, asymptotically, by (4.4) and (4.7), with (2.4), (2.9), (2.11), and (4.12), with
F0(x) being the Gaussian defined below (4.11).

5. Lowest order function. We here derive an equation for F0(x), which ap-
pears in (4.4) and (4.7). We emphasize that it is crucial to show that F0(x) is expo-
nentially small for x → ±∞, so that (2.14) and (4.12) hold. From (2.13), (4.6), and
(4.7), we obtain

(1 + ρ− κ)

[
1

b
p

(1)
�+1(x) −

(
1 +

1

b

)
p

(1)
� (x) + p

(1)
�−1(x)

]
= b�−1[b(1 − b)(1 − κ)xF0(x) + (1 − ζb2)F ′

0(x)], � ≤ −1,(5.1)

where the prime denotes derivative. The solution, which becomes small for large
values of −�, is

p
(1)
� (x) = b�

{
F1(x) − �

(1 + ρ− κ)

[
b(1 − κ)xF0(x) +

(ζb2 − 1)

(b− 1)
F ′

0(x)

]}
, � ≤ 0,

(5.2)
where F1(x) is not determined.

If R ≥ 1, then, from (2.13), (4.3), and (4.4), we have

I(� ≤ R− 1)
1

a
p

(1)
�+1(x) −

[
I(� ≤ R− 1) +

1

a

]
p

(1)
� (x) + p

(1)
�−1(x)

= a�−1[a(1 − κ)xF0(x) + F ′
0(x)]

− I(� ≤ R− 1)a�+1[(1 − κ)xF0(x) + ζF ′
0(x)], 1 ≤ � ≤ R.(5.3)
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Since p
(1)
0 (x) = F1(x), it is found that, for a �= 1,

p
(1)
� (x) = a�

{
F1(x) − �

[
a(1 − κ)xF0(x) +

(1 − ζa2)

(1 − a)
F ′

0(x)

]}

+ aR+1 (1 − a�)

(1 − a)2
(1 − aζ)F ′

0(x), 0 ≤ � ≤ R.(5.4)

The expression in (5.4) remains finite as a → 1, so that the result for a = 1 may be
obtained in this limit. Consequently, we subsequently assume that a �= 1.

If we let � = 0 in (2.13), then

[I(R ≥ 1) + σ + ζ − κζ]p
(1)
0 (x) + (1 − κ)xp

(0)
0 (x)

= (1 + ρ− κ)p
(1)
−1(x) −

dp
(0)
−1

dx

+ I(R ≥ 1)

[
(σ + ζ − κζ)p

(1)
1 (x) + (1 − κ)xp

(0)
1 (x) + ζ

dp
(0)
1

dx

]
.(5.5)

It may be verified from (4.3), (4.4), (4.6), (4.7), (5.2), and (5.4) that this equation is
satisfied in view of (4.10), which follows from (4.9).

Next, from (2.11), (4.8), and (4.9), we obtain

R∑
�=−∞

[
ζ
dp

(1)
�

dx
+

ζ

2

d2p
(0)
�

dx2
+ x

dp
(0)
�

dx
+ p

(0)
� (x)

]

=
R−1∑

�=−∞

[
dp

(1)
�

dx
− 1

2

d2p
(0)
�

dx2

]
.(5.6)

We define

Ω ≡ (ζb2 − 1)(1 − ζ)

(1 + ρ− κ)(b− 1)

−1∑
�=−∞

�b� +
(1 − ζa2)

(1 − a)

(
R−1∑
�=0

�a� − ζ

R∑
�=0

�a�

)

+
(ζa− 1)

(1 − a)2
aR+1

[
ζ

R∑
�=0

(a� − 1) −
R−1∑
�=0

(a� − 1)

]
+ ζ

( −1∑
�=−∞

b� +

R∑
�=0

a�

)
(5.7)

and

Γ ≡ b(1 − κ)(1 − ζ)

(1 + ρ− κ)

−1∑
�=−∞

�b� + a(1 − κ)

(
R−1∑
�=0

�a� − ζ

R∑
�=0

�a�

)

+

−1∑
�=−∞

b� +

R∑
�=0

a�.(5.8)

Then from (4.4), (4.7), (5.2), (5.4), and (5.6) we obtain

ΩF ′′
0 (x) + Γ[xF ′

0(x) + F0(x)] = 0.(5.9)

In Appendices B and C we use (4.10) to express ζ, and hence Ω and Γ, in terms
of a and b. Then, using the facts that b > a > 0 and b > 1, it is shown that
Ω > 0 and Γ > 0. Hence F0(x) is proportional to exp(−γx2/2), where γ = Γ/Ω > 0.
This establishes the validity of the asymptotic approximation (4.13) to the blocking
probabilities.
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Table 1

C B1(exact) B2(exact) B1(asymptotic) B2(asymptotic)
50 6.57 × 10−4 9.09 × 10−2 7.64 × 10−4 7.87 × 10−2

60 4.54 × 10−4 6.44 × 10−2 5.23 × 10−4 5.82 × 10−2

70 3.22 × 10−4 4.67 × 10−2 3.69 × 10−4 4.34 × 10−2

80 2.34 × 10−4 3.43 × 10−2 2.66 × 10−4 3.26 × 10−2

90 1.72 × 10−4 2.55 × 10−2 1.95 × 10−4 2.46 × 10−2

100 1.28 × 10−4 1.92 × 10−2 1.44 × 10−4 1.87 × 10−2

250 2.42 × 10−6 3.81 × 10−4 2.57 × 10−6 3.82 × 10−4

500 5.26 × 10−9 8.39 × 10−7 5.42 × 10−9 8.41 × 10−7

750 1.32 × 10−11 2.11 × 10−9 1.34 × 10−11 2.12 × 10−9

1000 3.50 × 10−14 5.64 × 10−12 3.56 × 10−14 5.64 × 10−12

6. Numerical results. We present numerical results for the blocking probabil-
ities B1 and B2 of the primary and secondary calls, respectively. Exact results may
be obtained from (2.3) by numerically solving the recursion (2.1) for the joint steady-
state probability p(n1, n2) of the numbers of primary and secondary calls, subject to
the normalization condition (2.2). However, this is feasible for values of C, the num-
ber of circuits in the link, up to about 50. If the mean holding times of the primary
and secondary calls are equal, so that κ = 1, then the distribution of the total number
of calls, and hence B1 and B2, may be calculated from a well-known single recursion
for values of C up to at least 1000.

Asymptotic approximations to B1 and B2 were derived under the assumptions in
(2.8), where λ and ν are the mean arrival rates of the primary and secondary calls,
respectively, with corresponding mean holding times 1 and 1/κ, and R circuits are
reserved for the prime calls. In the case of an underloaded link, corresponding to
λ + ν/κ = ρλ/κ < σλ/κ = C − R, the approximations to B1 and B2 are given by
(3.13), where ã is given by (3.9). In the case of an underloaded link, corresponding
to λ + ν/κ > C − R, so that ρ > σ, the approximations to B1 and B2 are given by
(4.13), where a and b are given by (4.3) and (4.6), and ζ is a solution of (4.10) with
b > 1 and 0 < ζ < min(1, σ/κ). We have assumed that λ � 1 and R = O(1). It
follows from (4.4) and (5.4) that for the asymptotic expansion (2.11) to be valid we
need R/

√
λ 	 1. Consideration of the first order correction term in (2.11) for an

underloaded link leads to the same restriction.

In Table 1 we compare the asymptotic approximations to B1 and B2 and the exact
values for an underloaded link, with R = 5, κ = 1, and λ = 0.4C = ν, for different
values of C. The analogous comparisons are made in Table 2 for an overloaded link,
with R = 5, κ = 1, and λ = 0.6C = ν. It is seen that the approximations improve as
C increases. In Tables 3 and 4 the comparisons are made for R = 2 and κ = 2 and
1/2, for an underloaded link with λ = 0.2C = ν/κ, and for an overloaded link with
λ = 0.8C = ν/κ. In Tables 5 and 6 the comparisons are made for R = 2, κ = 1, and
λ/ν = 1, 1/3, and 3, for an underloaded link with λ+ν = 0.8C, and for an overloaded
link with λ + ν = 1.6C. Again, the approximations improve as C increases.

7. Discussion. Finally, we discuss the range of validity of our asymptotic ap-
proximations to p(n1, n2) and also indicate how to obtain results of a more “global”
nature. We view the domain of the difference equation (2.1) as consisting of the
union of the lattice triangle T = {(n1, n2) : n1 ≥ 0, n2 ≥ 0, n1 + n2 ≤ C − R} and
the oblique strip S = {(n1, n2) : 0 ≤ n2 ≤ C − R,C − R − n2 ≤ n1 ≤ C − n2}. We
refer to I = T ∩ S = {(n1, n2) : n1 + n2 = C −R,n1 ≥ 0, n2 ≥ 0} as an “interface.”
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Table 2

C B1(exact) B2(exact) B1(asymptotic) B2(asymptotic)
50 1.88 × 10−2 0.509 2.30 × 10−2 0.477
60 1.75 × 10−2 0.484 2.04 × 10−2 0.452
70 1.66 × 10−2 0.465 1.86 × 10−2 0.434
80 1.59 × 10−2 0.451 1.74 × 10−2 0.420
90 1.54 × 10−2 0.439 1.65 × 10−2 0.409
100 1.49 × 10−2 0.429 1.58 × 10−2 0.401
250 1.24 × 10−2 0.371 1.25 × 10−2 0.354
500 1.15 × 10−2 0.348 1.15 × 10−2 0.339
750 1.12 × 10−2 0.340 1.11 × 10−2 0.333
1000 1.10 × 10−2 0.336 1.10 × 10−2 0.331

Table 3

C κ B1(exact) B2(exact) B1(asymptotic) B2(asymptotic)
10 2 7.54 × 10−4 3.72 × 10−2 8.36 × 10−4 3.59 × 10−2

20 2 1.97 × 10−5 1.12 × 10−3 2.08 × 10−5 1.11 × 10−3

30 2 6.54 × 10−7 3.89 × 10−5 6.80 × 10−7 3.88 × 10−5

40 2 2.35 × 10−8 1.43 × 10−6 2.42 × 10−8 1.43 × 10−6

50 2 8.82 × 10−10 5.43 × 10−8 9.03 × 10−10 5.42 × 10−8

10 1/2 2.04 × 10−3 3.92 × 10−2 3.34 × 10−3 4.35 × 10−2

20 1/2 6.58 × 10−5 1.25 × 10−3 8.33 × 10−5 1.31 × 10−3

30 1/2 2.34 × 10−6 4.42 × 10−5 2.72 × 10−6 4.56 × 10−5

40 1/2 8.67 × 10−8 1.64 × 10−6 9.70 × 10−8 1.67 × 10−6

50 1/2 3.30 × 10−9 6.24 × 10−8 3.61 × 10−9 6.34 × 10−8

Table 4

C κ B1(exact) B2(exact) B1(asymptotic) B2(asymptotic)
10 2 0.181 0.782 0.213 0.787
20 2 0.153 0.719 0.162 0.713
30 2 0.143 0.693 0.147 0.686
40 2 0.138 0.679 0.140 0.673
50 2 0.134 0.670 0.136 0.664
10 1/2 0.230 0.737 0.278 0.722
20 1/2 0.210 0.668 0.227 0.648
30 1/2 0.203 0.640 0.212 0.621
40 1/2 0.198 0.624 0.204 0.608
50 1/2 0.196 0.614 0.200 0.600

The boundary segment B = {(n1, n2) : n1 + n2 = C, 0 ≤ n2 ≤ C − R} also plays an
important role in the analysis.

If we view the problem (2.1) on a coarse spatial scale with (ξ, η) = C−1(n1, n2),
then the differences become small in the new variables, and the domain is approxi-
mately

{(ξ, η) : ξ ≥ 0, η ≥ 0, ξ + η ≤ 1} .

For C → ∞ with R = O(1) the interface I and boundary B are close to (within
O(C−1) of) one another. The scaling (2.9) corresponds to a small neighborhood of
the point (ξ, η) = (ζ1, 1 − ζ1), where ζ1 = ζλ/C = O(1). This is the region where
most of the probability mass concentrates, and analysis of this range is sufficient for
obtaining asymptotically the blocking probabilities in (2.14).
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Table 5

C λ ν B1(exact) B2(exact) B1(asymptotic) B2(asymptotic)
10 4 4 3.65 × 10−2 3.33 × 10−1 3.53 × 10−2 2.47 × 10−1

20 8 8 1.77 × 10−2 1.67 × 10−1 1.65 × 10−2 1.37 × 10−1

30 12 12 1.06 × 10−2 1.01 × 10−1 1.01 × 10−2 8.86 × 10−2

40 16 16 6.97 × 10−3 6.68 × 10−2 6.75 × 10−3 6.09 × 10−2

50 20 20 4.80 × 10−3 4.62 × 10−2 4.72 × 10−3 4.32 × 10−2

10 2 6 9.85 × 10−3 2.81 × 10−1 8.82 × 10−3 1.85 × 10−1

20 4 12 4.58 × 10−3 1.36 × 10−1 4.12 × 10−3 1.06 × 10−1

30 6 18 2.71 × 10−3 8.18 × 10−2 2.52 × 10−3 6.93 × 10−2

40 8 24 1.77 × 10−3 5.37 × 10−2 1.69 × 10−3 4.78 × 10−2

50 10 30 1.21 × 10−3 3.69 × 10−2 1.18 × 10−3 3.40 × 10−2

10 6 2 7.53 × 10−2 3.89 × 10−1 7.93 × 10−2 3.26 × 10−1

20 12 4 3.81 × 10−2 2.02 × 10−1 3.71 × 10−2 1.76 × 10−1

30 18 6 2.33 × 10−2 1.25 × 10−1 2.27 × 10−2 1.13 × 10−1

40 24 8 1.54 × 10−2 8.28 × 10−2 1.52 × 10−2 7.73 × 10−2

50 30 10 1.07 × 10−2 5.75 × 10−2 1.06 × 10−2 5.47 × 10−2

Table 6

C λ ν B1(exact) B2(exact) B1(asymptotic) B2(asymptotic)
10 8 8 0.207 0.757 0.250 0.750
20 16 16 0.185 0.690 0.199 0.676
30 24 24 0.176 0.663 0.184 0.649
40 32 32 0.172 0.648 0.177 0.636
50 40 40 0.169 0.638 0.172 0.628
10 4 12 0.072 0.660 0.091 0.636
20 8 24 0.062 0.584 0.067 0.561
30 12 36 0.058 0.555 0.061 0.535
40 16 48 0.056 0.539 0.058 0.522
50 20 60 0.055 0.529 0.056 0.515
10 12 4 0.336 0.825 0.391 0.826
20 24 8 0.309 0.770 0.329 0.762
30 36 12 0.298 0.746 0.310 0.738
40 48 16 0.292 0.733 0.300 0.725
50 60 20 0.288 0.725 0.294 0.718

To obtain results for p(n1, n2) that have a wider range of validity, we can consider
the scale � = C −R− n1 − n2 = O(1) with ξ ∈ (0, 1). For the overloaded case we can
use a WKB-type expansion of the form

p(n1, n2) =
1√
C
eCφ(ξ;R)

[
A�(ξ;R) +

1

C
A

(1)
� (ξ;R) + O(C−2)

]
.(7.1)

Using (7.1) in (a scaled form of) (2.1) and (2.5), the derivative of the function φ
can be characterized as a root of a transcendental equation. More precisely, eφ

′
can

be obtained as an algebraic function of ξ. By expanding (7.1) about ξ = ζ1, we find
that φ(ζ1;R) = φ′(ζ1;R) = 0, and near ξ = ζ1, (7.1) reduces to the form we obtained
in section 4. The exponential factor in (7.1) becomes proportional to the Gaussian
factor F0(x), and A�(ζ1;R) yields the geometric factors a� in (4.4) and b� in (4.7).
However, for some parameter ranges within the overloaded case, the function A�(ξ)
may, for certain ξ ∈ (0, 1), become negative and/or not decay for � → −∞. Thus
(7.1) will be valid for ξ only in some subset of the unit interval [0, 1]. However, it can
be shown that ζ1 is always contained in this subinterval.
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We can obtain results even more global than (7.1) by considering the problem on
the (ξ, η) scale. Then employing a geometrical optics expansion of the form

p(n1, n2) =
1√
C
eCΦ(ξ,η)

[
K(ξ, η) +

1

C
K(1)(ξ, η) + O(C−2)

]
(7.2)

will yield PDEs satisfied by Φ and K. Solving the PDE for Φ subject to the condition
Φ(ξ, 1−ξ) = φ(ξ) will determine the solution in either the entire triangular domain or
some subset thereof. In the latter case the expansion (7.2) would need to be modified,
and different boundary conditions used to determine Φ(ξ, η) in the complementary
subset(s). In general, obtaining a complete set of results on the (ξ, η) scale is likely
to lead to consideration of several subregions of the basic triangle.

For the underloaded case (λ+ ν/κ < C) we can first consider the problem on the
(ξ, η) scale. Employing an expansion of the type (7.2), with the initial factor 1/

√
C

replaced by 1/C, we again find that Φ satisfies a nonlinear PDE. Solving this by the
method of characteristics (ray method) and using the characteristic curves that start
from the equilibrium point (ξ, η) = C−1(λ, ν/κ), we can regain the asymptotic expan-
sion of log[p(n1, n2)] in (3.1). Note that p(n1, n2) is maximal near this equilibrium
point. The range of validity of this expansion is determined by the portion of the
triangle ξ + η < 1 that is filled by the rays. When κ = 1, this can be shown to be the
entire triangle, but in general for κ �= 1 the rays will not fill the entire triangle, and
thus have a “shadow region.” In the shadow the product form expression in (3.1) is
not the appropriate approximation to p(n1, n2), and an entirely separate analysis is
needed. However, we can show that the point (ξ, η) = (λκ, ν)/(ν + λκ) always lies in
the region illuminated by the rays from the equilibrium, and our analysis used (3.1)
only near this point (cf. (3.2)).

This brief discussion shows that obtaining more global results for p(n1, n2), with
the scaling (2.8), is nontrivial and would require considerably more analysis. We are
also presently investigating the case of critical loading, where λ+ ν/κ = C +O(

√
C).

This analysis will likely lead to a two-dimensional diffusion approximation. Another
interesting asymptotic limit is to have R → ∞ with R/C = r = O(1). Then even
on the coarse (ξ, η) scale, both the triangle T (with ξ + η < 1 − r) and the oblique
strip S (with 1 − r < ξ + η < 1, 0 < η < 1 − r) have nonvanishing volume. The
clearer separation between the interface I and boundary B may actually simplify the
asymptotic analysis, over that with the present assumption R = O(1).

Appendix A. We here establish that there is a solution of (4.10) with b > 1
and 0 < ζ < σ/κ, where a and b are functions of ζ, as given by (4.3) and (4.6), and
(4.1) holds. We let

f(ζ) = σ + ζ − κζ > 0, 0 ≤ ζ ≤ σ

κ
.(A.1)

From (4.3) and (4.6), we have

a(ζ) =
1

f(ζ)
, b(ζ) =

(1 + ρ− κ)

f(ζ)
.(A.2)

If σ/κ > 1, then b(1) > 1 since ρ > σ, and a(1) > 0, so that h(1) > 0. If σ/κ ≤ 1,
then b(σ/κ) = κ(1 + ρ − κ)/σ > 1 since ρ > κ. Also, h(σ/κ) = (ρ − κ)/(b − 1) > 0.
Hence,

h
(
min

(
1,

σ

κ

))
> 0.(A.3)
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There are two cases to consider.
Case 1. σ < 1 + ρ − κ. Then b(0) = (1 + ρ − κ)/σ > 1, and b(ζ) > 1 for

0 ≤ ζ ≤ min(1, σ/κ). However, h(0) < 0. Hence, from (A.3), 0 < ζ < min(1, σ/κ).
Case 2. σ ≥ 1 + ρ− κ. Then κ > 1, since ρ > σ, and b(ζ∗) = 1, where ζ∗ < 1 is

given by (4.11). However,

σ

κ
− ζ∗ =

[κ(ρ− κ) + (κ− σ)]

κ(κ− 1)
.(A.4)

Hence, if σ ≤ κ, then ζ∗ < σ/κ, and so 0 ≤ ζ∗ < min(1, σ/κ). If follows that b(ζ) > 1
for ζ∗ < ζ ≤ min(1, σ/κ). Moreover, b(ζ) → 1+ as ζ → ζ∗+, so that h(ζ) → −∞ as
ζ → ζ∗+. Hence, from (A.3), ζ∗ < ζ < min(1, σ/κ).

Appendix B. We here show that Ω > 0, where Ω is given by (5.7). Now,

−1∑
�=−∞

b� =
1

(b− 1)
,

−1∑
�=−∞

�b� = − b

(b− 1)2
,(B.1)

and, for a �= 1,

R−1∑
�=0

a� =
(1 − aR)

(1 − a)
,

R−1∑
�=0

�a� = a

[
(1 − aR)

(1 − a)2
− RaR−1

(1 − a)

]
.(B.2)

Also, from (4.3) and (4.6),

b = (1 + ρ− κ)a.(B.3)

If we use (4.10) to express ζ in terms of a and b, then after some straightforward
algebra, it is found that

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]2

Ω = c0(a) +
c1(a)

(b− 1)
+

c2(a)

(b− 1)2
+

c3(a)

(b− 1)3
,(B.4)

where

c0(a) =
aR

(1 − a)2
(1 + a− aR+1)

[
a(1 − aR)

(1 − a)
−R

]

+
aR+1

(1 − a)2

[
(1 − aR)

(1 − a)
−RaR

]
+

(1 − aR)(1 − aR+1)2

(1 − a)3
,(B.5)

c1(a) = −aR+1 (1 − aR)

(1 − a)
+ aR+1(1 + a)

(1 − aR)

(1 − a)2
−RaR

(2 + 2a− aR+1)

(1 − a)

+
aR+1

(1 − a)

[
2(1 − aR)

(1 − a)
−RaR

]
+

(1 − aR+1)

(1 − a)2
(3 − 2aR − aR+1),(B.6)

c2(a) = −aR+1 (3 − a− 2aR)

(1 − a)
−R(1 + a)aR

+ aR+1 (1 − aR)

(1 − a)
+

(3 − aR − 2aR+1)

(1 − a)
,(B.7)
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and

c3(a) = 1 + aR+1(aR − 2) = (1 − aR+1)2 + (1 − a)a2R+1.(B.8)

After simplification in (B.5), we obtain

c0(a) = (1 + aR+2)
(1 − aR)

(1 − a)3
− R(1 + a)aR

(1 − a)2
.(B.9)

Then, from (B.6) and (B.7), it is found that

c1(a) = 2(1 − a)c0(a) +
(1 − aR+1)2

(1 − a)2
(B.10)

and

c2(a) = (1 − a)2c0(a) + a2R+1 +
2(1 − aR+1)2

(1 − a)
.(B.11)

Hence, from (B.4), (B.8), (B.10), and (B.11), we have

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]2

Ω

=
(b− a)

(b− 1)3

[
(b− a)(b− 1)c0(a) + (b− a)

(1 − aR+1)2

(1 − a)2
+ a2R+1

]
.(B.12)

However,

R∑
�=0

�aR−� =

R∑
�=0

(R− �)a� =
R

(1 − a)
− a(1 − aR)

(1 − a)2
,(B.13)

from (B.2). Hence, from (B.9),

c0(a) =
1

(1 − a)

R∑
�=0

�(a�−1 − a2R−�+1) =

R∑
�=0

�a�−1
2R+1−2�∑

m=0

am ≥ 0,(B.14)

since a > 0 from (4.3). But b > 1 and b > a from (4.6). It follows from (B.12) and
(B.14) that Ω > 0.

Appendix C. We here show that Γ > 0, where Γ is given by (5.8). If we use
(4.10) to express ζ in terms of a and b, then it is found that

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]
Γ =

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]2

+ (1 − κ)aR+1

[
a(1 − aR)

(1 − a)2
− R

(1 − a)
− b

(b− 1)2
− R

(b− 1)

]
.(C.1)

Now,

1

(b− 1)
+

(1 − aR+1)

(1 − a)
=

1

(b− 1)

[
(b− a)

(1 − aR)

(1 − a)
+ aRb

]
.(C.2)
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We let

f(a, b) = b + R(b− 1) +

[
R

(1 − a)
− a(1 − aR)

(1 − a)2

]
(b− 1)2(C.3)

and

g(a, b) =

[
(b− a)

(1 − aR)

(1 − a)
+ aRb

]2

− aR+1f(a, b).(C.4)

Then,

(b− 1)2

[
1

(b− 1)
+

(1 − aR+1)

(1 − a)

]
Γ = κaR+1f(a, b) + g(a, b).(C.5)

Since a > 0 and b > 1, it follows from (B.13) and (C.3) that f(a, b) > 0. We may
express f(a, b) in the form

f(a, b) =
R(b− a)(b− 1)

(1 − a)
+

(1 − aR)

(1 − a)2
(b− a)(1 − ab) + aRb.(C.6)

From (C.4), after some algebra, it is found that

g(a, b) = (b− a)[�(a)(b− a) + (R + 1)aR+1],(C.7)

where

�(a) =
(1 − aR+1)2

(1 − a)2
− aR+1

[
R

(1 − a)
− a(1 − aR)

(1 − a)2

]
.(C.8)

Hence, from (B.13),

�(a) =
R∑

r=0

ar
R∑

s=0

as −
R∑

�=0

�a2R−�+1 =

R∑
n=0

(n + 1)an > 0,(C.9)

since a > 0. However, b > a, and it follows from (C.7) that g(a, b) > 0. Finally, since
κ > 0 and f(a, b) > 0, we obtain Γ > 0.
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NONADIABATIC CORRECTIONS TO THE HANNAY–BERRY
PHASE∗

SEAN B. ANDERSSON†

Abstract. The effect of the Coriolis force on a moving system can be described as a holonomy
with respect to a particular connection known as the Cartan–Hannay–Berry connection. The result-
ing geometric phase is called the Hannay–Berry phase, and it provides direct information about the
imposed motion on the system. This approach assumes that the imposed motion is adiabatic. In this
paper we describe the use of Hamiltonian perturbation theory to develop nonadiabatic corrections
to the Hannay–Berry phase for a moving system. The technique is illustrated by applying it to a
rotating free-floating spring-jointed equal-sided four-bar mechanism.

Key words. geometric phases, perturbations, systems with slow and fast motions, averaging of
perturbations
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1. Introduction. When a system undergoes an imposed motion, the external
forces can alter the natural dynamics. A simple example is the Foucault pendulum,
where the rotation of the Earth causes a precession of the swing plane of the pendulum.
Classically the effect of the external forces is captured by introducing fictitious forces
(the centrifugal, Coriolis, and Euler forces) into the moving system (see, e.g., [26]).
When the rate of the imposed motion is slow with respect to the time scale of the
nominal dynamics, that is, with respect to the dynamics in the absence of any external
forces, one does not expect the imposed motion to fundamentally alter the behavior
of the system. (This is essentially a statement of the averaging principle. It should
be kept in mind that this principle is simply one of physical intuition and not a
theorem. See [6] for further comments.) For the Foucault pendulum, the rotation of
the Earth slowly shifts the swing plane; on short time scales the motion of the bob
is well approximated by ignoring the effects of the imposed rotation. (See [2] for a
historical narrative of Foucault and the pendulum experiment.)

An effect analogous to the precession of the swing plane of the Foucault pendulum
due to the Coriolis force has been observed in many other rotating dynamical systems
including rotating vibrating beams [18], tuning forks [27], and shells [10]. Vibratory
gyroscopes take advantage of the effect to sense the imposed rotation, and a wide
variety of designs have been proposed and built [24]. Most modern analyses of slowly
rotating systems are linear in nature and view the Coriolis force as providing a coupling
between two vibratory modes of the system (see, e.g., [30]). However, it is desirable
to have a method which, at least in principle, can be extended to a nonlinear theory
and which provides a unified setting for understanding a variety of systems in which
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the Coriolis force plays a role. A technique developed by Marsden, Montgomery,
and Ratiu, known as the moving systems approach, provides such a method [25]. The
moving systems approach descends from the classical work of Cartan [11] and describes
the effect of the Coriolis force as a geometric phase (holonomy) with respect to a
particular Ehresmann connection known as the Cartan–Hannay–Berry connection.
Research on geometric phases in physical systems was spurred by the work of Berry
in the early 1980s on the geometric shift of the phase in a quantum system as a result
of an adiabatic variation of a parameter-dependent Hamiltonian [7]. In previous work
we have applied the moving systems approach to show that the Hannay–Berry phase in
a rotating equal-sided four-bar mechanism is zero [4] and to show that the precession
of the nodal points in a rotating vibrating ring can be understood as a Hannay–Berry
phase [3].

Inherent in the moving systems approach is an assumption of adiabaticity; that is,
it is assumed that the imposed motion is infinitely slow. In practice, of course, while
the imposed motion may be extremely slow with respect to the nominal dynamics of
the system, it is not infinitely slow, and neglecting this fact introduces some error. By
accounting for the nonadiabatic nature of the imposed motion, more accurate models
of the resulting response of the system can be developed.

Since Berry’s original work on geometric phases in quantum systems, various tech-
niques have been proposed to account for the finite rate of change of the parameters in
the Hamiltonian. Berry developed an iterative scheme in which the geometric phase
at each step is incorporated into the nominal dynamics [8], while other authors have
showed that the Berry phase can be viewed as the first-order term in a perturbation
expansion of the system [15, 33]. This work has been applied to systems such as nu-
clear quadrupole resonance [34], hysteresis loops in manganese acetate crystals [16],
and magnetic resonance [19]. A few authors have also considered the effect of the
finite rate of change of the parameters on the Hannay angles, the geometric phase in
classical integrable systems. Bhattacharjee and Sen used a perturbative method [9],
which was later compared by Gjaja and Bhattacharjee to a classical analogue of the
iterative scheme of Berry [20].

In this work we consider a perturbative approach to account for the nonadiabatic
nature of the imposed motion. However, classical perturbation techniques ignore the
underlying geometric structure of the Hamiltonian system to which the moving sys-
tems method applies. We will show that the averaged Hamiltonian which gives rise
to the Hannay–Berry phase Poisson commutes with the nominal Hamiltonian, using
the canonical Poisson bracket on the phase space. This leads us to Hamiltonian per-
turbation theory and Hamiltonian normal forms. We note that when not considering
the imposed motion as a small perturbation from the nominal system, the effect of
the external forces is often incorporated into an amended potential (see, e.g., [26]).
Here we wish to develop a technique which takes advantage of the fact that the im-
posed motion is slow when describing the resulting system dynamics. If the original
system is integrable, then the techniques developed here are similar to a perturbation
expansion in the action-angle variables as in [23].

In the next section we briefly recall the moving system approach, and in section 3
give a short introduction to Hamiltonian normal form theory. In section 4 the theory
of normal forms is applied to the moving systems approach to develop higher-order
corrections. The technique is illustrated in section 5 by applying it to a spring-jointed
equal-sided four-bar mechanism, where we show that the effect of an imposed rotation
is zero to second order.
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2. The moving systems approach. Inspired by classical examples such as the
Foucault pendulum and the ball in a hoop, one is naturally led to consider the effect in
the phase space of a mechanical system as a parameter is slowly varied along a closed
loop in parameter space. Well-known examples in quantum physics, optics, and other
settings [7, 31, 35] reveal that the essential calculation is a geometric one and is in
fact captured by the holonomy of a connection on a fiber bundle. (For background
material on fiber bundles, connections, and holonomy see [17, 28].)

Marsden, Montgomery, and Ratiu have developed an approach to moving systems
using the tools of Ehresmann connections on fiber bundles [25]. Here we provide a
brief review of their approach. Let S be a Riemannian manifold, and let M be the
space of embeddings of a manifold Q into S. We think of S as the ambient space in
which Q is being moved and of Q as the configuration space for a system of interest.
A tangent vector to M at m is a map um : Q → TS such that um(q) ∈ Tm(q)S.
Given a tangent vector um(q), one can construct a tangent vector to TqQ as follows.
Relative to the metric on S, orthogonally project um(q) to Tm(q)m(Q) ⊂ (Tqm)(TqQ),
denote this vector uT

m(q), and then pull-back uT
m(q) by Tm−1 to TqQ. This natural

construction defines an Ehresmann connection on the product bundle π : Q×M → M
as follows.

Definition 2.1 (see [25]). The Cartan connection on π : Q×M → M is given
by the vertical-valued one-form γc defined by

γc(q,m)(vq, um) = (vq + (T−1m ◦ uT
m)q, 0).(2.1)

The Cartan connection induces a connection on ρ : T ∗Q×M → M as follows.
Definition 2.2 (see [25]). The induced Cartan connection on ρ : T ∗Q×M → M

is given by the vertical-valued one-form γo defined by

γo(αq,m)(Uαq , um) =
(
Uαq + XP(um)(αq), 0

)
,(2.2)

where P(um) is the function defined by

(P(um))αq = αq · (T−1m ◦ uT
m)(q)(2.3)

and XP(um) is the Hamiltonian vector field of P(um).
To separate the effects of the imposed motion on the system (as defined by the

embeddings mt) from the nominal dynamics (when the imposed motion is zero) we
assume we are given a left action of a compact Lie group G on T ∗Q with respect to
which we can define an average and then make the following definition.

Definition 2.3 (see [25]). The Cartan–Hannay–Berry connection on ρ : T ∗Q×
M → M is given by the vertical-valued one-form γ defined by

γ(αq,m)(Uαq
, um) =

(
Uαq

+ X〈P(um)〉(αq), 0
)
,(2.4)

where 〈·〉 denotes the average with respect to the action of the Lie group G.
In [25] Marsden, Montgomery, and Ratiu show that this is an Ehresmann con-

nection. The horizontal lift of a vector field Z on M relative to γ is

(horZ)(αq,m) =
(
−X〈P(Z(m))〉(αq), Z(m)

)
.(2.5)

Definition 2.4 (see [25]). The holonomy of the Cartan–Hannay–Berry connec-
tion is called the Hannay–Berry phase for a moving system.
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2.1. The adiabatic assumption. The Hannay–Berry phase captures the ef-
fects of the imposed motion on a system under the assumption that this imposed
motion is slow with respect to the nominal dynamics. To better understand this adi-
abatic assumption, we consider the following system (as in [26]). If a particle in Q
is following a curve q(t) and if Q is in turn being moved in the ambient space S by
superposing the motion mt, then the path of the particle in S is given by mt(q(t)).
The velocity in S is then

Tq(t)mtq̇(t) + Zt(mt(q(t))),(2.6)

where Zt(mt(q)) = d
dtmt(q) (with q viewed as fixed). The standard Lagrangian is

given by the kinetic energy minus the potential energy,

L(q, v) =
1

2
‖Tq(t)mtv + Zt(mt(q))‖2 − V (q) − U(mt(q)).(2.7)

Here V is a given potential on Q, and U is a given potential on S. To compute the
associated Hamiltonian we take the Legendre transform. Taking the derivative of L
with respect to v in the direction w yields

∂L

∂v
· w = p · w = 〈Tq(t)mtv + Zt(mt(q(t)))

T , Tq(t)mtw〉mt(q(t)),

where p · w is the natural pairing between the covector p ∈ T ∗
q(t)Q and the vector

w ∈ Tq(t)Q, 〈·, ·〉mt(q(t)) denotes the metric inner product on S at the point mt(q(t)),
and T denotes the orthogonal projection to Tmt(Q) using the metric of S at mt(q(t)).
Q inherits a metric from S such that mt is an isometry for each t. Thus

p · w =
〈
v +
(
Tq(t)mt

)−1 ZT
t (mt(q(t)))

T , w
〉
q(t)

⇒ p =
(
v +
(
Tq(t)mt

)−1 ZT
t (mt(q(t)))

T
)� �

= (v + Zt)
�,(2.8)

where we have defined the tangent vector Zt. Here � : TqQ → T ∗
q Q is the map defined

by

z� · w = 〈z, w〉q ∀w ∈ TqQ.(2.9)

The Hamiltonian for the moving system is given by

H(q, p) =
1

2
‖p‖2 − P(Zt) −

1

2
‖Z⊥

t ‖2 + V (q) + U(mt(q)),(2.10)

where Z⊥
t = Zt − ZT

t is the orthogonal complement of Zt and P(Zt) is the function
on T ∗Q (defined in (2.3)) given by

P(Zt)(q, p) = p · Zt(q).

The nominal Hamiltonian H0 is defined by setting Zt = 0 and U = 0. The
term P(Zt) captures what are classically referred to as the Coriolis terms, and ‖Z⊥

t ‖2

captures the centrifugal terms.
Recall now that we have a compact Lie group G acting on T ∗Q on the left. We

assume that the group action leaves the nominal Hamiltonian invariant. Applying the
corresponding average, we obtain

〈H〉(q, p) =
1

2
‖p‖2 − 〈P(Zt)〉 −

1

2
〈‖Z⊥

t ‖2〉 + V (q) + 〈U(mt(q))〉.(2.11)
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Invoking the adiabatic assumption, we discard 〈‖Z⊥
t ‖2〉 since it is small with re-

spect to the other terms in the averaged Hamiltonian. After discarding the centrifugal
terms, the dynamics of the Hamiltonian system are governed by the Hamiltonian vec-
tor field

X〈H〉 = XH0 −X〈P(Zt)〉 + X〈U◦mt〉.(2.12)

The second term captures the effect of the imposed motion in the adiabatic limit and
is precisely the term given by the horizontal lift of the vector field Zt with respect to
the Cartan–Hannay–Berry connection as defined in (2.5).

2.2. Geometric character of the Hannay–Berry phase. The effect of the
vector field X〈P(Zt)〉 is geometric in nature. By this we mean that the resulting change
in the system is independent of the parametrization of the curve followed in the base
space M ; i.e., the effect depends only on the loop itself and not on how it is traversed.
To see this explicitly, recall that the vector field −X〈P(Zt)〉 is the horizontal lift of a
vector field Zt on the base space M to the fiber T ∗Q with respect to the Cartan–
Hannay–Berry connection and is thus a linear map of Zt. Denoting points in T ∗Q
by z, the ordinary differential equation defining the Hannay–Berry phase may be
expressed as

dz

dt
= −X〈P(Zt)〉 = D(z)Zt.(2.13)

In coordinates, D(z) is a matrix taking tangent vectors on M to tangent vectors on
T ∗Q. We now change the time parametrization by taking t �→ τ(t) with dτ

dt strictly

positive. Under this new parametrization, the vector field Zt is scaled by dτ
dt , and

thus

dz

dt
=

dz

dτ

dτ

dt
= D(z)

(
dτ

dt

)
Zτ .(2.14)

We then have

dz

dτ
= D(z)Zτ ,(2.15)

which has the same form as the differential equation in the original parametrization.

3. Hamiltonian normal forms. The theory of Hamiltonian normal forms (or
Hamiltonian perturbation theory) is a generalization of Lie perturbation techniques
(see, e.g., [12]), which in turn is built upon the perturbation methods developed by
Poincaré and von Ziepel (see [5] for historical comments). In this section we provide
a brief description of the theory and refer the reader to [13, 14] for more details and
further references.

Recall the definition of a Poisson manifold.
Definition 3.1. A Poisson manifold is a smooth manifold M together with a

R-bilinear map on C∞(M),

{·, ·} : C∞(M) × C∞(M) → C∞(M),

which for all f, g, h ∈ C∞(M) satisfies
(i) skew symmetry: {f, g} = −{g, f},
(ii) Leibniz identity: {f, gh} = {f, g}h + g{f, h},
(iii) Jacobi identity: {f, {g, h}} + {g, {h, f}} + {h, {f, g}} = 0.
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Consider a Poisson manifold (M, {·, ·}). Let F(M) be the vector space of formal
power series in ε with coefficients in C∞(M). That is,

F(M) =

{
fε ∈ C∞(M)

∣∣∣∣∣fε =

∞∑
i=0

εifi, fi ∈ C∞(M)

}
.(3.1)

Let adfg = {g, f} and define ad0
fg = g. Recursively define adi

f by

adi
fg = {adi−1

f g, f}.(3.2)

Definition 3.2. The Lie series of f is the formal power series

φf
ε = exp(εadf ) =

∞∑
i=0

εi

i!
adi

f .(3.3)

Here φf
ε is the formal flow of the Hamiltonian vector field Xf with ε as the time

parameter.
Definition 3.3. For f ∈ F(M), Xf is said to have periodic flow if there exists

a positive, smooth function T on M such that for all m ∈ M and for all g ∈ F(M),

((φf
T )∗(g))(m) = g(m).
Definition 3.4. Consider H ∈ F(M) and suppose XH0 has periodic flow. H is

said to be in normal form with respect to H0 if {H0, Hi} = 0 for i = 1, 2, . . . and in
normal form up to order n with respect to H0 if {H0, Hi} = 0, i = 1, 2, . . . , n.

To bring a Hamiltonian into normal form we will use a formal change of coordi-
nates of the form φf

ε for some appropriate f ∈ F(m). The following lemma from [14]
shows how the Hamiltonian is modified under such a change of coordinates.

Lemma 3.5 (see [14]). Let H, f ∈ F(M). If φf
ε is the flow of Xf , then(

φf
ε

)∗
H = exp(εadf )H.(3.4)

The use of (3.3) in (3.4) yields

(
φf
ε

)∗
H =

∞∑
i=0

εi

i!
adi

f

⎛
⎝ ∞∑

j=0

εjHj

⎞
⎠

= H0 + ε(H1 + adfH0) + ε2
(
H2 + adfH1 +

1

2
ad2

fH0

)
+ O(ε3).(3.5)

To bring H into first-order normal form, we seek a function f ∈ F(M) such that

{H0, H1 + adfH0} = 0.(3.6)

To find this function we use the following lemma from [13].
Lemma 3.6 (see [13]). If XH0

has periodic flow on M , then

C∞(M) = ker (adH0
) ⊕ im (adH0

) .(3.7)

Let 〈·〉 denote the average over the orbits of H0; i.e., for g ∈ C∞(M)

〈g〉 =
1

T

∫ T

0

(
φH0
t

)∗
g dt.(3.8)
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To use Lemma 3.6 we first show the following.

Lemma 3.7. Let g ∈ C∞(M). Then 〈g〉 ∈ ker (adH0
).

Proof. The equation adH0
〈g〉 = ρ is equivalent to the dynamical system

d

dt

(
φH0
t

)∗
〈g〉 =

(
φH0
t

)∗
ρ

(see, e.g., Proposition 10.2.3 of [26]). We show that ρ = 0. The use of the definition
of the average of g yields

d

dt

(
φH0
t

)∗
〈g〉 =

d

dt

(
φH0
t

)∗ 1

T

∫ T

0

(
φH0
τ

)∗
g dτ

=
1

T

d

dt

∫ T

0

(
φH0
t+τ

)∗
g dτ

=
1

T

d

dt

∫ T+t

t

(
φH0
σ

)∗
g dσ

=
1

T

((
φH0

T+t

)∗
g −
(
φH0
t

)∗
g
)

=
1

T

((
φH0
t

)∗
g −
(
φH0
t

)∗
g
)

= 0.

Therefore adH0
〈g〉 = 0.

To put the Hamiltonian into normal form to first order we write

H1 = 〈H1〉 + (H1 − 〈H1〉)(3.9)

and then substitute (3.9) into (3.6). Thus

0 = {H0, 〈H1〉 + (H1 − 〈H1〉) + adfH0}
= {H0, 〈H1〉} + {H0, (H1 − 〈H1〉) + adfH0}
= {H0, (H1 − 〈H1〉) + adfH0},(3.10)

where the last step follows from the fact that, from 3.7, 〈H1〉 ∈ ker(adH0). We then
seek a solution to the homological equation

adfH0 = −(H1 − 〈H1〉),(3.11)

where f is the unknown function.

Proposition 3.8 (see [13]). The solution to (3.11) is given by

f =
1

T

∫ T

0

t
(
φH0
t

)∗
(H1 − 〈H1〉) dt.(3.12)

Proof. Let g = −adfH0 = adH0f . This is equivalent to the dynamical system

d

dt

(
φH0
t

)∗
f =
(
φH0
t

)∗
g.
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We show that g = H1 − 〈H1〉 by direct substitution. Thus

d

dt

(
φH0
t

)∗
f =

d

dt

(
1

T

∫ T

0

τ
(
φH0
τ

)∗
(H1 − 〈H1〉)dτ

)

=
1

T

d

dt

∫ T

0

τ
(
φH0
t+τ

)∗
(H1 − 〈H1〉)dτ

=
1

T

d

dt

∫ t+T

t

(σ − t)
(
φH0
σ

)∗
(H1 − 〈H1〉)dσ

=
1

T

(
T
(
φH0

t+T

)∗
(H1 − 〈H1〉) −

∫ t+T

t

(
φH0
σ

)∗
(H1 − 〈H1〉)dσ

)

=
(
φH0

t+T

)∗
(H1 − 〈H1〉) −

1

T

∫ t+T

t

(
φH0
σ

)∗
H1dσ + 〈H1〉

=
(
φH0

t+T

)∗
(H1 − 〈H1〉) − 〈H1〉 + 〈H1〉

=
(
φH0
t

)∗
(H1 − 〈H1〉).

Therefore g = (H1 − 〈H1〉). From this the proposition follows.
With this choice of f , the Hamiltonian in (3.4) becomes

exp(εadf )H = H0 + ε〈H1〉 + ε2
(
H2 + adfH1 +

1

2
ad2

fH0

)
+ O(ε3),(3.13)

which is in first-order normal form. Notice that if we wish to bring the Hamiltonian
into normal form only up to first order, then there is no need to explicitly calculate
the generating function f .

To bring the function into normal form up to second order we repeat the process,
now on the once transformed Hamiltonian. This time we seek a generating function
of the form εg. Application of the corresponding change of coordinates results in

exp(εadεg) (exp(εadf )H) =

∞∑
i=0

εi

i!
adi

εg (exp(εadf )H)

= H0 + ε〈H1〉 + ε2
(
H2 + adfH1 +

1

2
ad2

fH0 + adgH0

)
+ O(ε3).(3.14)

The homological equation which needs to be solved is

adgH0 = −
(
H2 + adfH1 +

1

2
ad2

fH0 −
(
〈H2〉 + 〈adfH1〉 +

〈
1

2
ad2

fH0

〉))
.(3.15)

From Proposition 3.8, the solution to this equation is

g =
1

T

∫ T

0

t
(
φH0
t

)∗ [
H2 − 〈H2〉 + adfH1 − 〈adfH1〉

+
1

2

(
ad2

fH0 − 〈ad2
fH0〉

)]
dt.(3.16)

With this choice our transformed Hamiltonian becomes

exp(εadεg) (exp(εadf )H)

= H0 + ε〈H1〉 + ε2
(
〈H2〉 + 〈adfH1〉 +

1

2
〈ad2

fH0〉
)

+ O(ε3).(3.17)
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The Hamiltonian can be placed into normal form up to arbitrary order n by repeating
this process.

In practice one places the system into normal form up to some desired order
and then truncates the higher-order terms. The truncated Hamiltonian gives an
approximation to the original system. Since the coefficients of εi in the transformed
Hamiltonian all commute with H0 for i = 1, 2, . . . , n, the flow of the corresponding
Hamiltonian vector field of the higher-order terms also commutes with the flow of the
nominal system. Thus for a Hamiltonian in first-order normal form we have

φ
H0+ε〈H1〉
t (m) = φ

ε〈H1〉
t ◦ φH0

t (m), m ∈ M,(3.18)

and the first-order terms give rise naturally to a first-order correcting symplectic map
given by the flow of the Hamiltonian system ε〈H1〉. For systems in higher-order
normal form, however, while the functions at each order do Poisson commute with
H0, they do not in general commute with each other, and thus a system in nth-order
normal form defines a single nth-order correcting symplectic map.

4. Normal forms and the Hannay–Berry phase. In the setting of the mov-
ing systems approach the Poisson manifold is T ∗Q together with the canonical Poisson
bracket defined by

{f, g} =

n∑
i=1

∂f

∂qi
∂g

∂pi
− ∂f

∂pi

∂g

∂qi
, f, g ∈ C∞(M).(4.1)

To apply Hamiltonian normal form theory we make a few additional assumptions
on the Hamiltonian of a moving system, (2.10). We first assume that the potential U
on S is constant and drop it from the Hamiltonian. Next we assume that Zt(mt(q))
can be written in the form

Zt(mt(q)) = εẐt(mt(q))(4.2)

for some parameter ε. For example, if M is a Riemannian manifold and Zt is a
constant magnitude vector field, then we may take ε = ‖Zt‖ and Ẑt = Zt

‖Zt‖ . If ‖Zt‖
is not constant, then one could take ε to be the average magnitude of ‖Zt‖ over the
loop in M starting at the given initial condition. However, the form of Zt in (4.2)
is often natural to the problem, and in general Ẑt is not a unit vector. Under these
assumptions the Hamiltonian can be written as

H(q, p) = H0(q, p) + εH1(q, p) + ε2H2(q, p),(4.3)

where

H0(q, p) =
1

2
‖p‖2 + V (q),(4.4)

H1(q, p) = −P(Ẑt),(4.5)

H2(q, p) = −1

2
‖Ẑ⊥

t ‖2.(4.6)

Finally we assume that H0 has periodic flow with period T . We then have a
natural action of S1 on T ∗Q, given by φH0

t , the flow of XH0
. Let 〈·〉 denote the

average with respect to this group action; i.e., for a smooth function f on T ∗Q we
have

〈f〉 =
1

T

∫ T

0

(
φH0
t

)∗
fdt.(4.7)
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In general, the parameter ε captures the rate of the imposed motion on the system.
In the adiabatic limit, then, ε goes to zero and the terms in ε2 are negligible. (Note that
the terms in ε are not negligible in the adiabatic limit since the time parametrization
of the (slow) imposed motion scales as 1

ε . See section 2.2.) In what follows we are
interested in relaxing the adiabatic condition; i.e., we assume that while ε is small,
the terms in ε2 are not negligible. The truncated Hamiltonian defined by

〈H〉(1)(q, p) = H0(q, p) + ε〈H1〉(q, p) = H0(q, p) − ε〈P(Ẑt)〉(4.8)

is in first-order normal form. The flow of the system to first order is then given by

φ
H0−ε〈P(Ẑt)〉
t (q, p) = φ

−ε〈P(Ẑt)〉
t ◦ φH0

t (q, p),(4.9)

and the flow of −〈P(Ẑt)〉 defines the correcting symplectic map to first order. Thus,
in the setting where the group action on T ∗Q is given by the flow of the nominal
dynamics, the Hannay–Berry phase is the first-order correction at the completion of
a closed loop in parameter space.

To find a more accurate expression we express the Hamiltonian in normal form to
a higher order before truncating. Let G be the generator of a change of coordinates
bringing the original Hamiltonian into first-order normal form. From Proposition 3.8
and the form of H1 in (4.5), G is given by

G =
1

T

∫ T

0

t
(
φH0
t

)∗ [
〈P(Ẑt)〉 − P(Ẑt)

]
dt.(4.10)

From (3.17) and the form of H2 in (4.6), the second-order truncated normal form is

〈H〉(2)(q, p) = H0(q, p) − ε〈P(Ẑt)〉

−ε2
(

1

2
〈‖Ẑ⊥

t ‖2〉 + 〈adGP(Ẑt)〉 −
1

2
〈ad2

GH0〉
)
.(4.11)

Notice that the terms at second order in the Hamiltonian not only account for
the average effect of the centrifugal force but also include additional terms involving
the first-order change of coordinates. The flow of the system to second order is

φ
H0−ε〈P(Ẑt)〉−ε2( 1

2 〈‖Ẑ
⊥
t ‖2〉+〈adGP(Ẑt)〉− 1

2 〈ad2
GH0〉)

t (q, p)

= φ
−ε〈P(Ẑt)〉−ε2( 1

2 〈‖Ẑ
⊥
t ‖2〉+〈adGP(Ẑt)〉− 1

2 〈ad2
GH0〉)

t ◦ φH0
t (q, p),(4.12)

and this in general defines a correcting symplectic map to second order. If in addition
the terms in ε Poisson commute with the terms in ε2, then the second-order terms
define a second-order correcting symplectic map. In this case the three Hamiltonian
systems can be solved independently and their flows composed to obtain the second-
order solution. This is captured in the following lemma.

Lemma 4.1. If{
〈P(Ẑt)〉,

1

2
〈‖Ẑ⊥

t ‖2〉 + 〈adGP(Ẑt)〉 −
1

2
〈ad2

GH0〉
}

= 0,(4.13)

then

φ
H0−ε〈P(Ẑt)〉−ε2( 1

2 〈‖Ẑ
⊥
t ‖2〉+〈adGP(Ẑt)〉− 1

2 〈ad2
GH0〉)

t (q, p)

= φ
−ε2( 1

2 〈‖Ẑ
⊥
t ‖2〉+〈adGP(Ẑt)〉− 1

2 〈ad2
GH0〉)

t ◦ φ−ε〈P(Ẑt)〉
t ◦ φH0

t (q, p).(4.14)

Proof. The proof is immediate by the assumption of the Poisson commutativity
of the functions.
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4.1. Time-dependence of nonadiabatic corrections. In section 2.2 we
showed that the Hannay–Berry phase is a geometric phenomenon by showing that the
corresponding ordinary differential equation is independent of the time parametriza-
tion. We now show that the terms in ε2 in the moving systems Hamiltonian do not
result in a geometric effect. Consider (4.11). For simplicity assume that the generat-
ing function for the change of coordinates is G = 0 and that {〈H1〉, 〈H2〉} = 0 so that
we can calculate the effect on the system from these two terms separately. Denote
points in T ∗Q by z. Noticing that X〈‖Z⊥‖2〉 is a quadratic form in the vector field Z
on the base space, we define

Y (Zt, z) = −X〈‖Z⊥
t |2〉,(4.15)

where Y (aZt, z) = a2Y (Zt, z). The corresponding ordinary differential equation is

ż = Y (Zt, z).(4.16)

We now change the time parametrization (as in section 2.2) by taking t �→ τ(t)
with dτ

dt strictly positive. Under this parametrization, the vector field Zt is scaled by
dτ
dt and thus

dz

dt
=

dz

dτ

dτ

dt
= Y

(
dτ

dt
Zτ , z

)
=

(
dτ

dt

)2

Y (Zτ , z).(4.17)

From this we have

dz

dτ
=

dτ

dt
Y (Zτ , z),(4.18)

which shows the dependence on the time parametrization.

5. The equal-sided spring-jointed free-floating four-bar mechanism. In
this section we apply the method developed in section 4 to an equal-sided spring-
jointed free-floating four-bar mechanism which is being rotated about its center of
mass. The study of the four-bar mechanism has a long history, dating at least back
to the work of Grashof in the mid-nineteenth century [22]. (See also [29] and ref-
erences therein.) Building upon an analysis of four-bar linkages due to Yang and
Krishnaprasad [37], this system is analyzed in [4, 3] using the moving system ap-
proach, and it is shown that the Hannay–Berry phase is zero. After briefly recalling
this result, we will show that the second-order effects of the imposed rotation are also
zero.

Consider an equal-sided four-bar mechanism as shown in Figure 5.1. By a “bar”
we mean a planar rigid body on which the center of mass and pin joints are arbitrarily
located. The identical bars are labeled sequentially from 0 to 3, and on each a body-
fixed frame is defined such that its origin is at the body center of mass and the x-axis
is parallel to the line connecting the pin joints. The positive direction of the x-axis of
the ith bar is defined to be towards the (i+ 1)th bar for i = 0, 1, 2, 3, where we adopt
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Fig. 5.1. Equal-sided four-bar mechanism.

the convention of modulo four addition for subscripts. We define the following:

d+ the vector from the body center of mass of the ith bar to the pin joint with

the (i + 1)th bar,

d− the vector from the body center of mass of the ith bar to the pin joint with

the (i− 1)th bar,

l the length of each bar ‖d+ − d−‖, where ‖ · ‖ is the standard Euclidean norm,

rci the vector from the system center of mass to the ith body center of mass,

rc the vector from the origin of the inertial system to the system center of mass,

θi the angle between the ith bar frame and the inertial frame,

θi,j the angle θi − θj between the ith and jth bars,

I,m the moment of inertia and mass of each bar.

From Figure 5.1 we have that

rci+1 = rci + R(θi)d+ −R(θi+1)d−, i = 0, 1, 2, 3,(5.1)

where R(θi) is the rotation matrix given by

R(θi) =

(
cos(θi) − sin(θi)
sin(θi) cos(θi)

)
.

We use (5.1) recursively to define the loop closure constraint

F (r) =
3∑

i=0

R(θi)(d+ − d−) = 0.(5.2)
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In [32] it is shown that the configuration space for a free-floating four-link open chain is
R = R

2×S1×S1×S1×S1. The configuration space for a general four-bar mechanism
is thus Sgen = {r ∈ R|F (r) = 0}. For a four-bar mechanism with identical bars it
can be shown that if the system is not allowed to pass through any singularities (joint
angles of 0 or 2π), then the configuration space S = {r ∈ R|F (r) = 0, θi+1,i = 0, π}
is a smooth submanifold of R [3].

While in the general four-bar mechanism the relations between the angles θi can
be quite complicated (see, for example, [29]), they have a particularly simple form for
the equal-sided case, namely

θ2 = θ0 + π, θ3 = θ0 − π,(5.3)

which leads to the following equalities:

θ32 = θ10, θ21 = θ03 = π − θ10, θ13 = θ20 = π.(5.4)

For the free-floating equal-sided four-bar linkage the configuration is completely
specified by the choice of one global angle and one joint angle. We arbitrarily choose
θ0 and θ10. After removing the singular points θ10 = 0, π, the configuration space is
given by S1×{(0, π)∪(0,−π)}. Since the joint angle is not allowed to pass through the
singular points, we may arbitrarily choose either one of the connected components of
this space to describe the configuration of our system, with the additional requirement
that the initial condition lie in the component we have chosen. Without loss of
generality, then, we take S = S1× (0, π) as the configuration space of the free-floating
equal-sided four-bar mechanism.

The total kinetic energy of the system in the center of mass frame is given by

T =
1

2
I

3∑
i=0

ω2
i +

1

2
m

3∑
i=0

‖ṙci ‖2.(5.5)

Following [37], this can be written

T =
1

2
〈ω̃, M̃ ω̃〉,(5.6)

where ω̃ = (ω0, ω1, ω2, ω3)
′ and M̃ is a 4×4 symmetric matrix whose elements for the

equal-sided four-bar system are

M̃ii = I +
3m

8

(
‖d+‖2 + ‖d−‖2

)
,(5.7)

M̃i,i+1 =
m

8

(
d′
−Ri+1,id+ − 3d′

+Ri+1,id−
)
,(5.8)

M̃i,i+2 = −m

8

(
d′

+Ri+2,id+ + d′
−Ri+2,id−

)
,(5.9)

where ′ indicates transpose and Ri,j = R(θi − θj). From (5.3) we have(
ω2

ω3

)
=

(
ω0

ω1

)
,(5.10)

where ωi = θ̇i. Let I denote the identity matrix. Define

M = (I I) M̃

(
I

I

)
.(5.11)
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Fig. 5.2. Single bar diagram.

Then

T =
1

2

(
ω0 ω1

)
M

(
ω0

ω1

)
.(5.12)

M is symmetric. It depends only on the joint angles and thus, given the relations
(5.4), it depends only on θ10. We would like to express the entries in this matrix in
terms of the parameters of the four-bar linkage. From (5.4), (5.7), (5.9), and (5.11),
we have

M00 = 2I + m(‖d+‖2 + ‖d−‖2),(5.13)

M11 = M00.(5.14)

From (5.4), (5.8), and (5.11) we have

M10 =
m

4

(
d′
−R1,0d+ − 3d′

+R1,0d− + d′
−Rπ−θ10

d+ − 3d′
+Rπ−θ10

d−
)
.

Since

Rπ−θ10 =

(
− cos(θ10) − sin(θ10)
sin(θ10) − cos(θ10)

)
= −R0,1,(5.15)

this may be rewritten as

M10 = m
(
d′
−R1,0d+ − d′

+R1,0d−
)

= 2m(d1
+d

2
− − d2

+d
1
−) sin(θ10),(5.16)

where dj± is the jth component of d±.
Consider the diagram of a single bar shown in Figure 5.2. From the figure we

have

d+ =

(
l
2 + δx
δy

)
, d− =

(
−( l

2 − δx)
δy

)
.

Thus

d1
+d

2
− − d2

+d
1
− =

(
l

2
+ δx

)
(δy) + (δy)

(
l

2
− δx

)
= lδy,
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and so

M10 = 2mlδy sin(θ10).(5.17)

The kinetic energy defines a Riemannian metric K on S given by

K(θ10)(X,W ) = X ′M̂(θ10)W, X,W ∈ T(θ0,θ10)S.(5.18)

Each joint is equipped with an identical spring. Let the spring potential for each
be given by Vs(θi+1,i), i = 0, 1, 2, 3, with Vs twice continuously differentiable. The
total potential energy is then

V (θ0, θ10) = 2(Vs(θ10) + Vs(π − θ10))
�
= V (θ10),(5.19)

where the relations in (5.4) have been used to simplify the expression. We assume
that the potential energy is such that there exists α ∈ {0, π} such that

∂V

∂θ10

∣∣∣∣
α

= 0,
∂2V

∂θ2
10

∣∣∣∣
α

> 0,(5.20)

and without loss of generality we take V (α) = 0. The standard Lagrangian is then
given by

L(θ10, ω10) =
1

2

(
ω0 ω10

)
M̂(θ10)

(
ω0

ω10

)
− V (θ10).(5.21)

Consider now the following action Φg of the Lie group S1 on S:

Φg(θ0, θ10) = (θ0 + g, θ10).(5.22)

The quadruple (S,K, V, S1) is a simple mechanical system with symmetry, where
the action of S1 on S is given by (5.22). (For a definition and discussion of simple
mechanical systems with symmetry, see [1].) Since the action is both free and proper,
the reduced space is a manifold. Recall that we defined S = S1 × (0, π); the reduced
(or shape) space is then Q = (0, π) with the coordinate θ10.

In the language of the moving systems approach, Q is the configuration space and
S is the ambient space. To slowly rotate the mechanism set θ0 = Ωt + θ̂0 for some
fixed initial offset θ̂0. (Note that θ0 and θ0 + 2π are identified.) The imposed motion
on the four-bar system is captured by the parametrized family of embeddings from Q
into S given by

mt(θ10) =

(
Ωt + θ̂0

θ10

)
.(5.23)

5.1. The nominal dynamics. To apply the method developed in section 4
the dynamics of the system in the absence of any imposed motion must be periodic.
Consider the nominal Lagrangian for the four-bar mechanism, defined by setting Ω = 0
in (5.21):

L0(θ10, ω10) =
M11

2
ω2

10 − V (θ10).(5.24)

Applying the Legendre transform, the conjugate momentum is found to be

p10 = M11ω10,
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and thus the Hamiltonian for the nominal system is

H0(θ10, p10) =
p2

10

2M11
+ V (θ10).(5.25)

The nominal dynamics is

θ̇10 =
p10

M11
, ṗ10 = − ∂V

∂θ10
.(5.26)

From (5.20) and (5.26), we see that there is an equilibrium point at (θ10 = α, p10 =
0). The existence of periodic solutions near this equilibrium point can be assured by
appealing to the following theorem by Weinstein.

Theorem 5.1 (see [36]). Consider H : R2n → R. If H is twice continuously
differentiable near an equilibrium point z and the Hessian matrix at the equilibrium
point is positive definite, then for sufficiently small ε any energy surface H(z) =
H(0) + ε2 contains at least n periodic orbits of the associated Hamiltonian system.

The Hessian matrix of the nominal system, evaluated at the equilibrium (α, 0), is(
∂2H
∂θ2

10
0

0 ∂2H
∂p2

10

)∣∣∣∣∣
(α,0)

=

(
∂2V
∂θ2

10
0

0 M−1
11

)∣∣∣∣∣
(α,0)

.(5.27)

M is positive definite by its construction, and so M11 > 0. Combining this with the
assumption in (5.20), we see that the Hessian matrix of the Hamiltonian at the equi-
librium point is positive definite, and therefore by Theorem (5.1) there is a periodic
solution around the equilibrium if the energy is sufficiently small.

Since this is a one-degree-of-freedom system, it is integrable, and thus there exist
action-angle coordinates (J, ψ) [6]. These coordinates will prove particularly conve-
nient for evaluating both the Hannay–Berry phase and the higher-order corrections.
Let Γ(h) be the trajectory in phase space corresponding to the energy h. Then

J =
1

2π

∮
Γ(h)

p10dθ10.(5.28)

The trajectory Γ(h), and thus the action, depends on the form of V (θ10). We can
write in general

J = g1(θ10, p10), θ10 = f1(J, ψ),
ψ = g2(θ10, p10), p10 = f2(J, ψ).

(5.29)

For the remainder of this paper we will assume that the initial conditions are
such that the periodic solutions of the nominal system are of small amplitude. The
expansion of V (θ10) about the equilibrium point (α, 0) yields

V (θ10) =
1

2

∂2V

∂θ2
10

∣∣∣∣
α

(θ10 − α)2 + O((θ10 − α)3).(5.30)

In the small angle limit the potential is taken only to second order. Since the springs
on each bar are identical, this is equivalent to taking

Vs(θ10) =
ks
2

(θ10 − αs)
2(5.31)
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for the potential of each spring. Here αs ∈ S1. From (5.19) the total potential is

V (θ10) = ks
[
(θ10 − αs)

2 + (π − θ10 − αs)
2
]
.(5.32)

The equilibrium point α is given by setting the derivative of V with respect to
θ10 to zero. This yields

0 =
∂V

∂θ10

∣∣∣∣
θ10=α

= 2ks (2α− π)(5.33)

and thus α = π
2 . The second derivative of V with respect to θ10 is

∂2V

∂θ2
10

= 4ks
�
= k.(5.34)

With this choice of spring potential the nominal Hamiltonian is given by

H0 =
p2

10

2M11
+

k

2
(θ10 − α)2.(5.35)

This is the Hamiltonian for a harmonic oscillator. From [6] the angle variable is the
phase of the oscillation, and the action is

J =
h

ω
,(5.36)

where ω =
√

k
M11

is the frequency of oscillation and h is the energy corresponding to

a given initial condition. From (5.35) and (5.36)

J =
p2

10 + kM11(θ10 − α)2

2
√
kM11

.(5.37)

Therefore

θ10 = α +

[
2J√
kM11

] 1
2

cosψ = f1(J, ψ),(5.38)

p10 = −
[
2J
√

kM11

] 1
2

sinψ = f2(J, ψ).(5.39)

The use of (5.38), (5.39) in (5.35) yields

H0(θ10, p10) = H0(J) =

√
k

M11
J,(5.40)

leading to the following dynamics in the action-angle variables.

ψ̇ =

√
k

M11
, J̇ = 0.(5.41)

The average 〈·〉 is then the average over one cycle of the angle variable ψ.



NONADIABATIC CORRECTIONS TO THE HANNAY–BERRY PHASE 115

5.2. The Hannay–Berry phase of the four-bar linkage. Recall that the
Hannay–Berry phase is the holonomy of the Cartan–Hannay–Berry connection and is
determined by solving the Hamiltonian system associated to the averaged momentum
function defined in (2.3). From (5.23), the velocity vector of the motion in S is

d

dt
(mt(θ10)) =

(
0
ω10

)
+

(
Ω
0

)
,

and thus the tangent vector which must be projected to Tmt(q)mt(Q) is

Z �
= Zt(mt(q(t))) =

(
Ω
0

)
.(5.42)

The projection of Z to Tmt(q)mt(Q) with respect to the kinetic energy metric on S is

given by ZT = Z − Z⊥, where Z⊥ satisfies the orthogonality condition

K(θ10)(Z⊥, X) = 0 ∀X ∈ Tmt(q)mt(Q).

Application of the orthogonality condition yields

Z⊥ =

(
Ω

−Ω
[
M10(θ10)+M11

M11

] )
(5.43)

and thus

ZT =

(
0

Ω
[
M10(θ10)+M11

M11

] )
.(5.44)

The pull-back of ZT to TqQ by [Tm]
−1

is given by projection onto the second factor,

Z
�
= [Tm]

−1 ZT = Ω

[
M10(θ10) + M11

M11

]
.(5.45)

The function P(Z) is then (following (2.3))

P(Z)(J, ψ) = Ω

[
M10(θ10(J, ψ)) + M11

M11

]
p10(J, ψ)

= −Ω

[
1 +

2mlδy
M11

sin

(
α +

[
2J√
kM11

] 1
2

cosψ

)][
2J
√
kM11

] 1
2

sinψ,(5.46)

where we have expressed the function in terms of the action-angle coordinates given
by (5.38), (5.39) and substituted for M10 using (5.17).

The flow of the nominal system induces an S1 action on T ∗Q, and the average with
respect to this action is simply the average over one cycle of the angle coordinate ψ.
Thus the Hamiltonian function defining the lift with respect to the Cartan–Hannay–
Berry connection is

〈P (Z)〉 =
1

2π

∫ 2π

0

P (Z)(J, ψ)dψ

= −
Ω
[
2J

√
kM11

] 1
2

2π

[∫ 2π

0

sinψdψ +

∫ 2π

0

2mlδy
M11

sin

(
α +

[
2J√
kM11

] 1
2

cosψ

)
sinψdψ

]

= −Ω
√
kM11

2π

[
2mlδy
M11

]
cos

(
α +

[
2J√
kM11

] 1
2

cosψ

)∣∣∣∣∣
2π

0

= 0.(5.47)
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Therefore, under the assumption of linear springs, the Hannay–Berry phase for
the equal-sided spring-jointed four-bar mechanism is zero.

5.3. Nonadiabatic corrections. From the kinetic energy metric in (5.18) and
the form of Z⊥ in (5.43) we have

‖Z⊥‖2 = Ω2

[
M2

11 −M2
10(J, ψ)

M11

]
.(5.48)

Using this and the form of P(Z) for the four-bar in (5.46), the Hamiltonian for the
rotating four-bar may be written as

H(J, ψ) = H0(J) + ΩH1(J, ψ) + Ω2H2(J, ψ),(5.49)

where

H0(J) =

√
k

M11
J,(5.50)

H1(J, ψ) =

⎡
⎢⎢⎣
b sin

(
α +
[

2J√
kM11

] 1
2

cosψ

)
+ M11

M11

⎤
⎥⎥⎦
[
2J
√

kM11

] 1
2

sinψ,(5.51)

H2(J, ψ) = −1

2

⎡
⎢⎢⎣
M2

11 − b2 sin2

(
α +
[

2J√
kM11

] 1
2

cosψ

)
M11

⎤
⎥⎥⎦ ,(5.52)

where we have defined the constant b = 2mlδy to ease the notation. To find the effect
of the imposed rotation to second order we must first find the generating function
for the change of coordinates bringing the system into first-order normal form. From
Proposition 3.8 we have

G(J) =
1

2π

∫ 2π

0

ψ (H1(J, ψ) − 〈H1(J, ψ)〉) dψ

=
1

2π

∫ 2π

0

ψ

⎡
⎢⎢⎣
b sin

(
α +
[

2J√
kM11

] 1
2

cosψ

)
+ M11

M11

⎤
⎥⎥⎦
[
2J
√

kM11

] 1
2

sinψdψ,(5.53)

where we have used (5.47). Define

c1(J) =

[
2J√
kM11

] 1
2

, c2(J) =
[
2J
√

kM11

] 1
2

.(5.54)

Then

G(J) =
c2(J)b

2πM11

∫ 2π

0

ψ sinψ sin(α + c1(J) cosψ)dψ +
c2(J)

2π

∫ 2π

0

ψ sinψdψ.(5.55)

A simple integration by parts shows that∫ 2π

0

ψ sinψdψ = −2π.(5.56)
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Similarly∫ 2π

0

ψ sinψ sin(α + c1(J) cosψ)dψ

=
2π

c1(J)
cos(α + c1(J)) − 1

c1(J)

∫ 2π

0

cos(α + c1(J) cosψ)dψ

=
2π

c1(J)
[cos(α + c1(J)) − cos(α)J0(c1(J))] ,(5.57)

where J0 is a Bessel function of the first kind. Therefore

G(J) =
c2(J)b

c1(J)
[cos(α + c1(J)) − cos(α)J0(c1(J))] − c2(J).(5.58)

To determine the second-order terms in the truncated second-order normal form
Hamiltonian for a moving system, as in (4.11), we must find the terms ad2

GH0 and
adGH1. Using the canonical bracket (4.1), we have

adGH0 =
∂H0

∂ψ

∂G

∂J
− ∂H0

∂J

∂G

∂ψ
= 0,(5.59)

since H0 and G are each independent of ψ. Thus

ad2
GH0 = 0.(5.60)

For the next term we have

adGH1 =
∂H1

∂ψ

∂G

∂J
− ∂H1

∂J

∂G

∂ψ
=

∂H1

∂ψ

∂G

∂J
.(5.61)

From the form of G in (5.58) we have

∂G

∂J
=

1

c1(J)
(b cos(α)J1(c1(J)) − b sin(α + c1(J)) − 1) ,(5.62)

and from (5.51) we have

∂H1

∂ψ
= c2(J)

[
cosψ

(
b sin(α + c1(J) cosψ) + M11

M11

)

− bc1(J)

M11
sin2 ψ cos(α + c1(J) cosψ)

]
.(5.63)

Since the average 〈·〉 is over the variable ψ, we simplify the notation by defining

A1 =
c2(J)

c1(J)M11
(b cosαJ1(c1(J)) − b sin(α + c1(J)) − 1) .(5.64)

With this definition we may write

adGH1 = A1 [b cosψ sin(α + c1(J) cosψ) + cosψ

− bc1(J) sin2 ψ cos(α + c1(J) cosψ)
]
.(5.65)
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We now calculate 〈adGH1〉. Since the average of cosψ over a full cycle of ψ is
zero, we have

〈adGH1〉 = A1b〈cosψ sin(α + c1(J) cosψ)〉 −A1bc1(J)〈sin2 ψ cos(α + c1(J) cosψ)〉.
(5.66)

Using integration by parts, we have

〈sin2 ψ cos(α + c1(J) cosψ)〉 =
1

2π

∫ 2π

0

sin2 ψ cos(α + c1(J) cosψ)dψ

=
1

2πc1(J)

∫ 2π

0

sin(α + c1(J) cosψ) cosψdψ

=
1

c1(J)
〈cosψ sin(α + c1(J) cosψ)〉,(5.67)

and using this result in (5.65) yields

〈adGH1〉 = 0.(5.68)

Finally consider

〈H2〉 = −1

2

〈
M2

11 − b2 sin2(α + c1(J) cosψ)

M11

〉

= −M11

2
+

b2

2M11
〈sin2(α + c1(J) cosψ)〉.(5.69)

Thus the second-order truncated normal-form Hamiltonian for the rotating four-
bar is

H(2) = H0 + Ω2〈H2〉

=

√
k

M11
J +

b2Ω2

2M11

〈
sin2 (α + c1(J) cosψ)

〉
,(5.70)

where a constant term has been dropped from the Hamiltonian. Since the system is
now in second-order normal form, we have for the initial conditions (J̄ , ψ̄)

φH(2)

t (J̄ , ψ̄) = φ
Ω2〈H2〉
t ◦ φH0

t (J̄ , ψ̄).(5.71)

From (5.41) the flow map for the nominal dynamics is

φH0
t (J̄ , ψ̄) =

(
J̄ ,

√
k

M11
t + ψ̄

)
.(5.72)

To determine the flow map for the second-order correction we need to solve the
Hamiltonian vector field of Ω2〈H2〉. We have

ψ̇ = Ω2 ∂

∂J

〈
sin2 (α + c1(J) cosψ)

〉
= Ω2

[
2

J
√
kM11

] 1
2

〈sin (α + c1(J) cosψ) cos (α + c1(J) cosψ)〉 ,(5.73)

J̇ = 0.(5.74)
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Calculating the average, we find

〈sin(α + c1(J) cos(ψ)) cos(α + c1(J) cos(ψ))〉

=
1

2π

∫ 2π

0

sin(α + c1(J) cosψ) cos(α + c1(J) cosψ)dψ

=
1

2π

[∫ π

0

sin(α + c1(J) cosψ) cos(α + c1(J) cosψ)dψ

+

∫ 2π

π

sin(α + c1(J) cosψ) cos(α + c1(J) cosψ)dψ

]

=
1

2π

[∫ π

0

sin(α + c1(J) cosψ) cos(α + c1(J) cosψ)

+ sin(α− c1(J) cosψ) cos(α− c1(J) cosψ)dψ

]
.(5.75)

The use of the standard sum-angle formulas for sin and cos together with an
expansion of the products in (5.75) yields

1

2π

[∫ π

0

[(
sinα cosα cos2(c1(J) cosψ) − sin2 α cos(c1(J) cosψ) sin(c1(J) cosψ)

+ cos2 α cos(c1(J) cosψ) sin(c1(J) cosψ) − sinα cosα sin2(c1(J) cosψ)
)

+
(
sinα cosα cos2(c1(J) cosψ) + sin2 α cos(c1(J) cosψ) sin(c1(J) cosψ)

− cos2 α cos(c1(J) cosψ) sin(c1(J) cosψ) − cosα sinα sin2(c1(J) cosψ)
)]

dψ

]

=
sinα cosα

π

∫ π

0

(
cos2(c1(J) cosψ) − sin2(c1(J) cosψ)

)
dψ

=
sinα cosα

π

∫ π

0

(
2 cos2(c1(J) cosψ) − 1

)
dψ

=
sinα cosα

π

∫ π

0

cos(2c1(J) cosψ)dψ

= sinα cosαJ0(2c1(J)),(5.76)

and thus

ψ̇ =
Ω2b2

2M11

[
2

J
√
kM11

] 1
2

sinα cosαJ0 (2c1(J)) .(5.77)

Recall now that the equilibrium point is α = π
2 . Insertion of this value into (5.77)

yields

ψ̇ = 0.(5.78)

The second-order correction is therefore the identity map, and we have

φH(2)

t (J̄ , ψ̄) = φH0
t (J̄ , ψ̄).(5.79)

Thus to second order the effect of a slow imposed rotation on the four-bar is zero.
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6. Conclusions. The approach developed by Marsden, Montgomery, and Ratiu
provides a unified setting for understanding the role of the Coriolis force in moving
systems. In this work we have extended the method through the use of Hamiltonian
normal form theory to account for the nonadiabatic nature of the imposed motion.
In particular we have shown that the Hannay–Berry phase can be viewed as arising
from a first-order normal form approximation to the moving system. The moving
systems approach is then naturally understood as a perturbation approach in the
rate of the imposed motion. More accurate models can be determined by carrying
the perturbation series out to higher orders. The method was applied to a rotating
free-floating spring-jointed equal-sided four-bar mechanism, and it was shown that
the effect of the imposed motion is zero to second order.

It is important to note that the approach developed here is perturbative, and
it therefore relies on the assumption that the imposed motion, while not adiabatic,
is slow with respect to the nominal dynamics. The resulting correction terms are
second-order in the rate of the imposed motion, and the technique is thus useful only
when extremely accurate modeling of the moving system is required. In addition, the
resulting approximation is valid only on the time scale O( 1

ε2 ), where ε is the rate of
the imposed motion. See [21] for more detailed comments along these lines.
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METHOD ON A CONVECTION-DIFFUSION PROBLEM:

A SPECTRAL PERSPECTIVE∗
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Abstract. This paper proposes a thorough investigation of the convergence of the volume aver-
aging method described by Whitaker [The Method of Volume Averaging, Kluwer Academic, Norwell,
MA, 1999] as applied to convection-diffusion problems inside a cylinder. A spectral description of
volume averaging brings to the fore new perspectives about the mathematical analysis of those ap-
proximations. This spectral point of view is complementary with the Lyapunov–Schmidt reduction
technique and provides a precise framework for investigating convergence. It is shown for convection-
diffusion inside a cylinder that the spectral convergence of the volume averaged description depends
on the chosen averaging operator, as well as on the boundary conditions. A remarkable result states
that only part of the eigenmodes among the infinite discrete spectrum of the full solution can be
captured by averaging methods. This leads to a general convergence theorem (which was already
examined with the use of the center manifold theorem [G. N. Mercer and A. J. Roberts, SIAM
J. Appl. Math., 50 (1990), pp. 1547–1565] and investigated with Lyapunov–Schmidt reduction tech-
niques [S. Chakraborty and V. Balakotaiah, Chem. Engrg. Sci., 57 (2002), pp. 2545–2564] in similar
contexts). Moreover, a necessary and sufficient condition for an eigenvalue to be captured is given.
We then investigate specific averaging operators, the convergence of which is found to be exponential.
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1. Introduction. Volume averaging techniques are widely used to model trans-
port problems for which decoupled or separated scales can be identified. The first
part of this introduction deals with the potential interest of volume averaging for
convection-diffusion problems in different applications. In the second part we discuss
the interest and the specificity of volume averaging as compared to other homoge-
nization methods. This general discussion is developed in the paper in a specific case
suitable for mathematical treatment: the problem of convection-diffusion in a circular
tube.

Convection-diffusion inside a tube would seem to be a simple mathematical prob-
lem. It turns out that it is a nontrivial problem, well known in the history of applied
mathematics. Starting from Graetz [17] and Lévêque [20] in the stationary case, it has
more lately interested Taylor [38] and Aris [1] in the context of its transient nonsta-
tionary asymptotic behavior. These seminal works have inspired many others, some
of which are discussed in the second part of the introduction when discussing the
methodological point of view.

Many research areas such as chemical engineering, biomechanics, and porous me-
dia are interested by variants of such a simple generic convection-diffusion problem.
For example, when the considered problem involves many tubes inside which con-

∗Received by the editors June 15, 2004; accepted for publication (in revised form) April 11, 2005;
published electronically October 17, 2005.

http://www.siam.org/journals/siap/66-1/61001.html
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vection occurs (such as heat exchangers or microvascular beds), transport equations
have been sought in terms of cross-section averaged fields [7, 19, 26, 27, 41]. Recently,
the design and optimization of microheater exchangers has stimulated the search for
averaged equations governing averaged temperature either at the tube scale or at the
scale of the whole exchanger [26, 41]. In the context of heat exchange in biological tis-
sues, averaged descriptions have remained very useful models [28] since the pioneering
Pennes model [2, 3, 30]. These investigations suggest that averaged temperature as-
sociated with “compartmental” domains such as tissues and blood flow in vessels are
interesting quantities to consider in order to model heat exchanges inside bodies. In
these cases it is crucial to understand how the microscale flow may be approximated
by averaged models because, even if possible, a detailed description of the full station-
ary problem at the local scale of each tube is not of great interest. In the context of
these applications, averaged models have proved to be useful and interesting for ap-
plied concerns. Nevertheless, even if the description of averaged quantities is useful in
practice for obvious operational reasons, there are still numerous questions concerning
the validity and the quality of the approximation given by these ad hoc models. As a
matter of fact, even if the model predictions could be in retrospect tested numerically,
it is always interesting to better understand what their mathematical foundations are.
This allows one to better understand their limits and their possible extensions. In
this paper, we investigate the model of stationary convection-diffusion inside a tube.
This study shows that, in this particular context, an averaged description can capture
only large scale features of the exact solution, the convergence of which can be made
as precise as necessary.

From a methodological point of view, spatial averaging is at first used as an op-
erational definition of macroscale quantities. From this, macroscale equations may
be derived, and the reader is referred to the paper [13] for a review of the different
perspectives and points of view. For example, macroscale equations are introduced by
many authors from extensive use of irreversible thermodynamics [18] (this approach
is also often called mixture theory). In this paper, we are interested in methods that
provide a direct, deterministic link, through some mapping variables, between the
microscale and the macroscale fields. Such a method has been applied to determine
macroscale transport equations for porous media applications, as illustrated in [39],
while concomitantly a very similar approach has been proposed by Brenner [9]. Many
characteristics and assumptions of the cited methods are close to other macroscopiza-
tion methods, such as homogenization theory [6, 36]. Indeed, the general agreement
between both methods has been described for diffusion problems in [8]. The major
features may be summarized in the following terms:

• The macroscopic characteristic scales are supposed to be decoupled from the
microscopic ones, each level having its own variable description.

• The initial boundary value problem (IBVP) that determines the microscale
fields is solved in an approximated manner in terms of the macroscale vari-
ables and some mapping variables. The approximation is materialized by
microscale problems or closure problems that completely define these map-
ping variables.

• Having solved these microscale problems, the macroscopic mathematical de-
scription is essentially dependent on the estimation of macroscopic coefficients
or effective coefficients that are explicitly given in terms of averages of the
mapping variables.

One feature of the considered volume averaging method is, therefore, that some
additional hypotheses are needed in order to simplify the original problem and relate
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the microscale fields to the macroscale ones. These additional relations, which we
called “closure relations,” are problem dependent and must be consistent with the
assumption made of separated scales. This feature is common to almost all homoge-
nization methods. For example, asymptotic methods are based on regular asymptotic
expansions for inner (microscale) and outer (macroscale) variables to be specified, the
scaling of which has to be carefully evaluated by order of magnitude analysis of the
relevant parameters [23]. Another method involving scales is the time-scale separa-
tion between master and slave modes based on center manifold description [33]. This
method has been used to provide a general and rigorous treatment of Taylor dispersion
[4, 5, 10, 21, 24, 31, 34, 40]. This method shares many features with the one exam-
ined in this paper, besides a more general background and different objectives. One
important starting point for this method is to use steady state solutions as decom-
posed into a discrete and infinite set of eigenfunctions. Examining a linear problem,
the temporal solution are then linearly decomposed into those stationary eigenmodes,
i.e., each stationary eigenmode is associated with a nonstationary one. Among those,
the one associated with the trivial zero eigenvalue is called the master mode because
it is associated with slow temporal relaxations of interest for long-time asymptotic
behavior. The other temporal modes fulfill fast temporal relaxations whose influence
on the master mode can be recast into the master equation parameters. The coupling
between slave and master modes is obtained from a linear decomposition strictly sim-
ilar to the above-mentioned “closure relations.” These closure relations are derived
from a Lyapunov–Schmidt reduction [4, 5] associated with a small parameter which is
the product between the Péclet number and the aspect ratio of the considered tube.

The general philosophy of this master/slave time separation method is then much
similar to the one applied in this paper on the spatial level. In the case of volume
averaged methods, far-field spatial asymptotic behavior (sometimes called “fully de-
veloped” spatial variations) is interesting in that it describes the evolution of a simple
one-dimensional macroscopic field, without requiring of a precise description of sup-
plementary spatial variations. There is nevertheless one major technical difference
with the goal pursued in this paper. In the case of the master/slave time separa-
tion method, the invariant manifold theorem gives a nice framework for the validity
of such slow/fast mode decomposition close to any trivial zero eigenvalue [24] (be-
cause the time scales separation is governed by the ratio of the fast to slow mode
eigenvalues). This framework can be easily transposed for spatially decaying modes
close to a trivial zero eigenvalue [4]. Those zero eigenvalue macroscopic modes might
be interesting, especially when the problem has Neumann boundary conditions. In
this case, direct Lyapunov–Schmidt reduction techniques have been used to assess
the convergence of averaging models, for example, when chemical reaction occurs
within the fluid [11]. In section 5.1.1 we will compare our results with those ob-
tained in [11] that are rediscussed in the third section of [5]. Those zero eigenvalue
macroscopic modes are nevertheless less interesting in transfer problems. In that
case they are associated with a spatially uniform eigenmode whose contribution to
the transfer between the tube wall and the fluid is zero. Other nontrivial spatially
decaying eigenmodes should then be sought. This is especially true when bound-
ary conditions are not of Neumann type, so that there is no trivial zero eigenmode.
But, in this case, the invariant manifold theorem hardly guarantees the validity and
accuracy of a slow/fast scale decoupling. One of the purposes of this paper is to re-
examine the conditions for which a macro/micro decoupling is a sensible approach in
the case of a simple convection-diffusion problem with general boundary conditions.
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In this sense, the presented analysis extends previous works [5, 11] which have used
Lyapunov–Schmidt reduction techniques close to a 0 eigenmode. Our analysis consid-
ers the approximation of nonzero eigenmodes with non-self-adjoint operators. While
restricted to a given convection-diffusion problem, this paper examines the precise
conditions for which a part of the exact solution can be captured by an averaged
model. One important conclusion, for applications purposes, that is drawn from the
proposed analysis is that, depending on the chosen averaging method (more precisely
depending on the applied weighting function), the nontrivial, interesting eigenmodes
cannot always be captured. It is, therefore, of great interest to know better what
causes averaging for convection-diffusion problems to work and why.

Moreover, there is an additional interest in our analysis for those willing to use
averaged models. Macroscale equations, as generally introduced in the literature [39],
come from first order terms. The “quality” of the first order approximation is often
checked through some comparison with direct simulations, or analytical solutions of
the microscale equations, or by developing estimates for the higher order terms. It
is often difficult to have a precise quantitative determination of those terms, and the
first approach, if available, can offer valuable information. In a preliminary study
of the tube problem, it was found that the approximation proposed by [32] would
provide a reasonable estimate of the exchange term for the established regime in the
case of diffusion/advection in a tube with constant temperature or concentration at
the surface [16]. The objective of this paper is to exhibit a higher order analysis
of the problem from which convergence proofs can be obtained so that a posteriori
conditions are found for the definition of the macroscopic scale.

The paper is organized as follows. The second section reviews a convection-
diffusion problem in the stationary case and describes its known solutions. A short
review of the results obtained with the volume averaging method is also presented in
this section to further document the general context of the study. The third section
presents a generalization of the volume averaging method previously used to describe
temporal variations [4, 5]. This leads to a precise formulation of the mathematical
convergence to any eigenmode. The fourth section presents the convergence proof in
a two-step procedure. Some numerical results associated with the the convergence of
different averaging operators are presented at the end of this section.

2. General background.

2.1. Convection-diffusion problem. The material exposed in this section
closely follows classical steps that may be found in textbooks; see, for instance, [14].
We first present the dimensionless formulation associated with convection-diffusion of
a passive scalar inside a cylinder with radial coordinate r made dimensionless by the
tube radius R. This passive scalar could be associated, for instance, with some heat
or mass transfer problem, and we will refer to it as T (r, φ, z). Classically, the ratio of
convection to diffusion characteristic times is associated with a dimensionless Péclet
number Pe = 〈v〉R/Dm, where Dm is the diffusion coefficient of the passive tracer
in the liquid and 〈v〉 is the spatially averaged velocity field. The physical problem
giving the convection velocity is supposed to be independent of the passive scalar,
so that a translation-invariant fully developed flow v(r) settles in the longitudinal
direction z along the cylinder principal axis. Making dimensionless the longitudinal
direction z by the tube radius R, the stationary governing equation expressing heat-
or mass-conservation of the passive scalar T (r, z) reads

ΔT = Pev(r)∂zT with v(r) ≥ 0 analytical in 0,(2.1)
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where Δ stands for the Laplace operator, which will be appropriately expressed in
cylindrical coordinates. As discussed later, we will be mainly interested in the situa-
tion where Pe � 1. Nevertheless, it is important to note that other definitions of the
dimensionless variable in the z direction could be adopted. As a matter of fact, the
typical longitudinal variations are linearly increasing with the Péclet number when
Pe � 1, and, furthermore, the longitudinal dimensions of the tube could be much
larger than its radius. Hence, many authors [4, 5] prefer to introduce an additional
parameter pe = PeR/L, where L is some longitudinal characteristic length associated
with the axial variations. In this context, many studies such as the classical ones
[1, 38] have been interested in the limit of pe � 1, while Pe � 1 so that longitudinal
diffusion can be neglected in comparison with transverse diffusion. This choice is
important when considering the averaged description of (2.1), which should then be
written with a small parameter pe instead of a large parameter Pe on the right-hand
side. In the following, we will keep using the Péclet number Pe parameter for the
problem. Of course, this choice should give equivalent results as those obtained from
the use of the small parameter pe, as will be explained in section 5.1.1.

In the case of a Newtonian fluid, the velocity field develops a parabolic Poiseuille
flow v(r) = 2(1 − r2). Because of its particular importance, all the numerical results
will be given in this case. However, all the theoretical results obtained in this paper
still hold for general nonnegative velocity fields v(r) ≥ 0 that are analytical in 0.
General velocity profiles are of interest for applications associated with non-Newtonian
fluid, such as, for example, blood, for which different analytical models have been
proposed for the velocity profile in a tube [15]. This can also be useful in the treatment
of turbulent dispersion in tubes, for which the Poiseuille solution is replaced by the
turbulent average velocity field, following the double averaging procedure in Pedras
and Lemos [29].

Because of its relevance to many research areas, this partial differential problem
has received much attention. Three basic classes of boundary conditions are naturally
associated with this cylindrical geometry: adiabatic Neumann boundary condition
∂rT (r = 1, φ, z) = 0 (we shall refer to it as N in the following), constant temperature
Dirichlet boundary condition T (r = 1, φ, z) = 0 (we shall refer to it as D in the
following), or mixed Robin boundary condition ∂rT (r = 1, φ, z)+γT (r = 1, φ, z) = 0,
where γ > 0 may be called Thiele modulus by reference to the case of heterogeneous
reaction (we shall refer to it as R in the following). Furthermore, the passive scalar
reference value is chosen so that, far away from the origin, it reaches its equilibrium
state, T (r,∞) = 0. The only missing boundary condition is the initial value of the
scalar field at the cylinder origin z = 0, T (r, 0) ≡ T0(r), which has to be specified.
It is easy to note that the PDE problem (2.1) is not tensorized, so that it does not
independently factorize the radial coordinate r and the longitudinal one z. While very
simple, the linear problem (2.1) does not have any explicit general solution. Hence,
many authors have been interested in the special limit for which a variable separation
can be found. In the limit of a large Péclet number, Pe � 1, when neglecting the
longitudinal diffusion compared to the radial one, (2.1) degenerates to

(
Δc +

1

r2
∂2
φ

)
T = Pev(r)∂zT,(2.2)

where Δc stands for the cylindrical part of the Laplace operator Δc ≡ 1/r∂r(r∂r) and
φ is the azimuthal angle. It can be shown that such an approximation is O(1/Pe2),
because in this limit, the longitudinal typical variations scale linearly with Pe [14].
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Equation (2.2) associated with either Neumann N , Dirichlet D, or Robin R boundary
conditions is then a separable problem for which the PDE degenerates into a Sturm–
Liouville ODE problem. Graetz [17] has found that its general solution is associated
with the discrete sets LN , N ∈ Z, of eigenvalues depending on the boundary condition

T (r, φ, z) =
∑
N∈Z

∑
l∈LN

cN,lGN,l(r)e
iNφe

l
Pe z.(2.3)

We define the generalized Graetz functions GN,l as the functions of r that satisfy⎧⎨
⎩
(
Δc − N2

r2

)
GN,l = lv(r)GN,l with D : GN,l(1) = 0, N : ∂rGN,l(1) = 0,

GN,l(r)

rN
(r = 0) = 1, R : GN,l(1) + γ∂rGN,l(1) = 0.

(2.4)

For a general—analytical in 0—velocity field v(r) one can use the Frobenius
method (cf., e.g., [35]) to see that the equation(

Δc −
N2

r2

)
y = lv(r)y,

which is singular in 0, has two linearly independent solutions y1 and y2; the first
one regular in 0 satisfies y1(r)/r

N (r = 0) 
= 0, and the second one being singular
in 0: y2(0) = ±∞. As a result, (2.4) with initial condition GN,l/r

N (r = 0) = 1
defines a unique function GN,l—which we will call the generalized Graetz function—
for each l ∈ C and N ∈ Z. Thus the following conditions in (2.4), GN,l(1) = 0 for
D, ∂rGN,l(1) = 0 for N , or GN,l(1) + γ∂rGN,l(1) = 0 for R, only select among these
generalized Graetz functions those satisfying the correct boundary condition.

Historically, the cylindrical Graetz functions G0,l has been associated with a
parabolic Poiseuille flow v(r) = 2(1 − r2) and it is usually found in the literature
that the function G0,l is the eigenfunction of

√
−l rather than l. However, this no-

tation will be kept for the sake of simplicity in the rest of the paper, and Appendix
A gives a more detailed discussion of Graetz eigenfunctions and their relations with
confluent hypergeometric functions—or Kummer’s functions.

Because (2.4) defines a self-adjoint Sturm–Liouville problem, the eigenvalues as-
sociated either with the Dirichlet, Neumann, or Robin conditions are real. Moreover,
the chosen far-field extinction boundary condition T (r,∞) = 0 selects, among those,
negative eigenvalues. LN is, therefore, a discrete set LN ⊂ R− of ordered eigenvalues
LN = {· · · < li,N < · · · < l1,N < l0,N ≤ 0}. For convenience, we will use specific nota-
tion for the sets associated with Dirichlet, Neumann, or Robin boundary conditions,
i.e.,

LD
N = {l ∈ R−, GN,l(1) = 0}, LN

N = {l ∈ R−, ∂rGN,l(1) = 0},
or LR

N = {l ∈ R−, GN,l(1) + γ∂rGN,l(1) = 0}.(2.5)

Graetz computed the first eigenvalue with two-digit precision in [17]. Tables 2.1
and 2.2 give the numerical estimates of the first three eigenvalues associated with
a parabolic flow, Dirichlet and Neumann boundary conditions. More complete and
precise computations of the eigenvalues can be found, for example, in [37]. Solution
given by (2.3) can be completed by the orthogonality properties of the eigenfunctions,

∫ 2π

0

∫ 1

0

GN,l(r)e
iNφGN ′,l′(r)e

−iN ′φv(r)r dr dφ = 0 if N 
= N ′ or l 
= l′,

(2.6)
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Table 2.1

First three elements (i = 0, 1, 2) of sets LD
N for Dirichlet boundary conditions, N = 0, 1, 2, 3

and a parabolic velocity field v(r) = 2(1 − r2).

lDi,N i = 0 i = 1 i = 2

N = 0 −3.656793458 −22.30473055 −56.96051540

N = 1 −10.69115115 −37.38965286 −80.07477640

N = 2 −21.24944651 −56.05580310 −106.8036412

N = 3 −35.46611328 −78.38573690 −137.2070675

Table 2.2

First three elements (i = 0, 1, 2) of sets LN
N for Neumann boundary conditions, N = 0, 1, 2, 3

and a parabolic velocity field v(r) = 2(1 − r2).

lNi,N i = 0 i = 1 i = 2

N = 0 0 −12.8398060 −41.93087773

N = 1 −4.160532810 −25.33493287 −62.48391850

N = 2 −12.83980600 −41.93087773 −87.08337035

N = 3 −26.13743028 −62.80555035 −115.8424000

where the overbar denotes a complex conjugate. Hence, using (2.6), the constant
coefficients cN,l in decomposition (2.3) are directly related to the projection of the
initial conditions over its corresponding eigenfunction GN,l:

cN,l =

∫ 2π

0

∫ 1

0

T0(r, φ)GN,l(r)e
−iNφv(r)r dr dφ

2π

∫ 1

0

|GN,l(r)|2v(r)r dr

.(2.7)

Hence, using the eigenfunctions defined in (2.4) the complete solution of the high
Péclet limit of the convection-diffusion problem (2.2) within a tube admits a complete
spectral representation. Incidentally, the convergence of this representation is known
to be rather slow [37]. This is especially true when describing the solution near the
origin z = 0. In this limit, even if (2.3) and (2.7) describe the true mathematical
solution, the Lévêque [20] asymptotic expansion should be preferred because of its
simplicity.

Nevertheless, this spectral representation is very useful when only part of the so-
lution is required, as, for example, for the far-field behavior when z > Pe/(l1 − l0) for
which the solution exponentially converges to the first eigenfunction. In the following,
we will concentrate on the first eigenfunctions and their associated eigenvalues. We
will be furthermore interested in the averaged description of the solution. It should
be noted that a uniform averaging along the disk section of the cylinder only keeps
axisymmetrical modes. A more detailed discussion about nonasymmetrical contribu-
tions to the averaged description will be discussed in section 5.1.3. The amplitude
decomposition (2.7) nevertheless shows that every axisymmetrical eigenvalue li,0 con-
tributes to uniformly averaged concentration solution. This should be kept in mind in
the following because many results associated with averaged descriptions in the litera-
ture have neglected contributions from eigenvalue li,0, with i ≥ 1. In the following, we
will, for example, see (what is already obvious from directly averaging solutions (2.3)
and (2.7), which lead to no contribution of l 
= 0 modes for which 〈v(r)GN,l〉 = 0)
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that a uniform averaging does not permit one to capture any decaying eigenvalue
associated with the Neumann boundary conditions.

2.2. Weighted volume averaging method. In this section we present an im-
proved version of the volume averaging method introduced in [39] that nevertheless
remains closely related to this first method—which we will call the standard volume av-
eraging method. The improvement is based on the introduction of weighted averaging
operators as proposed in [16] when the standard volume averaging method considers
only averaging associated with the Lebesgue measure. The use of weighted aver-
ages had been considered long ago for averaging transport equations [12, 13, 22, 25].
The intentions were to correctly regularize the microscale fields with the objective of
improving comparison with experiments. It is interesting to note that this paper em-
phasizes another important and fundamental role of weighted averages more related
to the mathematical structure of the operator to be averaged.

2.2.1. Definition and notation. To introduce general weighted averaging op-
erators we first introduce the standard averaging operator 〈 〉 corresponding to the
Lebesgue measure on each cylinder section for functions with radial symmetry,

〈T 〉 (φ, z) = 2

∫ 1

0

T (r, φ, z)r dr,

and we now define a general weighted averaging operator 〈 〉�, sometimes simply
denoted �, associated with any normalized weight function w(r)—i.e., such that 〈w〉 =
1—in cylindrical coordinates as

〈T 〉�(φ, z) ≡ T �(φ, z) = 〈Tw〉(φ, z) = 2

∫ 1

0

T (r, φ, z)w(r)r dr.(2.8)

In the next sections of this paper we will examine special cases of weight function
w. First, a uniform weight w = 1 is associated with the standard volume averaging
method [39]. Another interesting case, introduced in the preceding section is “mixing-
cup” averaging, where the weight function has a dependence exactly similar to that
of the velocity field w(r) ≡ v(r)/〈v〉. The resulting averaged temperature is also often
called bulk temperature. As mentioned in the previous section, this weight function is
interesting considered in this context precisely because it corresponds exactly to the
orthogonalization operator associated with the Graetz eigenfunctions, as illustrated
in (2.6). In the following, the averaging operator is either defined using a specific
weight function yet to be specified w, or, on the contrary, to simplify the notation,
a generic � is used for averaging (2.8). Now, averaging the theoretical solution (2.3)
leads to

T �(φ, z) =
∑
N∈Z

∑
l∈LN

CN,le
iNφe

l
Pe z with CN,l = cN,lG

�
N,l ∈ R.(2.9)

It should be noted that a supplementary average along the azimuthal direction
φ could be performed. If uniform along φ, such an average will only preserve the
axisymmetric mode N = 0 in (2.9). If the azimuthal averaging is chosen nonuniform
along φ, then the averaged solution could have contributions from nonaxisymmetric
mode N 
= 0. In the following, we will be mainly interested in averaging along the
radial coordinate. Thus the macroscopic field depends on the azimuthal angle φ. The
results that are presented for the convergence of averaging models will be discussed for
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any azimuthal mode N . Those averaged models could easily been averaged a second
time along φ to find longitudinally varying averaged equations as finally discussed in
section 5.1.3.

As mentioned in the introduction, the volume averaging method is a general tech-
nique whose purpose is to find a macroscopic description, i.e., an averaged description
of a microscopic field that fulfills some PDE problem, without explicitly solving the
complete problem, but solving some simplified version of it. Greek letters will be
reserved for quantities associated with the volume averaging predictions. Prediction
for the scalar field T is thus denoted Θ. In general, the prediction is decomposed
into a macroscopic volume averaging prediction Θ� and some local deviation θ to this
macroscopic behavior:

Θ(r, φ, z) = Θ�(φ, z) + θ(r, φ, z) =
∑
N∈Z

(Θ�
N (z) + θN (r, z)) eiNφ(2.10)

with the associated condition 〈θ〉� = 0. In the upscaling techniques considered in
this paper, the derivation is sought generally under the form of a mapping onto the
macroscopic variables and derivatives. The averaged of the microscale equation will
be discussed in detail later. This macroscale equation can be used to show that Θ�

also decomposes into a sum of exponential modes:

Θ�(φ, z) =
∑
N∈Z

Θ�
N (z)eiNφ(2.11)

with

Θ�
N (z) =

∑
λ∈ΛN

CN,λe
λ
Pe z with CN,λ = cN,λΓ�

N,λ ∈ R,(2.12)

where the corresponding Greek letters have been used to describe the approximated
discrete spectrum ΛN and its corresponding approximated eigenvalues λ, as well as
the corresponding approximated eigenfunction ΓN,λ, approximating GN,l with an ap-
proximated amplitude cN,λ that will be more explicitly defined in section 4.

The main purpose of section 4 is to find from which conditions it is possible to find
intersections between ΛN and the eigenvalue set LN (2.5) of the theoretical problem
(2.2). It will be found in section 4.1 that only a part of the spectrum LN can be
approximated by elements of ΛN . It will, furthermore, be shown in section 4.2 that
elements of ΛN converges toward these elements of LN that can be approximated when
increasing the order of the averaging method. The rate of convergence is consequently
studied in section 4.3.

2.2.2. Weighted volume averaging technique. In this section we present
the principal steps of the weighted volume averaging technique. The next section will
a posteriori justify the classical assumptions made in this section, from examining
the weighted volume averaging method generalized to higher order. We will study
here both Neumann and Dirichlet Graetz problems. The case of Dirichlet boundary
conditions associated with the Graetz problem has been previously examined in the
context of the standard volume averaging technique in [16]. The first step of the
method is to average the governing equation (2.2), so that 〈2.2〉� is

Pe∂z 〈vΘ〉� = 〈ΔcΘ〉� +
1

r2
〈∂2

φΘ〉� = 〈ΔcΘ〉� +
1

r2
∂2
φ〈Θ〉�.(2.13)



GENERALIZED VOLUME AVERAGING METHOD 131

The next step is to use decomposition (2.10) and (2.11) in (2.13), so that a
macroscopic equation is defined for Θ�

N :

〈ΔcΘN 〉� −N2

〈
ΘN

r2

〉�

= Pe∂z 〈vΘN 〉� .(2.14)

The completeness of this macroscopic equation necessitates the knowledge of de-
viation θN . The problem associated with the deviation θN is now obtained from
subtracting (2.14) from (2.2):

(v − 〈v〉�)Pe∂zΘ
�
N + Pe∂z(vθN − 〈vθN 〉�) = L�

NΘN ,(2.15)

where L�
N stands for the nonlocal differential operator:

L�
NΘN = ΔNΘN − 〈ΔNΘN 〉�,

ΔNΘN = ΔcΘN − N2

r2
ΘN ,(2.16)

〈ΔNΘ〉� = 〈ΔcΘN 〉� −N2
〈 1

r2
ΘN

〉�

.

This operator is neither local nor self-adjoint. It is nevertheless invertible, as
shown in Appendix C. The first term of (2.15) is a macroscopic source term that
enters in the microscopic problem defined for deviation θN . So far, no hypothesis
has been made and the above equations are exact. These equations are nevertheless
not closed because the coupling between the deviation and the macroscopic field still
remains unsolved. Finding this coupling is in fact exactly identical to solving the
original problem (2.2), the resolution of which we precisely want to avoid.

Hence, the key step is then to find a suitable hypothesis to close deviation problem
(2.14) so that it should depend only on the macroscopic field Θ�

N . First, it should
be kept in mind that the governing equation (2.2) is linear. As a consequence, it is
obvious that the deviation θN dependence with the macroscopic field Θ�

N has to be
linear here. Such a linear dependence is in fact very generally admitted in most of the
application of the method [39] and comes from the assumption of scale separation.
Hence, one writes the “closure hypothesis” by introducing the additional closure field
or mapping variables α0,1(r) which relates the deviation θN (r, z) to the macroscopic
field Θ�

N (z),

θN (r, z) =
(
w(r)α0,N (r) − 1

)
Θ�

N (z) + w(r)α1,N (r)Pe∂zΘ
�
N (z),

or, equivalently,

ΘN (r, z) = α0,N (r)Θ�
N (z) + α1,N (r)Pe∂zΘ

�
N (z).(2.17)

It is clear that additional terms are required to obtain an exact solution, and it
is our objective to understand what has been kept in such an approximate solution.
Using the closure hypothesis (2.17) in (2.15) we obtain

(L�
Nα0,N )Θ�

N + (L�
Nα1,N − v(r)α0,N + 〈vα0,N 〉�)Pe∂zΘ

�
N

−(v(r)α1,N − 〈vα1,N 〉�)Pe2∂2
zΘ�

N = 0.

The condition of this equality is that each coefficient multiplying the macroscopic
field variations Θ�, ∂zΘ

�, ∂2
zΘ� is equal to zero. Nevertheless, (2.17) has introduced
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a closure hypothesis with only two terms, so that the first two terms should also
be considered here self-consistently. This last point is further discussed in the next
section. Hence, problems associated with the closure fields α0,N and α1,N are{(

L�
Nα0,N

)
(r) = 0,

α�
0,N = 1,

and

{(
L�
Nα1,N

)
(r) = v(r)α0,N (r) − 〈vα0,N 〉� ,

α�
1,N = 0

(2.18)

with αi,N(1) = 0 for D, ∂rαi,N (1) = 0 for N or

αi,N (1) + γ∂rαi,N (1) = 0 for R, i = 1, 2.

These problems can be solved analytically for a Neumann, Dirichlet, or Robin
boundary condition, and their resolution is detailed in Appendix C. When introducing
these solutions in the macroscopic problem (2.14), one finds the macroscopic problem

K0,NΘ�
N + K1,NPe∂zΘ

�
N − 〈vα1,N 〉Pe2∂2

zΘ�
N = 0,(2.19)

which involves the effective parameters

K0,N = 〈ΔNα0,N 〉� , K1,N = 〈ΔNα1,N 〉� − 〈vα0,N 〉� ,(2.20)

and the solution for Θ�
N decomposes to a sum of exponential modes with an associated

characteristic length Pe/λ, which then defines the set Λ1,N of eigenvalues predicted
by the volume averaging technique

Λ1,N = { λ / K0,N + K1,Nλ− 〈vα1,N 〉λ2 = 0 }.(2.21)

2.2.3. Explicit results. This section gives the solutions of problem (2.18), i.e.,
the mapping variables, and (2.19) obtained for different values of the weighted func-
tion w.

• Standard volume averaging, w = 1, axisymmetric mode N = 0.
The solution for the closure function has been found equal to the following:

for D :

{
α0,0(r) = 2(1 − r2),

α1,0(r) = r6

9 − r4

2 + r2

2 − 1
9 ;

for N :

{
α0,0(r) = 1,

α1,0(r) =− r4

8 + r2

4 − 1
12 .

(2.22)

Thus constants K0,0 and K1,0 can be computed:

for D :

{
K0,0 =−16,
K1,0 =−2;

for N :

{
K0,0 = 0,
K1,0 =−1.

(2.23)

These calculations permit us to compute the associated approximated eigenvalues
by solving (2.21). As already observed in [16], the resulting Dirichlet eigenvalue
λD

0,0 � −3.874877690 gives a rather good approximation of the Graetz value lD0,0 �
−3.656793458 up to 6%. On the contrary, the Neumann eigenvalue lN1 � −12.839806
is completely missed by the volume averaging method, which nevertheless gives the
trivial solution zero, lN0,0 = 0. This trivial solution is of course of great practical
interest since it corresponds to the exact solution when the temperature at the origin
is constant; it also gives the correct averaged temperature of the far-field solution.

• Flow averaging, w = v/〈v〉 = 2(1 − r2), axisymmetric mode N = 0.
The solution for the closure function has been found equal to the following:

for D :

{
α0,0(r) = 3

2 (1 − r2),

α1,0(r) = r6

12 − 3r4

8 + 57r2

160 − 31
480 ;

for N :

{
α0,0(r) = 1,

α1,0(r) = − r4

8 + r2

4 − 1
16 .

(2.24)
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Thus constants K0,0, K1,0 can be computed:

for D :

{
K0,0 = −3,
K1,0 = − 63

40 ;
for N :

{
K0,0 = 0,
K1,0 =−1.

(2.25)

The approximate Dirichlet eigenvalue in this case is found equal to λD
0,0 �

−3.809523810, which is 4% from the theoretical Graetz eigenvalue lD0,0. The Neumann

trivial solution λN
0,0 = 0 is also found and the first Neumann nontrivial eigenvalue λN

1,0

is also totally missed in the case of a flow averaging.
The following section investigates the capacity of the method to find the cor-

rect answer to the problem while generalizing it by introducing higher order closure
hypothesis.

3. Weighted volume averaging method of higher order. The notation and
methodological steps in this section are closely following those previously presented in
sections 2.2.1 and 2.2.2. More precisely, the solution we are looking for is decomposed
as (2.10), and the same exact steps (2.13)–(2.15) are now considered again.

The improvement of the method consists in a generalization of the closure hypoth-
esis (2.17). This is introduced in order to ameliorate the results previously obtained
in section 2.2.3, with, for instance, the hope to capture the first nontrivial Neumann
eigenvalue lN1,0.

From the property (4.2) of the exact solution that will be studied in section
4.1.1, and from the previously examined closure relation (2.17) let us now introduce
a generalized closure relation:

ΘN (r, z) =

p∑
n=0

αn,N (r)Pen∂n
z Θ�

N (z)(3.1)

with p ≥ 1. The case p = 1 has been analyzed in section 2.2.2, and we now follow
the same steps. Using (3.1) in the deviation equation (2.15) it is found, assuming
α−1,N (r) = 0, that

p∑
n=0

(L�
Nαn,N − vαn−1,N + 〈vαn−1,N 〉�)Pen∂n

z Θ�
N (z)

− (vαp,N − 〈vαp,N 〉�)Pep+1∂p+1
z Θ�

N (z) = 0.

The condition of this equality gives, at each order, the closure problem associated
with the closure functions αn,N (r), whose solvability is left to Appendix C, and which
is to be solved recursively:⎧⎪⎪⎨

⎪⎪⎩
L�
Nαn,N = v(r)αn−1,N (r) − 〈vαn−1,N 〉� with α−1,N (r) = 0,

α�
0,N = 1 or α�

n,N = 0 for n ≥ 1,

αn,N (1) = 0 for D,
∂rαn,N (1) = 0 for N .

(3.2)

The resolution of these problems is detailed in Appendix C.2.
From solving (3.2) it is possible to find the generalized macroscopic closed problem

at order p:

p∑
n=0

Kn,NPen∂n
z Θ�

N (z) − 〈vαp,N 〉� Pep+1∂p+1
z Θ�

N (z) = 0,(3.3)
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where the macroscopic coefficients Kn,N are given by

Kn,N = 〈ΔNαn,N 〉� − 〈vαn−1,N 〉� , Kn,N ∈ R.(3.4)

The predicted solutions of (3.3) then decompose into a sum of exponentials with
modes λ/Pe for λ belonging to the set of predicted eigenvalues at order p, Λp,N ,
defined as the zeros set of a p + 1 order polynomial:

Λp,N =

{
λ

/ p∑
n=0

Kn,Nλn − 〈vαp,N 〉� λp+1 = 0

}
.(3.5)

As previously, Λp,N is independent of Pe, but does depend on the chosen boundary
conditions and the order p of the closure relation. This last point naturally leads to
the concept of convergence.

Definition 3.1 (convergence of the weighted volume averaging method). The
elements of all sets Λp,N define sequences of predicted eigenvalues: (λi,p)p≥1,i≥0, λi,p ∈
Λp,N .

We shall say that the method is convergent toward some eigenvalue li ∈ LN of the
theoretical problem (2.2) if there exists a sequence of predicted eigenvalues (λi,p)p≥1,i≥0

such that λi,p ∈ Λp,N and limp→+∞ λi,p = li ∈ LN .
We will establish the convergence for a characterized part of the spectrum in

section 4.3.

4. Convergence analysis. Previous sections have mainly considered the ex-
plicit application of the averaging method to Graetz problem. The necessary material
and notation being now defined, this section considers the mathematical analysis of
the convergence of these averaging methods. This convergence analysis requires two
different steps. The first step introduces two necessary conditions over eigenvalues for
convergence to hold. The second step gives the proof that these two necessary condi-
tions are sufficient. In the two subsequent sections, the results are derived in a general
context, and formally apply to any mode N , as well as any boundary conditions D,
N , or R and any flow v(r). Hence, in order to simplify notation, the analysis does
not mention, unless necessary to avoid confusion, which azimuthal mode it refers to,
nor the boundary conditions that are considered. Finally, specific situations will be
considered in section 4.3 for analyzing the numerical convergence.

4.1. Restricted convergence of weighted averaging methods. We define
in the two following sections two sets, the validity—D�

val—and the accessibility—
D�

acc—domains, which are disks lying in the complex plane C. As we will see, a
necessary condition for the weighted averaging method to converge toward an eigen-
value l ∈ L is that this eigenvalue belongs to both of these domains.

4.1.1. Validity domain D�
val. The variables of the initial problem (2.2) can be

separated so that any solution T (r, φ, z) may be written as a product of functions of r,
φ, and z only. Let us first show in this section that the exact solution of the problem
can be formally written as a regular asymptotic expansion of the macroscopic field
T �(φ, z). First let us decompose T as

T (r, φ, z) =
∑
N∈Z

TN (r, z)eiNφ.(4.1)

The aim of this section is to analyze under which condition the Nth component
TN (r, z) in decomposition (4.1) of the theoretical solution T (r, φ, z) can be written as
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the following expansion of T �
N (z):

TN (r, z) =
∑
n≥0

an(r)Pen∂n
z T

�
N (z)(4.2)

(where the index N on the closure functions an(r) has been omitted for simplicity)
to be compared with the general closure hypothesis (3.1) for ΘN (r, z).

Let us recall the form of the original solution (2.3),

TN (r, z) =
∑
l∈LN

clTl(r, z) with cl ∈ R , Tl(r, z) = GN,l(r)e
l

Pe z,(4.3)

so that (4.2) is true for TN (r, z) if and only if it holds for each function Tl(r, z) standing
in the decomposition (4.3) of TN (r, z). Comparing then the expression for Tl in (4.2)
and (4.3), one can see that (4.2) holds for Tl(r, z) if and only if the following equality
over the Graetz eigenfunctions Gl holds:

∑
n≥0

an(r)ln =
GN,l(r)

G�
N,l

.(4.4)

We will prove that both functions GN,l(r) and G�
N,l are analytical with respect

to l, so that the expansion of GN,l(r)/G
�
N,l on the form (4.4) is only possible for l

belonging to a disk D�
val centered on zero whose radius R is equal to the smallest root

of G�
l .
Definition 4.1. Let us call validity domain the disk D�

val ⊂ C,

D�
val =

{
l, |l| < R

}
, where R = inf

{
|l| / G�

N,l = 0
}
,

depending only on the averaging operator � and on N .
Now, one can see that the decomposition (4.2) is not true in general. It is true

only if all the eigenvalues l standing in the decomposition (4.3) of TN (r, z) belong to
the validity domain D�

val. An important consequence is that a closure formulation
(3.1) only makes sense for eigenvalues lying in D�

val. Hence, a necessary—but not
sufficient—condition for an eigenvalue l ∈ L to be predicted by the averaging method
is to lie within D�

val. It is also interesting to note that D�
val depends only on the

averaging operator � and N , but not on the boundary conditions.
We summarize this condition, as well as the definition of the new functions an(r),

in the following lemma.
Lemma 4.2. The base functions Tl(r, z) = GN,l(r)e

l
Pe z for problem (2.2) can be

written

Tl(r, z) =
∑
n≥0

an(r)Pen∂n
z T

�
l (z)

if and only if l ∈ D�
val defined by

D�
val =

{
l/|l| ≤ R

}
, where R = inf

{
|l|/G�

N,l = 0
}
,

and the functions an(r) are the solution of the recursive scheme{
ΔNan(r) = v(r)an−1(r) with a−1(r) = 0,
a�0 = 1 and a�n = 0 for n ≥ 1.

(4.5)
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Proof. In Appendix B we give the proof that the functions GN,l(r), ∂rGN,l(r),
and ΔNGN,l(r) are analytical with respect to l on the whole complex plane C. More
precisely there exists a set of functions (qn(r))n∈N

(depending also on N) defined by
(B.4) such that for r ∈ [0, 1] and l ∈ C one has

GN,l(r) =
∑
n≥0

qn(r)ln , ∂rGN,l(r) =
∑
n≥0

∂rqn(r)ln , ΔNGN,l(r) =
∑
n≥0

ΔNqn(r)ln.

As a result the three functions
GN,l(r)
G�

N,l
,

∂rGN,l(r)
G�

N,l
,

ΔNGN,l(r)
G�

N,l
are analytical with

respect to l for l ∈ D�
val and r ∈ [0, 1] and there exist three sets of functions (an(r))n∈N

,
(bn(r))n∈N

, and (cn(r))n∈N
such that for l ∈ D�

val and r ∈ [0, 1],

GN,l

G�
N,l

(r) =
∑
n≥0

an(r)ln ,
∂rGN,l

G�
N,l

(r) =
∑
n≥0

bn(r)ln ,
ΔNGN,l

G�
N,l

(r) =
∑
n≥0

cn(r)ln.

(4.6)

Using the integration theorem on these series one gets

bn(r) = ∂ran(r) and cn(r) = ΔNan(r) ∀ n ∈ N,

so that

ΔNGN,l

G�
N,l

(r) =
∑
n≥0

ΔNan(r)ln.(4.7)

Now the function
GN,l

G�
N,l

(r) is the unique solution of the ODE:

ΔNf = lv(r)f and f� = 1.(4.8)

Rewriting (4.8) with (4.6) and (4.7) gives that the functions (an(r))n∈N
are exactly

given by the recursive scheme (4.5).

4.1.2. Accessibility domain D
�
acc. The eigenvalues predicted by the averaging

method are the roots of the polynomial equation (3.5). Let us consider—as p →
∞—the limit set of predicted eigenvalues Λ∞ defined as the zeros set of the series∑

n≥0 Knλ
n:

Λ∞ =

{
λ

/∑
n≥0

Knλ
n = 0

}
,(4.9)

where the index N on the macroscopic coefficient, assumed to be fixed, has been
omitted. Among the eigenvalues predicted with the averaging method at order p, the
only ones that make sense are those approximating some λ ∈ Λ∞, and by increasing
the order p of the method one can only improve the computation on these modes
λ ∈ Λ∞. As a result, for an eigenvalue l ∈ L of the theoretical problem (2.2) to
be approximated by the averaging method, and for this method to be convergent as
p → ∞ to this eigenvalue l ∈ L, it is necessary—but not sufficient—that the series∑

n≥0 Knl
n be convergent.

With definition (3.4) of the macroscopic coefficient Kn, the series
∑

n≥0 Knl
n

make sense for l ∈ D�
acc defined as follows.
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Definition 4.3. Let us call accessibility domain D�
acc ⊂ C the disk of all the

complex λ ∈ C such that the series∑
n≥0

αn(r)λn,
∑
n≥0

ΔNαn(r)λn,
∑
n≥0

∂rαn(r)λn(4.10)

are convergent for r ∈ [0, 1]. If λ ∈ D�
acc, we say that λ is accessible by the averaging

method.
Contrary to the validity domain D�

val, the accessibility domain D�
acc does not de-

pend only on the averaging operator � and on N , but also on the boundary conditions
that influences the computation of functions αn.

4.1.3. Evaluation of D�
val and D�

ac. We here focus on the numerical evaluation
of the two previously introduced domains D�

val and D�
ac.

To compute the radius of the validity domain D�
val, we need to compute the

smallest root of the function of l, G�
N,l. For this, we give in Appendix B an expansion

of the generalized Graetz functions GN,l(r) with the help of a set of functions qn(r)
defined in (B.4): GN,l(r) =

∑
n≥0 qn(r)ln. The computation of these functions qn(r)

make it possible to compute the radius of D�
val as the smallest root of the polynomial∑

n≥0 q
�
nl

n.
To compute the radius of the accessibility domain D�

acc one needs an upper bound
on the three functions αn(r), ∂rαn(r), and ΔNαn(r) for r ∈ [0, 1]. Experiments based
on the computation of these functions showed that ΔNαn(r = 1) is a good upper
bound for these functions and the radius of D�

acc is equal to the convergence radius
of the series

∑
n≥0 ΔNαn(r = 1)λn.

Radii for D�
val and D�

acc for some chosen weight functions w(r) are given in
Table 4.1. Comparing Table 4.1 with Tables 2.1 and 2.2 shows that the standard and
the flow averaging method can only capture lD0,0 for D and lN0,0 = 0 for N . This result
is self-consistent with the computations previously examined in section 2.2.3. To cap-
ture the first nontrivial eigenvalue for N one needs to use other averaging operators.
Moreover, it will be shown in section 4.2 that the two necessary conditions introduced
in the previous sections are actually sufficient for the convergence to hold. In addi-
tion, it will appear that the first nontrivial eigenvalue for N , lN1,0 � −12.8398060, and

even the second eigenvalue for D, lD1,0 � −22.30473055, can be captured when using
adapted averaging operators.

4.2. Convergence theorem. We introduced in the previous subsection two
necessary conditions associated with any eigenvalue l ∈ L to be captured by the
averaging method. We prove here that these conditions are actually sufficient for
the convergence to hold. More precisely, the eigenvalues predicted by the averaging
method when p → ∞ are exactly the eigenvalues of the theoretical problem (2.2) that
both belong to the validity and accessibility domains.

Table 4.1

Radius of D�
val and D�

acc for different weights and for N = 0.

w(r) D�
val D�

acc, D D�
acc, N

1 7.84 15.899 10.568

2(1 − r2) −lN1 � 12.839 18.632 12.839

1/(2r) 354.75 24.789 14.665

10(1 − r)3 >500 29.82 23.33
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Fig. 4.1. Computation of the accessibility domain D�
acc for a Robin boundary condition versus

the parameter γ and for N = 0. The four weighting functions w considered on Table 4.1 have been
analyzed. Black circles stands for the flow-averaging method with w = v/〈v〉, and white circles for
the classical uniform volume averaging w = 1. White squares are for w = 1/(2r) and black squares
are for w = 10(1 − r)3.

Theorem 4.4. Between the set of eigenvalues L of theoretical problem (2.2) and
the three following sets: the validity domain D�

val defined in Definition 4.1, the limit
set of predicted eigenvalues Λ∞ in (4.9), and the accessibility domain D�

acc defined
in Definition 4.3, one has the relation (for any azimuthal mode N , any boundary
condition D, N , or R, and any averaging operator �)

Λ∞ ∩D�
val = L ∩D�

val ∩D�
acc,(4.11)

which means that the eigenvalues predicted by the averaging method inside D�
val exactly

converge toward the theoretical eigenvalues of (2.2) being inside D�
val ∩D�

acc.
Proof. We recall that we defined in (2.4) the generalized Graetz functions GN,l(r)

for each l ∈ C and each N ∈ Z as the unique solution for the ODE,

ΔNGN,l = lv(r)GN,l(r),
GN,l(r)

rN
(r = 1) = 1,(4.12)

and that for Neumann, Dirichlet, or Robin boundary conditions, the associated sets
of theoretical eigenvalues are given by (2.5).

Using Lemma 4.2, one has that

LN ∩D�
val =

{
l ∈ C,

∑
n≥0

∂ran(1)ln = 0

}
,

LD ∩D�
val =

{
l ∈ C,

∑
n≥0

an(1)ln = 0

}
, or

LR ∩D�
val =

{
l ∈ C,

∑
n≥0

(an(1) + γ∂ran(1))ln = 0

}
,

where the functions (an(r))n∈N
are those defined by the recursive scheme (4.5). For

simplicity, one introduces the quantities An defined as follows:

for D : An = an(1); for N : An = ∂ran(1); for R : An = an(1) + γ∂ran(1).
(4.13)
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Thus for D, N , or R cases one has

L ∩D�
val =

{
l ∈ C,

∑
n≥0

Anl
n = 0

}
.

Let us consider the two functions of l as the sum of the following series in l:

Al =
∑
n≥0

Anl
n, Kl =

∑
n≥0

Knl
n,

which are convergent for l ∈ D�
val ∩D�

acc.
Then, to prove (4.11) one exactly has to show that

∀ l ∈ D�
val ∩D�

acc : Al = 0 if and only if Kl = 0.(4.14)

To prove this, one has to find a relation between An and the macroscopic coef-
ficient Kn. For this, one introduces the set of functions

(
en(r)

)
associated with the

difference between functions an(r) and αn(r) defined in (4.5) and (3.2):

en(r) = αn(r) − an(r) .(4.15)

These functions, by subtracting (4.5) from (3.2), are exactly defined by the fol-
lowing recursive scheme:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ΔNen(r) =Kn + v(r)en−1(r) with e−1(r) = 0,
e�n = 0,

en(1) =−An for D,
∂ren(1) =−An for N ,

en(1) + γ∂ren(1) =−An for R.

(4.16)

This recursive formula does depend on both macroscopic coefficients Kn and An.
Let us finally define the macroscopic difference function El(r) by

El(r) =
∑
n≥0

en(r)ln =
∑
n≥0

αn(r)ln −
∑
n≥0

an(r)ln,

which is well defined for l ∈ D�
val ∩D�

acc.
We search a differential problem satisfied by El(r).
Thanks to Lemma 4.9 on D�

val and to Definition 4.3 of D�
val, the series∑

n≥0

an(r)ln,
∑
n≥0

∂ran(r)ln,
∑
n≥0

ΔNan(r)ln and

∑
n≥0

αn(r)ln,
∑
n≥0

∂rαn(r)ln,
∑
n≥0

ΔNαn(r)ln

converge for all l ∈ D�
val∩D�

acc and all r ∈ [0, 1]. Then, using the integration theorem
and the properties (4.16) of functions en(r) one has

∀ l ∈ D�
val ∩D�

acc ∀ r ∈ [0, 1] :

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ΔNEl(r) =Kl + v(r)El(r),
E�

l = 0,
El(1) =−Al for D,

∂rEl(1) =−Al for N ,
El(1) + γ∂rEl(1) =−Al for R.
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Kl or Al being fixed, this problem has one and only one solution so that Al is a
function of Kl and vice versa. Now, it is easy to check that the solution associated
with Al = 0 is El = 0, which eventually fixes Kl = 0. Conversely, and for the same
reason, Kl = 0 fixes Al = 0. This ensures (4.14), which proves Theorem 4.4.

It is interesting to note that because El = 0 is the solution associated with a con-
verging eigenvalue λ∞ ∈ Λ∞ = l ∈ L, the ratio between the predicted eigenfunction
and its value at r = 0 also converges to the theoretical Graetz eigenfunction. This
leads to the following important corollary.

Corollary 4.5. For an eigenvalue l ∈ L ∩ D�
val ∩ D�

acc, with an associated
set of approximated eigenvalues (λp)p∈N such that limp→∞ λp = l, let us define the
approximated eigenfunction Γλp as

Γλp(r) =
1

ρ

p∑
n=0

αn(r)λn
p with ρ =

p∑
n=0

αn(r)

rN
(r = 0)λn

p ;(4.17)

then Γλp
converges toward the generalized Graetz function GN,l,

lim
p→∞

‖Γλp −GN,l‖ = 0.(4.18)

Moreover, defining the amplitude cλ, in the same way as cl defined in (2.7),

cλp
=

∫ 2π

0

∫ 1

0

T0(r)Γλp(r)e
−iNφv(r)r dr

2π

∫ 1

0

|Γλp
(r)|2v(r)r dr

; then lim
p→∞

|cλp − cl| = 0.(4.19)

Hence, not only does Theorem 4.4 give a necessary and sufficient condition for
an eigenvalue to converge, but also the eigenmode will converge to the corresponding
theoretical solution. We now numerically study the convergence of various eigenmodes
for different averaging operator w.

4.3. Convergence evaluation. This section studies the numerical evaluation
of the convergence to either the eigenvalue, the eigenfunction, or the eigenmode am-
plitude for a Poiseuille parabolic velocity profile v(r) = 2(1 − r2).

We calculate the closure functions αn from the recursive scheme (3.2), so that the
coefficients Kn defined in (3.4) of the eigenvalues polynomial (3.5) can be computed.
From the obtained solution leading to p + 1 eigenvalues, we select the larger one in
R

−. Figure 4.2 displays the relative error of this approximated eigenvalue for different
weighting functions w. For the first Dirichlet eigenvalue, Figure 4.2(a) displays expo-
nential convergence rates. Moreover, when comparing the results of Figure 4.2(a) with
Table 4.1, it is not surprising to observe that a larger radius of convergence D�

acc gives
rise to a faster convergence rate. As demonstrated in the previous section, the second
eigenvalue for the Dirichlet or Neumann boundary condition is not accessible to the
standard volume averaging methods—w = 1—or the kinematic volume averaging—
w = v/〈v〉. On the contrary, two other weighting functions w have been proposed in
Table 4.1, the convergence of which has been established for the second eigenvalue in
the previous section. Figures 4.2(b) and (c) study their convergence on the second
eigenvalue in the Dirichlet and Neumann cases. It is interesting to observe on these
figures that the convergence rate still looks exponential, even if the convergence rate
is much slower than those observed in Figure 4.2(a). More modes should indeed be
needed for an acceptable precision to be obtained.
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Fig. 4.2. Relative error for axisymmetrical N = 0 eigenvalues l0,0 and l0,1. (a) Relative error
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0 = |λD
0,p− lD0,0|/lD0,0 between the predicted eigenvalue and the theoretical one lD0,0 = −3.656793458,

versus the order p of the approximation. Black circles stand for the flow-averaging method with
w = v/〈v〉, and white circles for the classical uniform volume averaging w = 1. White squares
are for w = 1/(2r) and black squares are for w = 10(1 − r)3. In every case the convergence is
exponential, as indicated by the observed semilog linear behavior. (b) We use the same conventions
for the second Dirichlet eigenvalue lD0,1 = −22.30473055 convergence ED

1 = |λD
1,p− lD0,1|/lD0,1. (c) We

use the same conventions for the second Neumann eigenvalue convergence lN0,1 = −12.8398060 with
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Fig. 4.3. Relative error for axisymmetrical N = 0 eigenmode. (a) Relative error Ec =
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|/clD0,0 between the predicted amplitude and its theoretical value associated with a uni-

form initial temperature T0 = 1 at z = 0 for the first Dirichlet eigenmode, versus the order p of the
approximation. (b) Absolute error EG = ||ΓλD

0,p
− GlD0,0

|| = 〈w(ΓλD
0,p

− GlD0,0
)2〉 on the predicted

eigenfunction for the first Dirichlet eigenmode.

Moreover, for finite values of the spectral cut-off p, the second eigenvalue could
not always be captured. For example, this can be observed in Figure 4.2(b) in the case
of weighting function w = 10(1−r)3, for which the eigenvalue becomes real, so that it
is considered to be captured by the approximation for p ≥ 12 only. This example also
illustrates that an empirical test of the convergence is not always successful. If one
would have guessed, ignoring the convergence proof, from the computation of the first
10 mapping variables αp, p < 10, that the first eigenvalue computed in Figure 4.2(b)
is captured by the weighting function w = 10(1− r)3, it would have found the wrong
answer. Figure 4.3 displays the convergence of the amplitude and the eigenfunction
defined in Corollary 4.5 for the first Dirichlet mode. It is interesting to note that
even the first approximation p = 1 that has been detailed in section 2.2.3 permits a
rather precise amplitude and eigenmode estimate for every tested weighting function
w. The convergence rate displayed on Figure 4.3 is also found to be exponential,
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symmetrical N = 1 eigenvalues l1,0. (a) Relative error EN
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approximation. (b) We use the same conventions for the first Dirichlet eigenvalue convergence
lD1,0 = −10.69115115 with ED
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as already observed for the eigenvalue convergence. This result does not seem very
surprising, for the generalized averaging method has many characteristics in common
with a spectral discrete method.

Finally, nonaxisymmetrical mode convergence have been investigated. The con-
vergence of the leading order N = 1 eigenvalue is represented on Figure 4.4. It
is interesting to observe that low order approximation (e.g., p < 5) gives rise to a
rather precise estimation of this first nonaxisymmetric mode. It should then be noted
that for both Neumann and Dirichlet boundary conditions, |l1,0| is smaller than |l0,1|.
Hence, the better convergence of Figures 4.4(a) and (b) compared to Figures 4.2(b)
and (c) can be qualitatively understood. Neumann and Dirichlet situations give lower
and upper bounds for the convergence of the more general Robin boundary condition
when varying γ from 0 to infinity. Hence, the Robin case should converge the same
way as it is observed in the above figures.

5. Discussion and conclusion.

5.1. Discussion. This section discusses the results obtained in the previous sec-
tions in the light of previous analysis found in the literature.

5.1.1. Context of the presented analysis. As already mentioned in sec-
tion 2.1 after defining the convection diffusion problem, (2.1), different characteristic
lengths can be chosen for making dimensionless the longitudinal dimension z, and
this leads to different Péclet numbers Pe � 1 or pe � 1. Any choice should lead
to consistent results. When choosing the Péclet number Pe � 1, it is known that
longitudinal variations along z scale linearly with Pe. This result holds as an asymp-
totic expansion discarding O(1/Pe2) terms [1], and leads to the simplified constitutive
equation (2.2). Balakotaiah and Chang [5] mention that the condition Pe � 6.93 is
necessary for neglecting axial diffusion. The linear scaling of z variations with Pe is
described in solution (2.3) and used in the average description of the problem (2.12).
From this nondimensionalization choice, it appears that standard [39] “ad hoc”closure
relations used in (2.17) and (3.1) do not depend on the Péclet number because each
z derivative cancels the corresponding algebraic dependence in Pe. It then appears
that closure relations (2.17) and (3.1) are in fact an asymptotic expansion that in-
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volves the eigenvalue l of the problem as a small parameter. The validity range of
this asymptotic expansion, which should better be described as an analytic expansion
of the eigenfunction with the eigenvalue, is investigated in section 4, while in the
meantime the “ad hoc”closure relations are a posteriori justified by the convergence
proof obtained in the same section. All the validity range results for eigenvalues are
obtained independently from the value of the Péclet number, but are valid for Pe � 1
since the starting constitutive equation (2.2) derives from (2.1) discarding O(1/Pe2)
terms [1].

5.1.2. Comparison with other convergence results. It is now interesting
to more clearly compare our analysis with previously obtained convergence results.
For example, some convergence criteria have been discussed in the context of cen-
ter manifold approximations of the convection-diffusion problem (2.1) by Balakotaiah
and Chang in [4]. In the case of spatially varying solutions, the solution is projected
over Graetz eigenfunctions, and a criterion has been found by summing the expansion
series. The convergence criterion can be expressed in the same framework by consid-
ering the smallest longitudinal variations associated with a critical λc. In the case of
Dirichlet boundary conditions, it was found λD

c = 13.80 in [4], whereas λN
c = 37.7

was obtained in the case of Neumann boundary conditions. These values have to
be compared with the results in Table 4.1. One has to note, that, in our case, the
convergence radius Dacc obtained from computing the expansion series is not the only
relevant parameter for convergence. Dval, which comes from the analyticity condi-
tion on the averaged Graetz eigenfunction that we wish to approximate, must also be
considered. The convergence radius is the minimum of Dacc and Dval.

The Lyapunov–Schmidt reduction technique such as used in [5, 11] is also another
method that should be compared to our analysis. As mentioned in the introduction,
this approximation shares much similarities with ours, and the results are also quite
similar. In this case, the considered equation (2.1) is written by making dimension-
less the longitudinal direction z by L so that the Péclet number is replaced by the
small parameter pe = PeR/L, as already indicated in section 2.1. The first step of
the Lyapunov–Schmidt reduction approximation is to look for a regular asymptotic
expansion solution of (2.1) in terms of the small parameter pe. The solution is then
decomposed into two parts similar to (2.10) and (3.1) (but based on a splitting of the
linear operator eigenfunctions into “master” eigenfunctions of the kernel of the adjoint
operator and “slave” eigenfunctions of the image of the adjoint operator; see, for ex-
ample, [11]). In the case of the Neumann boundary condition and weighting function
w = 1, the first closure field solutions that we have obtained are exactly the same as
those previously obtained in [5, 11]. More precisely, the first slave mode computed
in equation (31) of [11] or equation (3.8) of [5] corresponds to the Neumann solution
α1,0 found in (2.22). Nevertheless, higher expansion closure fields differ from those of
Chakraborty and Balakotaiah [11]. By summing the expansion series, those authors
have been able to find a convergence radius for the approximation. Following criteria
equation (73) of [11], and the discussion in section 3 of [5], the convergence radius of
the Neumann boundary conditions with uniform averaging is λN

c = 48×0.288 = 13.8,
which should be compared with the value 10.56 in Table 4.1.

This comparison shows that some of our convergence results are very similar to
those previously obtained in the literature with other approaches.

5.1.3. Azimuthal averaging. In this section we discuss the possibility and the
interest of azimuthal averaging. First, it should be noted that relation (2.7) gives the
amplitude of each nonaxisymmetrical mode of the theoretical solution. If, for example,
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an initial condition is chosen with a pulse at a given location (r0, φ0), i.e., T0(r, φ) =
δ(r−r0)δ(φ−φ0), then all nonaxisymmetrical modes, N 
= 0 will be represented with a

weight cN,l = GN,l(r0)v(r0)r0/
∫ 1

0
|GN,l(r)|2v(r)r dr because the Fourier transform of

the Dirac distribution is uniform. In that case, if one averages the theoretical solution
with a uniform weight function along the azimuthal angle φ, all nonaxisymmetrical
mode,s N 
= 0 will not contribute to the averaged concentration because 〈eiNφ〉φ =
0 for N 
= 0. This is not true when using a nonuniform averaging operator wφ

along the azimuthal angle φ. In this case, there should be some contribution to
the averaged concentration coming from nonaxisymmetrical mode N 
= 0, summing
cN,l〈eiNφwφ〉φ〈GN,l〉� contributions.

Some of these nonaxisymmetrical contributions to the true averaged concentra-
tion solution could indeed be captured by an averaging method, as shown in the
previous sections. Hence, for each nonaxisymmetrical eigenvalue l, one can obtain the
appropriate averaging approximation cλp

〈eiNφwφ〉φ〈Γλp〉� of its contribution to the
averaged solution.

5.2. Conclusion. This paper analyzes the convergence of volume averaging
methods on unidirectional convection-diffusion problems. Neumann, Robin, and Diri-
chlet boundary conditions have been considered. The last problem is of a great interest
in the case of local nonequilibrium conditions, i.e., averaged temperature not equal
to the value at the boundary for which approximate solutions are more difficult to
obtain.

Concentrating on the stationary solution associated with large Péclet numbers, it
has been found that volume averaging methods converge toward the exact solution.
A necessary and sufficient condition for this convergence to occur has been found for
any unidirectional velocity field, which depends on the averaging operator w. This
condition has been obtained in a general form as related to the analytical character of
the averaged eigenfunction with the eigenvalue λ. This condition has in fact a general
scope, because it is the basis for writing “closure relations” as a power series of the
eigenvalue.

It is interesting to note that the convergence also depends, obviously, on the
eigenvalue to be captured. In the case of a parabolic velocity profile, the convergence
to the Graetz solution has been studied in more detail. In the case of Dirichlet
boundary conditions, “natural” operators w = 1 or w = v allow the convergence to
the first nontrivial eigenvalue. In the case of a Neumann boundary condition, these
usual weighting operators do not capture the first nontrivial eigenvalue of the Graetz
problem. In this case, it is necessary to use other averaging operators w to get the
first spatially decaying mode, some of which have been proposed in this paper.

This result shows that averaging over some spatial volume unavoidably degener-
ates the space of mathematically accessible solutions. Nevertheless, despite smooth-
ing out the small scales—the large eigenvalues—the averaged solution can lead to an
asymptotically exact representation of the large scale structure—the small eigenvalues
—of the solution. It is expected that this conclusion could be of some general scope
when decreasing the dimension number of a problem by averaging along part of its
dimensions.

Moreover, the mathematical proof presented in this paper has been complemented
in the case of a parabolic Poiseuille flow by some numerical computation of conver-
gence rates. They have been found to be exponential, as expected from a spectral
discrete method. It should also be of some general scope when averaging linear prob-
lems. It is interesting to note that the convergence toward nontrivial eigenvalues is
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directly related to a correct evaluation of the heat transfer between the fluid and the
solid boundary. As a matter of fact it should be kept in mind that the Nusselt num-
ber Nu, defined as usual as the dimensionless number associated with the heat (or
mass) transfer [14] scales asymptotically, when z�Pe/(l1−l0), as Nu = l21/2. Hence,
convergence toward the eigenvalue of the averaged model is also directly related to a
correct evaluation of the asymptotic transfer between the flow and the solid.

Different extensions of this work could be considered. First, a direct transposition
of the convergence proof in the case of a plane geometry, with transverse velocity field,
should be easily obtained. The quantitative results on the accessibility domain as well
as on the convergence accuracy could nevertheless be different in that case. The second
extension of interest should be related to more complicated situations associated with
a coupling with conduction in some external solid domain.

Appendix A. Graetz functions and Kummer’s functions. The generalized
Graetz functions are the eigenfunctions of the operator 1

1− r2 ΔN ,

1

1 − r2
ΔN ≡ 1

1 − r2

(
∂2
r +

1

r
∂r −

N2

r2

)
.(A.1)

One wants to solve the self-adjoint Sturm–Liouville problem

1

1 − r2
ΔNf = −�2f,(A.2)

where we have introduced the positive eigenvalue �2 = −l to compare to (2.4). Defin-

ing a new function y, from f(r) = rNe−
�
2 r

2

y(�r2), y is then a solution of the hyper-
geometric equation

z∂2
zy + (1 + N − z) ∂zy −

(
1 + N

2
− �

4

)
y = 0.(A.3)

In its more general form, the hypergeometric equation reads

z∂2
zy + (c− z) ∂zy − ay = 0,(A.4)

which possesses two solutions called confluent hypergeometric functions, and when
c = 1,

• the first one is singular at z = 0 and is not considered here;
• the other one is regular, convergent, and denoted Φ (a, c, z), It is defined by

the Kummer’s series (with infinite radius of convergence)

Φ (a, c, z) = 1 +
a

c
z +

a (a + 1)

c (c + 1)

z2

2
+ · · · + a · · · (a + n− 1)

c · · · (c + n− 1)

zn

n!
+ · · · .(A.5)

f is proportional to the Graetz function GN,�,

GN,�(r) = rNe−�r2/2Φ

(
1 + N

2
− �

4
, 1 + N, �r2

)
.(A.6)

Appendix B. Analyticity in l of the Graetz functions. In this appendix
we prove that the generalized Graetz functions defined in (2.4) GN,l(r) are analytical
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in l on the whole complex field C. More precisely, for the closure functions qN,n(r)
defined in (B.4) one has for each l ∈ C

GN,l(r) =
∑
n≥0

qN,n(r)ln, ∂rGN,l(r) =
∑
n≥0

∂rqN,n(r)ln.(B.1)

We point out that this result is true for any N ∈ Z and for any flow v(r) that is
nonnegative and analytical in 0.

We shall prove this result in two steps:
• in section B.1 we prove that (B.1) is true when l belongs to a disk D ⊂ C

which we characterize;
• in section B.2 we prove that D = C.

We first recall the following definitions:
For a given value N ∈ Z of the axisymmetric parameter, the operator ΔN is

defined as

ΔN ≡ ∂2
r +

1

r
∂r −

N2

r2
,

so that Δ−N = ΔN . Hence, we will consider the case N ≥ 0 only.
The operator ΔN can be written under a divergence form

ΔNf =
1

rN+1
∂r

(
r2N+1∂r

(
f

rN

))
.(B.2)

For each l ∈ C the Graetz function Gl,N is the only solution for the following
ODE: ⎧⎪⎨

⎪⎩
ΔNGN,l = lv(r)GN,l(r),

GN,l

rN
(0) = 1.

(B.3)

We define the set of closure functions qN,n, for n ≥ 0, as follows:⎧⎪⎨
⎪⎩

ΔNqN,n = v(r)qN,n−1(r) with qN,−1 = 0,

qN,0

rN
(0) = 1 and

qN,n

rN
(0) = 0 for n ≥ 1.

(B.4)

B.1. A criterion for the Graetz function to be analytical in l.
Theorem B.1. Let D be the convergence disk of the series∑

n≥0

qN,n(1)ln,(B.5)

where the closure functions qN,n are defined in (B.4). Then for all l ∈ D,

GN,l(r) =
∑
n≥0

qN,n(r)ln, ∂rGN,l(r) =
∑
n≥0

∂rqN,n(r)ln,

and ΔNGN,l(r) =
∑
n≥0

ΔNqN,n(r)ln.

(B.6)



GENERALIZED VOLUME AVERAGING METHOD 147

Proof. We begin by proving that for a fixed l ∈ D the three series
∑

n≥0 qN,n(r)ln,∑
n≥0 ∂rqN,n(r)ln, and

∑
n≥0 ΔNqN,n(r)ln are uniformly convergent for r ∈ [0, 1].

First of all the recursive definition (B.4) of the functions qN,n implies that, for
all n ≥ 0, qN,n(r) = rNψn(r), where ψn is a nonnegative, nondecreasing, continuous
function on [0, 1],

qN,0 = rN and qN,n(r) = rN
∫ r

0

1

y2N+1

∫ y

0

xN+1v(x)qN,n−1(x) dx dy for n ≥ 1,

(B.7)

so that 0 ≤ qN,n(r) ≤ qN,n(1) and the series
∑

n≥0 qN,n(r)ln is uniformly converging
on [0, 1] for l ∈ D.

In the same way ΔNqN,n(r) = v(r)qN,n−1(r), and so one has 0 ≤ ΔNqN,n(r) ≤
‖v‖qN,n−1(1) and the series

∑
n≥0 ΔNqN,n(r)ln is uniformly converging on [0, 1] for

l ∈ D.
Now one has

0 ≤ ∂rqN,n(r) = NrN−1

∫ r

0

1

y2N+1

∫ y

0

xN+1v(x)qN,n−1(x) dx dy

+
1

rN+1

∫ r

0

xN+1v(x)qN,n−1(x)dx

≤ NrN−1qN,n(1) +
‖v‖

N + 2
rqN,n−1(1)

≤ C (qN,n(1) + qN,n−1(1)) ,

where the constant C depends only on N and v so that the series
∑

n≥0 ∂rqN,n(r)ln

is uniformly converging on [0, 1] for l ∈ D.
Now, for a given value l ∈ D we introduce the two functions defined on [0, 1],

F (r) =
∑
n≥0

qN,n(r)ln, H(r) =
∑
n≥0

ΔNqN,n(r)ln,

since these are uniformly converging series, and since
∑

n≥0 ∂rqN,n(r)ln is also a
uniformly converging series for r ∈ [0, 1], one can use the integration theorem, which
implies that

H(r) = ΔNF (r) for r ∈ [0, 1],

and at the same time one has with (B.4) that H(r) = lv(r)F (r) and that F
rN

(0) = 1.
The unicity of the solutions of (B.3) ensures then that F (r) = GN,l(r), and this ends
the proof.

B.2. Analyticity on the whole complex field C.
Lemma B.2. The series

∑
n≥0

qN,n(1)ln

is convergent on the whole complex plane C and so (B.1) is true for all l ∈ C.
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Proof. With the integral formulation (B.7) on the closure functions qN,n one has

qN,n+m(1) =

∫ 1

0

1

y2N+1
1

∫ y1

0

xN+1
1 v(x1)qN,n+m−1(x1) dx1 dy1

=

∫ 1

0

1

y2N+1
1

∫ y1

0

x2N+1
1 v(x1) · · ·

∫ xm−1

0

1

y2N+1
m

×
∫ ym

0

xN+1
m v(xm)qN,n(xm)dxmdym · · · dx1dy1,

and since 0 ≤ qN,n(r) ≤ rNqN,n(1) (see (B.7)), we have

qN,n+m(1)

qN,n(1)
≤

∫ 1

0

1

y2N+1
1

∫ y1

0

x2N+1
1 v(x1) · · ·

∫ xm−1

0

1

y2N+1
m

×
∫ ym

0

x2N+1
m v(xm)dxm dym · · · dx1 dy1

≤ ‖v‖m
∫ 1

0

1

y2N+1
1

∫ y1

0

x2N+1
1 · · ·

∫ xm−1

0

1

y2N+1
m

×
∫ ym

0

x2N+1
m dxm dym · · · dx1 dy1,

where ‖v‖ = sup v(r).
This upper bound can be computed explicitly,

qN,n+m(1)

qN,n(1)
≤ ‖v‖m 1

2(2N + 2)
· · · 1

2m(2N + 2m)
:= αm,

and α
−1/m
m is a lower bound for the radius of convergence of the series (B.2). One can

easily check that

α−1/m ≥ 2
2N + 2

‖v‖ (m!)1/m,

and so α−1/m grows up to infinity. As a result the series (B.2) is convergent on the
whole complex plane C.

Appendix C. Invertibility of the operator L�
N and resolution of the

closure problems. In this appendix we prove that the closure problems⎧⎨
⎩

L�
Nαn = v(r)αn−1(r) − 〈vαn−1〉� with α−1(r) = 0,

α�
0 = 1 or α�

n = 0 for n ≥ 1 + boundary condition
(C.1)

for a boundary condition either of a homogeneous Dirichlet, homogeneous Neumann,
or Robin type,

αn(1) = 0, ∂αn(1) = 0, or ∂αn(1) + γαn(1) = 0,(C.2)

has one and only one bounded solution for each n ∈ N.
The operator L�

N is defined for N ∈ Z and for a normalized averaging operator �
(i.e., such that 〈1〉� = 1) by

L�
Nf = ΔNf − 〈ΔNf〉�;(C.3)
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for the operator ΔN ,

ΔNf = ∂2
rf +

1

r
∂rf − N2

r2
f.

Because ΔN = Δ−N we will only consider here the proof for N ≥ 0.
We proceed in two steps: in section C.1 we prove a lemma on the general solution

of ΔNf = g and in section C.2 we apply that lemma to the problems (C.1) for every
boundary condition (C.2).

C.1. A technical lemma.
Lemma C.1. Let g be a continuous function defined on [0, 1] and such that g� = 0.

Then for all A ∈ R the ODE

ΔNf −A = g,(C.4)

f� = M ∈ R(C.5)

has one and only one bounded solution on [0, 1].
Moreover, this solution fulfills

〈ΔNf〉� = A

and then is a solution of ⎧⎨
⎩
L�
Nf = g,

f� = M.

Proof. We define the function ψ1(r),

ψ1(r) = −rN
∫ 1

r

1

y2N+1

∫ y

0

xN+1g(x) dx dy,(C.6)

which is well defined since g is continuous in 0 for N ≥ 0, and the function ψ2(r),

ψ2(r) =
rN − r2

N2 − 4
if N 
= 2 and ψ2(r) =

r2

4
ln(r) for N = 2.(C.7)

Any solution of (C.4) is of the form

f(r) = λrN + μr−N + Aψ2(r) + ψ1(r) if N 
= 0, or

f(r) = λrN + μ ln(r) + Aψ2(r) + ψ1(r) if N = 0.

Then all bounded solutions of (C.4) on [0, 1] are on the form

f(r) = λrN + Aψ2(r) + ψ1(r),(C.8)

and (C.5) gives

λ =
M −Aψ�

2 − ψ�
1

〈rN 〉� .

Thus (C.4) and (C.5) have only one bounded solution.
Since g� = 0 one also has 〈rN 〉� = A.
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C.2. Resolution of the closure problems.
Homogeneous Dirichlet case. We consider the solution f as in (C.8) of (C.4) and

(C.5) and search for a value of A such that f(1) = 0.
We have

f(1) =
M −Aψ�

2 − ψ�
1

〈rN 〉� .(C.9)

So there is only one bounded solution f of (C.4) and (C.5) such that f(1) = 0; it
is defined as

f(r) =
M −Aψ�

2 − ψ�
1

〈rN 〉� rN + Aψ2(r) + ψ1(r),

A =
M − ψ�

1

ψ�
2

,

and A is well defined because ψ2 is negative and so ψ�
2 
= 0.

Consequently, the closure problems (C.1) for an homogeneous Dirichlet boundary
condition are well posed.

Homogeneous Neumann case. We consider the solution f as in (C.8) of (C.4) and
(C.5) and search for a value of A such that ∂rf(1) = 0.

By multiplying (C.4) by rN+1 and integrating over [0, 1] one gets

∂rf(1) = Nf(1) +
A

N + 2
+

∫ 1

0

rN+1g(r) dr,(C.10)

and since

f(1) =
M −Aψ�

2 − ψ�
1

〈rN 〉� ,

there is only one solution defined as

f(r) =
M −Aψ�

2 − ψ�
1

〈rN 〉� rN + Aψ2(r) + ψ1(r),

A

(
1

N + 2
−N

ψ�
2

〈rN 〉�

)
= N

ψ�
1 −M

〈rN 〉� −
∫ 1

0

rN+1g(r) dr,

where A is well defined because ψ2 is negative and so 1
N+2 −N

ψ�
2

〈rN 〉� 
= 0.

Consequently the closure problems (C.1) for an homogeneous Neumann boundary
condition are well posed.

Robin case. We consider the solution f as in (C.8) of (C.4) and (C.5) and search
for a value of A such that ∂rf(1) + γf(1) = 0 for γ > 0.

With (C.9) and (C.10) we have

∂rf(1) + γf(1) = A

(
1

N + 2
− (N + γ)

ψ�
2

〈rN 〉�

)
− (N + γ)

ψ�
1 −M

〈rN 〉� +

∫ 1

0

rN+1g(r) dr,

and so there is only one solution defined as

f(r) =
M −Aψ�

2 − ψ�
1

〈rN 〉� rN + Aψ2(r) + ψ1(r),

A

(
1

N + 2
− (N + γ)

ψ�
2

〈rN 〉�

)
= (N + γ)

ψ�
1 −M

〈rN 〉� −
∫ 1

0

rN+1g(r) dr,
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where A is well defined for γ ≥ 0.
Consequently the closure problems (C.1) for an homogeneous Neumann boundary

condition are well posed.
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SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL∗

ISABEL N. FIGUEIREDO† , CARLOS F. LEAL† , AND CECÍLIA S. PINTO‡

Abstract. We analyze the shape semiderivative of the solution to an asymptotic nonlinear
adaptive elastic rod model, derived in Figueiredo and Trabucho [Math. Mech. Solids, 9 (2004),
pp. 331–354], with respect to small perturbations of the cross section. The rod model is defined by
generalized Bernoulli–Navier elastic equilibrium equations and an ordinary differential equation with
respect to time. Taking advantage of the model’s special structure and the regularity of its solution,
we compute and completely identify, in an appropriate functional space involving time, the weak
shape semiderivative.
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1. Introduction. In this paper we consider a sensitivity analysis problem in
shape optimization: the calculus of the derivative of the solution to an asymptotic
nonlinear adaptive elastic rod model, with respect to shape variations of the cross
section of the rod. More precisely, for each small parameter s ∈ [0, δ] we define a
perturbed adaptive elastic rod Ωs = ωs × [0, L]. The scalar L > 0 is its length,
and ωs = ω + s θ(ω) is a perturbation of a fixed cross section ω, in the direction
of the vector field θ = (θ1, θ2), that realizes the shape variation. To each rod Ωs

we associate the corresponding unique solution (us, ds) of the asymptotic adaptive
elastic rod model, derived in Figueiredo and Trabucho [7]. The purpose of this paper
is to compute the limit (u

s−u
s , ds−d

s ), when s → 0+, where (u, d) is the solution’s
rod model for the case s = 0. This limit is the semiderivative of the shape function
J : s ∈ [0, δ] → J(Ωs) = (us, ds), at s = 0 in the direction of the vector field θ (in
the sense of Delfour and Zolésio [5, p. 289]), or equivalently, the material derivative
of the map J at s = 0 (in the sense of Haslinger and Mäkinen [8, p. 111]).

The difficulties that arise in the computation of the limit (u
s−u
s , ds−d

s ), when s →
0+, are caused by the complicated form of the asymptotic adaptive elastic rod model
derived in Figueiredo and Trabucho [7]. In fact, this is a simplified adaptive elastic
model, proposed for the mathematical modeling of the physiological process of bone
remodeling. It couples the generalized Bernoulli–Navier elastic equilibrium equations
with an ordinary differential equation with respect to time, which is the remodeling
rate equation. This latter equation expresses the process of absorption and deposition
of bone material due to external stimulus (cf. Cowin and Hegedus [3] and Hegedus and
Cowin [9] for a description of the theory of adaptive elasticity, Cowin and Nachlinger
[4] for uniqueness results, and Monnier and Trabucho [10] for existence results of three-
dimensional solutions). For each s ∈ [0, δ], the pair (us, ds) is the unique solution of
this asympotic adaptive elastic rod model, where us is the displacement vector field
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of the rod Ωs and ds is a scalar field that represents the change in volume fraction
of the elastic material (from a reference volume fraction) in the rod Ωs. Moreover,
us is the solution of the generalized Bernoulli–Navier equilibrium equations, and ds

is the solution of the remodeling rate equation. In addition, us and ds are coupled
in the model because the material coefficients depend on ds and the remodeling rate
equation depends on us.

In spite of this complex structure, we are able to compute the limit (u
s−u
s , ds−d

s )
when s → 0+. There are two main results in this paper, which lead to this limit’s
computation. The first principal result states that, for each time t, the sequence
(u

s−u
s , ds−d

s )(., t) converges weakly to (ū, d̄)(., t), when s → 0+, in an appropriate
functional space of Sobolev type. (We denote by (us, ds) the solution of the perturbed
rod model, formulated in the unperturbed fixed domain Ω, which is the domain of
(u, d).) The second main result identifies the weak shape semiderivative denoted
by (ū, d̄); it is the unique solution of a nonlinear problem which couples a variational
equation (whose solution is ū) and depends on (u, d) and d̄, and an ordinary differential
equation with respect to time (whose solution is d̄) that depends on (u, d) and ū.

The reasonings that we have used to achieve these two results are next sum-
marized. We show that the sequences (us, ds) and (u

s−u
s , ds−d

s ) are bounded in ap-
propriate functional spaces, involving time; we use the continuity, the ellipticity, the
regularity properties, and the special structure of the asymptotic adaptive elastic rod
model. In order to identify the weak shape semiderivative we also apply the weak
and/or strong convergence of the sequences {us} and {ds}, when s → 0+, and again
the special structure of the asymptotic adaptive elastic rod model. In particular, due
to the form of the remodeling rate equation, we are able to use the integral Gron-
wall’s inequality, which is the key to obtaining the estimates for the sequences {ds}
and {ds−d

s } and to identifying the ordinary differential equation with respect to time,
whose solution is d̄.

Finally let us briefly explain the contents of the paper. After this introduction,
in section 2, we describe the problem Ps, which is the asymptotic nonlinear adaptive
elastic model for the perturbed rod Ωs; we also prove a regularity property of its
solution, and finally we describe the shape problem that we want to solve. In section
3 we reformulate the problem Ps in the unperturbed domain Ω; this reformulation is
necessary because, in order to compute the limit of the quotient sequence (u

s−u
s , ds−d

s ),
the vector fields us, u, ds, and d must be defined in the same fixed domain, independent
of s. In section 4 we prove that all the sequences {us}, {ds}, {us−u

s }, and {ds−d
s } are

bounded in appropriate functional spaces involving time; we determine, for each time
t, the weak limit of the quotient sequence (u

s−u
s , ds−d

s )(., t) when s → 0+; and we
identify the weak shape semiderivative (this identification is summarized in theorem
4.11). Finally we present some conclusions and future work.

2. Description of the problem. In this section we first introduce the notation
used in this paper; namely, we consider a family of rods Ωs = ωs × [0, L], with length
L and cross section ωs, parameterized by s ∈ [0, δ], which is a small parameter. Next,
for each s, we describe the adaptive elastic rod model denoted by Ps, derived by
Figueiredo and Trabucho [7]. We prove a regularity result for the displacement vector
field us, the first component of the solution (us, ds) of Ps. Finally, we describe the
shape problem under consideration in this paper.

2.1. Notation. Let δ > 0 be a small parameter, and for each s ∈ [0, δ] we
consider the perturbation Is of the identity operator I in R2, defined by Is(x1, x2) =
(I + sθ)(x1, x2) = (xs1, xs2), for all (x1, x2) ∈ R2, where θ = (θ1, θ2) : R2 −→ R

2 is a



SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 155

vector field regular enough (at least θ ∈ [W 2,∞(R2)]2). Let ω be an open, bounded,
and connected subset of R2, with a boundary ∂ω regular enough. For each s ∈ [0, δ]
we define ωs = Is(ω), which is the perturbation of ω in the direction of the vector
field θ. We also denote by Ωs the set occupied by a cylindrical adaptive elastic rod,
in its reference configuration, with length L > 0 and cross section ωs, that is, Ωs =
ωs× [0, L] = Is(ω)× [0, L] ⊂ R3. Moreover, we denote by xs = (xs1, xs2, x3) a generic
element of Ωs and define the sets Γs = ∂ωs× ]0, L[, Γs0 = ωs × {0}, ΓsL = ωs × {L},
and Γs0,L = Γs0∪ΓsL, where ∂ωs is the boundary of ωs. These last four sets represent,
respectively, the lateral boundary of the rod Ωs and its extremities. We assume that,
for each s ∈ [0, δ], the coordinate system (O, xs1, xs2, x3) is a principal system of
inertia associated with the rod Ωs. Consequently, axis Ox3 passes through the centroid
of each section ωs×{x3}, and we have

∫
ωs

xs1 dωs =
∫
ωs

xs2 dωs =
∫
ωs

xs1xs2 dωs = 0.

(We observe that the choice of the vector field θ, which realizes the shape variation
of the cross section ω, must be admissible with this condition.)

The set Cm(Ωs) is the space of real functions m times continuously differentiable
in Ωs. The spaces Wm,q(Ωs) and W 0,q(Ωs) = Lq(Ωs) are the usual Sobolev spaces,
where q is a real number satisfying 1 ≤ q ≤ ∞ and m is a positive integer. The norms
in these Sobolev spaces are denoted by ‖.‖Wm,q(Ωs). The set Rs = {vs ∈ R3 : vs =
a+ b∧xs, a, b ∈ R3}, where ∧ is the exterior product in R3, is the set of infinitesimal
rigid displacements. We denote by [Wm,q(Ωs)]

3/Rs the quotient space induced by
the set Rs in the Sobolev space [Wm,q(Ωs)]

3.
Throughout the paper, the Latin indices i, j, k, l, . . . belong to the set {1, 2, 3};

the Greek indices α, β, μ, . . . vary in the set {1, 2}; and the summation convention

with respect to repeated indices is employed, that is, for example, aibi =
∑3

i=1 aibi.
Let T > 0 be a real parameter, and denote by t the time variable in the interval

[0, T ]. If V is a topological vectorial space, the set Cm([0, T ];V ) is the space of
functions g : t ∈ [0, T ] → g(t) ∈ V such that g is m times continuously differentiable
with respect to t. If V is a Banach space, we denote by ‖.‖Cm([0,T ];V ) the usual

norm in Cm([0, T ];V ). Moreover, given a function gs(xs, t) defined in Ωs × [0, T ], we
denote by ġs its partial derivative with respect to time and by ∂sαgs and ∂3gs its
partial derivatives with respect to xsα and x3; that is, ġs = ∂gs

∂t , ∂sαgs = ∂gs
∂xsα

, and

∂3gs = ∂gs
∂x3

.

2.2. The adaptive elastic rod model. Figueiredo and Trabucho [7] have ap-
plied the asymptotic expansion method to the three-dimensional adaptive elasticity
model derived by Cowin and Hegedus [3, 9], with the modifications proposed by Mon-
nier and Trabucho [10], for a thin rod whose cross section is a function of a small
parameter and for a three-dimensional remodeling rate equation depending nonlin-
early or linearly on the strain tensor field (cf. also Trabucho and Viaño [11] for an
explanation of the mathematical modeling of rods with the asymptotic expansion
method). They have obtained a simplified adaptive elastic rod model, which is desig-
nated in what follows by the asymptotic adaptive elastic rod model. This is a system
of nonlinear coupled equations, which includes generalized Bernoulli–Navier equilib-
rium equations and a simplified remodeling rate equation. For any perturbed rod Ωs

(with s ∈ [0, δ]) and for the case where the original three-dimensional remodeling rate
equation depends linearly on the strain tensor field, this system is defined as follows:⎡

⎢⎢⎣
us = (us1, us2, us3) : Ωs × [0, T ] → R

3, ds : Ωs × [0, T ] → R,
usα : [0, L] × [0, T ] → R,
us3 = us3 − xsα∂3usα and us3 : [0, L] × [0, T ] → R,
(us, ds) satisfies the following:

(2.1)
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⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Equilibrium equations in (0, L) × (0, T )[
−∂3

(
ls(ds)∂3us3 − esα(ds)∂33usα

)
=

∫
ωs

γs(ξs0 + Pη(ds)) fs3 dωs +
∫
∂ωs

gs3 d∂ωs,

⎡
⎢⎢⎣

∂33

(
− esβ(ds)∂3us3 + hsαβ(ds)∂33usα

)
=

∫
ωs

γs(ξs0 + Pη(ds)) fsβ dωs +
∫
∂ωs

gsβ d∂ωs

+
∫
ωs

xsβ ∂3[γs(ξs0 + Pη(ds)) fs3] dωs +
∫
∂ωs

xsβ ∂3gs3 d∂ωs, β = 1, 2,

(2.2)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Boundary conditions for {x3} × (0, T ), with x3 = 0, L(
ls(ds)∂3us3 − esα(ds)∂33usα

)
(x3) =

∫
ωs

hs3(x3) dωs,(
esβ(ds)∂3us3 − hsαβ(ds)∂33usα

)
(x3) =

∫
ωs

xsβ hs3(x3) dωs,⎡
⎢⎢⎣

∂3

(
esβ(ds)∂3us3 − hsαβ(ds)∂33usα

)
(x3)

=
∫
ωs

hsβ(x3) dωs −
∫
∂ωs

xsβgs3(x3) d∂ωs

−
∫
ωs

xsβ γs(ξs0 + Pη(ds))fs3(x3) dωs,

(2.3)

⎡
⎢⎢⎢⎢⎢⎣

Remodeling rate equation

ḋs = c(ds)e33(us) + a(ds) in Ωs × (0, T ),

c(ds) = Aαβ(ds)
bαβ33(ds)
b3333(ds) + A33(ds),

ds(xs, 0) = d̂s(xs) in Ωs.

(2.4)

The unknowns of the model (2.1)–(2.4) are the displacement vector field us(xs, t),
corresponding to the displacement of the point xs of the rod Ωs at time t, and the
measure of change in volume fraction of the elastic material (from the reference volume
fraction ξs0) ds(xs, t) at (xs, t). In particular, e33(us) = ∂3us3 = ∂3us3 − xsα∂33usα

is an element of the linear strain tensor field (eij(us)), which depends on us.
On the other hand, the data of the model (2.1)–(2.4) are the following: the open

set Ωs× (0, T ); the density γs = γ of the full elastic material, which is supposed to be
a constant independent of s; the reference volume fraction of the elastic material ξs0,
which belongs to C1(Ωs) for each s; the body load fs = (fsi) such that fsi ∈ C1([0, T ])
and depends only on t; the normal tractions on the boundary gs = (gsi) and hs =

(hsi); the initial value of the change in volume fraction d̂s, which belongs to C0(Ωs);
the truncation operator Pη(.); and the coefficients ls(ds), esα(ds), hsαβ(ds), c(ds),
a(ds), Aαβ(ds), A33(ds), bαβ33(ds), and b3333(ds), which are all material coefficients
depending upon the change in volume fraction ds.

On these data we also suppose further conditions, which we will describe next.
We assume that, for each s ∈ [0, δ], 0 < ξmin

s0 ≤ ξs0(xs) ≤ ξmax
s0 < 1 and the normal

tractions verify

gsi ∈ C1([0, T ];W 1−1/p,p(Γs)), hsi ∈ C1([0, T ];W 1−1/p,p(Γs0 ∪ ΓsL)),(2.5)

with p > 3. In addition, we assume that the resultant of the system of applied forces
is null for rigid displacements; this means that, for any vs = (vsi) in Rs and for all
t ∈ [0, T ], ∫

Ωs

γ(ξs0 + Pη(ds))fsivsidxs +

∫
Γs

gsivsidΓs +

∫
Γs0,L

hsivsidΓs0,L = 0.(2.6)
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The truncation operator Pη is of class C1 and satisfies 0 < η
2 ≤ (ξs0 +Pη(ds))(xs) ≤ 1

for all xs ∈ Ωs, where η > 0 is a small parameter.
The coefficients bαβ33(ds) and b3333(ds) are continuously differentiable with re-

spect to ds and are elements of the matrix (bijkl(ds)), which is the inverse of the ma-
trix defined by the three-dimensional elastic coefficients (cijkl(ds)) of the rod Ωs, that
depend on ds through truncation and mollification (cf. formulas (47)–(48), Figueiredo
and Trabucho [7]). The coefficients Aαβ(ds), A33(ds), c(ds), and a(ds) are remodeling
rate coefficients and are continuously differentiable with respect to ds.

Moreover, bαβ33(ds) and b3333(ds) belong to the space C1([0, T ];C1(R3)) when
ds ∈ C1([0, T ];C0(Ωs)) (cf. Monnier and Trabucho [10, p. 542] and also formulas
(47)–(48) of Figueiredo and Trabucho [7]). In addition we also assume that there
exist strictly positive constants C1, C2, C3, C4, C5, and C6 independent of s and t
such that for any (xs, t) ∈ Ωs × [0, T ]

0 < C1 ≤ 1

b3333(ds)
≤ C2 ∀s ∈ [0, δ],(2.7)

|c(ds)| ≤ C3, |a(ds)| ≤ C4, |c′(ds)| ≤ C5, |a′(ds)| ≤ C6 ∀s ∈ [0, δ],(2.8)

where c′(.) and a′(.) are the derivatives of the scalar functions c(.) and a(.). We
remark that the assumption (2.7) is a direct consequence of the definition of b3333,
and also a consequence of [10, Lemma 1, p. 542]. The assumption (2.8) can be proven
using exactly the same arguments of this Lemma 1, supposing that c(ds) and a(ds)
depend on ds through truncation and mollification.

The coefficients ls(ds), esα(ds), and hsαβ(ds), which depend on b3333(ds) (cf. for-
mula (49), Figueiredo and Trabucho [7]), are functions of x3 and t, and are defined
by

ls =

∫
ωs

1

b3333(ds)
dωs, esα =

∫
ωs

xsα

b3333(ds)
dωs, hsαβ =

∫
ωs

xsαxsβ

b3333(ds)
dωs.(2.9)

The variational formulation of the equilibrium equations (2.2) is obtained by mul-
tiplying the first equilibrium equation (2.2) by vs3 ∈ W 1,2(0, L) and the second and
third equilibrium equations by xs1 vs1 and xs2 vs2, respectively, with vsβ ∈ W 2,2(0, L),
for β = 1, 2, and subsequently integrating in (0, L) and using the boundary conditions
(2.3). Thus, the asymptotic adaptive elastic rod model (2.1)–(2.4) is equivalent to
the following nonlinear (variational and differential) system (Ps) (cf. formula (56) of
Figueiredo and Trabucho [7]):⎡

⎢⎢⎢⎢⎢⎢⎢⎣

Find us : Ωs × [0, T ] → R
3 and ds : Ωs × [0, T ] → R :

us(., t) ∈ V (Ωs)/Rs,

as(us, vs) = Ls(vs) ∀vs ∈ V (Ωs)/Rs,

ḋs = c(ds)e33(us) + a(ds) in Ωs × (0, T ),

ds(xs, 0) = d̂s(xs) in Ωs.

(Ps)

The space V (Ωs) = {vs ∈ [W 1,2(Ωs)]
3 : eαβ(vs) = e3β(vs) = 0} is identified with{

vs = (vs1, vs2, vs3) ∈ [W 2,2(0, L)]2 ×W 1,2(Ωs) : vsα(xs) = vsα(x3),

vs3(xs) = vs3(x3) − xsα∂3vsα(x3), vs3 ∈ W 1,2(0, L)
}
,

(2.10)
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and the quotient space V (Ωs)/Rs is the following set:{
vs = zs + a + b ∧ xs : zs ∈ V (Ωs), a ∈ R3, b = (b1, b2, 0) ∈ R3

}
.(2.11)

The bilinear form as(., .), depending on the unknown ds, is defined in V (Ωs)/Rs by

as(zs, vs) =

∫
Ωs

1

b3333(ds)
e33(zs)e33(vs)dΩs ∀zs, vs ∈ V (Ωs)/Rs,(2.12)

and Ls(.) is a linear form also defined in V (Ωs)/Rs such that Ls(vs) is equal to∫
Ωs

γ(ξs0 + Pη(ds)) fsi vsi dΩs +

∫
Γs

gsi vsi dΓs +

∫
Γs0,L

hsi vsi dΓs0,L.(2.13)

We remark that in (2.11) we must have b3 = 0, because otherwise the quotient space
V (Ωs)/Rs would not be contained in V (Ωs). In fact, developing vs = zs+a+b∧xs, we
have for the first component vs1 = zs1 + a1 + b2x3 − b3xs2, for the second component
vs2 = zs2 + a2 − b1x3 + b3xs1, and finally for the third component vs3 = zs3 −
xsα∂3zsα + a3 + b1xs2 − b2xs1. Therefore if b3 �= 0, then vs /∈ V (Ωs), and if b3 = 0,
then (b1, b2, 0)∧xs =

(
b2x3,−b1x3, b1xs2−b2xs1) and we obtain vs1 = zs1 +a1 +b2x3,

which depends only on x3, vs2 = zs2 + a2 − b1x3, which depends only on x3, and
vs3 = vs3 − xsα∂3vsα with vs3 = zs3 + a3, which depends only on x3.

By the following Korn-type inequality in the quotient space V (Ωs)/Rs (cf. Ciarlet
[1] or Valent [12]) we have

∃c > 0 : ‖vs‖2
[W 1,2(Ωs)]3 ≤ c‖e33(vs)‖2

L2(Ωs),(2.14)

where

‖e33(vs)‖2
L2(Ωs) = cs‖∂3vs3‖2

L2(0,L) +

(∫
ωs

x2
sαdωs

)
‖∂33vsα‖2

L2(0,L),(2.15)

with cs = [meas(ωs)]
1
2 , since e33(vs) = ∂3vs3 = ∂3vs3−xsα∂33vsα. Hence, we conclude

that ‖e33(.)‖L2(Ωs) is a norm in the space V (Ωs)/Rs, equivalent to the usual norm
induced in the quotient space by ‖.‖[W 1,2(Ωs)]3 . Moreover, V (Ωs)/Rs is a Hilbert space
with the norm ‖e33(.)‖L2(Ωs), and the bilinear form as(., .) is elliptic in V (Ωs)/Rs. In
fact, there exists a constant C > 0 such that{

as(vs, vs) =
∫

Ωs

1
b3333(ds) e33(vs) e33(vs) dΩs ≥ C1‖e33(vs)‖2

L2(Ωs)

= C1‖vs‖2
V (Ωs)/Rs

≥ C‖vs‖2
[W 1,2(Ωs)]3 ∀vs ∈ V (Ωs)/Rs,

(2.16)

where C1 is the constant defined in condition (2.7).
For each s ∈ [0, δ], there exists a unique pair (us, ds) solution of the asymp-

totic adaptive elastic rod model Ps, which verifies us ∈ C1([0, T ];V (Ωs)/Rs) and
ds ∈ C1([0, T ];C0(Ωs)) (cf. Theorem 6, Figueiredo and Trabucho [7]). The next the-
orem states a regularity result, concerning the component solution us, that will be
important in section 4. In order to prove it, we introduce the following notation:

zs3 = ls∂3us3 − esα∂33usα, zsβ = hsαβ∂33usα − esβ∂3us3,

Fs3 =

∫
ωs

γ(ξs0 + Pη(ds)) fs3 dωs +

∫
∂ωs

gs3 d∂ωs,

Fsβ =

{ ∫
ωs

γ(ξs0 + Pη(ds)) fsβ dωs +
∫
∂ωs

gsβ d∂ωs

+
∫
ωs

xsβ ∂3[γ(ξs0 + Pη(ds)) fs3] dωs +
∫
∂ωs

xsβ ∂3gs3 d∂ωs,

(2.17)
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where zsi ∈ C1([0, T ];L2(0, L)), Fsi ∈ C1([0, T ];L2(0, L)), for i = 1, 2, 3, and the
matrix Ms,

Ms =

⎡
⎣ ls −es1 −es2

−es1 hs11 hs12

−es2 hs21 hs22

⎤
⎦ ∈ C1

(
[0, T ]; [C1(R3)]9

)
.(2.18)

Theorem 2.1 (regularity of us). Let (us, ds) be the unique solution of problem
(Ps). We assume that the determinant of matrix Ms is not zero, detMs �= 0 (for
example, if b3333(d

s) = c, where c is a constant, then detMs > 0). Then, for each
t ∈ [0, T ], usβ(., t) ∈ W 3,2(0, L), us3(., t) ∈ W 2,2(0, L), and consequently us(., t) ∈
[W 2,2(Ωs)]

3.
Proof. We first remark that the equilibrium equations (2.2) can be written in the

form

−∂3 zs3 = Fs3, ∂33 zsβ = Fsβ , for β = 1, 2,(2.19)

and for each t, Fs3(., t) and Fsβ(., t) belong to the space L2(0, L).
Since zs3(., t) belongs to L2(0, L), and because of the first equilibrium equa-

tion in (2.19), ∂3 zs3(., t) also belongs to L2(0, L), so we conclude that, for each t,
zs3(., t) ∈ W 1,2(0, L). For each t, zsβ(., t) ∈ L2(0, L) and consequently ∂3 zsβ(., t) ∈
[W 1,2(0, L)]′, where [W 1,2(0, L)]′ is the dual of W 1,2(0, L). But from the second equi-
librium equation in (2.19) we have that ∂33 zsβ(., t) ∈ L2(0, L) and also ∂33 zsβ(., t) ∈
[W 1,2(0, L)]′ because L2(0, L) ⊂ [W 1,2(0, L)]′. Thus, as a consequence of a lemma
of Lions (cf. Ciarlet [2, p. 39]) we have ∂3 zsβ(., t) ∈ L2(0, L). Hence the elements
zsβ(., t), ∂3 zsβ(., t), and ∂33 zsβ(., t) belong to the space L2(0, L), which means that
zsβ(., t) ∈ W 2,2(0, L).

Therefore, assembling these properties, we obtain for each t and for β = 1, 2

zs3(., t) = ps3(., t) ∈ W 1,2(0, L), zsβ(., t) = psβ(., t) ∈ W 2,2(0, L),(2.20)

where psi is a primitive of Fsi, in the distribution’s sense in W 1,2(0, L), for i = 1, 2, 3.
Replacing zsi by its definition (2.17), the system (2.20) is equivalent to the following
system: ⎡

⎣ ls −es1 −es2

−es1 hs11 hs12

−es2 hs21 hs22

⎤
⎦

⎡
⎣ ∂3us3

∂33us1

∂33us2

⎤
⎦ =

⎡
⎣ ps3

ps1

ps2

⎤
⎦ .(2.21)

With the assumption detMs �= 0, we clearly obtain, by solving (2.21), that

∂3us3(., t) ∈ W 1,2(0, L), ∂33usβ(., t) ∈ W 1,2(0, L), for β = 1, 2.(2.22)

We remark that the regularity indicated in (2.22) depends also on the regularity of
the elements of Ms that belong to the space C1([0, T ];C1(R3)).

Thus we conclude that the components usβ(., t) ∈ W 3,2(0, L), for β = 1, 2 and
us3(., t) ∈ W 2,2(0, L), and consequently, because us = (us1, us2, us3 − xsβ∂3 usβ), we
have us(., t) ∈ [W 2,2(Ωs)]

3.

2.3. The shape problem. We now consider the shape map J defined by

J : [0, δ] −→ C1([0, T ];V (Ωs)/Rs) × C1([0, T ];C0(Ωs))

s −→ J(Ωs) = (us, ds),
(2.23)
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where (us, ds) is the unique solution of the nonlinear asymptotic adaptive rod model
Ps (cf. (Ps)), defined in the perturbed rod Ωs. As remarked before, the unknowns us

and ds are coupled in the model Ps and depend on (xs, t).

We recall that Is(ω) is a shape perturbation of the cross section ω of the rod
Ω = ω×[0, L], so Ωs is a shape perturbation of the rod Ω; that is, Ωs = Is(ω)×[0, L] =
(I + s θ)(ω) × [0, L] and Ω = ω × [0, L] = I0(ω) × [0, L] = Ω0.

The aim of this paper is to compute the shape semiderivative dJ(Ω; θ) at s = 0 in
the direction of the vector field θ. This semiderivative is defined by (cf. Delfour and
Zolésio [5, p. 289])

dJ(Ω; θ) = lim
s→0+

J(Ωs) − J(Ω)

s
=

(
lim

s→0+

us − u

s
, lim

s→0+

ds − d

s

)
,(2.24)

where (u, d) is the solution of problem (Ps) but for the unperturbed rod Ω0 = Ω =
ω × [0, L]. We also remark that the semiderivative dJ(Ω; θ) is equivalent to the
definition of the material derivative of the map J at s = 0, in the sense of Haslinger
and Mäkinen [8, p. 111].

As explained in section 4, Theorem 4.11, it is possible to compute and to identify,
in a weak sense and in an appropriate product space, this shape semiderivative.

3. Equivalent formulation of the adaptive rod model. In order to be able
to calculate the shape semiderivative (2.24) we must reformulate, for each s, the
problem Ps (cf. (Ps)) in the domain Ω × [0, T ], independent of s. Therefore we first
formulate in Ω all the forms involved in the definition of problem Ps. Afterwards, we
describe the resulting rod model, denoted by P s (with upper index s) and formulated
in the fixed domain Ω × [0, T ], that is equivalent to Ps (with lower index s).

3.1. Reformulation of the forms defining Ps. We define the map

Qs(x1, x2, x3) =
(
x1 + sθ1(x1, x2), x2 + sθ2(x1, x2), x3

)
,(3.1)

which verifies

Ωs = Qs(Ω) and det∇Qs = 1 + sdiv θ + s2 det∇θ,(3.2)

where the matrices ∇Qs and ∇θ are the gradients of Qs and θ, respectively, and
div θ = ∂αθα is the divergence of θ.

To each function vs defined in Ωs we associate the corresponding function vs (with
upper index s) defined on Ω by vs = vs ◦ Qs. Hence, for any vs ∈ V (Ωs)/Rs, the
correspondent vs is in V (Ω)/R (whose definition is (2.11), with s = 0). Moreover,

e33(vs) = ∂3vs3 − xsα∂33vsα = ∂3vs3 − (xα + s θα)∂33v
s
α

= ∂3v
s
3 − xα∂33v

s
α − s θα∂33v

s
α = e33(v

s) − s θα∂33v
s
α.

(3.3)

Using (3.2)–(3.3) and the change of variables formula for domain and boundary in-
tegrals (cf. Delfour and Zolésio [5, pp. 351–353]), we get the next expression for
as(us, vs), ∫

Ω

1

b3333(ds)

(
e33(u

s) − s θα∂33u
s
α

)(
e33(v

s) − s θα∂33v
s
α

)
det∇QsdΩ,(3.4)
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and for Ls(vs) the expression{ ∫
Ω
γ(ξs0 + Pη(d

s)) fs
i v

s
i (det∇Qs) dΩ +

∫
Γ
gsi v

s
i |(Cof ∇Qs)

Tn|R3 dΓ

+
∫

Γ0∪ΓL
hs
i v

s
i |(Cof ∇Qs)

Tn|R3 d(Γ0 ∪ ΓL).
(3.5)

In (3.5), |.|R3 is the Euclidean norm in R3, n = (n1, n2, n3) is the unit outer normal
vector along the boundary ∂Ω of Ω, and (Cof ∇Qs)

T is the transpose of the cofactor
matrix of ∇Qs, that is, (Cof ∇Qs)

T = (det∇Qs)(∇Qs)
−T , whose definition depends

only on s and the partial derivatives of θ. Developing (3.4)–(3.5), we obtain the
following decomposition for the equation as(us, vs) = Ls(vs):

⎡
⎢⎢⎢⎣

as0(u
s, vs) + sas1(u

s, vs) + s2as2(u
s, vs) + s3as3(u

s, vs) + s4as4(u
s, vs)

=

{
F s

0 (vs) + Gs
0(v

s) + Hs
0(vs) + s

(
F s

1 (vs) + Gs
1(v

s) + Hs
1(vs)

)
+ s2

(
F s

2 (vs) + Gs
2(v

s) + Hs
2(vs)

)
+ s3

(
F s

3 (vs) + Gs
3(v

s) + Hs
3(vs)

)
.

(3.6)

The bilinear forms asi (., .) for i = 0, 1, 2, 3, 4 depend on θ and ds and are defined by
the formulas

as0(u, v) =

∫
Ω

1

b3333(ds)
e33(u)e33(v)dΩ,

as1(u, v) =

⎧⎪⎨
⎪⎩

∫
Ω

1

b3333
(ds)

[
− θα

(
e33(u)∂33vα + e33(v)∂33uα

)
+ e33(u)e33(v)div θ

]
dΩ,

as2(u, v) =

⎧⎪⎨
⎪⎩

∫
Ω

1

b3333(ds)

[
e33(u)e33(v) det∇θ + θα θβ ∂33uα ∂33vβ

− (div θ) θα
(
e33(u)∂33vα + e33(v)∂33uα

)]
dΩ,

as3(u, v) =

⎧⎪⎨
⎪⎩

∫
Ω

1

b3333
(ds)

[
θαθβ∂33uα∂33vβ div θ

− (det∇θ) θα
(
e33(u)∂33vα + e33(v)∂33uα

)]
dΩ,

as4(u, v) =

∫
Ω

1

b3333(ds)

[
θα θβ ∂33uα ∂33vβ det∇θ

]
dΩ

(3.7)

for any pair (u, v) in the space V (Ω)/R. The linear forms F s
0 , F s

1 , F s
2 , and F s

3 depend
on θ and ds and are also defined in the same quotient space V (Ω)/R by the following
expressions:

F s
0 (v) =

∫
Ω

γ(ξs0 + Pη(d
s)) (fs

α vα + fs
3 v3) dΩ,

F s
1 (v) =

∫
Ω

γ(ξs0 + Pη(d
s))

[
(fs

α vα + fs
3 v3) div θ − fs

3 θα ∂3vα

]
dΩ,

F s
2 (v) =

∫
Ω

γ(ξs0 + Pη(d
s))

[
(fs

α vα + fs
3 v3) det∇θ − fs

3 θα ∂3vα div θ
]
dΩ,

F s
3 (v) = −

∫
Ω

γ(ξs0 + Pη(d
s)) fs

3 θα ∂3vα det∇θ dΩ.

(3.8)



162 I. N. FIGUEIREDO, C. F. LEAL, AND C. S. PINTO

The linear forms Gs
0, Gs

1, Gs
2, Gs

3 and Hs
0 , Hs

1 , Hs
2 , Hs

3 result from the change of
variable in the boundary integrals (defined in Γs and in Γs0 ∪ ΓsL, respectively) and
depend on θ and n (the unit outer normal vector) but are independent of ds. These
forms are defined by the following expressions, for any v in the space V (Ω)/R:

Gs
0(v) =

∫
Γ

(
gsα vα + gs3 v3

)
dΓ,

Gs
1(v) =

∫
Γ

[
(gsα vα + gs3 v3)G1(θ, n) − gs3 θα ∂3vα

]
dΓ,

Gs
2(v) =

∫
Γ

[
(gsα vα + gs3 v3)G2(θ, n) − gs3 θα ∂3vα G1(θ, n)

]
dΓ,

Gs
3(v) = −

∫
Γ

gs3 θα ∂3vα G3(θ, n) dΓ,

(3.9)

where G1(θ, n), G2(θ, n), and G3(θ, n) are bounded scalar functions of θ and n and

Hs
0(v) =

∫
Γ0∪ΓL

(
hs
α vα + hs

3 v3

)
d(Γ0 ∪ ΓL),

Hs
1(v) =

∫
Γ0∪ΓL

[
(hs

α vα + hs
3 v3)H1(θ) − hs

3 θα ∂3vα

]
d(Γ0 ∪ ΓL),

Hs
2(v) =

∫
Γ0∪ΓL

[
(hs

α vα + hs
3 v3)H2(θ) − hs

3 θα ∂3vα H1(θ)
]
d(Γ0 ∪ ΓL),

Hs
3(v) = −

∫
Γ0∪ΓL

hs
3 θα ∂3vα H2(θ) d(Γ0 ∪ ΓL),

(3.10)

where H1(θ) and H2(θ) are bounded scalar functions of θ.

3.2. The problem Ps formulated in Ω × [0, T]. As a direct consequence
of (3.6) we can formulate, for each s ∈ [0, δ], the problem (Ps) in the fixed domain
Ω × [0, T ], as explained in the following theorem. The new equivalent problem is
denoted by (Ps), with upper index s.

Theorem 3.1 (problem (Ps)). For each s ∈ [0, δ], we assume that ds(x, 0) = d̂(x)

in Ω, and d̂ is independent of s. Then, the problem (Ps), for s �= 0, is equivalent to
the following problem (Ps) posed in the domain Ω × [0, T ] independent of s:⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Find us : Ω × [0, T ] → R
3 and ds : Ω × [0, T ] → R such that

us(., t) ∈ V (Ω)/R,⎡
⎢⎢⎢⎢⎣

as0(u
s, v) + s as1(u

s, v) + s2 as2(u
s, v) + s3 as3(u

s, v) + s4 as4(u
s, v)

= F s
0 (v) + sF s

1 (v) + s2 F s
2 (v) + s3 F s

3 (v)

+ Gs
0(v) + sGs

1(v) + s2 Gs
2(v) + s3 Gs

3(v)

+ Hs
0(v) + sHs

1(v) + s2 Hs
2(v) + s3 Hs

3(v) ∀v ∈ V (Ω)/R,

ḋs = c(ds)e33(u
s) + a(ds) − s c(ds)θα∂33u

s
α in Ω × (0, T ),

ds(x, 0) = d̂(x) in Ω,

(3.11)

where the sets V (Ω) and V (Ω)/R are defined by (2.10) and (2.11), for s = 0. We
also denote by (u, d) the unique solution of problem (Ps) for s = 0; that is, (u, d) is
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the solution of the following problem (P0) (cf. (Ps), for the case s = 0), formulated
in Ω × [0, T ]:

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Find u : Ω × [0, T ] → R
3 and d : Ω × [0, T ] → R such that

u(., t) ∈ V (Ω)/R,

a0(u, v) = L0(v) ≡ F0(v) + G0(v) + H0(v) ∀v ∈ V (Ω)/R,

ḋ = c(d)e33(u) + a(d) in Ω × (0, T ),

d(x, 0) = d̂(x) in Ω,

(3.12)

where a0(., .), F0(.), G0(.), and H0(.) are independent of s and are defined by

a0(z, v) =

∫
Ω

1

b3333(d)
e33(z) e33(v) dΩ (a0(., .) depends on d),

F0(v) =

∫
Ω

γ(ξ0 + Pη(d)) (fα vα + f3 v3) dΩ (F0(.) depends on d),

G0(v) =

∫
Γ

(
gα vα + g3 v3

)
dΓ,

H0(v) =

∫
Γ0∪ΓL

(
hα vα + h3 v3

)
d(Γ0 ∪ ΓL) ∀z, v ∈ V (Ω)/R.

(3.13)

4. Calculus and identification of the shape semiderivative. In this section
we first present some preliminary estimates, which prove that the sequences {(us, ds)},
{e33(u

s)}, and {(us−u
s , ds−d

s )} are bounded, independently of s, in appropriate func-
tional spaces involving time. These results guarantee the existence, for each t, of
a pair (ū, d̄)(., t), which is the weak limit of a subsequence of {(us−u

s , ds−d
s )(., t)}

when s → 0+. Moreover, using the regularity of us, we also show that the sequences
{e33(u

s−u)} and {ds−d} converge strongly to 0, in C0([0, T ];C0(Ω)), when s → 0+.
These two strong convergences and the preliminary estimates are the key results that
enable us to prove that the weak shape semiderivative (ū, d̄) exists and is the unique
solution of a nonlinear problem.

4.1. Preliminary estimates. We present several estimates that are needed for
the identification of the shape semiderivative.

Theorem 4.1 (first estimates for the sequences us and ds). We suppose that the

conditions (2.7)–(2.8) are verified and d̂(x) ∈ L2(Ω); then

∃c1 > 0 : ‖us‖C0([0,T ];V (Ω)/R) ≤ c1 ∀s ∈ [0, δ],(4.1)

∃c2 > 0 : ‖ds‖C0([0,T ];L2(Ω)) ≤ c2 ∀s ∈ [0, δ],(4.2)

where c1 and c2 are constants independent of s.

Proof. The pair (us, ds) is the solution of problem (Ps) (cf. (3.11)); thus for each
time t,

as0(u
s, us) = Ls(us) −

4∑
i=1

si asi (u
s, us).(4.3)
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By the ellipticity of as0(., .) in V (Ω)/R (cf. (2.16)) we have for each t

as0(u
s, us) ≥ c ‖us(., t)‖2

V (Ω)/R,(4.4)

where c is a constant independent of s and t. From (2.15), for s = 0, we obtain

‖∂3u
s
3(., t)‖L2(0,L) ≤ ‖e33(u

s(., t))‖L2(Ω) = ‖us(., t)‖V (Ω)/R,

‖∂33u
s
α(., t)‖L2(0,L) ≤ c ‖e33(u

s(., t))‖L2(Ω) = c ‖us(., t)‖V (Ω)/R,
(4.5)

where c is a constant independent of s and t. Thus using (4.5), we easily check that
asi (., .), for i = 1, 2, 3, 4, are continuous bilinear forms that verify, for each t,

asi (u
s, us) ≤ ci ‖us(., t)‖2

V (Ω)/R(4.6)

with ci strictly positive constants, independent of s and t, and depending on θ. Using
the definition of the linear form Ls(.) and (4.5), we also have, for each t,

Ls(us) ≤ cL ‖us(., t)‖V (Ω)/R,(4.7)

where cL is another strictly positive constant independent of s and t. So applying
(4.4), (4.6), and (4.7), we conclude that, for each time t,(

c−
4∑

i=1

si ci

)
‖us(., t)‖2

V (Ω)/R ≤ cL ‖us(., t)‖V (Ω)/R,(4.8)

and we obtain the estimate (4.1), since s is a very small parameter.
Taking now the integral in time in the remodeling rate equation of problem (3.11),

we get

ds(x, t) =

∫ t

0

[
c(ds)e33(u

s) + a(ds) − s c(ds)θα∂33u
s
α

]
dr + d̂(x).(4.9)

But as the material and remodeling coefficients c(ds) and a(ds) appearing in (4.9) are
bounded (cf. (2.8)), we deduce that

‖ds(., t)‖L2(Ω) ≤
∫ T

0

[
c1 ‖us(., r)‖V (Ω)/R + c2

]
dr + ‖d̂(x)‖L2(Ω),(4.10)

with c1 and c2 two strictly positive constants independent of s. Therefore and because
of (4.1) we have the inequality (4.2).

Theorem 4.2 (second estimate for the sequence us
). We assume that the hy-

potheses of Theorem 2.1 are satisfied, and 1
b3333(ds) = b + O(s), where b : R→ R is a

scalar function independent of s, 0 < |b| ≤ c with c > 0 a constant, and O(s) is a term
of order s (cf. Monnier and Trabucho [10, formulas (6) and (2)], for a justification of
this latter condition on the material coefficient b3333(d

s)). Then

∃c1 > 0 : ‖us‖C0([0,T ];W 2,2(Ω)) ≤ c1,(4.11)

∃c2 > 0 : ‖e33(u
s)‖C0([0,T ];C0(Ω)) ≤ c2,(4.12)

where c1 and c2 are constants independent of s ∈ [0, δ].
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Proof. Using (2.21)–(2.22) (in the proof of Theorem 2.1), we infer that, for each
t, ‖us(., t)‖W 2,2(Ω) ≤ C(Ms; psi ), where Ms = Ms ◦Qs, p

s
i = psi ◦Qs, and C(Ms; psi )

is a strictly positive constant depending on the W 1,2(0, L) norms of the elements of
Ms and psi . As psi are data of the problem, related to the forces (cf. (2.20)), for
i = 1, 2, 3, and due to the definition of Ms and the additional hypothesis for 1

b3333(ds) ,

we easily deduce that there exists a constant c > 0, independent of s and t, such that
C(Ms; psi ) ≤ c for all s ∈ [0, δ], and therefore we have (4.11).

Also from the regularity Theorem 2.1 we have, for each t,

e33(u
s)(., t) = ∂3u

s
3(., t) − xα∂33u

s
α(., t) ∈ W 1,2(Ω) ∩ C0(Ω)(4.13)

because ∂3u
s
3(., t) and ∂33u

s
α(., t) belong to W 1,2(0, L), which is compactly embedded

in the space C0([0, L]). Hence we get

‖e33(u
s)(., t)‖C0(Ω) ≤ c1 ‖e33(u

s)(., t)‖W 1,2(Ω) ≤ c2 ‖us(., t)‖W 2,2(Ω) ≤ c3,(4.14)

where c1, c2, and c3 are constants independent of s and t, and consequently we have
(4.12).

Theorem 4.3 (estimate for the sequence us−u
s ). Let (us, ds) and (u, d) be the

solutions of problems (Ps) (cf. (3.11)) and (P0) (cf. (3.12)), respectively. We assume
that conditions (2.7)–(2.8) are verified, and, for each s, ξs0 = ξ0, fs

i = fi, gsi = gi,
hs
i = hi, where ξ0, fi, gi, and hi are independent of s. Then,∥∥∥∥us − u

s

∥∥∥∥
C0([0,T ];V (Ω)/R)

≤ c1

∥∥∥∥ds − d

s

∥∥∥∥
C0([0,T ];L2(Ω))

+ c2,(4.15)

where c1 and c2 are strictly positive constants independent of s and t.
Proof. In this proof we sometimes write us instead of us(., t) in order to simplify

the notations. For each t ∈ [0, T ], we have

1

s
[as(us, v) − a0(u, v)] =

Ls(v) − L0(v)

s
∀v ∈ V (Ω)/R.(4.16)

Developing this last equation for the choice v = us−u
s , we obtain that, for each t,⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

as0(
us−u

s , us−u
s ) = 1

s

[
F s

0 (u
s−u
s ) − F0(

us−u
s )

]
− s3 as4(u

s, us−u
s )

−
∫

Ω
b3333(d)−b3333(ds)

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(
us−u

s ) dΩ

+ 1
s

[
Gs

0(
us−u

s ) −G0(
us−u

s ) + Hs
0(u

s−u
s ) −H0(

us−u
s )

]
− as1(u

s, us−u
s ) + F s

1 (u
s−u
s ) + Gs

1(
us−u

s ) + Hs
1(u

s−u
s )

+ s
[
− as2(u

s, us−u
s ) + F s

2 (u
s−u
s ) + Gs

2(
us−u

s ) + Hs
2(u

s−u
s )

]
+ s2

[
− as3(u

s, us−u
s ) + F s

3 (u
s−u
s ) + Gs

3(
us−u

s ) + Hs
3(u

s−u
s )

]
.

(4.17)

Using this last equation, the ellipticity of as0(., .), and the properties of continuity
of all the other remaining terms in (4.17), we obtain the estimate (4.15). We next
explain these calculations in detail, analyzing (4.17) for each t.

Because of condition (2.7), we have for each t,∣∣∣∣as0
(
us − u

s
,
us − u

s

)∣∣∣∣ ≥ c

∣∣∣∣
∣∣∣∣us − u

s
(., t)

∣∣∣∣
∣∣∣∣
2

V (Ω)/R
,(4.18)
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where c is a strictly positive constant independent of s and t. Using the definitions of
asi (., .) and the estimate (4.1), we obviously obtain∣∣∣∣asi

(
us,

us − u

s

)∣∣∣∣ ≤ cai

∣∣∣∣
∣∣∣∣us − u

s
(., t)

∣∣∣∣
∣∣∣∣
V (Ω)/R

,(4.19)

where cai
, for i = 1, 2, 3, 4, are strictly positive constants independent of s and t.

Considering now the definitions of the forms F s
i , Gs

i , and Hs
i , associated with the

applied forces, we easily check that, for each t,

F s
i

(
us − u

s

)
+ Gs

i

(
us − u

s

)
+ Hs

i

(
us − u

s

)
≤ ci

∣∣∣∣
∣∣∣∣us − u

s
(., t)

∣∣∣∣
∣∣∣∣
V (Ω)/R

,(4.20)

where ci are strictly positive constants independent of s and t, for i = 1, 2, 3. In
addition we also have, for each t, Gs

0(
us−u

s ) = G0(
us−u

s ) and Hs
0(u

s−u
s ) = H0(

us−u
s ).

Using the mean value theorem for the operator Pη, we deduce

⎡
⎢⎢⎢⎣

∣∣∣ 1
s

[
F s

0 (u
s−u
s ) − F0(

us−u
s )

]∣∣∣
≤

∫
Ω
γ |Pη(ds)−Pη(d)

ds−d | |ds−d
s | |fα us

α−uα

s + f3
us

3−u3

s | dΩ

≤ c0 ‖ds−d
s (., t)‖L2(Ω)) ‖us−u

s (., t)‖V (Ω)/R,

(4.21)

where c0 is a strictly positive constant independent of s and t. Finally, using the mean
value theorem for the material coefficient b3333(.), the estimate (4.12) for s = 0, and
condition (2.7), we get

⎡
⎢⎢⎢⎣

∣∣∣ ∫Ω
b3333(d)−b3333(ds)

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(
us−u

s ) dΩ
∣∣∣

=
∣∣∣ ∫Ω

b3333(d)−b3333(ds)
ds−d

ds−d
s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(
us−u

s ) dΩ
∣∣∣

≤ cb ‖ds−d
s (., t)‖L2(Ω) ‖us−u

s (., t)‖V (Ω)/R,

(4.22)

where cb is a strictly positive constant independent of s and t. Therefore using (4.17)
and the estimates (4.18)–(4.22), we have, for each t,

{
c ‖us−u

s (., t)‖2
V (Ω)/R

≤ c1 ‖ds−d
s (., t)‖L2(Ω) ‖us−u

s (., t)‖V (Ω)/R + c2 ‖us−u
s (., t)‖V (Ω)/R,

(4.23)

where c, c1, and c2 are strictly positive constants independent of s and t. The proof
is finished, dividing (4.23) by c ‖us−u

s (., t)‖V (Ω)/R.

Theorem 4.4 (estimate for the sequence ds−d
s ). Let (us, ds) and (u, d) be the

solutions of problems (3.11) and (3.12), respectively. We assume that the hypotheses
of Theorem 4.3 are satisfied. Then∣∣∣∣

∣∣∣∣ds − d

s

∣∣∣∣
∣∣∣∣
C0([0,T ];L2(Ω))

≤ c,(4.24)

where c is a strictly positive constant independent of s and t.
Proof. Subtracting the remodeling rate equations of problems (Ps) and (P0)

(cf. (3.11) and (3.12)), taking the integral in time between 0 and t and then the
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L2(Ω) norm, using the conditions (2.7)–(2.8) and the mean value theorem for the
terms c(ds) − c(d) and a(ds) − a(d), we obtain, for each t, the estimate

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

‖(ds − d)(., t)‖L2(Ω)

≤
∫ t

0

[
c1 ‖e33(u

s − u)(., r)‖L2(Ω) + s c4 ‖∂33u
s
α(., r)‖L2(Ω)

+
(
c2 ‖e33(u)(., r)‖C0(Ω) + c3

)
‖(ds − d)(., r)‖L2(Ω)

]
dr,

(4.25)

where c1, c2, c3, and c4 are strictly positive constants independent of s and t. However,

‖e33(u
s − u)(., t)‖L2(Ω) = ‖(us − u)(., t)‖V (Ω)/R,

‖e33(u)(., t)‖C0(Ω) ≤ c2,

‖∂33u
s
α(., t)‖L2(Ω) ≤ c0‖e33u

s(., t)‖L2(Ω) = c0‖us(., t)‖V (Ω)/R ≤ c,

(4.26)

where c2 is the constant defined in (4.12) for the case s = 0, c0 is defined in (4.5),
and c is a constant depending on the constant defined in (4.1); these three constants
are independent of s and t. So, dividing (4.25) by s, we have from (4.25)–(4.26) and
Theorem 4.3 ∣∣∣∣

∣∣∣∣ds − d

s
(., t)

∣∣∣∣
∣∣∣∣
L2(Ω)

≤ c5 +

∫ t

0

c6

∣∣∣∣
∣∣∣∣ds − d

s
(., r)

∣∣∣∣
∣∣∣∣
L2(Ω)

dr,(4.27)

where c5 and c6 are strictly positive constants independent of s and t. Then, applying
the integral Gronwall inequality (cf. Evans [6, p. 625]),

∣∣∣∣
∣∣∣∣ds − d

s
(., t)

∣∣∣∣
∣∣∣∣
L2(Ω)

≤ c5 (1 + t c6 e
c6 t) ∀t ∈ [0, T ],(4.28)

which implies (4.24).

Corollary 4.5. With the hypotheses of Theorem 4.3,

∃c > 0 :

∣∣∣∣
∣∣∣∣us − u

s

∣∣∣∣
∣∣∣∣
C0([0,T ];V (Ω)/R)

≤ c,(4.29)

where c is independent of s and t.

Thus we conclude that the solutions (us, ds) and (u, d), of problems (Ps) and (P0),
verify for all s ∈ [0, δ]

∣∣∣∣
∣∣∣∣us − u

s

∣∣∣∣
∣∣∣∣
C0([0,T ];V (Ω)/R)

≤ c1 and

∣∣∣∣
∣∣∣∣ds − d

s

∣∣∣∣
∣∣∣∣
C0([0,T ];L2(Ω))

≤ c2,(4.30)

where c1 and c2 are strictly positive constants independent of s. As a consequence of
this property we state the following theorem.

Theorem 4.6 (weak limits of the quotient sequences). Let (us, ds) and (u, d) be
the solutions of problems (Ps) and (P0), and assume that the hypotheses of Theorem
4.3 are verified. Then, for each t, there exists a subsequence of {(us, ds)(., t)}, also
denoted by {(us, ds)(., t)}, and elements ū(., t) ∈ V (Ω)/R and d̄(., t) ∈ L2(Ω) such
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that, when the parameter s → 0+,

us − u

s
(., t) ⇀ ū(., t) weakly in V (Ω)/R,(4.31)

e33

(
us − u

s

)
(., t) ⇀ e33(ū)(., t) weakly in L2(Ω),(4.32)

ds − d

s
(., t) ⇀ d̄(., t) weakly in L2(Ω).(4.33)

Therefore, when s → 0+, (us − u)(., t) converges strongly to 0 in V (Ω)/R, and the
sequences e33(u

s − u)(., t) and (ds − d)(., t) converge strongly to 0 in L2(Ω).
We conclude this section with a convergence result concerning the sequences {us}

and e33(u
s), and a corollary about the convergence of {ds}, which will be useful in

subsection 4.2.
Theorem 4.7 (strong limit of e33(u

s)). Let (us, ds) and (u, d) be the solutions
of problems (Ps) and (P0) and assume that the hypotheses of Theorems 2.1, 4.2, and
4.3 are verified. Then there exists a subsequence of {us}, also denoted by {us}, that
verifies the following convergence, when the parameter s → 0+:

e33(u
s − u) −→ 0 strongly in C0([0, T ];C0(Ω)).(4.34)

Proof. Recalling the definition of us − u and its regularity (cf. Theorem 2.1),
we have, for each t, (us

α − uα)(., t) ∈ W 3,2(0, L) for α = 1, 2 and (us
3 − u3)(., t) ∈

W 2,2(0, L). The calculus of e33(u
s − u) gives

e33(u
s − u) = ∂3(u

s
3 − u3) = ∂3(u

s
3 − u3) − xα∂33(u

s
α − uα),(4.35)

where [∂3(u
s
3−u3)](., t) ∈ W 1,2(0, L) and [∂33(u

s
α−uα)](., t) ∈ W 1,2(0, L), for α = 1, 2.

But, because of the strong convergence of e33(u
s −u)(., t) to 0 in L2(Ω) (cf. Theorem

4.6), and applying the definition of ‖e33(u
s − u)(., t)‖L2(Ω) (cf. (2.15)), we conclude

immediately that, for each t, ∂3(u
s
3 −u3)(., t) and ∂33(u

s
α −uα)(., t) converge strongly

to 0 in L2(0, L). On the other hand, we get directly from (4.11){
‖e33(u

s − u)‖C0([0,T ];W 1,2(Ω)) ≤ ‖us − u‖C0([0,T ];W 2,2(Ω))

≤ ‖us‖C0([0,T ];W 2,2(Ω)) + ‖u‖C0([0,T ];W 2,2(Ω)) ≤ c,
(4.36)

where c is a constant independent of s. Therefore the sequences ∂3(u
s
3 − u3) and

∂33(u
s
α − uα) are bounded in C0([0, T ];W 1,2(0, L)), and consequently, we obtain that

∂3(u
s
3 − u3)(., t) and ∂33(u

s
α − uα)(., t) weakly converge to 0, in W 1,2(0, L) when s →

0+. But as the space W 1,2(0, L) is compactly embedded in C0([0, L]), we have that
∂3(u

s
3−u3)(., t) and ∂33(u

s
α−uα)(., t) strongly converge to 0 in C0([0, L]) when s → 0+.

This implies the strong convergence of e33(u
s − u) to 0 in C0([0, T ];C0(Ω)).

Corollary 4.8 (strong limit of ds). Let (us, ds) and (u, d) be the solutions of
problems (Ps) and (P0), and assume the same hypotheses of Theorem 4.7. Then there
exists a constant c > 0 independent of s such that when s → 0+

ds − d −→ 0 strongly in C0([0, T ];C0(Ω)).(4.37)
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Proof. Using exactly the same arguments as in the beginning of the proof of
Theorem 4.4,

|(ds − d)(x, t)| ≤
∫ t

0

[
c1|e33(u

s − u)(x, r)| + c2|(ds − d)(x, r)| + sc3

]
dr,(4.38)

where the constants ci, for i = 1, 2, 3, are strictly positive constants independent of s
and t, and consequently

⎧⎪⎪⎨
⎪⎪⎩

|(ds − d)(x, t)| ≤
∫ t

0
c2 |(ds − d)(x, r)| dr

+T
[
c1 ‖e33(u

s − u)‖C0([0,T ];C0(Ω)) + s c3

]
︸ ︷︷ ︸

ϕs

.(4.39)

Because of the strong convergence (4.34), the scalar ϕs → 0 when s → 0+. Then
we obtain the convergence (4.37), applying to (4.39) the integral Gronwall inequality
(cf. Evans [6, p. 625]).

4.2. Shape semiderivatives. The objective of this section is to identify, for
each t, the weak limits ū(., t) and d̄(., t) of the sequences {us−u

s (., t)} and {ds−d
s (., t)},

defined in (4.31) and (4.33). The procedure is the following: we subtract and divide by
s the equilibrium variational equations and the remodeling rate equations in problems
(Ps) and (P0), and then we take the limit, when the parameter s → 0+. We conclude
that, for each t, the pair (ū(., t), d̄(., t)) is the solution of another nonlinear problem.
Finally we end up proving that (ū, d̄) is the unique solution of this latter problem in
the space C1([0, T ];V (Ω)/R) × C1([0, T ];C0(Ω)).

4.2.1. Weak limit ū(., t). Subtracting and dividing by s the two equilibrium
variational equations of problems (P s) and (P0), we obtain, for each t ∈ [0, T ]
(cf. (4.16)–(4.17)),

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω

1
b3333(ds)e33(

us−u
s )e33(v)dΩ

+
∫

Ω
b3333(d)−b3333(ds)

s

(
b3333(d

s) b3333(d)
)−1

e33(u)e33(v) dΩ

+ as1(u
s, v) − F s

1 (v) −Gs
1(v) −Hs

1(v)

= 1
s

[
F s

0 (v) − F0(v) + Gs
0(v) −G0(v) + Hs

0(v) −H0(v)
]

+ s
[
− as2(u

s, v) + F s
2 (v) + Gs

2(v) + Hs
2(v)

]
+ s2

[
− as3(v) + F s

3 (v) + Gs
3(v) + Hs

3(v)
]
− s3 as4(u

s, v).

(4.40)

Computing now for each t the limit of each term of (4.40), we obtain the following
theorem.

Theorem 4.9 (identification of ū(., t)). We assume the hypotheses of Theorems
2.1, 4.2, and 4.3. Then the weak limit ū(., t) of the sequence {us−u

s }(., t) verifies the
following variational equation for each t ∈ [0, T ]:

B(ū, v) = S(v) ∀v ∈ V (Ω)/R.(4.41)
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The linear form S(.) is defined in V (Ω)/R by

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

S(v) =
∫

Ω
b′3333(d) b3333(d)

−2
d̄ e33(u) e33(v) dΩ

−
∫

Ω
1

b3333(d)

[
− θα

(
e33(u)∂33vα + e33(v)∂33uα

)
+ e33(u)e33(v)div θ

]
dΩ

+
∫

Ω
γ d̄ P ′

η(d) (fα vα + f3 v3) dΩ

+
∫

Ω
γ(ξ0 + Pη(d))

[
(fα vα + f3 v3) div θ − f3 θα ∂3vα

]
dΩ

+
∫

Γ

[
(gα vα + g3 v3)G1(θ, n) − g3 θα ∂3vα

]
dΓ

+
∫

Γ0∪ΓL

[
(hα vα + h3 v3)H1(θ) − h3 θα ∂3vα

]
dΓ0 ∪ ΓL,

(4.42)

with b′3333(.) and P ′
η(.) the first derivatives of the scalar functions b3333(.) and Pη(.),

respectively. The bilinear form B(., .) is defined by

B(z, v) =

∫
Ω

1

b3333(d)
e33(z) e33(v) dΩ ∀z, v ∈ V (Ω)/R.(4.43)

Proof. We give a sketch of the computation of the limits in (4.40), for each t.
The first term in (4.40) verifies, when s → 0+,∫

Ω

1

b3333(ds)
e33

(
us − u

s

)
e33(v)dΩ −→

∫
Ω

1

b3333(d)
e33(ū)e33(v)dΩ,(4.44)

because the sequence e33(
us−u

s )(., t) weakly converges to e33(ū)(., t) in L2(Ω) (cf. (4.32)),

and e33(v)
b3333(ds) converges strongly to e33(v)

b3333(d) in L2(Ω), due to the condition (2.7), the

mean value theorem for the function 1
b3333(.) , and the strong convergence of ds to d in

C0([0, T ];C0(Ω)) (cf. (4.37)).
The second term in (4.40) converges to

−
∫

Ω

b′3333(d) b3333(d)
−2

d̄ e33(u) e33(v) dΩ,(4.45)

when s → 0+, because of condition (2.7), the mean value theorem for the function
b3333(.), the condition (4.12) for the case s = 0, the strong convergence of ds to d
in C0([0, T ];C0(Ω)) (cf. Corollary 4.8, formula (4.37)), and the weak convergence of
ds−d

s (., t) to d̄(., t) in L2(Ω).
For the third term in (4.40), we have that as1(u

s, v) converges to∫
Ω

1

b3333(d)

[
− θα

(
e33(u)∂33vα + e33(v)∂33uα

)
+ e33(u)e33(v)div θ

]
dΩ(4.46)

when s → 0+, and F s
1 (v) + Gs

1(v) + Hs
1(v) converges to

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫
Ω
γ(ξ0 + Pη(d))

[
(fα vα + f3 v3) div θ − f3 θα ∂3vα

]
dΩ

+
∫

Γ

[
(gα vα + g3 v3)G1(θ, n) − g3 θα ∂3vα

]
dΓ

+
∫

Γ0∪ΓL

[
(hα vα + h3 v3)H1(θ) − h3 θα ∂3vα

]
dΓ0 ∪ ΓL.

(4.47)



SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 171

To prove (4.46) we remark that, when s → 0+, ‖
(
e33(u

s) − e33(u)
)
(., t)‖L2(Ω) and

‖(ds − d)(., t)‖L2(Ω) converge to 0 (cf. Theorem 4.6). To obtain (4.47) we apply the
definitions of the forms F s

1 , Gs
1, H

s
1 and the strong convergence of Pη(d

s) to Pη(d),
when s → 0+, in the space C0([0, T ];C0(Ω)).

The fourth term in (4.40) converges to∫
Ω

γ d̄ P ′
η(d) (fα vα + f3 v3) dΩ(4.48)

when s → 0+. In fact, we have Gs
0(v) = G0(v) and Hs

0(v) = H0(v), and⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1
s

[
F s

0 (v) − F0(v)
]
−

∫
Ω
γ d̄ P ′

η(d) (fα vα + f3 v3) dΩ

=
∫

Ω
γ
[

Pη(ds)−Pη(d)
ds−d

(
ds−d

s − d̄
)

+
(Pη(ds)−Pη(d)

ds−d − P ′
η(d)

)
d̄
]
(fα vα + f3 v3) dΩ.

(4.49)

When s → 0+, γ
Pη(ds)−Pη(d)

ds−d converges strongly to γ P ′
η(d) in C0([0, T ];C0(Ω)), and,

for each t, ds−d
s converges weakly to d̄ in L2(Ω) (cf. Theorem 4.6, formula (4.33)),

and d̄ (fα vα + f3 u3) belongs to L1(Ω). Thus (4.49) converges to 0, for each t, when
s → 0+.

Finally the last two terms in (4.40) converge to 0 when s → 0+, because those
are composed of bounded terms multiplied by a positive power of s.

4.2.2. Weak limit d̄(., t). By subtracting and dividing by s the remodeling
rate equations of problems (Ps) and (P0), and integrating in time between 0 and t,
we obtain the following theorem.

Theorem 4.10 (identification of d̄(., t)). We assume that the hypotheses of The-
orems 2.1, 4.2, and 4.3 are verified. For each t, the weak limit d̄(., t) of the sequence
{ds−d

s (., t)} is the solution of the following ordinary differential equation with respect
to time: {

˙̄d = c(d)e33(ū) + d̄ [c′(d) e33(u) + a′(d)] − c(d) θα∂33uα,

d̄(x, 0) = 0.
(4.50)

Proof. For any v ∈ L2(Ω) and for each t, we have⎧⎨
⎩

∫
Ω

ds−d
s v dΩ =

∫ t

0

( ∫
Ω

[
c(ds) e33(

us−u
s ) + c(ds)−c(d)

s e33(u)

+ a(ds)−a(d)
s − c(ds)θα∂33u

s
α

]
v dΩ

)
dr.

(4.51)

On the other hand, for each t, and when s → 0+, c(ds) converges strongly to c(d)

in C0(Ω), e33(
us−u

s ) converges weakly to e33(ū) in L2(Ω), c(ds)−c(d)
s e33(u) converges

weakly to d̄ c′(d) e33(u) in L2(Ω), a(ds)−a(d)
s converges weakly to d̄ a′(d) in L2(Ω), and

∂33u
s
α converges strongly to ∂33uα in L2(Ω). Hence, we have that, for each t and when

s → 0+, the sequence
∫

Ω
ds−d

s v dΩ converges to∫
Ω

(∫ t

0

[
c(d)e33(ū) + d̄ c′(d) e33(u) + d̄ a′(d) − c(d) θα∂33uα

]
dr

)
v dΩ.(4.52)

But by (4.33), ds−d
s (., t) converges weakly to d̄(., t) in L2(Ω) when s → 0+. Therefore

d̄(., t) must verify (4.50), since the weak limit is unique.
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4.2.3. Final identification result. Assembling the results of Theorems 4.9 and
4.10, we have the next theorem, which completely identifies, for each t, the (weak)
shape semiderivatives ū(., t) and d̄(., t).

Theorem 4.11. We assume that the hypotheses of Theorems 2.1, 4.2, and 4.3
are verified. For each t ∈ [0, T ], the weak limit (ū, d̄)(., t) is an element of the space
(V (Ω)/R) × L2(Ω) and is the solution of the following nonlinear problem (P̄):

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

Find ū : Ω × [0, T ] → R
3 and d̄ : Ω × [0, T ] → R such that

ū(., t) ∈ V (Ω)/R,

B(ū, v) = S(v) ∀v ∈ V (Ω)/R,

˙̄d = c(d)e33(ū) + d̄ [c′(d) e33(u) + a′(d)] − c(d) θα∂33uα in Ω × (0, T ),

d̄(x, 0) = 0 in Ω,

(4.53)

where the linear form S(.) and the bilinear form B(., .) are defined by (4.42) and (4.43),
respectively. We observe that S(.) depends on (u, d), which is the solution of problem
(P0), and also on d̄. The bilinear form B(., .) depends on d, that is, the measure of
change in volume fraction of the elastic material of problem (P0). Moreover, there
exists a unique solution (ū, d̄) of problem (P̄) such that ū ∈ C1([0, T ];V (Ω)/R) and d̄ ∈
C1([0, T ];C0(Ω)). Consequently, for each t, the entire sequence {(us−u

s , ds−d
s )(., t)}

weakly converges to (ū, d̄)(., t) in the space V (Ω)/R × L2(Ω) when s → 0+. Thus,
there exists the weak shape semiderivative of the shape map J(Ωs) = (us, ds) at s = 0
in the direction of the vector field θ (cf. (2.24)), and it is perfectly defined, for each
t, by dJ(Ω; θ)(., t) = (ū, d̄)(., t), where (ū, d̄) ∈ C1([0, T ];V (Ω)/R)×C1([0, T ];C0(Ω))
is the unique solution of problem (P̄).

Proof. The arguments used to prove the existence and uniqueness of the solu-
tion (ū, d̄) to problem (P̄), in the space C1([0, T ];V (Ω)/R) × C1([0, T ];C0(Ω)), are
analogous to those utilized in the proof of existence and uniqueness of the solution to
problem (Ps) (cf. Figueiredo and Trabucho [7]) and rely on the Schauder fixed point
theorem.

5. Conclusions and future work. In this paper we have considered the family
Ωs of perturbed thin rods, for s ∈ [0, δ], and the corresponding family of solutions
(us, ds) of the nonlinear asymptotic adaptive elastic model, derived in Figueiredo and
Trabucho [7]. We have proved that, for each t, the sequence (u

s−u
s , ds−d

s )(., t) con-
verges weakly to (ū, d̄)(., t) in the space (V (Ω)/R) × L2(Ω) when s → 0+. Con-
sequently, for each t, (ū, d̄)(., t) is the weak shape semiderivative of the function
J(Ωs) = (us, ds) at s = 0 in the direction of the vector field θ. Moreover, we have
showed that the pair (ū, d̄) is the unique solution of another nonlinear problem that
couples a variational equation, depending on (u, d) and d̄, and an ordinary differen-
tial equation with respect to time, depending on (u, d) and ū. We intend to apply
this methodology to analyze the weak shape semiderivative of the solution to the
nonlinear adaptive elastic asymptotic model (2.1)–(2.4), but for the case where the
remodeling rate equation (2.4) depends nonlinearly on e33(us) (cf. Figueiredo and
Trabucho [7]). We think that this nonlinear term may generate some difficulties in
proving that the sequence {ds−d

s } is bounded, independently of s, and subsequently
in the identification of the shape semiderivative.



SHAPE ANALYSIS OF AN ADAPTIVE ELASTIC ROD MODEL 173

REFERENCES

[1] P. G. Ciarlet, Mathematical Elasticity 1: Three-Dimensional Elasticity, Stud. Math. Appl.
20, North–Holland, Amsterdam, 1988.

[2] P. G. Ciarlet, Introduction to Linear Shell Theory, Gauthier-Villars, Paris, 1998.
[3] S. C. Cowin and D. H. Hegedus, Bone remodeling I: Theory of adaptive elasticity, J. Elas-

ticity, 6 (1976), pp. 313–326.
[4] S. C. Cowin and R. R. Nachlinger, Bone remodeling III: Uniqueness and stability in adaptive

elasticity theory, J. Elasticity, 8 (1978), pp. 285–295.
[5] M. C. Delfour and J. P. Zolésio, Shapes and Geometries, Analysis, Differential Calculus,

and Optimization, Adv. Des. Control 4, SIAM, Philadelphia, 2001.
[6] L. C. Evans, Partial Differential Equations, AMS, Providence, RI, 1998.
[7] I. N. Figueiredo and L. Trabucho, Asymptotic model of a nonlinear adaptive elastic rod,

Math. Mech. Solids, 9 (2004), pp. 331–354.
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MAGNETIC SHAPING OF A LIQUID METAL COLUMN AND
DEFORMATION OF A BUBBLE IN A VORTEX FLOW∗

M. G. BLYTH† AND J.-M. VANDEN-BROECK†

Abstract. Two different physical problems are considered: the magnetic shaping of a liquid
metal column and the distortion of a bubble in a corner vortex flow. It is shown that the two
problems can be modeled with a virtually identical set of equations. These equations are solved
numerically using a conformal mapping and a series truncation method, which permits fast and
efficient computation of the bubble or column shapes. It is found that the two problems exhibit
different limiting configurations. For the bubble problem, the deformation becomes more severe as
the vortex moves further into the corner until eventually the free surface makes contact with the
walls. For the magnetic shaping problem, columns approach a limiting configuration featuring either
a finite number of cusps or a fixed number of trapped bubbles along the perimeter. The division
between these two different behaviors is explained by means of an exact solution for zero surface
tension.

Key words. bubble, magnetic field, conformal mapping, series truncation

AMS subject classifications. 76B07, 76D45, 76W05

DOI. 10.1137/050622353

1. Introduction. This paper is concerned with two apparently unrelated prob-
lems. The first problem is the magnetic shaping of a liquid metal column. It is mo-
tivated by the process of continuous casting in the metallurgical industry in which a
free-falling vertical column of liquid metal is shaped by an electromagnetic field. This
avoids any surface imperfections which might be introduced by a mold. Experimental
work on magnetic shaping has been performed by Etay [7] and Etay, Gagnoud, and
Garnier [8]. It appears to have been first analyzed mathematically by Shercliff [14].
The second problem is the deformation of a two-dimensional bubble in a vortex flow.
It is relevant to applications where mixing of fluids or cleaning of unwanted bubbles
from an apparatus is important. We show that these two problems can be modeled
by almost the same equations. The only difference is a sign in the dynamic bound-
ary condition. We solve these equations numerically, recover previous solutions, and
compute new ones. Our method is relatively simple and, for the magnetic problem,
for example, can be extended to any number of arbitrarily placed conductors.

The problem of computing the shape and evolution of a bubble under a prescribed
set of flow conditions has occupied many workers over the years. In this article, we
concentrate on the computation of bubble shapes in steady flow. Unsteady calcula-
tions have been performed, for example, by Baker and Moore [1] for a gas bubble
rising in an inviscid liquid.

Inviscid models have been applied extensively in the literature to computing bub-
ble shapes. McLeod [10] obtained an exact solution describing uniform flow past a
two-dimensional bubble in a special case. Further numerical results were obtained
by Vanden-Broeck and Keller [17]. Asymptotic results for the same problem were
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presented by Shankar [13], and some analytical results were given by Tanveer [15].
Miksis, Vanden-Broeck, and Keller [11] found numerical solutions for uniform flow
past axisymmetric bubbles.

Vanden-Broeck and Keller [18] examined straining flow past a bubble in a right-
angled corner using boundary integral methods. Ozugurlu and Vanden-Broeck [12]
used a series truncation method to extend these results to flow in a corner of arbitrary
angle. In both of these papers, bubble shapes were computed numerically for a range
of parameter values, and it was shown that in extreme cases, a configuration is reached
featuring smaller, trapped bubbles along the free surface. In the present article, we
extend these results to the case when the flow is driven by a line vortex positioned
at a finite distance from the corner. Our aim is to compute the prevailing bubble
shape, which is unknown in advance. Gravity is neglected and the bubble shape is
determined by the ambient flow and by surface tension effects. We use a conformal
mapping to transform the flow domain into the unit circle, and then use a series
truncation method to compute the bubble shape numerically. The series truncation
method has been applied previously to calculate free surface flows by Vanden-Broeck
[16], Dias and Vanden-Broeck [6], Vanden-Broeck and Miloh [19], Blyth and Vanden-
Broeck [2], and others. When the vortex is moved to infinity, our results reduce
exactly to those obtained by Ozugurlu and Vanden-Broeck [12].

As mentioned earlier, the vortex problem and the magnetic shaping problem are
intimately related mathematically. Therefore we are able to use the same numerical
technique to compute liquid column shapes with little amendment to the analysis.
In this way, we are able to recompute and extend the results of Shercliff using a
somewhat simplified and more convenient approach.

The layout of the paper is as follows. In section 2, we formulate the two physical
problems. In section 3 we describe the conformal mapping and present the numer-
ical method. In section 4 we present our numerical results. Our conclusions are
summarized in section 5.

2. Problem formulation. In this section, we present the mathematical formu-
lations for corner vortex flow past a bubble and magnetic shaping of a liquid metal
column by an arrangement of electrical conductors. The mathematical details are
almost the same.

2.1. Vortex flow past a bubble. First, we consider inviscid, incompressible
flow into a corner of general angle α with a trapped air bubble at the apex, as is
sketched in Figure 1. Our interest lies in computing the shape of the bubble, which is
unknown in advance. The flow in the corner is driven by a line vortex whose intensity
and position control the shape of the bubble. We define the vortex circulation by Γ.
The vortex lies at some point along the bisector, y = tan(α/2)x, at a distance d from
the origin. Consequently, the flow is symmetric about this line. The contact angle,
β, is a free parameter.

At the surface of the bubble, the fluid pressure undergoes a jump whose magnitude
is dictated by the Laplace–Young equation,

pS − pB = κT.(2.1)

Here, pS is the fluid pressure at the surface of the bubble, pB is the constant pressure in
the bubble, κ is the surface curvature reckoned to be negative when the bubble encloses
a convex region (see Figure 1), and T is the constant surface tension. Applying
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Fig. 1. Sketch of the corner flow with a trapped air bubble at the vertex. The contact angle
between the bubble and the wall is β. The flow is driven by a vortex with circulation Γ at point
P which lies along the bisector, shown as a broken line. The point C lies at infinity. The arrow
indicates the direction of flow.

Bernoulli’s equation on the bubble surface and invoking condition (2.1), we have

1

2
q2 +

Tκ

ρ
= B,(2.2)

where q is the fluid speed, ρ is the fluid density, and B is a constant. If L is a suitable
lengthscale, so that Γ/L represents a characteristic velocity scale, then a routine
analysis of (2.2) reveals the importance of two dimensionless groups, one involving
the surface tension, and the other involving the distance of the vortex from the origin.
For example, these might be defined as

Td

ρΓ2
,

Bd2

Γ2
.(2.3)

The flow outside of the bubble satisfies Laplace’s equation, subject to the no-
normal flow condition at the walls,

v = 0 on y = 0, v/u = tanα on y = x tanα,(2.4)

where u and v are the x and y components of the velocity, respectively. The dynamic
condition (2.2) applies at the bubble surface.

2.2. Magnetic shaping of a liquid metal column. Next, we consider a two-
dimensional column of liquid metal surrounded by an even number of wire conductors
carrying high-frequency electrical current, as discussed by Shercliff [14]. The conduc-
tors are positioned at equally spaced intervals around a circle of radius d centered at
the origin. Gravity is neglected. Any stirring effects in the liquid metal are ignored
and the problem is treated as quasi-steady. Under this assumption, the magnetic
field generated by the current-carrying wires competes with surface tension to shape
the molten column. Our goal is to compute the shape of the free surface, which is
unknown in advance. The column shape is assumed to be rotationally symmetric
according to the number of conductors present. For this reason, the contact angle, β,
is taken to be equal to π/2.

The magnetic field may be described in terms of a potential function satisfying
Laplace’s equation in the region exterior to the metal column. At the free surface,
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the appropriate boundary condition is (see, e.g., Shercliff [14])

B2

2μ0
− T κ = p,(2.5)

where B is the magnitude of the magnetic field at the surface, μ0 is the permeability
of free space, T is the surface tension, κ is the surface curvature defined as in section
2.1, and p is the uniform pressure in the liquid metal. For simplicity, we recast (2.5)
in the notation of section 2.1, writing it instead as

1

2
q2 − Tκ

ρ
= E ,(2.6)

where q = B, ρ = 1/μ0, and E = μ0p is a constant. Clearly, the only difference
between (2.6) and the free surface condition for the vortex flow (2.2) is the sign on
the second term. Together with the fact that both problems are governed by Laplace’s
equation within the domain of interest, we see that, despite describing wholly different
physical phenomena, the two problems are virtually identical mathematically. The
solution to both of these problems is considered in the next section.

We note that there are other problems which are closely related to the current
work. These include the equilibrium configuration of a charged surface of liquid
metal (see Zubarev [20] and Zubarev et al. [21]) and the circulation-induced shape
deformation of drops and bubbles (see, e.g., Crowdy [5], [4] and Blyth and Vanden-
Broeck [3]). The boundary conditions derived by Zubarev [20] imply that our vortex
flow also models the deformation of the surface of a liquid metal due to an arrangement
of charges symmetrically distributed around it.

3. Conformal mapping and numerical solution. In the first problem, dis-
cussed in section 2.1, the aim is to compute the shape of the bubble for a vortex of
given strength and position. In the second problem, discussed in section 2.2, the aim
is to compute the shape of the liquid metal column when surrounded by a prescribed
number of conductors carrying a fixed current. We have shown that these two prob-
lems are virtually mathematically equivalent, save for a difference in sign in the free
surface boundary conditions (2.2) and (2.6). Both problems can be solved numerically
using a series truncation method to be described in this section.

To prepare the ground, we first map the flow domain onto the unit circle in a
transformed plane. To do this, we introduce the complex potential f(z) = φ + iψ,
where φ(x, y), ψ(x, y) are the velocity potential and streamfunction, respectively, and
z = x + iy. Treating φ and ψ as independent coordinates, the domain of interest
is illustrated in Figure 2. Note that φ varies between −Γ/2 and Γ/2 and takes the
a priori unknown value of γ at the two contact points B and D. The parameter Γ is
either a measure of the vortex strength or the current in the conductors. The mapping
from the complex f plane into the unit circle in the target t plane is achieved by the
transformation

−2πif

Γ
= log

[
i(t2 + 1) + 2λt

i(t2 + 1) − 2λt

]
,(3.1)

where λ is a positive constant given by

λ = tan
(πγ

Γ

)
.(3.2)
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Fig. 2. The flow domain in the complex f plane. The bubble surface is highlighted by the thick
lines.

f

Γ
2

Γ
2

t

t

t

A B C D E

− γ γ0 A

E

C

B

D

ABCDE

P

Q

i

–i

P

Q

B

i

–i

Λ

Λ

A

A

E

E

P

φ

λ−λ C

ψ

P

Q

Q

–1 1

–i  

i

D

Fig. 3. The conformal mapping from the f to the t plane via the intermediate t′′ and t′ planes.
The succession of mappings is given by t′′ = exp(−2iπf/Γ), t′′ = (i−t′)/(i+t′), and −2λ/t′ = t+1/t.

Moving the corner vortex to infinity corresponds to the double limit λ → ∞ and
Γ → ∞. In this case, Λ → 0 and point P collapses onto point C. Moreover, γ → Γ/2.
Writing b = Γ/2 − γ, for constant b, and introducing the shifted complex potential
g = f − Γ/2, we obtain the limiting behavior of the mapping (3.1),

g

b
∼ −1 + t2

2t
,(3.3)

which is precisely the mapping used by Ozugurlu and Vanden-Broeck [12] when con-
sidering corner flow driven by a vortex at infinity.

The mapping from the f to the t plane is more clearly understood by introducing
two intermediate planes, as is shown in Figure 3. For the magnetic shaping problem,
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there are 2n conductors positioned symmetrically on a circle of radius d at z = zk
and z = z∗k, where

zk = d exp

{
i

(
k − 1

2

)
π

n

}

for k = 1, . . . , n. The current carried by the conductors alternates in sign from one
to the other so that as z → zk, the stream function ψ → (−1)k∞. These limits are
represented by the points P and Q in Figure 3.

The complex velocity is defined by

ζ ≡ df

dz
= u− iv.(3.4)

Taking the limit as z → ∞, we note the behavior of the complex velocity near the
origin in the transformed plane,

ζ ∼ O
(
t
n+1
n

)
as t → 0.(3.5)

Consistent with the local flow at the contact points B and D shown in Figure 1, the
complex velocity has the following singular behavior in the t plane:

ζ ∼ O
(
(1 − t2)2(1−β/π)

)
as t → ± 1.(3.6)

As shown in Figure 3, the points P and Q are mapped onto the points t = −iΛ and
t = iΛ, respectively, where

Λ = −λ +
√
λ2 + 1.(3.7)

Accordingly, the complex velocity has the local structure,

ζ ∼ O
(
(t2 + Λ)−1

)
as t → ± iΛ.(3.8)

Our aim is to construct a function inside the unit circle in the transformed plane,
which is analytic except at the singularities just discussed. To this end, we expand
the complex velocity in an infinite series, writing

ζ = t1/n
(1 − t2)2(1−β/π)

(t2 + Λ)
S(t), S(t) =

∞∑
k=1

akt
k,(3.9)

where the ak are unknown, real coefficients. It will be noted that, while the magnetic
shaping problem requires n to be an integer, no such restriction is necessary for the
vortex problem. In the latter case, where the corner angle α = π/n, n may be
taken to be any positive real number. In the limit when the vortex tends to infinity
studied above, the complex velocity given in (3.9) has the leading order behavior,
ζ ∼ a1 t(1/n)−1 (1 − t2)2(1−β/π), in agreement with the analysis of Ozugurlu and
Vanden-Broeck [12].

Since the coefficients, ak, in (3.9) are real, the boundary conditions (2.4) are
satisfied automatically and it only remains to enforce the dynamic condition (2.2).
In practice, the infinite series is terminated after M terms, leaving M unknown co-
efficients a1, . . . , aM . These are determined numerically by placing M collocation
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points along AB and DE which comprise the free surface. Writing t = ei σ, where
0 < σ < π, we select the M points σk = (k − 1/2)h for k = 1, . . . ,M , where the step
length h = π/M . Noting the identity,

∂x

∂φ
+ i

∂y

∂φ
=

1

u− iv
=

u + iv

u2 + v2
,(3.10)

we may write the curvature in the convenient form

κ =
vu′ − uv′√
u2 + v2

∂σ

∂φ
,(3.11)

where a prime denotes partial differentiation with respect to σ. According to the
mapping (3.1),

∂σ

∂φ
=

π

Γ

λ2 + cos2 σ

λ sinσ
(3.12)

on the unit circle. Substituting (3.11) and (3.12) into the dynamic condition (2.2) and
applying the result at each of the collocation points, we derive M nonlinear algebraic
equations for the M unknowns a1, . . . , aM . These equations are solved numerically
using Newton’s method. Once the coefficients are known, the shapes are constructed
by integrating the identity (3.10). The position of the vortex is given by zv = zA +Z,
where zA is the position of the midpoint, A, on the bubble surface, and Z is given by

Z =
2

π
λΓ i

∫ Λ

1

(1 + s2)( 2β
π −1)

(−is)
1+n
n (s2 − Λ̂2)S(−is)

ds,(3.13)

where Λ̂ = λ +
√
λ2 + 1.

Solutions with a cusp at some point along their perimeter can be described by a
simple, exact solution for a free surface with zero surface tension and β = π. According
to (2.2), such solutions have constant velocity on the bubble surface. They can be
constructed by taking a1 = U , a2 = 0, a3 = UΛ2, and ak = 0 for all k ≥ 4 in (3.9).
This guarantees that |ζ| = U , a constant, on the bubble surface |t| = 1. Successful
comparison is made below between this exact solution and numerically computed cusp
solutions for the magnetic shaping problem.

4. Results. We present results for each of the two different physical problems
in turn. For the vortex problem, the contact angle, β, is a free parameter. For the
metal column shaping problem, β is equal to π/2. All solutions were computed using
the method described in section 3. In most cases, we took M = 150 collocation points
along the free surface. This was found to be sufficient to accurately resolve the bubble
and liquid metal column shapes. In exceptional cases, we needed to take M = 200 to
obtain an accurate solution. An example set of coefficients for a sample calculation is
presented below.

We begin by presenting results for corner flow past a bubble. To define dimen-
sionless variables, we set T = ρ = Γ = 1. This leaves a two-parameter family of
solutions obtained by varying γ and B. In Figure 4(a), we show a number of bubble
shapes with contact angle β = π/2 for the case B = 1 and for various values of γ.
The vortex is indicated by a solid disk for each bubble shape. As γ is reduced, the
vortex moves towards the origin, forcing the bubble towards the walls until it even-
tually makes contact at γ = 0.149. Beyond this point, the free surface intersects the
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Fig. 4. Flow past a bubble in a right-angled corner for B = 1, T = ρ = Γ = 1: (a)
β = π/2 and 0.55 (outermost), 0.45, 0.35, 0.25, and 0.149 (innermost); (b) β = π/4 and
γ = 0.4 (outermost), 0.3, 0.2, 0.15, 0.113 (innermost). The position of the vortex for each case
is shown as a solid disk. The vortex moves closer to the origin as γ decreases. Each picture is
scaled so that each bubble makes contact with the walls a unit distance from the origin.

walls and any physical meaning is lost. For the last case, γ = 0.149, the coefficients
ak in (3.9) are given by a1 = −2.163, a3 = −1.038, a5 = 0.3103, . . . , a11 = −0.01918,
. . . , a21 = −6.375 × 10−4, . . . , a41 = −3.748 × 10−5, . . . , a61 = −1.2561 × 10−6, . . . ,
a81 = −5.75 × 10−8. All of the even coefficients are zero. Bubble shapes under the
same conditions but with a contact angle of β = π/4 for various values of γ are shown
in Figure 4(b). We note that fixing γ and varying the Bernoulli constant B produces
little qualitative difference in the bubble shapes.

Free surface shapes inside a corner of angle α = π/3 are displayed in Figure 5(a)
for the contact angle β = π/2. As γ increases, the vortex moves further into the corner
until contact is made between the free surface and the walls. For the contact angle
β = π, considered in Figure 5(b), intersection between the bubble and the walls tends
to occur much closer to the contact points. As γ increases and the vortex moves a
long distance from the corner, the free surface tends to a circular arc, except in small
regions close to the walls, where the bubble meets the wall tangentially. The circular
arc is the expected shape for a bubble in a stagnant fluid. It is shown as a broken
line in Figure 5(b).

Results for flow past a bubble adhering to a plane wall are displayed in Figure 6
for B = 0.5. As γ decreases and the vortex moves towards the wall, the bubble is
squashed downwards until its midpoint touches the wall at γ = 0.247. Beyond this
value, the free surface intersects the wall, preventing physical interpretation. As γ
increases and the vortex moves away from the wall, the bubble expands and eventually
acquires the semicircular shape expected for an attached bubble residing in a quiescent
fluid. If, simultaneously, the vortex strength tends to infinity, we obtain uniform flow
past a bubble on a flat wall, as discussed by Vanden-Broeck and Keller [17].

We now turn to the liquid metal column shaping problem. We start by re-
computing some of Shercliff’s results using our simplified conformal mapping. First,
we nondimensionalize (2.6), writing q = Bsq

∗, where Bs is a reference magnetic field
strength, and κ = κ∗/L, where L is a reference length. Dropping the asterisks for
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Fig. 5. Flow past a bubble in a corner with α = π/3 for B = 1, T = ρ = 1: (a)
β = π/2 and γ = 0.6 (outermost), 0.4, 0.3, 0.2, and 0.135 (innermost); (b) β = π for
γ = 0.27 (innermost), 0.5, 0.99 (outermost) together with the limiting circular arc, shown as a
broken line. The position of the vortex for each case (except for (b) γ = 0.99) is shown as a solid
disk. The vortex moves closer to the origin as γ decreases. Each picture is scaled so that each bubble
makes contact with the walls a unit distance from the origin.
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Fig. 6. T = ρ = 1 and β = π/2: Flow past a bubble on a flat wall with B = 0.5 for γ =
0.247 (innermost), 0.35, 0.45, 0.65, 0.98 (outermost), shown with the limiting circle (broken line).

convenience, (2.6) becomes

1

2
q2 − κ

2ak
=

1

2a
,(4.1)

where

a =
B2

s

2E , k =
ρEL
T

(4.2)

are the same as Shercliff’s dimensionless parameters a and k. Shercliff’s parameter,
α, to be written here as αS , is related to our parameter γ by αS = Γ/2 − γ, where Γ
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Fig. 7. Column shapes for four conductors for (a) sinαS = 0.5 and a = 1, 10, 100, 10000, and
(b) sinαS = 0.8 and a = 2.5, 25, 250, 25000. The largest value of a corresponds to the limiting
shape exhibiting a cusp and a trapped bubble, respectively. In both figures, the shapes are scaled so
that the conductors, shown as four solid dots, are always a unit distance from the origin.

now represents the dimensionless circulation. To conform with Shercliff’s results, we
take k = 0.5 and Γ = π throughout.

In Figure 7, we plot column shapes for a number of values of a for the two cases
sin(αS) = 0.5 and sin(αS) = 0.8, corresponding to Shercliff’s Figures 12 and 13. As
a increases, the shapes in Figure 7(a) tend to a limiting cusped configuration, while
those in Figure 7(b) approach a shape with trapped bubbles along the perimeter.
The critical value dividing these two characteristic limits is provided by Shercliff as
sinαS = 0.66. In either the subcritical or supercritical case, the limiting configuration
is easily obtained as the exact solution for zero surface tension discussed at the end of
section 3. To confirm this statement, we temporarily drop the current nondimension-
alization and, in Figure 8(a), present the numerical solution for the case E = ρ = 1
and T = 10−6 with contact angle β = π/2. According to (2.6), the surface velocity
is approximately

√
2 except near the cusps, where the curvature is large. The exact

cusp solution with U =
√

2 is shown as the broken line in Figure 8(a). The agreement
between the two curves is excellent. A close-up view in Figure 8(b) illustrates the true
cusplike nature of the exact solution in contrast to the sharp turning of the numerical
solution.

The effect on the cusp shape of increasing αS is shown in Figure 9. As αS is
raised, the cusps eventually intersect themselves. The first intersection occurs at the
critical value sinαSc = 0.66, which is in excellent agreement with Shercliff’s prediction.
Typical subcritical and supercritical profiles are shown in the figure. The behavior
of the exact cusp solutions suggests that, as a increases, metal columns for which
αS < αSc will approach a limiting physical shape exhibiting trapped bubbles, and
those for which αS > αSc will approach a cusped configuration. These predictions are
confirmed by the shapes shown in Figure 7. A magnified view of one of the trapped
bubbles seen in Figure 7(a) is shown in Figure 10(a). The shape eventually intersects
itself when a is increased further, as can be seen in Figure 10(b).

Shercliff presented results for only four conductors. Our numerical method allows
us to compute shapes for any even number of conductors. By way of illustration, we
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Fig. 8. sinαS = 0.5: (a) Numerical solution with β = π/2 and E = ρ = 1, T = 10−6, shown
as a solid line, compared with the exact cusp solution with β = π and U =

√
2, shown as a broken

line. (b) Close up of (a) near the cusp.
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Fig. 9. Exact solutions with zero surface tension and β = π, U =
√

2: (a) Subcritical cusp
shape for sinαS = 0.5, and (b) supercritical cusp shape for sinαS = 0.8.

show in Figure 11 the various column shapes produced by six regularly placed conduc-
tors. Computing the exact cusp solution for zero surface tension as described above,
we find the critical value sinαS = 0.75. Subcritical values correspond to limiting cusp
solutions appropriate to Figure 11(a), and supercritical values correspond to shapes
with trapped bubbles appropriate to Figure 11(b).

5. Summary. We have considered the free surface shapes adopted by a bubble
in a vortex corner flow or by a column of liquid metal surrounded by an even number
of conductors, and have noted the near mathematical equivalence between these two
problems. In both cases, our approach has been to use a conformal map to transform
the domain of interest into the unit circle. In the process, the kinematic condition on
the walls in the case of the vortex flow, or the symmetry conditions in the case of the
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Fig. 10. The case sinαS = 0.8: (a) A close-up view of the trapped bubble shown in Figure 7(b)
when a = 25000, and (b) a self-intersecting shape when a = 2 × 105.
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Fig. 11. Column shapes for six conductors for (a) sinαS = 0.5 and a = 5, 50, 5× 104, and (b)
sinαS = 0.85 and a = 3.8, 38, 3.8 × 104. The largest value of a corresponds to the limiting shape
exhibiting a cusp and a trapped bubble, respectively. In both figures, the shapes are scaled so that the
conductors, shown as six solid dots, are always a unit distance from the origin.

metal column, were satisfied automatically, and the free surface condition was satisfied
by expanding in a convergent power series, which was truncated to permit numeri-
cal computation. For the magnetic shaping problem, our approach has considerably
simplified the analysis used by Shercliff to compute the various shapes.

For both problems, we have presented a variety of shapes over a range of con-
ditions and have demonstrated the limiting configurations featuring either cusps or
trapped bubbles along the free surface perimeter. Moreover, we have constructed
exact zero surface tension cusp solutions and have shown that as one parameter is
varied, these solutions begin to intersect themselves. The critical value at which this
self-intersection occurs corresponds to the division between limiting cusp and trapped
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bubble solutions of the free surfaces with surface tension present. Below the critical
value, the bubble shapes approach a cusped configuration; above it, the free surfaces
tend to a shape with trapped bubbles along its perimeter.

The issue of the stability of the configurations computed in this paper is left as
a topic for future work. Stability calculations for related problems involving liquid
metals have been performed by Felici [9].
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magnétique, J. Mec. Theor. Appl., 5 (1986), pp. 911–934.

[9] T. P. Felici, On the surface stability of liquid conductors in electromagnetic shaping, J. Fluid
Mech. (1995), pp. 1–28.

[10] E. B. McLeod, The explicit solution of a free boundary problem involving surface tension,
J. Rational Mech. Anal., 4 (1955), pp. 557–567.

[11] M. Miksis, J.-M. Vanden-Broeck, and J. B. Keller, Axisymmetric bubble or drop in a
uniform flow, J. Fluid Mech., 108 (1981), pp. 89–100.

[12] E. Ozugurlu and J.-M. Vanden-Broeck, The distortion of a bubble in a corner flow, Euro-
pean J. Appl. Math., 11 (2000), pp. 171–179.

[13] P. N. Shankar, On the shape of a two-dimensional bubble in uniform motion, J. Fluid Mech.,
244 (1992), pp. 187–200.

[14] J. A. Shercliff, Magnetic shaping of molten metal columns, Proc. Roy. Soc. London Ser. A,
375 (1981), pp. 455–473.

[15] S. Tanveer, Some analytical properties of solutions to a two-dimensional steadily translating
inviscid bubble, Proc. Roy. Soc. London Ser. A, 452 (1996), pp. 1397–1410.

[16] J.-M. Vanden-Broeck, Rising bubbles in a two-dimensional tube with surface tension, Phys.
Fluids, 27 (1984), pp. 2604–2607.

[17] J.-M. Vanden-Broeck and J. B. Keller, Deformation of a bubble or drop in a uniform flow,
J. Fluid Mech., 101 (1980), pp. 673–686.

[18] J.-M. Vanden-Broeck and J. B. Keller, Bubble or drop distortion in a straining flow in two
dimensions, Phys. Fluids, 23 (1980), pp. 1491–1495.

[19] J.-M. Vanden-Broeck and T. Miloh, Computations of steep gravity waves by a refinement
of Davies–Tulin’s approximation, SIAM J. Appl. Math., 55 (1995), pp. 892–903.

[20] N. M. Zubarev, Exact solution of the problem of the equilibrium configuration of the charged
surface of a liquid metal, J. Exp. Theor. Phys., 89 (1999), pp. 1078–1085.

[21] N. M. Zubarev and O. V. Zubarev, Exact solutions for equilibium configurations of charged
conducting liquid jets, Phys. Rev. E, 71 (2005), article 016307.



SIAM J. APPL. MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 66, No. 1, pp. 187–205

AN APPROXIMATE METHOD FOR SCATTERING BY THIN
STRUCTURES∗

S. MOSKOW† , F. SANTOSA‡ , AND J. ZHANG‡

Abstract. Scattering of waves by a thin structure is considered in this work. The Helmholtz
equation with variable coefficient models the wave phenomena. The scatterer is assumed to have a
high index of refraction while at the same time it is very small in one of the dimensions. We show
that if the index scales as O(1/h), where h is the thickness of the scatterer, then an approximate
solution, based on perturbation analysis, can be obtained. The approximate solution consists of a
leading order term plus a corrector, each of which solves an integral equation in two dimensions for
a three-dimensional problem. We provide error analysis on the approximation. The approximate
method can be viewed as an efficient computational approach since it can potentially greatly simplify
scattering calculations. Numerical results provide an assessment of the accuracy of the approximate
solution.

Key words. scattering, Helmholtz equation, approximate solution, asymptotics, error estimates
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1. Introduction. The problem under investigation arises in the study of pho-
tonic band gap (PBG) structures. Optical devices that exploit photonic band gap
phenomena to guide and manipulate light are expected to play an important role
in optical communication networks and optical computing. Thin-film or membrane
devices are particularly attractive because of the relative ease with which they can be
made.

A typical thin-film device is made of a material with a high index of refraction.
The high index is needed to confine light within the structure. To manipulate light
within the structure, holes are drilled into film. Typical structures under study can
be found in several recent papers [3, 5, 6].

In order to simulate how light behaves in such a structure, it is necessary to solve
the wave equation. In most studies, the structure is surrounded by air. Thus, the
domain in which the wave equation must be solved will be all of R3. The thin film
structure can be modeled by prescribing index of refraction to a subdomain of R3.

The classical approach to performing the required simulation of wave propaga-
tion in such a complicated structure is the finite-difference time-domain (FDTD)
method [2], with absorbing boundary conditions. While the computation proceeds in
a straightforward manner, it is very time consuming.

In this paper, we propose an approximate method to solve the scattering problem.
The method starts with the time-harmonic wave equations and applies a perturbation
approach based on an identified small parameter. The advantage of our method is
that it reduces the complexity of the computation by one dimension. The Lippmann–
Schwinger formulation of the scattering problem will involve a three-dimensional
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(3-D) (volume) integral equation. Our method simplifies the calculation to solving a
sequence of two-dimensional (2-D) integral equations.

The present work addresses only the case of the scalar wave equation. Maxwell’s
equation, which is the correct model for the propagation phenomena, will be treated
in a separate, future work.

This paper is organized as follows. We give a description of the problem we
wish to solve in the next section. The perturbation approach is presented in section
3. Justification of the approximate method follows in sections 4 and 5. Section 6
contains numerical examples in two dimensions. The paper closes with a discussion.

thin scatterer

incident wave

Fig. 2.1. Scattering by a thin structure.

2. Problem statement. The situation we are attempting to model is depicted
in Figure 2.1. The propagation of waves is modeled by the Helmholtz equation

Δu + k2ε(x, z)u = 0,(2.1)

where x = (x1, x2) ∈ R2 and z ∈ R. In (2.1) we call ε(x, z) the dielectric constant
(an abuse in terminology), which will be set to unity in air and to some value in
the structure. The field u(x, z) is of normalized real frequency k and comprises two
components:

u(x, z) = ui(x, z) + us(x, z),

where the incident wave ui is given, and the scattered field us satisfies the Sommerfeld
radiation conditions

∂us

∂r
− ikus = O

(
1

r2

)
for r =

√
|x|2 + z2 → ∞.

The thin structure is incorporated into the definition of ε(x, z). Let Ω×(−h/2, h/2)
be the region occupied by the thin structure, where Ω is a bounded domain in R2.
Then the dielectric constant is defined by

ε(x, z) =

⎧⎨
⎩

1 for |z| > h/2,
ε0(x)/h for |z| < h/2, x ∈ Ω,
1 for |z| < h/2, x �∈ Ω.

(2.2)

Thus, we have assumed that ε0(x) is supported in Ω.
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The problem we wish to solve is to find the scattered field us(x, z) given a thin
structure (2.2) and an incident field ui(x, z). For the purpose of simulating waves in
PBG structures, the total field u(x, z) for (x, z) in the thin structure, Ω×(−h/2, h/2),
is of great interest.

3. Perturbation approach. One can rewrite the problem for u(x, z) in (2.1)
as an integral equation [1] by observing that since

Δui + k2ui = 0,

we have that

Δus + k2us = k2(1 − ε)u.

If G(x, z, x′, z′) is the free space Green’s function for the Helmholtz equation in R3,
i.e., G satisfies

(Δ(x′,z′) + k2)G = δ(x,z)

in R3 with the Summerfeld radiation condition, then by using integration by parts
and the decay at infinity, we get

us(x, z) = k2

∫
Ω

∫ h/2

−h/2

(
1 − ε0(x

′)

h

)
G(x, z, x′, z′)u(x′, z′)dz′dx′.

Hence we have that the field satisfies the well-known Lippmann–Schwinger integral
equation

u(x, z) = ui(x, z) + k2

∫
Ω

∫ h/2

−h/2

(
1 − ε0(x

′)

h

)
G(x, z, x′, z′)u(x′, z′)dz′dx′.(3.1)

We note that G(x, z, x′, z′) is given by

G(x, z, x′, z′) =
1

4π

eik
√

|x−x′|2+|z−z′|2√
|x− x′|2 + |z − z′|2

.

See [1] for the full proof of equivalence. To solve for the field, we need to view (3.1)
as an integral equation satisfied by u(x, z) for (x, z) ∈ Ω × (−h/2, h/2). Once we
have found u(x, z) for (x, z) in the thin domain, we can then use (3.1) as a way to
compute the field outside the thin domain. Therefore, our first step will be to find an
asymptotic approximation for u inside the thin region.

To find a first order approximation, we will scale the variable in the z direction,
z = hζ, so that the integral equation is now

u(x, ζ) = ui(x, hζ) + k2

∫
Ω

∫ 1/2

−1/2

(
1 − ε0(x

′)

h

)
G(x, hζ, x′, hζ ′)u(x′, ζ ′)hdζ ′dx′,

(x, ζ) ∈ Ω × (−1/2, 1/2).(3.2)

Formally, we assume a perturbation series ansatz

u(x, ζ) = u0(x) + hu1(x, ζ) + · · · , (x, ζ) ∈ Ω × [−1/2, 1/2].(3.3)
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The goal is now to obtain equations by which u0(x, z) and u1(x, z) can be found.
Substituting (3.3) into (3.2), we see that

u0(x) + hu1(x, ζ) + · · · = ui(x, 0) + h
∂ui
∂z

(x, 0) + O(h2)(3.4)

+ k2

∫
Ω

∫ 1/2

−1/2

(h− ε0(x
′))G(x, hζ, x′, hζ ′) [u0(x

′) + hu1(x
′, ζ ′) + · · · ] dζ ′dx′.

The classical way to find u0 and u1 is to equate like powers of h on both sides of (3.4).
However, the situation is complicated by the fact that G(x, z, x′, z′) is singular.

We make the observation that if the integral∫ 1/2

−1/2

G(x, hζ, x′, hζ ′)dζ ′

converges as h → 0 to

G(x, 0, x′, 0),

then, setting equal like powers of h in (3.4), we see that u0(x) satisfies the integral
equation

u0(x) = ui(x, 0) − k2

∫
Ω

ε0(x
′)G(x, 0, x′, 0)u0(x

′)dx′.(3.5)

We will justify this step in the next section and show that u1(x, z) can be calculated,
as well as justified, in section 5.

Once we have solved for u0(x) and u1(x, z), we can insert them in the right-hand
side of (3.1) to obtain an approximation of the field for all points outside the thin
domain. Note that the equation for u0 and, as we shall see, that for u1 are 2-D integral
equations. Therefore, in terms of computational cost we have reduced the dimension
of the problem by one.

4. Justification for the first term. Now we provide a rigorous error estimate
for the approximation (3.5) derived above. The solution u(x, z) satisfies

u(x, z) = ui(x, z) + k2

∫
Ω

∫ h/2

−h/2

(
1 − ε0(x

′)

h

)
G(x, z, x′, z′)u(x′, z′)dz′dx′.(4.1)

The candidate for an approximation to u on the thin strip to substitute into (3.1) is
u0(x), the solution to the lower dimensional problem:

u0(x) = ui(x, 0) − k2

∫
Ω

ε0(x
′)G(x, 0, x′, 0)u0(x

′)dx′.(4.2)

To show this is a good approximation, let

ζ = z/h and ũ(x, ζ) = u(x, z),

so that

ũ(x, ζ) = ui(x, hζ) + k2

∫
Ω

∫ 1/2

−1/2

(h− ε0(x
′))G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′.(4.3)
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For convenience define S to be the scaled strip

S = Ω × (−1/2, 1/2).

We will show the following uniform norm estimate.
Proposition 1. There exists a constant C independent of h (but depending on

k) such that

‖u0(x) − ũ(x, ζ)‖L∞(S) ≤ Ch.

Using (4.2) and (4.3) and interchanging the order of integration, we can write

ũ(x, ζ) − u0(x) = ui(x, hζ) − ui(x, 0) + hk2

∫
Ω

∫ 1/2

−1/2

G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′

+ k2

∫ 1/2

−1/2

∫
Ω

ε0(x
′) [G(x, 0, x′, 0)u0(x

′) −G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)] dx′dζ ′.

We add and subtract appropriate terms to obtain

ũ(x, ζ) − u0(x) = ui(x, hζ) − ui(x, 0) + hk2

∫
Ω

∫ 1/2

−1/2

G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′

+ k2

∫ 1/2

−1/2

∫
Ω

ε0(x
′)ũ(x′, ζ ′) [G(x, 0, x′, 0) −G(x, hζ, x′, hζ ′)] dx′dζ ′

+ k2

∫ 1/2

−1/2

∫
Ω

ε0(x
′)G(x, 0, x′, 0) [u0(x

′) − ũ(x′, ζ ′)] dx′dζ ′.

For a given ε0 ∈ L∞(Ω) which is also piecewise continuous, define the integral operator

T : L2(S) → L2(S)

by

T (f) =

∫ 1/2

−1/2

∫
Ω

ε0(x
′)G(x, 0, x′, 0)f(x′, ζ ′)dx′dζ ′.

By an abuse of notation, we will also use T to denote the same integral operator on
the space of continuous functions, C0(S), equipped with the L∞ norm:

T : C0(S) → C0(S).

(Note that T (f) will always be independent of ζ, so the range of T is really only
functions on Ω.) Then ũ− u0 satisfies

(I + k2T )(ũ− u0) = ui(x, hζ) − ui(x, 0) + hk2

∫
Ω

∫ 1/2

−1/2

G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′

+ k2

∫ 1/2

−1/2

∫
Ω

ε0(x
′)ũ(x′, ζ ′) [G(x, 0, x′, 0) −G(x, hζ, x′, hζ ′)] dx′dζ ′.(4.4)

The lemmas that follow are used to bound the right-hand side of (4.4) and to show
that we can invert (I + k2T ).



192 S. MOSKOW, F. SANTOSA, AND J. ZHANG

Lemma 1. There exists a constant C independent of h and ζ ′ but depending on
k such that

sup
(x,ζ)∈S

∫
Ω

|G(x, 0, x′, 0) −G(x, hζ, x′, hζ ′)|dx′ ≤ Ch.

Proof. The difference of these Green’s functions can be written as

G(x, 0, x′, 0) −G(x, hζ, x′, hζ ′)

=
1

4π

eik|x−x′|

|x− x′| − 1

4π

eik
√

|x−x′|2+h2|ζ−ζ′|2√
|x− x′|2 + h2|ζ − ζ ′|2

=
1

4π
eik|x−x′|

[
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

]

+
1

4π

1√
|x− x′|2 + h2|ζ − ζ ′|2

[
eik|x−x′| − eik

√
|x−x′|2+h2|ζ−ζ′|2

]
.(4.5)

We first work on the second term on the right-hand side of (4.5). Since we know that
for (x, ζ) ∈ S, √

|x− x′|2 + h2|ζ − ζ ′|2 − |x− x′| ≤ h,

there exists a constant C independent of h and ζ ′ but depending on (real) k such that

|eik|x−x′| − eik
√

|x−x′|2+h2|ζ−ζ′|2 | ≤ Ch.(4.6)

Since

1√
|x− x′|2 + h2|ζ − ζ ′|2

≤ 1

|x− x′| ,

which is integrable with respect to x′ on Ω, we have that∫
Ω

dx′√
|x− x′|2 + h2|ζ − ζ ′|2

is bounded independently of h, ζ ′, and (x, z) ∈ S. This along with (4.6) gives that
we can choose C independent of h, ζ ′, and (x, ζ) ∈ S such that∫

Ω

1

4π

1√
|x− x′|2 + h2|ζ − ζ ′|2

|eik|x−x′| − eik
√

|x−x′|2+h2|ζ−ζ′|2 |dx′ ≤ Ch.

The integral of the first term on the right-hand side of (4.5) can be bounded as follows:

∫
Ω

∣∣∣∣∣ 1

4π
eik|x−x′|

[
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

]∣∣∣∣∣ dx′

≤
∫

Ω

∣∣∣∣∣ 1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

∣∣∣∣∣ dx′

=

∫
Ω

(
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

)
dx′
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since the integrand is nonnegative. Now choose R large enough so that if BR(x) is
the ball of radius R centered at x in R2,

Ω ⊂ BR(x)

for all x ∈ Ω. Then the above is bounded by

∫
BR(x)

(
1

|x− x′| −
1√

|x− x′|2 + h2|ζ − ζ ′|2

)
dx′.

Change to polar coordinates centered at x with

r = |x− x′|.

The integral transforms to

2π

∫ R

0

(
1

r
− 1√

r2 + h2|ζ − ζ ′|2

)
rdr

= 2π
[
R−

√
R2 + h2|ζ − ζ ′|2 + h|ζ − ζ ′|

]
by direct calculation. This is then O(h), where the constant is independent of (x, ζ) ∈
S and ζ ′ ∈ (−1/2, 1/2). This, combined with the bounds on the first integral, proves
the lemma.

Recall that our scaled domain S is given as

S = Ω × (−1/2, 1/2).

Lemma 2. Let ε0(x) be piecewise continuous on Ω. Then the operator T :
L2(S) → L2(S) given by

(Tf)(x) =

∫
S

ε0(x
′)G(x, 0, x′, 0)f(x′, ζ ′)dx′dζ ′,

where

G(x, 0, x′, 0) =
1

4π

eik|x−x′|

|x− x′| ,

is compact. Moreover, if we view T on the Banach space of continuous functions,

T : C0(S) → C0(S),

it is also a compact operator. Furthermore, (I + k2T ) is continuously invertible on
both L2(S) and C0(S).

Proof. Since ε0 is piecewise continuous, the kernel ε0(x
′)G(x, 0, x′, 0) is a finite

sum of weakly singular kernels. Hence the fact that T is a compact operator on C0(S)
follows from Theorem 1.11 of [1]. To show T is compact on L2(S), we will show that
for any sequence {fn} such that ‖fn‖L2(S) < M and fn ⇀ 0, the sequence Tfn → 0
in L2(S). Let

D := {(x− x′, ζ − ζ ′) ; (x, ζ), (x′, ζ ′) ∈ S}
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and define

g(y, η) := eik|y|/|y| for (y, η) ∈ D.

Then since g ∈ L1(D), there exists

gm ∈ C∞(D) such that ‖g − gm‖L1(D) → 0 as m → ∞.

In the estimates that follow we use a standard result (see, for example, [7]). If g ∈
L1(D) and f ∈ Lp(S) (1 < p < ∞), then (g ∗ f) ∈ Lp(S) and

‖g ∗ f‖Lp(S) ≤ ‖g‖L1(D)‖f‖Lp(S).(4.7)

Now consider

‖Tfn‖2
L2(S) =

∫
S

[∫
S

ε0(x
′)G(x, 0, x′, 0)fn(x′, ζ ′)dx′dζ ′

]2

dxdζ

=
1

4π

∫
S

[∫
S

ε0(x
′)g(x− x′, ζ − ζ ′)fn(x′, ζ ′)dx′dζ ′

]2

dxdζ.

Let Mε = ‖ε0‖∞. By adding and subtracting gm, we can bound the above by

M2
ε

4π

∫
S

[|gm ∗ fn| + |(g − gm) ∗ fn|]2 dxdζ

≤ M2
ε

2π
(‖gm ∗ fn ‖2

L2(S) + ‖(g − gm) ∗ fn ‖2
L2(S))

≤ M2
ε

2π
(‖gm ∗ fn ‖2

L2(S) + ‖g − gm‖2
L1(D)M

2),(4.8)

with the last inequality obtained by using (4.7) with p = 2. Also, since

|gm ∗ fn| ≤ ‖gm‖L∞(D)‖fn‖L1(S)

and ‖fn‖L1(S) is bounded, by the Lebesgue dominated convergence theorem,

lim
n→∞

‖gm ∗ fn‖L2(S) = ‖ lim
n→∞

(gm ∗ fn)‖L2(S) = 0

since {fn} goes to zero weakly. For any given ε > 0, choose m large enough so that

‖g − gm‖2
L1(D)M

2 < ε.

Then for this m we can choose n large enough that

‖gm ∗ fn ‖2
L2(S) < ε

also. Hence from (4.8)

‖Tfn‖2
L2(S) ≤ Cε.

Therefore, limn→∞ ‖Tfn‖2
L2(S) = 0, and hence T is compact on L2(S).

Now, by the Fredholm theory (Corollary 1.17 of [1]), I + k2T is invertible if
(I + k2T )f = 0 has only the zero solution. The following argument holds on the
Banach space X for both X = L2(S) and X = C0(S). Let f ∈ X be a solution to
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(I + k2T )f = 0. Since for any f ∈ X, Tf depends only on x ∈ Ω, the solution f
satisfies

f = −k2Tf

and hence also depends only on x. Let

w(x, z) =

∫
Ω

ε0(x
′)G(x, z, x′, 0)f(x′)dx′.

By a slight abuse of notation, in what follows we will use Ω to denote Ω×{0}. Using
the equation for G, its conditions at infinity, and standard arguments of single layer
potential theory [4],

(a) (� + k2)w(x, z) = 0 in R3 \ Ω,
(b) w satisfies the radiation condition,
(c) [w]Ω = 0,

(d)
[
∂w
∂z

]
Ω

= ε0f ,

where [·] denotes the jump across Ω, i.e.,

[g] = lim
z→0+

g(x, z) − lim
z→0−

g(x, z).

Let BR be any ball in R3 containing Ω, multiply through by w, and integrate by parts
to get ∫

BR\Ω

|∇w|2 − k2

∫
BR\Ω

|w|2 −
∫
∂BR

w
∂w

∂ν
−
∫

Ω

w

[
∂w

∂z

]
Ω

= 0.

Since (I + k2T )f = 0, we conclude that f = −k2w on Ω. Substituting this and
property (d) in the identity above, we get∫

BR\Ω

|∇w|2 − k2

∫
BR\Ω

|w|2 −
∫
∂BR

w
∂w

∂ν
+

1

k2

∫
Ω

ε0|f |2 = 0.

Hence

Im

∫
∂BR

w
∂w

∂ν
= 0.

We can now use the Rellich lemma (see Theorem 3.12 of [1]) on any domain U ∈ R3

arbitrarily close to Ω to obtain w = 0 in BR \ U . Hence w = 0 on R3 \ Ω. Thus the
jump

[
∂w
∂z

]
Ω

= 0. By property (d), we can conclude that f = 0.
Note an immediate corollary of the above lemma is that u0 exists, is unique, and

is in C0(S).
Proof of Proposition 1. Note that for each fixed h, the right-hand side of (4.4) is

a continuous function. We take a Taylor expansion of the smooth incident wave ui

for the first term. We then invoke Lemma 1 for the third term to obtain the bound

‖(I + k2T )(ũ− u0)‖L∞(S) ≤ h‖ui‖C1(S) + C1h‖ũ‖L∞(S) + C2h‖ũ‖L∞(S).

By the boundedness of (I + k2T )−1, we have that

‖ũ− u0‖L∞(S) ≤ C3h‖ui‖C1(S) + C4h‖ũ‖L∞(S)

≤ C3h‖ui‖C1(S) + C4h‖ũ− u0‖L∞(S) + C4h‖u0‖L∞(S).
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Since we know u0 is continuous and ui is bounded in C1, we have that there exists a
C5 independent of h such that

(1 − C4h)‖ũ− u0‖L∞(S) ≤ C5h,

from which the result follows for h small enough.

5. The next term and its justification. First we find formally an equation for
u1, the next term in the expansion. We begin with the ansatz and Taylor expansion

ũ(x, ζ) = u0(x) + hu1(x, ζ) + O(h2),

ui(x, hζ) = ui(x, 0) + hζ
∂ui
∂z

(x, 0) + O(h2),

and, in order to obtain some sort of expansion for G, we consider the function vh,

vh(x, z) =

∫
S

ε0(x
′)G(x, z, x′, hζ ′)u0(x

′)dζ ′dx′.

From Lemma 1, it seems that as h → 0, vh(x, hζ) should converge O(h) to v0(x),
where

v0(x) =

∫
Ω

ε0(x
′)G(x, 0, x′, 0)u0(x

′)dx′.

So it seems reasonable to define

v1(x, ζ) = lim
h→0

vh(x, hζ) − v0(x)

h
,

so that if the limit exists, we have

vh(x, hζ) = v0(x) + hv1(x, ζ) + o(h).

Insert these expansions into (4.3) and match like powers of h. The O(1) terms give
the equation for u0. The terms of O(h) yield

u1(x, ζ) = ζ
∂ui
∂z

(x, 0) − k2

∫
Ω

∫ 1/2

−1/2

ε0(x
′)G(x, 0, x′, 0)u1(x, ζ

′)dζ ′dx′

+ k2

∫
Ω

∫ 1/2

−1/2

G(x, 0, x′, 0)u0(x
′)dζ ′dx′ − k2v1(x, ζ).

We use the definition of the operator T defined in the last section to obtain

u1(x, ζ) = −k2Tu1 + ζ
∂ui
∂z

(x, 0) − k2v1(x, ζ)(5.1)

+ k2

∫
Ω

G(x, 0, x′, 0)u0(x
′)dx′.

To complete our definition of u1 we need to find an expression for v1(x, ζ).
Lemma 3. Given any fixed (x, ζ) ∈ S and any ρ small enough such that the 2-D

ball around x of radius ρ, Bx,ρ, is contained in Ω, then

lim
h→0

1

h

∫ 1
2

− 1
2

∫
Bx,ρ

[G(x, hζ, x′, hζ ′) −G(x, 0, x′, 0)]dx′dζ ′ = −1

2

(
ζ2 +

1

4

)
.
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Proof. Before dividing by h, the integral above can be written as

I =
2π

4π

∫ 1
2

− 1
2

∫ ρ

0

(
eik

√
r2+h2(ζ−ζ′)2√

r2 + h2(ζ − ζ ′)2
− eikr

r

)
rdrdζ ′

=
1

2

∫ 1
2

− 1
2

1

ik

(
eik

√
ρ2+h2(ζ−ζ′)2 − eikρ

)
dζ ′ − 1

2

∫ 1
2

− 1
2

1

ik

(
eik|h(ζ−ζ′)| − 1

)
dζ ′

= I1 + I2.

Since

∂

∂h

(
eik

√
ρ2+h2(ζ−ζ′)2

)

is integrable, one can compute

lim
h→0+

1

h
I1 = lim

h→0+

1

2

∫ 1
2

− 1
2

1

ik

∂

∂h

(
eik

√
ρ2+h2(ζ−ζ′)2

)
dζ ′ = 0.

The second term,

lim
h→0+

1

h
I2 = −1

2

∫ 1
2

− 1
2

|(ζ − ζ ′)|dζ ′ = −1

2

(
ζ2 +

1

4

)
.

Note that in the previous lemma, although the limit holds pointwise, it is not uniform
as x approaches the boundary of Ω. It is this observation that will lead to a boundary
correction which we will examine in a forthcoming paper. For shorthand, in what
follows we use the notation

G = G(x, hζ, x′, hζ ′) and G0 = G(x, 0, x′, 0).

Proposition 2. For any g ∈ L∞(Ω) such that g ∈ C0(Bx,ρ) for some ρ small
enough,

lim
h→0

1

h

∫
S

g(x′)[G−G0]dx
′dζ ′ = −1

2
g(x)

(
ζ2 +

1

4

)
.

Proof. For any small ε > 0, choose ρ small enough so that

|g(x′) − g(x)| < ε

for any x′, x ∈ Bx,ρ. Consider
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∫
S

g(x′)[G−G0]dx
′dζ ′ =

∫ 1
2

− 1
2

∫
Ω\Bx,ρ

[G−G0]g(x
′)dx′dζ ′

+

∫ 1
2

− 1
2

∫
Bx,ρ

[G−G0]g(x
′)dx′dζ ′

=

∫ 1
2

− 1
2

∫
Ω\Bx,ρ

[G−G0]g(x
′)dx′dζ ′

+ g(x)

∫ 1
2

− 1
2

∫
Bx,ρ

[G−G0]dx
′dζ ′

+

∫ 1
2

− 1
2

∫
Bx,ρ

[G−G0][g(x
′) − g(x)]dx′dζ ′

= I1 + I2 + I3.

We first examine I1. For fixed ρ, we are away from the singularity and can expand
the integrand. Define

h(y) =
e
√
y

√
y
.

By the mean value theorem, for y > 0,

|h(y + δ) − h(y)| ≤ δ sup
[y,y+δ]

|h′|.(5.2)

Note that here,

h′(y) =
e
√
y

2

[
1

y
− 1

y3/2

]
.

Apply (5.2) with

y = |x− x′|2

and

δ = h2|ζ − ζ ′|2.

This yields

|G−G0| ≤ Ch2

[
1

ρ2
− 1

ρ3

]
,

where C is independent of h, x′, and ζ ′. Since g ∈ L∞ and ρ is fixed,

lim
h→0

1

h
I1 = 0.

By Lemma 3,

lim
h→0

1

h
I2 = −1

2
g(x)

(
ζ2 +

1

4

)
.
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For the last term,

1

h
|I3| ≤

∥∥∥∥G−G0

h

∥∥∥∥
L1(S)

‖g(x′) − g(x)‖L∞(Bx,ρ)

≤ Cε

by Lemma 1 and our choice of ρ. From the limits above, we can choose h small enough
that ∣∣∣∣ 1h

∫
S

g(x′)[G−G0]dx
′dζ ′ +

1

2
g(x)

(
ζ2 +

1

4

)∣∣∣∣ ≤ Cε + ε

from which the result follows.
Note that u0 is continuous from Lemma 2. By setting g(x) = ε0(x)u0(x) in

Proposition 2, we have that

v1(x) = −1

2
ε0(x)u0(x)

(
ζ2 +

1

4

)

pointwise almost everywhere in Ω, assuming ε0(x) is piecewise continuous. Using
(5.1), this means that u1 satisfies

u1(x, ζ) = ζ
∂ui
∂z

(x, 0) − k2

∫
S

ε0(x
′)u1(x

′, ζ ′)G0dζ
′dx′(5.3)

+ k2

∫
Ω

u0(x
′)G0dx

′ +
1

2
k2

(
ζ2 +

1

4

)
u0(x)ε0(x).

To compute a simpler expression for u1, we first note that from the symmetry of the
integral with respect to ζ ′ we have

T

(
ζ
∂ui
∂z

(x, 0)

)
≡ 0.

Hence u1(x, ζ) has the form

u1(x, ζ) = û1(x) + ζ
∂ui
∂z

(x, 0) +
1

2
ζ2k2u0(x)ε0(x),(5.4)

where û1(x) is the solution to the lower dimensional integral equation

(I + k2T )û1(x) = k2

∫
Ω

G(x, 0, x′, 0)u0(x
′)dx′(5.5)

−k4

24

∫
Ω

G(x, 0, x′, 0)ε20(x
′)u0(x

′)dx′ +
1

8
k2u0(x)ε0(x).

One can verify this by taking (I + k2T ) of both sides of (5.4) and using (5.3) to
eliminate u1. We show the following convergence estimate.

Proposition 3. Suppose that ε0(x) is piecewise continuous. Let ũ(x, ζ), u0(x),
and u1(x, ζ) be given by (4.3), (4.2), (5.4), and (5.5), respectively. Then as h → 0,

‖ũ− (u0 + hu1)‖L2(S) = o(h).
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Proof. Define the error by

e = ũ− (u0 + hu1).

Then, by using the integral equations for each term we obtain

e = ui(x, hζ) + k2h

∫
S

G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′

− k2

∫
S

ε0(x
′)G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′ − ui(x, 0) + k2Tu0

− hζ
∂ui
∂z

(x, 0) + hk2Tu1 − hk2

∫
Ω

u0(x
′)G(x, 0, x′, 0)dx′ − h

2
k2

(
ζ2 +

1

4

)
u0(x)ε0(x).

By adding k2Te to both sides and rearranging terms,

(I + k2T )e = ui −
[
ui(x, 0) + hζ

∂ui
∂z

(x, 0)

]

+ k2h

∫
S

G(x, hζ, x′, hζ ′)ũ(x′, ζ ′)dζ ′dx′ − hk2

∫
Ω

u0(x
′)G(x, 0, x′, 0)dx′

+ k2

∫
S

ε0(x
′)u0(x

′)[G0 −G]dx′dζ ′ − h
k2

2

(
ζ2 +

1

4

)
u0(x)ε0(x)

+ k2

∫
S

ε0(x
′)[G0 −G](ũ(x′, ζ ′) − u0(x

′))dζ ′dx′.

We will refer to each set of expressions on each line on the right-hand side of the above
as term1, term2, term3, and term4. Now, term1 is clearly O(h2) in L2 by a Taylor
expansion of ui. In term2, we can use Lemma 1 to approximate G by G0 and commit
an error of O(h). Hence term2 becomes

hk2T

(
ũ− u0

ε0

)
+ o(h),

which from Proposition 1 and the boundedness of T is o(h) in L2(S). Consider
term3/h. By Proposition 2 and the fact that g = ε0u0 is piecewise continuous, this
ratio approaches zero pointwise almost everywhere. So,{(

term3

h

)2
}

is a sequence of functions converging pointwise almost everywhere to zero, and by
Lemma 1, they are uniformly bounded on a bounded domain (and hence in L1). The
Lebesgue dominated convergence theorem therefore yields term3/h → 0 in L2(S).
Finally, for term4, we can again use Proposition 2 with g = ε0(ũ− u0) to obtain

term4 = h
k2

2

(
ζ2 +

1

4

)
ε0(x)(ũ(x) − u0(x)) + o(h),

which is o(h) in L2(S) by Proposition 1. We have now shown that

‖(I + k2T )e‖L2(S) = o(h).

The result follows from Lemma 2.
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6. Numerical results. In this section we will show some numerical results. Our
goal is to demonstrate the properties of the approximation method, and in order to
reduce the computational complexity, we consider 2-D scattering. We will compare
results obtained using the approximate method with those obtained by solving the
full Lippmann–Schwinger equation numerically.

In two dimensions, we reduce the region Ω to a line segment Ω = [−L,L]. Of
course, more general regions consisting of multiple line segments can be considered.
The fundamental solution in two dimensions is

G(x, ζ, x′, ζ ′) =
i

4
H

(1)
0 (k|(x, ζ) − (x′, ζ ′)|) ,

where H
(1)
0 is a Hankel function of the first kind. One can justify that the formula

for u0 is the same as in the 3-D case. The equation satisfied by u1 hinges on Lemma
3. The result of Lemma 3 applies to the 2-D case without modification. This can be
shown by direct calculation. Therefore, the equations for u0 and u1 are again (3.5)
and (5.4)–(5.5), with the Green’s function replaced by the above 2-D version.

In order to obtain solutions to which we compare our approximate solutions, we
will solve a 2-D scattering problem. The equation we need to solve is the 2-D version
of (3.1). We use piecewise bilinear functions to approximate the exact solution u
and discretize the integral equation (3.1) to solve for u. Of particular interest is the
solution u(x, z) in the scatterer S = Ω × [−h/2, h/2].

We will solve for the approximate solutions u0(x) using (3.5), and u1(x, z) using
(5.4)–(5.5). To accomplish this, we discretize the integral equations using piecewise
linear representations of u0(x) and û1.

The length of the scatterer is L = 5, and the thickness is h = 0.1. In solving
the 2-D problem, we choose a mesh size of 0.02 in the direction of the membrane and
0.025 across its thickness. When solving for u0 and û1, we discretize the interval with
mesh size 0.02.

We will solve the scattering problem for three wave numbers, k = 4, 8, and 12.
We choose the incident wave to be a plane wave of the form

ui = exp ik(x cos θ + z sin θ).

The wavelengths in the scatterer under these conditions are computed and summa-
rized in Table 6.1. Therefore, one can compare the wavelength with the scatterer
thickness h = 0.1. For example, at k = 8 the thickness is approximately 1/4 the
wavelength when ε = 3 and approximately 1/3 the wavelength when ε = 9.

Table 6.1

Wavelength in the scatterer as a function of wave number k and dielectric constant ε.

k ε = 3 ε = 9

4 0.91 0.52
8 0.45 0.26

12 0.30 0.17

We are particularly interested in the accuracy of the solution on the scatterer
itself. In the first experiment, we solve the scattering problem with k = 8 with
incident wave hitting a uniform scatterer at −45o degrees. For dielectric constant
ε = 3, the results are shown in Figure 6.1. This is a good situation as the wavelength
in the scatterer is more than 4 times the thickness. The error, as can be seen in the
figure, is quite small, with the largest disagreement occurring at the bottom of the
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Fig. 6.1. Top to bottom: real part of u(x, z) for ε = 3 at z = −0.05,−0.025, 0, 0.025, 0.05.
Shown in dots are the exact solutions, and in solid, the approximation u0 + hu1. Also, shown in
dashes is the leading order approximation u0.
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Fig. 6.2. Top to bottom: real part of u(x, z) when ε = 9 at z = −0.05,−0.025, 0, 0.025, 0.05.

scatterer. There is also some discrepancy at the leading and trailing edges of the
scatterer since we have not accounted for the boundary layer.

When the dielectric constant ε is 9, the approximation deteriorates. Under this
condition, the wavelength is only 2.6 times bigger than the thickness of the scatterer.
While the corrector u1 does improve over the leading order approximation u0, the
error is still quite noticeable. The results are shown in Figure 6.2.
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Fig. 6.3. Top to bottom: the function ε(x), followed by the real part of u(x, z) at z =
−0.05,−0.025, 0.

A final example is given when ε is x dependent. The distribution of ε(x) is shown
in Figure 6.3, together with the solution at various z-values.

Next we calculate the relative L2 error of the approximation. The L2 norm is
calculated by taking the values of a function at the node points of the regular mesh
and interpolating with bilinear splines to obtain an estimate of the function. The
interpolated function is then squared and integrated over the domain. The results
of the calculations are displayed in Table 6.2. When ε = 3, the error increases as
a function of k. This is to be expected as the wavelength in the scatterer becomes
smaller in comparison to the thickness. When ε = 9, the errors follow the same trend
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Table 6.2

Relative L2 error of the approximation u0 + hu1.

k Angle of incidence 45o Normal incidence

4 0.0614 0.0529
ε = 3 8 0.1065 0.1129

12 0.1413 0.1614

4 0.0226 0.0248
ε = 9 8 0.2058 0.2146

12 0.6332 0.6567

as k is increased. However, notice that the error is actually smaller for k = 4 when
ε = 9 than when ε = 3.

According to our estimates, for a fixed k, as we decrease h and scale ε as 1/h, the
error should decrease according to o(h). The numerical examples presented here are
meant to give an indication of the accuracy of our approximation.

7. Discussion. In this work, we developed an approximate method for solving a
scattering problem where the scatterer is thin. We assume that the dielectric constant
of the scatterer scales as 1/h, where h is the thickness of the scatterer. We formulate
the scattering problem using the Lippmann–Schwinger equation. Solution to this
equation is approximated by a series in h. Both the leading order solution and the
first order corrector can be found by solving an integral equation involving one fewer
spatial variable than the original problem. This could lead to substantial savings in
realistic computations.

We show that the leading order approximation is O(h) accurate, while the approx-
imation including the first order corrector is o(h) accurate. Boundary layer correctors
will be needed to improve the approximation. Finally, we present numerical examples
that provide some quantitative assessment of the accuracy of the approximation.

Acknowledgments. The authors are grateful to Habib Ammari, Jay Gopala-
krishnan, and Murali Rao for helpful discussions on this work. In particular, we thank
Habib Ammari for his clever suggestion which led to the simpler uniqueness proof in
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Abstract. We examine the early exercise policies and pricing behaviors of one-asset American
options with lookback payoff structures. The classes of option models considered include floating
strike lookback options, Russian options, fixed strike lookback options, and the pricing model of the
dynamic protection fund. For each class of the American lookback options, we analyze the optimal
stopping region, in particular the asymptotic behavior at times close to expiration and at infinite time
to expiration. The interrelations between the price functions of these American lookback options
are explored. The mathematical technique of analyzing the exercise boundary curves of lookback
options at infinitesimally small asset values is also applied to the American two-asset minimum put
option model.
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1. Introduction. In this paper, we consider the theoretical analysis of the op-
timal exercise policies of an American option with lookback payoff. An American
lookback option involves the combination of two exotic features: the early exercise
feature and the lookback feature. Like other American option models, the analysis
of an American lookback option requires the solution of a free boundary value prob-
lem. The solution procedure involves the determination of the free exercise boundary
that separates the stopping region and the continuation region. The analysis is fur-
ther complicated by the presence of the path-dependent lookback state variable. For
floating strike lookback options, the analysis is easier since the dimensionality of the
pricing model can be reduced through homogeneity of the price function. This is
achieved by taking the asset price as the numeraire. However, for American fixed
strike lookback options, the exercise boundary is a two-dimensional curve in the state
space described by the asset price and the lookback state variable.

Several earlier papers on American lookback options concentrated on the analysis
of the Russian option [7, 17, 18], which is essentially a perpetual zero-strike fixed strike
lookback call option. There have been only a few papers which have analyzed the
optimal exercise behaviors of finite time American lookback options. Yu, Kwok, and
Wu [22] developed finite difference algorithms to compute the exercise boundaries
of both American fixed strike and floating strike lookback options. In their two
papers [15, 16], Lai and Lim proposed the Bernoulli walk approach to compute the
price functions and optimal exercise boundaries of American fixed strike and floating
strike lookback options. They also obtained analytic price formulas for American
lookback options using a decomposition, which expresses the price as the sum of
the corresponding European value and an early exercise premium. Dai, Wong, and
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Kwok [4] analyzed the exercise policies of American floating strike lookback options
with quanto payoff. These quanto options involve an underlying foreign currency
asset, but the payoffs are denominated in domestic currency.

We would like to provide a more comprehensive and thorough analysis of the
exercise behaviors of the commonly traded American lookback options. Our analysis
framework relies more on the partial differential equation approach, as opposed to
the usual stochastic approach in most earlier works (say, [14, 15]). For the sake of
completeness, we attempt to provide a comprehensive list of analytic properties of the
exercise boundaries and stopping regions of the lookback option models. The classes
of American lookback option models considered in this paper include the floating
strike and fixed strike lookback call and put options, Russian options, and the pricing
model of the dynamic protection fund. We analyze the exercise boundary of each class
of lookback options, in particular the asymptotic behavior at times close to expiration
and at infinite time to expiration. The interrelations between the price functions of
these American lookback options are explored. We observe that our mathematical
technique developed for analyzing the exercise boundary at infinitesimally small asset
values for lookback options can be extended to the American two-asset minimum put
option model. For all types of American lookback options considered in this paper, we
performed numerical calculations to compute the corresponding exercise boundaries.
These plots of exercise boundaries serve as the verification for all results derived from
the theoretical studies of the optimal exercise policies.

2. Floating strike lookback options. In this section, we explore some analytic
properties of the price functions and optimal exercise policies of the American floating
strike lookback options. The usual assumptions of the Black–Scholes option pricing
framework are adopted in this paper. Let S denote the price of the underlying asset
of the lookback option, whose stochastic dynamics under the risk neutral measure is
governed by

dS

S
= (r − q)dt + σ dZ,(2.1)

where t is the calendar time, r is the riskless interest rate, σ and q are the volatility
and dividend yield of S, respectively, and Z is the standard Wiener process. We write
τ as the time to expiry, 0 ≤ τ < ∞. Let m and M denote the realized minimum
value and realized maximum value, respectively, of the asset price over the lookback
monitoring period (continuous monitoring is assumed) up to the current time. The
payoff functions of the American floating strike lookback call and lookback put are
taken to be

(αS −m)+ and (M − αS)+,

respectively, where α is a positive parameter value, 0 < α < ∞, and x+ = max(x, 0).
When α = 1, we recover the usual lookback payoffs. While lookback options are
less attractive to investors due to their high option premium, the parameter α allows
flexible adjustment of the resulting option premium. For example, we may take α
to be less (greater) than one in the floating strike call (put) payoff so as to achieve
option premium reduction. Furthermore, the addition of the parameter α in the
pricing model facilitates our asymptotic analysis of the exercise boundary curves at
the limit of infinitesimally small asset values.
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2.1. American floating strike lookback call. Let Cf�(S,m, τ) denote the
price function of an American floating strike lookback call with payoff (αS − m)+.
The linear complementarity formulation that governs Cf�(S,m, τ) is given by (see [12]
and [21])

∂Cf�

∂τ
− LCf� ≥ 0, Cf� ≥ αS −m,(

∂Cf�

∂τ
− LCf�

)
[Cf� − (αS −m)] = 0, S > m > 0, τ > 0,

(2.2)

with auxiliary conditions

∂Cf�

∂m

∣∣∣∣
S=m

= 0,

Cf�(S,m, 0) = (αS −m)+.

(2.3)

The operator L is defined by

L =
σ2

2
S2 ∂2

∂S2
+ (r − q)S

∂

∂S
− r.

Note that the payoff upon early exercise is guaranteed to be positive so that we can
replace the payoff function (αS −m)+ by αS −m. However, we cannot do so for the
terminal payoff at τ = 0. The dimension of the above formulation can be reduced by
one if we define the following transformation of variables:

η =
m

S
and C̃f�(η, τ) =

Cf�(S,m, τ)

S
.(2.4)

This is equivalent to taking S as the numeraire. The new linear complementarity
formulation for C̃f�(η, τ) is given by

∂C̃f�

∂τ
− L̃ C̃f� ≥ 0, C̃f� ≥ α− η,(

∂C̃f�

∂τ
− L̃ C̃f�

)
[C̃f� − (α− η)] = 0, 0 < η < 1, τ > 0,

(2.5)

with auxiliary conditions

∂C̃f�

∂η

∣∣∣∣
η=1

= 0,

C̃f�(η, 0) = (α− η)+,

(2.6)

where the operator L̃ is given by

L̃ =
σ2

2
η2 ∂2

∂η2
+ (q − r)η

∂

∂η
− q.

Remark. The normal reflection condition in (2.6) plays a crucial role in distin-
guishing the optimal exercise policies of American lookback options from the usual
American options. The auxiliary condition is derived from the observation that the
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lookback option value is insensitive to the running extremum value when the cur-
rent asset value equals the extremum value. This is because the probability that the
current extremum value remains to be the realized extremum value at maturity is
essentially zero when the current asset value and running extremum value are equal
(see [10]). In a more recent work, Peskir [17] presented a proof on the normal reflec-
tion condition for the finite time Russian option. A similar proof can be mimicked
for an American lookback option with a more general lookback payoff.

The holder optimally exercises the lookback call whenever S reaches a sufficiently
high level. In terms of η, the holder chooses to exercise when η ≤ η∗, where the
threshold η∗ has dependence on τ . The domain of the pricing model can be divided
into two regions: the stopping region S = {(η, τ) : 0 < η ≤ η∗(τ), 0 < τ < ∞}, inside
which it is optimal to exercise the option, and the continuation region SC = {(η, τ) :
η∗(τ) < η ≤ 1, 0 ≤ τ < ∞}, inside which it is optimal to continue to hold the option.

Upon exercise, we have C̃f� = α− η so that the stopping region is defined by

S = {(η, τ) : 0 < η ≤ 1, 0 ≤ τ < ∞, and C̃f�(η, τ) = α− η}.
The analysis of the optimal exercise policies amounts to the analysis of the analytic
properties of η∗(τ) that separate the continuation and stopping regions. Some of the
analytic properties of η∗(τ) are summarized in Proposition 2.1.

Proposition 2.1. The exercise boundary η∗(τ ;α) of the American floating strike
lookback call option observes the following properties:

(i) Suppose (η, τ) ∈ SC ; then (λ1η, λ2τ) ∈ SC for all λ1 ≥ 1, λ2 ≥ 1.
(ii) The line η = 1 always lies inside SC for a finite value of α.
(iii) The behavior of η∗(τ ;α) near expiry, τ → 0+, is given by

η∗(0+;α) = min
(
1, α,

q

r
α
)
.

When q > 0, η∗(0+;α) is guaranteed to be positive so that there exists at least a
line segment, τ = 0, where 0 < η < η∗(0+;α), in the stopping region. Property (ii)
reveals that the line η = 1 lies in the continuation region. Hence, we can conclude that
both the continuation and stopping regions exist in the η-τ plane. Further, by virtue
of (i), the free boundary η∗(τ ;α) that separates the stopping and continuation regions
can be deduced to be monotonically decreasing with respect to τ . In conclusion, for
q > 0, there exists the monotonic free boundary η∗(τ ;α) such that C̃f� = α − η for
η ≤ η∗(τ ;α), τ > 0. The details of the proof of Proposition 2.1 are presented in
Appendix A. Further asymptotic properties of η∗(τ ;α) with respect to τ → ∞ and
α → ∞ are stated in Proposition 2.2.

Proposition 2.2. When q > 0, the asymptotic behaviors at τ → ∞ and α → ∞
of the exercise boundary η∗(τ ;α) of the American floating strike lookback call option
are summarized as follows.

(i) Write η∗∞(α) as limτ→∞ η∗(τ ;α); η∗∞(α) is given by the solution of the root
inside the interval (0, 1) of the following algebraic equation:

(η∗∞)
λ+−λ− =

λ+

λ−

(1 − λ−)η∗∞ + λ−α

(1 − λ+)η∗∞ + λ+α
,

where

λ± =
r − q

σ2
+

1

2
±

√(
r − q

σ2
+

1

2

)2

+
2q

σ2
.

(ii) limα→∞ η∗(τ ;α) = 1 for all τ .
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Fig. 1. The critical threshold η∗(τ ;α) of the American floating strike lookback call option is
plotted against τ for different values of α. The parameter values of the pricing model are r = 0.04,
q = 0.02, and σ = 0.3.

The proof of Proposition 2.2 is presented in Appendix B. From the monotonic
decreasing property of η∗(τ ;α) with respect to τ and the finiteness property of η∗∞(α)
for q > 0, we infer that η∗(τ ;α) > 0 exists for all τ when q > 0. When α → ∞, the
continuation region vanishes.

When the underlying asset is non–dividend-paying, q = 0, we have η∗(0+;α) = 0.
Furthermore, since η∗(τ ;α) is monotonically decreasing with respect to τ , we deduce
that η∗(τ ;α) = 0 for τ > 0. That is, the stopping region does not exist when q = 0.
Interpreted in a financial sense, it is never optimal to exercise the American floating
strike lookback call at any asset price level if the underlying asset is non–dividend-
paying. Such a result agrees intuitively with a similar result of the usual American
call.

Figure 1 shows the plot of η∗(τ ;α) against τ at varying values of α. The parameter
values used in the calculations are r = 0.04, q = 0.02, and σ = 0.3. The monotonicity
properties of η∗(τ ;α) with respect to τ and α and the asymptotic behaviors at τ → 0+

and τ → ∞ as shown in the plots do agree with the results stated in Propositions 2.1
and 2.2. Our calculations give the following asymptotic values for η∗(τ ;α):

η∗(0+; 0.5) = 0.25, η∗(∞; 0.5) = 0.1023,

η∗(0+; 1) = 0.5, η∗(∞; 1) = 0.1988,

η∗(0+; 2) = 1, η∗(∞; 2) = 0.3617,

η∗(0+; 10) = 1, η∗(∞; 10) = 0.7947.

2.2. American floating strike lookback put. Let Pf�(S,M, τ) denote the
price function of an American floating strike lookback put with payoff (M − αS)+.
The Russian option is the perpetual version of the American floating strike lookback
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put with α = 0. In a similar manner, we use S as the numeraire and define

ξ =
M

S
and P̃f�(ξ, τ) =

Pf�(S,M, τ)

S
.(2.7)

The linear complementarity formulation for P̃f�(ξ, τ) is given by

∂P̃f�

∂τ
− L̃ P̃f� ≥ 0, P̃f� ≥ ξ − α,(

∂P̃f�

∂τ
− L̃ P̃f�

)
[P̃f� − (ξ − α)] = 0, 1 < ξ < ∞, τ > 0,

(2.8)

with auxiliary conditions

∂P̃f�

∂ξ

∣∣∣∣
ξ=1

= 0,

P̃f�(ξ, 0) = (ξ − α)+.

(2.9)

Similarly, we have the free boundary ξ∗(τ) that separates the stopping region
{(ξ, τ) : ξ ≥ ξ∗(τ), 0 ≤ τ < ∞} and the continuation region {(ξ, τ) : 1 ≤ ξ < ξ∗(τ),
0 ≤ τ < ∞}. The analytic properties of ξ∗(τ) are summarized in Proposition 2.3.

Proposition 2.3. The free boundary ξ∗(τ ;α) observes the following properties:
(i) ξ∗(τ ;α) is monotonically increasing with respect to τ and α.
(ii) The behavior of ξ∗(τ ;α) near expiry, τ → 0+, is given by

ξ∗(0+;α) = max
(
1, α,

q

r
α
)
.

(iii) Write ξ∗∞(α) as limτ→∞ ξ∗(τ ;α); ξ∗∞(α) is given by the solution of the root
inside the interval (1,∞) of the following algebraic equation:

(ξ∗∞)
λ+−λ− =

λ+

λ−

(1 − λ−)ξ∗∞ + λ−α

(1 − λ+)ξ∗∞ + λ+α
.

In particular, when q = 0, we have

ξ∗∞(α) = ∞.

As a remark, it is well known that it is never optimal to exercise a Russian option
when the underlying asset is non–dividend-paying [18]. The above result shows that
such an optimal exercise policy holds even for a nonzero value of α (a Russian option
is the special case of α = 0).

The ideas behind the proof of Proposition 2.3 are similar to those used in proving
Propositions 2.1 and 2.2. In Figure 2, we show the plot of ξ∗(τ ;α) against τ with
different values of α. The parameter values used in the calculations are r = 0.02,
q = 0.04, and σ = 0.3. We obtained the following asymptotic values for ξ∗(τ ;α):

ξ∗(0+; 0) = 1, ξ∗(∞; 0) = 3.4939,

ξ∗(0+; 0.5) = 1, ξ∗(∞; 0.5) = 4.8536,

ξ∗(0+; 1) = 2, ξ∗(∞; 1) = 6.6068,

ξ∗(0+; 2) = 4, ξ∗(∞; 2) = 10.7613.

The monotonic behaviors of ξ∗(τ ;α) as exhibited by the plots in Figure 2 are consistent
with the results stated in Proposition 2.3.
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Fig. 2. The critical threshold ξ∗(τ ;α) of the American floating strike lookback put option is
plotted against τ for different values of α. The parameter values of the pricing model are r = 0.02,
q = 0.04, and σ = 0.3.

3. Fixed strike lookback options. We now consider the pricing behaviors and
optimal exercise policies of American fixed strike lookback options, where the payoff
involves the strike price K and either realized maximum value M or realized minimum
value m. The payoff functions of the American fixed strike lookback call and lookback
put are given by

(M −K)+ and (K −m)+,

respectively. We also consider the American option model with lookback payoff of the
form

max(M,K),

which is related to the pricing model of the dynamic protection fund with early with-
drawal right [8, 11]. According to the guarantee clause, the fund holder acquires more
units of the fund from the fund sponsor whenever the fund value falls below the guar-
anteed protection floor. The early withdrawal right embedded in the protection fund
resembles the early exercise right of an American option. When we set K = 0 in the
payoff max(M,K), the option model becomes the finite-time Russian option.

It is tempting to seek possible fixed-floating symmetry relations between American
lookback call and put options that are similar to those obtained by Detemple [6] for
usual American options. While it is possible to obtain symmetry relations between the
grant-date price functions of European lookback options (with no dependence on the
running extremum value), such relations do not hold for the in-progress counterparts.
We do not expect to have nice fixed-floating symmetry relations between the price
functions of in-progress American lookback options.
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3.1. American fixed strike lookback call. Let Cfix(S,M, τ ;K) denote the
price function of an American fixed strike lookback call with payoff (M −K)+. The
linear complementarity formulation that governs Cfix(S,M, τ ;K) is given by

∂Cfix

∂τ
− LCfix ≥ 0, Cfix ≥ (M −K),(

∂Cfix

∂τ
− LCfix

)
[Cfix − (M −K)] = 0, 0 < S < M, τ > 0,

(3.1)

with auxiliary conditions

∂Cfix

∂M

∣∣∣∣
S=M

= 0,

Cfix(S,M, 0) = (M −K)+.

(3.2)

Let S(K) denote the stopping region of the American fixed strike lookback call with
strike price K. Inside S(K), the price function equals the exercise payoff; that is,

S(K) = {(S,M, τ) ∈ {0 < S ≤ M} × (0,∞) : Cfix(S,M, τ) = (M −K)+}.

Propositions 3.1–3.2 summarize the characterization of the optimal exercise policy of
the American fixed strike lookback call and the analytic properties of the stopping
region.

Proposition 3.1. The stopping region S(K) and the price function Cfix(S,M, τ ;K)
of the American fixed strike lookback call observe the following properties:

(i) Cfix(S,M, τ ;K2) − Cfix(S,M, τ ;K1) ≤ K1 −K2 if K1 > K2.
(ii) S(K1) ⊂ S(K2) if K1 > K2.
(iii) Suppose (S,M, τ) ∈ S(K) and 0 < λ1 ≤ 1, λ2 ≥ 1, 0 < λ3 ≤ 1; we have

(λ1S, λ2M,λ3τ) ∈ S(K).

The proof of Proposition 3.1 is presented in Appendix C. In Figure 3, we plot
the exercise boundary that separates the stopping region and the continuation region
in the S-M plane and use M∗(S, τ ;K) to denote the exercise boundary. Such repre-
sentation reveals the dependence of the critical realized maximum value M∗ on S, τ ,
and K. By virtue of (iii) in Proposition 3.1, we deduce that the stopping region lies
to the upper left-hand side of the exercise boundary in the S-M plane. Hence, we
may rewrite S(K) in the following alternative form:

S(K) = {(S,M, τ) ∈ {0 < S ≤ M} × (0,∞) : M > M∗(S, τ)}.

Further properties of M∗(S, τ ;K) are summarized in Proposition 3.2.
Proposition 3.2. Let M∗(S, τ ;K) denote the exercise boundary of the American

fixed strike lookback call in the S-M plane; then M∗(S, τ ;K) observes the following
properties:

(i) limτ→0+ M∗(S, τ ;K) = K for all S.
(ii) M∗(S, τ ;K) is monotonically increasing with respect to S and τ .
(iii) limS→0+ M∗(S, τ ;K) = K for all τ .

(iv) When K = 0, M∗(S, τ ; 0) is a linear function of S. Furthermore, M∗(S,τ ;0)
S

is a monotonically increasing function of τ and

lim
S→∞

M∗(S, τ ;K)

S
=

M∗(S, τ ; 0)

S
for K > 0.(3.3)
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Fig. 3. The exercise boundaries (solid curves) of the American fixed strike lookback call option
with varying values of maturity τ are plotted in the S-M plane. At a given τ , the stopping region is
lying to the left of and above the corresponding exercise boundary. The dotted lines are asymptotic
lines of the exercise boundaries, corresponding to the exercise boundaries of the zero-strike counter-
parts. The stopping region of the Russian option lies to the left of the dotted line M = Sξ∗(∞; 0).
The parameter values used in the calculations are K = 1, r = 0.02, q = 0.04, and σ = 0.3.

Part (i) gives the zeroth order asymptotic expansion of M∗(S, τ ;K) as τ → 0+

(see [15] for a higher order asymptotic expansion of M∗(S, τ ;K) as τ → 0+). One
can prove part (i) by following an approach similar to that of (iii) in Proposition 2.1.
Part (ii) is a corollary of part (iii) in Proposition 3.1. The proofs of parts (iii) and (iv)
in Proposition 3.2 are presented in Appendix D.

In Figure 3, we show the plot of the exercise boundaries of the American fixed
strike lookback call option with varying values of maturity τ in the S-M plane. The
parameter values used in the calculations are K = 1, r = 0.02, q = 0.04, and σ = 0.3.
The exercise boundary corresponding to the zero-strike lookback call is a straight line,
the slope of which depends on τ . By virtue of (3.3), the exercise boundaries for the
nonzero-strike lookback call options tend to those of their zero-strike counterparts
as S → ∞. Note that M∗(S, τ ; 0)/S = ξ∗(τ ; 0), where ξ∗(τ ;α) denotes the exercise

boundary in the pricing model for P̃f�(ξ, τ) (see (2.8), (2.9)). Our calculations give
the following numerical values for ξ∗(τ ; 0):

ξ∗(∞; 0) = 3.4939,

ξ∗(2; 0) = 2.0300,

ξ∗(0.5; 0) = 1.5450.

The finite-time Russian option is seen to be identical to the zero-strike American
fixed strike lookback call. Let VRus(S,M, τ) denote the price function of the finite-
time Russian option so that

VRus(S,M, τ) = Cfix(S,M, τ ; 0).(3.4)

Since K does not appear in the price function VRus(S,M, τ), the asset value S can
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be used as a numeraire. We may write

ṼRus(ξ, τ) =
VRus(S,M, τ)

S
, where ξ =

M

S
.(3.5)

This explains why M∗(S, τ ; 0)/S becomes independent of S. More detailed theoretical
analysis of the price function VRus(S,M, τ) can be found in Peskir’s paper [17].

The exercise boundaries plotted in Figure 3 do agree with our financial intuition
about the optimal early exercise policies of the American fixed strike lookback call
options. If S → 0+ or τ → 0+, the chance of achieving a higher realized maximum
value M becomes vanishingly small, so it becomes optimal to exercise even when M
reaches the level K. When the asset price is very high, M∗(S, τ ;K) becomes almost
insensitive to the strike price K, since the value K has only a small effect on the
exercise payoff. Hence, when S → ∞, the asymptotic behavior of M∗(S, τ ;K) as
stated in (3.3) is observed.

3.2. American fixed strike lookback put. Consider an American fixed strike
lookback put with payoff (K − m)+; the linear complementarity formulation that
governs its price function Pfix(S,m, τ) is given by

∂Pfix

∂τ
− LPfix ≥ 0, Pfix ≥ (K −m),(

∂Pfix

∂τ
− LPfix

)
[Pfix − (K −m)] = 0, 0 < m < S, τ > 0,

(3.6)

with auxiliary conditions

∂Pfix

∂m

∣∣∣∣
S=m

= 0,

Pfix(S,m, 0) = (K −m)+.

(3.7)

In a similar manner, we let m∗(S, τ ;K) denote the exercise boundary that sepa-
rates the stopping region and the continuation region in the S-m plane. The analytic
properties of m∗(S, τ ;K) are summarized in Proposition 3.3.

Proposition 3.3. The exercise boundary m∗(S, τ ;K) of the American fixed
strike lookback put satisfies the following properties:

(i) limτ→0+ m∗(S, τ ;K) = K for all S.
(ii) m∗(S, τ ;K) is monotonically increasing with respect to S.
(iii) limS→∞ m∗(0, τ ;K) = K for all τ .

(iv) limS→0+
m∗(S,τ ;K)

S = 1 for all τ .

Parts (i)–(iii) in Proposition 3.3 can be proved by using arguments similar to those
used in proving parts (i)–(iii) in Proposition 3.2. The proof of (iv) in Proposition 3.3
is interesting and challenging. It relies on the asymptotic result on η∗(τ ;α) as stated
in (ii) in Proposition 2.2 (see Appendix E for details).

Figure 4 shows the plot of the exercise boundaries m∗(S, τ ;K) of the American
fixed strike lookback put with varying values of maturity τ in the S-m plane. The
parameter values used in the calculations are K = 1, r = 0.04, q = 0.02, and σ = 0.3.
According to (iii) and (iv) in Proposition 3.3, the exercise boundaries are seen to tend
asymptotically to m = K as S → ∞ and to m = S as S → 0+.
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Fig. 4. The exercise boundaries of the American fixed strike lookback put option with varying
values of maturity τ are plotted in the S-m plane. All exercise boundaries tend to the oblique
asymptotic line m = S as S → 0+, and to the horizontal asymptotic line m = K as S → ∞. The
parameter values used in the calculations are K = 1, r = 0.04, q = 0.02, and σ = 0.3.

3.3. American lookback option with payoff max(M, K). Let VM (S,M, τ)
denote the price function of the American option with lookback payoff max(M,K).
First, we argue from financial intuition that VM (S,M, τ) should be insensitive to the
current realized maximum value of asset price M when M < K; that is,

∂VM

∂M
= 0 for M < K.(3.8)

The option payoff is given by K if the future realized maximum value of the asset price
is less than or equal to K; otherwise, the payoff equals the future realized maximum
value. In either case, the current realized maximum value M does not enter into the
payoff function. Hence, VM (S,M, τ) does have dependence on M when M < K. On
the other hand, when M ≥ K, the future realized maximum value is always greater
than or equal to K, so the payoff is simply given by M . This is the same payoff as
that of the finite-time Russian option. Hence, we have

VM (S,M, τ) = VRus(S,M, τ) for M ≥ K.(3.9)

By virtue of the continuity property of the price function VM (S,M, τ) with respect
to M , we then have

VM (S,M, τ) =

{
VRus(S,M, τ) for M ≥ K,

VRus(S,K, τ) for M < K.
(3.10)

For M ≥ K, VM and VRus should share the same optimal exercise policy. At
M = K, the exercise boundary of the finite-time Russian option is given by S =
K/ξ∗(τ ; 0). Hence, for M < K, the American option with payoff max(M,K) will be
exercised optimally when S ≤ K/ξ∗(τ ; 0) and unexercised otherwise.
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Fig. 5. The exercise boundaries of the American option with payoff function max(M,K) with
varying values of maturity τ are plotted in the S-M plane. The parameter values used in the
calculations are K = 1, r = 0.02, q = 0.04, and σ = 0.3.

In Figure 5, we plot the stopping region and the continuation region in the S-M
plane of the American option with payoff max(M,K). The set of parameter values
used in the calculations is K = 1, r = 0.02, q = 0.04, and σ = 0.3. When M ≥ K,
the stopping region and the continuation region for a fixed value of τ are separated
by the oblique line M = Sξ∗(τ ; 0). On the other hand, when M < K, the exercise
boundary becomes the vertical line S = K/ξ∗(τ ; 0).

3.4. A related two-asset American option model. As a slight departure
from the option models with lookback payoff structures, we consider the optimal
exercise policies of a two-asset American option with a put payoff on the minimum of
two asset values. There have been several comprehensive papers that analyze the early
exercise policies of two-asset American options [2, 5, 9, 13, 14, 19, 20]. We would like
to demonstrate that the mathematical technique of analyzing the exercise boundaries
of the American fixed strike lookback put option at S → 0+ can be adopted to resolve
the mystery of the asymptotic behaviors of the exercise boundaries of the two-asset
American minimum put option at infinitesimally small asset values.

Let S1 and S2 denote the prices of the two underlying assets, whose dynamics
under the risk neutral measure is governed by

dSi

Si
= (r − qi)dt + σi dZi, i = 1, 2,(3.11)

where dZ1 dZ2 = ρ dt, ρ is the correlation coefficient between the two Wiener processes
dZ1 and dZ2. The exercise payoff is given by (K−min(S1, S2))

+, where K is the strike
price. Let Pmin(S1, S2, τ ;K) denote the price function of this two-asset American
minimum put option. Let S2(K) denote the continuation region in the S1-S2 plane,
with dependence on K. The linear complementarity formulation for Pmin(S1, S2, τ ;K)
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Fig. 6. The exercise boundaries of the two-asset American minimum put option with varying
values of maturity τ are plotted in the S1-S2 plane. The continuation region is bounded between the
two branches of the exercise boundaries. The parameter values used in the calculations are K = 1,
r = 0.02, q1 = 0, q2 = 0.03, σ1 = σ2 = 0.3, and ρ = 0.5.

is given by

∂Pmin

∂τ
− L2Pmin ≥ 0, Pmin ≥ (K − min(S1, S2))

+,[
∂Pmin

∂τ
− L2Pmin

]
[Pmin − (K − min(S1, S2))

+] = 0,

0 < S1 < ∞, 0 < S2 < ∞, τ > 0.

(3.12)

The operator L2 is defined by

L2 =
σ2

1

2
S2

1

∂2

∂S2
1

+ ρσ1σ2S1S2
∂2

∂S1∂S2
+

σ2
2

2
S2

2

∂2

∂S2
2

+ (r − q1)S1
∂

∂S1
+ (r − q2)S2

∂

∂S2
− r.

(3.13)

In Figure 6, we show the plot of the exercise boundaries of the two-asset American
minimum put option in the S1-S2 plane. The following set of parameter values is used
in the calculations: K = 1, r = 0.02, q1 = 0, q2 = 0.03, σ1 = σ2 = 0.3, and ρ = 0.5.
The whole line S1 = S2 always lies in the continuation region. The continuation
region is bounded by the two branches of the exercise boundaries. In the region
S1 > S2, we let S∗

2 (S1, τ) denote the exercise boundary at time to expiry τ . We
observe that the curve S∗

2 (S1, τ) tends to the line S1 = S2 as S1 → 0+ and tends to
some asymptotic limit as S1 → ∞. Similar phenomena occur in the region S2 > S1,
where the exercise boundary at time to expiry τ is represented by S∗

1 (S2, τ). For the
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above set of parameter values chosen for the option model, we obtain

lim
S1→∞

S∗
2 (S1, 0.1) = 0.6277, lim

S1→∞
S∗

2 (S1, 1) = 0.4855, lim
S1→∞

S∗
2 (S1,∞) = 0.2268,

lim
S2→∞

S∗
1 (S2, 0.1) = 0.8118, lim

S2→∞
S∗

1 (S2, 1) = 0.6100, lim
S2→∞

S∗
1 (S2,∞) = 0.3077.

Some of the analytic properties of the exercise boundaries S∗
1 (S2, τ) and S∗

2 (S1, τ) are
summarized in Proposition 3.4.

Proposition 3.4. Let S∗
1 (S2, τ) and S∗

2 (S1, τ) denote the exercise boundaries at
time to expiry τ in the two respective regions, S2 > S1 and S1 > S2, in the S1-S2

plane of the two-asset American minimum put option. The exercise boundaries and
the continuation region observe the following properties:

(i) Let S∗
1,P (τ) and S∗

2,P (τ) denote the exercise boundary of the one-asset Amer-
ican put option with the underlying asset S1 and S2, respectively. We have

lim
S2→∞

S∗
1 (S2, τ) = S∗

1,P (τ) and lim
S1→∞

S∗
2 (S1, τ) = S∗

2,P (τ).

(ii) Both S∗
1 (S2, τ) and S∗

2 (S1, τ) are monotonically decreasing with respect to
time to expiry and monotonically increasing with respect to the asset price
level.

(iii) The whole line S1 = S2 is contained completely inside the continuation region.
(iv) At infinitesimally small asset values, we have

lim
S1→0+

S∗
2 (S1, τ)

S1
= 1 and lim

S2→0+

S∗
1 (S2, τ)

S2
= 1 for all τ.(3.14)

All exercise boundaries tend asymptotically to the line S1 = S2 as S1 and S2

both tend to zero.
The intuition behind the asymptotic properties stated in part (i) of Proposi-

tion 3.4 is quite obvious. When S1 → ∞, Pmin(S1, S2, τ ;K) −→ P (S2, τ ;K), where
P (S2, τ ;K) denotes the price function of the one-asset American put option with un-
derlying asset S2. We would expect that both option models follow the same optimal
exercise strategy, thus leading to the asymptotic properties stated in (i). The proof
of these asymptotic properties can be pursued by following similar arguments used in
the proof of Proposition 4.8 in Villeneuve’s paper [20]. Also, the monotonicity proper-
ties of S∗

1 (S2, τ) and S∗
2 (S1, τ) have been discussed in other papers (say [2] and [20]).

Property (iii) states that when S1 = S2, it is never optimal to exercise the two-asset
American minimum put option. This optimal exercise policy is similar to that of the
two-asset American maximum call option. The proof of (iii) can follow an argument
similar to that presented by Detemple, Feng, and Tian [5] on the American maxi-
mum call option. The proof of the asymptotic behavior of the exercise boundaries
at S1 → 0 and S2 → 0 requires specifically the technique developed in the proof of
property (iii) in Proposition 3.3. The proof of part (iv) of Proposition 3.4 is presented
in Appendix F.

4. Conclusion. This paper demonstrates the richness of the optimal exercise be-
haviors adopted by holders of the American options with payoff structures involving
lookback state variables. The analysis of the optimal exercise policies of an Ameri-
can lookback option is complicated by the presence of an additional lookback state
variable. For fixed strike lookback options, we characterize the exercise behaviors by
analyzing the analytic properties of the stopping region and continuation region in
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the two-dimensional state space (asset price and lookback state variable). For floating
strike lookback options, the dimension of the pricing model can be reduced by one
if the asset price is used as the numeraire. We reveal the close relationship between
the price functions of the finite-time Russian option and the dynamic protection fund
with withdrawal right. For the American put option on the minimum value of two
assets, the exercise region consists of two branches of exercise surfaces. Compared
to earlier works, our analyses provide a more comprehensive understanding of the
optimal exercise policies of commonly traded American lookback options. In particu-
lar, we provide a more precise description of the asymptotic behaviors of the exercise
boundaries. All the optimal exercise policies of American lookback options derived
from our theoretical studies have been verified by plots of the exercise boundaries
obtained via numerical calculations.

Appendix A. Proof of Proposition 2.1.
(i) First, we show that if (η, τ) ∈ SC , then (η, λ2τ) ∈ SC for λ2 ≥ 1. By applying

the comparison principle, one can show that
∂C̃f�

∂τ > 0. This is consistent with
the financial intuition that the price function of any American option is an
increasing function of τ . Suppose (η, τ) lies in the continuation region; then

C̃f�(η, τ) > α−η. By virtue of
∂C̃f�

∂τ > 0, we deduce that C̃f�(η, λ2τ) > α−η
for λ2 ≥ 1. Hence, (η, λ2τ) also lies in the continuation region.

Next, we show that if (η, τ) ∈ SC , then (λ1η, τ) ∈ SC for λ1 ≥ 1. It
suffices to show that

∂

∂η
[C̃f�(η, τ) − (α− η)] ≥ 0.(A.1)

We write U(η, τ) = C̃f�(η, τ) − (α − η); then the linear complementarity
formulation for U(η, τ) is given by

∂U

∂τ
− L̃U ≥ rη − qα, U ≥ 0,(

∂U

∂τ
− L̃U

)
U = 0, 0 < η < 1, τ > 0,

with auxiliary conditions

∂U

∂η

∣∣∣∣
η=1

= 1 and U(η, 0) = (η − α)+.

Both the initial condition (η − α)+ and the nonhomogeneous term rη − qα
are increasing functions of η, and ∂U

∂η |η=1 > 0. By virtue of the comparison

principle, we deduce that ∂U
∂η ≥ 0.

(ii) We prove by contradiction. Suppose there exists τ0 > 0 such that (1, τ0) ∈ S;
by applying (A.1), we can show that (η, τ0) ∈ S for η < 1. We then have

C̃f�(η, τ0) = α− η, η < 1.

This implies

∂C̃f�

∂η
= −1 at (1, τ0),

which contradicts the Neumann boundary condition stated in (2.6).
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(iii) A necessary condition for (η, τ) to lie inside S is given by(
∂

∂τ
− L̃

)
(α− η) = αq − rη ≥ 0;

that is, η ≤ q
rα. Hence, we should have η∗(0+) ≤ q

rα. Since the exercise
payoff must be nonnegative, another necessary condition is given by η ≤ α.
Finally, the feasible region for η is {η : η ≤ 1}. Combining all three necessary
conditions, we should have

η∗(0+) ≤ min
(
1, α,

q

r
α
)
.

Suppose η∗(0+) < min(1, α, q
rα); then for η ∈ (η∗(0+),min(1, α, q

rα)), we
have

∂C̃f�

∂τ

∣∣∣∣
τ=0

= L̃C̃f�

∣∣∣∣
τ=0

= L̃(α− η) = rη − αq < 0.

This contradicts
∂C̃f�

∂τ ≥ 0 for all τ . Hence, we obtain

η∗(0+) = min
(
1, α,

q

r
α
)
.

Appendix B. Proof of Proposition 2.2.

(i) Write η∗∞(α) = limτ→∞ η∗(τ ;α) and C̃f�

∞
(η) = limτ→∞ C̃f�(η, τ); then

C̃f�

∞
(η) satisfies the following differential equation:

L̃ C̃f�

∞
= 0, η∗∞ < η < 1,

subject to the auxiliary conditions

C̃f�

∞
(η∗∞) = α− η∗∞,

∂C̃f�

∂η
(η∗∞) = −1,

∂C̃f�

∂η
(1) = 0.

The general solution to C̃f�

∞
(η) is given by

C̃f�

∞
(η) = A1η

λ+ + A2η
λ− , η∗∞ < η < 1.

Applying the auxiliary conditions, we obtain

A1 =
(1 − λ−)η∗∞ + λ−α

(λ− − λ+)(η∗∞)λ+
and A2 =

(1 − λ+)η∗∞ + λ+α

(λ+ − λ−)(η∗∞)λ−
,

and η∗∞ satisfies the nonlinear algebraic equation

(η∗∞)λ+−λ− =
λ+

λ−

(1 − λ−)η∗∞ + λ−α

(1 − λ+)η∗∞ + λ+α
.(B.1)

The above algebraic equation has two roots; one lies in (0, 1), and the other lies
in (1,∞) (the proof of these properties is found in [3]). Here, η∗∞ corresponds
to the root in (0, 1). Hence, the results in part (i) are established.
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(ii) When α → ∞, the nonlinear algebraic equation (B.1) reduces to

(η∗∞)λ+−λ− = 1

so that the solution for η∗∞ becomes 1. Also, η∗(0+) = 1 when α becomes
sufficiently large. Since η∗(τ) is monotonically decreasing with respect to τ ,
and η∗(0+) = η∗(∞) = 1 as α → ∞, we can deduce that

lim
α→∞

η∗(τ ;α) = 1 for all τ.

Appendix C. Proof of Proposition 3.1.
(i) Define the function V (S,M, τ ;K) = Cfix(S,M, τ ;K) + K. Similar to (3.1)–

(3.2), the linear complementarity formulation for V (S,M, τ ;K) is given by

∂V

∂τ
− LV ≥ rK, V ≥ max(M,K),[

∂V

∂τ
− LV − rK

]
[V − max(M,K)] = 0,

with auxiliary conditions

∂V

∂M

∣∣∣∣
S=M

= 0 and V (S,M, 0;K) = max(M,K).

By virtue of the comparison principle, we have

V (S,M, τ ;K1) ≥ V (S,M, τ ;K2) if K1 > K2,

and hence the result.
(ii) From (i), for K1 > K2 we have

Cfix(S,M, τ ;K1) − (M −K1) ≥ Cfix(S,M, τ ;K2) − (M −K2).(C.1)

Suppose (S,M, τ) ∈ SC(K2), where SC(K2) denotes the continuation region.
In the continuation region, the option value is strictly greater than the exercise
payoff so that

Cfix(S,M, τ ;K2) > M −K2.

Combining this with inequality (C.1), we can deduce

Cfix(S,M, τ ;K1) > M −K1,

so that (S,M, τ) ∈ SC(K1). Hence, we establish SC(K2) ⊂ SC(K1), and
thus S(K1) ⊂ S(K2).

(iii) Since Cfix(S,M, τ) is monotonically increasing with respect to both S and τ
and the exercise payoff is independent of S and τ , we deduce that if (S,M, τ) ∈
S(K), then

(λ1S,M, λ3τ) ∈ S(K) for all 0 < λ1 ≤ 1 and 0 < λ3 ≤ 1.

Next, we would like to show that (S,M, τ) ∈ S(K) would imply (S, λ2M, τ) ∈
S(K) for all λ2 ≥ 1. Suppose (S,M, τ) ∈ S(K); then (S/λ2,M, τ) ∈ S(K)
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for λ2 ≥ 1. Furthermore, by virtue of the linear homogeneity property of the
price function and the result in (i), we obtain

Cfix(S, λ2M, τ ;K) = λ2Cfix

(
S

λ2
,M, τ ;

K

λ2

)

≤ λ2

[
Cfix

(
S

λ2
,M, τ ;K

)
+

(
1 − 1

λ2

)
K

]

= λ2

[
M −K +

(
1 − 1

λ2

)
K

]
= λ2M −K.

On the other hand, the option value Cfix(S, λ2M, τ ;K) cannot fall below the
exercise payoff λ2M −K. Combining the results, we then have

Cfix(S, λ2M, τ ;K) = λ2M −K;

that is, (S, λ2M, τ) ∈ S(K). Hence, we obtain the desired result.

Appendix D. Proof of Proposition 3.2.

(iii) It is clear that M∗(0+, τ ;K) ≥ K. From the monotonic increasing property
of M∗(S, τ ;K) with respect to S, suppose we can show that the line M = M0

lies in the stopping region in the S-M plane for any M0 > K; then one can
deduce that M∗(S, τ ;K) → K as S → 0+. This is because the minimum
value of M∗(S, τ ;K) is achieved when S is approaching zero from above, and
this minimum value is K. We write Ufix(S, τ) = Cfix(S,M0, τ)− (M0 −K).
The linear complementarity formulation of Ufix(S, τ) is given by

(
∂

∂τ
− L

)
Ufix ≥ −r(M0 −K), Ufix ≥ 0,[(

∂

∂τ
− L

)
Ufix

]
Ufix = 0

with initial condition Ufix(S, 0) = 0. Since the right-hand term −r(M0 −K)
is always negative and the initial value has compact support, we apply the
theorem by Brezis and Friedman [1] that the solution Ufix(S, τ) has compact
support, too. The stopping region is nonempty; that is, there exists (S, τ) such
that Cfix(S,M0, τ) = M0 −K for any M0 > K. Hence, the line M = M0 ∈
S(K) for any M0 > K.

(iv) When K = 0, the American fixed strike lookback call is the same as the
American floating strike lookback put (with α = 0 in (2.8)). The mono-
tonically increasing property of ξ∗(τ) = M∗(S, τ ; 0)/S follows directly from
Proposition 2.3(i).

For K > 0, by virtue of the linear homogeneity property of M∗(S, τ ;K),
we obtain

lim
S→∞

M∗(S, τ ;K)

S
= lim

S→∞

M∗ ( S
K , τ ; 1

)
S
K

= lim
K→0

M∗ ( S
K , τ ; 1

)
S
K

= lim
K→0

M∗(S, τ ;K)

S
=

M∗(S, τ ; 0)

S
.
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Appendix E. Proof of Proposition 3.3.
(iv) First, we consider the proof with q > 0, whose arguments rely on the existence

of η∗(τ ;α). Since η∗(τ ;α) does not exist when q = 0, we will deal with the
special case of zero dividend separately later. For α ≥ 1, we observe that

(K −m)+ ≤ (K − αS)+ + αS −m

so that

Pfix(S,m, τ ;K) ≤ αP

(
S, τ ;

K

α

)
+ Cf�(S,m, τ ;α),(E.1)

where P (S, τ ; K
α ) denotes the price function of the American vanilla put op-

tion with strike price K
α . Let S∗

P (τ ; K
α ) be the critical asset price of the

American vanilla put with payoff (Kα −S)+. Consider the point (Ŝ, m̂) in the
S-m plane which lies inside the region

Rα =

{
(S,m) : m ≤ Sη∗(τ ;α) and S ≤ S∗

P

(
τ ;

K

α

)}
.

(Ŝ, m̂) lies in the corresponding stopping region of both the American floating
strike call and the American vanilla put. We then have

P

(
Ŝ, τ ;

K

α

)
=

K

α
− Ŝ and Cf�(Ŝ, m̂, τ ;α) = αŜ − m̂.(E.2)

Now, we argue that (Ŝ, m̂) also lies in the stopping region of the American
fixed strike put. To establish the claim, it suffices to show that

Pfix(Ŝ, m̂, τ ;K) = K − m̂.(E.3)

Combining the results in (E.1) and (E.2), we obtain Pfix(Ŝ, m̂, τ ;K) ≤ K−m̂.
Since the option value of the American fixed strike put cannot fall below its
exercise payoff, the result in (E.3) is then established.

Next, we take the limit α → ∞ and observe that

lim
α→∞

η∗(τ ;α) = 1 and lim
α→∞

S∗
P

(
τ ;

K

α

)
= 0

for all τ . As α → ∞, Rα shrinks to an infinitesimally small triangular wedge
with the oblique side S = m. Hence, we can deduce that as S → 0+ and
for all values of τ , all the exercise boundaries m∗(S, τ ;K) tend to the oblique
asymptotic line S = m.

Finally, we consider the case where q = 0. We add the parameter q in
the price function Pfix(S,m, τ ;K, q) and exercise boundary m∗(S, τ ; q), and
write the corresponding stopping region as S(q) with dependence on q. From
the pricing property

Pfix(S,m, τ ;K, 0) ≤ Pfix(S,m, τ ;K, q),

we deduce that

S(q) ⊂ S(0), q > 0.
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Hence, we have m∗(S, τ ; 0) ≥ m∗(S, τ ; q) so that

m∗(S, τ ; q)

S
≤ m∗(S, τ ; 0)

S
≤ 1, q > 0.

Since we have established that m∗(S,τ ;q)
S → 1 as S → 0, it follows that

limS→0+
m∗(S,τ ;0)

S = 1.

Appendix F. Proof of Proposition 3.4.
(iii) We show only the proof of

lim
S1→0+

S∗
2 (S1, τ)

S1
= 1.

The proof of the other limiting property in (3.14) can be pursued in a similar
manner. Following an approach similar to that in Appendix E, we employ
the inequality

(K − min(S1, S2))
+ ≤ (K − αS2)

+ + (αS2 − min(S1, S2))
+(F.1)

and examine the stopping region Ŝα of the American two-asset option with
payoff (αS2 − min(S1, S2))

+. Also, we let S∗
2,P be the critical asset price of

the American put with payoff (Kα − S2)
+. By applying inequality (F.1) and

following an argument similar to that presented in Appendix E, one can show
that the stopping region of the two-asset American minimum put option is
contained inside

Rα =

{
(S1, S2) : (S1, S2) ∈ Ŝα and S2 ≤ S∗

2,P

(
τ ;

K

α

)}
.

The asymptotic behavior of S∗
2 (S1, τ) at infinitesimally small values of S1 is

established once we can show that the boundaries of Rα are bounded by the
line S1 = S2 as α → ∞.

Let Vα denote the price function of the American two-asset option with
payoff (αS2 − min(S1, S2))

+, α ≥ 1. We let x = S1/S2 and define Wα =
Vα/S2. The exercise boundary of the American option model Wα(x, τ) has
two branches; let them be denoted by x∗

h(τ) and x∗
� (τ). The continuation

region is represented by {(x, τ) : x∗
� (τ) < x < x∗

h(τ), 0 ≤ τ < ∞}. The linear
complementarity formulation of Wα(x, τ) is given by

∂Wα

∂τ
− 1

2
(σ2

1 − 2ρσ1σ2 + σ2
2)x2 ∂

2Wα

∂x2
− (q2 − q1)x

∂Wα

∂x
+ q2Wα = 0,

x∗
� (τ) < x < x∗

h(τ), τ > 0,

with auxiliary conditions

Wα(x∗
� , τ) = α− x∗

� ,
∂Wα

∂x
(x∗

� , τ) = −1,

Wα(x∗
h, τ) = α− 1,

∂Wα

∂x
(x∗

h, τ) = 0,

Wα(x, 0) =

{
α− x if x ≤ 1,

α− 1 if x > 1.
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For q2 > 0, one can show that x∗
� (τ) and x∗

h(τ) are monotonic functions
of τ . Also, x∗

� (0
+) = x∗

h(0+) = 1 when α > q1

q2
. Similarly to property (ii) in

Proposition 2.2, we would like to establish the asymptotic results

lim
α→∞

x∗
� (τ ;α) = 1 and lim

α→∞
x∗
h(τ ;α) = 1(F.2)

so that the boundary of Rα will be bounded by S1 = S2 as α → ∞. By
virtue of the monotonicity properties of x∗

� (τ) and x∗
h(τ) with respect to τ ,

the asymptotic properties in (F.2) are valid if we can show that

lim
α→∞

x∗
� (∞;α) = 1 and lim

α→∞
x∗
h(∞;α) = 1.(F.3)

When q2 = 0, x∗
� (τ) does not exist, but limα→∞ x∗

h(τ ;α) = 1 remains valid.
The arguments in the proof presented below have to be modified slightly for
this degenerate case.

The proof of (F.3) requires the solution of W∞
α (x), the perpetual limit of

Wα(x, τ). The governing equation for W∞
α (x) is given by

1

2
(σ2

1 − 2ρσ1σ2 + σ2
2)x2 d

2W∞
α

dx2
+ (q2 − q1)x

dW∞
α

dx
− q2W

∞
α = 0,

x∗
� (∞) < x < x∗

h(∞),

with auxiliary conditions

W∞
α (x∗

� (∞)) = α− x∗
� (∞),

dW∞
α

dx
(x∗

� (∞)) = −1,

W∞
α (x∗

h(∞)) = α− 1,
dW∞

α

dx
(x∗

h(∞)) = 0.

By following an approach similar to that in Appendix B, we can show that

lim
α→∞

x∗
h(∞;α)

x∗
� (∞;α)

= 1,

and hence the relations in (F.3) are established.
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VOLUME OF SUSPENSION THAT FLOWS THROUGH A SMALL
ORIFICE BEFORE IT CLOGS∗

GUILLERMO H. GOLDSZTEIN†

Abstract. We consider the following experiment. A container is filled with a suspension con-
sisting of particles immersed in an incompressible liquid. An opening is made on the container wall
and the suspension flows through the opening. We develop a mathematical model to compute the
expected volume of suspension extracted before particles clog the opening. Our studies are relevant
to the understanding of clogging of pore throats in porous media, which plays an important role in
geomaterials, biological systems, and industrial applications.

Key words. clogging, suspension flow, porous media, mathematical modeling
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1. Introduction. The migration of fines, i.e., small particles, in porous media
plays an important role in several engineering applications including oil production,
soil erosion, ground water pollution, and the operation of filter beds. Accordingly,
this topic is an active area of research in a number of disciplines including petroleum,
geotechnical, chemical, environmental, and hydraulic engineering (see [6]).

Soil mass is an example of a porous medium. The particles that hold the material
together form what is known as the load carrying skeleton. Fines are small particles
that do not form part of the load-carrying skeleton. Rocks are other examples of
porous media with fines present in them. A typical size of these fines, which can be
of inorganic, organic, or biological nature, is 1 μm, and they may have an electric
surface charge. If liquid flows through the porous medium, fines attached to pore
surfaces may be released due to hydrodynamic forces. These fines will move with
the flow and be retained at other locations or exit the porous medium. The sites
that retain fines are usually pore constrictions or pore throats. If several migrating
particles reach a small pore throat simultaneously, the particles may clog the pore
throat. More detailed discussions on the physical phenomena that lead to clogging
can be found in [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14].

If fines get captured, the porous medium may become plugged. On the other
hand, when fines exit the medium, the porous medium may erode, which may result
in structural failure. Examples where these phenomena have important consequences
include the following: the extraction of petroleum, where plugging is an undesirable
effect—if the well completely clogs, it can no longer be used; the containment of
contaminants—plugging may help in this situation; the failure of earthen dams and
roads, which can be caused by the erosion that results from particle migration.

In this paper we study the following simple experiment that models aspects of
clogging at a single pore throat. A container is filled with a suspension made of
an incompressible liquid and spherical particles. A circular opening is made in the
container wall through which the suspension flows. The particles may or may not clog

∗Received by the editors October 1, 2004; accepted for publication (in revised form) May 16,
2005; published electronically November 4, 2005. This research was supported by the NSF.

http://www.siam.org/journals/siap/66-1/61616.html
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Fig. 1.1. Suspension in a container. The left-hand image shows the container filled with the
suspension before the opening is made. The right-hand image shows the system at the moment the
opening clogs.

the opening. Our goal is to predict the volume of fluid extracted before clogging (if
clogging does occur). The experiment described is illustrated in Figure 1.1.

The mathematical modeling of migration of fines in porous media is a complex
task that is in its infancy (see [6]). The objective of this paper is to provide a
step toward the more ambitious goal of developing reliable models for studying more
complex problems where migration of fines in porous media plays an important role.

The rest of the paper proceeds as follows. In section 2 we make our physical as-
sumptions and describe our mathematical model. In section 3 we describe a numerical
algorithm to obtain solutions of the model. In section 4 we derive an upper bound on
the volume extracted before clogging, and in section 5 we obtain a lower bound. The
paper ends in section 6 with examples and conclusions.

2. The model. Our model relies on the following approximations. The liquid is
incompressible. The flow is not disturbed by the presence of particles. The center of
each particle flows with the same velocity as the fluid. Before the opening is made,
the center of each particle is randomly placed inside the container with a uniform
probability distribution in space.

Note that the initial location of the centers of the particles are independent ran-
dom variables, and thus we allow particles to overlap.

For each point x in the container, we denote by F (x) the volume of fluid extracted
by the time the element of fluid initially at x reaches the opening. The left-hand image
in Figure 2.1 shows a two-dimensional sketch of level sets of the function F . (The
actual level sets of F are surfaces within the three-dimensional container.) Due to the
incompressibility of the fluid, the region enclosed by the level sets {x : F (x) = V +ΔV }
and {x : F (x) = V } has volume ΔV .

We denote by A the area of the orifice and by v the volume fraction of particles
(i.e., the volume occupied by the particles divided by the volume of the suspension).
All the particles have the same radius r.

To motivate our criteria for clogging, assume that the fluid velocity is constant
in space across the opening and out of the container. Once the volume of suspension
initially in {x : V < F (x) ≤ V + rA} leaves the container, it forms a cylinder with
height r (see the right-hand image in Figure 2.1). Since the centers of particles flow
with the fluid, the number of centers of particles that belong to this cylinder is equal
to the number of centers of particles initially placed in {x : V < F (x) ≤ V + rA}. We
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Fig. 2.1. The left-hand image is a two-dimensional sketch of level sets of F . The region
enclosed by the dashed lines is {x : V < F (x) ≤ V + ΔV }. The right-hand image is a two-
dimensional sketch of the three-dimensional cylinder (enclosed by dashed lines) which is formed by
the suspension initially in {x : V < F (x) ≤ V + rA} as soon as it leaves the container.

denote this number by k(V ), i.e.,

k(V ) = number of particles initially placed in {x : V < F (x) ≤ V + rA}.(2.1)

Note that the particles whose centers belong to the dashed cylinder of Figure 2.1
arrive almost simultaneously at the opening. Thus, we propose that clogging occurs
when k(V ), the number of particles arriving almost simultaneously at the opening,
exceeds a threshold kmax for the first time. Thus, if the opening clogs, the volume of
fluid that is extracted before clogging is

V � = min
{V :V≥0 and k(V )>kmax}

V.(2.2)

We define λ to be the ratio of the volume of the dashed cylinder of Figure 2.1
and the volume of a particle, i.e.,

λ =
3A

4πr2
.(2.3)

Since the number of centers of particles that can belong to the cylinder under the
condition that the particles do not overlap increases linearly with λ, we assume that
kmax is of the form

kmax = γλ,(2.4)

where γ is a material parameter to be experimentally determined. Given a realization
of initial distribution of centers of particles inside the container, (2.1)–(2.4) determine
the extracted volume V �.

3. Algorithm to compute the extracted volume. Assume that the suspen-
sion has volume V and contains a large but finite number N of particles. Then, the
volume fraction of particles is v = N4πr3/(3V). The initial location of the center of
each particle is a random variable with uniform probability distribution. This fact
along with the incompressibility of the fluid implies that the volume extracted by the
time a center of a particle reaches the opening is also a random variable with uni-
form probability distribution. As a consequence, if Vi is the volume extracted when
the ith particle reaches the opening, these volumes Vi are the result of ordering N
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Fig. 3.1. The initial location of the center of the ith particle to reach the opening is xi. The
dashed lines are the level sets of F . Vi = F (xi) is the volume extracted when the center of the ith
particle reaches the opening. V � is the volume extracted before clogging.

numbers selected independently with uniform probability distribution in the interval
[0,V]. This is illustrated in Figure 3.1.

Our criterion for clogging (described in section 2) is illustrated in Figure 3.1. If
we place a segment of length rA on top of the vertical volume axis of Figure 3.1 with
the left end at 0, then move the segment in the upward direction, and stop as soon as
the segment covers more than kmax particles simultaneously, the location of the lower
end of the segment is the extracted volume V �.

The above paragraph can be precisely described as follows. For each i we define
ni to be the largest integer such that Vi−ni+1 > Vi − rA subjected to the restriction
ni ≤ i. If there exists i ∈ [1, N ] such that ni > kmax, clogging occurs. Assuming that
this is the case, let i� = min {i : ni > kmax}. Then

V � =

{
0 if Vi� < rA,
Vi� − rA if Vi� ≥ rA.

(3.1)

The present discussion leads to the following algorithm to compute V � for a given
realization:

i ← 1
n ← 1
While n ≤ kmax and i < N

i ← i + 1
n ← n + 1
While Vi−n+1 ≤ Vi − rA

n ← n− 1
end

end
If i = N and n ≤ kmax then

“No clogging”



232 GUILLERMO H. GOLDSZTEIN

else
V � ← max{0, Vi − rA}

end
The expected volume extracted before clogging, E(V �), is computed by averaging

the values of V � obtained for a large number of different realizations. Note that the
complexity of this algorithm in O(N).

4. Upper bound on the expected extracted volume of suspension before
clogging. Given a realization, the extracted volume before clogging V �, assuming
that clogging does occur, is the minimum of the function f(V ) = V over the set
{V : V ≥ 0 and k(V ) > kmax} (see (2.2)). We define U to be the minimum of the
same function f(V ) = V over a smaller set. More precisely,

U = min
{V :V =irA, i integer, i≥0, k(V )>kmax}

V.(4.1)

Since U and V � are the minimum of the same function f(V ) = V , but the set where
f is minimized to obtain U is a subset of the set where f is minimized to obtain V �,
we have

V � ≤ U.(4.2)

Thus, E(V �) and E(U), the expected values of V � and U , respectively, satisfy

E(V �) ≤ E(U).(4.3)

In Appendix A we show that, if rA � V (V is the initial volume of the suspension),

E(U) =
μ

1 − μ
rA, where μ = e−λv

kmax∑
i=0

(λv)i

i!
,(4.4)

where we recall that v is the volume fraction of the particles and λ was defined in (2.3).
In particular, we also show in Appendix B that, in the parameter regime λv � 1, we
have

E(U) � ([kmax] + 1)!

(λv)[kmax]+1
rA,(4.5)

where [kmax] is the integral part of kmax, i.e., the largest integer that is not greater
than kmax.

5. Lower bound on the expected extracted volume of suspension before
clogging. Let M be the positive integer that satisfies

(M − 1)rA ≤ V � < MrA.(5.1)

The sets {x : (M − 1)rA < F (x) ≤ MrA} and {x : MrA < F (x) ≤ (M + 1)rA}
are disjoint, and their union contains {x : V � < F (x) ≤ V � + rA}. Thus, since
the number of particle centers initially placed in {x : V � < F (x) ≤ V � + rA} is
larger than kmax, the number of particle centers initially placed in one of the sets
{x : (M − 1)rA < F (x) ≤ MrA} or {x : MrA < F (x) ≤ (M + 1)rA} is larger than
kmax/2. In other words, max{k((M − 1)rA), k(MrA)} > kmax/2.
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We define

L = min
{V :V =irA, i integer, i≥0, k(V )>kmax/2}

V.(5.2)

Given the above discussion, we have that L ≤ MrA. Thus, (5.1) implies

L− rA ≤ V �(5.3)

and thus

E(L) − rA ≤ E(V �),(5.4)

where, as in the previous section, E(.) denotes the expected value of the expression
between brackets.

Following the same arguments to compute the upper bound, we obtain that, in
the regime rA � V,

E(L) =
η

1 − η
rA, where η = e−λv

kmax/2∑
i=0

(λv)i

i!
.(5.5)

In particular, in the parameter regime λv � 1, we have

E(L) � ([kmax/2] + 1)!

(λv)[kmax/2]+1
rA(5.6)

(as before [.] is the integral part of the argument).

6. Examples and conclusions. As an illustrative example, in Figure 6.1 we
show a plot of the expected extracted volume E(V �) and the upper and lower bounds
E(U) and E(L) − rA versus the volume fraction v. The parameter values chosen
are λ = 3 and γ = 1 (and thus, kmax = λ). The expected extracted volumes were

Volume fraction

Fig. 6.1. Normalized expected extracted volume E(V �)/(rA) (dotted line), normalized upper
bound E(U)/(rA) (upper solid line), and normalized lower bound (E(L) − rA)/(rA) (lower solid
line) versus volume fraction v (for λ = 3 and γ = 1).
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numerically computed with the method described in this paper. Note that, for a
circular opening, λ = 3 when the radius of the orifice is twice the radius of the
particles.

We have developed and analyzed a simple mathematical model to predict the
volume of suspension extracted through a small orifice before it clogs. Our model
leads to a simple and efficient numerical algorithm as well as analytic expressions for
lower and upper bounds on the volume extracted. From the expressions of the bounds,
our model reflects the sensitivity of the volume extracted to two key parameters: the
volume fraction of particles, v, and λ, which reflects the ratio between the size of the
orifice and the size of the particles.

A next step will be to validate the model (or relax some of the physical assump-
tions made) by comparing the predictions with experimental measurements. After
the necessary adjustments, a more ambitious goal is to use the results obtained here
as a building block to address more complex problems. These issues will be pursued
in the future.

Appendix A. The expected value of the upper bound. To compute the
upper bound on the expected volume of suspension extracted before clogging, we
need the observations that we describe next. As in the rest of this paper, N is the
number of particles initially placed in the container and V is the initial volume of the
suspension.

Observation 1. Let Ω be a region inside the container, and let |Ω| be its volume.
The probability that the centers of exactly i of the N particles were initially placed in
Ω is

p(i, |Ω|) =
N !

i!(N − i)!

(
|Ω|
V

)i (
1 − |Ω|

V

)N−i

.(A.1)

In particular, this probability depends only on i, N , and the volume of Ω. Moreover,
the asymptotic value p(i, |Ω|) in the regime N � i and V � |Ω| is

p(i, |Ω|) � 1

i!

(
N |Ω|
V

)i

e−
N|Ω|

V .(A.2)

In particular, if |Ω| = rA,

p(i, rA) � 1

i!
(λv)ie−λv(A.3)

(where v is the volume fraction of the particles and λ was defined in (2.3)).
This observation results from the fact that the centers of the particles are placed in

the container randomly with uniform probability distribution, from basic probability
arguments (see any probability text book), and from the equality rAN = λvV.

We use the standard notation P (z) for the probability that the event z is true.
Observation 2. If i is an integer that satisfies i � N , and if rA � V, then for

any 0 ≤ V ≤ V − rA we have

P (k(V ) = i) � 1

i!
(λv)ie−λv.(A.4)

Note, in particular, that P (k(V ) = i) is independent of V .
This observation results from the definition of the function k = k(V ) (see (2.1)),

the fact that the volume of the set {x : V < F (x) ≤ V +rA} is rA, and equation (A.3).
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Observation 3. Let Ω1 and Ω2 be two disjoint regions inside the container. As-
sume that V � max{|Ω1|, |Ω2|}. Let i1 and i2 be two nonnegative integers that satisfy
N � max{i1, i2}. The probability of having placed exactly i1 centers of particles in
Ω1 and i2 centers of particles in Ω2 is asymptotically equal to p(i1, |Ω1|)p(i2, |Ω2|).

The validity of this observation is a consequence of the fact that the placements of
exactly i1 centers of particles in Ω1 and i2 centers of particles in Ω2 are asymptotically
independent events in the regime N � max{i1, i2} and V � max{|Ω1|, |Ω2|}.

Observation 4. Let i and j be two different nonnegative integers, i 	= j. The
random variables k(irA) and k(jrA) are asymptotically independent.

This observation results from the definition of the function k = k(V ), the fact
that the sets {x : jrA < F (x) ≤ (j + 1)rA} and {x : irA < F (x) ≤ (i + 1)rA} are
disjoint, and Observation 3.

Let m be a nonnegative integer. From the definition of U (see (4.1)), we have
U = mrA if k(jrA) ≤ kmax for 0 ≤ j < m and k(mrA) > kmax. Thus,

P (U = mrA) = P (k(jrA) ≤ kmax for j < m and k(mrA) > kmax).(A.5)

Given Observation 4, the m + 1 events k(jrA) ≤ kmax (for 0 ≤ j < m) and
k(mrA) > kmax are asymptotically independent (more precisely, in the parameter
regime mkmax � N). Thus, (A.5) reduces to

P (U = mrA) � P (k(mrA) > kmax)

m−1∏
j=0

P (k(jrA) ≤ kmax).(A.6)

From Observation 2 and the definition of the parameter μ in (4.4), we have that

P (k(jrA) ≤ kmax) � μ and P (k(mrA) > kmax) � 1 − μ.(A.7)

Equations (A.6) and (A.7) imply that

P (U = mrA) � (1 − μ)μm,(A.8)

and thus, in the parameter regime N � kmax, the expected value of U is

E(U) �
∞∑

m=0

mrAP (U = mrA) � rA

∞∑
m=0

m(1 − μ)μm =
μ

1 − μ
rA,(A.9)

which shows the validity of (4.4).

Appendix B. The upper bound in the regime λv � 1. Given the definition
of μ (see (4.4)), we have

eλv(1 − μ) = eλv −
kmax∑
i=0

(λv)i

i!
=

∞∑
i=0

(λv)i

i!
−

kmax∑
i=0

(λv)i

i!
=

∞∑
i=[kmax]+1

(λv)i

i!
.(B.1)

Thus, we have

1 − μ = e−λv (λv)[kmax]+1

([kmax] + 1)!
if λv � 1.(B.2)

Since we clearly have

μ = e−λv if λv � 1,(B.3)

the validity of (4.5) follows.
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EXISTENCE AND STABILITY OF TRAVELING WAVES IN
BUFFERED SYSTEMS∗

JE-CHIANG TSAI† AND JAMES SNEYD‡

Abstract. We study wave propagation in the buffered bistable equation, i.e., the bistable
equation where the diffusing species reacts with immobile buffers that restrict its diffusion. Such a
model describes wave front propagation in excitable systems where the diffusing species is buffered;
in particular, the study of the propagation of waves of increased calcium concentration in a variety
of cell types depends directly upon the analysis of such buffered excitability. However, despite the
biological importance of these types of equations, there have been almost no analytical studies of
their properties.

Here, we study the question of whether or not the inclusion of multiple buffers can eliminate
propagated waves. First, we prove that a unique (up to translation) traveling wave front exists.
Moreover, the wave speed is also unique. Then we prove that this traveling wave front is stable, i.e.,
that any initial condition which vaguely resembles a traveling wave front (in a way we make precise)
evolves to the unique wave front.

We thus prove that multiple stationary buffers cannot prevent the existence of a traveling wave
front in the buffered bistable equation and may not eliminate stable wave fronts. This suggests
(although we do not prove) that the same result is true for more complex and realistic models of
calcium wave propagation, a result of direct physiological relevance.

Key words. calcium, reaction-diffusion equations, traveling wave, bistable equation, FitzHugh–
Nagumo equations, stability

AMS subject classifications. 34A34, 34A12, 35K57

DOI. 10.1137/040618291

1. Introduction. Wave propagation in excitable systems has been the subject
of a vast number of mathematical studies over the last 50 years. The basic mathe-
matical theory can be used to describe wave propagation in a wide array of biological
and chemical systems, from action potentials in neurons to chemical waves in the
Belousov–Zhabotinskii reaction to combustion waves [4, 9, 24, 26].

One of the more recent applications of the theory has been to the study of waves of
increased calcium concentration that travel both within and between cells. Such waves
are observed in a wide array of cell types [19, 24]. Although their precise physiological
function is not always clear, it is widely accepted that they are an important way in
which cells can transmit an intracellular signal or coordinate the behavior of a large
number of cells. They have thus been studied extensively, both by experimentalists
and theoreticians.

As a general rule, models for calcium waves have been based on reaction-diffusion
mechanisms. Thus, if we let u denote the concentration of free cytosolic calcium, a
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typical model for intracellular calcium waves can be expressed in the following generic
form:

∂u

∂t
= D

∂2u

∂x2
+ f(u),(1.1)

where D > 0 is the diffusion coefficient of the free calcium and f(u) describes the
kinetics of calcium transport into and out of the cytosol. For typical examples, the
reader is referred to Sneyd, Keizer, and Sanderson [24].

Despite the complexity of all realistic models of calcium wave propagation, sim-
pler models still play a useful role. Although the FitzHugh–Nagumo (FHN) model
was originally designed as a simple model of an action potential, the mathematical
similarities between action potential propagation and calcium wave propagation mean
that one may gain much understanding of the mechanisms underlying calcium waves
from a study of these earlier, simple models. Even simpler models, such as the bistable
equation, are also useful, despite their almost complete lack of physiological details.
Such, of course, is the power of a mathematical model, to abstract the general from
the particular, so that one is not restricted to always dealing with special cases.

However, despite the important similarities with other excitable systems, the
study of calcium waves has some crucial differences, the most important of which, at
first glance, is the existence of calcium buffers. A large fraction of cytosolic calcium
(at least 99%) is bound to large proteins that act as calcium buffers. Not only do these
buffers restrict the diffusion of free calcium, they also affect the kinetics of calcium
release and uptake, and thus they would be expected to have an important effect on
the properties of traveling calcium waves. Terms describing buffering do not occur
in simpler excitable models such as FHN, nor even in more complex models such as
Hodgkin–Huxley. Thus their effect on wave propagation is not at all well understood.
Despite this, there have been few analytic investigations of the effects of buffers on
traveling waves.

A simple way to model buffering is to assume that calcium (Ca2+) reacts with
buffers according to the following reaction scheme:

Ca2+ + Bi � CaBi, i = 1, . . . , n,(1.2)

where Bi denotes the ith buffer in its unbound form, and CaBi denotes the ith buffer
that is bound to calcium. Let vi denote the concentration [Bi] of the ith buffer and bi0
denote the total amount of the ith buffer. Also note that bi0 = [Bi]+ [CaBi]. We shall
assume that bi0 is a constant. It follows that the rate of change of u due to buffering
is given by

du

dt
=

n∑
i=1

[ki−(bi0 − vi) − ki+uvi],(1.3)

where ki+ and ki− denote the forward and reverse rate constants of the ith reac-
tion (1.2), respectively. Hence if we assume that all of the buffers are stationary, then
we have the buffered reaction-diffusion system

∂u

∂t
= D

∂2u

∂x2
+ f(u) +

n∑
i=1

[ki−(bi0 − vi) − ki+uvi],(1.4)

∂vi
∂t

= ki−(bi0 − vi) − ki+uvi, (x, t) ∈ R × (0,+∞),(1.5)
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with the initial data

u(x, 0) = φ(x), vi(x, 0) = ψi(x), x ∈ R, for i = 1, . . . , n.(1.6)

Although there are many different types of calcium buffers, each with widely
different rate constants, reasonable values for a typical endogenous buffer are k+ =
50 μM−1s−1, k− = 500 s−1, and b0 = 100 μM. Typical exogeneous buffers (i.e., ones
added experimentally) are BAPTA (k+ = 600 μM−1s−1 and k− = 100 s−1) or EGTA
(k+ = 1.5 μM−1s−1 and k− = 0.3 s−1). Because BAPTA and EGTA are added
exogeneously, their total concentration (b0) can take any desired value.

There have been a large number of purely numerical studies including calcium
buffers (see, for instance, [3, 8, 16, 20]). However, numerical studies suffer from the
disadvantage that one can never know how much the results are dependent solely
on the particular values chosen for the parameters. It is far preferable to obtain
analytical results, applicable to as wide an array of buffers as possible, so that the
effects of buffers on calcium dynamics can be understood in the most general possible
context.

Some of the early analytical work on buffers was that of Wagner and Keizer [27],
who showed that if the buffer is assumed to have fast kinetics (relative to the other
reactions in the model), the full buffered model could be reduced to a single equation
for the diffusion of calcium, an equation in which the effective diffusion coefficient of
calcium was now dependent on the calcium concentration. This is the so-called rapid
buffering approximation (RBA). This early work was extended, and put into a more
direct experimental context, by Naraghi and Neher [13], Naraghi, Muller, and Neher
[14], and Neher [15]. The RBA was also used as the basis of analytical investigations
of profiles around the mouth of an open calcium channel [21] and was later derived
as one case in a more general asymptotic expansion of the full equation [22].

However, these previous studies left open the question of whether or not multiple
buffers, not necessarily fast ones, could eliminate wave propagation. Of course, in
the limit of infinitely slow buffers, the answer is intuitively clear; if the wave exists in
the absence of buffers, then it will exist in the presence of an infinitely slow buffer.
Conversely, Sneyd, Dale, and Duffy [25] showed that if the buffer is infinitely fast,
then waves cannot be eliminated by the buffers. However, nothing was known about
the intermediate cases when the buffer is neither infinitely fast nor infinitely slow. It
is all these intermediate cases that we address here. They are, of course, vastly more
difficult. Previous studies also neglected to study the stability of the buffered waves,
something we also address here.

As in previous studies [25] we shall study only the buffered bistable equation here,
i.e., when the reaction function f takes the particularly simple form,

f(u) = u(u− a)(1 − u),

for some constant a > 0. A more realistic model of calcium wave propagation would
include a recovery variable, as in the FHN equations. However, if recovery is slow,
the bistable equation provides a good description of the traveling wave in the FHN
equations, and thus our results are also applicable to traveling waves in the FHN
equations. This is confirmed numerically in Sneyd, Dale, and Duffy [25]. A similar
analysis of a realistic model of calcium waves of much greater complexity is simply
not possible at this stage. Nevertheless, as discussed above, previous work suggests
that results for the FHN model carry over to more complex calcium wave models.
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Description of results. Our results here can be summarized concisely:
1. A unique wave front solution exists (as long as it exists in the absence of

buffers). Moreover, the wave speed is also unique.
2. Furthermore, if some technical constraints are made on the initial values, then

this unique wave front is also stable with respect to this class of initial values.
Thus, our results complete the picture of how stationary buffers affect wave existence
in the bistable equation.

In order to state our results more precisely, we give the definition of a traveling
wave solution of (1.4)–(1.5). First, for each solution (u,v) = (u, v1, . . . , vn) of (1.4)–
(1.6), we introduce the moving coordinate z = x− ct and set ũ(z, t) = u(z+ ct, t) and
ṽi(z, t) = vi(z+ ct, t), i = 1, . . . , n, where c is a negative constant (wave speed). Then
ũ and ṽi satisfy the following system:

∂ũ

∂t
= D

∂2ũ

∂z2
+ c

∂ũ

∂z
+ f(ũ) +

n∑
i=1

[ki−(bi0 − ṽi) − ki+ũṽi],(1.7)

∂ṽi
∂t

= c
∂ṽi
∂z

+ ki−(bi0 − ṽi) − ki+ũṽi, (z, t) ∈ R × (0,+∞),(1.8)

with the initial data

ũ(z, 0) = φ(z) and ṽi(z, 0) = ψi(z), z ∈ R, for i = 1, . . . , n.(1.9)

Then a set of nonnegative functions (U(ξ),Π(ξ)) = (U(ξ),Π1(ξ), . . . ,Πn(ξ)) ∈ C2(R)
×C1(R) × · · · × C1(R) are said to be a traveling wave solution of (1.4)–(1.5) with
wave speed c if they satisfy

DÜ + cU̇ + f(U) +

n∑
i=1

[ki−(bi0 − Πi) − ki+UΠi] = 0,

cΠ̇i + ki−(bi0 − Πi) − ki+UΠi = 0, ξ = x− ct ∈ R, i = 1, . . . , n,

with the boundary conditions

(U(+∞),Π1(+∞), . . . ,Πn(+∞)) = (1, k1
−b

1
0/(k

1
+ + k1

−), . . . , kn−b
n
0/(k

n
+ + kn−))

and

(U(−∞),Π1(−∞), . . . ,Πn(−∞)) = (0, b1
0, . . . , b

n
0 ),

where · denotes d/dξ. Note that this definition implies that a traveling wave solution
(U(ξ),Π(ξ)) of (1.4)–(1.5) with wave speed c is a steady state solution of (1.7)–(1.8).
Also note that, physiologically, the concentration of the ith buffer vi shall decrease
from bi0 to some constant concentration as time evolves for i = 1, . . . , n. Thus we
impose such boundary conditions.

It is well known that traveling waves with negative speed in the bistable equation

exist only when a ∈ (0, 1/2) or, more generally, when
∫ 1

0
f(u)du > 0 (see Fife and

McLeod [5] and Britton [2]). Moreover, the wave speed is unique. On the other hand,
it is interesting to point out that we can prove that given a ∈ (0, 1/2), then there
exists a unique c := c(a) < 0 such that a unique (up to translation) traveling wave
solution (U ,Π) of our buffered bistable equations (1.4)–(1.5) with wave speed c exists.
Moreover, (U ,Π) satisfies that U̇ > 0 and Π̇i < 0, i = 1, . . . , n, on R. Furthermore,
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a traveling wave solution (U ,Π) of (1.4)–(1.5) with negative wave speed, such that
U̇ > 0 and Π̇i < 0, i = 1, . . . , n, on R, exists only if a ∈ (0, 1/2). Comparing this result
with the unbuffered equation (1.1), we may conclude that stationary buffers cannot
eliminate wave activity. Throughout the remainder of this section, (U ,Π) will denote
such a unique traveling wave solution of (1.4)–(1.5) with speed c and U(0) = 1/2.

Regarding the stability of this traveling wave solution of (1.4)–(1.5), we need to
put some technical constraint on the initial values. More precisely, let a ∈ (0, 1/2)
hold and (ũ, ṽ) be the solution of (1.7)–(1.8) with the initial condition (φ, ψ1, . . . , ψn),
which satisfies the following conditions:

(1) φ and ψi are sufficiently smooth, and φ′ ≥ 0, ψ′
i ≤ 0 on R for i = 1, . . . , n;

(2) supz∈R |φ(z)| + supz∈R |φ′(z)| + supz∈R |φ′′(z)| + supz∈R |φ′′′(z)| < +∞;
(3) 1−φ2 > 0, ψ2i−ki−b

i
0/(k

i
+ +ki−) > 0, φ0 > 0, and bi0−ψ0i > 0 are sufficiently

small for i = 1, . . . , n;
(4) ũt(z, 0) ≥ 0 and ṽi,t(z, 0) ≤ 0 for all z ∈ R and i = 1, . . . , n,

where

φ2 = lim
z→+∞

φ(z), ψ2i = lim
z→+∞

ψi(z), φ0 = lim
z→−∞

φ(z), and ψ0i = lim
z→−∞

ψi(z);
(1.10)

then there exists z0 ∈ R such that

lim
t→+∞

|ũ(z, t) − U(z − z0)| = 0, lim
t→+∞

|ṽi(z, t) − Πi(z − z0)| = 0, i = 1, . . . , n,

uniformly with respect to z ∈ R. Roughly speaking, this implies that a solution of
(1.4)–(1.5) which vaguely resembles a traveling front (U ,Π1, . . . ,Πn) at initial time
will develop into a translate of such a traveling front as t → +∞. Therefore, we may
conclude that, physiologically, a unique stable traveling wave front exists, as long as
it exists in the absence of buffers. Finally, we will consider the case for mobile buffers
in the future.

We will modify the method of Klaasen and Troy [10] (also see Hastings [7] and
Fife and McLeod [5]) to prove our results. However, note that the assumptions made
on the reaction terms in [10] are different from the one here. This paper is organized
as follows. In section 2, we first give some preliminary results. In section 3, we will
adapt the method of [10, 7] to prove the existence and uniqueness of a traveling wave
solution of (1.4)–(1.5), and the uniqueness of wave speed is also considered. In section
4, some theorems on partial differential equations and the results of stability for our
traveling wave solution will be stated, and then we will modify the method of [10, 5] to
prove the theorem of stability for our traveling wave solution of (1.4)–(1.5). Finally,
the proofs of some technical lemmas are deferred to the appendix.

2. Preliminaries. First, for ease of use we set up some notation.
Definition 1.

(1) γi(u) := ki+u + ki− and ki(u) := ki−b
i
0/(k

i
+u + ki−) for i = 1, . . . , n.

(2) F (u,v) := u(u−a)(1−u)+
∑n

i=1[k
i
−b

i
0−(ki+u+ki−)vi], where v = (v1, . . . , vn).

(3) Gi(u,v) := ki−b
i
0 − (ki+u + ki−)vi = γi(u)(ki(u) − vi), where v = (v1, . . . , vn)

for i = 1, . . . , n.
(4) a0 = 0, a1 = a, and a2 = 1.
(5) π0 = (a0, 0,b0)t = (a0, 0, b

1
0, . . . , b

n
0 )t = (0, 0, b1

0, . . . , b
n
0 )t,

π1 = (a1, 0,b1)t = (a1, 0, b
1
1, . . . , b

n
1 )t = (a, 0, k1

−b
1
0/(k

1
+a + k1

−), . . . , kn−b
n
0/

(kn+a + kn−))t,
and
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π2 = (a2, 0,b2)t = (a2, 0, b
1
2, . . . , b

n
2 )t = (1, 0, k1

−b
1
0/(k

1
+ + k1

−), . . . , kn−b
n
0/(k

n
+ +

kn−))t, where the t denotes transposition of a vector.
(6) For two vectors c = (c1, . . . , cn) and d = (d1, . . . , dn), the symbol c < d

means ci < di for i = 1, . . . , n, and c ≤ d means ci ≤ di for i = 1, . . . , n.
(7) R+ stands for the set of all of the positive real numbers.
In terms of this notation, we can rewrite (1.4)–(1.5) as the following system:

∂u

∂t
= D

∂2u

∂x2
+ u(u− a)(1 − u) +

n∑
i=1

γi(u)(ki(u) − vi),(2.1)

∂vi
∂t

= γi(u)(ki(u) − vi), i = 1, . . . , n.(2.2)

The following lemma follows from the associated definitions and a simple calcu-
lation.

Lemma 2.1.

(1) F and Gi are analytic on [0, 1] × [0,∞), and γi(u), ki(u) are analytic and
positive on [0, 1] for i = 1, . . . , n.

(2) Fu(u,v) = u(2 − 3u) + a(2u − 1) −
∑n

i=1 k
i
+vi, Fvi(u,v) = −γi(u) < 0,

Gi,u(u,v) = −ki+vi ≤ 0, and Gi,vi
(u,v) = −γi(u) < 0 for all (u,v) ∈

[0, 1] × [0,∞)n.
(3) If a ∈ (0, 1/2), then

∫ a2

a0
F (u, k1(u), k2(u), . . . , kn(u))du > 0.

3. Existence and uniqueness of the traveling wave solution.

3.1. Outline of the proof. First, we set up our problem. Namely, we shall
look for a traveling wave solution of (2.1)–(2.2) in the form u = U(ξ), vi = Πi(ξ), i =
1, . . . , n, with ξ = x− ct. Therefore, (U ,Π) satisfies

Ü = (−cU̇ − F (U ,Π))/D,(3.1)

Π̇i = −Gi(U ,Π)/c, i = 1, . . . , n,(3.2)

with the boundary conditions

(U(−∞), U̇(−∞),Π(−∞)) = (a0, 0,b0)(3.3)

and

(U(+∞), U̇(+∞),Π(+∞)) = (a2, 0,b2),(3.4)

where Π = (Π1, . . . ,Πn) and · = d/dξ.
By setting τ = (−ξ)/c, ′ = d/dτ , θ = c2/D, and U ′ = Z, we can rewrite the

above problem as the following first-order system of differential equations:

U ′ = Z,(3.5)

Z ′ = θ(Z − F (U ,Π)),(3.6)

Π′
i = Gi(U ,Π), i = 1, . . . , n,(3.7)

with the boundary conditions

(U(−∞),Z(−∞),Π(−∞)) = (a0, 0,b0)(3.8)

and

(U(+∞),Z(+∞),Π(+∞)) = (a2, 0,b2).(3.9)
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Therefore, in order to solve the problem of existence of traveling wave solutions of
(2.1)–(2.2), it suffices to consider the problem (3.5)–(3.9). Note that from the defi-
nitions of F and Gi, i = 1, . . . , n, it follows that (3.5)–(3.7) have three equilibrium
solutions: π0, π1, and π2.

Our strategy is to use the shooting method. We briefly describe the procedure
as follows. First, we let (Uθ,Zθ,Πθ) denote a solution of (3.5)–(3.8) and (−∞, Tθ)
be the corresponding maximal existence interval of (Uθ,Zθ,Πθ) (we will omit the
subscript θ in the following subsections if there is no ambiguity). Thus our goal is to
choose suitable θ to make (Uθ,Zθ,Πθ) satisfy (3.9). In section 3.2, we will analyze the
behavior of (Uθ,Zθ,Πθ) around τ = −∞ (see Lemma 3.1) and obtain the uniqueness
(up to translation) of the traveling wave solution of (2.1)–(2.2) with given negative
wave speed c if it exists. Next, in section 3.3, we will prove two technical lemmas
and use one of them to prove a necessary condition for the existence of a monotone
traveling wave solution of (2.1)–(2.2) with negative wave speed. Then, in section
3.4, we will give a proof of the existence of the traveling wave solution of (2.1)–(2.2).
Roughly speaking, we will consider the following two sets:

P1 = {θ > 0 | U ′
θ > 0 on (−∞, τ̂ ] and Uθ(τ̂) = a2 for some finite τ̂}

and

P2 = {θ > 0 | U ′
θ(τ) = 0 for some τ ∈ R and Uθ(τ) ∈ (a1, a2]}.

Then we will show that P1 is open and contains (θ1,+∞) for some θ1 > 0 (see
Step 2 in the proof of Lemma 3.5) and that P2 is open and contains (0, θ2) for some
θ2 > 0 (see Step 3 in the proof of Lemma 3.5). Therefore, θ∗ := supP2 exists and
θ∗ ∈ R+ \ (P1 ∪P2), and so (Uθ∗ ,Πθ∗) is our desired solution (see Step 4 in the proof
of Lemma 3.5).

Finally, we will use the comparison method to prove the uniqueness of the wave
speed of the traveling wave front in section 3.5.

3.2. The behavior of (U ,Z, Π) around τ = −∞. Linearizing (3.5)–(3.7)
around the constant solution π0, we obtain the equation dX/dτ = A0X, where X =
(U − a0,Z,Π1 − b1

0, . . . ,Πn − bn0 )t,

A0 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
−θFu θ −θFv1 · · · −θFvn

G1,u 0 G1,v1
· · · G1,vn

...
...

...
. . .

...
Gn,u 0 Gn,v1

· · · Gn,vn

⎤
⎥⎥⎥⎥⎥⎦ with Gi,vj = ∂Gi/∂vj ,(3.10)

and all the values are evaluated at (U ,Z,Π) = π0. Thus the associated characteristic
polynomial with A0 is

pn(λ) = det

⎡
⎢⎢⎢⎢⎢⎣

−λ 1 0 · · · 0
−θFu θ − λ −θFv1 · · · −θFvn

G1,u 0 G1,v1 − λ · · · G1,vn

...
...

...
. . .

...
Gn,u 0 Gn,v1 · · · Gn,vn − λ

⎤
⎥⎥⎥⎥⎥⎦ .(3.11)

Note that ∂Gi/∂vj = 0 if i �= j and Gi,vi(a0,b0) = −ki− for i = 1, . . . , n. Then, by
Lemma 5.1 in the appendix, we may assume that the eigenvalues λ1, . . . , λn+2 of A0

satisfy λn+2 < · · · < λ2 < 0 < λ1 (some of the negative ones may be equal).
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Let X̄ be an eigenvector of A0 corresponding to λ1. Then there is a nonconstant
solution Γ of (3.5)–(3.7) which tends to π0 as τ → −∞ and whose tangent vector at
τ = −∞ is the eigenvector X̄ or −X̄. Set X̄ = (X1, . . . , Xn+2). From the equation
A0X̄ = λ1X̄ it follows that

X2 = λ1X1,(3.12)

−θ(Fu(a0,b0)X1 +

n∑
i=1

Fvi(a0,b0)Xi+2) = (λ1 − θ)X2,(3.13)

Gi,u(a0,b0)X1 = (λ1 −Gi,vi
(a0,b0))Xi+2(3.14)

for i = 1, . . . , n. Noting that λ1 > 0, Gi,vi(a0,b0) = −ki− < 0, and using (3.12)
and (3.14), we can assume that X1 > 0 and X2 > 0. Moreover, from λ1 > 0,
Gi,u(a0,b0) = −ki+b

i
0 < 0, Gi,vi(a0,b0) = −ki− < 0, and (3.14), it follows that

Xi+2 < 0 for i = 1, . . . , n.
In the remainder of this section, we assume that a solution (U ,Z,Π) of (3.5)–

(3.8) satisfies the condition that the tangent vector X̄ to (U ,Z,Π) at τ = −∞ has
the properties as discussed above. Hence near τ = −∞, (U ,Z,Π) satisfies U > a0,
Z = U ′ > 0, and Π′

i < 0 for i = 1, . . . , n. From this it follows that the following
definition is well defined.

Definition 2. Let (U ,Z,Π) be a solution of (3.5)–(3.8). Let τ0 = τ0(θ) be
the first zero of U ′ if it exists; and set τ0 = T if U ′ > 0 on (−∞, T ). We also set
ū = U(τ0) (ū may be +∞).

Furthermore, by this definition and the above discussion, we have the following
lemma.

Lemma 3.1. Let (U ,Z,Π) be a solution of (3.5)–(3.8). Then U > 0 and U ′ > 0
on (−∞, τ0), and a traveling wave solution of (2.1)–(2.2) for given negative speed c is
unique (up to translation) if it exists.

3.3. Two auxiliary lemmas and a necessary condition. First, we will make
a transformation for (3.5)–(3.7) which is useful for our discussion. Since U ′ > 0 on
(−∞, τ0), we can express Z and Πi, i = 1, . . . , n, as functions of U for U ∈ (a0, ū).
Let Z(U) = Z(τ(U)) and Vi(U) = Πi(τ(U)), i = 1, . . . , n, for U ∈ (a0, ū). Set
V = (V1, . . . , Vn). Then Z and Vi satisfy the following equations:

Z ′ :=
dZ

dU = θ

(
1 − F (U ,V)

Z

)
,(3.15)

V ′
i :=

dVi

dU =
Gi(U ,V)

Z
, i = 1, . . . , n,(3.16)

for U ∈ (a0, ū) with the initial conditions

Z(a0) = 0, Vi(a0) = bi0 for i = 1, . . . , n.(3.17)

Note that Z(u) > 0 for u ∈ (a0, ū) and Z(ū) = 0 if ū is finite.
Lemma 3.2. Let (U ,Z,Π) be a solution of (3.5)–(3.8). Then ki(U) < Vi(U) < bi0

for all U ∈ (a0, ū) and i = 1, . . . , n. Moreover, Π′
i(τ) < 0 for all τ ∈ (−∞, τ0) and

i = 1, . . . , n.
Proof. Fix i ∈ {1, . . . , n}. Noting that Π′

i < 0 near τ = −∞, U(τ) > 0 for
τ ∈ (−∞, τ0) and using (3.7), we have Vi(U) > ki(U) for all U ∈ (a0, u3) for some
u3 ∈ (a0, ū]. If u3 < ū and Vi(u3) = ki(u3), then V ′

i (u3) ≤ k′i(u3) < 0, where we



BUFFERED WAVES 245

have used the fact that ki is decreasing on R. On the other hand, by (3.16) we have
V ′
i (u3) = 0, a contradiction. Therefore, Vi(U) > ki(U) for all U ∈ (a0, ū). Combining

this with Lemma 3.1, we have V ′
i < 0 on (a0, ū), and so Π′

i < 0 on (−∞, τ0). Moreover,
from Vi(a0) = bi0 it follows that Vi(U) < bi0 for all U ∈ (a0, ū). This completes the
proof.

In the next lemma, we will show that a ∈ (0, 1/2) is a necessary condition for
the existence of a monotone traveling wave solution of (2.1)–(2.2) with negative wave
speed.

Lemma 3.3 (necessary condition). Let a > 0, and suppose that (3.1)–(3.2) with
the boundary conditions (3.3)–(3.4) and c < 0 has a solution (U ,Π) with U̇ > 0 on
R. Then we have a ∈ (0, 1/2).

Proof. Rewrite (3.1)–(3.2) as the following:

−DÜ = cU̇ + F (U ,Π),
0 = cΠ̇i + Gi(U ,Π), i = 1, . . . , n.

Then multiplying these two equations by U̇ , integrating from −∞ to +∞, and sum-
ming the second equation from i = 1 to n, and then subtracting the first equation
from the resulting second one, we get

−c

(∫ +∞

−∞
U̇2(ξ)dξ −

n∑
i=1

∫ +∞

−∞
U̇(ξ)Π̇i(ξ)dξ

)
=

∫ a2

a0

u(u− a)(1 − u)du.

By Lemma 3.2, Π̇i(ξ) = (−1/c)Π′
i(τ) < 0 on R for i = 1, . . . , n. Thus the left-hand

side of the above equation is positive. From this and Lemma 2.1 it follows that
a ∈ (0, 1/2). Hence the proof is completed.

Lemma 3.4. There exists no solution (U ,Π) of (3.5)–(3.7) with the condition
(3.8) satisfying that U(τ0) = a2, U ′(τ0) = 0 and U ′′(τ0) ≤ 0 for some finite τ0.

Proof. Suppose that there is such a solution. Thus either U ′′(τ0) = 0 or U ′′(τ0) <
0. In the first case, it follows from Lemma 3.2 that Π′

i(τ0) ≤ 0 for i = 1, . . . , n.
Therefore, noting the fact that if the sum of a sequence of nonnegative numbers is
zero, then every number in this sequence must be zero, using (3.6)–(3.7), and the
definitions of F and Gi, i = 1, . . . , n, it follows that Π′

i(τ0) = 0 for i = 1, . . . , n, a
contradiction to the uniqueness theorem for the differential equations. For the latter
case, by (3.6)–(3.7) again and a similar argument as the above, we have Π′

i0
(τ0) >

0 for some i0 ∈ {1, . . . , n}, a contradiction to Lemma 3.2. This completes the
proof.

3.4. Final proof. Now we are ready to prove the existence of a traveling wave
solution of (2.1)–(2.2) under the assumption a ∈ (0, 1/2). The proof consists of four
steps.

Lemma 3.5. If a ∈ (0, 1/2), then there exists c := c(a) < 0 such that there is
a unique solution (up to translation) (U(τ),Z(τ),Π(τ)) of (3.5)–(3.9) satisfying that
U ′ > 0 and Π′

i < 0, i = 1, . . . , n, on R.
Proof. Step 1. We claim that ū > a1, Z(a1) ≥ θ(a1 − a0), and Vi(a1) > ki(a1)

for i = 1, . . . , n. Indeed, by Lemma 3.2 and Lemma 3.1 we have V ′
i < 0 and

Gi(U ,V(U)) < 0 for all U ∈ (a0, ū) and i = 1, . . . , n. Also note that f(u) < 0 for
u ∈ (a0, a1). Combining these two facts with the definitions of F and Gi, i = 1, . . . , n,
we obtain that F (U ,V(U)) < 0 and Gi(U ,V(U)) < 0 for all U ∈ (a0,min{ū, a1}) and
i = 1, . . . , n. Thus if ū ≤ a1, then from (3.15) it follows that Z ′ ≥ θ on (a0, ū). This
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implies that Z(ū) > 0, a contradiction. Therefore, we have ū > a1. Moreover, noting
that F (U ,V(U)) < 0 and Z > 0 on (a0, a1], and using (3.15) again, it follows that
Z ′ ≥ θ on (a0, a1]. Hence Z(a1) ≥ θ(a1 − a0) and Vi(a1) > ki(a1) for i = 1, . . . , n.

Step 2. We claim that if θ is sufficiently large, then there exists a finite τ̂ such
that U ′ > 0 on (−∞, τ̂ ] and U(τ̂) = a2. By Lemma 3.2, we have ki(U) < Vi(U) < bi0
for all U ∈ (a0, ū) and i = 1, . . . , n. Let

B = sup{| F (U ,V) | | a0 ≤ U ≤ a2, ki(U) ≤ Vi ≤ bi0, i = 1, . . . , n}.

Choose θ0 such that θ0 > 4B/(a1 − a0). Then we claim that ū > a2 for all θ > θ0.
Suppose that the claim does not hold for some θ̃ > θ0. Let (Zθ̃, Vθ̃,1, . . . , Vθ̃,n) be

the corresponding solution of (3.15)–(3.17). Then, since Zθ̃(a1) ≥ θ̃(a1 − a0) by

Step 1, we have Zθ̃(U) > θ̃(a1 − a0)/2 for all U ∈ [a1, û) for some û ∈ (a1, a2) and

Zθ̃(û) = θ̃(a1 − a0)/2. On the other hand, from (3.15) it follows that

Z ′
θ̃
(U) = θ̃

(
1 − F (U ,Vθ̃)

Zθ̃

)
≥ θ̃(1 −B/[θ̃(a1 − a0)/2])
> θ̃/2

for all U ∈ [a1, û]. This implies that Zθ̃(U) ≥ θ̃(a1 − a0) for all U ∈ [a1, û], a
contradiction. Therefore, if θ > θ0, we have ū > a2, and so Z(U) > 0 for all U ∈
(a0, a2]. Hence there exists a finite τ̂ such that U ′ > 0 on (−∞, τ̂ ] and U(τ̂) = a2.
Moreover, if we let (Uθ,Zθ,Πθ) be a solution of (3.5)–(3.8) and

P1 = {θ > 0 | U ′
θ > 0 on (−∞, τ̂ ] and Uθ(τ̂) = a2 for some finite τ̂},

then P1 is nonempty. Furthermore, P1 is open by continuous dependence on the
parameter θ.

Step 3. We show that for sufficiently small θ > 0, there is a finite τ0 with
U ′
θ(τ0) = 0 and Uθ(τ0) ∈ (a1, a2). If not, then there exists a sequence {θi}i∈N with

limi→∞ θi = 0 such that the corresponding solutions (Ui,Πi) of (3.5)–(3.8) satisfy
that U ′

i > 0 on (−∞, τ̂i) and Ui(τ̂i) = a2 for some τ̂i (τ̂i may be infinite). Let
Vi = (Vi,1, . . . , Vi,n). Multiplying (3.15) with Zi and integrating from a0 to U , we
obtain

Zi(U)2

2
= θi

∫ U

a0

(Zi(t) − F (t,Vi(t)))dt(3.18)

for all U ∈ [a0, a2]. By Lemma 3.2, we have kj(U) ≤ Vi,j(U) ≤ bj0 for all U ∈ [a0, a2]
and j = 1, . . . , n. Note that Zi(U) > 0 for all U ∈ (a0, a2). Thus if we let Ai =
supa0≤U≤a2

Zi(U), then it follows from (3.18) that A2
i /2 ≤ θi(Ai(a2−a0)+B(a2−a0)),

and so

lim
i→∞

Ai = 0.(3.19)

Solving (3.16) with integration by parts, we obtain that

Vi,j(U) = kj(U) −
∫ U

a0

k′j(t)exp

[
−
∫ U

t

(γj(s)/Zi(s))ds

]
dt
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for all U ∈ [a0, a2] and j = 1, . . . , n. Thus it follows from (3.19) that

lim
i→∞

Vi,j(U) = kj(U)(3.20)

uniformly for U ∈ [a0, a2] and j = 1, . . . , n. From (3.18) it follows that∫ a2

a0

F (t,Vi(t))dt ≤
∫ a2

a0

Zi(t)dt.(3.21)

Letting i → ∞ in (3.21), using (3.19) and (3.20), we obtain that∫ a2

a0

F (s, k1(t), . . . , kn(t))dt ≤ 0,

a contradiction to Lemma 2.1.
Step 4. We reach the conclusion. Let (Uθ,Zθ,Πθ) be a solution of (3.5)–(3.8)

and

P2 = {θ > 0 | U ′
θ(τ) = 0 for some τ ∈ R and Uθ(τ) ∈ (a1, a2]}.

Thus P2 is nonempty by Step 3. For each θ ∈ P2, recall that τ0 = τ0(θ) de-
notes the first zero of U ′

θ. Then we have U ′′
θ (τ0) ≤ 0. Moreover, by Lemma 3.4

and Step 1, we have Uθ(τ0) ∈ (a1, a2). Next we claim that U ′′
θ (τ0) < 0. If not,

then U ′′
θ (τ0) = 0. By (3.5)–(3.6), we have F (Uθ(τ0),Πθ(τ0)) = 0. Also recall

from Lemma 3.2 that Π′
θ,i(τ0) ≤ 0 for i = 1, . . . , n. Combining these two facts

with the fact that f(u) > 0 for u ∈ (a1, a2), we obtain that Π′
θ,i0

(τ0) < 0 for
some i0 ∈ {1, . . . , n}. From this, (3.6), and part (2) of Lemma 2.1 it follows that
U ′′′
θ (τ0) = −θ

∑n
i=1 Fvi(Uθ(τ0),Πθ(τ0))Π

′
θ,i(τ0) < 0, a contradiction to the definition

of τ0. Thus we have U ′′
θ (τ0) < 0, and this implies that P2 is open.

By Step 2 and the above discussion, P2 is nonempty, open, and bounded above.
Therefore θ∗ := supP2 exists and θ∗ ∈ R+ \ (P1 ∪ P2). Let (Uθ∗ ,Πθ∗,1, . . . ,Πθ∗,n) be
the corresponding solution of (3.5)–(3.8). Then U ′

θ∗ > 0 on R and Uθ∗(τ) → a2 as
τ → +∞. Moreover, by Lemma 3.2 we have Π′

θ∗,i < 0 on R for i = 1, . . . , n. Now

we claim that Πθ∗,i(τ) → bi2 as τ → +∞ for i = 1, . . . , n. Indeed, fix i ∈ {1, . . . , n};
using Lemma 3.2 and noting that Uθ∗ ∈ (a0, a2) on R, we have Πθ∗,i ∈ (bi2, b

i
0) on

R. Using this fact and noting that Π′
θ∗,i < 0 on R, it follows that there exists

l ∈ [bi2, b
i
0) such that Πθ∗,i(τ) → l as τ → +∞. Hence we can choose a sequence

s1 < s2 < · · · < sm < · · · with sm → +∞ as m → +∞ satisfying that Uθ∗(sm) → a2,
Πθ∗,i(sm) → l, and Π′

θ∗,i(sm) → 0 as m → +∞. From this and (3.7) it follows that

l = bi2. Hence the proof is completed.
Finally, combining Lemma 3.3 with Lemma 3.5, we obtain the following theorem.
Theorem 1. There exists c := c(a) < 0 such that a unique (up to translation)

traveling wave solution (U ,Π) of our buffered bistable equations (1.4)–(1.5) with wave
speed c, such that U̇ > 0 and Π̇i < 0, i = 1, . . . , n, on R, exists if and only if
a ∈ (0, 1/2).

3.5. Uniqueness of wave speed. In this subsection, we will concern ourselves
with the uniqueness of wave speed. First, throughout the remainder of this section,
(U ,Π) will denote such a unique traveling wave solution of (1.4)–(1.5) with speed c
and U(0) = 1/2, which is described in Theorem 1. Since the proof is based on the use
of supersolution (subsolution) of (2.1)–(2.2) and the comparison principle, we state
the definition of supersolution (subsolution) as follows.



248 JE-CHIANG TSAI AND JAMES SNEYD

Definition 3. A set of bounded functions (u,v) is called a subsolution of (2.1)–
(2.2) in R×R+, if u, vi ∈ C2,1(R×R+) and C1,1(R×R+), respectively, and (u,v)
satisfies that ut −Duxx ≤ F (u,v), vi,t ≥ Gi(u,v), and

u ≥ − min
j=1,...,n

{kj−/(2k
j
+)}, vi(z, t) ≥ bi2/2(3.22)

on R×R+ for i = 1, . . . , n. Supersolution is defined by reversing the inequalities with
(3.22) held.

The next lemma is a comparison theorem for the supersolution and subsolution,
whose proof is similar to Lemma 5.3 in the appendix.

Lemma 3.6 (comparison principle). Let (u1,v1) and (u2,v2) be the subsolution
and supersolution of (2.1)–(2.2) on R×R+, respectively, with u1(x, 0) ≤ u2(x, 0) and
v2(x, 0) ≤ v1(x, 0) for all x ∈ R. Then the following statement holds:

u1(x, t) ≤ u2(x, t) and v2(x, t) ≤ v1(x, t) for all (x, t) ∈ R × R+.

Next, from the above lemma (also see the proof of Lemma 5.3 in the appendix),
it is easily seen that the following lemma holds.

Lemma 3.7. There exist positive constants d1, μ0, and k0i, i = 1, . . . , n, which
are independent of (U ,Π), and a positive constant ν such that, for any d ∈ (0, d1] and
x0 ∈ R, the functions (w+,p+) and (w−,p−) defined by

w±(x, t) := U(x− ct + x0 ± νd(1 − e−μ0t)) ± de−μ0t,

p±i (x, t) := Πi(x− ct + x0 ± νd(1 − e−μ0t)) ∓ dk0ie
−μ0t, i = 1, . . . , n,(3.23)

are a supersolution and a subsolution of (2.1)–(2.2), respectively.

Now we are ready to prove the uniqueness of wave speed of a traveling wave front
of (2.1)–(2.2).

Lemma 3.8 (uniqueness). Given a ∈ (0, 1/2), for any traveling wave solution
(Ũ , Π̃) of (2.1)–(2.2) with wave speed c̃ such that Ũ ∈ [0, 1] and Π̃ ∈ [b2,b0] on R,
we have c̃ = c and (Ũ(·), Π̃(·)) = (U(· + ξ0),Π(· + ξ0)) for some ξ0 ∈ R.

Proof. We assume that there exists another traveling wave solution (Ũ , Π̃) of
(2.1)–(2.2) with wave speed c̃. Note that (Ũ , Π̃) is not necessarily monotone. The
proof is divided into two steps.

Step 1. We claim that c = c̃. We will follow X. Chen’s arguments in [1] to prove
this claim, where Chen studied the existence, uniqueness, and stability of a single
nonlocal equation of the form

ut(x, t) = A[u(·, t)](x), x ∈ R, t > 0.

Since (Ũ(ξ), Π̃(ξ)) and (U(ξ),Π(ξ)) satisfy the same boundary condition at ±∞, we
can choose a sufficiently large ξ1 such that the following hold:

U(· − ξ1) − d1 < Ũ(·) and Πi(· − ξ1) + d1k0i > Π̃i(·) on R for i = 1, . . . , n.(3.24)

By a translation if necessary, we may assume that ξ1 = 0. Next we choose a sufficiently
large ξ2 such that the inequalities

U(·) − d1 < Ũ(·) < U(· + ξ2) + d1 and Πi(· + ξ2) − d1k0i < Π̃i(·) < Πi(·) + d1k0i
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hold on R for i = 1, . . . , n. Using the above inequalities and applying Lemma 3.6 to
(Ũ(x− c̃t), Π̃(x− c̃t)) and (w±(x, t),p±(x, t)) in (3.23) (with x0 = 0 for (w−,p−) and
x0 = ξ2 for (w+,p+)), we obtain that

U(x− ct− νd1(1 − e−μ0t)) − d1e
−μ0t ≤ Ũ(x− c̃t)

≤ U(x− ct + ξ2 + νd1(1 − e−μ0t)) + d1e
−μ0t(3.25)

and

Πi(x− ct + ξ2 + νd1(1 − e−μ0t)) − d1k0ie
−μ0t ≤ Π̃i(x− c̃t)(3.26)

≤ Πi(x− ct− νd1(1 − e−μ0t))

+d1k0ie
−μ0t

for all (x, t) ∈ R × R+ and i = 1, . . . , n. Note that U(+∞) = 1 and that Ũ ∈ [0, 1]
is not identical to the constant 1. Letting x − c̃t be fixed and t → +∞ in the first
inequality of (3.25), we obtain c ≥ c̃. A similar argument for the second inequality
of (3.25) leads to the conclusion c ≤ c̃. Hence, to summarize, we have c = c̃. This
proves this claim.

Step 2. We claim that (U(·),Π(·)) ≡ (Ũ(· + ξ0), Π̃(· + ξ0)) for some ξ0 ∈ R.
Indeed, since we have c̃ = c by Step 1, then our claim follows from the final statement
of Lemma 3.1. This completes the proof.

Now we can summarize what we have done. Indeed, by Lemma 3.1, Theorem 1,
and Lemma 3.8, we obtain the following theorem.

Theorem 2. If a ∈ (0, 1/2), then there exists a unique c := c(a) < 0 such that
a unique (up to translation) traveling wave solution (U ,Π) of our buffered bistable
equations (1.4)–(1.5) with wave speed c exists. Moreover, (U ,Π) satisfies that U̇ > 0
and Π̇i < 0, i = 1, . . . , n, on R. Furthermore, a traveling wave solution (U ,Π) of
(1.4)–(1.5) with negative wave speed, such that U̇ > 0 and Π̇i < 0, i = 1, . . . , n, on R,
exists only if a ∈ (0, 1/2).

Comparing this result with the unbuffered equation (1.1), we may conclude that
stationary buffers cannot eliminate wave activity.

4. The proof of stability of the traveling wave solution.

4.1. Statement of stability of the traveling wave solution. Now we inves-
tigate the stability of the traveling wave solution of the problem

∂u

∂t
= D

∂2u

∂x2
+ f(u) +

n∑
i=1

[ki−(bi0 − vi) − ki+uvi],(4.1)

∂vi
∂t

= ki−(bi0 − vi) − ki+uvi, (x, t) ∈ R × R+, i = 1, . . . , n,(4.2)

with the initial data

u(x, 0) = φ(x) and vi(x, 0) = ψi(x), x ∈ R, for i = 1, . . . , n.

First, for each solution (u,v) of (4.1)–(4.2), we introduce the moving coordinate
z = x − ct and set ũ(z, t) = u(z + ct, t) and ṽi(z, t) = vi(z + ct, t), i = 1, . . . , n,
where c is a constant (wave speed). Let ṽ = (ṽ1, . . . , ṽn). Then ũ and ṽi satisfy the
following system:

L1[ũ,v] ≡ ũt −Dũzz − cũz = F (ũ, ṽ),(4.3)

L2i[ũ, ṽ] ≡ ṽi,t − cṽi,z = Gi(ũ, ṽ), i = 1, . . . , n,(4.4)
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with the initial data

ũ(z, 0) = φ(z) and ṽi(z, 0) = ψi(z), z ∈ R, for i = 1, . . . , n,(4.5)

where ṽi,t = ∂ṽi/∂t and ṽi,z = ∂ṽi/∂z. Hereafter for notational convenience we shall
suppress the tilde.

We will briefly discuss the existence of the global solution of (4.3)–(4.5) and its
associated properties. Indeed, we assume throughout the remainder of this paper that
φ(z) and ψi(z), i = 1, . . . , n, are sufficiently smooth and satisfy that a0 ≤ φ(z) ≤ a2

and bi2 ≤ ψi(z) ≤ bi0 for all z ∈ R and i = 1, . . . , n. Then a similar argument as
in Rauch and Smoller [17] shows that the problem (4.3)–(4.5) has a unique smooth
solution (u(z, t),v(z, t)) on R × [0, t0] for some t0 > 0. Furthermore, we can show
that (u(z, t),v(z, t)) is a global solution of (4.3)–(4.5). In fact, we have the following
lemma.

Lemma 4.1 (invariance region). Let (u,v) be the solution of (4.3)–(4.5). Then
(u,v) exists for all t > 0. Moreover, a0 ≤ u(z, t) ≤ a2 and bi2 ≤ vi(z, t) ≤ bi0 for all
(z, t) ∈ R × R+ and i = 1, . . . , n.

Proof. The proof follows from Theorem 14.11 on p. 203 and Corollary 14.9 on
p. 202 of Smoller [23]. Also see Redheffer and Walter [18]. The outer normal conditions
on the boundary of the set {(u,v) | a0 ≤ u ≤ a2, b

i
2 ≤ vi ≤ bi0, i = 1, . . . , n} follow

from the definitions of F and Gi, i = 1, . . . , n.
Recall that for each D > 0 and a ∈ (0, 1/2), there exists a unique c < 0 such that

there is a unique solution (U(z), Π(z)) of the steady state equation

DUzz + cUz + F (U ,Π) = 0,(4.6)

cΠi,z + Gi(U ,Π) = 0(4.7)

satisfying that

U(0) = (a0 + a2)/2, U(−∞) = a0, Πi(−∞) = bi0, U(+∞) = a2, Πi(+∞) = bi2

(4.8)

and that

U ′ > 0, Π′
i < 0 on R for i = 1, . . . , n.(4.9)

Thus (U(x− ct),Π(x− ct)) is the unique traveling wave solution of (4.1)–(4.2) with
wave speed c, which was shown to exist in section 3. Hereafter, throughout the
remainder of this paper, (U ,Π) will denote such a unique solution of (4.6)–(4.9).

Now we formulate the theorem about the stability of the traveling wave solution
of (4.1)–(4.2) which will be shown later.

Theorem 3. Let a ∈ (0, 1/2) and (u,v) be the solution of (4.3)–(4.5) satisfying
the following conditions:

(1) φ and ψi are sufficiently smooth, and φ′ ≥ 0, ψ′
i ≤ 0 on R for i = 1, . . . , n;

(2) supz∈R |φ(z)| + supz∈R |φ′(z)| + supz∈R |φ′′(z)| + supz∈R |φ′′′(z)| < +∞;
(3) a2 −φ2 > 0, ψ2i− bi2 > 0, φ0 −a0 > 0, and bi0 −ψ0i > 0 are sufficiently small

for i = 1, . . . , n, where φ2, ψ2i, φ0, and ψ0i are defined by (1.10);
(4) ut(z, 0) ≥ 0 and vi,t(z, 0) ≤ 0 for all z ∈ R and i = 1, . . . , n;

then there exists z0 ∈ R such that

lim
t→+∞

|u(z, t) − U(z − z0)| = 0, lim
t→+∞

|vi(z, t) − Πi(z − z0)| = 0, i = 1, . . . , n,

uniformly with respect to z ∈ R.
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4.2. Outline of the proof of Theorem 3. Since the proof of Theorem 3 is
lengthy, we outline our proof as follows.

The plan of the proof follows Fife [4]. First, we need the following compactness
lemma, whose proof can be found in the appendix.

Lemma 4.2. Let (u,v) be the solution of (4.3)–(4.5). Then, under the assumption
of Theorem 3, {u(·, t) | t ≥ t0 > 0} and {vi(·, t) | t ≥ t0 > 0}, i = 1, . . . , n, are
relatively compact, considered as subsets of C2(R) and C1(R), respectively, for each
t0 > 0.

Once we have Lemma 4.2, it follows that there exist a sequence of {tp} with
limp→+∞ tp = +∞ and a set of functions (û(z), v̂(z)) = (û(z), v̂1(z), . . . , v̂n(z)) ∈
C2(R) × C1(R) × · · · × C1(R) such that

(u(z, tp),v(z, tp)) → (û(z), v̂(z))

as p → +∞ uniformly in z, together with their associated partial derivatives. Then
what is left for us to show are the following two questions.

(1) (û, v̂) is a traveling wave front of (4.1)–(4.2) (this also implies that (û(·), v̂(·))
≡ (U(· − z0),Π(· − z0)) for some z0 ∈ R since (U ,Π) is unique up to trans-
lation), and

(2) the convergence of (u,v) to (û, v̂) is more than just along a sequence of t-
values.

To answer the first question, we will make use of a Lyapunov function, which is
an extension of the one in [10, 5] (see section 4.3). Regarding the second question, we
will use Lemma 5.6 (local stability), which says that once u, vi come close to U ,Πi, it
remains close; i.e., we have the following:

u(z, t) → U(z − z0) and vi(z, t) → Πi(z − z0) as t → +∞

uniformly in z, together with their associated partial derivatives for i = 1, . . . , n.
We shall prove the first question and Lemma 5.6 in section 4.3 and the appendix,
respectively.

4.3. Proof. Now we can reach the conclusion of Theorem 3. The proof will be
divided into five steps. Steps 1–4 contain the associated properties of the Lyapunov
function, and Step 5 will finish our treatment of the stability of the traveling wave
solution. We also need two technical lemmas, i.e., Lemmas 5.4 and 5.5, whose proofs
are deferred to the appendix.

Proof.
Step 1. Construction of auxiliary functions. First, we will truncate (u,v) for

large z and t. In fact, let η > 0 satisfy |κj |η − μ < 0, where κj , μ are defined in
Lemma 5.5 for j = 1, 2. Define the functions ū(z, t) and v̄i(z, t) by

ū(z, t) =

⎧⎨
⎩

a0 for z ≤ −ηt− 1,
u(z, t) for |z| ≤ ηt,
a2 for z ≥ ηt + 1

and

v̄i(z, t) =

⎧⎨
⎩

bi0 for z ≤ −ηt− 1,
vi(z, t) for |z| ≤ ηt,
bi2 for z ≥ ηt + 1
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for i = 1, . . . , n. From (5.13) and (5.14) defined in Lemma 5.5, it follows that ū
and v̄i may be smoothed so that ū(z, t) and v̄i(z, t) also satisfy (5.13) and (5.14) for
i = 1, . . . , n. Consider the function

M(t) = −
∫ t

0

∫ +∞

−∞
H(z, s)dzds,

where

H(z, t) =
2∑

j=1

eκjz

[
(Dūzz + cūz + F (ū, v̄))ūt +

n∑
i=1

(cv̄i,z + Gi(ū, v̄))v̄i,t

]
χj(z)

for all (z, t) ∈ R × R+, v̄ = (v̄1, . . . , v̄n), χ1 is a characteristic function on (−∞, 0],
and χ2 is a characteristic function on [0,+∞). Noting that

H ≡ 0 for (z, t) ∈ {|z| ≤ ηt}
⋃

{|z| ≥ ηt + 1},(4.10)

it follows that
∫ +∞
−∞ H(z, s)dz converges for all s ≥ 0. Therefore, M(t) is well defined

for all t ≥ 0. From now on, combining with Lemmas 5.4 and 5.5, we can follow a
similar calculation of [10, 5] to complete the proof.

Step 2. We claim that |M(t)| is bounded independently of t. Indeed, noting that
ū, v̄i, aj , and bij are uniformly bounded for i = 1, . . . , n, and j = 0, 2, and that ∇F
and ∇Gi, i = 1, . . . , n, are continuous, it follows that there exists a constant C > 0
such that

|F (ū, v̄)| = |F (ū, v̄) − F (aj ,bj)| ≤ C max
1≤l≤n

{|ū− aj |, |v̄l − blj |},

|Gi(ū, v̄)| = |Gi(ū, v̄) −Gi(aj ,bj)| ≤ C max
1≤l≤n

{|ū− aj |, |v̄l − blj |}(4.11)

on R× [0,+∞) for i = 1, . . . , n and j = 0, 2. Throughout the proof, C always denotes
a constant, which may be different from sentence to sentence, but they depend only
on D, ki+, ki−, bi0, κi, σi, μ, and η. From these inequalities, the definitions of ū and v̄,
(4.10), and (5.13)–(5.14), it follows that there exists a positive constant C such that
the following inequality holds:

|M(t)| ≤
[∫ t

0

∫ 0

−ηs

eκ1z(u2
t (z, s) +

n∑
i=1

v2
i,t(z, s))dzds

+

∫ t

0

∫ ηs

0

eκ2z(u2
t (z, s) +

n∑
i=1

v2
i,t(z, s))dzds

]

+

[
C

∫ t

0

∫ −ηs

−ηs−1

(e2σ1z + eκ1z−2μt + 2e((κ1/2)+σ1)z−μt)dzds

+ C

∫ t

0

∫ ηs+1

ηs

(e−2σ2z + eκ2z−2μt + 2e((κ2/2)−σ2)z−μt)dzds

]
:= I(t) + II(t).

Noting that |κj |η − 2μ = (|κj |η − μ) − μ < 0, κj/2 + σj > 0, and κj/2 − σj < 0,
j = 1, 2, then it follows that II(t) is bounded by some positive constant C. Recalling
that ut(·, 0) ≥ 0 and vi,t(·, 0) ≤ 0 on R, it follows from Lemma 5.4 that ut(z, t) ≥ 0
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and vi,t(z, t) ≤ 0 for all (z, t) ∈ R × R+. Using this fact and Fubini’s theorem, we
can estimate I(t) as follows:

I(t) ≤ 2C1

∫ t

0

∫ 0

−ηs

eκ1z

(
ut(z, s) −

n∑
i=1

vi,t(z, s)

)
dzds

+2C1

∫ t

0

∫ ηs

0

eκ2z

(
ut(z, s) −

n∑
i=1

vi,t(z, s)

)
dzds

= 2C1

[∫ 0

−ηt

eκ1z

(∫ t

−z/η

(ut(z, s) −
n∑

i=1

vi,t(z, s))ds

)
dz

]

+2C1

[∫ ηt

0

eκ2z

(∫ t

z/η

(ut(z, s) −
n∑

i=1

vi,t(z, s))ds

)
dz

]

= 2C1

[∫ 0

−ηt

eκ1z

(
u(z, t) −

n∑
i=1

vi(z, t) − u(z,−z/η) +

n∑
i=1

vi(z,−z/η)

)
dz

]

+2C1

[∫ ηt

0

eκ2z

(
u(z, t) −

n∑
i=1

vi(z, t) − u(z, z/η) +

n∑
i=1

vi(z, z/η)

)
dz

]
,

where C1 is defined in Lemma 5.5. Noting that κj < 0, κj/2 + σj > 0, κj/2− σj < 0,
and |κj |η−μ < 0 for j = 1, 2, and using the above inequality, (5.13)–(5.14), we obtain
that I(t) is also bounded by some positive constant C. Since I(t), II(t) are bounded
for all t ≥ 0, it follows that |M(t)| ≤ C for all t ≥ 0 and some constant C > 0. This
proves our claim.

Step 3. We claim that limt→+∞ | ˙M(t) + Q[ū, v̄](t)| = 0, where

Q[ū, v̄](t) =

2∑
j=1

∫ +∞

−∞
eκjz

[
(Dūzz + cūz + F (ū, v̄))2 +

n∑
i=1

(cv̄i,z + Gi(ū, v̄))2

]
χj(z)dz.

Indeed, differentiating M(t), we obtain

˙M(t) = −
2∑

j=1

∫ +∞

−∞
eκjz

[
(Dūzz + cūz + F (ū, v̄))ūt +

n∑
i=1

(cv̄i,z + Gi(ū, v̄))v̄i,t

]
χj(z)dz,

and so we have

˙M(t) + Q[ū, v̄](t) = −
∫ 0

−∞
eκ1z[(Dūzz + cūz + F (ū, v̄))(L1[ū, v̄] − F (ū, v̄))

+
n∑

i=1

(cv̄i,z + Gi(ū, v̄))(L2i[ū, v̄] −G(ū, v̄))]dz

−
∫ +∞

0

eκ2z[(Dūzz + cūz + F (ū, v̄))(L1[ū, v̄] − F (ū, v̄))

+

n∑
i=1

(cv̄i,z + Gi(ū, v̄))(L2i[ū, v̄] −G(ū, v̄))]dz.

Noting that L1[ū, v̄] − F (ū, v̄) ≡ L2i[ū, v̄] − G(ū, v̄) ≡ 0, i = 1, . . . , n, for (z, t) ∈
{|z| ≤ ηt}

⋃
{|z| ≥ ηt + 1}, and using (4.11) and (5.13)–(5.14), we obtain that there
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exists a positive constant C such that

| ˙M(t) + Q[ū, v̄](t)| ≤ C

∫ −ηt

−ηt−1

(e2σ1z + eκ1z−2μt + e(κ1/2)z+σ1z−μt)dz

+C

∫ ηt+1

ηt

(e−2σ2z + eκ2z−2μt + e(κ2/2)z−σ2z−μt)dz

≤ C

(
e−2σ1ηt

2σ1
− e−κ1(ηt+1)−2μt

κ1
+

e−(κ1/2+σ1)ηt−μt

((κ1/2) + σ1)

)

+C

(
e−2σ2ηt

2σ2
− eκ2ηt−2μt

κ2
+

e(κ2/2−σ2)ηt−μt

(−(κ2/2) + σ2)

)
.

Using this inequality and the fact that |κj |η−2μ < 0, κj/2+σj > 0, and κj/2−σj < 0
for j = 1, 2, it follows that the claim holds.

Step 4. We claim that there exists a sequence {tp}p∈N with limp→∞ tp = +∞
such that

lim
p→∞

Q[ū, v̄](tp) = 0.(4.12)

Indeed, noting that Q[ū, v̄](t) ≥ 0 for all t ≥ 0 and that |M(t)| is bounded, it follows

that we have limt→+∞ sup ˙M(t) = 0. Combining this with Step 3, we obtain (4.12).
Step 5. We reach our conclusion. Indeed, Lemma 4.2 implies that there exists a

subsequence of {tp}p∈N, say {t′p}p∈N, along which ū(·, t′p) and v̄i(·, t′p) converge to the
limit functions û(z) and v̂i(z) in C2(R) and C1(R), respectively, for some functions
û ∈ C2(R) and v̂i ∈ C1(R) and i = 1, . . . , n. Set v̂ = (v̂1, . . . , v̂n). Using this and
(4.12) it follows that for each finite interval I = [−l, l] with l > 0, we have⎡

⎣ 2∑
j=1

∫
I

eκjz((Dūzz + cūz + F (ū, v̄))2 +

n∑
i=1

(cv̄i,z + Gi(ū, v̄))2)χj(z)dz

⎤
⎦
t=t′p

→

⎡
⎣ 2∑
j=1

∫
I

eκjz((Dûzz + cûz + F (û, v̂))2 +

n∑
i=1

(cv̂i,z + Gi(û, v̂))2)χj(z)dz

⎤
⎦ = 0

as p → +∞. Thus

Dûzz + cûz + F (û, v̂) = 0, cv̂i,z + Gi(û, v̂) = 0 on R

for i = 1, . . . , n. Note that û(−∞) = a0, û(+∞) = a2, v̂i(−∞) = bi0, and v̂i(+∞) = bi2
for i = 1, . . . , n. Thus, from the uniqueness of the traveling wave front solution (U ,Π)
of (4.1)–(4.2), it follows that û = U(z− z0) and v̂i = Πi(z− z0), i = 1, . . . , n, for some
z0 ∈ R. Noting that (u,v) ≡ (ū, v̄) for |z| ≤ ηt, we obtain that

u(z, t′p) → U(z − z0) and vi(z, t
′
p) → Πi(z − z0), i = 1, . . . , n,

in C2(R) and C1(R), respectively, as p → ∞. Finally, an application of Lemma 5.6
with (φ(z), ψi(z)) = (u(z, t′p), vi(z, t

′
p)), i = 1, . . . , n, completes the proof.

5. Appendix.
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5.1. The zeros of (3.11). In the following lemma, we will count the positive
zero and negative zeros of pn(λ) defined by (3.11).

Lemma 5.1. There are only one positive zero and n + 1 negative zeros for the
polynomial pn(λ) which is defined by (3.11).

Proof. Recall that pn(λ) is a polynomial of degree n + 2 and is defined by

pn(λ) := pn(λ; k1
+, . . . , k

n
+, k

1
−, . . . , k

n
−, b

1
0, . . . , b

n
0 )

= det

⎡
⎢⎢⎢⎢⎢⎣

−λ 1 0 · · · 0
−θ(−a−

∑n
i=1 k

i
+b

i
0) θ − λ θk1

− · · · θkn−
−k1

+b
1
0 0 −k1

− − λ · · · 0
...

...
...

. . .
...

−kn+b
n
0 0 0 · · · −kn− − λ

⎤
⎥⎥⎥⎥⎥⎦ .

Then, by a careful calculation, we have

pn(λ) = (λ2 − θλ− aθ)

n∏
i=1

(−λ− ki−) +

n∑
i=1

⎡
⎣θ(ki+bi0)λ n∏

j 	=i

(−λ− kj−)

⎤
⎦ .(5.1)

First, we claim that if the off rates {ki−}ni=1 are different and n > 1, then the
conclusion of this lemma holds. Indeed, by (5.1), we have the following equalities:

pn(0) = (−1)n+1θa

n∏
i=1

ki−,

pn(−ki−) = −θbi0k
i
+k

i
−

n∏
j 	=i

(ki− − kj−), i = 1, . . . , n.

Set k0
− = 0. Then, by assumption, we may assume that 0 < k1

− < · · · < kn−, and so

we can conclude that pn(−ki−)pn(−ki+1
− ) < 0 for i = 0, . . . , n− 1. Hence we complete

the proof of this claim.
Now we turn to the general case; i.e., the off rates {ki−}ni=1 are not necessarily

different. We will use induction to prove it. When n = 1, i.e., there is only one buffer,
then we observe that p1(−∞) > 0, p1(−k1

−) = −θk1
+k

1
−b

1
0 < 0, p1(0) = θak1

− > 0, and
p1(+∞) < 0, and so we obtain that the conclusion holds for n = 1.

Assume that there are only one positive zero and m+ 1 negative zeros for pm(λ)
(some zeros of pm(λ) may have multiplicity bigger than 1) for any positive k1

+, . . . , k
m
+ ,

k1
−, . . . , k

m
− , and b1

0, . . . , b
m
0 .

Now we consider the case for n = m + 1. If the off rates {ki−}m+1
i=1 are different,

then from the above claim it follows that there are only one positive zero and m + 2
negative zeros for pm+1(λ). If the off rates {ki−}m+1

i=1 are not necessarily different, then

we may assume that km− = km+1
− , and so from (5.1) it follows that

pm+1(λ)

= pm+1(λ; k1
+, . . . , k

m+1
+ , k1

−, . . . , k
m+1
− , b1

0, . . . , b
m+1
0 )

= (−λ− km− )pm(λ; k1
+, . . . , k

m
+ , k1

−, . . . , k
m
− , b1

0, . . . , b
m−1
0 , bm0 + (km+1

+ bm+1
0 /km+ ))

= (−λ− km− )qm(λ).

By induction hypothesis, qm(λ) has only one positive zero and m + 1 negative zeros
(some of them may have multiplicity bigger than 1). Note that km− is positive. There-
fore, pm+1(λ) has only one positive zero and m+2 negative zeros. The completes the
induction, and so the proof is completed.
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5.2. Proof of Lemma 4.2. Plan of the proof of Lemma 4.2.
The proof of Lemma 4.2 is based on the estimation of the L∞ norm of u(·, t), vi(·, t)

and their associated partial derivatives. Roughly speaking, we use the invariance
principle to show that our solution (u,v) of (4.3)–(4.5) is bounded by the traveling
wave solution (U ,Π) (see Lemma 5.3). Then we use the assumptions of Theorem 3,
the Lp-regularity theorem, and Schauder estimates to estimate the partial derivatives
of u and vi for i = 1, . . . , n (see Lemma 5.5). Once Lemmas 5.3 and 5.5 are proved,
then we can use standard arguments to obtain Lemma 4.2 (see the proof of Lemma 4.6
in Klaasen and Troy [10] for details).

Now we turn to our proof. First, for each δ > 0, we define the following two sets:

R0
δ = {(u,v) | |u− a0| ≤ δ, |vi − bi0| ≤ δ for i = 1, . . . , n}(5.2)

and

R2
δ = {(u,v) | |u− a2| ≤ δ, |vi − bi2| ≤ δ for i = 1, . . . , n}.(5.3)

Then these two sets have the following property.
Lemma 5.2. If a ∈ (0, 1), then there exist δ1 > 0 and constants αi

11, αi
11,j,

αi
12,j, αi

21,j, αi
22,j, i = 0, 2, j = 1, . . . , n, such that for all δ ∈ (0, δ1), i = 0, 2, and

j = 1, . . . , n, we have
(1) Fu < αi

11 =
∑n

j=1 α
i
11,j < 0, αi

12,j < Fvj < 0, αi
21,j < Gj,u < 0, and

Gj,vj
< αi

22,j < 0 on Ri
δ, where αi

11,j < 0;

(2) αi
11,jα

i
22,j − αi

12,jα
i
21,j > 0;

(3) if both (u,v) and (u−q1,v+q2) belong to Ri
δ for some i ∈ {0, 2}, and q1 > 0,

q2j > 0, j = 1, . . . , n, then

F (u,v) − F (u− q1,v + q2) ≤ αi
11q1 −

n∑
j=1

αi
12,jq2j ,

Gj(u,v) −Gj(u− q1,v + q2) ≥ αi
21,jq1 − αi

22,jq2j

for j = 1, . . . , n, where q2 = (q21, . . . , q2n).
Proof. For simplicity, we set Ki = ki−/k

i
+, i = 1, . . . , n.

(1) By a simple calculation, the quantities

Fu(a0,b0), Fvj (a0,b0), Fu(a2,b2), Fvj (a2,b2),

Gj,u(a0,b0), Gj,vj (a0,b0), Gj,u(a2,b2), Gj,vj (a2,b2)

are negative if a ∈ (0, 1). From this it follows that there exist αi
11 < 0,

αi
11,j < 0, αi

12,j < 0, αi
21,j < 0, and αi

22,j < 0, i = 0, 2, j = 1, . . . , n, such that
part (1) of the conclusion is true.

(2) Moreover, noting that

Fu(a0,b0) = −
n∑

j=1

(a/n + kj+b
j
0),

Fu(a2,b2) = −
n∑

j=1

[(1 − a)/n + kj−b
j
0/(Kj + 1)],

the identities

(−a/n− kj+b
j
0)Gj,vj (a0,b0) − Fvj (a0,b0)Gj,u(a0,b0) = akj−/n > 0,
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and

[−(1 − a)/n− kj−b
j
0/(Kj + 1)]Gj,vj (a2,b2) − Fvj (a2,b2)Gj,u(a2,b2)

= (1 − a)(kj+ + kj−)/n > 0

if a ∈ (0, 1), it follows that we can choose αi
11 < 0, αi

11,j < 0, αi
12,j < 0,

αi
21,j < 0, and αi

22,j < 0 such that part (1) of the conclusion and

αi
11 =

n∑
j=1

αi
11,j , αi

11,jα
i
22,j − αi

12,jα
i
21,j > 0

for i = 0, 2, and j = 1, . . . , n hold.
(3) The proof follows from the mean value theorem and part (1).
Next we estimate the bound of the L∞ norm of the solution (u(·, t),v(·, t)) of

(4.3)–(4.5). We will adapt the method of [10] to prove it.
Lemma 5.3. Let (u,v) be the solution of (4.3)–(4.5). If a2−φ2 > 0, ψ2i−bi2 > 0,

φ0 − a0 > 0, and bi0 − ψ0i > 0 are sufficiently small, then there exist constants z1,

z2 ∈ R, k̂1 > 0, k2i > 0, i = 1, . . . , n, and μ > 0 such that

U(z − z1) − k̂1e
−μt ≤ u(z, t) ≤ U(z − z2) + k̂1e

−μt,(5.4)

and

Πi(z − z2) − k2ie
−μt ≤ vi(z, t) ≤ Πi(z − z1) + k2ie

−μt(5.5)

for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n.
Proof. We prove the left-hand side of (5.4) and the right-hand side of (5.5), since

the remaining inequalities follow in a similar way.
The idea is to use the invariance principle to choose suitable functions ε(t), q1(t),

and q2(t) such that U(z − ε(t))− q1(t) ≤ u(z, t) and Π(z − ε(t)) + q2(t) ≥ v(z, t) for
all (z, t) ∈ R × R+ and then use the monotone properties of U and Π to obtain our
conclusion. The proof will be divided into three steps.

Step 1. Construction of ũ and ṽ. Recall that the functions u(z, t) and v(z, t)
satisfy

L1[u,v] ≡ ut −Duzz − cuz = F (u,v),
L2i[u,v] ≡ vi,t − cvi,z = Gi(u,v), i = 1, . . . , n,

and

u(z, 0) = φ(z), vi(z, 0) = ψi(z)

for all z ∈ R and i = 1, . . . , n. Let (u,v) = (u, v1, . . . , vn) be defined by

u(z, t) ≡ U(z − ε(t)) − q1(t)

and

vi(z, t) ≡ Πi(z − ε(t)) + q2i(t), i = 1, . . . , n, on R × [0,+∞),

where ε(t), q1(t), and q2i(t) are positive functions with the properties that

u(z, t) ≥ − min
j=1,...,n

{kj−/(2k
j
+)}, vi(z, t) ≥ bi2/2(5.6)
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for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n. We remark that (u,v) will be a sub-
solution of (4.3)–(4.4). Now we will find the differential equations for which (u,v)
satisfy. Setting τ = z − ε(t) and using the fact that DU ′′ + cU ′ + F (U ,Π) = 0 and
cΠ′

i + Gi(U ,Π) = 0, i = 1, . . . , n, we find that for each i = 1, . . . , n,

L1[u,v] = −ε′(t)U ′(τ) − q′1(t) −DU ′′(τ) − cU ′(τ)
= −ε′(t)U ′(τ) − q′1(t) + F (U(τ),Π(τ))

and

L2i[u,v] = −ε′(t)Π′
i(τ) + q′2i(t) − cΠ′

i(τ)
= −ε′(t)Π′

i(τ) + q′2i(t) + Gi(U(τ),Π(τ))

for all τ ∈ R.
Set (ũ, ṽ) = (u−u,v−v). Then the variables (ũ, ṽ) satisfy the following system:

L1[ũ, ṽ] = F (u,v) + ε′(t)U ′(τ) + q′1(t) − F (U(τ),Π(τ))

= [F (u,v) − F (u,v)] + [ε′(t)U ′(τ) + q′1(t) + F (u,v) − F (U(τ),Π(τ))]

≡

⎡
⎣f1(z, t)ũ +

n∑
j=1

f1j(z, t)ṽj

⎤
⎦ + N1(z, t),(5.7)

L2i[ũ, ṽ] = Gi(u,v) + ε′(t)Π′
i(τ) − q′2i(t) −Gi(U(τ),Π(τ))

= [Gi(u,v) −Gi(u,v)] + [ε′(t)Π′
i(τ) − q′2i(t) + Gi(u,v) −Gi(U(τ),Π(τ))]

≡ [g2i(z, t)ũ + g̃2i(z, t)ṽi] + N2i(z, t),(5.8)

together with the initial data

ũ(z, 0) = u(z, 0) − u(z, 0),
ṽi(z, 0) = vi(z, 0) − vi(z, 0),

where

f1(z, t) = Fu(θ1u + (1 − θ1)u, θ1v + (1 − θ1)v)(z, t),
f1j(z, t) = Fvj (θ1u + (1 − θ1)u, θ1v + (1 − θ1)v)(z, t),
g2i(z, t) = Gi,u(θ2iu + (1 − θ2i)u, θ2iv + (1 − θ2i)v)(z, t),
g̃2i(z, t) = Gi,vi

(θ2iu + (1 − θ2i)u, θ2iv + (1 − θ2i)v)(z, t),

for some θ1 = θ1(u,v, u,v) ∈ (0, 1), θ2i = θ2i(u,v, u,v) ∈ (0, 1), and i, j = 1, . . . , n.
Step 2. We claim that for suitably chosen ε(t), q1(t), and q2i(t), i = 1, . . . , n, the

region {ũ ≥ 0, ṽ2i ≤ 0, i = 1, . . . , n} is invariant under the flow (5.7)–(5.8). Indeed,
from (5.6), Lemma 4.1, and the definitions of F and Gi, it follows that f1i(z, t) < 0
and g2i(z, t) < 0 for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n. Therefore, if we can
choose ε(t), q1(t), and q2i(t) satisfying that (5.6) holds and that N1(z, t) ≥ 0 and
N2i(z, t) ≤ 0 for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n, then, by Theorem 14.11
on p. 203 of Smoller [23] we have ũ(z, t) ≥ 0 and ṽ(z, t) ≤ 0 = (0, . . . , 0) for all
(z, t) ∈ R × [0,+∞) if ũ(·, 0) ≥ 0 and ṽ(·, 0) ≤ 0 on R.

Next we try to find the desired functions ε(t), q1(t), and q2i(t), i = 1, . . . , n.
Indeed, let δ ∈ (0, δ1) with δ1 being defined in Lemma 5.2. Also recall the definitions
of Ri

δ, i = 0, 2, given by (5.2)–(5.3) and note that U ′ > 0 and Π′
j < 0 on R for

j = 1, . . . , n. Set q2(t) = (q21(t), . . . , q2n(t)) and assume ε′ ≥ 0. If for some i ∈ {0, 2}
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both (U(τ),Π(τ)) and (U(τ) − q1(t),Π(τ) + q2(t)) belong to Ri
δ, then part (3) of

Lemma 5.2 implies

N1(z, t) ≥ q′1 − αi
11q1 +

n∑
l=1

αi
12,lq2l,

N2j(z, t) ≤ −q′2j − αi
21,jq1 + αi

22,jq2j(5.9)

for j = 1, . . . , n. On the other hand, from Lemma 5.2 it follows that there exist
positive constants μ0, k0j , j = 1, . . . , n, such that for all μ ∈ (0, μ0), i = 0, 2, and
j = 1, . . . , n, we have

μ

n
+ αi

11,j < 0, μ + αi
22,j < 0,

(μ
n

+ αi
11,j

)
(μ + αi

22,j) > αi
12,jα

i
21,j ,

and

αi
21,j

μ + αi
22,j

< k0j <
(μ/n) + αi

11,j

αi
12,j

.

This implies that

−μ/n− αi
11,j + k0jα

i
12,j > 0,

μk0j − αi
21,j + k0jα

i
22,j < 0

for all μ ∈ (0, μ0), i = 0, 2, and j = 1, . . . , n. Summing the first inequality from j = 1
to n, we obtain that

−μ− αi
11 +

n∑
j=1

k0jα
i
12,j > 0.

Hence for all μ ∈ (0, μ0) and d > 0, the functions q1 and q2j defined by

q1(t) = de−μt, q2j(t) = dk0je
−μt, j = 1, . . . , n,(5.10)

satisfy

q′1 − αi
11q1 +

n∑
l=1

αi
12,lq2l > 0, −q′2j − αi

21,jq1 + αi
22,jq2j < 0(5.11)

for all t ≥ 0 and j = 1, . . . , n. Therefore, by the above discussion, (5.9), and (5.11),
we can choose a sufficiently small d0 > 0 and a sufficiently large M > 0 such that
if d ∈ (0, d0) and |τ | > M , then both (U(τ),Π(τ)) and (U(τ) − q1(t),Π(τ) + q2(t))
belong to one of R0

δ and R2
δ , and N1(z, t) > 0, N2i(z, t) < 0 for i = 1, . . . , n.

We focus our attention on the intermediate case: |τ | ≤ M . Since U ′ > 0 and
Π′

i < 0 on R, there exist positive constants β, γ̄1, and γ̄2i such that

U ′(τ) > β, Π′
i(τ) < −β,

F (U(τ) − q1(t),Π(τ) + q2(t)) − F (U(τ),Π(τ)) ≥ −γ̄1q1(t) −
n∑

l=1

γ̄2lq2l(t),

Gi(U(τ) − q1(t),Π(τ) + q2(t)) −Gi(U(τ),Π(τ)) ≤ γ̄1q1(t) + γ̄2iq2i(t)
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for all τ ∈ [−M,M ], t ≥ 0, and i = 1, . . . , n. Thus, for each i = 1, . . . , n, we have

N1(z, t) ≥ ε′β + q′1 − γ̄1q1 −
n∑

l=1

γ̄2lq2l,

N2i(z, t) ≤ −ε′β − q′2i + γ̄1q1 +

n∑
l=1

γ̄2lq2l.

Setting γ̂1 = γ̄1 + μ and γ̂2i = γ̄2i + μ, i = 1, . . . , n, then from (5.10) it follows that
for each i = 1, . . . , n we have

N1(z, t) ≥ ε′β − γ̂1q1 −
n∑

l=1

γ̂2lq2l,

N2i(z, t) ≤ −ε′β + γ̂1q1 +

n∑
l=1

γ̂2lq2l.

Let ε′ = (γ̂1q1+
∑n

l=1 γ̂2lq2l)/β and ε(0) = z∗, where z∗ is a constant to be determined
later. Hence

ε(t) =

[
z∗ +

d

μβ

(
γ̂1 +

n∑
l=1

γ̂2lk0l

)]
−
[

d

μβ

(
γ̂1 +

n∑
l=1

γ̂2lk0l

)]
e−μt.

With this choice of ε(t) it follows from the above discussion that N1(z, t) ≥ 0 and
N2i(z, t) ≤ 0 for all (z, t) ∈ R × R+ and i = 1, . . . , n. Now we will choose suitable
d such that ũ(·, 0) ≥ 0 and ṽ(·, 0) ≤ 0. Once these are done, then by the discussion
right before finding ε(t), q1(t), and q2(t), we can conclude that

ũ(z, t) ≥ 0 and ṽi(z, t) ≤ 0(5.12)

for all (z, t) ∈ R × R+ and i = 1, . . . , n. Indeed, let d1 ∈ (0, d0), a2 − φ2 > 0, and
ψ2i − bi2 > 0 be sufficiently small satisfying that

a2 − d < φ2, bi2 + dk0i > ψ2i

and that u(z, t) and vi(z, t) satisfy (5.6) for all (z, t) ∈ R × R+, for all d ∈ (0, d1),
and i = 1, . . . , n. Hence, if z∗ > 0 is chosen sufficiently large, it follows that for
i = 1, . . . , n, we have

U(z − z∗) − d < φ(z), Πi(z − z∗) + dk0i > ψi(z) for all z ∈ R,

and so ũ(·, 0) ≥ 0 and ṽ(·, 0) ≤ 0. This completes the proof of our claim.
Step 3. Finally, we will reach our conclusion. In fact, using (5.12) and noting

that U is monotone increasing and Πi, i = 1, . . . , n, is monotone decreasing, we obtain
that

U(z − z1) − de−μt ≤ u(z, t) ≤ u(z, t) and vi(z, t) ≤ vi(z, t) ≤ Πi(z − z1) + dk0ie
−μt

for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n. The proof is completed.
Before estimating the partial derivatives of the solution (u,v) of (4.3)–(4.5), we

need the following lemma.
Lemma 5.4. Let (u,v) be the solution of (4.3)–(4.5) satisfying that ut(z, 0) ≥ 0,

vi,t(z, 0) ≤ 0, uz(z, 0) ≥ 0, and vi,z(z, 0) ≤ 0 for all z ∈ R and i = 1, . . . , n. Then
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ut(z, t) ≥ 0, vi,t(z, t) ≤ 0, uz(z, t) ≥ 0, and vi,z(z, t) ≤ 0 for all (z, t) ∈ R × [0,+∞)
and i = 1, . . . , n.

Proof. We prove only that ut ≥ 0 and vi,t ≤ 0, i = 1, . . . , n, on R × [0,+∞),
since the remaining inequalities follow in a similar way. Define p(z, t) = ut(z, t) and
hi(z, t) = −vi,t(z, t), i = 1, . . . , n, on R× [0,+∞). Then p and hi satisfy the following
system:

L1[p, h1, . . . , hn] = pt −Dpzz − cpz

= Fu(u,v)(z, t)p−
n∑

j=1

Fvj (u,v)(z, t)hj

≡ N1(z, t, p, h1, . . . , hn),
L2i[p, h1, . . . , hn] = hi,t − chi,z

= −Gi,u(u,v)(z, t)p + Gi,vi(u,v)(z, t)hi

≡ N2(z, t, p, h1, . . . , hn),

together with the initial data

p(z, 0) = ut(z, 0) ≥ 0 and hi(z, 0) = −vt(z, 0) ≥ 0,

where hi,t = ∂hi/∂t and hi,z = ∂hi/∂z for i = 1, . . . , n. Recall that Fvi
(u,v) =

−(ki+u+ ki−) < 0 and Gi,u(u,v) = −ki+vi < 0 for all (u,v) ∈ [a0, a2]× [b1
2, b

1
0]× · · · ×

[bn2 , b
n
0 ] and that (u(z, t),v(z, t)) ∈ [a0, a2] × [b1

2, b
1
0] × · · · × [bn2 , b

n
0 ] for all (z, t) ∈ R×

[0,+∞) and i = 1, . . . , n. Thus Fvi
(u(z, t),v(z, t)) < 0 and Gi,u(u(z, t),v(z, t)) < 0

for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n. Combining this with the fact that
p(z, 0) ≥ 0 and hi(z, 0) ≥ 0 for all z ∈ R, it follows from Theorem 14.11 on p. 203
of Smoller [23] that p(z, t) ≥ 0 and hi(z, t) ≥ 0 for all (z, t) ∈ R × [0,+∞) and
i = 1, . . . , n. This completes the proof.

Next we will estimate the partial derivatives of the solution (u,v) of (4.3)–(4.5).
Lemma 5.5. Let (u,v) be the solution of (4.3)–(4.5). Then, under the hypothesis

of Theorem 3, there exist constants κj < 0, σj > 0, and C1 > 0 satisfying that
κj/2 + σj > 0 for j = 1, 2, that

|u− a0|, |ut|, |uz|, |uzz|, |bi0 − vi|, |vi,t|, |vi,z| < C1(e
(−(κ1/2)+σ1)z + e−μt)(5.13)

for z ≤ 0, t ≥ 0, and i = 1, . . . , n, and that

|a2 − u|, |ut|, |uz|, |uzz|, |vi − bi2|, |vi,t|, |vi,z| < C1(e
−(κ2/2+σ2)z + e−μt)(5.14)

for z > 0, t ≥ 0, and i = 1, . . . , n, where μ is defined in Lemma 5.3.
Proof. We consider only the case z ≥ 0 since the case z < 0 follows by analogous

arguments.
Step 1. We claim that |a2−u| and |vi−bi2|, i = 1, . . . , n, satisfy (5.14). Linearizing

(3.1)–(3.2) around the constant solution π2, we obtain the equation dX/dξ = A0X,
where X = (U − a2,Z,V1 − b1

2, . . . ,Vn − bn2 )t,

A0 =

⎡
⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0
−Fu/D −c/D −Fv1

/D · · · −Fvn
/D

−G1,u/c 0 −G1,v1/c · · · −G1,vn/c
...

...
...

. . .
...

−Gn,u/c 0 −Gn,v1/c · · · −Gn,vn/c

⎤
⎥⎥⎥⎥⎥⎦ with Gi,vj = ∂Gi/∂vj ,

(5.15)
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and all the values are evaluated at (U,Z,V1, . . . ,Vn) = (a2, 0, b
1
2, . . . , b

n
2 ). And so the

associated characteristic polynomial with A0 is

pn(λ) = det

⎡
⎢⎢⎢⎢⎢⎣

−λ 1 0 · · · 0
−Fu/D −c/D − λ −Fv1/D · · · −Fvn/D
−G1,u/c 0 −G1,v1/c− λ · · · −G1,vn/c

...
...

...
. . .

...
−Gn,u/c 0 −Gn,v1/c · · · −Gn,vn/c− λ

⎤
⎥⎥⎥⎥⎥⎦ .(5.16)

Note that ∂Gi/∂vj = 0 if i �= j and Gi,vi
(a2,b2) = −(ki+ + ki−) < 0 for i = 1, . . . , n.

Then, by a careful calculation, we have the following equalities:

pn(0) = − (1 − a)

cnD

n∏
i=1

(ki+ + ki−),

pn(−Gi,vi
(a2,b2)/c) = pn((ki+ + ki−)/c)

=
bi0k

i
+k

i
−

cnD

n∏
j 	=i

[(kj+ + kj−) − (ki+ + ki−)], i = 1, . . . , n.

Set k0
+ = k0

− = 0. Therefore, if we assume that (k1
+ + k1

−) < · · · < (kn+ + kn−), then we

have pn((ki+ + ki−)/c)pn((ki+1
+ + ki+1

− )/c) < 0 for i = 0, . . . , n− 1. Recall that c < 0.
Therefore, we may assume that the eigenvalues λ1, . . . , λn+2 of A0 satisfy

λn+2 < (kn+ + kn−)/c < λn+1 < · · · < λ3 < (k1
+ + k1

−)/c < λ2 < 0 < λ1.(5.17)

On the other hand, if {ki+ + ki−}ni=1 do not satisfy this assumption, then we can use a
similar argument as in Lemma 5.1 to obtain that the eigenvalues λ1, . . . , λn+2 of A0

still satisfy (5.17) (“ < ” may be replaced with “ =, ” but λ2 < 0 < λ1 must hold).

Now we rewrite pn(λ) in the factored form pn(λ) = (λ2 + kλ + l)
∏n+2

i=3 (λi − λ);
then it follows that λ1 = −k/2+ σ̃ and λ2 = −k/2− σ̃, where σ̃ = (k2 − 4l)1/2/2 > 0.
Since c < 0 and λi+2 ≤ (ki+ + ki−)/c < 0 for i = 1, . . . , n, we have

λ1 + λ2 = −c/D +

n∑
i=1

[(ki+ + ki−)/c− λi+2] > 0,

and so k < 0. Since λ1 > 0 and λi < 0 for i = 2, . . . , n+2, we have (U ,Π) → (a2,b2)
exponentially fast as z → +∞. Hence there exist constants C̃1 > 0, κ2 < 0, and
0 < σ2 < σ̃ such that κ2/2 + σ2 > 0 and

max
i=1,...,n

{|a2 − U|, |Πi − bi2|} < C̃1e
−(κ2/2+σ2)z

for all z ≥ 0. Using this inequality and Lemma 5.3, then the inequalities for u(z, t)
and vi(z, t), i = 1, . . . , n, follow.

Step 2. We claim that there exists mi < 0 such that mi(vi − bi2) ≤ vi,z ≤ 0 on
R × R+ for i = 1, . . . , n. Define

mi = inf
(u,v)∈[a0,a2]×[b1

2,b
1
0]×···×[bn2 ,bn0 ]

{
Gi,vi(u,v)

−c

}
.

Since Gi,vi(u,v) = −(ki+u + ki−), we have mi < 0 for i = 1, . . . , n. Also recall that

Gi(u,b2) = ki−b
i
0 − (ki+u + ki−)[ki−b

i
0/(k

i
+ + ki−)] = ki−b

i
0(1 − u)/(Ki + 1) ≥ 0
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for all u ∈ [a0, a2] and i = 1, . . . , n, where Ki = ki−/k
i
+. Noting that vi,t(·, 0) ≤ 0 on R,

it follows from Lemma 5.4 that vi,t(z, t) ≤ 0 for all (z, t) ∈ R×R+. Therefore, using
(4.4), the definition of Gi, and the mean-value theorem, and noting that vi ∈ [bi2, b

i
0]

on R × R+, we obtain

0 ≥ vi,t = cvi,z + Gi(u,v)
= cvi,z + Gi(u, b

1
2, . . . , b

i−1
2 , vi, b

i+1
2 , . . . , bn2 )

≥ cvi,z + Gi(u, b
1
2, . . . , b

i−1
2 , vi, b

i+1
2 , . . . , bn2 ) −Gi(u, b

1
2, . . . , b

n
2 )

≥ cvi,z − cmi(vi − bi2)

on R × R+ for i = 1, . . . , n. Combining this with Lemma 5.4, we obtain

mi(vi − bi2) ≤ vi,z ≤ 0(5.18)

on R × R+ for i = 1, . . . , n, since vi,z(·, 0) ≤ 0 on R.
Step 3. Estimates for the partial derivatives of vi. Indeed, (5.18) and the estimate

obtained in Step 1 for |vi−bi2| lead to the inequality for |vi,z| for i = 1, . . . , n. Rewrite
(4.4) as the following:

vi,t = cvi,z + ki+(a2 − u)(vi − bi2) + ki+b
i
2(a2 − u) − (ki+ + ki−)(vi − bi2).

Combining this with the estimates for |a2 − u|, |vi − bi2|, and |vi,z|, we obtain the
estimate for |vi,t| for i = 1, . . . , n.

Step 4. Estimates for the partial derivatives of u. First, we set up some notation.
For sufficiently smooth functions g(z) and h(z, t), and Ω ⊂ R × [0,+∞), we define
|g|0 ≡ supz∈R |g(z)|, [g]δ ≡ supx	=y∈R |g(x)−g(y)|/|x−y|δ, and |g|2+δ ≡ |g|0 + |gz|0 +
|gzz|0+[gzz]δ; |h|0;Ω ≡ supΩ |h(z, t)|, [h]δ,δ/2;Ω ≡ sup(x,t) 	=(y,s)∈Ω |h(x, t)−h(y, s)|/(|x−
y|δ + |t− s|δ/2), |h|δ,δ/2;Ω = |h|0;Ω + [h]δ,δ/2;Ω, and |h|2+δ,1+δ/2;Ω ≡ |h|0;Ω + |hz|0;Ω +
|hzz|δ,δ/2;Ω + |ht|δ,δ/2;Ω. Given the set Q = Qz0,t0 = [z0, z0 + 1] × [t0, t0 + 3/2] with
z0 ∈ R and t0 ≥ 0, set Q′ = Q′

z0,t0 = [z0 − 1, z0 + 2] × [t0 − 1/2, t0 + 2] with z0 ∈ R
and t0 ≥ 1 and Q′′ = Q′′

z0
= [z0 − 1, z0 + 2] × [0, 2] with z0 ∈ R. Rewrite (4.3) as the

following:

(u− a2)t = D(u− a2)zz + c(u− a2)z − u(u− a)(u− a2)

+

n∑
j=1

[kj+(a2 − u)(vj − bj2) + kj+b
j
2(a2 − u) − (kj+ + kj−)(vj − bj2)]

≡ D(u− a2)zz + c(u− a2)z + f̃(z, t).(5.19)

Note that f̃(z, t), uz(z, 0) are uniformly bounded on R × [0,+∞), R, respectively.
Then applying Theorem 6.28 and 6.33 of Lieberman [12] to (5.19) on the set Q, we
obtain that there exist positive constants α ∈ (0, 1) and c1, determined by D, c and
independent of (z0, t0), satisfying that

|u− a2|α;Q ≤ c1(|u− a2|0;Q′ + |v − b2|0;Q′) if t0 ≥ 1(5.20)

and

|u− a2|α;Q ≤ c1(|u− a2|0;Q′′ + |v − b2|0;Q′′ + |uz(·, 0)|0) if t0 = 0.(5.21)

Finally, (5.20), (5.21), and Schauder estimates (see Theorem 5 on p. 64 and Theorem 4
on p. 121 of Friedman [6]) imply the remaining inequalities for the partial derivatives
of u(z, t) for all (z, t) ∈ R × [0,+∞). Hence the proof is completed.
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5.3. Proof of Lemma 5.6. This lemma is a simple extension of Lemma 4.2 of
[5] and is the so-called local stability of traveling wave fronts (in the C0 norm).

Lemma 5.6. Let (u,v) be the solution of (4.3)–(4.5). Then there exists a function
ω(η), defined for small positive η, such that the following properties hold:

(1) limη→0+ ω(η) = 0;
(2) if there exists z0 ∈ R such that |U(z − z0) − φ(z)| < η and |Πi(z − z0) −

ψi(z)| < η for all z ∈ R and i = 1, . . . , n, then we have

|u(z, t) − U(z − z0)| < ω(η) and | vi(z, t) − Πi(z − z0)| < ω(η)

for all (z, t) ∈ R × [0,+∞) and i = 1, . . . , n.
Proof. Since the proof is standard, we will briefly describe it. Without loss of

generality, we may assume that z0 = 0. Recall the definitions of u(z, t) and v(z, t)
from Lemma 5.3, i.e.,

u(z, t) = U(z − ε(t)) − de−μt,
vi(z, t) = Πi(z − ε(t)) + dk0ie

−μt, i = 1, . . . , n,

where we set z∗ = 0 and ε(t) = dν(1−e−μt) for some constant ν > 0. Also recall from
the proof of Lemma 5.3 that there exist d1 > 0, μ0 > 0 such that if u(z, 0) ≥ u(z, 0)
and vi(z, 0) ≤ vi(z, 0), i = 1, . . . , n, for all z ∈ R, then for all d ∈ (0, d1) and μ ∈
(0, μ0) we obtain that (u,v) satisfies (5.6), and u(z, t) ≥ u(z, t) and vi(z, t) ≤ vi(z, t)
for all (z, t) ∈ R× [0,+∞) and i = 1, . . . , n. The key points are the above comparison
argument and ε(t) = O(d). Now we define w1(η) ≡ max1≤i≤n{η/k0i, ηk0i} with
η ∈ (0,min1≤j≤n{d1, d1k0j}). Then using the mean value theorem (or following a
similar argument as in [10, 5]), we can reach our conclusion.
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dence, RI, 1996.
[12] G. M. Lieberman, Second Order Parabolic Differential Equations, World Scientific, Singapore,

1996.



BUFFERED WAVES 265

[13] M. Naraghi and E. Neher, Linearized buffered Ca2+ diffusion in microdomains and its im-
plications for calculation of [Ca2+] at the mouth of a calcium channel, J. Neurosci., 17
(1997), pp. 6961–73.

[14] M. Naraghi, T. H. Muller, and E. Neher, Two-dimensional determination of the cellular
Ca2+ binding in bovine chromaffin cells, Biophys. J., 75 (1998), pp. 1635–1647.

[15] E. Neher, Usefulness and limitations of linear approximations to the understanding of Ca2+

signals, Cell Calcium, 24 (1998), pp. 345–57.
[16] M. C. Nowycky and M. J. Pinter, Time courses of calcium and calcium-bound buffers

following calcium influx in a model cell, Biophys. J., 64 (1993), pp. 77–91.
[17] J. Rauch and J. Smoller, Qualitative theory of the FitzHugh-Nagumo equations, Advances

in Math., 27 (1978), pp. 12–44.
[18] R. Redheffer and W. Walter, Invariant sets for systems of partial differential equations I:

Parabolic equations, Arch. Rational Mech. Anal., 67 (1978), pp. 41–52.
[19] T. A. Rooney and A. P. Thomas, Intracellular calcium waves generated by Ins(1, 4, 5)P3

dependent mechanisms, Cell Calcium, 14 (1993), pp. 674–690.
[20] F. Sala and A. Hernández-Cruz, Calcium diffusion modeling in a spherical neuron: Rele-

vance of buffering properties, Biophys. J., 57 (1990), pp. 313–324.
[21] G. D. Smith, Analytical steady-state solution to the rapid buffering approximation near an

open Ca2+ channel, Biophys. J., 71 (1996), pp. 3064–3072.
[22] G. D. Smith, L. Dai, R. M. Miura, and A. Sherman, Asymptotic analysis of buffered calcium

diffusion near a point source, SIAM J. Appl. Math., 61 (2001), pp. 1816–1838.
[23] J. Smoller, Shock Waves and Reaction-Diffusion Equations, Springer-Verlag, New York, 1994.
[24] J. Sneyd, J. Keizer, and M. J. Sanderson, Mechanisms of calcium oscillations and waves:

A quantitative analysis, FASEB J., 9 (1995), pp. 1463–1472.
[25] J. Sneyd, P. D. Dale, and A. Duffy, Traveling waves in buffered systems: Applications to

calcium waves, SIAM J. Appl. Math., 58 (1998), pp. 1178–1192.
[26] J. J. Tyson and J. P. Keener, Singular perturbation theory of traveling waves in excitable

media, Phys. D, 32 (1988), pp. 327–361.
[27] J. Wagner and J. Keizer, Effects of rapid buffers on Ca2+ diffusion and Ca2+ oscillations,

Biophys. J., 67 (1994), pp. 447–456.



SIAM J. APPL. MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 66, No. 1, pp. 266–285

SECOND HARMONICS EFFECTS IN RANDOM DUFFING
OSCILLATORS∗
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Abstract. We consider a stochastic model for Duffing oscillators, where the nonlinearity and the
randomness are scaled in such a way that they interact strongly. A typical feature is the appearance
of second harmonics effects. An asymptotic statistical analysis for these oscillators is performed
in the diffusion limit, when a suitable absorbing boundary condition is imposed, according to the
underlying physical problem. The related Fokker–Planck equation has been numerically solved to
obtain the first two moments of the oscillator’s displacement from its rest-position. Dependence on
the nonlinearity strength and on the location of the absorbing boundary has also been investigated.
Such results have been compared with those computed solving the corresponding stochastic Ito
differential equations by a Monte Carlo method, where quasi-random sequences of numbers have
been efficiently used.
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sions with absorbing boundaries, quasi-Monte Carlo methods

AMS subject classifications. 34F05, 60H10, 60H35, 65C05

DOI. 10.1137/S0036139903437084

1. Introduction. Duffing oscillators are among the simplest types of nonlin-
ear oscillators. They are governed by second-order ordinary differential equations,
describing, e.g., the free motion that a particle performs around its rest-position, sub-
ject to a certain nonlinear restoring force. They have been extensively studied (see,
e.g., [25]). On the other hand, random harmonic (linear) oscillators have also been
studied in the literature (see, e.g., [20]).

In [23], a stochastic model for nonlinear oscillators of the Duffing type was consid-
ered, in order to investigate the joint effect of nonlinearity and randomness. However,
these two mechanisms were scaled in such a way that the effect of the nonlinearity on
the underlying linear random oscillator model turned out to be rather insignificant
in the behavior over the long run. The topic of nonlinear random oscillators is still
an active area of research, especially in connection with applications to engineering;
see [5].

In this paper, a stochastic model for a Duffing-type oscillator is considered where
the effect of the nonlinearity is much more important than that analyzed in [23]. The
model equation is

y′′ε + 2ε2λ(t)y′ε + ω2
0

[
1 + εμ(t) + εwν(t)y2

ε

]
yε = 0,(1.1)

yε(0) = y1, y′ε(0) = y2,(1.2)
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where ε represents a small real parameter, w is a real parameter which sizes the
nonlinearity, and λ(·), μ(·), ν(·) are suitable real-valued stochastic processes on some
probability space. Therefore, yε(·) will be a (real-valued) stochastic process as well.
An absorbing condition is further imposed to take into account that the representative
particle, whose random motion is described by (1.1), is lost whenever its position,
yε(t), reaches a given value, say ±R. This is the case of the so-called accelerator
problem. In fact, when a beam of charged particles turns around in the vacuum,
inside a toroidal chamber whose cross section has radius R, being confined by strong
static magnetic fields, after a very large number of laps the beam opens up, and some
particles are lost when they hit the material wall. We may think that here there is
an absorbing boundary, and for a randomly perturbed problem this corresponds to a
vanishing probability condition at a certain given radial distance from the center of
the chamber. Clearly, such a condition amounts to imposing a boundary condition to
the transition probability density obeying the Kolmogorov forward equation (Fokker–
Planck). Therefore, the present problem, subject to an absorbing boundary condition,
will be shown to possess a diffusion limit solution.

Note that only local existence and uniqueness of solutions to problem (1.1)–(1.2)
can be guaranteed. However, the absorbing boundary condition associated to such
a problem allows for existence and uniqueness of solutions up to the first time when
yε(t) attains the value ±R (for every fixed ε and for every chosen realization of the
noise terms). On the other hand, as soon as the considered trajectory ends up at the
level ±R, the corresponding particle is “killed” and goes out of the problem.

In [23], the nonlinear term εwν(t)y2
ε was replaced by the “weaker” one, ε2wν(·)y2

ε ,
and the solution there was studied in the diffusion limit, attained when ε → 0 on a
suitably long time scale. As will be shown, the model described by (1.1)–(1.2) exhibits
some different features compared to the model in [23]. Among other things, stronger
nonlinear effects, such as “second harmonics” effects, can now be observed.

It can be seen that the present problem, without imposing the absorbing boundary
condition above, does not possess a diffusion limit, since, according to the Feller–Hille
theory [7, 9], the formally obtained Kolmogorov forward and backward equations do
not have unique solutions. A comment on this problem is given in section 5.

In section 2, the relevant assumptions on the stochastic processes λ(·), μ(·), and
ν(·) are made. A parabolic differential equation (the Fokker–Planck equation) is then
derived, which describes the time evolution of the transition probability density of
the limiting-process. Such a process approximates the process yε in the diffusion
limit. From this, the first two moments of the displacement of the oscillator are
computed (section 3). In section 4, we describe the numerical treatment performed
on such equations to get quantitative information. We also solve the underlying Ito
stochastic differential equation for the purpose of comparison. Such a simulation,
which is of the Monte Carlo type, has been accomplished by using quasi-random
(low discrepancy) sequences of numbers [2, 3, 17]. This choice is an alternative to
that of the more common sequences of pseudorandom numbers and here is shown to
be effective due to the use of a “scrambling” strategy (a reordering technique [18]).
This positive outcome contrasts with the earlier findings of [10], where the authors
did not introduce any scrambling; see [1], however. Plots are given to illustrate the
dependence of the moments on the various parameters, including the location R of the
absorbing barrier and the strength, w, of nonlinearity, and the results are discussed.
In section 5, the high points of the paper are summarized.
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2. Statistical analysis in the diffusion limit. It is convenient to introduce
the van der Pool coordinates, ρε, ϕε, defined by

yε(t) = ρε(t) cos (ω0t + ϕε(t)) , y′ε(t) = −ω0 ρε(t) sin (ω0t + ϕεt) .

Note that ρ2
ε = y2

ε + ω−2
0 y′ε

2 represents the energy of the oscillator. By using this
transformation in (1.1)–(1.2), the system

d

dt

(
ρε
ϕε

)
= ε

(
F1

F2

)
+ ε2

(
G1

G2

)
,(2.1)

where Fi ≡ Fi(t, ρε, ϕε), Gi ≡ Gi(t, ρε, ϕε), is obtained along with the initial condi-
tions

ρε(0) =
(
y2

1 + y2
2/ω

2
0

)1/2
, ϕε(0) = − arctan (y2/ω0y1)

1/2
,(2.2)

where we set, for short,

F1 :=
ω0

2
ρε

{
μ(t) sin(2ω0t + 2ϕε) + ν(t)

w

2
ρ2
ε [1 + cos(2ω0t + 2ϕε)] sin(2ω0t + 2ϕε)

}
,

F2 :=
ω0

2

{
μ(t) [1 + cos(2ω0t + 2ϕε)] + ν(t)

w

2
ρ2
ε [1 + cos(2ω0t + ϕε)]

2
}
,(2.3)

G1 := −ρε λ(t) [1 − cos(2ω0t + 2ϕε)] ,

G2 := −λ(t) sin(2ω0t + 2ϕε).

Below, we shall assume that λ(·), μ(·), and ν(·) are real-valued, almost surely bounded,
wide-sense stationary stochastic processes on some probability space, (Ω,A, P ). The
dependence on the chance variable will be omitted throughout, as is customary. We
shall assume that

E[λ(t)] = λ0, E[μ(t)] = 0, E[ν(t)] = 0,(2.4)

for some constant λ0, where E[·] denotes taking expected values. Moreover, we shall
assume that μ(·) and ν(·) satisfy a mixing condition in a sufficiently strong sense (see,
e.g., [19, 21]). As for the stationarity, we shall assume below that μ(·) and ν(·) are
stationarily correlated (see [4, p. 160], [26, pp. 78–79]), with covariance matrix(

E[μ(s)μ(σ)] E[μ(s)ν(σ)]
E[ν(s)μ(σ)] E[ν(s)ν(σ)]

)
,(2.5)

whose entries will be denoted by Rij(s− σ), i, j = 1, 2.
Under these hypotheses, we want to investigate whether the process converges

weakly to some limiting-process when ε → 0 and t → +∞, with τ := ε2t = const.,
uniformly on 0 ≤ τ ≤ τ0 (diffusion limit). Indeed, under similar hypotheses, this was
proved to be true for the Duffing model studied in [23]. In that case, the limiting-
process, denoted by (ρ(τ), ϕ(τ)), turned out to be a Markov process with trajectories
continuous with probability 1. Therefore, it could be described by its infinitesimal
generator

L :=

2∑
i,j=1

aij(z)
∂2

∂zi∂zj
+

2∑
i=1

[bi(z) + ci(z)]
∂

∂zi
,(2.6)

where we set z := (z1, z2)
T (z1 = ρ, z2 = ϕ, for us), and aij , bi, ci are given by
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aij(z) := lim
t→+∞

1

t

∫ t

0

∫ s

0

E [Fi(s, z)Fj(σ, z)] ds dσ, i, j = 1, 2,

bi(z) := lim
t→+∞

1

t

∫ t

0

∫ s

0

2∑
j=1

E

[
∂Fi(s, z)

∂zj
Fj(σ, z)

]
ds dσ, i = 1, 2,(2.7)

ci(z) := lim
t→+∞

1

t

∫ t

0

E [Gi(s, z)] ds, i = 1, 2.

Here, we can proceed similarly, taking as quantities Fi, Gi, i = 1, 2, those defined
in (2.3). The result that we shall obtain is of the type of Khas’minskii’s [12] (see
also [24]), as used in [19, 21].

In our problem, it is possible to evaluate explicitly the quantities in (2.7). Though
this is an elementary task, the derivation is quite lengthy; see, e.g., [23]. Therefore,
we skip the details and give only the results (obtained using the assumptions on λ(·),
μ(·), ν(·)):

a11(ρ) = ρ2

[
β11(2) +

w

2
ρ2(β12(2) + β21(2)) +

w2

4
ρ4

(
β22(2) +

1

4
β22(4)

)]
,

a12(ρ) + a21(ρ) =
w

2
ρ3(γ12(2) − γ21(2)),

a22(ρ) = 2α11 + β11(2) +
w

2
ρ2[3(α12 + α21) + 2(β12(2) + β21(2))]

+
w2

16
ρ4 (18α22 + 16β22(2) + β22(4)),(2.8)

b1(ρ) = ρ

[
3β11(2) +

5

2
w ρ2(β12(2) + β21(2)) +

7

16
w2 ρ4 (4β22(2) + β22(4))

]
,

b2(ρ) = 2

[
γ11(2) + w ρ2 (2γ12(2) + γ21(2)) +

3

2
w2ρ4

(
γ22(2) +

1

8
γ22(4)

)]
,

c1(ρ) = −λ0 ρ, c2(ρ) = 0,

where the notation

αij :=
ω2

0

8

∫ +∞

0

Rij(x) dx,

βij(k) :=
ω2

0

8

∫ +∞

0

Rij(x) cos(kω0x) dx, k = 2, 4,(2.9)

γij(k) :=
ω2

0

8

∫ +∞

0

Rij(x) sin(kω0x) dx, k = 2, 4,

has been used.
Remark 2.1. Note that aij , bi, ci depend only on ρ (and not on ϕ).
Remark 2.2. Observe that in this model there is an effect due to the second

harmonics, through the terms β22(4), γ22(4).
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Remark 2.3. In the model studied in [23], ν(·) had to be “strong enough” in order
to be effective, because the nonlinearity was weak (of order O(ε2)) in comparison to
the randomness (of order O(ε)). For example, E[ν(·)] /∈ L(R+); ν(t) = const. �= 0
was acceptable. However, E[ν(·)] had to be constant (0 or not) by the assumed
stationarity.

In the present model, in some sense, ν(·) has to be “not too strong,” because the
nonlinearity term now is considerably more important: A finite second moment, with
a correlation function decaying to zero sufficiently fast, is required (by the mixing
property), and E[ν(·)] ≡ 0 by the stationarity.

With the infinitesimal generator given by (2.6), (2.8), we can write down the
Kolmogorov forward (or Fokker–Planck) equation

∂p

∂τ
= L∗[p],(2.10)

τ := ε2t, satisfied by the transition probability density p, L∗ denoting the adjoint
operator of L (defined in (2.6)–(2.7)). Such an equation should be considered along
with the initial value

p(ρ, ϕ; 0) = δ(ρ− ρ0)δ(ϕ− ϕ0),(2.11)

where ρ0 and ϕ0 are the initial values of ρ(t) and ϕ(t), and the boundary condition

p(R,ϕ, τ) = 0,(2.12)

correspondingly to the absorbing boundary located at ρ = R.
We can then evaluate, in particular, the moments of the limiting-process y(τ) :=

ρ(τ) cos(ω0t + ϕ(τ)). It is convenient to write (2.10) in the form

∂p

∂τ1
=

∂2

∂ρ2

[
(1 + A1wρ

2 + A2w
2ρ4) ρ2p

]
+

∂2

∂ρ∂ϕ

(
B1wρ

3 p
)

+
∂2

∂ϕ2

[
(C0 + C1wρ

2 + C2w
2ρ4) p

]
− ∂

∂ρ

[
(D0 + D1wρ

2 + D2w
2ρ4) ρ p

]

− ∂

∂ϕ

[
(E0 + E1wρ

2 + E2w
2ρ4) p

]
,(2.13)

where

τ1 := β11(2) τ ≡ β11(2) ε2t,(2.14)

A1 :=
β12(2) + β21(2)

2β11(2)
,(2.15)

A2 :=
β22(2) + 1

4β22(4)

4β11(2)
,

B1 :=
γ12(2) − γ21(2)

2β11(2)
,

C0 := 2
α11

β11(2)
+ 1,

C1 :=
3(α12 + α21) + 2(β12(2) + β21(2))

2β11(2)
,

C2 :=
18α22 + 16β22(2) + β22(4)

16β11(2)
,
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D0 := 3 − λ0

β11(2)
,

D1 :=
5(β12(2) + β21(2))

2β11(2)
≡ 5A1,

D2 :=
7(β22(2) + 1

4β22(4))

4β11(2)
≡ 7A2,

E0 := 2
γ11(2)

β11(2)
,

E1 :=
2(2γ12(2) + γ21(2))

β11(2)
,

E2 :=
3(γ22(2) + 1

8γ22(4))

2β11(2)
.

Note the presence of some “second harmonics” terms (see Remark 2.2), which enter
the coefficients above via the quantities β22(4), γ22(4). Their effect is to increase the
value of A2, C2, D2, and E2 and thus, qualitatively, to increase the nonlinearity size,
as |w| would have been increased. Moreover, this happens independently of the sign
of w.

Remark 2.4. It is worth noting that the solution to problem (2.10)–(2.12) is
not (L1) norm-increasing. In fact, integrating both sides of (2.13) on the domain
[0, 2π] × [0, R] gives

∂

∂τ1

∫ 2π

0

∫ R

0

p(ρ, ϕ, τ1) dρdϕ

= R2(1 + A1 wR2 + A2 w
2 R2)

∫ 2π

0

∂p

∂ρ
(R,ϕ, τ1) dϕ,(2.16)

where the absorbing boundary condition in (2.12) has been used. We now observe that
∂p(R,ϕ, τ1)/∂ρ ≤ 0. In fact, such a quantity is nonpositive, given that p is positive
inside the domain and zero on the boundary ρ = R. Therefore, dP (τ1)/dτ1 ≤ 0,
where

P (τ1) :=

∫ 2π

0

∫ R

0

p(ρ, ϕ, τ1) dρdϕ.(2.17)

The quantity P (τ1) represents the survival probability of the particle up to time τ1,
which is the probability that the particle does not hit the absorbing barrier before
time τ1. A similar result can be found in [6], where it is shown that, in the presence
of an absorbing boundary condition, the norm of any initial data is not preserved.

In the special but important case that μ(·) and ν(·) are uncorrelated (possibly
independent), there are some simplifications. As R12(·) ≡ R21(·) ≡ 0 in this case, the
partial differential equation in (2.10) reduces to

∂p

∂τ1
=

∂2

∂ρ2

[
(1 + A2w

2ρ4) ρ2p
]
+

∂2

∂ϕ2

[
(C0 + C2w

2ρ4)p
]

− ∂

∂ρ

[
(D0 + D2w

2ρ4) ρ p
]
− ∂

∂ϕ

[
(E0 + E2w

2ρ4) p
]
.(2.18)

Note that now the coefficients of the equation depend only on w2, and therefore the
results are independent of the sign of w. This is not true when μ(·) and ν(·) are
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correlated. Note also that the effects of the second harmonics depend only on the
autocorrelation of ν(·), R22(·) (in A2, C2, D2, E2, such an effect enters through β(4)
and γ(4)).

3. The time evolution of the moments. As the equation in (2.13) is linear
and has coefficients independent of ϕ, we can perform a Fourier analysis. Expanding
p in a Fourier series,

p(ρ, ϕ, τ1) =

+∞∑
m=−∞

pm(ρ, τ1)e
imϕ,

we obtain for the mth coefficient

pm(ρ, τ1) =
1

2π

∫ 2π

0

p(ρ, ϕ, τ1) e
−imϕdϕ(3.1)

the evolution equation

∂pm
∂τ1

=
∂2

∂ρ2

[
(1 + A1wρ

2 + A2w
2ρ4) ρ2 pm

]

− ∂

∂ρ

[(
D0 + (D1 + imB1)wρ

2 + D2w
2ρ4

)
ρ pm

]
+ im

[
(imC0 − E0) + (imC1 − E1)wρ

2 + (imC2 − E2)w
2ρ4

]
pm,(3.2)

with the initial value

pm(ρ, 0) =
1

2π
δ(ρ− ρ0) e

−imϕ0(3.3)

and the boundary condition

pm(R, τ1) = 0.(3.4)

The boundary point ρ = R is a regular boundary, while ρ = 0 is a natural
boundary, according to Feller’s classification (see [7, 9]). On a natural boundary, such
as ρ = 0, no boundary condition is required, while a condition is needed on a regular
boundary so that the Fokker–Planck equation has a unique solution. In [7, sect. 23],
the boundary value problem for the one-dimensional diffusion equation

ut =
∂2

∂x2
(a(x)u) − ∂

∂x
(b(x)u)(3.5)

and its adjoint has been considered on the interval −∞ ≤ r1 < x < r2 ≤ +∞.
Depending on the nature of the boundary points r1, r2 and the type of data imposed
on them to the solution, such equations may or may not have a unique solution.
Defining the function

W (x) := exp

{
−
∫ x

x0

b(s)

a(s)
ds

}
,(3.6)

where x0 ∈ (r1, r2), the boundary points are classified as follows:
• The boundary rj is regular if W (x) ∈ L1(x0, rj) and a−1(x)W−1(x) ∈ L1(x0, rj).
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• It is an exit boundary if a−1(x)W−1(x) /∈ L1(x0, rj) and
W (x)

∫ x

x0
a−1(s)W−1(s) ds ∈ L1(x0, rj).

• It is an entrance boundary if a−1(x)W−1(x) ∈ L1(x0, rj) and
a−1(x)W−1(x)

∫ x

x0
W (s) ds ∈ L1(x0, rj).

• It is natural in all other cases.
One may observe that for the heat equation ut = uxx the boundaries rj = ±∞ are
both natural, while they are regular when they are finite.

It is straightforward to check that for our problem in (3.2), r1 = ρ = 0 is a natural
boundary, while r2 = ρ = R is a regular boundary. It follows from Feller’s theory
that our problem possesses a unique solution when the absorbing boundary condition
in (3.4) is prescribed, while no condition is imposed on ρ = 0.

In the special case of μ(·), ν(·) uncorrelated, (2.13) reduces to (2.18) and we get
the simpler problem

∂pm
∂τ1

=
∂2

∂ρ2

[
(1 + A2w

2ρ4) ρ2 pm
]
+

∂

∂ρ

[(
D0 + D2w

2ρ4
)
ρ pm

]
+ im

[
(imC0 − E0) + (imC2 − E2)w

2ρ4
]
pm,

pm(ρ, 0) =
1

2π
δ(ρ− ρ0) e

−imϕ0 , pm(R, τ1) = 0.(3.7)

We are primarily interested in computing the first two moments of the displacement
yε(·) of the oscillator by approximating it with the limiting-process y(·). For this we
have

Eρ0,ϕ0
[y(τ)] = Re

{
eiω0t Eρ0,ϕ0

[ρ(τ) eiϕ(τ)]
}
,(3.8)

Eρ0,ϕ0
[y2(τ)] =

1

2
Eρ0,ϕ0

[ρ2(τ)] +
1

2
Re

{
e2iω0t Eρ0,ϕ0

[ρ2(τ) e2iϕ(τ)]
}
,

where the quantities Eρ0,ϕ0
[ρk(τ) eikϕ(τ)], k = 1, 2, and Eρ0,ϕ0 [ρ

2(τ)] can be computed
by integrating (3.1) (or (3.7)). Recall that τ1 = β11(2)ε2t; see (2.14). We obtain

Eρ0,ϕ0 [y(τ1)] = 2πRe

[∫ R

0

ρ p1(ρ, τ1)dρ

]
cosω0t + 2π Im

[∫ R

0

ρ p1(ρ, τ1)dρ

]
sinω0t,

(3.9)

Eρ0,ϕ0
[y2(τ1)] = π

∫ R

0

ρ2 p0(ρ, τ1)dρ + π

{
Re

[∫ R

0

ρ2 p2(ρ, τ1)dρ

]
cos(2ω0t)

+ Im

[∫ R

0

ρ2 p2(ρ, τ1)dρ

]
sin(2ω0t)

}
.(3.10)

The problem is clearly affected by two time scales, the fast (deterministic) scale,
according to the “time” ω0t, and the slow scale τ1, on which nontrivial random phe-
nomena occur in the diffusion limit; see [23]. In fact, it is over long times that the
statistical cumulative effect of the small size noise becomes significant.

In the next section, we describe the numerical treatment carried out to solve the
aforementioned problems. We give the relevant results in the form of several plots
and discuss the observed features.



274 JUAN A. ACEBRÓN AND RENATO SPIGLER

4. Numerical treatment. We solved numerically problem (3.7) for m = 0, 1, 2
on (0, R) × (0, T ), with the boundary condition in (2.12), obtaining the Fourier co-
efficients pm(ρ, τ1) of the transition probability density p(ρ, ϕ, τ1). The covariance
matrix {Rij(·)}i,j=1,2 also had to be specified. In the case above, where μ(·), ν(·) are
supposed to be uncorrelated, we have only to assign R11(·) and R22(·). Let us choose

R11(t) := e−σ1|t|, R22(t) := e−σ2|t|(4.1)

for some positive constants σ1, σ2. Then all quantities αij , βij , γij and hence A2, D0,
D2, C0, C2, E0, and E2 can be computed.

To be more explicit, we get from (2.9)

αii =
ω2

0

8

1

σi
, βii(q) =

ω2
0

8

σi

σ2
i + q2ω2

0

, γii(q) =
ω2

0

8

q ω0

σ2
i + q2ω2

0

, i = 1, 2,(4.2)

and therefore from (2.15)

A2 =
1

4

σ2

σ1

(
1 +

4ω2
0

σ2
1

)[
1

σ2
2/σ

2
1 + 4ω2

0/σ
2
1

+
1/4

σ2
2/σ

2
1 + 16ω2

0/σ
2
1

]
,(4.3)

D0 = 3 − 8
λ0/ω0

ω0/σ1

(
1 + 4

ω2
0

σ2
1

)
,(4.4)

D2 = 7A2,(4.5)

C0 = 3 + 8
ω2

0

σ2
1

,(4.6)

C2 =
9

8

1 + 4ω2
0/σ

2
1

σ2/σ1
+

σ2

σ1

1 + 4ω2
0/σ

2
1

σ2
2/σ

2
1 + 4ω2

0/σ
2
1

+
1

16

σ2

σ1

1 + 4ω2
0/σ

2
1

σ2
2/σ

2
1 + 16ω2

0/σ
2
1

,(4.7)

E0 = 4
ω0

σ1
,(4.8)

E2 =
3

2

[
2
ω0

σ1

1 + 4ω2
0/σ

2
1

σ2
2/σ

2
1 + 4ω2

0/σ
2
1

+
1

2

ω0

σ1

1 + 4ω2
0/σ

2
1

σ2
2/σ

2
1 + 16ω2

0/σ
2
1

]
.(4.9)

These expressions make it clear that only the nondimensional quantities

σ2

σ1
,

ω0

σ1
, and

λ0

ω0
(4.10)

play a role and therefore need to be assigned. Another parameter is the ratio of
the two time scales, which characterize the deterministic oscillations and the random
fluctuations. We have from (2.14) and (4.2)

τ1 ≡ β11(2)ε2t =
ε2

8

ω0/σ1

1 + 4ω2
0/σ

2
1

ω0t =: κω0t(4.11)

(note that τ1 is nondimensional) and, for ω0/σ1 ≈ 1, ε ≈ 0.1, we get κ ≈ 4000. Note
that κ is automatically determined by choosing ε and ω0/σ1. Therefore, we can assign
κ or ε, in addition to the previous parameters.

The numerical treatment consists of implementing an implicit scheme of finite
differences, with forward time differences and space-centered differences (the Crank–
Nicholson scheme). We chose R = 4 and divided [0, R] into sections of equal length
Δρ = 10−3; the time-step size we used was Δτ1 = 10−4, and the initial position of
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Fig. 4.1. Time evolution of the expected value of ρ. The nonlinearity size is w = 0.3. The
dashed line represents the solution obtained through the Fokker–Planck equation; the solid line is
obtained by solving the stochastic differential equation. The other parameters are ε = 0.1, σ2/σ1 = 1,
ω0/σ1 = 1, and λ0/ω0 = 3β11(2)/2.

the oscillator was ρ0 = 2. The parameters w and λ0/ω0 were varied to form several
combinations in order to investigate the various effects, while we kept ε to the fixed
value ε = 0.1. The case ε = 0.5 was also considered to test the validity of the limiting
theory. The first two moments

E[ρk(τ1)] = 2π

∫ R

0

ρkp0(ρ, τ1) dρ, k = 1, 2,(4.12)

of the oscillator’s amplitude, ρ(τ1), defined by the van der Pool variables (in the
diffusion limit), can then be evaluated. Note that E[ρ0] = E[1] coincides with the
survival probability given by (2.17).

In Figure 4.1, we plotted E[ρ] versus t for w = 0.3, σ2/σ1 = 1, ω0/σ1 = 1, and
λ0/ω0 = 3β11(2)/2. In Figure 4.2, the time evolution of the second moment E[ρ2] is
shown for the same set of parameters. Recall that ρ2

ε = y2
ε + ω−2

0 y′2ε represents the
energy of the oscillator governed by (1.1), and hence E[ρ2] is the average energy of
the oscillator in the diffusion limit. Here we also plotted E[ρ2] for w = 0, that is, for
the corresponding linear harmonic oscillator, for the purpose of comparison.

In Figure 4.3, we plotted E[ρ2] versus τ1 for the same values of the parameters
used above, except that we considered several values of λ0/ω0. It is apparent that
there is “a threshold” when λ0/ω0 goes across a certain value. Above such a value
(that is, when the damping is sufficiently strong), E[ρ2] decreases monotonically in
time. Below the threshold value, initially E[ρ2] grows in time, undergoing a kind
of transient behavior, but then it decays in order to match the absorbing boundary
condition. Such a threshold is determined by the sign of the coefficient D0, which takes
the values 3,−3,−9 corresponding to the values λ0/ω0 = 0, 0.15, 0.3, respectively.

Figure 4.4 shows the time evolution of the survival probability P (t) given by
(2.17). This has been computed both from the Fokker–Planck equation and by Monte
Carlo simulations to provide mutual validation. The time evolution of two conditional
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Fig. 4.2. Time evolution of the expected value of ρ2 for two different values of the nonlinearity
parameter: (a) w = 0 and (b) w = 0.3. The other parameters are as in Figure 4.1. A magnification
of part of the plot is shown in the inset.

moments of ρ, assuming that the time τ1 is less than the first hitting time, say τR,
is plotted in Figure 4.5. Such moments can be obtained knowing the moments E[ρk]
and the survival probability P (τ1) as follows:

E[ρk|τ1 < τR] =
E[ρk(τ1)]

P (τ1)
.(4.13)

These quantities have been computed from the Fokker–Planck equation. The same
quantities have been obtained from the corresponding stochastic differential equations
by Monte Carlo simulations, for the purpose of validation, and plotted in Figure 4.5
(solid line).
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Fig. 4.3. Time evolution of the expected value of ρ2 for three different values of λ0/ω0, keeping
w to the fixed value 0.3. The other parameters are as in Figure 4.1.
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Fig. 4.4. Time evolution of the survival probability P (t), keeping w to the fixed value 0.3 and
λ0/ω0 = 0.15. The other parameters are as in Figure 4.1.

It is worth noting that the survival probability seems to stabilize around a nonzero
value, and the conditional moments of ρ go to zero, when time is sufficiently large.
From both such features, the behavior of the surviving particles for a long time can
be easily understood. The nonzero value of P (t), say p∞, would mean that a certain
number of particles never exit from the boundary, while, given that the limiting value
of the conditional moments when time goes to infinity is zero, it indicates that the
surviving particles will be located, with high probability, around ρ = 0.

In Figure 4.6, the time evolution of the survival probability, P (t), is plotted for
three different values of R. Recall that the parameter R is part of the data of the
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Fig. 4.5. Time evolution of two conditional moments of ρ with n = 1, 2. The parameters are
as in Figure 4.4.
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Fig. 4.6. Time evolution of the survival probability P (t) for three different values of R, obtained
by solving the Fokker–Planck equation. The parameters are as in Figure 4.4.

problem. For instance, in the example of the particle accelerator, R may be the radius
of a vacuum chamber. Note that increasing the value of R increases the stationary
value of P (t). Clearly, when the boundary R is closer to the initial value ρ = ρ0,
the exiting probability of a given particle becomes larger, thus making the survival
probability smaller in this case. Nevertheless, for sufficiently large values of R, such
a probability seems to become independent of R. However, larger values of R cannot
be used in practice to prevent computational overflow, in view of the exponential
dependence of some coefficients in the Fokker–Planck equation.

In Figure 4.7, the survival probability has been plotted as a function of time
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Fig. 4.7. Time evolution of the survival probability P (t) for two different values of R and the
nonlinearity w. The parameters are as in Figure 4.4.

for two pairs of values of the nonlinearity parameter w and of the location of the
absorbing barrier R. These results have been obtained by integrating numerically the
Fokker–Planck equation. The numerical simulations seem to show that the survival
probability tends to stabilize, after a sufficiently long time, at some nonzero (positive)
value. Such a value seems to decrease when the nonlinearity becomes stronger (for
any given value of R), while fewer particles tend to be absorbed when the absorbing
boundary is located farther from the initial position of the oscillator for any given value
of w. In other words, there is numerical evidence that a stronger nonlinearity favors
higher absorption of particles, while a more distant barrier makes it more difficult.
No claim can be made, however, that the survival probability does indeed tend to a
nonzero value when time increases. In fact, the survival probability might decay so
slowly that the numerical simulations cannot fully capture its precise behavior.

In Figure 4.8, the full transition probability density, p0(ρ, t), has been plotted as
a function of ρ for several times. The inset in this figure shows the corresponding
values of the survival probability obtained for the times when the probability density
was plotted. This picture illustrates well what happens to the ρ-profile of p0(ρ, t)
at various times. Such a profile starts smooth and well spread over the full interval
0 < ρ < R = 4, but as time goes on, it tends to become a Dirac delta function, located
at the initial position of the oscillator, ρ0 = 0.

In Figure 4.9, the dependence of the survival probability on two different initial
positions of the oscillator, ρ0 = 2 or ρ0 = 3, is shown. It is clear that the closer such
an initial position is to the absorbing boundary (located at ρ = R = 4), the higher
will be the number of the particles absorbed there.

Figure 4.10 displays the dependence of p∞ on the nonlinearity parameter w. It
appears that p∞ decreases steadily as w increases. Here R = 4 was kept fixed. We
have also computed the first two moments of the oscillator’s displacement, y(t), given
by (3.9), (3.10). In Figure 4.11, such moments are shown for the same values of the
parameters used in Figures 4.1 and 4.2.

In order to validate the limiting theory, we conducted numerical simulations of
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Fig. 4.8. Transition probability density p0(ρ, t) versus ρ for several times. The inset shows the
corresponding values of the survival probability for these times. The parameters are as in Figure 4.4.
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Fig. 4.9. Time evolution of the survival probability P (t) for two different initial condition data.
The parameters are as in Figure 4.4.

the Monte Carlo type on the stochastic differential equation given in (1.1)–(1.2),
with the initial values yε(0) =

√
2, y′ε(0) =

√
2. Our purpose was twofold. First,

we took ε sufficiently small and t sufficiently large to check to what extent such a
model could accurately approximate the original (ε-labeled process). On the other
hand, the numerical results obtained by solving the stochastic differential equation
have an independent interest, because their validity holds true for any size of ε and
t. Obviously, whenever ε is not sufficiently small and/or t is not sufficiently large, we
can expect that the resulting functionals of the limiting-process might depart even
significantly from those computed on the basis of the stochastic differential equation.
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Fig. 4.10. Long-time value of p0(ρ, t) obtained in the limit of t → ∞ versus the nonlinearity
parameter w. The parameters are as in Figure 4.4.

The Ito-type system can be written as⎧⎪⎪⎪⎨
⎪⎪⎪⎩

dρ =
[
εF1(t; ρ, ϕ;μ, ν) + ε2G1(t; ρ, ϕ;μ, ν)

]
d t,

dϕ =
[
εF2(t; ρ, ϕ;μ, ν) + ε2G2(t; ρ, ϕ;μ, ν)

]
d t,

dμ = −σ1 μd t + σ1 dW1,

dν = −σ2 ν d t + σ2 dW2,

(4.14)

where we have also displayed the dependence of the functions Fi and Gi on the
stochastic processes μ and ν. Since, in the practical simulations, such processes will
be colored noise processes with autocorrelations given in (4.1), the system (4.14)
includes the last two equations. In fact, according to [11], the colored noise processes
above can be evaluated from such Ito equations, driven by the independent standard
Brownian motions W1 and W2. The process λ in the damping term is taken to be a
constant, λ(t) ≡ λ0.

While the absorbing boundary condition is imposed as a boundary condition on
ρ = R for the Fokker–Planck equation (2.10), here we proceed as follows. In corre-
spondence to the first time t∗, when a given realization ρ(t) attains the value R, we
ignore the contribution from such a realization in the averages yielding the moments
of ρ and y for t > t∗. This procedure yields the moments of the particle position
at time t, taking into account that such a particle did not hit the absorbing barrier
yet. Therefore, only the statistical properties of the particles that have survived up
to time t have been included.

In principle, this numerical treatment amounts to a loss of accuracy for larger and
larger times, because the sample size (i.e., the number of particles) becomes smaller,
thus requiring more realizations when time increases. Numerical results, however,
show that the fast decay of the moments computed (from the Fokker–Planck equation)
is such that the loss of accuracy mentioned above is felt very little.

As usual, the required Monte Carlo simulations can be based on the generation of
sequences of (pseudo-) random numbers, which is routine. Here we chose instead to
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Fig. 4.11. Time evolution of the first and second moments of the oscillator’s displacement, y,
keeping w to the fixed value 0.3. The other parameters are as in Figure 4.1.

use the so-called sequences of quasi-random numbers (deterministic low discrepancy
sequences); see [2, 17]. Such a choice provides a higher accuracy for a given number,

N , of realizations, typically involving a deterministic error of order O(N−1 logd
∗−1 N)

(where d∗ is an “effective dimension”; see [1]) instead of the statistical error of order
O(N−1/2). Quasi-random number sequences are rather delicate to exploit but have
been used successfully in a number of applications; see [2, 3, 14, 15, 18]. Application
of quasi-random numbers to the numerical solution of stochastic differential equations
has been shown in general to be very inefficient; see [10]. In such a paper, however, no
“scrambling” strategy was adopted, which action was actually shown to be important
in [14, 15]. Here we have implemented a quasi-Monte Carlo algorithm with a reorder-
ing technique, as done in [15], and thus our results turned out to be highly accurate.
A more general account of a successful implementation of quasi-random sequences to
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Fig. 4.12. Time evolution of the expected value of ρ for ε = 0.5 and w = 0.3. The other
parameters are as in Figure 4.1.

solve stochastic differential equations has been presented in [1].

To solve the system of stochastic differential equations in (4.14), we have im-
plemented a “weak scheme” of order 2 (which reduces to the Heun scheme in the
deterministic case); see [13, Chap. 15, sect. 15.1] and [8, 22]. The time-step size used
was Δt = 0.01, with N = 1000 realizations. We used Halton sequences of quasi-
random numbers [2], being aware that a different choice of numbers, such as Sobol’
or Faure numbers, was shown earlier to be essentially irrelevant [16]. In order to sim-
ulate random paths to solve the system in (4.14) it is required to generate as many
random variables as time steps, which amounts to generating high-dimensional quasi-
random sequences. This is a sensible issue, in that high-dimensional quasi-random
sequences may fail to work appropriately because unwanted correlations can be easily
introduced. Such a difficulty was removed in our algorithm by introducing a suitable
reordering, as was done in [15, 14]; see also [1]. Using reordering, the effective dimen-
sion of the system reduces to the number of dependent variables, ρ and ϕ. Note that
the truncation error will be of order O((Δt)2) ≈ 10−4, which is negligible compared
to the quasi-Monte Carlo error, which is of order O(N−1 logN) ≈ 0.9 × 10−3.

In Figures 4.1 and 4.2, the continuous line shows the time evolution of the mean
value of the oscillator amplitude ρ and of its square ρ2, and the survival probability,
with ε = 0.1 and w = 0.3. Therefore, a comparison is made with the solution obtained
in the diffusion limit. The agreement is very good for all times and also improves when
time increases, while instead it gets a little worse in Figure 4.4.

In Figure 4.12, the comparison is made with ε = 0.5. All these plots show to what
extent the diffusion limit provides a good approximation of the original problem in
(1.1)–(1.2). In any case, even when ε is not very small, the qualitative agreement gets
better for time sufficiently large. In Figure 4.11, the mean values of the oscillator’s
displacement, y, and of y2 are depicted versus t (solid line). Again, they are compared
with the corresponding results obtained through the Fokker–Planck equation (dashed
line).
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5. Summary and concluding remarks. In closing, we stress the high points
of the paper. A model for a Duffing oscillator with random parameters and subject
to an absorbing boundary condition has been analyzed in the diffusion limit, on a
scale where the nonlinear term is much stronger than in the model analyzed in [23].
A higher-order nonlinear effect, such as the appearance of second harmonics effects,
can be observed here.

A numerical solution of the stochastic differential equation has been obtained, for
small fixed ε, both for the purpose of validating the diffusion limit theory (when ε is
sufficiently small and t sufficiently large) and because the problem for finite ε and t
is meaningful in itself. The dependence on the nonlinearity strength w and on the
location R of the absorbing boundary has also been investigated, mostly numerically.
We have also shown that quasi-random sequences of numbers can be efficiently used
in the Monte Carlo simulation, provided that a reordering strategy is adopted.

It is natural to ask whether the problem in (1.1)–(1.2) is meaningful when no
absorbing boundary condition is imposed. The (formal) diffusion problem, say P∞, is
described by (2.10)–(2.11) on the unbounded space domain (ρ, ϕ) ∈ (0,+∞)×(0, 2π).
Suppose that we are interested in computing the moments of ρ, among them the mean
energy E[ρ2]. According to (4.12), this requires computing p0(ρ, τ1), the solution
to (3.7) with m = 0, subject to the initial value p0(ρ, 0) = δ(ρ − ρ0)/2π on the
domain 0 < ρ < +∞. It turns out that, according to Feller’s classification sketched
in section 3, the boundary point ρ = +∞ is an entrance point. Note that in the
model studied in [23] the point ρ = +∞ was of a different type, namely, a natural
boundary (as for the heat equation). In [6, 7], it was established that when one of
the boundaries is natural while the other is an entrance point, no boundary condition
should be imposed (on the latter point) and uniqueness is lost. More precisely, several
solutions to the problem P∞ exist, but only one is characterized by being positive
and norm-preserving. Therefore, such a solution is a candidate to be a probability
density function. Moreover, such a solution enjoys the property of having its value as
well as its flux equal to zero at the same time, at ρ = +∞, so that this boundary can
be simultaneously considered an absorbing and a reflecting boundary. All the other
solutions, characterized by an arbitrary value of the flux, are instead either negative
or norm-increasing.

In order to compute numerically such a solution, p0(ρ, τ1), the problem P∞ has to
be approximated by the problem Pρmax , obtained by cutting the unbounded domain to
the bounded domain (0, ρmax). Since the boundary ρ = ρmax now becomes regular, a
boundary condition can be imposed on it. Recalling that the unique solution to P∞,
i.e., that one which is positive and norm-preserving, vanishes along with its space
derivative at ρ = +∞, either of these two conditions at ρ = ρmax can be imposed,
provided that ρmax is sufficiently large. Approximating such a solution to P∞ (which
has an entrance boundary) by the solutions to problems like Pρmax

(which has a regular
boundary) is a quite delicate task. In fact, on the one hand, a homogeneous Neumann
condition is known to preserve the norm of the solution (see (2.16)). On the other
hand, as was mentioned before, the solutions to P∞ are very sensitive with respect
to small departures from the zero value of the space derivative. Indeed one would
obtain either negative or norm-increasing solutions. Imposing instead the Dirichlet
condition p0(ρmax, τ1) = 0, a much more stable behavior would be observed, but the
norm of the solution would not be preserved in this case.
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THE KELLER–SEGEL MODEL WITH LOGISTIC SENSITIVITY
FUNCTION AND SMALL DIFFUSIVITY∗

YASMIN DOLAK† AND CHRISTIAN SCHMEISER‡

Abstract. The Keller–Segel model is the classical model for chemotaxis of cell populations. It
consists of a drift-diffusion equation for the cell density coupled to an equation for the chemoattrac-
tant. Here a variant of this model is studied in one-dimensional position space, where the chemotactic
drift is turned off for a limiting cell density by a logistic term and where the chemoattractant density
solves an elliptic equation modeling a quasi-stationary balance of reaction and diffusion with produc-
tion of the chemoattractant by the cells. The case of small cell diffusivity is studied by asymptotic
and numerical methods. On a time scale characteristic for the convective effects, convergence of
solutions to weak entropy solutions of the limiting nonlinear hyperbolic conservation law is proven.
Numerical and analytic evidence indicates that solutions of this problem converge to irregular pat-
terns of cell aggregates separated by entropic shocks from vacuum regions as time tends to infinity.
Close to each of these patterns an “almost” stationary solution of the full parabolic problem can
be constructed up to an exponentially small (in terms of the cell diffusivity) residual. Based on
a metastability hypothesis, the methods of exponential asymptotics are used to derive systems of
ordinary differential equations approximating the long-time behavior of the parabolic problem on
exponentially large time scales. The observed behavior is a coarsening process reminiscent of phase
change models. A hybrid asymptotic-numerical approach for the simulation of the system is intro-
duced, and the accuracy of this new approach is shown by comparison to numerical simulations of
the full problem.

Key words. chemotaxis, hyperbolic limit, entropy solution, exponential asymptotics
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1. Introduction. Chemotaxis, the active motion of organisms influenced by
chemical gradients, has been studied both experimentally and theoretically by a large
number of authors. The first mathematical model for chemotaxis was derived by
Patlak [11] and by Keller and Segel [6]. In its most widely used formulation, the
cell density �(x, t) at position x ∈ Rn and time t > 0 solves the convection diffusion
equation

∂t� + ∇ · (χ(�, S)�∇S −D(�, S)∇�) = 0.(1.1)

This equation is coupled to an equation for the chemical concentration S(x, t), typi-
cally a parabolic or elliptic equation with a reaction term describing production and
degradation of the chemoattractant.

The Keller–Segel model has been applied to many different problems, ranging
from bacterial chemotaxis to cancer growth or the immune response. For some ap-
plications, it turns out that the diffusivity of cells plays only a minor role. In Dolak
and Schmeiser [3], a convection equation with a small diffusion term as higher order
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correction is derived from a kinetic model for chemotaxis. Taking this case as a mo-
tivation, we will study a Keller–Segel model with a small diffusion constant and its
limit of vanishing diffusivity. More precisely, we investigate

∂t� + ∂x(χ(�)�∂xS) = D∂2
x�,(1.2)

with x ∈ (0, L) and t > 0. We assume the diffusion D to be constant and the
chemotactic sensitivity χ(�) to be of the form

χ(�) = χ0

(
1 − �

�max

)
,(1.3)

the maximal cell density �max and χ0 being positive constants. Thus, the chemotactic
response of the cells is shut off when a maximal density is reached. Models of this
type were first investigated by Hillen and Painter in [5]. In [10], the authors derive
a chemotaxis model comprising a chemotactic sensitivity of the above form from a
master equation describing a random walk on a one-dimensional lattice, by taking
into account the finite size of cells.

The evolution of the chemoattractant S is described by

∂2
xS = βS − α�.(1.4)

This elliptic equation, instead of the more frequently used parabolic equation, is
appropriate if we assume that the diffusion rate of the chemoattractant is large in
relation to the characteristic time and length scales of the problem.

We nondimensionalize (1.2) and (1.4) by choosing reference values for time, length,
cell density, and the chemical concentration, respectively:

x0 =
1√
β
, t0 =

1

αχ0�max
, �0 = �max, S0 =

α�max

β
.

By introducing the dimensionless quantities

x̄ =
x

x0
, t̄ =

t

t0
, �̄ =

�

�0
, and S̄ =

S

S0

and immediately dropping the bars, we obtain the nondimensionalized system

∂t� + ∂x(�(1 − �)∂xS) = ε∂2
x�,(1.5)

∂2
xS = S − �.(1.6)

The only remaining dimensionless parameter is now

ε =
Dβ

αχ0�max
,

and in the following, we will shall assume ε � 1. This corresponds to a situation
where the cells react to chemotactic signals strongly enough such that their velocity
distribution is significantly biased towards the chemoattractant gradient, as opposed
to the case where unbiased reorientation dominates the behavior of individual cells.
In the relevant situation, a small diffusion term can be derived as a correction to
the purely convective macroscopic limit of a kinetic transport model (see, e.g., [3], as
mentioned above).
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The initial condition is given by

�(x, 0) = �εI .(1.7)

We choose homogeneous Neumann boundary conditions, i.e.,

∂x�(0, t) = ∂x�(L, t) = 0, ∂xS(0, t) = ∂xS(L, t) = 0.(1.8)

In the next section, we will analyze the limit ε → 0 of system (1.5), (1.6). By
deriving estimates which are uniformly valid for ε > 0, we will, by a compactness
argument, show convergence of � and S to entropy solutions of the corresponding
hyperbolic system,

∂t�̄ + ∂x(�̄(1 − �̄)∂xS̄) = 0,(1.9)

∂2
xS̄ = S̄ − �̄,(1.10)

with

∂xS̄(0, t) = ∂xS̄(L, t) = 0(1.11)

and subject to the initial condition

�̄(x, 0) = �̄I .(1.12)

As a consequence of (1.11), the characteristics of (1.9) are parallel to the boundary,
and no boundary conditions for �̄ are needed.

In sections 3 and 4, we study the long-time behavior of solutions of the hyperbolic
and the full parabolic system, respectively. In the latter, the formation of so-called
pseudostationary or metastable states can be observed. We will use formal asymptotic
methods to derive a system of ODEs describing the exponentially slow movement of
these patterns. Finally, in section 5, we will investigate the long-time behavior of
solutions numerically. The metastability analysis is strongly related to recent work
by Potapov and Hillen [13]. However, different scaling assumptions are used there,
and consequently, a direct comparison of results is not straightforward.

2. Convergence of solutions. In this section, we investigate the limit ε → 0 in
(1.5), (1.6), (1.7), (1.8). A similar problem from semiconductor physics is considered
in Markowich and Szmolyan [8]. There, however, the nonlinearity of the flux is only
due to a coupling with an electric field (the equivalent to the chemical concentration
here), and the formation of shocks in the hyperbolic problem is not observed.

Equations (1.5) and (1.6) differ from the system analyzed in Hillen and Painter [5]
by the fact that an elliptic instead of a parabolic equation for S is considered here.
In [5] existence of an invariant region for (�, S) in R2 and, consequently, global exis-
tence of smooth solutions is shown. In our case, the proof (based on a straightforward
maximum principle) is much simpler and presented below for completeness.

We make the following assumption on the initial data:

(A1) 0 ≤ �εI ≤ 1, �εI ∈ W 1,1(0, L), uniformly in ε.

Theorem 2.1. Let assumption (A1) hold. Then there exists a unique, global,
smooth solution of (1.5)–(1.8) satisfying

0 ≤ �(x, t), S(x, t) ≤ 1 and

∫ L

0

�(x, t) dx =

∫ L

0

�I(x) dx(2.1)
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and

S ∈ L∞((0,∞);W 2,∞(0, L)),(2.2)

uniformly in ε as ε → 0.
Proof. With Green’s function

G(x, y) =
1

2
e−|x−y| +

ex+y + e2L−x−y + ex−y + ey−x

2(e2L − 1)
,(2.3)

the chemoattractant density can be computed from (1.6), (1.8) in terms of the cell
density:

S(x, t) = S[�](x, t) :=

∫ L

0

G(x, y)�(y, t)dy.(2.4)

Using this in (1.5), the resulting equation

∂t� = ε∂2
x�− ∂x(�(1 − �)∂xS[�])

falls into the class of abstract semilinear parabolic equations. Local existence of unique
smooth solutions can be shown by semigroup techniques [12]. Then global existence
follows from a comparison principle: writing (1.5) as

∂t� + (2�− 1)∂xS∂x� + �(1 − �)(S − �) = ε∂2
x�,

it follows immediately that � = 0 and � = 1 are lower and upper solutions, respectively.
A uniform (in time) bound for S is an obvious consequence of (2.4).

We continue with estimates for the derivatives of �.
Lemma 2.2. Let assumption (A1) hold. Then the solution of (1.5)–(1.8) satisfies

� ∈ L∞
loc((0,∞);W 1,1(0, L)), uniformly in ε.

Proof. Differentiation of (1.5) with respect to x yields

∂t∂x� + ∂x((1 − 2�)∂x�∂xS + �(1 − �)∂2
xS) = ε∂3

x�.(2.5)

We define an approximation of the sign function by σδ(z) = σ(z/δ), 0 < δ � 1,
with σ smooth and increasing, σ(0) = 0, and σ(z) = sign z for |z| > z0. Then, with
abs δ(z) :=

∫ z

0
σδ(ξ)dξ, the convergence of abs δ(z) to |z| as δ → 0 is uniform in z ∈ R.

Multiplying (2.5) with σδ(∂x�) and integrating with respect to x yields∫ L

0

σδ(∂x�)∂t∂x� dx +

∫ L

0

σδ(∂x�)∂x(∂x�∂xS(1 − 2�)) dx

+

∫ L

0

σδ(∂x�)∂x(�(1 − �)(S − �)) dx = ε

∫ L

0

σδ(∂x�)∂
3
x� dx.(2.6)

We integrate (2.6) by parts. The boundary terms vanish and we obtain

d

dt

∫ L

0

abs δ(∂x�) dx−
∫ L

0

σ′
δ(∂x�)∂x�∂

2
x�∂xS(1 − 2�) dx

+

∫ L

0

σδ(∂x�)∂x(�(1 − �)(S − �)) dx = −ε

∫ L

0

σ′
δ(∂x�)(∂

2
x�)

2 dx ≤ 0.

(2.7)
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The function fδ(z) = σδ(z)z − abs δ(z) satisfies f ′
δ(z) = σ′

δ(z)z and converges to 0
uniformly in z ∈ R. We integrate the second term in (2.7) by parts, which gives

d

dt

∫ L

0

abs δ(∂x�) dx ≤−
∫ L

0

fδ(∂x�)∂x(∂xS(1 − 2�)) dx

−
∫ L

0

σδ(∂x�)∂x(�(1 − �)(S − �)) dx.

(2.8)

The last term can be estimated by

−
∫ L

0

σδ(∂x�)∂x(�(1 − �)(S − �)) dx = −
∫ L

0

σδ(∂x�)�(1 − �)∂xS dx

−
∫ L

0

σδ(∂x�)∂x�(3�
2 − 2�(S + 1) + S) dx ≤ c1 + c2

∫ L

0

|∂x�| dx.

In the limit δ → 0, the first term of the right-hand side of (2.8) vanishes, and we
obtain

d

dt

∫ L

0

|∂x�| dx ≤ c1 + c2

∫ L

0

|∂x�|dx.(2.9)

The assertion of Lemma 2.2 now follows from the Gronwall inequality.
Lemma 2.3. Let (A1) hold. Then the solution of (1.5)–(1.8) satisfies

√
ε∂x�, ∂t∂xS ∈ L2

loc((0,∞) × [0, L]), uniformly in ε.

Proof. We write (1.5) as

∂t� = ∂x(ε∂x�− �(1 − �)∂xS).(2.10)

Multiplication by � and integration with respect to x leads to

1

2

d

dt

∫ L

0

�2 dx + ε

∫ L

0

(∂x�)
2 dx =

∫ L

0

�(1 − �)∂xS∂x� dx.(2.11)

Since the integrand in the last term is in L1((0, L)) uniformly in t and ε by the
previous result, we obtain the boundedness of

√
ε∂x� by integration with respect to

t. As a consequence, the flux density J = �(1 − �)∂xS − ε∂x� is also uniformly
bounded in L2

loc((0,∞) × [0, L]). Differentiating (1.6) with respect to x and t and
using ∂t� + ∂xJ = 0, we obtain

∂t∂
3
xS − ∂t∂xS = ∂2

xJ.

Thus, ∂t∂xS = −S[∂2
xJ ]. Since the expression on the right-hand side is a bounded

operator applied to J ∈ L2
loc((0,∞) × [0, L]), the proof is complete.

Theorem 2.4. Let the assumption (A1) hold, (�, S) be a solution of (1.5)–(1.8),
and T > 0. Then, as ε → 0 (restricting to subsequences),

� → �̄ in C([0, T ];L1((0, L))) and S → S̄ in C([0, T ];C1([0, L])).(2.12)

The limit (�̄, S̄) ∈ L∞((0, T );BV ((0, L))×W 2,∞((0, L))) solves (1.9), (1.10), (1.11),
where �̄I ∈ BV ((0, L)) is an accumulation point of �εI . Moreover, �̄ is an entropy
solution of (1.9); i.e.,

∂tη(�̄) + ∂x(ψ(�̄)∂xS̄) + (�̄(1 − �̄)η′(�̄) − ψ(�̄)) (S̄ − �̄) ≤ 0(2.13)

holds in the weak sense for every smooth, convex η and with ψ′(�̄) = (1 − 2�̄)η′(�̄).
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Remark. Note that the entropy inequality does not give rise to a decaying entropy
functional.

Proof. The boundedness of the flux density (proof of Lemma 2.3) gives ∂t� ∈
L2((0, T );H−1((0, L))). Together with Lemma 2.2 this implies that � is in a com-
pact set in C([0, T ];L1((0, L))) (see Simon [15]). From Theorem 2.1, Lemma 2.3,
and an anisotropic generalization of the Sobolev embedding of W 1,p in C0,1−n/p,
p > n (see Haskovec and Schmeiser [4]), it follows that ∂xS is uniformly bounded in
C0,1/3([0, T ]× Ω̄), T > 0. An application of the Arzela–Ascoli theorem concludes the
proof of (2.12). The strong convergence of � and ∂xS allows us to pass to the limit in
the weak formulation of (1.5)–(1.8), giving the weak formulation of (1.9)–(1.11) for �̄
and S̄. The entropy inequality (2.13) follows analogously.

3. Long-time behavior of the hyperbolic system. In this section, we inves-
tigate the stability and the asymptotic behavior of entropy solutions of the hyperbolic
system. Stationary solutions of (1.9)–(1.11) satisfy

�̄(1 − �̄)∂xS̄ = 0,(3.1)

∂2
xS̄ = S̄ − �̄.(3.2)

It can be immediately seen that �̄ = S̄ = const is a solution.

Lemma 3.1. The constant solution, �̄ = S̄ = m
L , where 0 < m < L is the total

mass, of system (1.9)–(1.11) is unstable.

Proof. We multiply (1.9) by S̄ and differentiate (1.10) with respect to t to obtain

1

2

d

dt

∫ L

0

(S̄2 + (∂xS̄)2)dx =

∫ L

0

�̄(1 − �̄)(∂xS̄)2dx.(3.3)

For small nonconstant perturbations, the right-hand side of this equation is positive

∀t, and hence
∫ L

0
(S̄2 + (∂xS̄)2)dx is increasing in time. We rearrange this integral by

writing

∫ L

0

(S̄2 + (∂xS̄)2)dx =

∫ L

0

[(m
L

+ S̄ − m

L

)2

+ (∂xS̄)2

]
dx

=
m2

L
+ 2

∫ L

0

m

L

(
S̄ − m

L

)
dx +

∫ L

0

[(
S̄ − m

L

)2

+ (∂xS̄)2

]
dx.(3.4)

Since the total mass is conserved, we consider only perturbations with mass 0. Thus,

we have
∫ L

0
S̄ dx =

∫ L

0
�̄ dx = m ∀t, and the second term on the right-hand side

vanishes. Hence,

min∫
S̄dx=m

∫ L

0

(
S̄2 + (∂xS̄)2

)
dx =

m2

L
,

which is only achieved for S̄ = m
L . As the integral on the left-hand side is increasing

in time, Lemma 3.1 follows.

Lemma 3.2. As t → ∞, �̄(1 − �̄)(∂xS̄)2 → 0 in the following sense:

∫ ∞

τ

∫ L

0

�̄(1 − �̄)(∂xS̄)2dx dt
τ→∞−−−→ 0.(3.5)
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Proof. Integration of (3.3) from t = 0 to ∞ shows that

∫ ∞

0

∫ L

0

�̄(1 − �̄)(∂xS̄)2dxdt < ∞,(3.6)

which implies the assertion.
From this, and the steady state equations (3.1), (3.2), we expect convergence

to piecewise constant steady states, with �̄ = 0, �̄ = 1, or S̄x = 0. Going back to
the time-dependent problem (1.9), (1.10) and applying the method of characteristics,
we find that along characteristics given by ẋ = (1 − 2�̄)∂xS̄, �̄ evolves according to
˙̄� = (�̄− S̄)�̄(1 − �̄). It immediately follows that �̄ = S̄ = const, with 0 < const < 1,
is unstable. If �̄ gets sufficiently small such that S̄ > �̄, then �̄ = 0 is attracting,
and a similar argument holds for �̄ = 1. Hence, we expect solutions to approach (as
t → ∞) functions of the form

�̄∞(x) =
1 − (−1)ki

2
for xi < x < xi+1,(3.7)

with 0 = x0 < x1 < · · · < xM+1 = L, ki = k0 + i, and

S̄∞ = S[�̄∞].(3.8)

Plateaus, where �̄∞ = 1, alternate with vacuum regions (�̄∞ = 0). At the left, it
starts with a plateau for k0 = 1, or with a vacuum region for k0 = 0. The union of
all plateau regions is denoted by

P =
⋃

ki odd

(xi, xi+1).

It follows from mass conservation that

l(P ) =
∑

ki odd

(xi+1 − xi) =

∫ L

0

�̄I dx.

Not all possible stationary solutions �̄∞ are indeed entropy solutions. For scalar
conservation laws the sign of the jump of the density �̄∞ at an entropic shock is related
to the convexity behavior of the flux �̄∞(1 − �̄∞)∂xS̄∞. This leads to a condition on
the sign of ∂xS̄∞ at the plateau edges:

(−1)ki S̄∞,x(xi) < 0, 1 ≤ i ≤ M.(3.9)

Formally, ∂xS̄∞ would also be allowed to be zero. Such a solution would, however, be
unstable, since a small perturbation would lead to a violation of the entropy condition.
A possible derivation of (3.9) is given in the following section by the construction of
shock profiles for the full parabolic problem, i.e., boundary layer solutions smoothing
the jumps of �̄∞.

Next, we investigate the stability of the stationary solution (�̄∞, S̄∞) with respect
to a particular class of perturbations. We introduce the initial data

�̄I(x) =
1 − (−1)ki

2
+ εuI(x) for x ∈ (xi + εξi(0), xi+1 + εξi+1(0)) = Ii(0),

(3.10)
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where uI is a piecewise smooth function and |ε| � 1. Then, solutions of (1.9), (1.10)
have jumps at xi + εξi(t), and

�̄(x, t) =
1 − (−1)ki

2
+ εu(x, t) for x ∈ (xi + εξi(t), xi+1 + εξi+1(t)) = Ii(t).

(3.11)

The Rankine–Hugoniot jump condition reads

εξ̇i[�̄] = [�̄(1 − �̄)]∂xS̄|x=xi+εξi ,

which, at leading order, yields

ξ̇i(t) = − (u(xi+, t) + u(xi−, t)) S̄∞,x(xi).

Using (3.11) in (1.9), it follows that u(x, t) approximately satisfies

∂tu− ∂x(u∂xS̄∞) = 0 in P,

∂tu + ∂x(u∂xS̄∞) = 0 in Z := (0, L) \ P.

By the method of characteristics, we derive

ẋ = −∂xS̄∞, u̇ = u∂2
xS̄∞ = u(S̄∞ − 1) in P,

ẋ = ∂xS̄∞, u̇ = −u∂2
xS̄∞ = −uS̄∞ in Z.

Since S̄∞ is concave in P and convex in Z, exactly one extremum x̄i+1/2 exists between
xi and xi+1 for 1 ≤ i ≤ M−1. Since the derivative of S̄∞ also vanishes at the boundary
points, we introduce the notation x̄1/2 := 0, x̄M+1/2 = L. All of the characteristics
except those starting at x̄i+1/2, 0 ≤ i ≤ M , go into one of the xi, and u decays along
characteristics. The limit of the length of the plateau Ii(t) (ki odd) as t → ∞ is given
by

l(Ii(∞)) = l(Ii(0)) + ε

∫ ∞

0

(
ξ̇i+1 − ξ̇i

)
dt

= l(Ii(0)) + ε

∫ ∞

0

[−(u∂xS̄∞)(xi+1+) − (u∂xS̄∞)(xi+1−)

+ (u∂xS̄∞)(xi+) + (u∂xS̄∞)(xi−)]dt

= l(Ii(0)) − ε

∫ ∞

0

∫ xi+1

xi

∂x(u∂xS̄∞)dxdt + ε

∫ ∞

0

∫ x̄i+3/2

xi+1

∂x(u∂xS̄∞)dxdt

+ ε

∫ ∞

0

∫ xi

x̄i−1/2

∂x(u∂xS̄∞)dxdt

= l(Ii(0)) − ε

(∫ xi+1

xi

u dx +

∫ x̄i+3/2

xi+1

u dx +

∫ xi

x̄i−1/2

u dx

)∞

t=0

.

Since u
t→∞−−−→ 0, we obtain

l(Ii(∞)) = l(Ii(0)) + ε

∫ x̄i+3/2

x̄i−1/2

uIdx.(3.12)
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Fig. 3.1. Temporal evolution of the cell density �̄, starting from random initial data �̄I ∈
[0.3, 0.31] and with L = 1.
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Fig. 3.2. Cell density �̄ (dark) and chemical concentration S̄ (light) at t = 100.

Thus, as t → ∞, each plateau attracts all the mass initially distributed between the
neighboring minima of S̄∞. We can interpret this as a neutral stability of steady
states with alternating plateau and vacuum regions with respect to perturbations of
the type (3.10).

In Figures 3.1 and 3.2, we solved the problem (1.9)–(1.11) numerically. At each
time step, first the new chemical concentration is calculated from the old cell density,
and then the cell density is updated using an upwind method. In Figure 3.1, we can
observe the formation of shocks and rarefaction waves, until, in the last picture, the
stationary state is reached and no further movement of the plateaus can be observed.
In Figure 3.2, the corresponding chemical concentration S̄ is shown. Note that, as
discussed above, the chemical follows the course of the cell density �̄, even in the case
of the slim plateau on the right-hand side of the domain.
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4. Long-time behavior of the parabolic system. In this section, we will
be concerned with the stability and the asymptotic behavior of solutions of the full
parabolic problem (1.5)–(1.8). All stationary solutions have been characterized by
Potapov and Hillen in [13] by a phase plane analysis. They are the restrictions of
periodic solutions of the stationary differential equations to the interval (0, L).

The dynamic problem studied in [13] differs from (1.5)–(1.8) by the fact that S
is given by a parabolic equation. The authors show that all stationary solutions lie
on branches bifurcating from the spatially uniform stationary solution, dependent on
a bifurcation parameter inversely proportional to ε. It turns out that the constant
solution is linearly stable for large enough diffusivity. After a first bifurcation its
stability is transferred to a bifurcating solution. For the model (1.5)–(1.8), the linear
stability result can be extended to global nonlinear stability.

Lemma 4.1. Let assumption (A1) hold, and let ε > 1
4 . Then the solution of

(1.5)–(1.8) converges to the constant stationary solution as t → ∞.
Proof. As in the proof of Lemma 3.1, we multiply (1.5) by S and differentiate

(1.6) with respect to t to obtain, after integration by parts of the last term on the
right-hand side,

1

2

d

dt

∫ L

0

(S2 + (∂xS)2)dx =

∫ L

0

�(1 − �)(∂xS)2dx− ε

∫ L

0

((∂xS)2 + (∂2
xS)2)dx.

(4.1)

We can estimate the left-hand side by

1

2

d

dt

∫ L

0

(S2 + (∂xS)2)dx =

∫ L

0

�(1 − �)(∂xS)2dx− ε

∫ L

0

((∂xS)2 + (∂2
xS)2)dx

≤
(1

4
− ε

)∫ L

0

((∂xS)2 + (∂2
xS)2)dx.(4.2)

For ε > 1
4 , the right-hand side of (4.2) is negative. Integration from 0 to t yields

∫ L

0

(∂xS)2(x, t) dx ≤
(1

2
− 2ε

)∫ t

0

∫ L

0

(∂xS)2dx +

∫ L

0

(S2 + (∂xS)2)dx
∣∣∣
t=0

.

Applying Gronwall’s lemma, it follows that ‖∂xS‖L2(0,L) → 0 and as a consequence,
S → const as t → ∞.

The result is sharp in the sense that a linear stability analysis yields ε = 1
4 as the

first bifurcation point, where the constant steady state loses its stability.
We motivate our study of the dynamics for small values of ε by presenting the

result of a numerical experiment. Figure 4.1 shows a numerical solution of (1.5)–(1.8)
with ε = 2 × 10−4. We used the same numerical scheme as in the previous section
with an explicit discretization of the diffusion term. Starting from homogeneous initial
data with small perturbations, a pattern with several plateaus is formed as for the
hyperbolic problem. Once this pattern has formed, it remains structurally stable for
a long time, with the plateaus moving very slowly. Eventually, neighboring plateaus
merge with each other. This merging process occurs on a comparatively fast time
scale. The new pattern, now with one peak less, undergoes the same coarsening
process.

Experimentally, this so-called metastable behavior is a well-known phenomenon
in many fields, for instance solid-state physics. Mathematically, it has been studied in
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Fig. 4.1. Numerical solution of the parabolic system (1.5), (1.6) with random initial data
�I ∈ [0.3, 0.31], L = 10, and ε = 2 × 10−4.

various contexts such as the movement of viscous shocks [7], [14] or the Cahn–Hillard
equation (for instance, [1] and [2]). A chemotaxis model featuring the formation of
spike solutions is considered in [16].

The peculiar long-time behavior of system (1.5), (1.6) can be interpreted as fol-
lows. Each pseudostationary state of the parabolic system is exponentially close to a
stationary entropy solution of the hyperbolic system. In contrast to the latter, how-
ever, the small diffusion allows plateaus to communicate with each other, and smaller
plateaus are attracted by neighboring larger ones producing more chemoattractant.
The whole phenomenon depends on a nonzero diffusion coefficient ε. Eventually,
plateaus will get so close to each other that in general, the corresponding stationary
solutions of the hyperbolic system cannot satisfy the entropy condition any more.
Then a fast transition takes place, and the smaller plateau merges with the larger
one. On this fast time scale, solutions behave practically like in the hyperbolic case,
and a smoothened version of a rarefaction wave can be observed.

After the two peaks have merged, it is again diffusion that dominates the behav-
ior. The whole process repeats itself, until only one single plateau is left, which will
typically move to one of the domain boundaries. Thus, the only stable stationary
state seems to be one plateau at the left or right boundary of the domain.

By construction of approximate solutions, it is shown numerically and analytically
in [13] that the eigenvalues describing the slow movement of the peaks exponentially
approach zero as the length of the domain increases. These exponentially small eigen-
values are typical features of metastable systems. The authors also derive an ODE
describing the dynamics of a structure with two plateaus at the domain boundaries.
Here, we will use exponential asymptotics to formally derive a system of ODEs de-
scribing the slow movement of the plateaus. This method has been successfully used
in various applications; see, for instance, Ward [18] and references therein.
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Metastable dynamics of the parabolic system. In the following analysis of
the long-time behavior of system (1.5), (1.6), now rewritten as

∂t� + ∂xJ = 0, J = �(1 − �)∂xS[�] − ε∂x�, J = 0 at x = 0, L,(4.3)

we will assume that the formation of patterns from the initial data has already taken
place, and that a quasi-stationary pattern with plateaus (close to (3.7)) has been
formed. Our aim is to derive a system of equations describing the evolution of the
positions of the plateau boundaries x1(t), . . . , xM (t).

A first approximation to a solution of the parabolic problem with plateaus is
a stationary entropy solution of the hyperbolic problem (�̄∞, S̄∞) solving (3.7) and
(3.8). However, we need a much better approximation (�̃, S̃) with boundary layer
corrections close to the jumps of �̄∞. Actually we shall try to solve the parabolic
steady state problem

ε∂x�− �(1 − �)∂xS[�] = 0(4.4)

as precisely as possible. The approximation S̃ for the chemoattractant density will
be constructed such that it is close to S̄∞ with the same qualitative behavior. In
particular, it has the same monotonicity behavior at the plateau boundaries and
extrema x̃i+1/2 with the ordering 0 = x̃1/2 < x1 < x̃3/2 < · · · < x̃M−1/2 < xM <
x̃M+1/2 = L as the extrema x̄i+1/2 of S̄∞ introduced above. For the construction of
the approximating cell density, we consider the boundary layer problem

ε∂x�̂i = �̂i(1 − �̂i)∂xS̃, �̂i(xi) =
1

2
,(4.5)

where the auxiliary condition fixes the position of the boundary layer. The solution

�̂i[S̃](x) =

[
1 + exp

(
S̃(xi) − S̃(x)

ε

)]−1

(4.6)

will be used for x̃i−1/2 < x < x̃i+1/2. The shape of �̂i depends on the monotonicity of

S̃ in this interval: for increasing S̃, �̂i(x̃i−1/2) ≈ 0 and �̂i(x̃i+1/2) ≈ 1, and vice versa

for decreasing S̃. Thus, the boundary layer solution has the appropriate behavior for
jumps satisfying the entropy condition (3.9).

The construction of the boundary layer solution is nonstandard from the point of
view of singular perturbation theory, where the standard procedure would lead to eval-
uation of ∂xS̃ at x = xi in (4.5) and, consequently, �̂i[S̃](x) = [1 +
exp(∂xS̃(xi)(xi − x)/ε)]−1. This is, of course, an approximation of (4.6), obtained
by Taylor expansion of S̃. The better accuracy of (4.6) is needed in the exponential
asymptotics here.

By patching together the boundary layer solutions at the points x̃i+1/2, expo-
nentially small jump discontinuities would be created. By shifting the contributions
appropriately, a continuous (actually continuously differentiable) approximate cell
density is constructed:

�̃[S̃](x) = �̂i[S̃](x) − Δ�i[S̃] for x̃i−1/2 < x < x̃i+1/2(4.7)

with

Δ�i[S̃] =

i−1∑
j=1

[
�̂j+1[S̃](x̃j+1/2) − �̂j [S̃](x̃j+1/2)

]
.
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Note again that these corrections are exponentially small as ε → 0. There is a certain
arbitrariness in their choice. They would also serve their purpose if they would all be
shifted by the same constant, which could be fixed by prescribing the total mass, i.e.,
the total number of cells. However, since our final result will only contain differences
of the Δ�i[S̃], this issue is not important for us.

Finally, we require the chemoattractant density to satisfy

S̃ = S[�̃[S̃]].(4.8)

This is a highly nonlinear problem whose solvability is not trivial at all. In the ap-
pendix we prove, for small ε, existence of a unique solution close to S̄∞ and satisfying
the qualitative assumptions mentioned above. The fact that (�̃, S̃) is completely de-
termined by the positions x1, . . . , xM of the plateau boundaries motivates the notation
�̃ = �̃(x;x1, . . . , xM ), S̃ = S̃(x;x1, . . . , xM ). If these coincide with the points where
a stationary cell density takes the value 1/2, then all the Δ�i vanish and (�̃, S̃) is an
exact steady state, since it also satisfies the Neumann boundary conditions ∂x�̃ = 0,
x = 0, L, by its construction and by the boundary conditions for S̃. In general,
however, we obtain the residual

R := ε∂x�̃− �̃(1 − �̃)∂xS̃ = Δ�i(1 − 2�̂i + Δ�i)∂xS̃ in (x̃i−1/2, x̃i+1/2).(4.9)

The following procedure is an adaption of the methodology developed by Ward
and coworkers for an asymptotic approximation of the metastable dynamics of the
Ginzburg–Landau equation, viscous shocks, and the viscous Cahn–Hilliard equa-
tion (for an overview see, for instance, [18], [19] and references therein). The term
“metastable” can be made more precise by considering the linearization of the prob-
lem around the M -parameter family of approximate steady states. The exponen-
tial smallness of the residuals leads to expecting M exponentially small eigenvalues.
Metastability means that all the other eigenvalues are nonnegative. We do not have
any results on the spectral problem, but the assumption of metastability is strongly
supported by our numerical experiments and, even more strongly, by the numerical
studies of the eigenvalue problem in [13].

We start by introducing a correction term for our approximate solution:

�(x, t) = �̃(x;x1(t), . . . , xM (t)) + r(x, t).(4.10)

Since the approximate solution satisfies the boundary conditions, we have ∂xr = 0 at
x = 0, L. Just as in [19], we now consider an approximate version of (4.3), dropping
nonlinear terms in r and assuming |∂tr| � |∂t�̃|:

∂t�̃ + ∂xJ = 0, Lr + J + R = 0, J = 0 at x = 0, L,(4.11)

with the linearization of (4.4),

Lr = ε∂xr − (1 − 2�̃)∂xS̃r − �̃(1 − �̃)∂xS[r].(4.12)

The nonlocal term S[r] is one of the major differences between our approach and
the work in the above-mentioned references. As a first step, J will be computed by
integrating the first equation in (4.11). From the definition of �̃ in (x̃i−1/2, x̃i+1/2) we
have

∂t�̃ =
�̂i(1 − �̂i)

ε

⎡
⎣−∂xS̃(xi)ẋi +

M∑
j=1

(
∂xj S̃(x) − ∂xj S̃(xi)

)
ẋj

⎤
⎦−

M∑
j=1

∂xjΔ�iẋj .
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From the differential equation (4.5) for the boundary layer term �̂i we see that �̂i(1−
�̂i)/ε is an approximate Delta-distribution concentrated at x = xi and with weight
|∂xS̃(xi)|−1. The derivatives of the corrections Δ�i with respect to the xj are expected
to be exponentially small just as the Δ�i themselves. With these observations and
(3.9), integration of the first equation in (4.11) gives

J(x) ≈
i∑

j=1

(−1)kj ẋj for xi < x < xi+1.

Here the boundary condition J(0) = 0 has been used. The other boundary condition
J(L) = 0 leads to the equation

M∑
j=1

(−1)kj ẋj = 0,(4.13)

representing conservation of mass.
Now the second equation in (4.11) is multiplied by a test function ψ(x, t) and

integrated,

εψr|Lx=0 +

∫ L

0

(rL∗ψ + ψ(J + R))dx = 0,(4.14)

with the formally adjoint operator

L∗ψ = −ε∂xψ − (1 − 2�̃)∂xS̃ψ + ∂xS[�̃(1 − �̃)ψ].(4.15)

In the computation of L∗, the symmetry of Green’s function G (see (2.3)) has been
used.

The further procedure is motivated by the following observations: With (�̃, S̃) we
have constructed an M -parameter family of approximate solutions of the steady state
problem (4.4) producing exponentially small residuals R (see (4.9)). Therefore we
expect the linearized operator L to possess M exponentially small eigenvalues with
eigenfunctions approximately given by the derivatives of (�̃, S̃) with respect to the pa-
rameters x1, . . . , xM . As a consequence, the inverse of L will act as a bounded operator
on the inhomogeneity J+R in the equation for r only if this inhomogeneity satisfies M
solvability conditions characterized by the eigenfunctions of L∗ corresponding to the
exponentially small eigenvalues. Since L is not self-adjoint (the other major difference
compared to earlier work for, e.g., the Cahn–Hilliard equation), the computation of
approximations for these eigenfunctions is not immediate. We proceed pragmatically
by trying to determine candidates for ψ such that the terms involving the unknown
r in (4.14) become negligibly small.

The first two terms in (4.15) constitute a singularly perturbed differential operator
with turning points (see [9]) close to x = xi (where �̃ = 1/2) and at x = x̃i+1/2 (the

extrema of S̃). These turning points are of different character since the sign of the
coefficient (1−2�̃)∂xS̃ changes from positive to negative close to the xi and vice versa
at the x̃i+1/2. The second group of turning points is interesting for us, since their
character allows for spike layer solutions of the differential equation

ε∂xψ + (1 − 2�̃)∂xS̃ψ = 0.
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Such spike layer solutions will be the basis for our construction of appropriate ψ’s.
More precisely, we choose (for i = 1, . . . ,M − 1)

ψi+1/2(x) = ci+1/2 exp

(
−1

ε

∫ x

x̃i+1/2

(1 − 2�̃(z))∂xS̃(z)dz

)

for xi ≤ x ≤ xi+1. Outside of this interval we extend ψi+1/2 as a smooth function
satisfying

ψi+1/2(x) = 0 for 0 ≤ x ≤ x̃i−1/2,

|ψi+1/2(x)| ≤ ψi+1/2(xi) for x̃i−1/2 ≤ x ≤ xi,

|ψi+1/2(x)| ≤ ψi+1/2(xi+1) for xi+1 ≤ x ≤ x̃i+3/2,

ψi+1/2(x) = 0 for x̃i+3/2 ≤ x ≤ L,

which is possible under the basic assumption of the whole asymptotic procedure that
all the points xj and x̃j+1/2 are well separated from each other. The constant ci+1/2

is chosen such that ψi+1/2 approximately becomes a Delta-family for ε → 0. This
involves the computation of the integral

∫ L

0

exp

(
−1

ε

∫ x

x̃i+1/2

(1 − 2�̃(z))∂xS̃(z)dz

)
dx

≈
∫ xi+1

xi

exp

(
−
|∂2

xS̃(x̃i+1/2)|(x− x̃i+1/2)
2

2ε

)
dx ≈

√
2πε

|∂2
xS̃(x̃i+1/2)|

,

leading to

ci+1/2 =

√
|∂2

xS̃(x̃i+1/2)|
2πε

.

In this construction we have neglected the last term in the adjoint operator (4.15)
so far. Since �̃(1 − �̃)ψi+1/2 is uniformly exponentially small, the same holds for
∂xS[�̃(1 − �̃)ψi+1/2], and, thus, also for L∗ψi+1/2.

Using the functions ψi+1/2 in (4.14), we have to compute

∫ L

0

ψi+1/2J dx ≈ J(x̃i+1/2) ≈
i∑

j=1

(−1)kj ẋj

as well as ∫ L

0

ψi+1/2Rdx.

The approximation of the second integral is less straightforward since, by (4.9), the
integrand vanishes at x̃i+1/2, where the mass of ψi+1/2 concentrates. We therefore
split the integral into four parts A, B, C, and D, corresponding to the subintervals
(0, xi), (xi, x̃i+1/2), (x̃i+1/2, xi+1), and (xi+1, L), respectively. Using (4.9) and the
properties of ψi+1/2, we easily estimate the first and the last terms:

|A| ≤ cψi+1/2(xi)|Δ�i|,
|D| ≤ cψi+1/2(xi+1)|Δ�i+1|,
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with an ε-independent constant c. In a neighborhood of x̃i+1/2, the residual can be

approximated up to an exponentially small relative error by R ≈ Δ�i(1 − 2�̃)∂xS̃
for x < x̃i+1/2, and by R ≈ Δ�i+1(1 − 2�̃)∂xS̃ for x > x̃i+1/2. For the other two
subintegrals we therefore obtain

B ≈ ci+1/2Δ�i

∫ x̃i+1/2

xi

exp

(
−1

ε

∫ x

x̃i+1/2

(1 − 2�̃(z))∂xS̃(z)dz

)
(1 − 2�̃(x))∂xS̃(x)dx

≈ −εci+1/2Δ�i

and similarly

C ≈ εci+1/2Δ�i+1.

Since Δ�i is multiplied by the O(
√
ε)-constant εci+1/2 in B and by the exponentially

small ψi+1/2(xi) in A, A is negligible compared to B and, analogously, D is negligible
compared to C.

Collecting our results and using that ψi+1/2 vanishes on the boundary, (4.14) with
ψ = ψi+1/2 leads to

i∑
j=1

(−1)kj ẋj = εci+1/2(Δ�i+1 − Δ�i)(4.16)

for 1 ≤ i ≤ M − 1. As previously mentioned, a common additive constant in the Δ�i
would not change this result. From (4.16) with i = 1 we obtain an ODE for x1:

ẋ1 = (−1)k1εc3/2(Δ�2 − Δ�1).(4.17)

Equations for xi, 2 ≤ i ≤ M − 1, are derived by taking differences of consecutive
versions of (4.16):

ẋi = (−1)kiε
[
ci+1/2(Δ�i+1 − Δ�i) − ci−1/2(Δ�i − Δ�i−1)

]
.(4.18)

Finally, the difference between the mass conservation equation (4.13) and (4.16) with
i = M − 1 gives

ẋM = (−1)kM εcM−1/2(Δ�M−1 − Δ�M ).(4.19)

In principal, this completes the asymptotic procedure, and the dynamics of x1(t), . . . ,
xM (t) is completely determined by (4.17)–(4.19). However, the right-hand sides in
(4.17)–(4.19) are given in terms of S̃, the solution of (4.8), which is not known ex-
plicitly. On the other hand, it will be shown in the appendix that the explicitly
computable S̄∞ is a good enough approximation (essentially up to O(ε2)) for S̃ to
maintain the accuracy of the leading terms in (4.17)–(4.19). Therefore, the final result
of our asymptotics is the system (4.17)–(4.19) with

Δ�i+1 − Δ�i =

[
1 + exp

(
S̄∞(xi+1) − S̄∞(x̄i+1/2)

ε

)]−1

−
[
1 + exp

(
S̄∞(xi) − S̄∞(x̄i+1/2)

ε

)]−1

,

ci+1/2 =

√
|S̄∞(x̄i+1/2) − �̄∞(x̄i+1/2)|

2πε
,

S̄∞(x) =
∑

ki odd

∫ xi+1

xi

[
1

2
e−|x−y| +

ex+y + e2L−x−y + ex−y + ey−x

2(e2L − 1)

]
dy.
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The whole asymptotic approach is based on the fact that the movement of the bound-
ary layers is exponentially slow. It is valid only as long as x1 and xM stay away from
the boundaries and an extremal point x̄i+1/2 ∈ (xi, xi+1) of S̄∞ exists for every pair
xi < xi+1. These conditions are equivalent to the requirement that all plateau bound-
aries satisfy the entropy conditions (3.9). As soon as they are violated, the hyperbolic
dynamics starts to dominate.

With the above approximations, the right-hand sides of (4.17)–(4.19) can be eval-
uated explicitly in terms of x1, . . . , xM . However, in the general case the formulas are
very long and not very instructive. They involve not only the evaluation of the inte-
grals in the last equation above, but also the computation of all the extremal points
x̄3/2, . . . , x̄M−1/2 of S̄∞. As an example, we discuss the simplest situation M = 2
with k0 = 1, i.e., two plateaus adjacent to the boundaries with one vacuum region in
the middle. In this case, the system (4.17)–(4.19) reduces to

ẋ1 = ẋ2 = εc3/2(Δ�2 − Δ�1).(4.20)

Conservation of the initial mass m implies x1 + (L− x2) = m, and the system can be
reduced to a scalar equation for x1, substituting x2 = L−m+x1. The chemoattractant
density is given by

S̄∞(x) =
sinh(x1) cosh(L− x) + sinh(m− x1) cosh(x)

sinh(L)

for x1 ≤ x ≤ x2 with one interior minimum at

x̄3/2 =
1

2
log

eL sinh(x1) + sinh(m− x1)

e−L sinh(x1) + sinh(m− x1)
.

Steady states of (4.20) have to satisfy S̄∞(x1) = S̄∞(x2). It is easily seen that
x1 = m/2 is the only solution; i.e., the only steady state is the symmetric one, where
the mass is distributed equally between the two plateaus. In general, sign(x1−m/2) =
sign(S̄∞(x1) − S̄∞(x2)) = sign(ẋ1), showing the instability of the steady state. If
initially one of the plateaus is bigger, then it will grow at the expense of the smaller one
until all the mass is concentrated adjacent to one of the boundaries. This is expected
to be the stable stationary state. In the general case M > 2, our understanding of
the qualitative behavior of (4.17)–(4.19) is less complete. It is easy to see that steady
states are characterized by the requirement that S̄∞ take the same value at the plateau
edges x1, . . . , xM . This implies that all plateaus have the same length and that the
same is true for the vacuum regions separating them, with plateaus and/or vacuum
regions adjacent to the boundary having half the interior length. This shows that all
stationary solutions of the full problem as characterized in [13] are represented. We
conjecture that all these solutions are unstable, but a proof is lacking.

About the dynamics we observe that, generically, one of the exponentially small
terms Δ�i+1 − Δ�i will dominate all the others. As a consequence, effectively only
two neighboring plateau edges xi and xi+1 will move (with the same velocity), while
the others are approximately stationary.

In Figure 4.2, we compare the numerical solution of the full system (1.5), (1.6)
with the solution of system (4.17)–(4.19) by plotting the position of the boundaries of
a single plateau situated at x1 = 0.6 and x2 = 0.8 for different values of ε. Light lines
represent the solution obtained by solving the full system with an upwind scheme
with grid size Δx = Δt = 3 × 10−4; dark lines were obtained by solving system
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Fig. 4.2. Comparison of the numerical solution of system (1.5), (1.6) with ε = 4 × 10−4,
2 × 10−4, and 1 × 10−4 obtained with an upwind scheme (light) and the numerical solution of the
corresponding ODE system (dark). The different lengths of the branches is due to the fact that
as ε becomes smaller, solutions keep their plateau-like shape even when they get quite close to the
boundary, whereas for larger ε, the hyperbolic dynamics start to take over much faster.

(4.17)–(4.19) for M = 2 using the MAPLE routine lsode (a Livermore stiff ODE
solver). The two lowest branches in the figure correspond to ε = 4 × 10−4, and it
can be observed that the time it takes the plateau to advance towards the boundary
calculated by the two different approaches differs slightly. However, as we decrease
ε (ε = 2 × 10−4 for the middle branches, ε = 1 × 10−4 for the top branches) and
thus the error introduced by the approximating assumptions we had to take in order
to obtain the ODEs (4.17)–(4.19), the distance between the lines decreases until, for
ε = 1 × 10−4, the trajectories of x1 and x2 obtained by the upwind scheme and the
ODE system are practically identical.

5. A hybrid numerical-asymptotic approach. Developing a numerical
scheme that correctly captures both the short- and the long-time behavior of the
parabolic system is a nontrivial task. If we use a standard discretization of (1.5),
(1.6) with a grid size that is too large, the long-time behavior of the system will be
driven by numerical errors dominating the exponentially small terms responsible for
the exact dynamics. Choosing a grid that is fine enough to reduce numerical errors
in a sufficient way leads to very large computation times. Another approach is to
solve the equations for the positions of the plateau edges (4.17)–(4.19), and then to
specify an approximate solution �̃ at each time step according to (4.7). However, this
solution is valid only as long as the conditions (3.9) are satisfied.

These observations motivate a combined approach for the numerical solution of
(1.5), (1.6): As long as (3.9) holds, we use the asymptotic approximations (4.17)–
(4.19). We solve the equations with MAPLE and calculate the corresponding �̃ at
each time step. When the velocities of the plateau edges become O(ε), we switch
to a full numerical solution with the finite difference scheme described above. A
similar numerical-asymptotic approach was developed in [17] to solve the viscous
Cahn–Hillard equation in one space dimension.
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(a) x1 = 0.13, x2 = 0.32 (b) x1 = 0.15, x2 = 0.36

Fig. 5.1. Solutions of the ODE system (4.17)–(4.19) with different initial conditions and ε =
2 × 10−4. The position of the right plateau is x3 = 0.65, x4 = 0.85 in all pictures. An animation
(obtained with the combined numerical-asymptotic approach described in the text) corresponding to
Figure 5.1(b) can be found at http://www.ricam.oeaw.ac.at/people/page/dolak/animation.html.

Example: Behavior near a stationary state. As an example, we investigate
the dynamics of the parabolic system when solutions are initially close to an unstable
stationary state.

For a given initial mass m, this stationary solution consists of two plateaus of
equal mass, with the outer edges being exactly half the distance between the plateaus
away from the boundaries. The stationary solution is given by

x1 =
L−m

4
, x2 =

L + m

4
, x3 =

3L−m

4
, x4 =

3L + m

4
.(5.1)

In our experiments, we set m = 0.4 and L = 1 to obtain the boundary layer positions
x1 = 0.15, x2 = 0.35, x3 = 0.65, and x4 = 0.85 from (5.1). Then we choose two
different sets of initial conditions close to this stationary point and calculate the
temporal evolution of the boundary layers according to (4.17)–(4.19) with M = 4.
After a plateau has moved to the domain boundary or merged with another plateau,
we solve the system for M = 3 or M = 2, respectively.

In Figure 5.1(a), the left plateau has initially been made smaller and moved
towards the left boundary. The evolution proceeds in three steps, as follows. 1. The
left plateau moves to the left, until it reaches the boundary. 2. The right plateau
moves to the right boundary. 3. The two remaining plateau edges move to the left,
meaning that the bigger right plateau attracts cells from the left. The evolution stops
after the left plateau has disappeared and one plateau adjacent to the right boundary
is left as a stable steady state. As mentioned in the previous section, during each step
only one pair of plateau edges moves in parallel.

Figure 5.1(b) features an initial condition, where the left plateau has again been
made smaller but now moved towards the center compared to the unstable steady
state. We observe a two-step evolution, as follows. 1. The left plateau moves to
the right until it loses stability and is absorbed by the bigger right plateau. 2. The
remaining plateau moves to the right until it reaches the boundary.
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(a) t = 48000 (b) t = 48130

(c) t = 48158 (d) t = 48165

Fig. 5.2. Fast dynamics of the parabolic system, corresponding to the dashed lines in Figure
5.1(b). (a) The cell density calculated according to the asymptotic approximations (4.17)–(4.19) and
(4.7) shortly before the hyperbolic dynamics start to dominate. (b), (c) A rarefaction wave obtained
by solving (1.5), (1.6) with an upwind scheme until, in (d), only one plateau is left.

Details of the fast hyperbolic dynamics at the end of step 1 are shown in Figure 5.2.
As the left plateau moves towards the right one, a rarefaction wave starts to form when
the entropy condition for the corresponding hyperbolic system becomes violated. The
outer plateau edge of the right plateau is not affected by this merging process and does
not move, since locally the entropy condition is still satisfied. In general, however,
it is an open problem to predict the outcome of the hyperbolic evolution because of
the nonlocal coupling. After the loss of stability of a plateau edge, the hyperbolic
evolution could induce stability losses of other plateau edges. Therefore it cannot be
ruled out that several plateaus disappear within one “hyperbolic transition layer.”

Appendix. We shall prove solvability of the approximate steady state problem
(4.8) and an approximation result for its solution. Recalling the definition (3.7), (3.8)
of the plateau state (�̄∞, S̄∞) and of the extremal points x̄i+1/2 ∈ (xi, xi+1) of S̄∞,
we define

xi±1/4 :=
xi + x̄i±1/2

2
for 1 ≤ i ≤ M, x1/4 := 0, xM+3/4 := L,

and

A1 :=

M⋃
i=1

(xi−1/4, xi+1/4), A2 := [0, L] \A1 =

M⋃
i=0

[xi+1/4, xi+3/4].

Since A1 stays away from the extremal points of S̄∞, and A2 stays away from its
turning points xi, there exists a δ > 0 such that

|∂xS̄∞| ≥ 2δ in A1, |∂2
xS̄∞| ≥ 2δ in A2.

For chemoattractant densities we shall use the Banach space B1 := C1([0, L])∩C2(A2)
with its natural norm

‖S‖1 := ‖S‖L∞((0,L)) + ‖∂xS‖L∞((0,L)) + ‖∂2
xS‖L∞(A2)
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and the ball

Bδ := {S : ‖S − S̄∞‖1 < δ}.
Then S ∈ Bδ implies

|∂xS| ≥ δ in A1, |∂2
xS| ≥ δ in A2.

Therefore, in every subinterval [xi+1/4, xi+3/4] of A2, S has a unique local extremum
xi+1/2[S] of the same character as x̄i+1/2 = xi+1/2[S̄∞]. Consequently �̃[S] is well
defined by (4.7). A fixed point operator for solving (4.8) is now defined on Bδ by

F [S](x) := S[�̃[S]].(A.1)

Our Banach space for cell densities will be B2 := L1((0, L)) ∩ C(A2) with the norm

‖�‖2 := ‖�‖L1((0,L)) + ‖�‖L∞(A2).

First we prove that the map S from � to S given by solving the elliptic S-problem is
continuous.

Lemma A.1. There exists a c > 0 such that, for every � ∈ B2, S[�] ∈ B1 holds
and ‖S[�]‖1 ≤ c‖�‖2.

Proof. The result is a consequence of the facts that G and ∂xG are uniformly
bounded and that S = S[�] solves the differential equation ∂2

xS = S − �.
Now we are ready to prove the main result of this section.
Theorem A.2. For ε small enough, problem (4.8) has a unique solution in Bδ.
Proof. For every S ∈ Bδ, �̃[S] deviates from �̄∞ only by boundary layer corrections

close to the discontinuities x1, . . . , xM ∈ A1. The thickness of the boundary layers is
O(ε). In A2, �̃[S] and �̄∞ are exponentially close as ε → 0. This immediately implies
‖�̃[S]− �̄∞‖2 = O(ε) and, thus, from Lemma A.1, ‖F [S]− S̄∞‖1 = O(ε). This proves
that for ε small enough, F maps Bδ into itself.

Now let S1, S2 ∈ Bδ and set xl
i+1/2 := xi+1/2[Sl], �̂

l
i := �̂i[Sl], Δ�li := Δ�i[Sl],

l = 1, 2. Assume ∂xS1(xi), ∂xS2(xi) > 0 and xi < x < min{x1
i+1/2, x

2
i+1/2}. Then we

have

|�̂1
i (x) − �̂2

i (x)| ≤
∣∣∣∣exp

(
S1(xi) − S1(x)

ε

)
− exp

(
S2(xi) − S2(x)

ε

)∣∣∣∣
≤ exp

(
δ(xi − x)

ε

)
1

ε
|S1(xi) − S1(x) − S2(xi) + S2(x)|

≤ exp

(
δ(xi − x)

ε

)
x− xi

ε
‖S1 − S2‖1.

Analogous estimates for max{x1
i−1/2, x

2
i−1/2} < x < xi and for ∂xSl(xi) < 0 lead to

|�̂1
i (x) − �̂2

i (x)| ≤ exp

(
−δ|xi − x|

ε

)
|x− xi|

ε
‖S1 − S2‖1(A.2)

for 1 ≤ i ≤ M and max{x1
i−1/2, x

2
i−1/2} < x < min{x1

i+1/2, x
2
i+1/2}.

The mean value theorem gives

∂xS1(x
2
i+1/2) − ∂xS2(x

2
i+1/2) = ∂xS1(x

2
i+1/2) = ∂2

xS1(ξi+1/2)(x
2
i+1/2 − x1

i+1/2),

with ξi+1/2 ∈ A2. Since S1 ∈ Bδ,

|x1
i+1/2 − x2

i+1/2| ≤
1

δ
‖S1 − S2‖1(A.3)

follows. Now assume x1
i+1/2 < x2

i+1/2. Then we can estimate
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|�̂1
i (x

1
i+1/2) − �̂2

i (x
2
i+1/2)| ≤ |�̂1

i (x
1
i+1/2) − �̂2

i (x
1
i+1/2)| + |�̂2

i (x
1
i+1/2) − �̂2

i (x
2
i+1/2)|.

For the first term on the right-hand side, (A.2) can be used to give a bound of the
form EST ‖S1−S2‖1, where the abbreviation EST means “exponentially small term,”
i.e., a term of the form exp(−κ/ε) with κ > 0. For the second term we use (A.3) and
the fact that ∂x�̂

2
i is exponentially small in A2 to obtain an estimate of the same type.

Interchanging the roles of S1 and S2, the same can be done for x2
i+1/2 < x1

i+1/2. A
consequence of these results is

|Δ�1
i − Δ�2

i | ≤ EST ‖S1 − S2‖1(A.4)

for 1 ≤ i ≤ M . Combining (A.2) and (A.4), we have

|�̃[S1](x) − �̃[S2](x)| ≤
[
EST + exp

(
−δ|xi − x|

ε

)
|x− xi|

ε

]
‖S1 − S2‖1,(A.5)

for 1 ≤ i ≤ M and max{x1
i−1/2, x

2
i−1/2} < x < min{x1

i+1/2, x
2
i+1/2}. It remains to

consider ηi+1/2 := min{x1
i+1/2, x

2
i+1/2} < x < max{x1

i+1/2, x
2
i+1/2}:

|�̃[S1](x) − �̃[S2](x)| ≤ |�̃[S1](ηi+1/2) − �̃[S2](ηi+1/2)| + EST |x− ηi+1/2|,

since ∂x�̃[Sl] is exponentially small in A2. For the first term on the right-hand side
we use (A.5) and for the second (A.3), to obtain

|�̃[S1](x) − �̃[S2](x)| ≤ EST ‖S1 − S2‖1,(A.6)

for 0 ≤ i ≤ M and min{x1
i+1/2, x

2
i+1/2} < x < max{x1

i+1/2, x
2
i+1/2}. Since the integral

of the second term in the bracket in (A.5) is O(ε), a combination of (A.5) and (A.6)
leads to

‖�̃[S1] − �̃[S2]‖2 ≤ c ε‖S1 − S2‖1,

and, with Lemma A.1,

‖F [S1] − F [S2]‖1 ≤ c ε‖S1 − S2‖1,

showing that F is a contraction for ε small enough, and thus completing the proof of
the theorem.

Finally, it will be shown by formal asymptotic arguments that it is asymptotically
correct to approximate S̃ by S̄∞ in the right-hand sides of the ODEs (4.17)–(4.19).
It is easily seen that the exponentially small terms in the Δ�i are approximated with
a O(ε) relative error if the chemoattractant density S̃ is approximated up to O(ε2).
This holds for S̄∞ since

S̃(x) − S̄∞(x) =

∫ L

0

G(x, y)(�̃[S̃](y) − �̄∞(y))dy

=

M∑
i=1

∫ x̃i+1/2

x̃i−1/2

G(x, y)(�̂i[S̃](y) − �̄∞(y) − Δ�i)dy

= ε

M∑
i=1

(−1)kiG(x, xi)

(∫ ∞

0

dξ

1 + exp(|∂xS̃(xi)|ξ)

−
∫ 0

−∞

dξ

1 + exp(−|∂xS̃(xi)|ξ)

)
+ O(ε2)

= O(ε2).
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The third equality is due to the substitution y = xi + εξ and straightforward Taylor
expansion.
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TOUCHDOWN AND PULL-IN VOLTAGE BEHAVIOR OF A MEMS
DEVICE WITH VARYING DIELECTRIC PROPERTIES∗

YUJIN GUO† , ZHENGUO PAN† , AND M. J. WARD†

Abstract. The pull-in voltage instability associated with a simple MEMS device, consisting
of a thin dielectric elastic membrane supported above a rigid conducting ground plate, is analyzed.
The upper surface of the membrane is coated with a thin conducting film. In a certain asymptotic
limit representing a thin device, the mathematical model consists of a nonlinear partial differential
equation for the deflection of the thin dielectric membrane. When a voltage V is applied to the
conducting film, the dielectric membrane deflects towards the bottom plate. For a slab, a circular
cylindrical, and a square domain, numerical results are given for the saddle-node bifurcation value
V∗, also referred to as the pull-in voltage, for which there is no steady-state membrane deflection
for V > V∗. For V > V∗ it is shown numerically that the membrane dynamics are such that the
thin dielectric membrane touches the lower plate in finite time. Results are given for both spatially
uniform and nonuniform dielectric permittivity profiles in the thin dielectric membrane. By allowing
for a spatially nonuniform permittivity profile, it is shown that the pull-in voltage instability can
be delayed until larger values of V and that greater pull-in distances can be achieved. Analytical
bounds are given for the pull-in voltage V∗ for two classes of spatially variable permittivity profiles.
In particular, a rigorous analytical bound V1, which depends on the class of permittivity profile,
is derived that guarantees for the range V > V1 > V∗ that there is no steady-state solution for
the membrane deflection and that finite-time touchdown occurs. Numerical results for touchdown
behavior, both for V > V1 and for V∗ < V < V1, together with an asymptotic construction of the
touchdown profile, are given for both a spatially uniform and a spatially nonuniform permittivity
profile.

Key words. quenching, pull-in voltage, saddle-node, MEMS, dielectric permittivity

AMS subject classifications. 34K55, 74H10, 74K15

DOI. 10.1137/040613391

1. Introduction. Microelectromechanical systems (MEMS) combine electronics
with micro-size mechanical devices to design various types of microscopic machinery.
MEMS devices are key components of many commercial systems, including accelerom-
eters for airbag deployment in automobiles, ink jet printer heads, and chemical sensors.
Mathematical models of physical phenomena associated with the rapidly developing
field of MEMS technology are discussed in [13].

A key component of many MEMS systems is the simple device shown in Fig-
ure 1. The upper part of this device consists of a thin deformable elastic membrane
that is held fixed along its boundary. This membrane is modeled as a dielectric of
a thin, but finite, thickness. The upper surface of this membrane is coated with a
negligibly thin metallic conducting film. The thin dielectric membrane lies above a
rigid inelastic conducting ground plate. When a voltage V is applied to the conduct-
ing film, the thin dielectric membrane deflects towards the ground plate. A similar
deflection phenomenon, but on a macroscopic length scale, occurs in the field of elec-
trohydrodynamics. In this context, Taylor [17] studied the electrostatic deflection of
two oppositely charged soap films, and he predicted a critical voltage for which the
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Dielectric  Membrane w ith Conducting
             F ilm at Potential VSupported Boundary

Fixed G round Plate x'

y '

z '

d

L

Fig. 1. The MEMS capacitor. The upper surface of the elastic membrane is coated with an
ultrathin conducting film.

two soap films would touch together.
A similar physical limitation on the applied voltage occurs for the MEMS device

of Figure 1 in that there is a maximum voltage, called the pull-in voltage V∗, that can
be safely applied to the system. More specifically, if the applied voltage V is increased
past V∗, there is no longer a steady-state solution for the membrane deflection (cf. [11],
[14]). The existence of such a pull-in voltage was first demonstrated for a lumped
mass-spring model of electrostatic actuation in the pioneering study of [10], where
the restoring force of the deflected membrane is modeled by a Hookean spring. In
this lumped model the attractive inverse square law electrostatic force between the
membrane and the ground plate dominates the restoring force of the spring for small
gap sizes and large applied voltages. This leads to a touchdown or snap-through
behavior whereby the membrane hits the ground plate when the applied voltage is
sufficiently large. Although the lumped model qualitatively predicts the existence of
a pull-in voltage and the snap-through phenomenon, it cannot quantitatively account
for details such as membrane geometry.

A more detailed mathematical model of this phenomena, leading to a partial
differential equation (PDE) for the dimensionless deflection u of the membrane, was
derived and analyzed in [6], [11], [12], [14], and [15] (see also the references therein).
In the damping-dominated limit, and by modeling the thin dielectric as a membrane
with zero rigidity, a narrow-gap asymptotic analysis was used in [6] and [14] to derive
that u satisfies

∂u

∂t
= Δu− λf(x, y)

(1 + u)2
, x ∈ Ω; u = 0, (x, y) ∈ ∂Ω; u(x, y, 0) = 0.(1.1)

An outline of the derivation of (1.1) following that detailed in [14] and [6] is given
in the appendix. In (1.1), λ characterizes the relative strength of electrostatic and
mechanical forces in the system, and is given by

λ =
ε0V

2L2

2Td3
.(1.2)

Here V is the applied voltage, d is the undeflected gap size (see Figure 1), L and T are
the length scale and tension of the membrane, respectively, and ε0 is the permittivity
of free space. In (1.1), Ω is a bounded domain in R2, and f(x, y) is the permittivity
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profile, defined in terms of the dielectric permittivity ε2(x, y) of the membrane, by

f(x, y) =
ε0

ε2(x, y)
.(1.3)

The initial condition in (1.1) assumes that the membrane is initially undeflected and
that the voltage is applied at time t = 0. Mathematically, the pull-in voltage is
obtained from (1.2) in terms of the largest possible saddle-node bifurcation value λ∗
of λ for which (1.1) has a steady-state solution.

In the actual design of a MEMS device there are several issues that must be
considered. Typically, one of the primary device design goals is to achieve the max-
imum possible stable steady-state deflection, referred to as the pull-in distance, with
a relatively small applied voltage V . Another consideration may be to increase the
stable operating range of the device by increasing the pull-in voltage V∗ subject to
the constraint that the range of the applied voltage is limited by the available power
supply. This increase in the stable operating range may be important for the design
of microresonators. For other devices such as microvalves, where touchdown behavior
is explicitly exploited, it is of interest to decrease the time for touchdown, thereby
increasing the switching speed. One way of achieving larger values of λ∗, and hence
larger values of V∗, while simultaneously increasing the pull-in distance, is to use a
voltage control scheme imposed by an external circuit in which the device is placed
(cf. [12]). This approach leads to a nonlocal problem for the deflection of the mem-
brane (cf. [12]). A different approach, studied theoretically in [14], is to introduce
a spatial variation in the dielectric permittivity ε2(x, y) of the membrane so that
ε2(x, y) is largest, and consequently f(x, y) smallest, in the region where the mem-
brane deflection would normally be largest under a spatially uniform permittivity. For
a power-law permittivity profile in a slab domain, this approach was shown in [14] to
allow for an increase in both the pull-in voltage and the pull-in distance.

The first main goal of this paper is to extend the steady-state analysis in [14] by
giving analytical and numerical results for the saddle-node value λ∗ and the pull-in
distance for (1.1) for some general classes of permittivity profiles f(x, y). For the first
class, we assume that f(x, y) is bounded away from zero, so that

0 < C0 ≤ f(x, y) ≤ 1, x ∈ Ω.(1.4)

For the second class of profile, we allow for part of the membrane to be perfectly
conducting, so that

0 ≤ f(x, y) ≤ 1, x ∈ Ω.(1.5)

In Theorem 3.1 of [14], restated below in Theorem 2.1 of section 2, an upper bound
for λ∗ is obtained for permittivity profiles satisfying (1.4). This bound, however,
does not apply to profiles satisfying (1.5). In particular, it does not apply to the
power-law permittivity profiles considered in section 4 of [14], which vanish at one
point in Ω. To treat this case, in Theorem 2.2 we use a different approach to obtain
an upper bound for λ∗ for permittivity profiles satisfying (1.5). In section 2.1 we
give numerical results for λ∗ for a power-law permittivity profile and an exponential
permittivity profile, which satisfy (1.5) and (1.4), respectively. The precise forms
for these profiles, which each depend on a parameter α, are given below in (2.16).
Numerical results for λ∗ and the pull-in distance as a function of α are given for a
slab domain, a unit disk, and a square domain. For large values of α, these profiles
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are such that f(x, y) � 1 except in a boundary layer near ∂Ω. In this limit, we derive
a scaling law for λ∗.

The second main goal of this paper is to analyze and compute time-dependent
touchdown behavior for (1.1) for permittivity profiles satisfying either (1.4) or (1.5).
The solution u of (1.1) is said to touchdown at finite time if the minimum value of
u reaches −1 at some t = T∗ < ∞. At such a time, the membrane touches the
bottom fixed plate. In section 3.1 we determine bounds on λ for which touchdown
occurs in finite time. This approach also yields bounds on the touchdown time T∗.
The first bound, which is obtained from the method of [6] (see also [16]), applies to
a permittivity profile satisfying (1.4). The second bound applies to a permittivity
profile satisfying (1.5).

In section 3.2 we analytically construct the local touchdown profile for the con-
stant permittivity profile f(x, y) ≡ 1. To do so, we introduce a nonlinear change of
variables in a manner similar to that used in [8] to determine the local behavior of
the solution to a semilinear heat equation near the blow-up time and blow-up loca-
tion. This approach leads to a PDE that has smooth solutions near the touchdown
point. By constructing a formal power series solution for this PDE, the local form
of the touchdown profile is obtained. As discussed in [8], this transformed PDE is
also readily amenable to numerical computations. In this way, touchdown behavior
is computed numerically. In section 3.3, we briefly construct the local touchdown
profile for the constant permittivity profile f(x, y) ≡ 1 by using a formal center man-
ifold analysis of a PDE that results from a near-similarity group transformation of
(1.1). Such a dynamical systems approach has been used previously in [5] to study
quenching behavior in one space dimension and in [4] to study blow-up behavior for
a semilinear heat equation in N space dimensions. Another approach for studying
quenching behavior is given in [7].

In section 4 we give some asymptotic results for the touchdown profile for spa-
tially variable permittivity profiles. Numerical results of touchdown behavior are also
shown. Finally, in section 5, we list a few open mathematical problems.

2. The pull-in voltage: Location of a saddle-node value. In this section
we study the steady-state deflection u, which satisfies

Δu =
λf(x)

(1 + u)2
, x ∈ Ω; u = 0, x ∈ ∂Ω; u > −1.(2.1)

Here we let x = (x, y), and Ω ∈ R2 is a bounded domain. For several domain shapes
Ω and permittivity profiles f , we compute the maximum value of λ, labeled by λ∗,
for which (2.1) has a solution. This then determines the pull-in voltage from (1.2).
Bounds for λ∗ are also obtained. The bounds on λ∗ derived below are characterized
in terms of the smallest eigenvalue μ0 > 0, with corresponding eigenfunction φ0, of
the Dirichlet eigenvalue problem

Δφ + μφ = 0, x ∈ Ω; φ = 0, x ∈ ∂Ω.(2.2)

The following result for λ∗ was proved in [14].
Theorem 2.1. Suppose that f(x) satisfies

0 < C0 ≤ f(x) ≤ 1, x ∈ Ω.(2.3)
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Then, there exists a λ∗ < ∞ such that there is no solution to (2.1) for λ > λ∗.
Moreover, we have the bound

λ∗ ≤ λ̄1 ≡ 4μ0

27C0
.(2.4)

Proof. This is Theorem 3.1 of [14]. We only briefly sketch the proof here. We fix
the sign φ0 > 0 in Ω. We multiply (2.1) by φ0, integrate the resulting equation over
Ω, and use Green’s identity to get∫

Ω

(
μ0u +

λf(x)

(1 + u)2

)
φ0 dx = 0.(2.5)

Since f(x) ≥ C0 > 0 and φ0 > 0, the equality in (2.5) is impossible when

μ0u +
λC0

(1 + u)2
> 0 for all u > −1.(2.6)

Clearly (2.6) holds for λ sufficiently large, which proves that λ∗ is finite. A simple
calculation using (2.6) shows that (2.6) holds when λ > λ̄1, where λ̄1 is given in
(2.4).

As shown below, the bound (2.4) on λ∗ is rather good for the constant permittivity
profile f(x) ≡ 1. However, since this bound relies on the minimum of f(x) on Ω, it
cannot be used to estimate λ∗ for the power-law permittivity profile f(x) = |x|α with
α > 0 considered in [14]. For such a profile, C0 = 0 in (2.3). Therefore, it is desirable
to obtain a bound on λ∗ that depends on more global properties of f(x). Such a
bound is given in the next result.

Theorem 2.2. Suppose that f(x) satisfies

0 ≤ f(x) ≤ 1, x ∈ Ω,(2.7)

where f > 0 on a set of positive measure. Then, for some λ∗ < ∞, there is no solution
to (2.1) for λ > λ∗. Moreover, in terms of the eigenfunction φ0 of (2.2) normalized
by

∫
Ω
φ0 dx = 1, we have the bound

λ∗ ≤ λ̄2 ≡ μ0

3

(∫
Ω

fφ0 dx

)−1

.(2.8)

Proof. The proof that λ∗ is finite follows from (2.5). To obtain the bound (2.8),
we take φ0 > 0 and we normalize φ0 so that

∫
Ω
φ0 dx = 1. We then multiply (2.1) by

φ0(1 + u)2 and integrate the resulting equation over Ω to get∫
Ω

λfφ0 dx =

∫
Ω

φ0(1 + u)2Δu dx.(2.9)

Using the identity ∇· (Hg) = g∇·H +H ·∇g for any smooth scalar field g and vector
field H, together with the divergence theorem, we calculate∫

Ω

λfφ0 dx =

∫
∂Ω

(1 + u)2φ0∇u · n̂ dS −
∫

Ω

∇u · ∇
[
φ0(1 + u)2

]
dx,(2.10)

where n̂ is the unit outward normal to ∂Ω. Since φ0 = 0 on ∂Ω, the first term on the
right-hand side of (2.10) vanishes. By calculating the second term on the right-hand
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side of (2.10), and noting that u > −1, we estimate∫
Ω

λfφ0 dx = −
∫

Ω

2(1 + u)φ0|∇u|2 dx−
∫

Ω

(1 + u)2∇u · ∇φ0 dx(2.11a)

≤ −
∫

Ω

1

3
∇φ0 · ∇

[
(1 + u)3

]
dx.(2.11b)

The right-hand side of (2.11b) is evaluated explicitly, with the result∫
Ω

λfφ0 dx ≤ −1

3

∫
∂Ω

(1 + u)3∇φ0 · n̂ dS − μ0

3

∫
Ω

(1 + u)3φ0 dx.(2.12)

For u > −1, the last term on the right-hand side of (2.12) is positive. Moreover,
u = 0 on ∂Ω, and from (2.2) we get that

∫
∂Ω

∇φ0 · n̂ dS = −μ0 since
∫

Ω
φ0 dx = 1.

Therefore, if (2.1) has a solution, then, from (2.12), we must have that

λ

∫
Ω

fφ0 dx ≤ μ0

3
.(2.13)

This proves that there is no solution to (2.1) for λ > λ̄2, where λ̄2 is given in
(2.8).

2.1. Some explicit examples. We now compute λ∗ numerically for several
choices of the domain Ω and the permittivity profile f(x). In the computations below
we consider three choices for Ω,

Ω : [−1/2, 1/2] (slab), Ω : x2 + y2 ≤ 1 (unit disk),

Ω : [0,
√
π] × [0,

√
π] (square).

(2.14)

The unit disk and the square are chosen to have the same area. To compute the bounds
λ̄1 and λ̄2, we must calculate the first eigenpair μ0 and φ0 of (2.2), normalized by∫

Ω
φ0 dx = 1. A simple calculation yields that

μ0 = π2, φ0 =
π

2
sin

[
π

(
x +

1

2

)]
(slab),(2.15a)

μ0 = z2
0 ≈ 5.783, φ0 =

z0

J1(z0)
J0(z0|x|) (unit disk),(2.15b)

μ0 = 2π, φ0 =
π

4
sin

(√
πx

)
sin

(√
πy

)
(square).(2.15c)

Here J0 and J1 are Bessel functions, and z0 ≈ 2.4048 is the first zero of J0(z). The
bounds λ̄1 and λ̄2 are obtained by substituting (2.15) into (2.4) and (2.8). However,
λ̄2 must typically be evaluated by a numerical quadrature.

We first consider the constant permittivity profile f(x) ≡ 1. For the slab do-
main, the solution to (2.1) can be reduced to quadrature, and λ∗ can be computed
from a transcendental equation. To compute λ∗ for the unit disk, the scale invariance
property of (2.1) can be used as in [11] to reduce the boundary value problem (BVP)
(2.1) to an initial value problem, which is then readily solved. Our method for de-
termining λ∗ for the disk and the slab uses the BVP solver COLSYS (cf. [1]) with a
Newton iteration step to locate λ∗. This approach is similar to that employed in [18]
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Table 1

Numerical results for the maximum value λ∗ of λ for which (2.1) has a solution for the three
domains of (2.14). The upper bounds λ̄1 and λ̄2 on λ∗ given in (2.4) and (2.8) are also shown.

Ω λ∗ λ̄1 λ̄2

(slab) 1.401 1.462 3.290
(unit disk) 0.789 0.857 1.928
(square) 0.857 0.931 2.094

(a) |u(0)| versus λ (b) u versus |x|

Fig. 2. (a) Plot of |u(0)| versus λ for the unit disk (heavy solid curve) and for the slab (lighter
curve). (b) Plot of u versus |x| at λ = λ∗ for the unit disk (heavy solid curve) and the slab (lighter
curve). For both figures we have taken the constant permittivity profile f ≡ 1.

for Arrhenius nonlinearities and is useful for computing λ∗ below for spatially varying
permittivity profiles. For the square domain, we compute λ∗ using the nonlinear ellip-
tic solver PLTMG (cf. [2]), which uses a finite-element discretization of (2.1) together
with path-following methods to compute the solution as λ is varied. This software
package allows for the accurate computation of saddle-node bifurcation points. In
Table 1 we give numerical results for λ∗ for the three domains of (2.14) together with
numerical values for the bounds λ̄1 and λ̄2. Notice that the bound for λ̄1 is rather
close to λ∗, and is better than that of λ̄2. In Figure 2(a) we plot the bifurcation dia-
gram |u(0)| versus λ for the slab domain and for the unit disk. For λ = λ∗, in Figure
2(b) we plot u versus |x| for the slab domain and for the unit disk. In Figure 3(a) we
plot the bifurcation diagram for the square domain. For this domain, in Figure 3(b)
we show a surface plot of u versus (x, y) when λ = λ∗. The computations were done
with 1152 finite elements.

For each of the domains of (2.14), we now calculate λ∗ for the following two forms
of the permittivity profile f(x):

(slab): f(x) = |2x|α (power-law), f(x) = eα(x2−1/4) (exponential),(2.16a)

(unit disk): f(x) = |x|α (power-law), f(x) = eα(|x|2−1) (exponential),(2.16b)

(square) : f(x) =

(
2

π

)α/2

|x− x0|α (power-law),(2.16c)

f(x) = exp

(
α

(
2|x− x0|2

π
− 1

))
,
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Fig. 3. (a) Plot of the bifurcation diagram of the L2 norm |u|2 versus λ for a square domain. We
do not show any secondary bifurcations. (b) Surface plot of u versus x = (x, y) when λ = λ∗ ≈ .857.
For these figures the permittivity profile is f(x) ≡ 1.

where α > 0. In (2.16b) and (2.16c), x ≡ (x, y) and x0 = (
√
π/2,

√
π/2) is the center

of the square. For the domains of (2.14), we note that 0 ≤ f(x) ≤ 1 for x ∈ Ω. In
addition, both the power-law and exponential profiles satisfy the property that the
minimum of f(x) occurs at the point where the deflection u of the upper membrane
in Figure 1 is the largest. This effect leads to larger values of λ∗ and, from (1.2), it
increases the pull-in voltage. Physically, from (1.3), this corresponds to tailoring the
dielectric permittivity ε2 of the upper membrane so that ε2 is significantly larger than
the free-space permittivity ε0 in regions where the membrane deflection will be largest.
This idea of modifying the dielectric permittivity ε2 to increase both λ∗ and the pull-
in distance was first introduced and studied in [14] for the slab and disk domains. For
these domains, it was shown in [14] that (2.1) has a scaling invariance property under
a power-law profile for f(x). This property, which reduces (2.1) to the study of an
ordinary differential equation (ODE), was used in [14] to give a detailed analysis of the
bifurcation diagram of (2.1) for the slab and disk domains. Although the power-law
profile for f(x) is mathematically very convenient as a result of the scale invariance
property, it is not so realistic from a modeling perspective, in that it predicts an
infinite dielectric permittivity ε2 at the center of the membrane. The exponential
profile in (2.16) does not have this artifact of an infinite membrane permittivity.

For four values of α, in Figure 4 we plot the bifurcation diagram |u(0)| versus λ
for both the power-law and the exponential profiles. The plots are shown for both the
slab and the unit disk. The bifurcation diagram of the steady-state problem shown
in this figure is typical, in that the transition from existence to nonexistence is due to
the first fold. A more detailed study of the bifurcation diagram for a slab geometry
under a power-law profile was made in [14]. In [14] it was shown that for 0 ≤ α < αc,

where αc ≡ − 1
2 + 1

2

√
27
2 , there is exactly one saddle-node point, and so at most two

solutions to (2.1). Alternatively, for α > αc, the bifurcation diagram has an infinite
number of fold points, which tend to a common limiting value λ∗c as u(0) → −1+.
Although the details of the solution multiplicity obtained in [14] are very interesting,
they are not germane to the determination of λ∗.

In Figure 5(a) we plot the saddle-node value λ∗ versus α for the slab domain. A
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(a) slab, power-law profile (b) unit disk, power-law profile

(c) slab, exponential profile (d) unit disk, exponential profile

Fig. 4. The bifurcation diagram |u(0)| versus λ for the slab and the unit disk, and for both the
power-law and exponential profiles. (a) α = 0, α = 0.5, α = 1.5, α = 3.0. (b) α = 0, α = 0.5,
α = 1.5, α = 3.0. (c) α = 0, α = 5, α = 10, α = 19. (d) α = 0, α = 2, α = 4, α = 5.6. In each
figure the first saddle-node value increases with α.

(a) λ∗ versus α (slab) (b) λ∗ versus α (unit disk)

Fig. 5. Plots of λ∗ versus α for a power-law profile (heavy solid curve) and the exponential
profile (lighter curve). (a) corresponds to the slab domain, while (b) corresponds to the unit disk.

similar plot is shown in Figure 5(b) for the unit disk. The numerical computations
were done using COLSYS [1] to solve the BVP (2.1) and Newton’s method to de-
termine the saddle-node point. Although Theorem 2.2 guarantees a pull-in voltage
for any α > 0, λ∗ is seen to increase rapidly with α. Therefore, by increasing α, or
equivalently by increasing the spatial extent where f(x) � 1, one can increase the
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Table 2

Comparison of numerical values for λ∗ with the bounds λ̄1 and λ̄2 given in (2.4) and (2.8) for
the exponential permittivity profile.

Ω α λ∗ λ̄1 λ̄2

(slab) 1.0 1.733 1.878 4.023
(slab) 3.0 2.637 3.095 5.965
(slab) 6.0 4.848 6.553 10.50
(slab) 10.0 10.40 17.81 21.14

(unit disk) 0.5 1.153 1.413 2.706
(unit disk) 1.0 1.661 2.329 3.746
(unit disk) 2.0 3.296 6.331 6.864
(unit disk) 3.0 6.091 17.21 11.86

(a) slab (b) unit disk

Fig. 6. Plots of the pull-in distance |u(0)| versus α for the power-law profile (heavy solid curve)
and the exponential profile (lighter curve). (a) The slab domain. (b) The unit disk.

stable operating range of the MEMS capacitor. In Table 2 we give numerical results
for λ∗ together with the bounds λ̄1 and λ̄2 for the exponential permittivity profile
computed from (2.4), (2.8), (2.15), and (2.16). A numerical quadrature is used to
evaluate the integral defining λ̄2. From this table, we observe that the bound λ̄1 for
λ∗ is better than λ̄2 for small values of α. However, for α  1, we can use Laplace’s
method on the integral defining λ̄2 to obtain for the exponential permittivity profile
that

λ̄1 =
4b2

1

27
ec1α, λ̄2 ∼ c2α

2.(2.17)

Here b1 = π2, c1 = 1/4, c2 = 1/3 for the slab domain, and b1 = z2
0 , c1 = 1, c2 = 4/3

for the unit disk, where z0 is the first zero of J0(z) = 0. Therefore, for α  1, the
bound λ̄2 is better than λ̄1. A similar calculation can be done for the power-law
profile. Recall for the power-law profile that λ̄1 is undefined. However, by using
Laplace’s method, we readily obtain for α  1 that λ̄2 ∼ α2/3 for the unit disk and
λ̄2 ∼ 4α2/3 for the slab domain.

Next, we compute the pull-in distance for a slab domain for both the power-law
and the exponential permittivity profiles. The pull-in distance, defined as the value
of |u(0)| at the fold point λ = λ∗, gives the maximum stable steady-state membrane
deflection that can be achieved. For the slab domain, in Figure 6(a) we plot |u(0)|
versus α for both the power-law and the exponential conductivity profile. For the
power-law profile, the plot of |u(0)| versus α is equivalent to that in Figure 5.1 of
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(a) power-law profile (b) exponential profile

Fig. 7. (a) Plots of u versus |x| at λ = λ∗ for α = 0, α = 1, α = 3, and α = 10, in the unit disk
for the power-law profile. (b) Plots of u versus |x| at λ = λ∗ for α = 0, α = 2, α = 4, and α = 10,
in the unit disk for the exponential profile. In both figures the solution develops a boundary-layer
structure near |x| = 1 as α is increased.

[14]. A similar plot of |u(0)| versus α is shown in Figure 6(b) for the unit disk. For
the power-law profile in the unit disk we observe that |u(0)| ≈ 0.444 for any α > 0.
Therefore, rather curiously, the power-law profile does not increase the pull-in distance
for the unit disk. For the exponential profile we observe from Figure 6(b) that the
pull-in distance is not a monotonic function of α. The maximum value occurs at
α ≈ 4.8, where λ∗ ≈ 15.11 (see Figure 5(b)) and |u(0)| = 0.485. For α = 0, we have
λ∗ ≈ 0.789 and |u(0)| = 0.444. Therefore, since λ∗ is proportional to V 2 from (1.2),
we conclude that the exponential permittivity profile for the unit disk can increase
the pull-in distance by roughly 9% if the voltage is increased by roughly a factor of
four.

For device design purposes one of the primary goals is to maximize the pull-in
distance over a certain allowable voltage range that is set by the power supply. To
address this problem it would be interesting to formulate an optimization problem
that computes a dielectric permittivity f(x) that maximizes the pull-in distance for
a prescribed range of the saddle-node threshold λ∗. However, such an optimization
problem is beyond the scope of this study.

For the unit disk, in Figure 7(a) we plot u versus |x| at λ = λ∗ for four values
of α for the power-law profile. Notice that u(0) is the same for each of these values
of α. A similar plot is shown in Figure 7(b) for the exponential permittivity profile.
From these figures, we observe that u has a boundary-layer structure when α  1. In
this limit, f(x) � 1 except in a narrow zone near the boundary of the domain. For
α  1 the pull-in distance |u(0)| also reaches some limiting value (see Figures 6(a),
6(b), and 7). For the slab domain with an exponential permittivity profile, we remark
that the limiting asymptotic behavior of |u(0)| for α  1 is beyond the range shown
in Figure 6(a).

For α  1, we now use a boundary-layer analysis to determine a scaling law for
λ∗ for both types of permittivity profiles and for either a slab domain or the unit
disk. We illustrate the analysis for a power-law permittivity profile in the unit disk.
For α  1, there is an outer region defined by 0 ≤ r � 1 − O(α−1), and an inner
region where r − 1 = O(1/α). In the outer region, where λrα � 1, (2.1) reduces
asymptotically to Δu = 0. Therefore, the leading-order outer solution is a constant
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Fig. 8. Bifurcation diagram of w
′
(0) = −γ versus λ0 from the numerical solution of (2.19).

u = A. In the inner region, we introduce new variables w and ρ by

w(ρ) = u
(
1 − ρ

α

)
, ρ = α(1 − r).(2.18)

Substituting (2.18) into (2.1) with f(r) = rα, using the limiting behavior (1 − ρ/α)
α →

e−ρ as α → ∞, and defining λ = α2λ0, we obtain the leading-order boundary-layer
problem

w
′′

=
λ0e

−ρ

(1 + w)2
, 0 ≤ ρ < ∞; w(0) = 0, w

′
(∞) = 0, λ = α2λ0.(2.19)

In terms of the solution to (2.19), the leading-order outer solution is u = A = w(∞).
We define γ by w

′
(0) = −γ, for γ > 0, and we solve (2.19) numerically using

COLSYS [1] to determine λ0 = λ0(γ). In Figure 8 we plot λ0(γ) and show that this
curve has a saddle-node point at λ0 = λ0∗ ≡ 0.1973. At this value, we compute
w(∞) ≈ 0.445, which sets the limiting membrane deflection for α  1. Therefore, for
α  1, the saddle-node value, from (2.19), has the scaling law behavior λ∗ ∼ 0.1973α2

for a power-law profile in the unit disk. A similar boundary-layer analysis can be done
to determine the scaling law for λ∗ when α  1 for the other cases. In each case we
can relate λ∗ to the saddle-node value of the boundary-layer problem (2.19). In this
way, for α  1, we obtain

λ∗ ∼ 4(0.1973)α2, λ̄2 ∼ 4α2

3
(power-law, slab) or (exponential, unit disk),

(2.20a)

λ∗ ∼ (0.1973)α2, λ̄2 ∼ α2

3
(power-law, unit disk) or (exponential, slab).

(2.20b)

Notice that λ̄2 = O(α2), with a factor that is about 5/3 times as large as the multiplier
of α2 in the asymptotic formula for λ∗. For an exponential profile and a power-law
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(a) exponential profile (b) power law profile

Fig. 9. Comparison of numerically computed λ∗ (heavy solid curve) with the asymptotic result
(dotted curve) from (2.20) for the unit disk. (a) The exponential profile. (b) The power-law profile.

(a) λ∗ (b) max |u|

Fig. 10. (a) λ∗ versus α for the square domain. The power-law profile is the heavy solid curve,
and the exponential profile is the lighter curve. (b) The pull-in distance max |u| at λ = λ∗ versus α
for the exponential profile in the square domain.

Table 3

Numerical results for λ∗ versus α for the exponential and power-law permittivity profiles of
(2.16c). The computations are for the square domain [0,

√
π] × [0,

√
π].

α λ∗ (power-law) λ∗ (exponential)
0.5 1.523 1.314
1.0 2.485 2.005
2.0 5.607 4.589
3.0 10.85 10.21
4.0 18.67 21.89
5.0 29.04 44.61
6.0 41.67 83.31
7.0 56.38 132.6

profile in the unit disk, in Figure 9(a) and Figure 9(b), respectively, we show the close
agreement between the full numerical value of λ∗ and the asymptotic result (2.20).

For the square domain we use PLTMG (cf. [2]) to compute λ∗ as a function of α.
In Figure 10(a) we plot λ∗ versus α for both the power-law and exponential profiles
of (2.16c). In Table 3 we give numerical results for λ∗ at different values of α for both
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Fig. 11. Plot of the numerical solution for u in the square domain at the fold point λ∗ for the
exponential permittivity profile with α = 8. The maximum deflection now occurs near each of the
four corners of the square, where the dielectric permittivity function f is the largest.

profiles. The computations were done with 3200 finite elements. From this table we
observe that λ∗ increases rapidly with α. In Figure 10(b) we plot the pull-in distance
max |u| versus α at λ = λ∗ for the exponential permittivity profile. This curve has the
same qualitative shape as for the case of the unit disk shown in Figure 6(b). For the
values of α shown in Figure 10(b) the maximum deflection occurs at the center of the
square. For the power-law profile our numerical computations (not shown) indicate
that, as for the case of the unit disk in Figure 6(a), the membrane deflection at λ = λ∗
is essentially independent of α, provided that α is not too large.

For α  1 the solution u under either a power-law or an exponential dielectric
permittivity profile develops strong gradients in the localized regions where f(x, y) ≈
1. In contrast to the case of the unit disk, where f ≈ 1 near the boundary r = 1, for
the square domain we have f ≈ 1 for α  1 only in small neighborhoods near each of
the four corners of the square. Away from these corners we have f � 1 when α  1.
In Figure 11, where we plot the numerical solution for u in the square domain at the
fold point λ∗ for the exponential permittivity profile with α = 8, we observe that the
maximum deflection now occurs near each of the corners of the square.

3. Touchdown behavior. We now study touchdown, or quenching, behavior
for (1.1). The solution u of (1.1) is said to touchdown at finite time if the minimum
value of u reaches −1 at some t = T∗ < ∞. In section 3.1 we determine bounds on
λ for which touchdown occurs in finite time. In section 3.2 we analytically construct
the local touchdown profile for the case f(x) ≡ 1. For f(x) ≡ 1, in section 3.3 we
briefly outline the construction of the local touchdown profile by using a formal center
manifold analysis of a PDE, similar to that in [5] and [4], that results from a similarity
group transformation of (1.1).

3.1. Bounds on touchdown behavior. Let μ0 and φ0 be the smallest eigen-
pair of (2.2). The first result is a minor modification of a key result in [6].

Theorem 3.1. Suppose that f(x) satisfies

0 < C0 ≤ f(x) ≤ 1, x ∈ Ω,(3.1)

and that λ > λ̄1 ≡ 4μ0

27C0
. Then, the solution u of (1.1) reaches u = −1 at finite time.

Proof. Without loss of generality we assume that φ0 > 0 in Ω, and we normalize
φ0 so that

∫
Ω
φ0 dx = 1. Multiplying (1.1) by φ0 and integrating over the domain, we
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obtain

d

dt

∫
Ω

φ0u dx =

∫
Ω

φ0Δu dx−
∫

Ω

λφ0f(x)

(1 + u)2
dx.(3.2)

Using Green’s theorem, together with the lower bound in (3.1), we get

d

dt

∫
Ω

φ0u dx ≤ −μ0

∫
Ω

φ0u dx− λC0

∫
Ω

φ0

(1 + u)2
dx.(3.3)

Next, we define an energy-like variable E(t) by E(t) =
∫

Ω
φ0u dx, where E(0) = 0, so

that

E(t) =

∫
Ω

φ0u dx ≥ inf
Ω

u

∫
Ω

φ0 dx = inf
Ω

u.(3.4)

Then, using Jensen’s inequality on the second term on the right-hand side of (3.3),
we obtain

dE

dt
+ μ0E ≤ − λC0

(1 + E)2
, E(0) = 0.(3.5)

We then compare E(t) with the solution F (t) of

dF

dt
+ μ0F = − λC0

(1 + F )2
, F (0) = 0.(3.6)

It then follows from standard comparison principles that E(t) ≤ F (t) on their domains
of existence. Therefore,

inf
Ω

u ≤ E(t) ≤ F (t).(3.7)

Next, we separate variables in (3.6) to determine t in terms of F . The touchdown
time T1 for F is obtained by setting F = −1 in the resulting formula. In this way, we
get

T1 ≡
∫ 0

−1

[
μ0s +

λC0

(1 + s)2

]−1

ds.(3.8)

The touchdown time T1 is finite when the integral in (3.8) converges. A simple
calculation shows that this occurs when λ > λ̄1 ≡ 4μ0

27C0
. Hence if T1 is finite, then

(3.7) implies that the touchdown time T∗ of (1.1) must also be finite. Therefore, when
λ > λ̄1 = 4μ0

27C0
, we have that T∗ < T1, where T1 is given in (3.8).

Recalling Theorem 3.1 in [14], which was summarized in Theorem 2.1, we con-
clude that not only is there no steady-state solution for (1.1) when λ > λ̄1, but the
corresponding time-dependent solution of (1.1) touches down in finite time. We are
not able to obtain any theoretical information on touchdown behavior for the range
λ∗ < λ < λ̄1. The next result, using the approach of Theorem 2.2, establishes touch-
down behavior for more general permittivity profiles f(x), such as the power-law
profile, that vanish at certain points in Ω.

Theorem 3.2. Suppose that f satisfies (2.7), and that λ > λ̄2, where λ̄2 is
defined in (2.8). Then, the solution u of (1.1) reaches −1 at finite time.
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Proof. Let φ0 and μ0 be the smallest eigenpair of (2.2). We fix the sign φ0 > 0 in
Ω, and we normalize φ0 so that

∫
Ω
φ0 dx = 1. We multiply (1.1) by φ0(1 + u)2, and

integrate the resulting equation over Ω to get

d

dt

∫
Ω

φ0

3
(1 + u)3 dx =

∫
Ω

φ0(1 + u)2Δu dx−
∫

Ω

λfφ0 dx.(3.9)

We calculate the first term on the right-hand side of (3.9) as in the proof of Theorem
2.2 to get

d

dt

∫
Ω

φ0

3
(1 + u)3 dx(3.10a)

= −
∫

Ω

∇u · ∇
[
φ0(1 + u)2

]
dx−

∫
Ω

λfφ0 dx

= −
∫

Ω

2(1 + u)φ0|∇u|2 dx−
∫

Ω

1

3
∇φ0 · ∇

[
(1 + u)3

]
dx−

∫
Ω

λfφ0 dx(3.10b)

≤ −1

3

∫
∂Ω

∇φ0 · n̂ dS − μ0

3

∫
Ω

(1 + u)3φ0 dx−
∫

Ω

λfφ0 dx.(3.10c)

Since
∫

Ω
∇φ0 · n̂ dS = −μ0 and u ≥ −1, we further estimate from (3.10c) that

dE

dt
+ μ0E ≤ R, R ≡ μ0

3
− λ

∫
Ω

fφ0 dx, E ≡ 1

3

∫
Ω

φ0(1 + u)3 dx.

(3.11)

Next, we compare E(t), which satisfies E(0) = 1/3, with the solution F (t) of

dF

dt
+ μ0F = R, F (0) =

1

3
.(3.12)

By standard comparison principles and the definition of E, we obtain

1

3
inf
Ω

(1 + u)3 ≤ E(t) ≤ F (t).(3.13)

Assume that λ > λ̄2, where λ̄2 is defined in (2.8). For this range of λ, we have that
R < 0 in (3.11) and (3.12). For R < 0, we have that F = 0 at some finite time t = T2.
From (3.13), this implies that E = 0 at finite time. Thus, u has touchdown at some
finite time T∗ < T2. Then, by calculating T2 explicitly, we get the following bound on
T∗:

T∗ < T2 ≡ − 1

μ0
log

[
1 − μ0

3λ

(∫
Ω

fφ0 dx

)−1
]
.(3.14)

The operation of a microvalve in MEMS technology explicitly exploits the exis-
tence of touchdown behavior in order to open and close a switch (see section 7.6 of
[13]). The bounds on the touchdown time above relate to the time it takes to open
such a valve, and thereby gives an estimate on the switching speed. To estimate
the switching speed as a function of α, we label I(α) ≡

∫
Ω
fφ0 dx. For both the

power-law and exponential permittivity profiles we calculate that I
′
(α) > 0 and that

I(α) ∼ cα−2 for α  1 for some c > 0. Therefore, from (3.14) we obtain that T2 is
an increasing function of α and that T

′

2(α) ∼ 2α/(3cλ) for α  1. This suggests that
the switching speed decreases as α increases.
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3.2. The touchdown profile f(x) ≡ 1: Transformed problem. We now
construct a local expansion of the solution near the touchdown time and touchdown
location by adapting the method of [8] used to analyze blow-up behavior. In the
analysis below we assume that touchdown occurs at x = 0 and t = T . In the absence
of diffusion, the time-dependent behavior of (1.1) is given by ut = −λ(1 + u)−2.
Integrating this differential equation and setting u(T ) = −1, we get (1 + u)3 =
−3λ(t−T ). This solution motivates the introduction of a new variable v(x, t) defined
in terms of u(x, t) by

v =
1

3λ
(1 + u)3.(3.15)

Notice that u = −1 maps to v = 0. In terms of v, (1.1) transforms exactly to

vt = Δv − 2

3v
|∇v|2 − 1, x ∈ Ω; v =

1

3λ
, x ∈ ∂Ω; v =

1

3λ
, t = 0.

(3.16)

We will find a formal power series solution to (3.16) near v = 0 in dimension N = 1
and N = 2.

As in [8] we look for a locally radially symmetric solution to (3.16) in the form

v(x, t) = v0(t) +
r2

2!
v2(t) +

r4

4!
v4(t) + · · · ,(3.17)

where r = |x|. In dimension N = 1, such a form implies that the touchdown profile
is locally even. We then substitute (3.17) into (3.16) and collect coefficients in r. In
this way, we obtain the following coupled ODEs for v0 and v2:

v
′

0 = −1 + Nv2, v
′

2 = − 4

3v0
v2

2 +
(N + 2)

3
v4.(3.18)

We are interested in the solution to this system for which v0(T ) = 0, with v
′

0 < 0 and
v2 > 0 for T − t > 0 with T − t � 1. The system (3.18) has a closure problem in
that v2 depends on v4. However, we will assume that v4 � v2

2/v0 near the singularity.
With this assumption, (3.18) reduces to

v
′

0 = −1 + Nv2, v
′

2 = − 4

3v0
v2

2 .(3.19)

We now solve the system (3.19) asymptotically as t → T− in a manner similar to
that used in [8]. We first assume that Nv2 � 1 near t = T . This leads to v0 ∼ T − t
and the following differential equation for v2:

v
′

2 ∼ −4

3(T − t)
v2

2 as t → T−.(3.20)

By integrating (3.20), we obtain that

v2 ∼ − 3

4 [log(T − t)]
+

B0

[log(T − t)]
2 + · · · as t → T−,(3.21)

for some unknown constant B0. From (3.21), we observe that the consistency condi-
tion that Nv2 � 1 as t → T− is indeed satisfied. Substituting (3.21) into (3.19) for



326 YUJIN GUO, ZHENGUO PAN, AND M. J. WARD

v0, we obtain for t → T− that

v
′

0 = −1 + N

(
− 3

4 [log(T − t)]
+

B0

[log(T − t)]
2 + · · ·

)
.(3.22)

Using the method of dominant balance, we look for a solution to (3.22) as t → T− in
the form

v0 ∼ (T − t) + (T − t)

[
C0

[log(T − t)]
+

C1

[log(T − t)]
2 + · · ·

]
,(3.23)

for some C0 and C1 to be found. A simple calculation yields that

v0 ∼ (T − t) − 3N(T − t)

4| log(T − t)| −
N (B0 − 3/4) (T − t)

| log(T − t)|2 + · · · as t → T−.(3.24)

The local form for v near touchdown is v ∼ v0 + r2v0/2. Using the leading term in v2

from (3.21) and the first two terms in v0 from (3.24), we obtain the local form

v ∼ (T − t)

[
1 − 3N

4| log(T − t)| +
3r2

8(T − t)| log(T − t)| + · · ·
]
,(3.25)

for r � 1 and t− T � 1. Finally, using the nonlinear mapping (3.15) relating u and
v, we conclude that

u ∼ −1 + [3λ(T − t)]
1/3

(
1 − 3N

4| log(T − t)| +
3r2

8(T − t)| log(T − t)| + · · ·
)1/3

.

(3.26)

We note, as in [8], that if we use the local behavior v ∼ (T−t)+3r2/[8| log(T − t)|],
we get that

|∇v|2
v

∼
[
2

3
| log(T − t)| + 16(T − t)| log(T − t)|2

9r2

]−1

.(3.27)

Hence, the term |∇v|2/v in (3.16) is bounded for any r, even as t → T−. This
allows us to use a simple finite-difference scheme to compute numerical solutions to
(3.16). With this observation, we now perform a few numerical experiments on the
transformed problem (3.16). For the slab domain, we define vmj for j = 1, . . . , N + 2
to be the discrete approximation to v(mΔt,−1/2 + (j − 1)h), where h = 1/(N + 1)
and Δt are the spatial and temporal mesh sizes, respectively. A second-order accurate
in space and first-order accurate in time discretization of (3.16) is

vm+1
j = vmj + Δt

((
vmj+1 − 2vmj + vmj−1

)
h2

− 1 −
(
vmj+1 − vmj−1

)2

6vmj h2

)
, j = 2, . . . , N + 1,

(3.28)

with vm1 = vmN+2 = (3λ)
−1

for m ≥ 0. The initial condition is v0
j = (3λ)

−1
for

j = 1, . . . , N + 2. The time-step Δt is chosen to satisfy Δt < h2/4 for the stability of
the discrete scheme.
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(a) v versus x (b) u versus x

Fig. 12. Experiment 1: For the slab domain and λ = 1.35 < λ∗ we plot v and u versus
x at times t = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 1.0, 3.0) from the discrete scheme (3.28) with N = 200 and
Δt = 0.6 × 10−5. Both v and u decrease towards a steady-state solution as t increases.

(a) v versus x (b) u versus x

Fig. 13. Experiment 2: for the slab domain and λ = 1.5 > λ∗ we plot v and u versus x at times
t = (0, 0.1, 0.3, 0.5, 0.7, 1.0, 1.04, 1.06, 1.07, 1.07364) from the discrete scheme (3.28) with N = 200,
and Δt = 0.6 × 10−5. For this data, there is touchdown in finite time.

Experiment 1. We consider the slab domain |x| ≤ 1/2 with λ = 1.35. We take
Δt = 0.60 × 10−5 and N = 200, so that h = 0.49751 × 10−2. Since λ < λ∗ ≈ 1.401
from Table 1, we expect that the time-dependent solution will approach the steady-
state solution on the lower branch of the |u(0)| versus λ bifurcation diagram. This
is shown in Figure 12(a) and Figure 12(b), where we plot v and u = −1 + (3λv)1/3

versus x, respectively.
Experiment 2. Next, we consider the slab domain with λ = 1.5. From Table 1

we note that λ̄2 > λ > λ̄1 > λ∗. Therefore, Theorem 3.1 guarantees touchdown
in a finite time T∗ with T∗ < T1, where T1 = 2.040 as computed numerically from
(3.8). Since λ < λ̄2, the bound T2 for the touchdown time, as given in (3.14), is
undefined. For the discrete scheme (3.28) we took Δt = 0.60 × 10−5 and N = 200,
so that h = 0.49751 × 10−2. To determine the touchdown time accurately, we took
time-steps smaller than this value of Δt when the minimum value of v dropped below
some small threshold. In this way, we found that touchdown occurs at x = 0 and at
T∗ ≈ 1.07366. In Figure 13(a) and Figure 13(b) we plot v and u = −1 + (3λv)1/3

versus x, respectively, showing touchdown behavior in finite time.
In Figure 14(a) we compare the numerical approximation for v with the local
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(a) slab domain: t = 1.0736 (b) unit disk: t = 0.7228

Fig. 14. Plot of discrete approximation for v (heavy solid curve) and the local approximation for
v (lighter curve) given in (3.25). (a) Slab domain with T = 1.07366. (b) Unit disk with T = 0.722858.

behavior (3.25) at t = 1.0736. In (3.25) we set N = 1 and use T = 1.07366 for the
touchdown time. From this figure we observe that the local asymptotic result (3.25)
compares favorably with the numerical result. Note that if we took a coarser mesh
with N = 150 meshpoints, so that h = 0.66225 × 10−2, and chose Δt = 0.1 × 10−4,
then the touchdown time would be T∗ ≈ 1.07357.

Experiment 3. Next, we consider the unit disk with f(x) ≡ 1 and λ = 1.0.
From Table 1 we note that λ̄2 > λ > λ̄1 > λ∗. Therefore, Theorem 3.1 guarantees
touchdown in a finite time T∗ with T∗ < T1, where T1 = 1.140 as computed numerically
from (3.8). Since λ < λ̄2, T2 in (3.14) is undefined. A second-order accurate in space
and first-order accurate in time discrete approximation to (3.16), with spatial meshsize
h, on 0 ≤ r ≤ 1 and t ≥ 0 is

vm+1
j = vmj + Δt

((
vmj+1 − 2vmj + vmj−1

)
h2

+

(
vmj+1 − vmj−1

)
2hrj

− 1 −
(
vmj+1 − vmj−1

)2

6vmj h2

)
,

j = 2, . . . , N + 1,

(3.29a)

where rj = jh. From [9, p. 50], the discrete approximation for v1 at the origin r = 0
is

vm+1
1 = vm1 +

4Δt

h2
(vm2 − vm1 ) .(3.29b)

The condition at r = 1 is vmN+2 = (3λ)
−1

. The results shown below are for Δt =
0.6×10−5 and N = 200, so that h = 0.49751×10−2. For these values, the touchdown
time is found to be T∗ ≈ 0.722858.

In Figure 15(a) and Figure 15(b) we plot v and u = −1 + (3λv)1/3, respectively,
versus x, showing touchdown behavior in finite time. In Figure 14(b) we compare the
numerical approximation for v with the local behavior (3.25) at t = 0.7228. In (3.25)
we set N = 2 and use T = 0.722858 for the touchdown time.

Experiment 4. Finally, we give an example of touchdown behavior in the square
domain [0,

√
π] × [0,

√
π] for the constant permittivity profile f(x, y) ≡ 1 with λ =

2.0. From Table 1 we note that λ̄2 > λ > λ̄1 > λ∗ ≈ 0.857. Therefore, Theorem
3.1 guarantees touchdown in a finite time T∗ with T∗ < T1, where T1 = 0.2521 as
computed numerically from (3.8). Since λ < λ̄2, T2 in (3.14) is undefined.
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(a) v versus |x| (b) u versus |x|

Fig. 15. Experiment 3: For the unit disk and λ = 1.0 we plot v and u versus |x| at times
t = (0.05, 0.15, 0.30, 0.45, 0.60, 0.70, 0.71, 0.72, 0.7225, 0.722856). For the discrete scheme (3.29) with
N = 200, and Δt = 0.6 × 10−5, we compute the touchdown time T∗ ≈ 0.722858.
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(b) v versus (x, y)

Fig. 16. Experiment 4: For the square [0,
√
π] × [0,

√
π] and λ = 2.0 we show touchdown

behavior. For the discrete scheme we used N = 150 meshpoints in the x and y directions and a
time-step of Δt = 0.15 × 10−4. (a) u versus (x, y) at t = 0.1975. (b) v versus (x, y) at the same
time.

The discretization of (3.16) is similar to that given in (3.28). We use centered
differences in x and y to compute discrete approximations to vxx and vyy for Δv.
Centered differences are then used in x and y to compute |∇v|2. An explicit Euler
method is then used for the time integration. For a discretization of 150 meshpoints
in each of the x and y directions, and with a time-step of Δt = 0.15 × 10−4, which
is decreased near touchdown, we compute a touchdown time T∗ ≈ 0.19751. Notice
that T1 = .2521 is a reasonably good bound on the touchdown time. The touchdown
point (x0, y0) = (.880, .880) is at the center of the square. In Figure 16(a) we plot
the numerically computed u versus (x, y) for t = 0.1975, which is very close to the
singularity time. A plot of v versus (x, y) is shown in Figure 16(b).

3.3. The touchdown profile f(x) ≡ 1: Center manifold analysis. A dif-
ferent approach to determining the local touchdown profile when f(x) ≡ 1 is based on
the center manifold analysis of a PDE that results from a similarity group transfor-
mation of (1.1). This approach was used in [5] for the case N = 1. A closely related
method was used in [4] to determine the local blow-up profile for a semilinear heat
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equation. We now briefly outline the results that can be derived this way. The first
step is to introduce new variables by

u = −1 + (T − t)1/3w (y, s) , s ≡ − log(T − t), y ≡ x√
T − t

.(3.30)

With this transformation, (1.1) becomes

ws =
1

ρ
∇ · (ρ∇w) +

w

3
− λ

w2
, ρ ≡ e−|y|2/4.(3.31)

The touchdown profile as t → T− is determined by the large s behavior of (3.31). For

s  1 and |y| bounded, we have that w = w∞ + v, where v � 1 and w∞ ≡ (3λ)
1/3

.
Keeping the quadratic terms in v, we get

vs =
1

ρ
∇ · (ρ∇w) + v + γv2 + O(v3), γ = −(3λ)−1/3.(3.32)

As shown in [4] (see also [5]), the nullspace of the linearized operator in (3.32) is
three-dimensional when N = 2 and is one-dimensional when N = 1. By projecting the
nonlinear term in (3.32) against the nullspace of the linearized operator, the following
far-field behavior of v for s → +∞ and |y| bounded was obtained (see (1.7), (1.8) of
[4]):

v ∼ 1

4γs

(
1 − y2

2

)
, N = 1; v ∼ 1

2γs

(
1 − |y|2

2

)
, N = 2.(3.33)

The local touchdown profile is then obtained from w ∼ w∞ + v, (3.30), and (3.33),
which yields

u ∼ −1 + [3λ(T − t)]
1/3

(
1 − N

4| log(T − t)| +
|x|2

8(T − t)| log(T − t)|

)
.(3.34)

By making a binomial approximation of (3.26), it is easy to see that (3.26) agrees
asymptotically with (3.34). A rigorous derivation of (3.34) for the case N = 1, using
this type of center manifold analysis, was given in [5]. We also remark that the
spatially independent term in (3.34) was proved rigorously in [3].

4. Touchdown behavior: Variable permittivity. In this section we obtain
some numerical and formal asymptotic results for touchdown behavior associated with
a spatially variable permittivity profile in a slab domain. With the transformation

v =
1

3λ
(1 + u)3,(4.1)

the problem (1.1) for u in the slab domain, with permittivity profile f(x), transforms
exactly to

vt = vxx − 2

3v
v2
x − f(x), |x| < 1

2
; v =

1

3λ
, x = ±1

2
; v =

1

3λ
, t = 0.

(4.2)

We now use the formal power series method of section 3.2 to locally construct a
power series solution to (4.2) near the unknown touchdown point x0 and the unknown
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touchdown time T . We first assume that f(x) is analytic at x = x0 with f(x0) > 0,
so that for x− x0 � 1 it has the convergent series expansion

f(x) = f0 + f
′

0(x− x0) +
f

′′

0 (x− x0)
2

2
+ · · · ,(4.3)

where f0 ≡ f(x0), f
′

0 ≡ f
′
(x0), and f

′′

0 ≡ f
′′
(x0). Near x = x0, we look for a

touchdown profile for (4.2) in the form

v(x, t) = v0(t) +
(x− x0)

2

2!
v2(t) +

(x− x0)
3

3!
v3(t) +

(x− x0)
4

4!
v4(t) + · · · .(4.4)

In order for v to be a touchdown profile, it is clear that we must require that

lim
t→T−

v0 = 0, v0 > 0 for t < T, v2 > 0 for t− T � 1.(4.5)

Substituting (4.4) and (4.3) into (4.2), we equate powers of x− x0 to obtain

v
′

0 = −f0 + v2, v
′

2 = −4v2
2

3v0
+ v4 − f

′′

0 , v3 = f
′

0.(4.6)

As in section 3.2, we assume that v2 � 1 and v4 � 1 as t → T−. This yields that
v0 ∼ f0(T − t) and

v
′

2 ∼ − 4v2
2

3f0(T − t)
− f

′′

0 .(4.7)

For t → T−, we obtain from a simple dominant balance argument that

v2 ∼ − 3f0

4 [log(T − t)]
+ · · · as t → T−.(4.8)

By substituting (4.8) into (4.6) for v0 and integrating the resulting expression, we
obtain

v0 ∼ f0 (T − t) +
−3f0(T − t)

4| log(T − t)| + · · · for t → T−.(4.9)

Next, we substitute (4.8), (4.9), and (4.6) for v3 into (4.4) to obtain the local touch-
down behavior

v ∼ f0 (T − t)

[
1 − 3

4| log(T − t)| +
3(x− x0)

2

8(T − t)| log(T − t)| +
f

′

0(x− x0)
3

6f0(T − t)
+ · · ·

]
,

(4.10)

for (x− x0) � 1 and t− T � 1. Finally, using the nonlinear mapping (4.1) relating
u and v, we conclude that

u ∼ −1 + [3f0λ(T − t)]
1/3

(
1 − 3

4| log(T − t)| +
3(x− x0)

2

8(T − t)| log(T − t)|

+
f

′

0(x− x0)
3

6f0(T − t)
+ · · ·

)1/3

.

(4.11)
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(a) α = 2.0, λ = 5.0 (b) α = 10.0, λ = 22.0

Fig. 17. Exponential permittivity profile. (a) Plot of u versus x at different times for α = 2.0
and λ = 5.0. The touchdown time is T∗ ≈ 0.1332 and λ∗ ≈ 2.14. (b) Plot of u versus x at different
times for α = 10.0 and λ = 22.0. The touchdown time is T∗ ≈ 0.1497 and λ∗ ≈ 10.4. For both
cases, the touchdown point is x0 = 0.

Here f0 ≡ f(x0) and f
′

0 ≡ f
′
(x0).

Since f(x) > 0 for the exponential profile f(x) = eα(x2−1/4) of (2.16a), then (4.11)
holds for some touchdown point x0 and touchdown time T . If the touchdown point
is at x0 = 0, then (4.11) holds for f0 = e−α/4, and f

′

0 = 0. For two sets of α and λ,
in Figure 17 we plot the numerically computed u versus x at different times showing
touchdown behavior for the exponential permittivity profile. The bounds T1 and
T2 on the touchdown time, given in (3.8) and (3.14), together with the numerically
computed touchdown time T∗ and saddle-node value λ∗ are as follows:

α = 2.0, λ = 5.0; λ∗ ≈ 2.14, T1 = 0.1697, T2 = 0.4030, T∗ ≈ 0.1332,

(4.12a)

α = 10.0, λ = 22.0; λ∗ ≈ 10.40, T1 = 0.5321, T2 = 0.3281, T∗ ≈ 0.1497.
(4.12b)

In obtaining (4.12) we discretized (4.2) in a similar manner as in (3.28). The discrete
approximation to u was then obtained from (4.1). The computations were done with a
time-step of Δt = 0.6×10−5 and with N = 200 meshpoints, so that h = 0.4975×10−2.
From Figure 17 we observe that touchdown occurs at x0 = 0. For α = 10, the
touchdown profile is much flatter than that for α = 2. This is because f(0) = e−α/4

is a decreasing function of α.
We remark that the touchdown profile (4.11) also holds for the power-law profile

f(x) = |2x|α of (2.16a) whenever the touchdown point x0 is not at the origin, i.e.,
x0 �= 0. If this occurs, then (4.11) holds with

f0 = |2x0|α, f
′

0 = 2α|2x0|α−1.(4.13)

In Figure 18 we plot the numerically computed u versus x at different times, and
for different sets of α and λ, showing touchdown behavior for the power-law profile.
In this figure, the touchdown time T∗ and the saddle-node value λ∗ are shown for
each parameter set. From these numerical results we observe that touchdown seems
to occur at two points, symmetrically located about the origin. For each of the
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(a) α = 1.0, λ = 10.0 (b) α = 1.0, λ = 4.5

(c) α = 0.4, λ = 4.0 (d) α = 0.4, λ = 3.0

(e) α = 0.16, λ = 3.5 (f) α = 0.16, λ = 2.0

Fig. 18. Power-law permittivity profile: Plots of u versus x at different times for the values of
α and λ shown in the figure captions. The values for saddle-node point λ∗, the touchdown time T∗,
and the touchdown points x0 are as follows. (a) λ∗ ≈ 4.2, T∗ ≈ 0.1257, x0 = ±0.226. (b) λ∗ ≈ 4.2,
T∗ ≈ 1.887, x0 = ±0.147. (c) λ∗ ≈ 2.41, T∗ ≈ 0.2366, x0 = ±0.087. (d) λ∗ ≈ 2.41, T∗ ≈ 0.4857,
x0 = ±0.067. (e) λ∗ ≈ 1.77, T∗ ≈ 0.174, x0 = ±0.027. (f) λ∗ ≈ 1.77, T∗ ≈ 0.746, x0 = ±0.012.

computations, we have taken N = 200 meshpoints, so that h = 0.4975 × 10−2, and a
time step Δt = 0.6 × 10−5.

Next, we perform a more delicate computational experiment to determine whether
touchdown can occur at x = 0 for the power-law profile. We take α = 0.01 and
λ = 2.0. Since α � 1, this example represents a small perturbation of the constant
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Fig. 19. Plot of u versus x at t = 0.34213 near the touchdown region for the power-law profile
with α = 0.01 and λ = 2.0. Touchdown does not occur at x = 0, but rather at two points on either
side of x = 0. The touchdown time is T∗ ≈ 0.3422.

permittivity profile f(x) ≡ 1. Using N = 800 meshpoints, in Figure 19 we plot u
versus x at t = 0.34213 in a neighborhood of the origin. The touchdown time is found
to be T∗ ≈ 0.3422. From this figure, we observe that touchdown does not occur at
x = 0. These computational results suggest the possibility that touchdown cannot
occur at a point x0, where f(x0) = 0. We first investigate this possibility by using a
formal power series analysis. Then, at the end of this section we prove a result in this
direction. A consequence of this analysis is that touchdown at x0 = 0 is impossible
for the power-law profile f(x) = |2x|α.

We first assume that f(x) is analytic at x = 0, with f(0) = 0 and f
′
(0) = 0, so

that f(x) = f0x
2 + O(x3) as x → 0 with f0 > 0. We then look for a power series

solution to (4.2) as in (4.4). In place of (4.6) for v3, we get v3 = 0, and

v
′

0 = v2, v
′

2 = −4v2
2

3v0
+ v4 − 2f0.(4.14)

Assuming that v4 � 1 as before, we can combine the equations in (4.14) to get

v
′′

0 = −
4
(
v

′

0

)2

3v0
− 2f0.(4.15)

By solving (4.15) with v0(T ) = 0, we obtain the exact solution

v0 = −3f0

11
(T − t)2, v2 =

6f0

11
(T − t).(4.16)

Since the criteria (4.5) are not satisfied, the form (4.16) does not represent a touch-
down profile centered at x = 0.

A similar calculation can be done for the case where f(x) is analytic at x = 0,
with f(0) = 0 and f ′(0) = f0 > 0. From a power series expansion solution centered
at x = 0, and assuming that v4 � 1, we get v3 = f0 and

v
′′

0 = −
4
(
v

′

0

)2

3v0
, v2 = v

′

0.(4.17)
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In terms of some constant A, the explicit solution to (4.17) with v0(T ) = 0 is

v0 = A (T − t)
3/7

, v2 = −3A

7
(T − t)

−4/7
.(4.18)

Since v0 and v2 have opposite signs as t → T−, the criteria (4.5) do not hold, and we
do not have touchdown at x = 0. These formal calculations suggest the general result
that touchdown cannot occur at a point x = x0, where f(x0) = 0. Without loss of
generality, we assume that x0 = 0. Our final result is as follows.

Theorem 4.1. Let u(x, t) be a solution of

ut = uxx − λf(x)

u2
, |x| ≤ 1

2
, 0 < t < T ; u

(
±1

2
, t

)
= 1, u(x, 0) = 1.

(4.19)

Here f(x) satisfies (2.7), and u touches down at the finite time T . If f(0) = 0, then
x0 = 0 cannot be a touchdown point of u(x, t) at finite time T .

Proof. Set v = ut. Then we calculate

vt = vxx +
2λf(x)

u3
v, |x| ≤ 1

2
, 0 < t < T ; v

(
±1

2
, t

)
= 0, v(x, 0) ≤ 0.

(4.20)

Here 2λf(x)
u3 is a locally bounded function. By the strong maximum principle, we

conclude that

ut = v < 0, |x| < 1

2
, 0 < t < T.(4.21)

Therefore, since f(0) = 0, we have as t → T− that uxx = ut < 0 at x = 0. From this
result, and from the smoothness of u(x, t), we deduce that when t → T−, there exists
an x̄ �= 0 such that u(0, t) > u(x̄, t). This shows that x0 = 0 cannot be a touchdown
point of u(x, t) at finite time T .

5. Conclusion. We have analyzed some properties of the pull-in voltage insta-
bility for (1.1) in terms of a spatially variable dielectric permittivity profile for the
thin elastic membrane. Bounds on the pull-in voltage were given in section 2, and
sufficient conditions for finite-time touchdown were obtained in section 3, together
with bounds on the touchdown time. From these bounds, and from numerical compu-
tations, it was shown that by appropriately tailoring the dielectric permittivity of the
thin membrane the pull-in voltage and the pull-in distance can both be increased. For
the special case of a power-law permittivity profile in a slab domain, this conclusion
was first obtained in [14]. For voltages that exceed the pull-in voltage threshold, the
local touchdown profile was calculated asymptotically in sections 3 and 4 for spatially
uniform and spatially nonuniform permittivity profiles, respectively.

An interesting open problem is to formulate an optimization problem for the
pull-in distance associated with the steady-state problem (1.1), whereby an optimum
permittivity profile f can be computed numerically for a given set of design constraints
on both the stable operating range of the applied voltage and maximum value of V
that is available by the power supply.

Another way of tailoring the pull-in voltage, without introducing a spatially
nonuniform permittivity profile, is to rigidly attach the thin membrane near the
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region where the deflection would otherwise be largest. Mathematically this cor-
responds to considering (1.1) with f(x, y) ≡ 1, in a domain Ω punctured by a small
patch Ωε of area O(ε2) � 1, where u = 0 for x ∈ Ωε. An asymptotic theory for the
location of saddle-node bifurcation values for general classes of semilinear problems
in such singularly perturbed domains was developed in [18]. For a MEMS device,
symmetry-breaking properties of radially symmetric solutions for an annular domain
were computed numerically in [15]. For this type of modification of (1.1), it would be
interesting to obtain an analytical theory for the pull-in voltage instability.

Finally, it would be interesting to analyze pull-in voltage and touchdown behavior
for extensions of the basic model (1.1), whereby the upper surface is modeled by an
elastic plate of nonzero rigidity and inertial effects are considered. The resulting
model for the deflection of a thin plate that has a spatially uniform permittivity
profile involves the Biharmonic operator Δ2 and takes the following form for some
β > 0 and δ > 0 (see (7.50) of [13]):

β
∂2u

∂t2
+

∂u

∂t
− Δu + δΔ2u = − λ

(1 + u)2
, x ∈ Ω;

u = 0, (x, y) ∈ ∂Ω; u(x, y, 0) = 0.

(5.1)

Appendix. Derivation of the membrane deflection equation. Following
the analysis in [14] and [6], we now outline the derivation of the membrane deflection
equation (1.1). Referring to Figure 1, the electrostatic potential is assumed to satisfy
Laplace’s equation in the gap between the fixed plate and the lower surface of the
membrane. Inside the thin membrane, the dielectric permittivity ε2 = ε2(x, y) can
exhibit a spatial variation. On the upper surface of the membrane, a fixed voltage
V is imposed. Therefore, in dimensionless variables, the problem for the electrostatic
potential is

∂2ψ

∂z2
+ δ2

(
∂2ψ

∂x2
+

∂2ψ

∂y2

)
= 0, (x, y) ∈ Ω, 0 ≤ z ≤ û− l,(A.1a)

ε2
∂2ψ

∂z2
+ δ2

(
∂

∂x

(
ε2

∂ψ

∂x

)
+

∂

∂y

(
ε2

∂ψ

∂y

))
= 0, (x, y) ∈ Ω, û− l ≤ z ≤ û + l,

(A.1b)

ψ = 0, z = 0 (ground plate); ψ = 1, z = û + l (upper membrane surface),
(A.1c)

together with the continuity of the potential and the displacement fields across z =
û− l. Here ψ is the dimensionless potential scaled with respect to the applied voltage
V , x and y are scaled with respect to the length L of the undeformed plate Ω, z
is a vertical coordinate scaled with respect to the undeformed gap-size d, 2l is the
thickness of the membrane, and δ ≡ d/L � 1 is the device aspect ratio. The deflection
of the membrane is denoted by û, with û = 1 on ∂Ω denoting the undeflected state.
Note that û = 0 corresponds to the touching of the membrane and the lower plate
and that û is scaled in the same manner as z.

In the small aspect ratio limit δ � 1, the asymptotic solution for ψ that is
continuous across z = û− l is

ψ =

⎧⎨
⎩

ψL
z

û−l , 0 ≤ z ≤ û− l,

1 + (1−ψL)
2l (z − (û + l)) , û− l ≤ z ≤ û + l.

(A.2)
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To ensure that the displacement field is continuous across z = û− l to leading order in
δ, we must impose that ε0ψz|− = ψ2ψz|+, where the plus or minus signs indicate that
ψz is to be evaluated on the upper or lower side, respectively, of the bottom surface
z = û− l of the membrane. This condition determines ψL in (A.2) as

ψL =

[
1 +

2l

û− l

(
ε0

ε2

)]−1

.(A.3)

From (A.2) and (A.3), the electric field in the z-direction inside the membrane is
independent of z, and is given by

ψz =
ε0

ε2(û− l)

[
1 +

2l

û− l

ε0

ε2

]−1

∼ ε0

ε2û
for l � 1.(A.4)

The coupling of the electrostatic field to the deflection of the membrane was
modeled in [6] by a dimensionless damped wave equation of the form

γ2 ∂
2û

∂t2
+

∂û

∂t
− Δû = −λ

(
ε2

ε0

)[
δ2|∇⊥ψ|2 +

(
∂ψ

∂z

)2
]
,

(x, y) ∈ Ω, û− l ≤ z ≤ û + l.

(A.5)

Here λ is defined in (1.2), the time t is scaled with respect to the strength of the
damping, and ∇⊥ denotes the gradient in the x- and y-directions only. By substituting
(A.4) into (A.5), and letting δ � 1, we obtain

γ2 ∂
2û

∂t2
+

∂û

∂t
− Δû ∼ −λ

ε0

ε2û2
, (x, y) ∈ Ω; û = 1, (x, y) ∈ ∂Ω.(A.6)

We then define u ≡ û − 1, so that u = 0 is the undeflected state. Finally, assuming
that the damping force dominates the inertial force so that γ � 1, as was done in [6],
(A.6) reduces to the membrane deflection equation (1.1) of section 1.
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ON RECOVERING THE SHAPE OF A DOMAIN
FROM THE TRACE OF THE HEAT KERNEL∗

Z. SCHUSS† AND A. SPIVAK‡

Abstract. The problem of recovering geometric properties of a domain from the trace of the heat
kernel for an initial-boundary value problem arises in NMR microscopy and other applications. It is
similar to the problem of “hearing the shape of a drum,” for which a Poisson-type summation formula
relates geometric properties of the domain to the eigenvalues of the Dirichlet or Neumann problems
for the Laplace equation. It is well known that the area, circumference, and the number of holes
in a planar domain can be recovered from the short-time asymptotics of the solution of the initial-
boundary value problem for the heat equation. It is also known that the length spectrum of closed
billiard ball trajectories in the domain is contained in the spectral density of the Laplace operator
with the given boundary conditions in the domain, from which the short-time hyperasymptotics
of the trace of the heat kernel can be obtained by the Laplace transform. However, the problem
of recovering these lengths from measured values of the trace of the heat kernel (the “resurgence”
problem) is unresolved. In this paper we develop a simple algorithm for extracting the lengths from
the short-time hyperasymptotic expansion of the trace. We give an alternative construction of the
short-time expansion of the trace by constructing a ray approximation to the heat kernel for a planar
domain with Dirichlet or Neumann boundary conditions. We evaluate the trace by introducing the
rays as global coordinates.

Key words. heat kernel, trace, short-time asymptotics, eigenvalues

AMS subject classifications. 35K20, 35J25, 35C20, 35P20

DOI. 10.1137/S0036139903424928

1. Introduction. The problem of recovering geometric properties of a domain
from NMR measurements arises in oil explorations and in noninvasive microscopy of
cell structure [1], as well as in other applications. In these measurements the trace
of the heat kernel for the initial value problem with reflecting (Neumann) boundary
conditions is measured directly. The problem is analogous to “hearing the shape of a
drum,” where the solution of the wave equation in the domain is measured directly (it
is “heard”). This problem consists in recovering geometrical properties of a domain
from the eigenvalues of the Dirichlet or Neumann problems for the Laplace equation
in a bounded domain.

Much attention has been devoted in the literature to the recovery problem (see
[2], [3], [4], [5], [6], [7], [8], [9] for some history and early results; for more recent work
see [10], [11] and the references therein). The mathematical statement of the problem
is as follows. Green’s function for the heat equation in a smooth planar domain Ω,
with homogeneous Dirichlet boundary conditions, satisfies

∂G(y,x, t)

∂t
= DΔyG(y,x, t) for y,x ∈ Ω, t > 0,(1.1)
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G(y,x, 0) = δ(y − x),(1.2)

G(y,x, t) = 0 for y ∈ ∂Ω, x ∈ Ω, t > 0.(1.3)

Since D can be eliminated from (1.1) by scaling it into t, we assume henceforward
that D = 1. The function G(x,x, t) dx is the probability of return to x dx at time
t of a free Brownian particle that starts at the point x at time t = 0 and diffuses in
Ω with diffusion coefficient 1, with absorption at the boundary ∂Ω. If it is reflected
at ∂Ω, rather than absorbed, the Dirichlet boundary condition (1.3) is replaced with
the Neumann condition [12]

∂G(y,x, t)

∂ν(y)
= 0 for y ∈ ∂Ω, x ∈ Ω, t > 0,(1.4)

where ν(y) is the unit outer normal at the boundary point y. The trace of the heat
kernel is defined as

P (t) =

∫
Ω

G(x,x, t) dx(1.5)

and can be represented by the Dirichlet series

P (t) =

∞∑
n=1

e−λnt,(1.6)

where λn are the eigenvalues of Laplace equation with the Dirichlet or Neumann
boundary conditions (1.3) or (1.4), respectively.

It has been shown by Kac [2] that for a domain Ω with smooth boundary ∂Ω, the
leading terms in the expansion of P (t) in powers of

√
t are

PKac(t) ∼
|Ω|
4πt

− |∂Ω|
8
√
πt

+
1

6
(1 − r) + O

(√
t
)

for t → 0,

where |Ω| denotes the area of Ω, |∂Ω| denotes the arclength of ∂Ω, and r is the number
of holes in Ω. The full short-time asymptotic power series expansion of P (t) in the
form

P (t) ∼
∞∑

n=0

ant
n/2−1

can be deduced from the large s expansion of the Laplace transform

g(s) =

∫ ∞

0

exp{−s2t}
(
P (t) − a0

t

)
dt,

(
a0 =

|Ω|
4π

)

in inverse powers of s. Such an expansion was given by Stewartson and Waechter [3]
in the form

ĝ(s) ∼
∞∑

n=1

cn
sn

,

where

cn = anΓ
(n

2

)
.(1.7)
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The constants cn are computable functionals of the curvature of the boundary. The
full expansion is denoted

PSW(t) ∼ |Ω|
4πt

− |∂Ω|
8
√
πt

+
1

6
(1 − r) +

∞∑
n=3

ant
n/2−1 for t → 0.(1.8)

If the boundary is not smooth but has cusps and corners, the expansion contains a
term of the order t−ν , where ν is a number between 0 and 1/2.

The Stewartson–Waechter expansion was used in [10] to deduce further geometric
properties of Ω by extending g(s) into the complex plane. Examples were given in
[10] of the resurgence of the length spectrum of closed billiard ball trajectories in the
domain. It was conjectured in [10, eq. (4)] that

an =
αΓ(n− β + 1)

Γ
(n

2

)
ln−2

,(1.9)

where α and β are constants of order unity and l is the shortest accessible geodesic
(as defined in [10]).

The full length spectrum of closed geodesics on a compact Riemannian manifold
without boundary Ω appeared in the short-time asymptotic expansion given in [5],
[6],

P (t) ∼ 1√
πt

∞∑
n=0

Pn(
√
t) e−δ2

n/t for t → 0,(1.10)

where δn are the lengths of closed geodesics on Ω and Pn(x) are power series in x.
Using a different approach, based on the expansion of the spectral density [7], [8],

[10]

d(s) =

∞∑
n=1

δ(s− λn) = d̄(s) + dosc(s),(1.11)

where the nonoscillatory and oscillatory parts are, respectively,

d̄(s) ∼ |Ω|
π

, dosc(s) ∼ �e
∑
j

Aj(s)e
−ilj

√
s for s → ∞,(1.12)

the second sum extends over the periodic orbits of billiard balls in Ω, and lj are their
lengths. The coefficients Aj(s) depend on the stability of the orbits (see [10, eqs. (11)
and (12)]).

Using the identity

∫ ∞

0

exp

{
−st− δ2

n

t

}
dt =

2δnK1(2δl
√
s)√

s
∼

√
πδn
s

e−2δl
√
s for s → ∞(1.13)

and extending formally the asymptotic relation (1.12) to the complex plane, we iden-
tify

δn =
ln
2
.(1.14)
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In this paper, we adopt a direct approach to the hyperasymptotic short-time
expansion of the trace, rather than expanding its Laplace transform. The results can
be generalized to higher dimensions in a straightforward manner. We construct the
expansion in the form

P (t) ∼ PSW(t) +
1√
πt

∞∑
n=1

Pn(
√
t) e−δ2

n/t for t → 0,(1.15)

where δn, ordered by magnitude, are determined directly from the expansion to be
related to ln by (1.14), and Pn(x) are power series in x. Transcendentally small terms
may be, in fact, quite large and make a finite contribution to the expansion (1.15) [13].
Indeed, given P (t), e.g., from NMR measurements, we describe a simple numerical
algorithm for recovering δn from P (t).

To construct the expansion, we use the short-time ray asymptotic approximation
to the heat kernel [14], [15], [16], [17] to evaluate its trace. Specifically, we use the
rays as global coordinates to expand the double integral (1.5) asymptotically beyond
all orders for short times. We show that the transcendentally small terms are due
to rays reflected in the boundary, much like in the geometric theory of diffraction
[18], [19], [20]. In particular, the smallest exponent δ1 is the width of the narrowest
bottleneck in the domain. For the particular case of a circular domain, we find that
all diffractive closed trajectories contribute to the transcendentally small terms (see
also [10, sect. 3]).

In section 2, we explain the ray approximation and the evaluation of the trace
in a one-dimensional example. In section 3, we generalize the ray approximation to
higher dimensions, and in section 4 we use it to evaluate the trace for planar domains.
In section 5, we work out an algorithm for the numerical evaluation of the exponents
δn from the given trace P (t). Finally, in section 6 we carry out explicit computations
for special domains.

2. The one-dimensional case. The solution of the heat equation in an interval
can be constructed by the method of images. Specifically, the Green function of the
problem satisfies

∂G(y, x, t)

∂t
=

∂2G(y, x, t)

∂y2
for 0 < x, y < a, t > 0,(2.1)

G(y, x, 0) = δ(y − x) for 0 < x, y < a,(2.2)

(
∂

∂y

)k

G(0, x, t) =

(
∂

∂y

)k

G(a, x, t) = 0 for 0 < x < a, t > 0, k = 0, 1.(2.3)

The method of images gives the representation

(2.4)

G(y, x, t)

=
1

2
√
πt

∞∑
n=−∞

[
exp

{
− (y − x + 2na)2

4t

}
− (−1)k exp

{
− (y + x + 2na)2

4t

}]
, (k = 0, 1).

Note that if the infinite series is truncated after a finite number of terms, the boundary
conditions are satisfied only in an asymptotic sense as t → 0. That is, the boundary
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values of the truncated solution decay exponentially fast in t−1 as t → 0, and the
exponential rate increases together with the number of retained terms.

The trace is given by

∫ a

0

G(x, x, t) dx =
1

2
√
πt

∫ a

0

∞∑
n=−∞

[
exp

{
− (na)2

t

}
+ (−1)k exp

{
− (x + na)2

t

}]
dx

=
1

2
√
πt

∞∑
n=−∞

[
a exp

{
− (na)2

t

}
+ (−1)k

∫ a

0

exp

{
− (x + na)2

t

}
dx

]

=
a

2
√
πt

∞∑
n=−∞

exp

{
− (na)2

t

}
+

(−1)k

2

=
a

2
√
πt

+
(−1)k

2
+

a

2
√
πt

∑
n �=0

exp

{
− (na)2

t

}
, (k = 0, 1).(2.5)

On the other hand,

∫ a

0

G(x, x, t) dx =

∞∑
n=1

e−λnt,(2.6)

where {λn} are the eigenvalues of the homogeneous Dirichlet or Neumann problem
for the operator d2/dx2 in the interval [0, a]. Thus

∞∑
n=1

e−λnt =
a

2
√
πt

+
(−1)k

2
+

a

2
√
πt

∑
n �=0

exp

{
− (na)2

t

}
, (k = 0, 1).(2.7)

If instead of a single interval of length a we consider the heat equation in a set
Ω consisting of K disjoint intervals of lengths lj , (j = 1, . . . ,K), respectively, the
resulting expansion is

∞∑
n=1

e−λnt =

∑K
j=1 lj

2
√
πt

+ (−1)k
2K

4
+

K∑
j=1

lj

2
√
πt

∑
n �=0

exp

{
− (nlj)

2

t

}
, (k = 0, 1).(2.8)

The numerator in the first term on the right-hand side of (2.8) can be interpreted

as the “area” of Ω, so we denote it
∑K

j=1 lj = |Ω|. The number 2K is the number
of boundary points of Ω, which can be interpreted as the “circumference” of the
boundary, so we denote it |∂Ω| = 2K. The exponents in the sum on the right-hand
side of (2.8) can be interpreted as the “widths” of the components of Ω. Clearly, for
small t, the term containing the smallest width, r = min1≤j≤K lj , will dominate the
sum. Thus we can rewrite (2.8) as

∞∑
n=1

e−λnt =
|Ω|

2
√
πt

− |∂Ω|
4

+
mr√
πt

exp

{
−r2

t

}
+

∑
lj>r

lj

2
√
πt

∑
n �=0

exp

{
− (nlj)

2

t

}
,(2.9)

where m is the number of the shortest intervals in Ω.
Equation (2.9) can be viewed as the short-time asymptotic expansion of the sum

on the left-hand side of the equation. The algebraic part of the expansion consists
of the first two terms, and all other terms are transcendentally small. The geometric
information in the various terms of the expansion consists of the “area” of Ω and the
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“circumference” |∂Ω| in the algebraic part of the expansion. The transcendental part
of the expansion is dominated by the term containing the smallest “width” of the
domain, r.

The geometric information about Ω contained in the algebraic part is the infor-
mation given in the “Can one hear the shape of a drum?” expansions [2], [3]. The
geometric information contained in the transcendentally small terms in (2.9) can be
understood as follows. The terms nlj in the exponents are the lengths of closed tra-
jectories of billiard balls in Ω, or the lengths of closed rays reflected at the boundaries,
as in [7].

The representation (2.4) can be constructed as a short-time approximation to the
solution of the heat equation (2.1)–(2.3) by the ray method [14]. In this method the
solution is constructed in the form

G(y, x, t) = e−S2(y,x)/4t
∞∑

n=0

Zn(y, x)tn−1/2.(2.10)

Substituting the expansion (2.10) into the heat equation (2.1) and ordering terms by
orders of magnitude for small t, we obtain at the leading order the ray equation, also
called the eikonal equation, ∣∣∣∣∂S(y, x)

∂y

∣∣∣∣
2

= 1,(2.11)

and at the next orders the transport equations

2
∂S(y, x)

∂y

∂Zn(y, x)

∂y
+ Zn(y, x)

(
∂2S(y, x)

∂y2
+

2n

S(y, x)

)
,

2

S(y, x)

∂2Zn−1(y, x)

∂y2
, n = 0, 1, . . . .(2.12)

Denoting

p(y, x) =
∂S(y, x)

∂y
,

we write the equations of the characteristics, or rays of the eikonal equation (2.11),
as [15]

∂y(τ, x)

∂t
= 2p,

dp(τ)

dt
= 0,

dS(τ)

dτ
= 2p2(τ)(2.13)

with the initial conditions

y(0, x) = x, p(0) = ±1, S(0) = 0.

The condition S(0) = 0 is implied by the initial condition G(x, y, 0) = δ(x− y). The
solutions are given by

y(τ, x) = x + 2pτ, p(τ) = ±1, S(τ) = 2τ = ±(y − x).(2.14)

Thus S(y, x) is the length of the ray from y to x. We denote this solution by S0(y, x).
It is easy to see that the solution of the transport equations corresponding to S0(y, x)
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is given by Z0(y, x) = const, and Zn(y, x) = 0 for all n ≥ 1. The initial condition
(2.2) implies that

Z0(y, x) =
1

2
√
π
.

Combined into (2.10) this solution gives Green’s function for the heat equation on the
entire line,

G0(y, x, t) =
1

2
√
πt

exp

{
− (y − x)2

4t

}
,

which is the positive term corresponding to n = 0 in the expansion (2.4).
The ray from x to y is not the only one emanating from x. There are rays

emanating from x that end at y after reflection in the boundary. Thus the ray from
x that reaches y after it is reflected at the boundary 0 has length y + x. Therefore
there is another solution of the eikonal equation, S1(y, x), which is the length of the
reflected ray, given by

S1(y, x) = y + x.

The ray from x that reaches y after it is reflected at the boundary a has length
2a − x − y. The ray from x to 0, then to a, and then to y has length 2a + x − y.
Thus the lengths of all rays that reach y from x after any number of reflections in the
boundary generate solutions of the eikonal equation, which are the lengths of the rays,
which in turn generate solutions of the heat equation. We denote them by Sk(y, x)
with some ordering. The corresponding solutions of the transport equation are

Z0,k(y, x) =
Ck

2
√
π
,

where Ck are constant. They are chosen so that the sum of all the ray solutions,

Gk(y, x, t) =
Z0,k(y, x)√

t
e−S2

k(y,x)/4t,

satisfies the boundary conditions (2.3). Note that for all k 	= 0

Gk(y, x, t) → 0 as t → 0.

This construction recovers the solution (2.4).

3. The ray method for short-time asymptotics of Green’s function. The
ray method consists in the construction of Green’s function G(y,x, t) (1.1)–(1.3) in
the asymptotic form

G(y,x, t) ∼ e−S2(y,x)/4t
∞∑

n=0

Zn(y,x)tn−1.(3.1)

The function S(y,x) is the solution of the eikonal equation

∣∣∇yS(y,x)
∣∣2 = 1,(3.2)
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and the functions Zn(y,x) solve the transport equations

2∇yS(y,x) · ∇yZn(y,x) + Zn(y,x)

[
ΔyS(y,x) +

2n− 1

S(y,x)

]

=
2

S(y,x)
ΔyZn−1(y,x) for n = 0, 1, 2, . . . .(3.3)

The eikonal equation (3.2) is solved by the method of characteristics [15]. The
characteristics, called rays, satisfy the differential equations

dy(τ,x)

dτ
= 2∇yS(y(τ,x),x),

d∇yS(y(τ,x),x)

dτ
= 0,

dS(y(τ,x),x)

dτ
= 2.(3.4)

The initial condition (1.2) implies that the rays emanate from the point x. Thus we
choose the initial conditions

y(0,x) = x, ∇yS(y(0,x),x) = ν, S(y(0,x),x) = 0,(3.5)

where ν is a constant vector of unit length. The solution is given by

y(τ,x) = x + 2ντ, S(y,x) = |y − x| = 2τ, ∇yS(y,x) = ν.(3.6)

The pair (τ,ν) determines uniquely the point y = y(τ,x) and the value of S(y,x) at
the point. The parameter τ is half the distance from y to x or half the length of the
ray from x to y. The vector ν is the unit vector in the direction from x to y.

The function Z0(y,x) is easily seen to be a constant, 1/4π, and Zn(y,x) = 0 for
all n > 0. This construction recovers the solution of the heat equation in the entire
plane and disregards the boundary ∂Ω, because in the plane every point can be seen
from every other point by a straight ray. Note that to calculate the function P (t) in
(1.5), only the values of S(x,x) and Z0(x,x) are needed. Thus S(x,x) = 0, and the
first approximation to G(x,x, t) is

G(x,x, t) =
1

4πt
;

hence the first approximation to P (t) is

P0(t) =
|Ω|
4πt

.

There is another solution of the eikonal equation (3.2) constructed along rays that
emanate from x but reach y after they are reflected in ∂Ω [14]. The law of reflec-
tion is determined from the boundary conditions. Dirichlet and Neumann boundary
conditions imply that the angle of incidence equals that of reflection [14]. Similarly,
there are solutions of the eikonal equation that are the lengths of rays that emanate
from x and reach y after any number of reflections in ∂Ω. We denote these solutions
Sk(y,x) with some ordering. Thus the full ray expansion of Green’s function has the
form

G(y,x, t) ∼
∞∑
k=1

e−S2
k(y,x)/4tZk(y,x, t),(3.7)

where

Zk(y,x, t) =

∞∑
n=0

Zn,k(y,x)tn−1.
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As above, each one of the series

e−S2
k(y,x)/4tZk(y,x, t)

is called a ray solution of the diffusion equation. The boundary values of Zk(y,x, t)
are chosen so that G(y,x, t) in (3.7) satisfies the imposed boundary condition. In
particular, the values of Sk(x,x) are the lengths of all rays that emanate from x and
are reflected from the boundary back to x. Note that sums of ray solutions satisfy
boundary conditions only at certain points.

To fix the ideas, we consider first simply connected domains. We denote

S0(y,x) = |x − y|

and

G0(y,x, t) =
1

4πt
e−S2

0(y,x)/4t.

We first consider solutions corresponding to rays that are reflected only once at the
boundary and, in particular, rays that are reflected back from the boundary to the
points of their origin. Such rays hit the boundary at right angles (see Figure 1 and
[14]). If there is only one minimal eikonal S1(x,x) > 0, we say that x is a regular point
of Ω. If there is more than one minimal eikonal S1(x,x), we say that x is a critical
point of Ω. We denote by Γ the locus of critical points in Ω. The eikonal S1(y,x) is
the length of the shortest ray from x to y with one reflection in the boundary such
that the ray from x to the boundary does not intersect Γ. For x = y the eikonal
S1(x,x) is twice the distance of x to the boundary. We denote by x′ the orthogonal
projection of x on the boundary along the shortest normal from x to the boundary.
When y = x′,

S1(x
′,x) = S0(x

′,x) = |x − x′| .(3.8)

The function

G1(y,x, t) = e−S2
1(y,x)/4tZ1 (y,x, t)

has to be chosen so that G0(x
′,x, t) − G1(x

′,x, t) = 0. In view of (3.8), we have to
choose

Z1 (x′,x, t) =
1

4πt
.

When y′′ is the other boundary point on the normal from x′ to x, we have

(3.9)

G0(y
′′,x, t) − G1(y

′′,x, t) =
1

4πt
e−|x−y′′|2/t − e−(|x′−x|+|y′′−x′|)2

/tZ1 (y′′,x, t) .

Next, we consider in Ω−Γ the minimal among the remaining eikonals Sk(x, x) >
S1(x, x) and denote it S2(x, x). This eikonal is twice the length of a ray that emanates
from x, intersects Γ once, and intersects the boundary ∂Ω at right angles at a point,
denoted x′′. The eikonal S2(y,x) is the length of the ray from x to y with one
reflection in the boundary such that the ray from x to the boundary intersects Γ
once. When y = x′′,

S2(x
′′,x) = S0(x

′′,x) = |x − x′′| .(3.10)
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Fig. 1. The locus of critical points, Γ, is the segment AB. The first eikonal is S1(y, x) =
|x − c| + |c − y|. It is defined as the shortest reflected ray from x to y, such that x − c does not
intersect Γ. For x = y the diagonal values are S1(x, x) = 2|x − x′|. The diagonal values of the
second eikonal are S2(x, x) = 2|x − x′′|. The vectors x − x′ and x − x′′ are orthogonal to the
boundary. For x1 ∈ Γ the two eikonals are equal.

When y′ is the other boundary point on the normal that emanates from x′′ (see
Figure 2), we have

S2(y
′,x) = |x − x′′| + |y′ − x′′| .

In general, x′ 	= y′ and x′′ 	= y′′. However, if the ray is a 2-periodic orbit (that hits
the boundary at only 2 points), x′ = y′ and x′′ = y′′ so that

S2(y
′′,x) = S0(y

′′,x) = |x − y′′|

and

S2(y
′,x) = |x − x′′| + |y′′ − x′| .

Since

|x − y′′| < |x − x′| + |y′′ − x′| < |x − x′′| + |y′′ − x′|

for all regular points x, the order of magnitude of the boundary error (3.10) decreases
if we use the approximation

G0(y,x, t) ∼ G0(y,x, t) −G1(y,x, t) −G2(y,x, t)(3.11)
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Fig. 2. The second eikonal S2(y, x) = |x − d| + |d − y|. It is defined as the shortest reflected
ray such that x − d intersects Γ. The eikonals S3(x, x) and S4(x, x) are ordered according to
magnitude.

with

Z2(y
′′,x, t) = Z1(y

′′,x, t) = Z0(t).

4. The trace. To find the short-time asymptotics of the Dirichlet series (1.6),
as given in (1.5),

P (t) =

∫
Ω

G(x,x, t) dx,

we use the ray expansion (3.7) for the evaluation of the integral. We retain in the
resulting expansion only terms that are transcendentally small, since all algebraic
terms are contained in the expansion (1.8).

4.1. Simply connected domains. We note that according to Sard’s theorem,
Γ is a set of measure zero and that all points in the domain Ω − Γ are regular. For
any point x ∈ Ω, we denote by r1(x) its distance to the boundary and note that
S1(x,x) = 2r1(x). We also denote by s1(x) the arclength at the boundary point
x′ (the orthogonal projection of x on ∂Ω along the shortest normal from x to ∂Ω),
measured from a boundary point where the arclength is set to 0 (see Figure 3).

It follows that the change of variables in Ω − Γ , given by

x → (r1(x), s1(x)),(4.1)
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Fig. 3. The arclength s1(x) is measured from the point E. Both transformations x →
(r1(x), s1(x)) and x → (r2(x), s1(x)) are one-to-one mappings of Ω − Γ. The images are given in
Figure 4.

is a one-to-one mapping of Ω − Γ onto a strip 0 ≤ r1 ≤ r1 (s1) , 0 ≤ s1 ≤ L, where
r1(s1) is the distance from the boundary point corresponding to arclength s1 to Γ.

We evaluate the integral over Ω separately for each summand k in the expansion
(3.7). In this notation, we can write∫

Ω

G1(x,x, t) dx

(4.2)

=

∫
Ω

e−[S1(x,x)]2/4t
∞∑

n=0

Zn,1(x,x)tn−1 dx

=

∫ L

0

ds

∫ r1(s1)

0

e−r2
1/tJ1(r1, s1)Z1(r1, s1, t) dr1,

where J1(r1, s1) is the Jacobian of the transformation and

Z1(r1, s1, t) =

∞∑
n=0

Zn,1(x, x)tn−1.

Note that the Jacobian vanishes neither inside Ω − Γ nor at r1 = 0, because the
transformation is one-to-one in Ω − Γ; however, it does on Γ.
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We set S2(x, x) = 2r2(x) and use it as a coordinate. We use s1(x) as the other
coordinate of the point x ∈ Ω − Γ. Note that while r2(x) is the length of the longer
normal from x to ∂Ω (the one that intersects Γ), the other coordinate is the arclength
corresponding to the shorter normal from x to ∂Ω (the one that does not intersect
Γ). The transformation

x → (r2(x), s1(x))(4.3)

maps Ω − Γ onto the strip r (s1) ≤ r2 ≤ l(s1), 0 ≤ s1 ≤ L, where l(s1) is the length
of the segment of the normal that starts at the boundary point r1 = 0, s1 and ends
at its other intersection point with the boundary. This mapping is one-to-one as well.
It follows that ∫

Ω

G2(x,x, t) dx

(4.4)

=

∫
Ω

e−[S2(x,x)]2/4t
∞∑

n=0

Zn,2(x,x)tn−1 dx

=

∫ L

0

ds1

∫ l(s1)

r(s1)

e−r2
2/tJ2(r2, s1)Z2(r2, s1, t) dr2,

where

Z2(r2, s1, t) =

∞∑
n=0

Zn,2(x, x)tn−1.

Note that for x on Γ both transformations, (4.1) and (4.3) are identical and

J2(r2, s1)Z2(r2, s1, t) = J1(r1, s1)Z1(r1, s1, t).

It follows that (4.2) and (4.4) combine to give∫
Ω

[G1(x,x, t) + G2(x,x, t)] dx

(4.5)

=

∫ L

0

∫ l(s)

0

e−r2/tJ(r, s)Z(r, s, t) dr ds,

where s = s1, r = r1, J = J1, and Z = Z1 for 0 < r < r1(s1), and s = s1, r =
r2, J = J2, and Z = Z2 for r2(s1) < r < l(s1). Thus the domain of integration of the

function e−r2/tJ(r, s)Z(r, s, t) in (4.5) is the domain enclosed by the s1-axis and the
upper curve in Figure 4. Now, for t � 1, we write the inner integral on the right-hand
side of (4.5) as∫ l(s)

0

e−r2/tJ(r, s)Z(r, s, t) dr =

√
πt

2
erf

(
l(s)√

t

)
J(0, s)Z(0, s, t)

(
1 + O

(√
t
))

=

√
πt

2

⎛
⎜⎜⎝1 −

exp

{
− l2(s)

t

}√
t

l(s)

⎞
⎟⎟⎠ J(0, s)Z(0, s, t)

(
1 + O

(√
t
))

.
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Fig. 4. The domain Ω is the ellipse x2

a2 + y2

b2 ≤ 1. The domain enclosed between the s1-axis and
the lower curve is the image of the ellipse under the transformation (4.1), and the domain enclosed
between the upper and the lower curves is its image under (4.3).

Recall that J(0, s)Z(0, s, t) 	= 0. Only the exponentially small terms have to
be considered, because the algebraic terms are included in the Stewart–Waechter
expansion. Thus∫ L

0

∫ l(s)

0

e−r2/tJ(r, s)Z(r, s, t) dr ds−
∫ L

0

√
πt

2
J(0, s)Z(0, s, t)

(
1 + O

(√
t
))

ds

= −
∫ L

0

exp

{
− l2(s)

t

}
J(0, s)Z(0, s, t)

l(s)
O (t) ds for t � 1.

Evaluating the last integral by the Laplace method, we find that each point si, which
is an extremum point of l(s), contributes an exponential term of the form

exp

{
− l2(si)

t

}
J(0, si)Z(0, si, t)

l(si)
O (tν) ,(4.6)

where ν ≥ 0 and O (tν) depend on the type of the critical point si, and so also on the
local behavior of l2(s) near si. The expression (4.6) means that some of the δn’s in
the expansion (1.15) are the extremal values l(si) and their multiples. These are half
the lengths of the 2-periodic orbits of a billiard ball in Ω (see Figure 5). In particular,
the shortest neck is given by

δ1 =
l

2
.(4.7)
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Fig. 5. The rays emanating from the boundary points s1 and s2 are orthogonal to the boundary
at both ends. They are 2-periodic orbits.

The 2-periodic orbits of the ellipse are the major axes, which correspond to the
lowest and highest points of the top curve in Figure 4. There are other exponents as
well, as discussed below.

The preexponential terms in the expression (4.6) influence the factors Pn(
√
t) in

(1.15). For example, if l′(si) = 0, l′′(si) 	= 0, then ν = 3/2. If the boundary is flatter,
then 1 ≤ ν < 3/2.

In addition to the 2-periodic orbits, there are ray solutions corresponding to rays
from x to y that are reflected any number of times in the boundary. There are
eikonals from x to y in Ω with N − 1 different vertices on the boundary, which
have N vertices on ∂Ω if x = y and x ∈ ∂Ω (this is a periodic orbit with N − 1
reflections). Among these periodic orbits, there are eikonals SN (x, x) with extremal
length, denoted SN,j , (j = 1, . . .). At points x ∈ Ω on a 2-periodic orbit the eikonal
SN (x, x), which now has N−1 vertices on the boundary, may reduce to the 2-periodic
orbit with N reflections. Therefore the change of variables x → (SN (x,x), s(x)) will
map the domain into a strip with extremal widths that are the differences between
the lengths SN,j and the length of a 2-periodic orbit with N reflections. It follows
that the evaluation of the trace by the Laplace method leads to exponents which are
the extremal lengths of periodic orbits with any number of reflections.

For example, there is an eikonal in a circle (centered at the origin) that is the ray
from x to y with two reflections in the boundary (see Figure 6). For x = y it is the
equilateral triangle (see Figure 7) with circumference
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Fig. 6. The eikonal S3(y, x) with two reflections in the circle.
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Fig. 7. The eikonal S3(x, x) with two reflections, where |x| = OC.
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⎛
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√
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√
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√
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⎠ .

The eikonal S3(x,y) reduces to a 2-periodic orbit with two reflections if x = y = 0
(the center of the circle). If x is on the circumference, the eikonal becomes the isosceles
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triangle with one vertex at x. To evaluate the contribution of the corresponding ray
solution to the trace, we use this eikonal as a coordinate that varies between 4R, the
length of the 2-periodic orbit with two reflections, and 3

√
3R, the circumference of

the inscribed isosceles triangle. The contribution of this integral to the exponential
sum in (1.15) contains exponents that are both lengths. Similarly, the 2-periodic orbit
with three reflections has length 6R, while the periodic orbit with three reflections at
three different points has length 4

√
2R < 6R. Obviously, if the preexponential factors

vanish, these exponents do not appear in the expansion.

4.2. Multiply connected domains. Once again, we first consider rays from x
to y that are reflected only once in the boundary. For every connected component of
∂Ω, denoted ∂Ωi (i = 1, . . . , I), a point x in Ω is regular with respect to ∂Ωi if there
is only one minimal eikonal Si,1(x,x) > 0 with one reflection at ∂Ωi. We denote by
Γi the locus of the irregular points of Ω with respect to ∂Ωi.

As above, we define in Ω−Γi the minimal eikonal with one reflection in ∂Ωi such
that Si,2(x,x) > Si,1(x,x). We construct an approximation

G(y,x, t) ∼ G0(y,x, t) +

2∑
k=1

I∑
i=1

Gi,k(y,x, t),

where Gi,k(y,x, t) are ray solutions with eikonals Si,k(y,x) and Zi,k(y,x) chosen
so as to minimize the boundary values of the sum at the boundary points of rays
orthogonal to the boundary, as above. The trace of the double sum is calculated by
introducing the change of variables 2ri,k(x) = Si,k(x,x) and arclength si(x) in ∂Ωi,
as above. The Laplace evaluation of the integrals produces exponents that are the
2-periodic orbits in Ω.

Eikonals with two or more reflections contribute exponents that are lengths of
extremal closed orbits with any number of reflections in the boundary, as in the case
of simply connected domains. Thus the exponents δn in (1.15) consist of half the
lengths of 2-periodic orbits in Ω and their multiples, and extremal lengths of closed
periodic orbits with any number of reflections in the boundary and their multiples.

5. Recovering δ1 from P (t). We denote the sum of N ≥ 3 terms in (1.8)

QN (t) ∼ |Ω|
4πt

− |∂Ω|
8
√
πt

+
1

6
(1 − r) +

N∑
n=3

ant
n/2−1 for t → 0.(5.1)

To recover the geometrical information from the expansion (1.15), given the (mea-
sured) function P (t), we note that

|Ω| = lim
t→0

4πtP (t), |∂Ω| = − lim
t→0

8
√
πt

[
P (t) − |Ω|

4πt

]
,(5.2)

and so on. This way any number of terms in the expansion (1.8) can be determined.
Once Qn(t) has been determined, we can write

t[P (t) −Q2n−1(t)] ∼ a2nt
n
(
1 + O

(√
t
))

+
P1(0)√

π

(
1 + O

(√
t
))

e−δ2
1/t,(5.3)

where the first O
(√

t
)

may depend on n. According to (1.9) and to Stirling’s formula,

a2n =
α

l2n−2
O

(
Γ(2n)

Γ (n)

)
= O (ABnnn) for n → ∞,(5.4)
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where

A = l2α, B =
4

el2
.(5.5)

We will show that for some δ > 0

max
0≤t≤δ

{
−t log

∣∣∣∣a2nt
n
(
1 + O

(√
t
))

+
P1(0)√

π

(
1 + O

(√
t
))

e−δ2
1/t

∣∣∣∣
}

→ δ2
1 as n → ∞.

Indeed, setting b = P1(0)√
π

, assuming A,B, b > 0, and defining

g(t) = −t log
(
ABnnntn + be−δ2

1/t
)
,(5.6)

we set nt = u and rewrite (5.6) as

(5.7)

g(t) = −u log n

√
A

(
4

el2

)n

un + be−nδ2
1/u → −umax

{
log

4

el2
,−δ2

1

u

}
as n → ∞

= max

{
δ2
1 , e

(
l

2

)2

(−y log y)

}
,

where

y =
u

e

(
2

l

)2

.

Because

−y log y ≤ e−1,

we can write, according to (4.7),

max
0<t<δ

g(t) → max

{
δ2
1 ,

(
l

2

)2
}

= δ2
1 =

(
l

2

)2

.(5.8)

Note that the maximum is achieved at

tmax =
1

en
→ 0 as n → ∞.(5.9)

Equation (5.8) implies the following algorithm for determining δ1 from the given
values of P (t). First, use the method of (5.2) to construct Qn(t) for a given n and
then find

max
t

{−t log |t[P (t) −Qn(t)]|} = δ2
1 + o(1) as n → ∞.

This algorithm works quite well with MAPLE.
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6. Discussion. We illustrate our expansion for a disk, whose boundary has only
one connected component and a single critical point. We consider points x = (x1, y1)
and y = (x2, y2) inside a circle of radius R centered at the origin. The leading-order
eikonal is

S0 (y,x) = |x − y| .

When both x and y are on the x-axis, we have y1 = y2 = 0 and S0 (y,x) = |x1 − x2|.
Denoting x1 = (x1, 0) and x2 = (x2, 0), we see that the values of the eikonal on the
x-axis are S0 (x1,x2) = |x1 − x2|. We assume that x1 > 0. The boundary values of
the eikonal are

S0 (x1,x2) = R− x1 at x2 = (R, 0)

and

S0 (x1,x2) = R + x1 at x2 = (−R, 0).

Thus the leading-order ray approximation to Green’s function G (y,x, t),

G0 (y,x, t) =
1

4πt
e−S2

0(y,x)/4t,

misses the boundary conditions when x and y are on the x-axis, giving

G0 (x1,x2, t) =
1

4πt
e−(R−x1)2/4t at x2 = (R, 0)

and

G0 (x1,x2, t) =
1

4πt
e−(R+x1)2/4t at x2 = (−R, 0).(6.1)

The next eikonal, denoted S1 (y,x), is given on the x-axis by S1 (x1,x2) = 2R−
x1 − x2, and its boundary values are

S1 (x1,x2) = R− x1 at x2 = (R, 0)

and

S1 (x1,x2) = 3R− x1 at x2 = (−R, 0).

Thus the approximation of Green’s function G (y,x, t) ,

G (y,x, t) ∼ G0 (y,x, t) −G1 (y,x, t) ,

corresponding to the ray solutions G0 (y,x, t) and

G1 (x,y, t) = Z1 (x,y, t) e−S2
1(y,x)/4t,

will satisfy the boundary condition at (x1, R) if Z1 (y,x, t) is chosen so that

Z1 (x1,x2,t) =
1

4πt
at x2 = (R, 0).
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However, this approximation does not satisfy the boundary condition at x2 = (−R, 0).
The error in the boundary values at x2 = (−R, 0) is

G0(x1,x2,t) −G1 (x1,x2,t)

=
1

4πt
e−(R+x1)2/4t − Z1 (x1,x2,t) e

−4(R−x1)2/4t at x2 = (−R, 0)

and is of the same order of magnitude as that of the leading-order approximation
(6.1). To make up for the missed boundary condition, the further approximation

G (y,x, t) ∼ G0 (y,x, t) −G1 (y,x, t) −G2 (y,x, t)(6.2)

can be used, with

G2 (y,x, t) = Z2 (y,x, t) e−s2
1(y,x)/4t,

where on the x-axis

s1 (x1,x2) = 2R + x1 + x2

and

Z2 (x1,x2,t) =
1

4πt
at x2 = (−R, 0).

This eikonal corresponds to rays with two reflections in the boundary. The approxi-
mation (6.2) decreases the error in the boundary condition at x2 = (−R, 0) to

−Z1 (x1,x2,t) e
−4(R−x1)2/4t

but misses the boundary condition at x2 = (R, 0) with error

G0(x1,x2,t) −G1 (x1,x2,t) −G2 (x1,x2,t)

= −Z2 (x1,x2,t) e
−(3R+x1)2/4t at x2 = (R, 0).

This process gives successive approximations to Green’s function with errors that
decrease at transcendental rather than algebraic rates.

The approximation to the trace produced by G0 (y,x, t) is the first algebraic term
in the expansion (1.8). The contributions of the terms −G1(y,x, t) and −G2(y,x, t) in

the approximation (6.2) of terms that are O(
√
te−R2/t) are identical but with opposite

signs, and thus they cancel each other. The second term contributes a negative term
that is O(

√
te−4R2/t). The term O(

√
te−R2/t) for small t corresponds to O( 1

se
−2R

√
s)

for large positive s in the Laplace plane. The number 2R is the length of the periodic
orbit of a billiard ball bouncing inside a circle with the center removed, that is, inside
the domain Ω − Γ, where the set of critical points Γ consists of the center. Similarly,
the term O(

√
te−4R2/t) for small t corresponds to O( 1

se
−4R

√
s) for large positive s in

the Laplace plane. The number 4R is the length of the minimal periodic orbit of a
billiard ball bouncing inside a disk. We conclude that the conjecture of [10] should
be supplemented with the orbit of length 2R.

If Ω is an annulus between two concentric circles, of radii a and b, respectively,
(a > b), the two connected components of the boundary are the two circles, and
there are no critical points in the domain relative to either one of them. In this case
δ1 = (a− b).
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If Ω is the ellipse

x2

a2
+

y2

b2
< 1

with a > b, the locus of critical points relative to the boundary is the segment

Γ =

[
−a2 − b2

a
,
a2 − b2

a

]

on the x-axis. The segment Γ is the short diagonal of the evolute of the ellipse (the

asteroid (ax)
2/3

+(by)
2/3

= (a2−b2)2/3). For the ellipse there are exponents in (1.15)
which are δ1 = 2b and its multiples and δ2 = 2a and its multiples, as well as extremal
periodic orbits with any number of reflections in the boundary.

Finally, we observe that if the boundary is reflecting (i.e., a homogeneous Neu-
mann boundary condition), the exponential decay rate of the transcendental terms in
the expansion of the trace is the same as in the case of absorbing boundary (homo-
geneous Dirichlet boundary condition). In this case the second term in the expansion
(1.15) changes sign.

Obviously, rays that are reflected from the boundary more than once also give
rise to ray solutions. The number of ray solutions needed in the expansion (3.7)
is determined by the required degree of asymptotic approximation of the boundary
conditions. If only a finite sum of ray solutions satisfies the boundary conditions,
the sum (3.7) is finite. Otherwise, additional ray solutions improve the degree of
approximation of the boundary conditions, as described in the one-dimensional ray
expansion in section 2.

The derivation of the algorithm described in section 5 suggests further conjectures
of the type (1.9) [10] concerning the coefficients of the power series Pn(x) in the
asymptotic series (1.15). They should relate the rate of growth of the coefficients of
P1(x) to δ2, and so on. This will make the evaluation of δn possible for n > 1, as
above.

Finally, the asymptotic convergence of the ray expansion follows from the maxi-
mum principle for the heat equation in a straightforward manner.
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ERRATUM: SINGULARITY FORMATION IN CHEMOTAXIS—A
CONJECTURE OF NAGAI∗

MATTHEW A. HALVERSON† , HOWARD A. LEVINE† , AND JOANNA RENC�LAWOWICZ‡

Abstract. In [H. A. Levine and J. Renc�lawowicz, SIAM J. Appl. Math., 65 (2004), pp. 336–360]
we considered the problem ut = uxx− (uvx)x, vt = u−av on the interval I = [0, 1], where ux, vx = 0
at the end points, u(x, 0), v(x, 0) are prescribed, and a > 0. (It was claimed in that article that
there were solutions that blow up in finite time in every neighborhood of the spatially homogeneous
steady state (u, v) = (μ, μ/a) if μ > a.) Here we correct an estimate and reduce Nagai’s conjecture
to the following statement. Let σ = a/(μ − a), ρ1 = 1. If limn→+∞ ρn exists, where for n ≥ 2,

ρnn ≡ 1/(n− 1)
∑n−1

j=1
(1 + σ/j)ρjjρ

n−j
n−j , then the blow up assertion holds.

Key words. chemotaxis, finite time singularity formation, Keller–Segel model

AMS subject classifications. 35K55, 92C17
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1. Introduction. In [1] we studied the system ut = uxx − (uvx)x, vt = u − av
on the interval I = [0, 1], where ux, vx = 0 at the end points, u(x, 0), v(x, 0), are
prescribed, and a > 0. Nagai and Nakaki [2] showed that there are solutions that are
unbounded in finite or in infinite time.1 We claimed that there were initial conditions
for which solutions failed to exist for all time. In our proof we used a differential
inequality, the derivation of which was unfortunately flawed. We correct this and
make more precise the statement proved in [1].

2. Approximate solution. The notation of [1] is in force here. Because system
ut = uxx − (uvx)x, vt = u − av is autonomous, we can assume the initial values are
prescribed at t = 0 and that the blow up time, when it exists, is positive. As in
[1], define, for any sequence z(t) = {zn(t)}∞n=1, Gn(z, z′) = (1/2)C2n{(Mz ∗ z′)n +
na

2 (z∗z)n} and Hn(z, z′) = (1/2)C2n{[(TnMz, z′)−(Mz, Tnz
′)]+an(z, Tnz)}, where

Mz(t) = {nzn(t)}∞n=1 and Tkz(t) = {zn+k(t)}∞n=1. Here |z| = {|zn|}∞n=1 and (z∗w)n =∑n−1
k=1 zkwn−k. (The sum is zero if n = 1.)

The infinite system of ordinary differential equations for the cosine coefficients
h(t) = {hn(t)}∞n=1 is2

Lnhn ≡ h′′
n + (C2n2 + a)h′

n − (μ− a)C2n2hn = Gn(h, h′) + Hn(h, h′).

The infinite system of ordinary differential equations satisfied by the cosine coefficients
for the approximate problem, g(t) = {gn(t)}∞n=1, satisfies Lngn = Gn(g, g′). The

∗Received by the editors May 13, 2005; accepted for publication May 24, 2005; published elec-
tronically November 15, 2005.

http://www.siam.org/journals/siap/66-1/63155.html
†Department of Mathematics, Iowa State University, Ames, IA 50011 (mhalver@iastate.edu,

halevine@iastate.edu).
‡Institute of Mathematics, Polish Academy of Sciences, Śniadeckich 8, 00-956, Warsaw, Poland

(jr@impan.gov.pl).
1The Nagai conjecture states that if μ > a, there are spatially nonhomogeneous solutions begin-

ning in every small neighborhood of (μ, μ/a) which cannot exist for all time.
2The spatially homogeneous solution is given by V (t) = μ/a + (v0 − μ/a) exp(−at), U(t) = μ.

One sets ψ(x, t) = v(x, t)−V (t), u(x, t) = μ+ψt+aψ. Then h(t) is the sequence of cosine coefficients
for ψ(x, t).
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particular sequence g(t) ≡ {gn(t) = ane
nλt}∞n=1 satisfies this system for a1 > 0, and

for n ≥ 2 and any integer M > 0 with C = 2πM , μ > a if

2λ[n− a/(4π2M2)]an =
1

n− 1

n−1∑
k=1

[λ(n− k)k + ak]akan−k,(2.1)

where λ is the positive root of λ2 +(4π2M2 +a)λ−(μ−a)4π2M2 = 0. There are posi-
tive constants a, b, ε, δ with aεn ≤ nan ≤ bδn for all positive integers [1]. From this, it
follows that lim infn→+∞[(− lnnan)/(nλ)] ≡ Tb and lim supn→+∞[(− lnnan)/(nλ)] ≡
Tb are finite. Hence there is a subsequence {ank

}∞k=1 such that limk→+∞[(− lnnkank
)/

(nkλ)] ≡ Tb. For this sequence, limk→+∞ nkank
exp (nkλTb) = 1. Set an = (An/n)

exp (−nλTb). On the subsequence, Ank
→ 1 and

lim
t↑Tb

∞∑
k=1

Ank
e−nkλ(Tb−t) = +∞ and lim

t↑Tb

∞∑
k=1

Ank
e−nkλ(Tb−t)

nk
1+δ

< +∞(2.2)

(for any δ > 0).

Now Tb must be the blow up time for the approximate solution g(t) in the space
�1
1(0, Tb)× �1(0, Tb). (A sequence {an} is in �1

1 if {nan} is in �1.) To see this, note that
as long as t is in the existence interval,

‖Mg(t)‖�1 + ‖g′(t)‖�1 =

∞∑
n=1

nan(1 + λ)enλt ≥ (1 + λ)

∞∑
k=1

nkank
enkλt

= (1 + λ)

∞∑
k=1

Ake
−nkλ(Tb−t).(2.3)

Consequently, from the first equation in (2.2), g(·) must blow up at some time,
possibly earlier than Tb. If t < Tb, then lim infn→+∞[(− lnnan)/(nλ)] ≡ Tb >
Tb − δ > t for some positive δ. Therefore, for sufficiently large N ,

∑∞
n=N nane

nλt ≤∑∞
n=N ne−nλ(Tb−δ−t) < ∞.

Set σ = a/λ. Let {ln[nan/(2a
n
1 )]/n}∞n=1 = {lnAn/n}∞n=1 ≡ {pn/n}∞n=1. The

pn satisfy p1 = − ln 2, and for n ≥ 2, [1 − a/(4π2M2n)]epn = 1
n−1

∑n−1
j=1 (1 +

σ/j)e(pj+pn−j). Then we have the following theorem.

Theorem 1 (Nagai’s conjecture). Let limn→+∞
pn

n exist. The corresponding
solution of the Nagai problem for which hn(0) = gn(0) and h′

n(0) = g′n(0) for all n
cannot both exist and be �1 regular on [0,∞). (A solution of the Nagai–Nakaki problem
is �1 regular on an interval I = [0, Tb) if it exists there and if (‖Mh(s)‖�1 +‖h′(s)‖�1)
is uniformly bounded on compact subsets I.)

3. Estimate. Inequality (7.5) of [1] is incorrect. The correct form of the upper
bound for the norm of g − h ≡ w, ‖Mw(t)‖�1 + ‖w′(t)‖�1 , is based on the following
(infinite) system of ordinary differential equations:

(3.1)

Lnwn = Gn(h− g, h′) + Gn(g, h′ − g′) + Hn(h, h′) = Gn(w, h′) + Gn(g, w′) + Hn(h, h′)

and, for some B > 0 depending perhaps on τ but not on w,w′, h, h′, g, g′, is given by
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(3.2)

‖Mw(t)‖�1 + ‖w′(t)‖�1 ≤ I(t) + J(t) + B

∫ t

0

(‖Mh(s)‖�1 + ‖h′(s)‖�1)2

√
t− s

ds

+ B

∫ t

0

(‖Mw(s)‖�1 + ‖w′(s)‖�1)(‖Mh(s)‖�1 + ‖h′(s)‖�1)√
t− s

ds,

where

I(t)+J(t) ≡
∫ t

0

∞∑
n=1

M(|g′|∗M|w|)ne−dn2(t−s) ds+

∫ t

0

∞∑
n=1

M2(|g|∗|w|)ne−dn2(t−s) ds,

and where d > 0 is the positive constant in [1, Lemma 1]. We have

I(t) =

∫ t

0

∞∑
n=1

n−1∑
k=1

n(n− k)|g′k||wn−k|e−dn2(t−s) ds

=

∫ t

0

∞∑
k=1

∞∑
n=1

n(n + k)|g′k||wn|e−d(n+k)2(t−s) ds

≤
∫ t

0

∞∑
k=1

|g′k|e−(d/2)k2(t−s)

[ ∞∑
n=1

(n + k)e−(d/2)(n+k)2(t−s)n|wn|
]
ds

≤ c

∫ t

0

∑∞
k=1 |g′k|e−(d/2)k2(t−s)

√
t− s

‖Mw(s)‖�1 ds

≤ c

∫ t

0

∞∑
k=1

Ake
−(d/2)k2(t−s)−λk(Tb−s) ‖Mw(s)‖�1√

t− s
ds

≤ c

∫ t

0

{ ∞∑
k=1

Ake
−[(d/2)k2+kλ](t−s)

}
‖Mw(s)‖�1√

t− s
ds ≡ c

∫ t

0

W(t− s)
‖Mw(s)‖�1√

t− s
ds.

In the same manner,

J(t) =

∫ t

0

∞∑
n=1

n−1∑
k=1

n2|gk||wn−k|e−dn2(t−s) ds

≤
∫ t

0

∞∑
k=1

∞∑
n=1

(n + k)2|gk||wn|e−d(n+k)2(t−s) ds

≤
∫ t

0

∞∑
k=1

|kgk|e−(d/2)k2(t−s)

[ ∞∑
n=1

(n + k)2

kn
e−(d/2)(n+k)2(t−s)n|wn|

]
ds.

From the inequality (k + l)/kl ≤ 2,

J(t) ≤ c′
∫ t

0

{ ∞∑
k=1

Ake
−[(d/2)k2+kλ](t−s)

}
‖Mw(s)‖�1√

t− s
ds ≡ c′

∫ t

0

W(t−s)
‖Mw(s)‖�1√

t− s
ds.

In view of (2.2), limt↑Tb

∑∞
k=1 Akk

−2e−kλ(Tb−t) < +∞. Thus W(t) is in every
Lp[0, Tb] space for 1 ≤ p < ∞. With f(t) = ‖Mw(t)‖�1 + ‖w′(t)‖�1 , we see f(t) ≤∫ t

0
W(t−s)f(s)/

√
t− s ds+Φ(h(t)). From Hölder’s inequality with 1/p+1/r+1/q = 1
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and 1 < r < 2, there is a constant K > 0 such that f(t) ≤ K[
∫ t

0
f(s)q ds]1/q +Φ(h(t))

on [0, Tb). From Gronwall’s inequality, if h is global, f(t) is bounded on [0, Tb). From
the first sum in (2.2) and the triangle inequality, this is impossible.

Other minor errors in [1]. Page 345, equation (5.1): Replace k(wkgn+k +hkwn+k)
by n(wkgn+k + hkwn+k). Page 349, equation in line 13: c

√
t should be replaced by

c sup[0,T ]

√
t.
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THE INVERSE CONDUCTIVITY PROBLEM WITH AN
IMPERFECTLY KNOWN BOUNDARY∗

VILLE KOLEHMAINEN† , MATTI LASSAS‡ , AND PETRI OLA§

Abstract. We show how to eliminate the error caused by an incorrectly modeled boundary in
electrical impedance tomography (EIT). In practical measurements, one usually lacks exact knowl-
edge of the boundary. Because of this, the numerical reconstruction from the measured EIT data is
done using a model domain that represents the best guess for the true domain. However, it has been
noticed that an inaccurate model of the boundary causes severe errors for the reconstructions. We
introduce a new algorithm to find a deformed image of the original isotropic conductivity based on
the theory of Teichmüller spaces, and we implement it numerically.

Key words. inverse conductivity problem, electrical impedance tomography, unknown bound-
ary, Teichmüller mapping
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1. Introduction. We consider the electrical impedance tomography (EIT) prob-
lem, i.e., the determination of an unknown conductivity distribution inside a domain,
for example the human thorax, from voltage and current measurements made on
the boundary. Mathematically this is formulated as follows: Let Ω ⊂ R

2 be the
measurement domain, and denote by γ = (γij) the symmetric matrix describing the
conductivity in Ω. We assume that the matrix has components in L∞(Ω) and that it
is strictly positive definite; that is, for some c > 0 we have 〈ξ, γ(x)ξ〉 ≥ c||ξ||2 for all
x ∈ Ω. The electrical potential u satisfies in Ω the equation

∇ · γ∇u = 0.(1.1)

To uniquely fix the solution u it is enough to give its value on the boundary. Let this
be u|∂Ω = f ∈ H1/2(∂Ω), where H1/2(∂Ω) is the Sobolev space. Then (1.1) has a
unique weak solution u ∈ H1(Ω).

Our boundary data is the map that takes the voltage distribution f on the bound-
ary for all f to the corresponding current flux through the boundary, ν · γ∇u, where
ν is the exterior unit normal to Ω. Mathematically this amounts to the knowledge of
the Dirichlet–Neumann map Λ corresponding to γ, i.e., the map taking the Dirichlet
boundary values to the corresponding Neumann boundary values of the solution to
(1.1),

Λγ : u|∂Ω �→
2∑

i,j=1

νi γ
ij ∂u

∂xj

∣∣∣∣
∂Ω

.
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This defines a bounded operator Λγ : H1/2(∂Ω) → H−1/2(∂Ω). The symmetric
quadratic form corresponding to Λγ ,

Λγ [h, h] :=

∫
∂Ω

hΛγh dS =

∫
∂Ω

∇u· γ∇u dx,(1.2)

equals in physical terms the power needed to maintain the potential h on ∂Ω.
When γ is a scalar-valued function times an identity matrix, we say that the

conductivity is isotropic. As usual, conductivities that may be matrix-valued are
referred to as anisotropic conductivities. The EIT problem is to reconstruct γ from Λγ .
The problem was originally proposed by Calderón [6] and then solved in dimensions
three and higher for isotropic smooth conductivities in [18]. The two-dimensional case
that is relevant to us was solved by Nachman [13] for isotropic conductivities assuming
γ ∈ W 2,p, p > 1, and then finally for general L∞-smooth isotropic conductivities by
Astala and Päivärinta in a celebrated paper [4].

The conductivity equation is invariant under deformations of the domain Ω in the
following sense. If F is a diffeomorphism taking Ω to some other domain Ω̃, then
u ◦ F−1 will satisfy the conductivity equation in Ω̃ with conductivity

γ̃(x) =
F ′(y) γ(y) (F ′(y))t

|detF ′(y)|

∣∣∣∣
y=F−1(x)

,(1.3)

where F ′ is the Jacobi matrix of map F and u is a solution of ∇· γ∇u = 0 in Ω. We
say that γ̃ is the push forward of γ by F and denote it by γ̃ = F∗γ. Note that all
this is well defined for general matrix-valued γ. For us the starting point is the trivial
observation that even if γ is isotropic, the deformed conductivity γ̃ will not in general
be isotropic. The boundary measurements are invariant: When f : ∂Ω → ∂Ω̃ is the
restriction of F : Ω → Ω̃, we say that Λ̃ = f∗Λγ ,

((f∗Λγ)h)(x) = (Λγ(h ◦ f))(y)|y=f−1(x) , h ∈ H1/2(∂Ω̃),

is the push forward of Λγ in f . As seen in [17], it turns out that f∗Λγ = ΛF∗γ .
The fact that the anisotropic conductivity equation and the boundary measure-

ments are invariant has the important consequence that the EIT problem with an
anisotropic conductivity is not uniquely solvable, even though the isotropic problem
is; see [17].

In practice, when solving the EIT problem in a given domain Ω, one typically seeks
the isotropic conductivity that minimizes

||Λmeas − Λγ ||2 + α||γ||2X(1.4)

for γ defined in terms of some triangulation of Ω as, e.g., a piecewise constant function
and || · ||X is some regularization norm [10]. Here Λmeas is the measurement of the
Dirichlet–Neumann map that contains measurement errors.

In practice, one of the key difficulties in solving the EIT problem is that the do-
main Ω may not be known accurately. It has been noticed that the use of a slightly
incorrect model for Ω, i.e., a slightly incorrect model of the boundary, causes serious
errors in reconstructions; see, e.g., [9, 1, 8]. As an example, consider the EIT measure-
ments of pulmonary function from the human thorax. The measurement electrodes
are attached on the skin of the patient around the thorax. In principle, an exact
parameterization for the shape of the thorax could be obtained from other medical
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imaging modalities such as magnetic resonance imaging (MRI) or computerized to-
mography (CT). However, in most cases this data is not available, and one has to
resort to some approximate thorax model. Further, the shape of the thorax varies
between breathing states, and it is also dependent on the orientation of the patient.
Thus, the thorax geometry is known inaccurately even in best-case scenarios.

In this paper our aim is to propose a method to overcome the problem that the
boundary and its parameterization are not exactly known. The set-up of the problem
we consider is the following.

We want to recover the unknown conductivity γ in Ω from the measurements of
the Dirichlet-to-Neumann map, and we assume a priori that γ is isotropic. We assume
that ∂Ω and Λγ are not known. Instead, let Ωm, called the model domain, be our
best guess for the domain, and let fm : ∂Ω → ∂Ωm be a diffeomorphism modeling
the approximate knowledge of the boundary. As the data for the inverse problem,
we assume that we are given the boundary of the model domain, ∂Ωm, and the map
Λm := (fm)∗Λγ on ∂Ωm. Note that we have simplified the problem by assuming that
the only error in Λm comes from the imperfect knowledge of the boundary.

This set-up is motivated by the fact that the quadratic form corresponding to Λm,

Λm[h, h] =

∫
∂Ωm

hΛmh dS =

∫
∂Ω

(h ◦ fm) Λγ(h ◦ fm) dS, h ∈ H1/2(∂Ωm),

represents the power needed to maintain the potential h ◦ fm on ∂Ω.
Since Λm usually does not correspond to any isotropic conductivity because of

the deformation done when going from the original domain Ω to Ωm, we obtain an
erroneous solution γ when solving the minimization problem (1.4). This means that
a systematic error in the domain model causes a systematic error in the reconstruc-
tion. In particular, local changes of the conductivity often give rise to nonlocalized
changes in reconstructions due to the above systematic error. Thus the spatial res-
olution of details of reconstructions are often weak. This is clearly seen in practical
measurements; see, e.g., [8].

We note that in solving the minimization problem (1.4) one could forget the as-
sumption that γ is isotropic and find the minimizer in the set of anisotropic conduc-
tivities. However, the anisotropic inverse problem has a nonunique solution, and as
the minimization problem is highly nonconvex, the minimization would be hard; as
usual, forgetting existing a priori information makes the solution significantly worse.

To formulate our main results, let us define certain concepts. We start with the
maximal anisotropy of an anisotropic conductivity.

Definition 1.1. Let γjk(x) be an L∞(Ω)-smooth matrix-valued conductivity in
Ω, and let λ1(x) and λ2(x), λ1(x) ≥ λ2(x), be the eigenvalues of matrix γjk(x). We
define the maximal anisotropy of a conductivity to be K(γ) given by

K(γ) = sup
x∈Ω

K(γ, x), where K(γ, x) =

√
L(x) − 1√
L(x) + 1

, L(x) =
λ1(x)

λ2(x)
.

We call the function K(γ, x) the anisotropy of γ at x. Here sup denotes the essential
supremum.

Sometimes, to indicate the domain Ω, we denote K(γ) = KΩ(γ). As a particularly
important example needed later, let us consider the conductivity matrices of the form

γ̂(x) = η(x)Rθ(x)

(
λ1/2 0

0 λ−1/2

)
R−1

θ(x),(1.5)
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where λ ≥ 1 is a constant, η(x) ∈ R+ is a real-valued function, and Rθ(x) is a rotation
matrix corresponding to angle θ(x), where

Rθ =

(
cos θ sin θ
− sin θ cos θ

)
.

We denote such conductivities by γ̂ = γ̂λ,θ,η. These conductivities have the anisotropy
K(γ̂, x) = cλ = (λ1/2−1)/(λ1/2+1) at every point, and thus their maximal anisotropy
is K = cλ. We call such conductivities γ̂ uniformly anisotropic conductivities.

Theorem 1.2. Let Ω be a bounded simply connected C1,α-domain with α > 0.
Assume that γ ∈ C0,α(Ω) is a (possibly) anisotropic conductivity and Λγ its Dirichlet–
Neumann map. Let Ωm be a model of the domain satisfying the same regularity
assumptions as Ω, and fm : ∂Ω → ∂Ωm be a C1,α-smooth diffeomorphism.

Assume that we are given ∂Ωm and Λm = (fm)∗Λγ . Then we have the following:
1. There is a unique anisotropic conductivity γ̂ ∈ L∞(Ωm,R2×2) such that if

γ1 is an anisotropic conductivity in Ωm for which Λγ1 = Λm, then K(γ1) ≥
K(γ̂).

2. Let λ ≥ 1 be such that K(γ̂) = (λ1/2 − 1)/(λ1/2 + 1). Then there are unique
θ ∈ L∞(Ωm, S1) and η ∈ L∞(Ωm,R+) such that γ̂ = γ̂λ,θ,η.

Theorem 1.2 can be interpreted by saying that we can find a unique conductivity
in Ωm that is as close as possible to being isotropic. For an isotropic conductivity,
the assumption on smoothness of conductivity can be relaxed, as can be seen from
the following theorem, which is the main result of the paper.

Theorem 1.3. Let Ω, Ωm, and fm be as in Theorem 1.2. Let γ ∈ L∞(Ω) be
an isotropic conductivity. Assume that we are given ∂Ωm and Λm = (fm)∗Λγ . Then
results 1 and 2 of Theorem 1.2 are valid.

Theorem 1.2 yields immediately the following algorithm for finding γ̂.
Remark 1. The conductivity γ̂ = γ̂λ,η,θ can obtained using the unique solution of

the minimization problem

min
(λ,θ,η)∈S

λ, where S =
{

(λ, θ, η) ∈ [1,∞) × L∞ × L∞ | Λ
γ̂(λ,θ,η)

= Λm

}
.(1.6)

Later, in implementation of the algorithm we approximate the problem (1.6) with the
regularized minimization problem

(1.7)

min
(λ,θ,η)

||Λ
γ̂(λ,θ,η)

− Λm||2L(H1/2(∂Ωm),H−1/2(∂Ωm)) + ε1f(λ) + ε2||θ||2H1 + ε2||η||2H1 ,

where f : [1,∞) → R+ is a convex function that has its minimum near λ = 1 and
limt→1 f(t) = limt→∞ f(t) = ∞ and ε1, ε2, ε3 > 0.

The proof of Theorem 1.2 is based on the theory of quasi-conformal maps. There
are several equivalent definitions for these maps, and we will present the one based on
a partial differential equation (Beltrami equation) in section 2. However, the quasi-
conformal maps also have a geometric definition. Indeed, they are generalizations of
conformal maps that take infinitesimal disks at z to infinitesimal disks at f(z), and the
radii gets dilated by |f ′(z)|. Analogously, a homeomorphic map is quasi-conformal on
a domain Ω if infinitesimal disks at any z ∈ Ω get mapped to infinitesimal ellipsoids
at f(z). The ratio of the larger semiaxis to the smaller semiaxis is called the dilation
of f at z, and the supremum of dilatations over Ω is the maximal dilation. This
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dilatation of infinitesimal discs is in fact the reason why isotropic conductivities change
to anisotropic ones in push forwards with quasi-conformal maps.

The crucial fact that we use in proving Theorem 1.2 is a result of Strebel [16] that,
roughly speaking, says that among all quasi-conformal self-maps of the unit disk to
itself with a given sufficiently smooth boundary value there is a unique one with the
minimal maximal dilation. This will yield that corresponding to the given boundary
modeling map fm : ∂Ω → ∂Ωm there is a unique map F : Ω → Ωm having the minimal
maximal dilation. We will show that this leads to the following result.

Proposition 1.4. Let Ω, Ωm, fm, and an isotropic conductivity γ satisfy the
assumptions of Theorem 1.3. Then there is a unique map F : Ω → Ωm, depend-
ing only on f : ∂Ω → ∂Ωm, such that for the uniformly anisotropic conductivity γ̂
corresponding to γ in Theorem 1.2 we have

det(γ̂(x))1/2 = γ(F−1(x)).(1.8)

Proposition 1.4 can interpreted as saying that, solving the minimization problem
(1.6), we can find the function (det γ̂(x))1/2 in Ωm that represents a deformed image of
original conductivity γ in the unknown domain Ω, and that the deformation depends
only on the error made in modeling the boundary, not on the conductivity in Ω.

In particular, this turns out to be useful as local perturbations of conductivity
remain local in reconstruction: If we consider one fixed boundary modeling map
fm : ∂Ω → ∂Ωm but two isotropic conductivities γ1 and γ2 = γ1 + σ in Ω, then the
reconstructions γ̂1 and γ̂2 obtained by Theorem 1.2 corresponding to γ1 and γ2 satisfy

det(γ̂2(x))1/2 − det(γ̂1(x))1/2 = σ(F−1(x)).

The paper is organized as follows. In section 2 we show how to use isothermal
coordinates to push forward an anisotropic conductivity to an isotropic one. There
we pay close attention to the smoothness required from γ and Ω and introduce the
necessary background from the theory of anisotropic inverse problems. We apply this
in section 3 to prove our main results using the existence of a Teichmüller mapping.
In section 4 we consider physically realistic measurements, i.e., the so-called complete
electrode model. The numerical implementation for the complete electrode model is
then described in the last sections.

2. Quasi-conformal maps and solvability of the inverse problem with
anisotropic conductivity. It is a classical result that every Riemannian surface is
locally conformal to a Euclidean plane: This corresponds to choosing the coordinate
system to be isothermal [19, section 5.10]. Similarly, every anisotropic conductivity
matrix can be transformed into an isotropic conductivity. We identify the plane R2

with the complex plane C. We use the class L∞,α(Ω) that consists of conductivities
γ = a σ, where a ∈ L∞(Ω) satisfies a(x) ≥ c > 0 and σ is a C1,α(Ω)-smooth sym-
metric positive definite matrix; i.e., we allow arbitrary L∞-smooth conformal trans-
formations of C0,α-smooth background conductivities. We need the smoothness of
the background conductivity above to guarantee the existence of the unique extremal
conductivity, but this is a conformally invariant procedure, and hence the smoothness
of the conformal factor a plays no role, as we will see below. Notice also that by
taking σ = id, we have an L∞ isotropic conductivity.

Lemma 2.1. Let Ω be a bounded simply connected C1,α-domain with α > 0.
Assume that γ ∈ L∞,α(Ω) is an anisotropic conductivity. Then there is a C1,α-smooth

diffeomorphism F : Ω → Ω̃, Ω̃ = F (Ω) ⊂ C such that

F∗γ = β,(2.1)
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where F∗γ is defined by (1.3), and β is the identity matrix multiplied by a L∞-smooth
scalar function. Moreover,

β = (det γ ◦ F−1)1/2I.

The proof of this result is well known, but as smoothness of F is crucial later, we
give the proof for the convenience of the reader.

Proof. The equation (2.1) is a priori a nonlinear system for the derivatives of F .
However, in two dimensions this equation completely linearizes and is equivalent to
the Beltrami equation

∂F = μ∂F,(2.2)

where the complex derivatives are ∂ = 1
2 ( ∂

∂x − i ∂
∂y ), ∂ = 1

2 ( ∂
∂x + i ∂

∂y ) and the Beltrami

coefficient μ = μF (z), called also the complex dilatation, is given by

μ =
−γ11 + γ22 − 2iγ12

γ11 + γ22 + 2
√
γ11γ22 − γ2

12

.(2.3)

The function μ is invariant in multiplication of the conductivity with a positive scalar
function. Thus we see that μ ∈ C0,α(Ω). The function μ has the crucial property
that it is strictly less than one in modulus:

sup
z∈Ω

|μ(z)| < 1.(2.4)

Let us extend the conductivity matrix γ (a priori defined only in Ω) to the whole
plane to be the identity matrix outside Ω. Similarly, μ is extended outside Ω by zero.

Next we consider how to solve the Beltrami equation, and for this we consider it
in the whole plane. In order to have a unique solution we fix the behavior of F at
infinity. Thus, consider

∂F (z) = μ(z)∂F (z) in C,(2.5)

F (z) = z + h(z),

lim
z→∞

h(z) = 0,

where μ is a compactly supported L∞-function satisfying (2.4). This problem has
unique solution F ∈ Lp

δ when p is close enough to 2 and −2/p < δ < 1− 1/p. For the
proof of this, see, for example, [2] or [17]. The proof is based on the fact that (2.5)
can be written as an integral equation

F (z) +
1

π

∫
C

μ(ζ)∂F (ζ)

z − ζ
da(ζ) = z,(2.6)

where da(ζ) is Euclidean area in C (or R2). As ||μ||∞ < 1, it turns out that the left-
hand side of (2.6) is of the form of the identity plus a contractive operator in Sobolev
space W 1,p(Ω), with appropriate p, and thus (2.6) can be solved by an application of
the Neumann-series argument.

Using interior Schauder estimates for (2.5), we see that if γ and thus μ are C0,α-
smooth, the solution F has to be locally C1,α-smooth in C, particularly in Ω. Using
formula (1.3), we see that F∗γ is C0,α-smooth in closure of Ω̃.
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In general, any solution F : Ω → Ω̃ to the Beltrami equation for μ which satisfies
(2.4) and for which F ∈ H1(Ω) is called quasi-regular. If a quasi-regular map F : Ω →
Ω̃ is a homeomorphism, it is said to be quasi-conformal. The quasi-conformality can
be defined also in geometrical terms; see [2, 11].

Next we recall the recent results for inverse problems for anisotropic conductivities
γ. Let us consider a class of conductivities in Ω, given by

Σ(γ) = {F∗γ | F : Ω → Ω is a homeomorphism, F, F−1 ∈ H1(Ω;C), F |∂Ω = I};

that is, Σ(γ) is the equivalence class of the conductivity γ in push forwards with
boundary preserving diffeomorphisms. Then Λσ = Λγ for all σ ∈ Σ(γ). By [3],
the converse is true; that is, if σ is a strictly positive definite L∞-conductivity and
Λσ = Λγ , then σ ∈ Σ(γ). In other words, Λγ determines the equivalence class Σ(γ).
Note that diffeomorphism F : Ω → Ω such that F ∈ H1(Ω;C) and F |∂Ω = I is
quasi-conformal.

3. Proof of main results. We start by proving Theorems 1.2 and 1.3. To prove
them at the same time, we consider a (possibly anisotropic) conductivity γ in class
L∞,α(Ω).

First we show that we can assume that Ωm is the unit disc D ⊂ C. To prove this,
let fm : ∂Ω → ∂Ωm be the boundary modeling map.

Our first observation is that as Ωm is a simply connected domain, it follows from
the Riemann mapping theorem that it can be mapped to unit disc D conformally.
Moreover, as Ωm is a C1,α-smooth domain, it follows from the Kellog–Warschawski
theorem [14, Theorem 3.6] that the Riemann map can be chosen to be be a C1,α-
diffeomorphism F0 : Ωm → D such that F0 : Ωm → D is conformal. Thus, if σ is some
conductivity in class L∞,α(Ωm), we have that σ0 = (F0)∗σ is a conductivity in class
L∞,α(D).

Second, we observe that the uniformly anisotropic conductivity γ̂λ,θ,η of the form
(1.5) in Ωm changes under (F0)∗ to a uniformly anisotropic conductivity (F0)∗γ̂λ,θ,η =
γ̂λ,θ0,η0

in D such that η0 = η ◦ F−1
0 .

Third, we see that as F0 : Ωm → D is conformal, the maximal anisotropy of (F0)∗σ
and σ satisfies

KD((F0)∗σ) = KΩ(σ);

that is, the maximal anisotropy is preserved in conformal transformations for any σ.
Fourth, if f0 = F0|∂Ωm , then Λσ0 = (f0)∗Λσ. Also, we see that our data is invariant

in the change of the model domain in the sense that (f̃m)∗Λγ = (f̃0)∗((f̃m)∗Λγ), where

f̃m = f0 ◦ fm : ∂Ω → ∂D.
These four observations yield that it is enough to prove the assertion in the case

when Ωm = D. Indeed, changing Ωm to D with F0 keeps the boundary measurements,
the smoothness of objects, the maximal anisotropy, as well as class of uniformly
anisotropic conductivities invariant. More precisely, we can replace the boundary
modeling map fm by the map f̃m = f0 ◦ fm. Figure 3.1 will help clarify the argument
that follows.

Thus, let us return to proving Theorem 1.2 in the case when Ωm = D. Let
fm : ∂Ω → ∂D be the boundary modeling map that is a C1,α-smooth diffeomorphism
and where γ is a conductivity in class L∞,α(Ω), with Dirichlet–Neumann map Λγ .

Let Fm be some C1,α(Ω)-diffeomorphism Fm : Ω → D such that Fm|∂Ω = fm.
There are many ways to construct such a map, and for the convenience of the reader
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Ω, γ

Fm

fm D, γ0 Ω1, γ1

D, γ3 D, σe

F1

F2

F3

Fe

f4

Fig. 3.1.

we present one simple way. Let G : Ω → D be a Riemann map. By [14, Theorem
3.7], G has C1,α-extension G : Ω → D. Let φ = fm ◦ G−1 : ∂D → ∂D and Φ(z) =
|z| exp(i(|z|3arg(φ(z/|z|)) + (1 − |z|3)arg(z/|z|))) be a C1,α-diffeomorphism D → D

satisfying Φ|∂D = φ. Then Fm can be chosen to be the map Φ ◦G.
Let γ0 = (Fm)∗γ be an anisotropic conductivity in D. By Lemma 2.1, there is

a C1,α-diffeomorphism F1 : Ω → Ω1 such that the conductivity γ1 = (F1)∗γ0 is an
isotropic L∞(Ω1)-conductivity.

As Ω1 is a simply connected C1,α-smooth domain, by the Kellog–Warschawski
theorem cited above there is a conformal map F2 : Ω1 → D such that F2 : Ω1 → D is
a C1,α-diffeomorphism. Let F3 = F2 ◦F1 : D→ D and f3 = F3|∂D. Note that (F3)∗γ0

is the isotropic conductivity in D, as F2 is conformal.
The boundary values of quasi-conformal maps D → D are characterized as being

the quasi-symmetric maps, that is, homeomorphic maps f : ∂D → ∂D such that
θ(u) = arg f(eiu) satisfy

k−1 ≤ θ(u + v) − θ(u)

θ(u) − θ(u− v)
≤ k for all u, v ∈ R,(3.1)

with some k > 0; see [11].
Let us consider next the map f4 = f−1

3 : ∂D → ∂D. Since f3 and f−1
3 are C1,α-

smooth, we see that f4 satisfies

lim
v→0

θ(u + v) − θ(u)

θ(u) − θ(u− v)
= 1 uniformly in u ∈ R(3.2)

and is in particular quasi-symmetric. Thus f4 is the boundary value of at least one
quasi-conformal map. What is more, since f4 satisfies condition (3.2), it follows
from the results of Strebel [16] that among all quasi-conformal maps having f4 as a
boundary value there is a unique extremal map Fe in the sense that the L∞-norm of the
complex dilatation μFe is minimal. More precisely, if F : D→ D is a quasi-conformal
map such that F |∂D = f4, then its Beltrami coefficient satisfies ||μF ||L∞ ≥ ||μFe ||L∞ ,
and the equality holds only if F = Fe. Furthermore, the extremal Fe is a Teichmüller
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mapping, i.e., its complex dilatation μFe
is of the form

μFe(z) = ||μFe ||∞
φ(z)

|φ(z)| ,(3.3)

where φ : D→ C is holomorphic in D, and thus has a discrete set of zeros. Note that
Fe need not even be Lipschitz smooth near zeros of φ. Readers should also note that
a certain assumption on the regularity of the boundary value fm is necessary for the
existence of extremal maps. This will be discussed after finishing the proof.

Let us now consider how a quasi-conformal map F : D→ D with complex dilatation
μF changes maximal anisotropy of conductivities. When σ is an isotropic conductivity
in D, that is, K(σ) = 0, one sees that for the anisotropic conductivity σ̃ = F∗σ we
have

K(x, σ̃) = μF (F−1(x)) for x ∈ D,

and hence the maximal anisotropy satisfies K(σ̃) = ||μF ||L∞ .
Let now γ3 = (F3)∗γ0 be an isotropic conductivity in D and let σe = (Fe)∗γ3 be

an anisotropic conductivity in D. Here, Fe ◦F3 ◦fm|∂Ω = fm. In particular, the above
shows that

(fm)∗Λγ = (f4 ◦ f3 ◦ fm)∗Λγ = (f4 ◦ f3)∗Λγ0 = (f4)∗Λγ3 = Λσe .

In particular, this implies that the inverse problem of finding conductivities σ in
D such that (fm)∗Λγ = Λσ has a solution σ = σe. By section 2, the knowledge
of the boundary ∂Ωm = ∂D and the map (fm)∗Λγ determines the class Σ(σe) of
conductivities in D. Now we can write the class Σ(σe) also as

Σ(σe) = {F∗γ3 : F : D→ D is a homeomorphism, F, F−1 ∈ H1(Ω;C), F |∂D = f4}.

Since

K(F∗γ3) = ||μF ||L∞(D),

we see that the conductivity σe = (Fe)∗γ3 corresponding to the extremal map Fe is
the unique conductivity σ in the class Σ(σe) that has the smallest possible value of
K(σ).

Finally, since |μFe(z)| = c0 is a constant function of z ∈ D, and σe = (Fe)∗γ3 with
isotropic γ3, we see that the ratio of the eigenvalues of the conductivity matrix σe(z)
is constant for z ∈ D. Thus σe has the form σe = γ̂λ,θ,η with c0 = (1 − λ)/(1 + λ),
η = γ3 ◦ (Fe)

−1, and some θ. This proves Theorems 1.2 and 1.3
Next we prove Proposition 1.4.
Proof of Proposition 1.4. Consider isotropic conductivities γ1 and γ2 in Ω. In what

follows, we use the notation of the proof of Theorem 1.2. By definition, fm determines
a map Fm. The construction of the map F1 is based on the Beltrami coefficient of
the conductivity. Clearly, the Beltrami coefficients for the conductivities (Fm)∗γ1 and
(Fm)∗γ2 coincide, and thus F1 and Ω1 can be taken to be the same for both γ1 and
γ2. The maps F2, F3, and Fe are constructed by using ∂Ω1 and F1, and thus they
coincide for γ1 and γ2. Since in general det(F∗γ)(x) = det(γ(F−1(x))), this proves
Proposition 1.4.

From our assumptions on ∂Ω and fm (i.e., that they are in C1,α) it follows that
the unique extremal exists. For general continuous fm there are counterexamples,
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for instance the so-called Strebel’s chimney; see, e.g., [11]. For the sharpest known
conditions giving the existence of the unique extremal, see [5].

We note also that if in formula (3.3) the function φ has zeros in Ω, then μFe has

a singularity of type (z − z0)j/(z − z0)
j , and this could affect the behavior of the

reconstruction algorithm we propose in a way to be explained later. However, in all
the numerical examples we have tested these difficulties do not appear, probably since
our deformations are relatively small.

4. Electrode model. In the numerical simulations below we have used the
so-called complete electrode model [15], which is a certain finite-dimensional approxi-
mation of Dirichlet-to-Neumann map. This model is chosen because it is an accurate
model for the measurements made in practice. As noted before, in experimental mea-
surements one places the measurement electrodes on the boundary, e.g., the skin of
the patient, without knowing the exact parameterization of the boundary. Thus this
model is a paradigm of the case when the boundary is unknown.

To define the electrode model, let ej ⊂ ∂Ω, j = 1, . . . , J , be disjoint open paths
modelling the electrodes that are used for the measurements. Let u solve the equations

∇· γ∇v = 0 in Ω,(4.1)

zjν· γ∇v + v|ej = Vj ,(4.2)

ν· γ∇v|∂Ω\∪J
j=1

ej = 0,(4.3)

where Vj are constants representing electric potentials on electrode ej . This models
the case where electrodes ej having potentials Vj are attached to the boundary, zj is
the contact impedance between electrode ej and the body surface, and the normal
current outside the electrodes vanish. By [15], (4.1)–(4.3) has a solution u ∈ H1(Ω).
The measurements in this model are the currents observed on the electrodes, given
by

Ij =
1

|ej |

∫
ej

ν· γ∇v(x) ds(x), j = 1, . . . , J.

Thus the electrode measurements are given by map E : RJ → R
J , E(V1, . . . , VJ) =

(I1, . . . , IJ). We say that E is the electrode measurement matrix for (∂Ω, γ, e1, . . . , eJ ,

z1, . . . , zJ). Let Ω and Ω̃ be C1,α-smooth domains. We say that f : ∂Ω → ∂Ω̃ is length
preserving on ∪J

j=1ej if ||Df(τ)|| = 1 for x ∈ ∪J
j=1ej , where τ is the unit tangent vector

of ∂Ω.
Proposition 4.1. Let Ω and Ω̃ be C1,α-smooth domains and F : Ω → Ω̃ be a

C1,α-diffeomorphism, ej ⊂ ∂Ω be disjoint open sets, and γ be a conductivity on Ω. Let

f = F |∂Ω, ẽj = f(ej) ⊂ ∂Ω̃, and γ̃ = (F )∗γ. Assume that f is length preserving on
∪J
j=1ej. Then the electrode measurement matrices E for (∂Ω, γ, e1, . . . , eJ , z1, . . . , zJ)

and Ẽ for (∂Ω̃, γ̃, ẽ1, . . . , ẽJ , z1, . . . , zJ) coincide.
Proof. We start with an invariant formulation of electrode measurements E. For

this, let R be the Robin-to-Neumann map given by Rf = ν· γ∇u|∂Ω, where u is the
solution of

∇· γ∇u = 0 in Ω,(4.4)

zν· γ∇v + ηv|∂Ω = h,

where z = z(x) is a C∞(∂Ω) function such that z|ej = zj and η =
∑J

j=1 χej (x), where
χej is the characteristic function of electrode ej . Note that if the boundary and the
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contact impedance are known, the Robin-to-Neumann and the Dirichlet-to-Neumann
maps determine each other; that is, they represent equivalent information.

Consider now the bilinear form corresponding to liner maps E : RJ ×RJ → R and
R : H−1/2(∂Ω) ×H−1/2(∂Ω) → R given by

E[V, Ṽ ] =
J∑

j=1

(EV )j Ṽj |ej |, R[h, h̃] =

∫
∂Ω

(Rh) h̃ ds.

Let S = span(χej : j = 1, . . . , J) ⊂ H−1/2(∂Ω) and define M : V = (Vj)
J
j=1 �→∑J

j=1 Vjχej to be a map M : RN → S. Then

E[V, Ṽ ] = R[MV,MṼ ].(4.5)

Moreover, for h = MV with some V ∈ RJ , we have

R[h, h] =

∫
∂Ω

(u + zν· γ∇u)ν· γ∇u ds =

∫
Ω

γ∇u· ∇u dx +

∫
∂Ω

z |ν· γ∇u|2 ds,(4.6)

where u solves (4.4). The integral over Ω in (4.6) is invariant in coordinate deforma-
tions. Note that in the above formula the integral over the boundary is not coordinate
invariant.

Let Ẽ be the electrode measurement matrix for γ̃ in Ω̃ with electrodes ẽj = f(ej),

and let R̃ be the Robin-to-Neumann map for γ̃ defined analogously to (4.4). Since f is
length preserving on the electrodes, we see using (1.3) that ν· γ∇u(x) = ν· γ̃∇ũ(f(x))
for ũ = u ◦ F−1 and x ∈ ∂Ω, and thus we can see from (4.6) that

R[h, h̃] = R̃[h ◦ f−1, h̃ ◦ f−1],

for h, h̃ ∈ H−1/2(∂Ω) supported in the closure of
⋃J

j=1 ej . Thus for the map M̃ :

V �→
∑J

j=1 Vjχẽj
we have by formula (4.5) that Ẽ[V, Ṽ ] = R̃[M̃V, M̃Ṽ ]. Combining

this and (4.5), we obtain

E[V, V ′] = Ẽ[V, V ′].

In particular, this implies that the matrices E and Ẽ coincide.

In particular, in the case where Ω̃ is the model domain Ωm and f = fm : ∂Ω →
∂Ωm is the model map for the boundary, the assumption that f is length preserving
on electrodes means the very natural assumption that in electrode measurements the
parameterization of the electrodes is known. Then by Proposition 4.1, the electrode
model discretization E of Λγ equals the corresponding discretization Ẽ of (fm)∗Λγ .
Summarizing, the electrode measurements do not change if we have modeled the
geometry of the boundary incorrectly but the electrodes are modeled correctly.

5. Numerical examples. The performance of the proposed method is evalu-
ated by test cases with simulated EIT data. First, in section 5.1 we briefly discuss
the discretization and the computational methods that are used, and the results are
then given in section 5.2.
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5.1. Discretization and notation. The numerical solution of the forward
model is based on the finite element method (FEM). The variational formulation
and the finite element discretization of the electrode model (4.1)–(4.3) in the case of
isotropic conductivities have been previously discussed, e.g., in [10]. The extension of
the FEM model to the anisotropic case is straightforward; the details will be given in
a subsequent publication.

For the functions η(x) and θ(x) in (1.5) we use piecewise constant approximations
that are defined on a lattice of regular pixels. Thus, we have

η =
M∑
i=1

ηiχi(x), θ =

M∑
i=1

θiχi(x),(5.1)

where χi is the characteristic function of the ith pixel in the lattice. Within the
discretization (5.1), the parameters η and θ are identified with the coefficient vectors

η = (η1, η2, . . . , ηM )T ∈ RM ,

θ = (θ1, θ2, . . . , θM )T ∈ RM ,

and λ is a scalar parameter. Note that as γ̂λ,η,θ = γ̂λ′,η,θ′ , where λ′ = 1/λ and
θ′(x) = θ(x)+π/2, we can assume in looking at the minimizing uniformly anisotropic
conductivity that λ gets values λ > 0.

In practical EIT devices, the measurements are made such that known currents
are injected into the domain Ω through some of the electrodes at ∂Ω, and the cor-
responding voltages needed to maintain these currents are measured on some of the
electrodes. Often, voltages are measured only on those electrodes that are not used to
inject current. Thus, measurements made give only partial information on the matrix
E. To take this into account, we introduce the following notation for the discretized
problem. We assume that the EIT experiment consists of a set of K partial voltage
measurements, V (j), j = 1, . . . ,K. For each measurement, consider a current pattern

I(j), j = 1, . . . ,K, such that
∑J


=1 I
(j)

 = 0. Typically, the corresponding measure-

ments are the voltages (potential differences) between pairs of neighboring electrodes.
Let us assume that the measurement vector V (j) corresponding to the current pat-
tern I(j) consists of L voltage measurements; i.e., we have V (j) ∈ RL. Thus, we write
V (j) = PjE

−1I(j)+ε(j), where E is the electrode measurement matrix, random vector
ε(j) models the observation errors, and Pj : RJ → R

L is a measurement operator that
maps the electrode potentials to measured voltages.

In the inverse problem, the voltage measurements V (1), V (2), . . . , V (K) are con-
catenated into a single vector

V = (V (1), V (2), . . . , V (K))T ∈ RN , N = KL.

For the finite element–based discretization of the forward problem U : R2M+1 �→ R
N ,

we use the notation

U(η, θ, λ) = (U (1)(η, θ, λ), U (2)(η, θ, λ), . . . , U (K)(η, θ, λ))T ∈ RN ,

respectively. Here, U (j)(η, θ, λ) = PjE
−1(η, θ, λ)I(j) ∈ R

L corresponds to partial
voltage measurement, with current pattern I(j) and conductivity γ̂η,θ,λ.

Using the above notation, we write the discretized and regularized version of our
inverse problem as finding the minimizer of the functional

F (η, θ, λ) = ‖V − U(η, θ, λ)‖2 + Wη(η) + Wθ(θ) + Wλ(λ), η > 0, λ > 0,(5.2)
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where the regularizing penalty functionals are of the form

Wη(η) = α0

M∑
i=1

η2
i + α1

M∑
i=1

∑
j∈Ni

|ηi − ηj |2,(5.3)

Wθ(θ) = β0

M∑
i=1

θ2
i + β1

M∑
i=1

∑
j∈Ni

|eiθi − eiθj |2,(5.4)

Wλ(λ) = β2

(
log(λ) + ν−2 log(λ)2

)
(5.5)

and Ni denotes the usual four-point nearest neighborhood system for pixel i in the
lattice.

Our objective is to minimize the functional (5.2) by gradient-based optimization
methods. Here we face difficulty due to the positivity constraints. To take the posi-
tivity constraint into account we employ the interior point search method [7]. In the
interior point search the original constrained problem (5.2) is replaced by a sequence
of augmented unconstrained problems of the form

F̃j(η, θ, λ) = F (η, θ, λ) + W
(j)
+ (η),(5.6)

where W
(j)
+ (η) is a penalty functional of the form

W
(j)
+ (η) = ξj

M∑
i=1

1

ηi
(5.7)

and {ξj} is a sequence of decreasing positive parameters such that ξj → 0 as j →
∞. Using a suitably chosen sequence of penalty functionals W

(j)
+ , the solutions of

the unconstrained problems converge (asymptotically) to the solution of the original
constrained problem. The positivity constraint for λ can be taken care of with similar
techniques. However, it is our experience that the positivity constraint was not needed
for λ.

For the minimization of the functionals (5.6) we employ the Gauss–Newton opti-
mization method with an explicit line search algorithm.

5.2. Results. In this section, we evaluate the performance of the proposed
method with three different test cases. The first test case is EIT data from an ellipse
domain Ω, in the second test case we consider an ellipse domain with a sharp cut,
and in the last test case the domain is a smooth Fourier domain which has some
resemblance to the cross section of the human body. In all of these cases, we use the
unit disk as the model domain Ωm.

In the simulations, we assume an EIT system with J = 16 electrodes. In each of
the test cases, the electrodes were located at approximately equally spaced positions
at the exterior boundary ∂Ω of the target domain Ω. The size of the electrodes was
chosen such that the electrodes covered approximately 50% of the boundary ∂Ω.

The EIT measurements were simulated using the usual adjacent pair drive data
acquisition method. In the adjacent drive method, currents +1 and −1 are injected
through two neighboring electrodes, say electrodes en and en+1, and the current
through other electrodes is zero. The voltages are measured between all J pairs of
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1 2 0.91 1.21

0.07 1.56 0.94 1.19

Fig. 5.1. Test case with EIT data from an ellipse domain Ω. The main axes of the ellipse
were 1.25 in horizontal direction and 0.8 in the vertical direction. Top left: Simulated conductivity
distribution γ. Top right: Reconstruction of γ with the isotropic EIT model in the correct domain
Ω. Bottom left: Reconstruction of γ with the isotropic model in incorrectly modeled geometry. The
reconstruction domain Ωm was the unit disk. Bottom right: Reconstruction of η with the uniformly
anisotropic model in the same unit disk geometry.

neighboring electrodes. However, three of these measurements are typically neglected
since they include either one or both of the current feeding electrodes en or en+1. The
rationale behind this is that the electrode contact impedances zj are usually not known
accurately. The possible errors in the contact impedance values cause a systematic
error between the measured voltage and the forward model for the measurement made
on the current feeding electrodes, and this error causes artifacts in the numerical
reconstruction; see, e.g., [9]. Thus, with the adjacent pair drive method each partial
measurement consists of L = J − 3 voltage measurements, and we have V (j) ∈ RJ−3.
This data acquisition process is then repeated for all the J pairs of adjacent electrodes,
leading to a total of N = J(J − 3) voltage measurements for one EIT experiment.
Thus, with the J = 16 electrode system we have V ∈ R208.

The simulated EIT measurements were computed using the isotropic EIT model
and the FEM. To simulate measurement noise, we added to the data Gaussian random
noise with standard deviation of 1% of the maximum value of the simulated voltages.
In all of the following test cases we used value z
 = 1 for the electrode contact
impedances. These were assumed known in the inverse problem.

The results for the first test case are shown in Figures 5.1–5.2. The target con-
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Fig. 5.2. Test case with EIT data from an ellipse domain Ω. The main axes of the ellipse were
1.25 in horizontal direction and 0.8 in the vertical direction. Left: Reconstruction of the anisotropy
angle parameter θ in the incorrectly modeled geometry. The computational domain Ωm was the unit
disk. Right: Evolution of the anisotropy parameter λ during the Gauss–Newton iteration.

ductivity is shown in the top left image in Figure 5.1. The target domain Ω is an
ellipse with main axes 1.25 in the horizontal direction and 0.8 in the vertical direction.
For the simulation of the EIT measurements, the domain was discretized into a finite
element mesh that consisted of 1256 nodal points and 2350 triangular elements.

The reconstruction of the conductivity γ with isotropic EIT model in the correct
domain Ω is shown in the top right image in Figure 5.1. The reconstruction was
obtained by using optimization techniques similar to those explained in the previous
section. However, in the case of the isotropic model the unknown parameter vector
is the conductivity vector γ ∈ RM , and the optimization functionals for the interior
point search can be written as

Hj(γ) = ‖V − U(γ)‖2 + Wγ(γ) + W
(j)
+ (γ),(5.8)

where U(γ) denotes the forward problem for the isotropic model and Wγ(γ) and

W
(j)
+ (γ) are defined by (5.3) and (5.7), respectively. To compute the reconstruction

in the top right image in Figure 5.1, the domain Ω was triangulated to a finite element
mesh that consisted of 2326 elements with 1244 nodal points. The conductivity was
represented in a lattice of M = 451 pixels (i.e., γ ∈ R451). The regularization param-
eters for the penalty functional Wγ(γ) in (5.8) were α0 = 10−8 and α1 = 10−4. When
computing the reconstruction in the correctly modeled geometry, the interior point
search was kept inactive (i.e., the sequence {ξj} of interior point search parameters
were all zeros). The conductivity vector was initialized to a constant value of one
in the optimization process. The Gauss–Newton optimization algorithm was iterated
until convergence was obtained.

The image in the bottom left in Figure 5.1 shows the reconstruction of the con-
ductivity with the isotropic model in incorrectly modeled geometry Ωm. In this case,
the computational domain Ωm was the unit disk, which was triangulated to 2190
elements with 1176 nodal points. The conductivity parameters were represented in
a lattice of M = 437 pixels (i.e., γ ∈ R437). The regularization parameters for the
penalty functional Wγ(γ) in (5.8) were α0 = 10−8 and α1 = 2 · 10−4. The sequence
of interior point search parameters {ξj} were from 2 · 10−5 to 5 · 10−6. The constant
vector γ = 1 ∈ R437 was used as the initial guess in the Gauss–Newton optimization.

The image in the bottom right in Figure 5.1 shows the reconstruction of η with
the uniformly anisotropic model in incorrectly modeled geometry Ωm. Here, by the
solution in the uniformly anisotropic model we mean the optimal solution of the form
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1 2 0.91 1.23

0.01 1.19 0.95 1.21

Fig. 5.3. Test case with EIT data from a truncated ellipse domain Ω with main axes a = 1.1
and b = 0.9. Top left: Simulated conductivity distribution γ. Top right: Reconstruction of the
conductivity γ with the isotropic model in the correct geometry Ω. Bottom left: Reconstruction of γ
with the isotropic model in incorrectly modeled geometry. The reconstruction domain Ωm was the
unit disk. Bottom right: Reconstruction of the parameter η with the uniformly anisotropic model in
the same unit disk geometry.

(1.5) of the minimization problem. The reconstruction was obtained by minimizing
a sequence of optimization functionals of the form (5.6). The reconstructed angle
parameter θ is shown in the left image in Figure 5.2, and the evolution of the parameter
λ during the iteration is shown in the right image in Figure 5.2. The computational
domain Ωm was the unit disk. The finite element triangularization and the number
of the image pixels were the same as in the isotropic case in bottom left image in
Figure 5.1. Thus, the unknowns in the inverse problem are η ∈ R

437, θ ∈ R
437,

and λ ∈ R. The parameters for the regularizing penalty functionals Wη(η) in (5.3)
were α0 = 10−8 and α1 = 10−4. The parameters for the penalty functionals Wθ(θ)
and Wλ(λ) in (5.4)–(5.5) were β0 = 10−8, β1 = 5 · 10−6, and β2 = 0, respectively.
The sequence of interior point search parameters {ξj} was from 1 · 10−5 to 1 · 10−12.
The Gauss–Newton optimization was started from the constant values η = 1 ∈ R437,
θ = 0 ∈ R437, and λ = 1, which correspond to isotropic unit conductivity.

The results for the second test case are shown in Figure 5.3. The simulated con-
ductivity distribution is shown in the top left image. In this case the domain Ω is a
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truncated ellipse with main axes 1.1 in the horizontal direction and 0.9 in the vertical
direction, respectively. For the simulation of the EIT measurements, the domain was
divided into a finite element mesh of 2383 triangular elements with 1240 nodes.

The top right image in Figure 5.3 shows the reconstruction of the conductivity
with the isotropic model in the correct geometry. For the reconstruction, the domain
Ω was divided into a finite element mesh of 2337 triangular elements with 1217 nodes,
and the conductivity was represented on a lattice of M = 455 pixels. Thus, the
unknown parameter vector was γ ∈ R

455. The regularization parameters for the
penalty functional Wγ(γ) in (5.8) were α0 = 10−8 and α1 = 10−4. The sequence of
interior point search parameters {ξj} was all zeros. The Gauss–Newton optimization
was started from the constant unit conductivity.

The bottom left image in Figure 5.3 shows the reconstructed conductivity with
the isotropic model in the incorrectly modeled geometry. The reconstruction domain
Ωm was the unit disk. The finite element mesh and pixel lattice were the same as
those used for the unit disk in Figure 5.1. Thus, the unknown conductivity vector
was γ ∈ R437. The parameters for the regularizing penalty functional Wγ(γ) were
α0 = 10−8 and α1 = 10−4, and the sequence of interior point search parameters {ξj}
was from 10−5 to 10−8. The constant unit conductivity was used as the initial guess
in the optimization.

The bottom right image in Figure 5.3 shows the reconstruction of η with the
uniformly anisotropic model in the incorrectly modeled geometry. The computational
domain Ωm was the unit disk with the same discretization that was used in Figure
5.1. Thus, the unknowns were η ∈ R437, θ ∈ R437, and λ ∈ R. The parameters for
the regularizing penalty functionals Wη(η) in (5.3) were α0 = 10−8 and α1 = 10−4.
The parameters for the penalty functionals Wθ(θ) and Wλ(λ) in (5.4)–(5.5) were
β0 = 10−8, β1 = 5 · 10−6, and β2 = 0, respectively. The sequence of parameters {ξj}
was from 10−5 to 10−12. The initializations for the parameters in the Gauss–Newton
optimization were the constant values η = 1 ∈ R437, θ = 0 ∈ R437, and λ = 1.

The results for the last test case are shown in Figure 5.4. In this case, the target
domain Ω is bounded by a smooth Fourier boundary ∂Ω. The true isotropic conduc-
tivity distribution within the domain Ω is shown in the top left image in Figure 5.4.
For the simulation of the EIT measurements, the domain Ω was divided into a mesh
of 2316 triangular elements with 1239 nodes.

The reconstruction of the conductivity γ with the isotropic model in the correct
geometry Ω is shown in the top right image in Figure 5.4. The domain was divided
into a mesh of 2200 triangular elements with 1181 nodes for the image reconstruction
process. The number of pixels was M = 446 for the representation of the conductivity
image (i.e., γ ∈ R446). The regularization parameters for the penalty functional Wγ(γ)
were α0 = 10−8 and α1 = 10−5, and the sequence of parameters {ξj} was all zeros.
The constant unit conductivity was used as the initial guess in the Gauss–Newton
optimization algorithm.

The reconstruction of the conductivity γ with the isotropic model in the incorrectly
modeled geometry is shown in the bottom left image in Figure 5.4. The reconstruction
domain Ωm was the unit disk. The finite element mesh and the pixel lattice were the
same as those used in Figures 5.1–5.3. Thus, the parameter vector in the inverse
problem was γ ∈ R437. The parameters in the penalty functional Wγ(γ) were α0 =
10−8 and α1 = 2·10−4, and the sequence of parameters {ξj} was from 2·10−5 to 5·10−6.
The constant unit conductivity was used as the initial guess in the optimization.

The reconstruction of η with the uniformly anisotropic model in the incorrectly
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Fig. 5.4. Test case with EIT data from an arbitrary domain Ω. Top left: True conductivity
distribution γ. Top right: Reconstruction of the conductivity γ with isotropic model in the correct
geometry Ω. Bottom left: Reconstruction of γ with the isotropic model in incorrectly modeled ge-
ometry. The reconstruction domain Ωm was the unit disk. Bottom right: Reconstruction of the
parameter η with the uniformly anisotropic model in the same unit disk geometry.

modeled geometry is shown in the bottom right image in Figure 5.4. The reconstruc-
tion domain Ωm was the unit disk with the same discretization as in Figures 5.1–5.3.
Thus, the unknown parameter vectors were η ∈ R

437, θ ∈ R
437, and λ ∈ R. The

parameters for the regularizing penalty functionals Wη(η) in (5.3) were α0 = 10−8

and α1 = 10−5. The parameters for the penalty functionals Wθ(θ) and Wλ(λ) in
(5.4)–(5.5) were β0 = 10−8, β1 = 5 · 10−6, and β2 = 0, respectively. The sequence of
parameters {ξj} was from 10−5 to 10−12. The initializations for the image parameters
were the constant values η = 1 ∈ R437, θ = 0 ∈ R437, and λ = 1.

6. Discussion. As can be seen from Figures 5.1–5.4, the proposed approach
gives good results. In all test cases, the traditional reconstructions with the isotropic
model are erroneous when the imaging geometry is modeled incorrectly. The effects of
erroneous geometry are seen in the reconstructions as distortions and severe artifacts,
especially near the boundary. On the other hand, the reconstructions of η with the
uniformly anisotropic model in the same erroneous geometry are clear of these artifacts
and represent a deformed picture of the original isotropic conductivity. These results
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indicate that the proposed method offers an efficient tool to eliminate the difficulties
that arise from inaccurately known geometry in practical EIT experiments.

Acknowledgments. The authors are thankful for Prof. Kari Astala and Prof.
Seppo Rickman for discussions on quasi-conformal maps that were crucial for the
obtained results. Also, thanks to the anonymous referees for valuable comments.

REFERENCES

[1] A. Adler, R. Guardo, and Y. Berthiaume, Impedance imaging of lung ventilation: Do we
need to account for chest expansion? IEEE Trans. Biomedical Engineering, 43 (1996), pp.
414–420.

[2] L. V. Ahlfors, Lectures on Quasiconformal Maps, Van Nostrand, New York, 1966.
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Abstract. A steady planar self-sustained detonation has a sonic surface in the reaction zone that
resides behind the lead shock. In this work we address the problem of generalizing sonic conditions
for a three-dimensional unsteady self-sustained detonation wave. The conditions are proposed to
be the characteristic compatibility conditions on the exceptional surface of the governing hyperbolic
system of reactive Euler equations. Two equations are derived that are necessary to determine the
motion of both the lead shock and the sonic surface. Detonation with an embedded sonic locus is
thus treated as a two-front phenomenon: a reaction zone whose domain of influence is bounded by
two surfaces, the lead shock surface and the trailing characteristic surface. The geometry of the
two surfaces plays an important role in the underlying dynamics. We also discuss how the sonic
conditions of detonation stability theory and detonation shock dynamics can be obtained as special
cases of the general sonic conditions.

Key words. chemically reacting flows, supersonic flows, transonic flows, shocks and singularities
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1. Introduction. A detonation wave is a shock wave that triggers exothermic
reactions in an explosive as it propagates so that the energy released in the reactions
sustains the shock propagation. Modern theories of detonation originate from the
theory first developed independently by Zel’dovich, von Neumann, and Doering in the
1940s (ZND theory; see Fickett and Davis [5] for details) that describes the dynamics
of a steady one-dimensional planar detonation in a gaseous explosive. The ZND
theory is applicable to both self-sustained detonations, that is, autonomous waves
whose motion is sustained entirely by the energy released in their reaction zone,
and overdriven detonations which require an additional external support to maintain
their motion at a nominal speed. In self-sustained steady one-dimensional planar
detonations, which are also called Chapman−Jouguet (CJ) detonations, there exists
an embedded sonic locus within or at the end of the reaction zone, such that at
that point the flow speed is sonic relative to the shock. As a consequence, the lead-
shock dynamics is influenced only by the flow between the shock and the sonic locus.
In contrast, the lead-shock dynamics of overdriven detonations is influenced by the
entire region between the shock and the support (e.g., a piston); no sonic locus exists
in such detonations. Without the condition of sonicity, the equations governing the
CJ detonation (the mass, momentum, and energy equations) are not closed, since the
detonation speed is unknown; the sonicity condition provides the necessary closure.
Understanding the nature of the sonic conditions in detonations more general than
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planar, one-dimensional, steady detonations of the ZND theory has been difficult to
achieve. It is precisely this task of deriving the general sonic conditions and clarifying
their nature that is central to our present investigation.

Research that began in the late 1950s and early 1960s (see, e.g., [5, 3]) has shown
that most detonation waves, especially in gases, have a multidimensional cellular struc-
ture with transversely propagating shock waves in the reaction zone and significant
unsteady dynamics. In condensed explosives, the detonation is more often observed
to be steady, but importantly it has been known for a long time that high-explosive
detonation shocks are almost always curved. Clearly, the ZND theory is too simple
to account for the observed structure and must be appropriately modified. There ex-
ist conceptual problems that cannot be addressed within the framework of the ZND
theory if unsteady and multidimensional detonations are considered. The principal
problem has to do with the nature of the sonic condition whose generalization to
include unsteady and multidimensional effects has been limited so far to linearized
problems and quasi-steady detonations.

In the linear stability theory of detonation, the far-field conditions are commonly
referred to as “radiation conditions” or “boundedness conditions” depending on spe-
cific circumstances (see [4, 7, 9, 13]). The radiation condition is imposed to filter out
incoming acoustic perturbations by considering the far-field acoustic solutions of the
governing linearized system and to eliminate the incoming waves by setting their am-
plitude equal to zero. It follows then that the far-field solutions are linearly dependent
and their linear combination forms a far-field constraint on the general solution of the
linearized problem. Such a constraint serves as a dispersion relation that allows one to
determine the eigenvalues. It turns out (see section 5) that the CJ limit (self-sustained
wave) of the radiation condition coincides with the linearized governing equation on
the forward characteristic. One can also show that the radiation condition in that
case is also a boundedness condition for the solutions of the linearized system at the
sonic locus. Thus in the linear stability problem, the general nature of the radiation
conditions that provide the dispersion relation is such that they serve as filters of the
incoming perturbations and are thus conditions on the forward characteristic surface
that acts as an information boundary.

In the theory of detonation shock dynamics (DSD; see the topical review by Stew-
art [14] for a general discussion and history of the problem), one treats a quasi-steady
curved detonation and derives sonic conditions (called generalized sonic conditions)
that include effects of multidimensionality through the shock curvature term, which
is assumed small on the scales of the reaction zone. Originally, the effect of curvature
in the sonic conditions was considered by Wood and Kirkwood [17] and later was
derived rationally in the works of Bdzil [1] and Stewart and Bdzil [15, 16]. Yao and
Stewart [18] considered an extension of the sonic conditions to include asymptotically
small unsteady corrections, but their analysis relies partially on the steady concept
of a sonic locus by assuming that the flow is sonic relative to the lead shock, which
constrains the sonic locus to always be parallel to the shock. The quasi-steady gener-
alized CJ conditions reflect the fact that in a curved detonation, the flow divergence
or convergence acts as a sink or source, respectively, of the energy of the lead shock.
Thus, for example, in a diverging steady detonation, the sonic condition expresses an
exact balance of the heat release and flow divergence, as shown by the equation given
in Stewart and Bdzil [16]:

(γ − 1)Qω − c2 (D + Un)κ = 0,(1.1)

where Q is the heat release, γ is the adiabatic exponent, ω is the reaction rate at
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the sonic point, c is the sound speed, D and Un are the normal detonation speed
and particle velocity at the sonic point relative to the lead shock, and κ is the shock
curvature. Equation (1.1) is obtained from the equation (called Master equation)

dU2
n

dλ
=

2U2
n

[
(γ − 1)Qω − c2 (Dn + Un)κ

]
ω (c2 − U2

n)
(1.2)

(λ is the reaction progress variable) that follows directly from the governing equations
by a regularity argument, namely, that for the left-hand side of (1.2) to remain finite,
the numerator of the right-hand side has to vanish at the sonic point because the
denominator vanishes there: c2 = U2

n.
For unsteady weakly curved detonations, the Master equation can again be writ-

ten in a form similar to (1.2), but the numerator contains more terms (see [18]):

∂Un

∂n
=

1

c2 − U2
n

[
(γ − 1)Qω − c2 (D + Un)κ + Un

(
∂Un

∂t
+

∂D

∂t

)
− v

∂p

∂t

]
,(1.3)

where t is time, n is the normal distance from the shock (n < 0 in the reaction zone),
v is the specific volume, and p is pressure. A regularity argument is again invoked
that requires that the numerator of (1.3) vanish at the sonic point, assuming that the
denominator vanishes there as well: c2 −U2

n = 0. The latter assumption is one of the
key elements that distinguishes the present theory from that of Yao and Stewart [18]—
we do not define the sonic locus in the shock-attached frame, so that in our theory,
c2 −U2

n does not necessarily vanish at the sonic locus. In fact, from the characteristic
analysis, we find that c + Un = ∂n∗/∂t = D −D, where n∗ is the distance between
the shock and the sonic locus, and D and D are the speeds of the sonic locus and
of the shock, respectively. Thus c + Un at the sonic locus is equal to the relative
speed of the sonic locus and the shock. Therefore, the theory of Yao and Stewart
contains an implicit assumption that the sonic locus and the shock are parallel in the
characteristic (n, t)-plane. In unsteady detonations, a possible imbalance of the heat
release and flow divergence is reflected in the unsteadiness of the curved detonation.

Our generalization of the sonic conditions stems from the following observations.
In a general unsteady flow that is sufficiently smooth, with a lead detonation shock,
one considers all forward propagating characteristic surfaces, which are the envelopes
of the forward propagating acoustic wavefronts. For initial conditions that admit
smooth evolution, there may exist a limiting forward characteristic surface that never
intersects the shock or intersects the shock only at times that are very long compared
to the passage time of particles through the detonation reaction zone. This limiting
characteristic is thus identified as a separatrix of the family of forward characteristic
surfaces whose motion is toward the shock. On the upstream side of the separatrix,
the forward characteristic surfaces flow into the shock in a finite time, while on the
downstream side, they flow away from the shock. The region that affects the lead-
shock dynamics (the domain of influence) is the region between the shock surface
and the limiting characteristic surface so that the evolution of the detonation wave
depends only on the data in that region. The limiting sonic surface is then specifically
embedded in the reaction zone, usually at a finite distance behind the shock. In
Kasimov and Stewart [8], we illustrated the behavior of the sonic locus as a limiting
characteristic in one-dimensional detonations by means of a numerical simulation.

Thus a general sonic locus is proposed to be a characteristic surface of the govern-
ing hyperbolic equations such that the surface acts as an information boundary that
precludes incoming acoustic perturbations from influencing the lead-shock dynamics.
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Such a definition is in agreement with the limiting cases of the steady detonation, the
unsteady linearized theory, and the weakly curved slowly varying detonation theories
that have been derived previously. The new concept clarifies the meaning of the sonic
locus by emphasizing its nature as a characteristic surface. In particular, since the
sonic locus is a boundary of the domain of influence of the reaction zone, it follows
immediately that the detonation problem is, in general, a two-front problem with both
fronts (the shock and sonic loci) as free boundaries. Therefore, the sonic conditions
must be given by two equations, a situation that has not been explicitly emphasized
but is nevertheless a part of all previous theories of detonation. For example, in
the planar CJ detonation, the two equations are (1) the well-known CJ condition,
MCJ = 1, where MCJ = −Un/c is the local Mach number relative to the shock and
(2) the condition that the sonic point coincides with the end of the reaction zone
(for single-step exothermic reaction), λ = 1. We propose that the sonic conditions
for general multidimensional detonations are (1) the condition of local sonicity, that
is, for an observer moving with the sonic surface, the particle speed normal to that
surface, Un, is locally sonic,

Un = −c ,(1.4)

and (2) the compatibility condition in the sonic surface defined as a characteristic
surface of the governing reactive Euler equations,

ρcn∗ ·
(
Du

Dt
+

1

ρ
∇p

)
+ ρc2∇ · u +

Dp

Dt
= ρc2σω,(1.5)

where n∗ is the unit normal to the sonic surface, u is the lab-frame particle velocity,
D/Dt = ∂/∂t + u · ∇ is the material derivative, and σ is the thermicity coefficient.
These two conditions are direct consequences of the governing hyperbolic equations
and hold therefore under quite general circumstances; no asymptotic ideas are in-
volved.

In section 2 we work out the theory of the characteristic surfaces for general
systems of quasi-linear hyperbolic PDEs and derive compatibility conditions in the
exceptional surface. The conditions are specialized to reactive Euler equations in
section 2.2. In section 3 we discuss the simplest version of the sonic conditions in
one spatial dimension to emphasize the connection with the standard theory of char-
acteristics. Section 4 is devoted to two-dimensional detonations where we specialize
the sonic conditions to local frames in order to exhibit the connection with the older
theories of DSD. The connection of the present work with the theories of detonation
stability is a subject of section 5. We conclude in section 6.

2. General theory. This section is divided into two subsections. The first is
a general discussion and review of properties of characteristic surfaces defined for
systems of hyperbolic PDEs. We quickly specialize to the reactive, compressible
flow equations, but the presentation is not restricted to compressible Euler equations
and has applications to other hyperbolic systems. The second subsection derives
conditions that must be satisfied on a characteristic (sonic) surface, specifically for
the reactive Euler equations that are relevant for application to detonation.

2.1. Characteristic surfaces of hyperbolic PDEs and compatibility con-
ditions. The analysis given next closely follows that given in von Mises’ treatise [10].
This presentation was developed by G. S. S. Ludford (along with von Mises’ wife
Hilda Geiringer) to complete the von Mises monograph after his death. Its teaching
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was a regular feature of Ludford’s famous courses on applied mathematics given at
Cornell University. The von Mises reference is one of the few places one can find the
general theory of characteristic surfaces written in a succinct and concise manner,
and while classical in its form, it is seldom referenced and not widely known. This
powerful presentation in fact becomes the basis for our developments and extensions
to generate useful and new three-dimensional results for application to detonations in
particular. A useful discussion of characteristic surfaces can also be found in Chap-
man [2]. Another useful reference is Ovsiannikov [12], where one can find a general
characteristic form of equations of inert gas dynamics; the conditions on the acoustic
characteristic surfaces are found to be similar to ours (see (2.28)), when no chemical
reactions take place.

Consider a general system of quasi-linear hyperbolic equations written in the form

akij
∂uj

∂xk
= bi ,(2.1)

where the coefficients akij are functions of the state variables uj , j = 1, 2, . . . , J , index
i represents the individual equations of motion, xk are the independent variables, and
bi are the source terms. Form a linear combination of the equations by multiplying
the equations by arbitrary αi and summing over all equations,

αia
k
ij

∂uj

∂xk
≡ mk ∂

∂xk
(uj) = αibi.(2.2)

Each term on the left-hand side of (2.2), αia
k
ij (∂uj/∂xk), is a directional derivative in

space with direction tangents, m, whose components, labeled by k, are given by mk =
αia

k
ij . An exceptional surface [10] (or more commonly referred to as a characteristic

surface) is defined as a surface such that the linear combination (2.2) of directional
derivatives expresses changes only in that surface. Then all direction tangents must
lie in that surface, and therefore the linear combination (2.2) contains no derivatives
normal to the surface. If such an exceptional surface exists, then the unit normal
vector βββ to the surface must be orthogonal to all tangent vectors, m (see Figure 2.1),
that is,

mkβk = αiβka
k
ij = 0 .(2.3)

This is a system of J homogeneous linear algebraic equations for αi, with a nontrivial
solution if and only if

det|βka
k
ij | = 0 ,(2.4)

which is a Jth order polynomial that determines a constraint on the direction vector
βββ. Note that only directions in the space of the independent variables are solved for.
If one of the independent variables is time, then the constraint on the direction in
space time defines the velocity of the characteristic, which we later denote as the speed
relation.

The compatibility condition is simply the differential relation, (2.2), found on
the characteristic surface. The first step solves for βk by solving the characteristic
polynomial. The second step is, with a chosen direction, one that expresses the
compatibility relation in the characteristic surface. Since the system of equations for
αi is singular, then the solution for αi is determined up to an arbitrary constant; i.e.,
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β

Fig. 2.1. The sonic surface in 2 + 1 dimensions, which is generated by time evolution of the
two-dimensional sonic locus (a line in the xy-plane) along the third (time t) axis from t = t1 to
t = t2.

the ratio between the αi is determined in terms of the βk. Say such a direction β∗
k

with a corresponding α∗
i is found. Then the compatibility condition is specifically

α∗
i a

k
ij

∂uj

∂xk
= α∗

i bi .(2.5)

2.2. Compatibility conditions for reactive Euler equations. We now start
with reactive Euler equations with a single chemical reaction and closely follow the
derivation given in von Mises [10] for the general case of fluid motion for inert flow.
Further generalization to a multiple-step chemistry is straightforward. The general
equation of state is used in its incomplete form, e = e(p, ρ, λ).

Note that a simple device is in use. To simplify the algebraic presentation, the
equations of motion are assumed to be analyzed at a point instantaneously aligned
with the x-axis, which is taken in the direction of the velocity vector u = ui +
vj + wk. Therefore, without loss of generality, the material derivative is d/dt =
∂/∂t + u∂/∂x. The general condition for the exceptional surfaces is expressed for
this special system and subsequently rewritten in a frame-invariant notation so that
any coordinate system can be used. The notion of an exceptional (characteristic)
surface is the one that is based on the physical equations and not the coordinates,
and it is simply a matter of expressing the equations and directions indicated in those
coordinates.

The equations of motion are written as

u
∂u

∂x
+

∂u

∂t
+

1

ρ

∂p

∂x
= 0,(2.6)
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u
∂v

∂x
+

∂v

∂t
+

1

ρ

∂p

∂y
= 0,(2.7)

u
∂w

∂x
+

∂w

∂t
+

1

ρ

∂p

∂z
= 0,(2.8)

∂u

∂x
+

∂v

∂y
+

∂w

∂z
+

u

ρ

∂ρ

∂x
+

1

ρ

∂ρ

∂t
= 0,(2.9)

u
∂p

∂x
+

∂p

∂t
− c2

(
u
∂ρ

∂x
+

∂ρ

∂t

)
= ρc2σω,(2.10)

u
∂λ

∂x
+

∂λ

∂t
= ω,(2.11)

where p is pressure, ρ is density, λ is the reaction-progress variable, ω is the reaction
rate, and c is the frozen sound speed. We have used the definition of the thermicity
coefficient given by Fickett and Davis [5],

σ = − 1

ρc2

eλ
ep

,(2.12)

and the general expression for the sound speed,

c2 =
p− ρ2eρ
ρ2ep

,(2.13)

where the subscripts of e denote partial differentiation with respect to the arguments.
The state vector uj is given by (uj) = (u, v, w, p, ρ, λ), with j = 1, . . . , 6. For

the purpose of assigning the akij , we number (2.6) through (2.11) by j = 1, . . . , 6.
The generalized independent coordinates are given by the list (xk) = (x, y, z, t) with
k = 1, . . . , 4. The equations of motion written in the form (2.1) subsequently identify
akij as

[ak11]= [u, 0, 0, 1] , ak12 = 0 , ak13 = 0 , [ak14] =

[
1

ρ
, 0, 0, 0

]
, ak15 = 0 , ak16 = 0 ,

ak21 = 0 , [ak22] = [u, 0, 0, 1] , ak23 = 0 , [ak24] =

[
0,

1

ρ
, 0, 0

]
, ak25 = 0 , ak26 = 0 ,

ak31 = 0 , ak32 = 0 , [ak33] = [u, 0, 0, 1] , [ak34] =

[
0, 0,

1

ρ
, 0

]
, ak35 = 0 , ak36 = 0 ,

[ak41]= [1, 0, 0, 0] , [ak42] = [0, 1, 0, 0] , [ak43] = [0, 0, 1, 0] ,

ak44 = 0 , [ak45] =

[
u

ρ
, 0, 0,

1

ρ

]
, ak46 = 0 ,

ak51 = 0 , ak52 = 0 , ak53 = 0 , [ak54] = [u, 0, 0, 1] , [ak55] = [−c2u, 0, 0,−c2] , ak56 = 0 ,

ak61 = 0 , ak62 = 0 , ak63 = 0 , ak64 = 0 , ak65 = 0 , [ak66] = [u, 0, 0, 1] .(2.14)
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The 6 × 6 characteristic matrix, βka
k
ij , becomes⎡

⎢⎢⎢⎢⎢⎢⎣

β0 0 0 β1/ρ 0 0
0 β0 0 β2/ρ 0 0
0 0 β0 β3/ρ 0 0
β1 β2 β3 0 β0/ρ 0
0 0 0 β0 −c2β0 0
0 0 0 0 0 β0

⎤
⎥⎥⎥⎥⎥⎥⎦
,(2.15)

where β0 ≡ uβ1+β4. Setting its determinant equal to zero results in the characteristic
equation

−β4
0

ρ

[
β2

0 − c2(β2
1 + β2

2 + β2
3)
]

= 0.(2.16)

A fourfold repeated root is associated with the stream surfaces that form the char-
acteristic surface described by setting β0 = uβ1 + β4 = 0. In addition, there are two
other surfaces associated with the roots of the other factor,

β0 = ±c
√
β2

1 + β2
2 + β2

3 .(2.17)

Our focus is on these directions since in a nominally one-dimensional, unsteady flow
they would correspond to the forward and backward facing acoustic characteristics
(i.e, C+ and C−) that are called the “Mach lines.” We specifically work out the
compatibility relation for both of them, as they occur in a pair, and later we will
use the results for the characteristic surface that would correspond to the forward
characteristic, as we will explain subsequently.

To display the compatibility relation we need to solve the equations for αi, namely
(2.3). Using the previous definitions, one obtains the six equations

α1β0 + α4β1 = 0 , α2β0 + α4β2 = 0 ,

α3β0 + α4β3 = 0 ,
1

ρ
(α1β1 + α2β2 + α3β3) + α5β0 = 0 ,

α4

ρ
β0 − c2α5β0 = 0 , α6β0 = 0 .(2.18)

The solution of this system is, in terms of α4 (note that β0 = uβ1 + β4 �= 0),

α1 = −α4β1

β0
, α2 = −α4β2

β0
, α3 = −α4β3

β0
, α5 =

α4

ρc2
, α6 = 0 .(2.19)

The compatibility condition (2.2) written out long becomes

α1a
k
1j

∂uj

∂xk
+ α2a

k
2j

∂uj

∂xk
+ α3a

k
3j

∂uj

∂xk
+ α4a

k
4j

∂uj

∂xk
+ α5a

k
5j

∂uj

∂xk
= α5b5.(2.20)

Substituting for the αi in terms of α4 leads to

−α4

β0

[
β1a

k
1j

∂uj

∂xk
+ β2a

k
2j

∂uj

∂xk
+ β3a

k
3j

∂uj

∂xk

]
+ α4

[
ak4j

∂uj

∂xk
+

1

ρc2
ak5j

∂uj

∂xk

]
=

α4

ρc2
b5.

(2.21)
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The reader is reminded that each of the terms in the equation represents one of the
governing equations. Let us introduce the unit vector

n =
β1i + β2j + β3k√

β2
1 + β2

2 + β2
2

.(2.22)

This unit vector is normal to the tangent plane of the Mach cones, and hence normal
to the instantaneous realization of the characteristic surface in the physical space.

We also notice that the first three terms in (2.21) represent the first three com-
ponents of the momentum equation and can be rewritten as

−α4

β0

(√
β2

1 + β2
2 + β2

2

)
n ·

[
Du

Dt
+

1

ρ
∇p

]
.(2.23)

The second collection of terms in (2.21) can be rewritten as

α4

[
1

ρ

Dρ

Dt
+ ∇ · u +

1

ρc2

(
Dp

Dt
− c2Dρ

Dt

)]
,(2.24)

and the right-hand side of (2.21) is

α4

ρc2
b5 = α4σω.(2.25)

Putting it all together leads to the frame-invariant expression of the compatibility
condition on the characteristic surface (canceling out the common α4 and the material
derivatives of density, and multiplying through by ρc2),

−
√
β2

1 + β2
2 + β2

2

β0
(ρc2)n ·

[
Du

Dt
+

1

ρ
∇p

]
+

[
ρc2∇ · u +

Dp

Dt

]
= ρc2σω.(2.26)

The characteristic equations (2.17) for the directions show that√
β2

1 + β2
2 + β2

2

β0
= ±1

c
,(2.27)

so that it can be used to write the compatibility condition in the form

∓(ρc)n ·
[
Du

Dt
+

1

ρ
∇p

]
+

[
ρc2(∇ · u) +

Dp

Dt

]
= ρc2σω.(2.28)

The compatibility condition is a differential relation that holds on the character-
istic surface. But the other condition is that the motion is confined to be along the
space-time characteristic direction defined by speed relation

uβ1 + β4 = ±c
√
β2

1 + β2
2 + β2

3 .(2.29)

It is important to interpret (2.29) as well as a frame-invariant relation. The compo-
nents (β1, β2, β3) can be chosen to be those of a unit normal to the surface, and hence√
β2

1 + β2
2 + β2

3 = 1. Also the term uβ1 has the meaning u · n. Finally, β4 is the
velocity of the characteristic surface normal to itself, β4 = Vn (say). Rewriting the
expression above leads to

Vn = u · n ± c .(2.30)
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In one dimension, this reduces to the familiar equation for the slope of the character-
istics Vn ≡ dx/dt = u± c.

Consider the forward propagating surface that corresponds to the choice of the
plus sign in the previous relation (2.30). Note that the particle velocity in the frame
of an observer traveling in the forward surface is un − Vn and the speed relation can
be written as

un − Vn

c
= −1 .(2.31)

This means that on this characteristic surface the local normal Mach number is always
unity, which is the conventional definition of sonic.

The compatibility and the speed relation, taken together, are two pieces of in-
formation, namely a differential condition in the sonic surface and a scalar speed
relation, that determine the motion of the surface. If we include additional reactions
and replace λ by λq, q = 1, 2, . . . , N , where N is the number of reactions, then in the
subsequent derivations only the right-hand side of (2.28) will change since additional
reactions generate only additional roots that are multiples of the root associated with
the streamline characteristic but not to the acoustics. The right-hand side of the
compatibility condition becomes the sum, ρc2σqωq, over q = 1, . . . , N , where

σq = − 1

ρc2

eλq

ep
(2.32)

is the thermicity coefficient and ωq is the rate of qth reaction. The sound speed in
the governing equations is the frozen sound speed and is still given by (2.13).

If we specify the result to a detonation wave that is propagating from left to right
in the positive x-direction, then the normal to the characteristic surface embedded in
the reaction zone, which can possibly intersect the shock, points forward. Therefore,
we select the plus sign in (2.28). Let us denote the unit normal to the characteristic
surface n∗ (in general, the subscript ∗ will refer to a quantity evaluated at the sonic
surface). The compatibility condition for this surface is then

ρcn∗ ·
(
Du

Dt
+

1

ρ
∇p

)
+ ρc2∇ · u +

Dp

Dt
= ρc2σω,(2.33)

where it is understood that all terms are evaluated at the sonic surface, although we
drop the subscript ∗ in most of the terms for the sake of clarity. The compatibility
condition (2.33) holds on the exceptional surface at which the flow is locally sonic;
that is, an observer moving with the surface observes that the flow speed normal to
the surface is locally sonic:

Un∗ = u∗ · n∗ −D = −c∗ ,(2.34)

where D is the normal speed of the sonic surface in the lab frame.

3. One-dimensional sonic conditions. Equation (2.33) simplifies now to

ρc

(
∂u

∂t
+ u

∂u

∂x
+

1

ρ

∂p

∂x

)
+ ρc2 ∂u

∂x
+

∂p

∂t
+ u

∂p

∂x
= ρc2σω,(3.1)

which can be rewritten as

dp∗
dt

+ ρ∗c∗
du∗
dt

= ρ∗c
2
∗σ∗ω∗,(3.2)
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Fig. 3.1. One-dimensional sonic locus as the C+ characteristic emanating from the initial
steady sonic locus.

where the spatial and temporal derivatives in (3.1) are combined to form a time
derivative along the forward characteristic direction,

d

dt
=

∂

∂t
+ (c∗ + u∗)

∂

∂x
=

∂

∂t
+

dx∗
dt

∂

∂x
,

dx∗
dt

= c∗ + u∗.(3.3)

As we have mentioned before, the sonic locus is a special characteristic that is a
separatrix of two families of characteristic lines, namely those that reach the shock
front in finite time and those that do not. It is assumed that the sonic locus exists
initially as, for example, in a steady detonation and continues to exist during unsteady
evolution. Then the initial condition selects the separatrix from the entire family of
forward characteristics for all of which (3.3) and (3.2) hold. It must be pointed out
that it is not, in general, possible to identify the separatrix in an arbitrary initial
condition.

One can look at (3.2) as a differential equation that does not involve derivatives
normal to the characteristic surface. The sonic locus is an (x, t)-curve along a limiting
C+ characteristic (see Figure 3.1), and the derivative ∂/∂x does not appear. Indeed,
the time derivatives in (3.2) are the derivatives along the characteristics; that is, the
derivatives lie in the tangent plane of the characteristic surface.

For one-dimensional detonation with point symmetry (j = 0, 1, 2 correspond to
planar, cylindrical, and spherical symmetry, respectively), one easily finds that the
compatibility condition is

dp∗
dt

+ ρ∗c∗
du∗
dt

+
j

r
ρ∗c

2
∗u∗ = ρ∗c

2
∗σ∗ω∗,(3.4)

where r is the radial coordinate, while the speed relation is

dr∗
dt

= c∗ + u∗.(3.5)
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For a steady one-dimensional planar detonation wave in a mixture with complex
reaction network, the compatibility condition reduces to the equation

σqωq = 0(3.6)

that, together with c∗ + U∗ = 0, defines the sonic locus. For a discussion of the
condition in applications to multiple-step reactions in detonation waves, see [5].

4. Sonic conditions of detonation shock dynamics. We call (2.33) and
(2.34) the sonic conditions on the limiting forward characteristic surface, and their
application to detonation theory is a main result of this paper. Specifically, we con-
sider initial-value problems where there is an initially prescribed detonation shock
locus with states behind it that lead subsequently to smooth evolution in the reaction
zone for a self-sustained detonation. In this section, we specialize sonic conditions to
one- and two-dimensional detonations. We show that when linearized, the compati-
bility condition reduces to the radiation condition of detonation stability theory (see,
e.g., [7, 9, 13]). For the two-dimensional, slowly varying, and weakly curved detona-
tions, the compatibility condition reduces to the thermicity condition of detonation
shock dynamics (DSD theory; see, e.g., [18]). In both detonation stability theory and
DSD, the governing equations are usually written in a frame of reference attached to
the shock front since one is often interested in the shock-front dynamics rather than
anything else. For the purpose of comparison with the known sonic conditions, we
write our sonic conditions in the shock-attached frame. But before doing that, it is
instructive to look at the sonic conditions written in the frame of the sonic locus.

4.1. Sonic conditions in the sonic-frame Bertrand coordinates. We ex-
press the sonic conditions in two-dimensional surface-attached Bertrand coordinates
which use the normal distance to a prescribed front and the arclength to a reference
point along the front as the intrinsic surface-based coordinates (see, e.g., [11, 18]).
Since the Bertrand coordinates are developed by the sonic surface, they are perfectly
suited to simplify the conditions since only derivatives in the surface and normal to
that surface appear. Let (η, ζ) be the normal signed distance to the surface and
transverse distance measured along the surface (see Figure 4.1). Let (n, t) be the
corresponding unit normal and tangent vectors to the sonic surface. The coordinate
transformation from the laboratory frame to the Bertrand frame is defined by

r = rs + ηn,(4.1)

where r is the lab-frame position of a point in space and rs (ζ, t) is the position of the
sonic surface. Then various differential operators in the Bertrand frame are written
as follows:

∇ = n
∂

∂η
+

t

1 + ηκ∗

∂

∂ζ
,(4.2)

∇ · u =
∂uη

∂η
+

1

1 + ηκ∗

(
κ∗uη +

∂uζ

∂ζ

)
, u · ∇ = uη

∂

∂η
+

uζ

1 + ηκ∗

∂

∂ζ
,(4.3)

∂

∂t
=

∂

∂t
−D ∂

∂η
+ S ∂

∂ζ
,(4.4)

and

D

Dt
=

∂

∂t
+ u · ∇ =

∂

∂t
+ (uη −D)

∂

∂η
+

(
S +

uζ

1 + ηκ∗

)
∂

∂ζ
,(4.5)
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Fig. 4.1. Bertrand frame attached to the sonic locus.

where the lab-frame particle speed is u = uηn + uζt, and κ∗ is the curvature of the
sonic surface. Note that η = 0 in the sonic surface and that uη−D = Uη is the normal
particle velocity relative to the sonic frame. We introduced the rate of strain of the
arclength,

S =
∂ζ

∂t
,(4.6)

and used the fact that

∂η

∂t
= −D.(4.7)

Next we calculate the compatibility condition (2.33) in terms of the new coordi-
nates. Clearly, n · ∇p = ∂p/∂η, and all other terms are also straightforward, except
for n ·Du/Dt. To calculate the latter, we write

n · Du

Dt
= n · D

Dt
(uηn + uζt) = n ·

(
Duη

Dt
n + uη

Dn

Dt
+

Duζ

Dt
t + uζ

Dt

Dt

)

=
Duη

Dt
+ uζn ·

[
∂t

∂t
+ (uη −D)

∂t

∂η
+ (S + uζ)

∂t

∂ζ

]
,(4.8)

where we have used (4.5) and n · t = 0, n · Dn/Dt = 0. To determine n · ∂t/∂t,
we differentiate the coordinate transformation, r = rs + ηn, with respect to time and
find

0 =
dr

dt
=

∂rs
∂t

+
∂ζ

∂t

∂rs
∂ζ

+
∂η

∂t
n + η

(
∂n

∂t
+

∂ζ

∂t

∂n

∂ζ

)
.(4.9)

We evaluate the last result in the sonic surface, at η = 0, to obtain

∂rs
∂t

+ St −Dn = 0,(4.10)
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and differentiate the latter with respect to ζ, and noting that t = ∂rs/∂ζ, we find,
using the Frenet formulas,

∂n

∂ζ
= κt,

∂t

∂ζ
= −κn,(4.11)

that

n · ∂t
∂t

=
∂D
∂ζ

+ κS.(4.12)

Then, collecting all terms in (4.8), we find that

n · Du

Dt
=

Duη

Dt
+ uζ

∂D
∂ζ

− κu2
ζ .(4.13)

What is left is to collect terms in (2.33), which results in the following equation:

ρc

(
Duη

Dt
+ uζ

∂D
∂ζ

− κu2
ζ +

1

ρ

∂p

∂η

)

+ρc2

(
∂uη

∂η
+ κ∗uη +

∂uζ

∂ζ

)
+

Dp

Dt
= ρc2σω.(4.14)

Expanding the material derivative according to (4.5) and rearranging derivatives along
the same directions, we obtain

∂p

∂t
+ ρc

∂uη

∂t
+ κ∗ρc

2uη + (c + uη −D)

(
∂p

∂η
+ ρc

∂uη

∂η

)

+ρc2 ∂uζ

∂ζ
+ ρcuζ

(
∂D
∂ζ

− κ∗uζ

)
+ (S + uζ)

(
∂p

∂ζ
+ ρc

∂uη

∂ζ

)
= ρc2σω.(4.15)

An important observation now is that in the sonic surface the flow is locally sonic
with

c + uη −D = 0,(4.16)

which is the speed relation. Therefore, all normal-derivative terms in the compatibility
condition (4.15) drop out, resulting in

∂p

∂t
+ ρc

∂uη

∂t
+ κ∗ρc

2uη = ρc2σω −R∗,(4.17)

where the terms that explicitly depend on the transverse variation are lumped into
R∗, given by

R∗ = ρc2 ∂uζ

∂ζ
+ ρcuζ

(
∂D
∂ζ

− κ∗uζ

)
+ (S + uζ)

(
∂p

∂ζ
+ ρc

∂uη

∂ζ

)
.

The reader is reminded that everything in (4.17) is evaluated in the sonic surface.
By definition, the compatibility condition must not contain derivatives along the

normal to the characteristic surface in (ζ, η, t)-space. Since our coordinate frame
is local, that is, attached to the characteristic surface, then the time derivative in
(4.17) does indeed lie in the surface, similar to the time derivative along the C+
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characteristic in one dimension. Furthermore, the ζ-derivative is also in the surface,
as ζ is the arclength. The only derivative that is off the characteristic surface in
(ζ, η, t)-space is ∂/∂η, and that derivative is indeed absent in (4.17). If R∗ can be
neglected, (4.17) is similar to the thermicity condition of the old DSD theories with an
important difference that here Uη and D are the particle velocity in the sonic frame
and normal speed of the sonic surface, respectively; in the older theories of DSD,
the same variables are calculated in the shock-attached frame. The approximate form
that neglects R∗ is valid only in the limit of weak curvature, slow time, and small
transverse variation. Equation (4.17) is an exact relation that is valid for general
two-dimensional detonations with an embedded sonic surface, provided only that the
Bertrand coordinates are invertible, which is true if the radius of curvature of the
sonic locus is large compared to the length of the reaction zone.

4.2. Sonic conditions of DSD theory: Formulation in the shock-attached
frame. The linear stability problem and the DSD problem were originally formulated
in shock-attached coordinates: in the first case, this dates back to the first rigorous
analysis given by Erpenbeck [4]; in the second case, the shock-attached coordinates
were used because the goal of DSD theory is to determine the dynamics of the shock
front [16, 18].

Here we revisit the formulation of DSD in the shock-attached coordinates and
use Bertrand coordinates attached to the shock. Let (n, ξ) be the normal and trans-
verse coordinates, and let (n, t) represent the corresponding unit normal and tangent
vectors in the shock frame; then the coordinate transformation is given by

r = rs (ξ, t) + nn (ξ, t) .(4.18)

The time derivative in the shock-attached frame is represented as

∂

∂t
=

∂

∂t
−D

∂

∂n
+ S

∂

∂ξ
,

the velocity in the lab frame is u = unn+uξt, D is the normal shock speed, S = ∂ξ/∂t
is the stretch rate of the arclength along the shock, and Un = un −D is the normal
particle speed relative to the shock. The material derivative is then

D

Dt
=

∂

∂t
+ Un

∂

∂n
+

(
S +

uξ

1 + n∗κ

)
∂

∂ξ
.(4.19)

Differential operators involving ∇ are similar to those in the sonic frame, (4.2)–(4.3),
only now the velocity is expressed in the shock frame. A slight complication arises
from the fact that n∗ in (2.33) is the unit normal to the sonic surface, which in
general is different from n, the unit normal to the shock. Therefore, the shock-frame
compatibility condition will contain terms, proportional to n∗ · n, which need to be
evaluated.

Let

n∗ = ann + aξt,(4.20)

where the components, an = n∗ · n and aξ = n∗ · t, will be determined below (see
equations (4.32)). Then, n∗ · ∇p = an∂p/∂n + aξ∂p/∂ξ, and

n∗ ·
Du

Dt
= n∗ ·

D

Dt
(unn + uξt) =

Dun

Dt
n∗ · n + unn∗ ·

Dn

Dt
+

Duξ

Dt
n∗ · t + uξn∗ ·

Dt

Dt
.

(4.21)
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We now calculate each term on the right-hand side of this equation. Consider

n∗ ·
Dn

Dt
= aξt ·

Dn

Dt
= aξt ·

[
∂n

∂t
+

(
S +

uξ

1 + n∗κ

)
∂n

∂ξ

]
.(4.22)

By time-differentiating the coordinate transformation (4.18) and evaluating the result
at the shock, we find that

∂rs
∂t

+ St −Dn = 0.(4.23)

Differentiating this result with respect to ξ and using t = ∂rs/∂ξ, we find

∂t

∂t
+

(
∂S

∂ξ
− κD

)
t −

(
∂D

∂ξ
+ κS

)
n = 0,(4.24)

from which it follows that

t · ∂n
∂t

= −n · ∂t
∂t

= −∂D

∂ξ
− κS(4.25)

and

∂S

∂ξ
− κD = 0.(4.26)

Using (4.25) and the Frenet formula, ∂n/∂ξ = κt, we find that (4.22) results in

n∗ ·
Dn

Dt
= aξ

(
−∂D

∂ξ
+

κuξ

1 + n∗κ

)
.(4.27)

Similarly, we find

n∗ ·
Dt

Dt
= ann ·

[
∂t

∂t
+

(
S +

uξ

1 + n∗κ

)
∂t

∂ξ

]
= an

(
∂D

∂ξ
− κuξ

1 + n∗κ

)
.(4.28)

Equation (4.21) becomes

n∗ ·
Du

Dt
= an

Dun

Dt
+ aξ

Duξ

Dt
+ (unaξ − uξan)

(
−∂D

∂ξ
+

κuξ

1 + n∗κ

)
.(4.29)

Collecting all terms, we obtain that the shock-frame compatibility condition is

∂p

∂t
+ (c + Un)

∂p

∂n
+ ρc

[
∂un

∂t
+ (c + Un)

∂un

∂n

]
+

κ

1 + n∗κ
ρc2un = ρc2σω −R,

(4.30)

where κ (without the * subscript) is the local curvature of the shock, n∗ is the normal
distance from the shock to the sonic surface, and all terms are evaluated in the sonic
surface. By R in the right-hand side of (4.30) we denote the following collection of
terms:

R =

(
S +

uξ

1 + n∗κ

)(
∂p

∂ξ
+ ρc

∂un

∂ξ

)
+

ρc2

1 + n∗κ

∂uξ

∂ξ

+c (an − 1)

(
∂p

∂n
+ ρ

Dun

Dt

)
+ caξ

(
∂p

∂ξ
+ ρ

Duξ

Dt

)

+ρc (unaξ − uξan)

(
−∂D

∂ξ
+

κuξ

1 + n∗κ

)
.(4.31)
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From the derivations below (see (4.39)), the coefficients an and aξ in (4.31) are given
by

an =

[
1 +

(
1

1 + n∗κ

∂n∗
∂ξ

)2
]−1/2

, aξ = − an
1 + n∗κ

∂n∗
∂ξ

,(4.32)

so that small transverse variation implies smallness of an − 1 and aξ.
Note that the operator ∂/∂t + (c + Un) ∂/∂n in (4.30) in general is not the time

derivative along the sonic locus, unlike the one in (4.17). In the sonic frame, we had
Un∗ = −c∗ exactly as a speed relation. But now it is no longer true that c∗ +Un∗ = 0!
In one dimension, we could write c∗ + Un∗ = dn∗/dt, in which case the operator
∂/∂t + (c + Un) ∂/∂n does indeed become a total derivative along the sonic locus.
But in general two-dimensional detonation waves, the derivative ∂/∂t+(c + Un) ∂/∂n
does not lie in the tangent plane of the sonic locus; only if the transverse variations
can be neglected is the derivative in the sonic surface.

The speed relation expressed in the shock-attached coordinates is derived next.
Let the equation

ψ(x, y, t) = 0(4.33)

represent the level set of the sonic surface in the laboratory frame. Then its unit
normal and normal speed are given by

n∗ =
∇ψ

|∇ψ| and D = − 1

|∇ψ|
∂ψ

∂t
,(4.34)

respectively, so that the general speed relation (2.34) can be rewritten as

∂ψ

∂t
+ c |∇ψ| + u · ∇ψ = 0.(4.35)

An interesting form of the speed relation is obtained from (4.35) by noting that
|∇ψ| = n∗ · ∇ψ,

∂ψ

∂t
+ (u + cn∗) · ∇ψ = 0,(4.36)

a transport equation that underscores propagation of the sonic surface in the direction
of u+cn∗ with the normal speed c +u·n∗. The derivative L =∂/∂t+(u + cn∗)·∇ is a
directional time derivative normal to the sonic surface so that (4.36) is an expression
of constancy of ψ in the sonic surface.

In the shock-attached frame, (n, ξ, t), the level-set equation can be written as

ψ ≡ n− n∗(ξ, t) = 0,(4.37)

where n∗ is the normal distance from the shock to the sonic surface. Then we obtain
that

∇ψ = n − 1

1 + n∗κ

∂n∗
∂ξ

t,
∂ψ

∂t
= −D − ∂n∗

∂t
− S

∂n∗
∂ξ

,(4.38)

and

n∗ =
1

|∇ψ|

(
n − 1

1 + n∗κ

∂n∗
∂ξ

t

)
.(4.39)
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Be reminded that in these expressions κ is the curvature of the shock. Substituting
these formulas into (4.35), we obtain the speed relation in the shock-attached frame,

∂n∗
∂t

+

(
S +

uξ

1 + n∗κ

)
∂n∗
∂ξ

= Un + c

√
1 +

(
1

1 + n∗κ

∂n∗
∂ξ

)2

.(4.40)

Again, this is an exact relation that expresses the speed relation for the sonic surface
written in the shock-attached Bertrand coordinates in terms of the shock properties,
that is, the curvature κ and the stretch S, and the flow state in the sonic surface,
n∗(ξ, t), Un, uξ, and c. Thus we have two equations, (4.30) and (4.40), that represent
the sonic conditions in the shock-attached Bertrand frame.

Equation (4.40) can be rewritten as

c + Un =
∂n∗
∂t

+

(
S +

uξ

1 + n∗κ

)
∂n∗
∂ξ

+ c

⎡
⎣1 −

√
1 +

(
1

1 + n∗κ

∂n∗
∂ξ

)2
⎤
⎦ ,(4.41)

from which one can see that the speed relation is similar to the equation of the
forward characteristic in one dimension, (3.3), which in the shock-attached frame is
c + Un = dn∗/dt but involves more terms, all due to the transverse variation.

Next we make certain approximations in order to simplify the sonic conditions
(4.30) and (4.40) and to see their connection with the older formulations of DSD. Let
us assume that the shock curvature is small, κ = o(1), and the transverse flow speed
and transverse variations are also small, uξ = o(1), ∂/∂ξ = o(1). Then retaining only
the leading-order terms, from (4.40), we obtain that

∂n∗
∂t

= Un + c∗.(4.42)

Retaining only leading-order curvature terms in (4.30), we obtain that

∂p

∂t
+ ρc

∂un

∂t
+ κρc2un − ρc2σω = 0,(4.43)

where the time derivative is now

∂

∂t
=

∂

∂t
+ (c + Un)

∂

∂n
=

∂

∂t
+

∂n∗
∂t

∂

∂n
.

The time derivative in (4.43) must be taken along the sonic locus; that is, the state
variables, p and un, must first be evaluated at the sonic locus, and only then should
their derivatives be taken.

5. On the sonic conditions of detonation stability theory. In this section,
we show that the linearized version of the compatibility condition reduces to the
radiation conditions of detonation stability theory (see, e.g., [7, 9, 13]). Here we
derive the one- and two-dimensional radiation conditions.

A one-dimensional radiation condition follows directly from (3.2) by straightfor-
ward linearization. Let us denote the steady base state by an overbar and pertur-
bations about the base state by a prime, e.g., p = p̄ (n) + p′ (n, t), etc. Then the
perturbed sonic state is given by

p∗ = p̄∗ (n∗) + p′ (n∗, t) , u∗ = ū∗ (n∗) + u′ (n∗, t) ,(5.1)

ρ∗ = ρ̄∗ (n∗) + ρ′ (n∗, t) , λ∗ = λ̄∗ (n∗) + λ′ (n∗, t) ,(5.2)
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where we can take n∗ = n̄∗ in the primed quantities since the correction to the sonic
locus, n′

∗ = n∗ − n̄∗, that results from the use of the speed relation,

ṅ′
∗ = c′∗ + U ′

n∗,(5.3)

contributes only higher-order terms. But we also expand the leading-order terms
about the exact sonic locus to obtain, for example, that

p̄∗ (n∗) = p̄∗ (n̄∗) +
dp̄∗ (n̄∗)

dn
n′
∗.(5.4)

The perturbations such as in the last expression will be absent if the steady-state
gradients vanish at the steady sonic locus, which is often the case.

Finally, the linearized compatibility condition is

dp′

dt
+ ρ̄∗c̄∗

du′

dt
+

(
dp̄∗
dn

+ ρ̄∗c̄∗
dp̄∗
dn

)
ṅ′
∗ = ρ̄∗c̄

2
∗σ̄∗ω

′,(5.5)

where everything with an overbar is evaluated at n = n̄∗. We have also taken into
account that ω̄∗ = 0; ω′ is the perturbation of the reaction rate.

In the special case of an ideal gas, the equation of state is p = ρRT , e =
pv/ (γ − 1)−λQ, so that ρc2σ = (γ − 1)Qρ. For simple-depletion kinetics with ν = 1,
the gradients of the steady-state pressure and velocity vanish at the sonic locus, and
therefore the term proportional to ṅ′

∗ in (5.5) will drop out. Assuming normal-mode
perturbations, p′ = p̄′ (n) exp (αt) , etc., the radiation condition (5.5) reduces to

α (p̄′∗ + ρ̄∗c̄∗ū
′
∗) + (γ − 1)Qρ̄∗k exp (−E/p̄∗v̄∗) λ̄

′
∗ = 0,(5.6)

which is exactly the CJ limit of the radiation condition derived by Lee and Stewart
[9].

If the depletion factor is less than unity, that is, ν < 1 in ω = k (1 − λ)
ν

exp (−E/pv),
then the reaction-rate perturbation away from the sonic locus is

ω′ =

(
∂ω̄

∂p̄

)
p′ +

(
∂ω̄

∂v̄

)
v′ +

(
∂ω̄

∂λ̄

)
λ′.(5.7)

As λ̄ → 1, one finds that (∂ω̄/∂λ̄) ∼ (1− λ̄)ν−1 → ∞, so the last term in the previous
expansion is nonuniform as the sonic locus is approached, clearly a result of the base-
state reaction rate vanishing at the sonic locus. Near the sonic locus the reaction rate
perturbation is

ω′ = ω (λ∗) − ω
(
λ̄∗

)
= k (−λ′)

ν
exp (−E/p̄∗v̄∗) ,(5.8)

which is a nonlinear function of λ′, another indication of the nonuniformity of solutions
of the original linearized system of Euler equations. If all perturbations in expansions
(5.1) and (5.2) are assumed to be O (ε) with ε → 0, then the left-hand side of (5.5)
is also O (ε), while the right-hand side is O (εν). It follows then that although in the
main-reaction layer (i.e., the region behind the shock but away from the sonic locus)
the perturbations are O (ε), they are no longer O (ε) as the sonic locus is approached
(that is, in the transonic layer). This potential nonuniformity has to be dealt with
by considering the linear stability problem separately in the main-reaction layer and
the transonic layer, a problem that is beyond the scope of the present paper. Here
we indicate only the possibility of essentially nonlinear dynamics in the transonic
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Fig. 5.1. Perturbation of a two-dimensional steady detonation with an embedded sonic locus.

layer, a situation common in transonic-flow problems. The linear stability problem of
detonation has to be formulated so that this nonlinear character is carefully accounted
for, and the solutions in the main reaction layer and transonic layer should be properly
matched.

Consider now a two-dimensional detonation wave with an embedded sonic locus
subject to a small perturbation of the shock locus, φ (y, t), as shown in Figure 5.1.
Most treatments of detonation stability employ a Cartesian frame of reference at-
tached to the perturbed shock so that the coordinate transformation from the lab
frame is

x = xl −Dt− φ
(
yl, t

)
, y = yl.(5.9)

Here xl and yl are the lab-frame coordinates, D is the steady-state detonation speed,
and φ is the small shock displacement in the x-direction. Thus the shock is always
fixed at x = 0 and the reaction zone is at x < 0, while the unperturbed medium is at
x > 0. The differential operators in the moving frame are now

∇ =
∂

∂x
i +

(
∂

∂y
− φy

∂

∂x

)
j and

D

Dt
=

∂

∂t
+ U1

∂

∂x
+ u2

∂

∂y
− u2φy

∂

∂x
,(5.10)

where U1 = u1−D−∂φ/∂t and u2 are the x- and y- components of the particle speed
relative to the perturbed shock, respectively.

Notice that the displacement of the sonic locus, φ∗ (y, t), is not the same as φ and
therefore, the unit normal, n∗, to the sonic locus differs from n, the unit normal to
the shock. To the leading order in the displacements, the unit normals are given by

n = i − ∂φ

∂y
j, n∗ = i − ∂φ∗

∂y
j.(5.11)

One can show that the small transverse component of n∗ contributes only second-order
terms to the compatibility condition. Indeed, let φ = φ′ = o (1), φ∗ = φ′

∗ = o (1) and
and linearize the state variables about the steady state, as, e.g., p = p̄ (x) + p′ (x, t),
u = (ū1 + u′

1) i + u′
2j, etc., similar to the one-dimensional case; the primed quantities

are small corrections to the base state. We have assumed that the gradients of the
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steady-state variables vanish at the steady sonic locus. Otherwise one needs to retain
terms such as dp̄/dx (x̄)x′

∗; see earlier in this section. Retaining only linear terms in
perturbations, we find that

D

Dt
=

∂

∂t
+ Ū1

∂

∂x
+

(
U ′

1

∂

∂x
+ u′

2

∂

∂y

)
,(5.12)

n∗ ·
Du

Dt
=

(
i − ∂φ′

∗
∂y

j

)
·
[
∂

∂t
+ Ū1

∂

∂x
+

(
U ′

1

∂

∂x
+ u′

2

∂

∂y

)]
(ū1i + u′)

= Ū1
∂ū1

∂x
+

(
∂u′

1

∂t
+ Ū1

∂u′
1

∂x
+ U ′

1

∂ū1

∂x

)
,(5.13)

n∗ · ∇p =
∂p̄

∂x
+

∂p′

∂x
, ∇ · u =

∂ū1

∂x
+

(
∂u′

1

∂x
+

∂u′
2

∂y

)
,(5.14)

and

Dp

Dt
= Ū1

∂p̄

∂x
+

(
∂p′

∂t
+ U ′

1

∂p̄

∂x
+ Ū1

∂p′

∂x

)
.(5.15)

Before linearization of the compatibility condition, it is convenient to rewrite it as

ρc

(
n∗ ·

Du

Dt
+ c∇ · u

)
+

Dp

Dt
+ cn∗ · ∇p = ρc2σω.(5.16)

We then find that

n∗ ·
Du

Dt
+ c∇ · u =

(
∂u′

1

∂t
+ c̄

∂u′
2

∂y

)
+ (c′ + U ′

1)
∂ū1

∂x
(5.17)

and

Dp

Dt
+ cn∗ · ∇p =

∂p′

∂t
+ (c′ + U ′

1)
∂p̄

∂x
,(5.18)

so that the linearized compatibility condition becomes

∂p′

∂t
+ ρ̄∗c̄∗

∂u′
1

∂t
+ ρ̄∗c̄

2
∗
∂u′

2

∂y
= ρ̄∗c̄

2
∗σ̄∗ω

′,(5.19)

or, in terms of the normal modes (p′ → p′ exp (αt + iky), etc.),

α (p′ + ρ̄∗c̄∗u
′
1) + ikρ̄∗c̄

2
∗u

′
2 = ρ̄∗c̄

2
∗σ̄∗ω

′.(5.20)

If one sets the right-hand side of (5.20) to zero, then one obtains the CJ limit of the
radiation condition of Short and Stewart [13]. But (5.20) is more general, as it includes
a general rate term and holds for a general equation of state. Still the discussion above
concerning possible nonuniformities in the transonic layer is obviously important here
as well.
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5.1. The compatibility condition as a boundedness condition. We now
show that for detonations with depletion factor ν > 1/2, the linearized compatibility
condition

dp′

dt
+ ρ̄∗c̄∗

(
dU ′

dt
+

dD′

dt

)
− (γ − 1)Qρ̄∗ω

′ = 0(5.21)

is necessary for the linear stability problem to have solutions bounded at n → n̄∗.
Indeed, the one-dimensional Euler equations written in the shock-attached frame

vt + Uvn − vUn = 0,(5.22)

Ut + UUn + vpn = −Dt,(5.23)

pt + Upn + γpUn = (γ − 1)Qρω,(5.24)

λt + Uλn = ω(5.25)

can be linearized so that the following set of linear equations is obtained:

v′t + Ūv′n + v̄nU
′ − v̄U ′

n − Ūnv
′ = 0,(5.26)

U ′
t + ŪU ′

n + ŪnU
′ + v̄p′n + p̄nv

′ = −D′
t,(5.27)

p′t + Ūp′n + p̄nU
′ + γp̄U ′

n + γŪnp
′ − (γ − 1)Q (ρ̄ω′ + ω̄ρ′) = 0,(5.28)

λ′
t + Ūλ′

n + λ̄nU
′ = ω′,(5.29)

where the perturbations are assumed to be small deviations from the corresponding
steady-state values. Adding (5.28) and (5.27) multiplied by ρ̄c̄, one obtains[

∂

∂t
+
(
Ū + c̄

) ∂

∂n

]
p′ + ρ̄c̄

[
∂

∂t
+
(
Ū + c̄

) ∂

∂n

]
(U ′ + D′) − (γ − 1)Qρ̄ω′

+
(
p̄n + ρ̄c̄Ūn

)
U ′ + γŪnp

′ + ρ̄c̄p̄nv
′ − (γ − 1)Qω̄ρ′ = 0.(5.30)

The first two terms are seen to form time derivatives along the steady C+ characteristic
direction, ∂/∂t+

(
Ū + c̄

)
∂/∂n, so that the first line of (5.30) tends to the compatibility

condition in the limit n → n̄∗ (so that Ū + c̄ → 0). All terms in the second line vanish
as n → n̄∗, provided that ν > 1/2 (so that the spatial derivatives of the base state
vanish at the sonic locus) and that all perturbations remain uniformly bounded. Thus
the compatibility condition is necessarily satisfied if perturbations are bounded and
ν > 1/2.

6. Conclusions. In this work we have introduced a general definition of a sonic
locus for multidimensional unsteady self-sustained detonation waves and discussed its
properties under limiting conditions that are relevant to detonation stability theories
and asymptotic theories of slowly evolving weakly curved detonations. We have shown
that previously known sonic conditions of steady detonation theory, linear stability
theory, and DSD are limiting cases of our generalized conditions. Self-sustained deto-
nations are introduced as two-front phenomena with the lead shock and the limiting
characteristic surface (as the sonic locus) as free boundaries. The sonic conditions that
we have derived can be considered as closure equations that together with the Euler
equations and Rankine–Hugoniot conditions complete the set of governing equations
for self-sustained detonations.

An important ingredient of the present theory is that the sonic surface is assumed
to exist initially; we simply take it as given by the initial conditions. The initial con-
dition could be, for example, a steady detonation wave in which a sonic surface can
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be defined unambiguously, and a clear exact case is that of the steady CJ detonation
or a weakly perturbed detonation that corresponds to theories relevant to detona-
tion instability or DSDs, both of which are perturbation theories that assume either
deviations from a plane CJ state or weak spatial and temporal variation from plane
states. Many important initial conditions, for example in initiation problems, will not
have an initial sonic locus. But as the detonation forms and becomes a self-sustained
wave, the sonic locus will appear somewhere in the flow. From that point on, the
detonation dynamics is described by our theory, provided only that the sonic locus
persists in the flow, which is the case if the flow evolution is smooth.

Appearance of strong discontinuities within the reaction zone, such as shock
waves, can destroy a sonic surface, in which case the present theory may not be
applicable. It is indeed the case in gas-phase detonations that strong transverse shock
fronts almost always exist which can interact with the sonic surface. Yet, the situation
is quite different in condensed explosives, in which smooth reaction zones are more
common. In any case, the range of phenomena that the present theory can address
is considerable, and even in the case of cellular detonations, the onset of cellular dy-
namics and propagation of weakly unstable detonations may be phenomena that the
present theory is applicable to. Some applications of the theory to weakly curved and
slowly evolving detonations can be found in [6] and in forthcoming papers.

Acknowledgments. We thank A. Kapila of RPI and J. Bdzil of LANL for their
discussion of this work.
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THE SPEED LAW FOR HIGHLY RADIATIVE FLAMES
IN A GASEOUS MIXTURE WITH LARGE ACTIVATION ENERGY∗
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Abstract. We study a thermodiffusive combustion model for premixed flames propagating in
reactive gaseous mixtures which contain inert dust. As observed by Joulin, radiative transfer of heat
may significantly enhance the flame temperature and its propagation speed. The Joulin effect is at
its most pronounced in the parameter regime where the medium is very transparent while radiative
flux dominates convection. In this asymptotic regime, where in the limit the flame temperature
achieves its upper bound, we determine the law that describes the relation between the propagation
speed of the flame and the control parameters. Finally, we present strong numerical evidence for the
validity of the asymptotic analysis.

Key words. travelling wave, singular limit, asymptotic analysis, combustion, radiation, pre-
mixed flame, Eddington equation
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1. Introduction. Combustion is one of the important phenomena in our world.
It occurs in controlled applications such as rocket engines, energy plants, and cooking
on natural gas, as well as in forest fires and mine and tunnel accidents. Experiments
in combustion research are both difficult and expensive, which underlines the need for
good mathematical models and their analysis.

Combustion models are based on the incorporation of different physical and chem-
ical principles, expressed in the language of mathematics. Simplifying, sometimes
heuristic, assumptions are unavoidable to make mathematical treatment possible, be
it by numerical, formal asymptotic, or analytical methods. In the latter the modern
theory of infinite-dimensional dynamical systems and its application to free boundary
problems (FBPs) plays an important role. Such FBPs occur as various flame front
models. Asymptotic arguments are strongly intertwined with the derivation of such
FBPs from physical and chemical principles.

In this paper we study a thermodiffusive combustion model for premixed flames
propagating in reactive gaseous mixtures which contain inert dust that radiates ther-
mal energy. Radiative transfer of heat involves both emission and absorption of ra-
diation and may significantly influence the flame temperature, its propagation speed,
and the flammability of the medium itself. This is the so-called Joulin effect [13, 5]:
the propagation speed increases compared to a similar flame without radiation, and
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there is a temperature overshoot at the flame front. A radiative flame can be ignited
at a lower external temperature than a nonradiative flame.

The Joulin effect is at its most pronounced in the parameter regime where the
medium is very transparent while radiative flux dominates convection. In this asymp-
totic regime our goal is to determine the law that describes the relation between the
propagation speed of the flame and the control parameters.

In section 2 we will discuss the model in more detail. For now, we just highlight
the most important features. Following Buckmaster and Ludford [6, p. 218], we
formulate the thermodiffusive model with the thin reactive flame zone replaced by
a free boundary. At the free boundary the normal derivative of the (normalized)
temperature T is related to the reaction rate ω, which is given by an Arrhenius-type
law:

ω = A exp

(
− N

T ∗

)
.(1)

Here N is a (dimensionless) activation energy, T ∗ is the (dimensionless) temperature
at the free boundary, and A is a so-called preexponential constant, which will be
specified and discussed in detail later.

As a model for the radiative field, we take the Eddington equation, which contains
two important radiative parameters: the (dimensionless) opacity α and the Boltzmann
number β, a measure of the radiative energy flux compared to the convective flux.

Flames will be modelled as travelling waves propagating into the fresh region
where the fuel mass fraction and the temperature are constant, Y− for the fuel mass
fraction and T− for the temperature. A conservation law implies that the temperature
T+ far behind the flame front is given by

T+ = T− + Y−.

Depending on the opacity of the medium, radiation may significantly influence
the flame profile; see [12, 3, 5]. Radiative flames are characterized by an overshoot of
the flame temperature T ∗ as well as an enhancement in the burning rate and flame
speed μ, which is given by

μ =
ω

Y−
.(2)

In [4] it was proved that the flame temperature T ∗ is bounded by

T− + Y− < T ∗ < T− + 2Y−.

These bounds, which were already conjectured in [5], are achieved in certain limits.
The lower bound is in fact the flame temperature in the absence of radiation (the
“adiabatic” case), and it is approached as α → ∞ or β → 0 (see [4]). In the present
paper, however, we focus on the combined asymptotic regime

α → 0,(3a)

β →∞,(3b)

αβ → 0,(3c)

because in this regime the flame temperature approaches the upper bound, i.e.,

in the limit (3): T ∗ → T− + 2Y−,(4)
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and the radiative effects are most pronounced.
We are going to combine this asymptotic regime of the radiative parameters with

the high activation limit; i.e., we take

ε =
1

N

as the main small parameter. This is very much in the same spirit as the near-
equidiffusional flame (NEF) approximation that is frequently used in the absence of
radiative effects; see [15]. There the reciprocal ε of the activation energy is coupled
with the Lewis number. Here we couple ε with the radiative parameters.

Of primary physical interest are flames that, in this asymptotic regime, propagate
with a finite velocity μ. In view of (2), μ is proportional to the reaction rate ω given
in (1). Hence, in the high activation limit N = ε−1 → ∞, finite speeds of propagation
can be obtained, provided A is of the order exp(N/Tc), where Tc is a characteristic
temperature, to be fixed shortly. Indeed, since in this notation

μ =
1

Y−
exp

(
1

ε

(
1

Tc
− 1

T ∗

))
,(5)

the characteristic temperature Tc should equal the asymptotic value of the flame
temperature T ∗, and hence in view of (4) the only possibility is

Tc = T− + 2Y−.

This is the upper extreme of T ∗, and it stands in sharp contrast with the NEF
approach, where the suitable choice for Tc is the lower extreme, namely T− + Y−.

Since we want to look at the asymptotic regime where simultaneously the recip-
rocal ε of the activation energy tends to zero and the radiative parameters α and
β behave as given in (3), we have to couple α and β with ε. Limit condition (3c)
suggests it is convenient to introduce the combined parameter

χ
def
= αβ.

Our results show that an asymptotically finite propagation speed requires

χ = O(ε) and β−1 = O(ε1/2).(6)

Since α has a more direct physical meaning than χ, let us give an alternative formu-
lation of these conditions. For simplicity we assume that both α and β are (asymp-
totically) powers of ε:

α ∼ α0ε
a and β ∼ β0ε

−b.

The connection with (6) is made through

χ = αβ = α0β0ε
a−b ∼ χ0ε

a−b.

To obtain a finite flame velocity, one of the following four possibilities must hold
(see also Figure 1):

I: a = 3
2 and b = 1

2 ;

II: a > 3
2 and b = 1

2 ;

III: a = b + 1 and b > 1
2 ;

IV: a > b + 1 and b > 1
2 .
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Fig. 1. The asymptotic regime under consideration in terms of the exponents a and b. The
area below the dotted line corresponds to radiation-dominated flames (3). Finite wave speeds are
found in the shaded region and, more significantly, on its boundary.
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Fig. 2. In the combined asymptotic limit of high activation energy ε → 0 coupled with the
radiative parameters α = α0εa and β = β0ε−b with b ≥ 1

2
and a ≥ b + 1, the solution profile

separates into three spatial scales. The numerical solution shown is for ε = 0.001, α = 0.3ε3/2,
β = 0.3ε−1/2, and T− = Y− = 0.5. Notice that the scales are very different in the three regions
since on the left the variable is x̃ = αβ−1x, in the middle it is x, and on the right it is x̂ = αβx.

We remark that the special scaling α ∼ α0ε
3/2 and β ∼ β0ε

1/2 in case I was first
observed by Joulin and Eudier [13].

In the limit (3) the flame profile naturally separates into three spatial scales (see
also Figure 2):

x, x̂ = αβ x, x̃ =
α

β
x,(7)

where x is the spatial variable in a comoving frame (with speed μ). In section 3 we
will perform a matching analysis of these three scales. This enables us to derive a law
for the asymptotic speed μ of the front. In the four cases identified above, the speed
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law reads (with T+ = T− + Y−)

I: ln(μY−) = −
α0β0T

2
+

μ2
E1

(
Y−
T+

)
− μ2

β2
0T

7
+

E2

(
Y−
T+

)
;(8a)

II: ln(μY−) = − μ2

β2
0T

7
+

E2

(
Y−
T+

)
;(8b)

III: ln(μY−) = −
α0β0T

2
+

μ2
E1

(
Y−
T+

)
;(8c)

IV: ln(μY−) = 0.(8d)

Here

E1(s) =
8s + 9s2 + 16

3 s3 + 5
4s

4

(1 + s)2
,

E2(s) =
3s

16(1 + s)2
+

3

4(1 + s)2

∫ s

0

t dt

(1 + t)4 − 1
.

It is clear that case I is central to the whole analysis and the other cases are fairly
straightforward reductions. On the other hand, in the asymptotic analysis presented
in section 3 we will in some sense compute cases II and III and then combine them to
obtain case I. The last case, IV, is rather boring, since there is just one finite velocity,
namely μ = 1/Y−. Notice that this corresponds with the maximal flame speed for
any of the asymptotic regimes, i.e., μ ≤ 1/Y−.

When we compare the four cases we conclude that case I is by far the most
interesting, and we will explore it in section 4. Case II leads to a unique flame
speed for any set of parameter values, as does case IV (trivially). Case III represents
the classical bell-shaped curve of the flame speed versus a heat-loss parameter in
nonadiabatic flames (cf. [6, p. 44]).

We remark that in the whole asymptotic regime (3) the profile of any travelling
wave with finite speed of propagation (in the asymptotic limit ε → 0) decomposes
into the three different spatial scales (7). The asymptotic analysis in section 3 is thus
valid for the whole parameter regime of radiation-dominated flames. In Figure 1 this
corresponds to the area below the dotted line. The fact that finite wave speeds occur
in only part of this parameter regime is merely a consequence of the way the wave
speed is related to T ∗ and ε (i.e., via (5)).

The organization of the paper is as follows. In section 2 we introduce the math-
ematical model and make the reduction to a travelling wave problem. In section 3.1
we explain how the matched asymptotic analysis works, while in sections 3.2–3.4 the
calculations are performed; i.e., we analyze the profile in three different spatial scales
and match these to obtain the full asymptotic picture. This also leads us to the for-
mula for the speed law presented above. Finally, in section 4 we look in more detail
at the speed law, we compare with numerical computations, and we draw conclusions
about the bifurcation diagrams.

2. Models and equations.

2.1. Premixed flame propagation with constant opacity. We introduce
the thermodiffusive combustion model with constant density, simple chemistry, and
large activation energy for a premixed flame propagating in a reactive gaseous mixture.
We incorporate the flux of the thermal radiative field generated by the radiation of
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Y → Yf

T → Tf

Y ≡ 0Y > 0

T → Tb

z =
s(y
, t)

y

z

Fig. 3. The geometric setting of the propagating flame.

dust particles. The geometric setting is the following (see also Figure 3): the flame
propagates into the fresh region, where, far ahead of the flame front (z → −∞), the
fuel mass fraction Y and the temperature T are constant:

lim
z→−∞

Y (z) = Yf and lim
z→−∞

T (z) = Tf .

The region of the flame where the reaction occurs is infinitesimally thin and is located
at z = s(y, t), the free boundary of the problem, y being the lateral two-dimensional
variable. To the right of the free boundary all fuel has been burnt (Y (z) = 0 for
z ≥ s(y, t)), and far behind the flame front the temperature approaches the burnt
temperature Tb = limz→∞ T (z). The time-dependent system of equations for mass
fraction Y and temperature T reads

∂

∂t
(ρY ) −∇(ρD∇Y ) = 0, z < s(y, t); Y = 0, z ≥ s(y, t);(9a)

∂

∂t
(ρCpT ) − λΔT + ∇ · FR = 0, z 	= s(y, t).(9b)

The physical parameters are the diffusion constant D, the heat conduction coefficient
λ, the specific heat Cp, and the density ρ of the gas (part of which is fuel). The
divergence of the radiative energy flux FR appears as a loss term in the temperature
equation (9b). At the flame front, the jump conditions for the normal derivatives

ρD

[
∂Y

∂n

]
= ω(T ); λ

[
∂T

∂n

]
= −Qω(T ) at z = s(y, t),(9c)

are imposed to balance the heat flux coming out of the flame with the mass flux going
into the flame, the reaction heat Q being the proportionality constant between the
two. These fluxes are also coupled with the chemical reaction rate ω, for which we
take a simple Arrhenius law. In the free boundary approximation it reads

ω = A exp

(
− E

2RT ∗

)
.(9d)

Here T ∗ denotes the temperature at the flame front, and the other constants are the
gas constant R, the activation energy E, and the “preexponential” factor A. Note that
the factor 2 in the reaction rate is a consequence of the derivation of the free boundary
jump conditions from the reaction-diffusion formulation; see [8]. The appearance of
this factor follows from a detailed analysis of the flame in the thin reaction zone,
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which leads to (9c), where ω is the square root of the Arrhenius factor in the reaction
rate (cf. [8]).

As a law for the radiative flux FR we take the Eddington equation

−L2∇(∇ · FR) + 3FR + 4σsbL∇T 4 = 0,(9e)

where σsb is the Stefan–Boltzmann constant and L is the mean free path length of
the photons. In astrophysics the Eddington equation is a well-known approximation
to the radiative field [11, 17, 16]. It is a good approximation when scattering is nearly
isotropic, particularly in a one-dimensional setting. The travelling waves that we use
as a model for the propagating flames have indeed a one-dimensional structure. Since
the radiative transfer plays a central role in our model, we give some insight in the
derivation of the Eddington equation in Appendix A.

We emphasize that the Eddington equation models radiative transfer rather than
radiative heat losses. There is, however, an asymptotic limit, discussed in [4, 1], where
the radiative flux is given by ∇ · FR = 4σsb

L (T 4 − T 4
b ). This asymptotic limit thus

looks like heat loss to a reservoir held at T = Tb. It can be compared to the usual
radiative heat loss models (see [18, sect. 8.2], [6, p. 43]) that are based on the law
∇ · FR = 4σsb

L (T 4 − T 4
f ), which differs only in the temperature of the reservoir (Tf

instead of Tb).

2.2. Dimensionless variables. We now make the system of equations (9) di-
mensionless and scale out many of the parameters. We define nondimensional tem-
perature T̂ , radiative flux F̂R, time t̂, and spatial coordinate r̂ by comparison with
suitable chosen reference quantities indexed by s:

t̂ =
t

ts
, r̂ =

r

rs
, T̂ =

T

Ts
, F̂R =

FR

Fs
.

We choose the reference quantities such that they satisfy the following set of equations:

λts
ρCpr2

s

= 1,
4σsbT

4
s

Fs
= 1,

ρD

Brs
= 1,

λTs

QBrs
= 1,

that is,

Fs =
4σsbQ

4D4ρ4

λ4
, Ts =

QDρ

λ
, ts =

ρ3CpD
2

λB2
, rs =

Dρ

B
.

Here B is defined by

A = B exp

(
E

2RTC

)
,

where TC is the characteristic temperature. The necessity of this splitting of the
preexponential factor A has already been discussed in the introduction. In the high
activation energy asymptotics that we are going to employ it is widely used; see, for
example, [6, p. 17]. Note that the factor 2 in the reaction rate accounts for B2, rather
than B appearing in ts.

We have chosen not to rescale the mass fraction Y (which was already dimension-
less) because the above choices already simplify the equations as much as we want.
Although the additional scaling of Y that we have at our disposal is welcome from a
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mathematical point of view, using it obscures the physical role of the control parame-
ters Yf and/or Tf . Our motivation for the above choices is that we have at hand two
important radiative parameters, namely

α =
rs
L

=
Dρ

BL
,

which is a dimensionless opacity, and

β =
Fsts

ρCpTsrs
=

4σsbQ
3D4ρ4

λ4B
,

which is a measure of the radiative flux compared to the convective flux. Furthermore,
there is the Lewis number

Le =
r2
s

Dts
=

λ

ρCpD
,

a diffusion parameter. In the new variables the system becomes (where we drop the
hats from the notation)

Yt −
1

Le
ΔY = 0, z < s(y, t); Y ≡ 0, z ≥ s(y, t);

Tt − ΔT + β∇ · FR = 0, z 	= s(y, t);

−∇(∇ · FR) + 3α2FR + α∇T 4 = 0.

The jump conditions at the free boundary z = s(y, t) are[
∂Y

∂n

]
= Leω(T ) and

[
∂T

∂n

]
= −ω(T ) at z = s(y, t),

with nondimensional chemical reaction rate (still denoted by ω)

ω(T ) = exp

(
N

(
1

Tc
− 1

T

))
,

where

N =
E

2RTs

is the dimensionless activation energy, and Tc = TC/Ts is the dimensionless character-
istic temperature, the significance of which was already discussed in the introduction.

2.3. Planar travelling waves. We consider flames modelled by planar (one-
dimensional) travelling wave solutions, and we thus introduce the travelling wave
coordinate x = z+μt, describing waves travelling at speed μ to the left (into the fresh
region). In such a travelling wave the radiative flux has only one component, which
we rescale by β for convenience:

FR = (q/β, 0, 0).

Also, we introduce the new combined parameter

χ = αβ.
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Finally, we may reposition the free boundary at the origin. This leads to the system

μY ′ − 1

Le
Y ′′ = 0, x < 0; Y ≡ 0, x ≥ 0;(10a)

μT ′ − T ′′ + q′ = 0, x 	= 0;(10b)

−q′′ + 3α2q + χ(T 4)′ = 0, x ∈ R.(10c)

The jump conditions at x = 0 are

[Y ]= [T ] = [q] = [q′] = 0,(10d)

[T ′]= −ω(T ), [Y ′] = Le ω(T ),(10e)

and ω(T ) is still given by

ω(T ) = exp

(
N

(
1

Tc
− 1

T

))
.(10f)

Note that the equation (10c) for q implies the continuity of q and q′. The conditions
at infinity are

T (−∞) = T−, Y (−∞) = Y−, T (+∞) = T+, q(±∞) = 0,(10g)

in which Y− = Yf is the (dimensionless) “fresh” mass fraction, T− is the dimensionless
fresh temperature, and T+ is the dimensionless burnt temperature. In fact, direct
integration of the equations (see section 3) shows that

T+ = T− + Y−.(11)

This conservation law (cf. [3, p.221]) reflects the fact that physically only the con-
ditions in the fresh region can be controlled, whereas the temperature in the burnt
region is determined by the reaction. The conservation law relating the asymptotic
temperatures and fuel mass fraction is independent of the radiation parameters, so
that the temperature far behind the flame front is nothing but the adiabatic flame
temperature. (In absence of radiation effects, the temperature behind the flame is
uniform: T ≡ Tad = T− + Y−.) The limiting behavior for q at infinity means that
radiative equilibrium is achieved at infinity. This follows naturally from (10c); in fact,
q may be expressed in terms of T 4 by a convolution formula with a Green’s function.

From [4] we know the existence of a travelling wave solution

(Y (x), T (x), q(x), μ)

of the system (10) for all (positive) values of the parameters, provided the conservation
law (11) is satisfied. Every solution satisfies

T− ≤ T (x) ≤ T− + 2Y−.

It is remarkable that this bound is independent of the other parameters.
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3. Matched asymptotic analysis.

3.1. Setting the stage. In this section we evaluate the simultaneous asymptotic
regime of high activation energy and highly radiative flames. We thus introduce three
small parameters:

ε = N−1,(12a)

δ1 = χ = αβ,(12b)

δ2 = 3β−2.(12c)

We will couple δ1 and δ2 with ε in a moment.
First, we remark that the equation for Y decouples and can be solved explicitly:

Y (x) = Y−(1 − eLeμx), x < 0; Y (x) = 0, x ≥ 0.(13)

The jump condition for Y ′ leads to an expression for the flame velocity:

μ =
1

Y−
exp

(
N

(
1

Tc
− 1

T ∗

))
.(14)

Since the remaining problem for T , q, and μ is independent of the Lewis number Le,
it does not appear in the subsequent asymptotic analysis. However, it plays an im-
portant role in the stability analysis, which we discuss in a forthcoming paper [2].

Since Y is given by (13), the system (10a)–(10c) reduces to a set of two equations

T ′′ = μT ′ + q′,

q′′ = 3α2q + χ(T 4)′.

The first equation can be integrated once, but since T ′ is discontinuous at x = 0, the
integration cannot be across the origin. We therefore integrate starting from x = ∞
for positive x, while starting from x = −∞ for negative x. This leads to

T ′ = μ(T − T±) + q for x 	= 0.

Here and throughout the paper T± stands for T+ on the right (x > 0) and T− on the
left (x < 0). We note that we will frequently have to treat the equations separately
on the right and on the left.

Using the notation (12) the system reads

T ′ = μ(T − T±) + q,(15a)

q′′ = δ2
1δ2q + δ1(T

4)′,(15b)

with “boundary conditions” at infinity

T (−∞) = T−, T (+∞) = T+, q(±∞) = 0,

and at the origin T , q and q′ are continuous, while T ′ satisfies the jump condition

μ(T− − T+) = [T ′] = −μY−.(16)

The first equality stems from (15a), while the second equality is a consequence of the
jump conditions (10e) and the explicit expression (13) for Y . The two equalities in
(16) reflect the conservation law

T+ = T− + Y−.(17)
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Here and in what follows we assume that μ is order 1, so that we are dealing with
asymptotically finite speeds of propagation. The system (15) now naturally leads to
the expansion

T ∼ T0 + δ1T1 + δ2T2 + δ2
1T3 + δ1δ2T4 + δ2

2T5,

q ∼ q0 + δ1q1 + δ2q2 + δ2
1q3 + δ1δ2q4 + δ2

2q5.

It turns out to be unnecessary to compute the terms of order δ2
2 to completely deter-

mine the leading-order speed law. We will therefore not include those terms in the
asymptotic expressions.

In view of (14) our overriding interest is in the temperature at the free boundary.
Therefore we introduce the notation T ∗

i = Ti(0) for i = 0, 1, 2, and hence

T (0) = T ∗ ∼ T ∗
0 + δ1T

∗
1 + δ2T

∗
2 .

In this new notation the relation (14) between the flame velocity μ and the flame
temperature T ∗ reads

ln(μY−) ∼ 1

ε

(
1

Tc
− 1

T ∗
0 + δ1T ∗

1 + δ2T ∗
2

)
.(18)

There are now several straightforward remarks to make. For the terms on the right
and left to balance (i.e., for a finite propagation speed), one needs

Tc = T ∗
0 .

This reduces (18) to

ln(μY−) ∼ −δ1

ε

T ∗
1

(T ∗
0 )2

− δ2

ε

T ∗
2

(T ∗
0 )2

.(19)

We anticipate (see below) that T ∗
1 < 0 and T ∗

2 < 0, so the right-hand side of (19) is
always nonzero. It is now immediate that we need

δ1 = O(ε) and δ2 = O(ε).

If both δ1 � ε and δ2 � ε, then we just have μ = 1/Y−. If δ1 and/or δ2 are of
order ε, then the left- and right-hand sides balance and the results announced in the
introduction follow. Of course, they follow only after we have found the expressions
for T ∗

0 , T ∗
1 and T ∗

2 , which are (we will spend the rest of this section establishing this;
see (39), (44) and (45))

T ∗
0 = T+ + Y−;

T ∗
1 = −μ−2

(
8T 3

+Y− + 9T 2
+Y

2
− +

16

3
T+Y

3
− +

5

4
Y 4
−

)
;

T ∗
2 = − μ2

4T 5
+

∫ Y−/T+

0

t

(t + 1)4 − 1
dt− μ2Y−

16T 6
+

.

To calculate T ∗
0 , T ∗

1 , and T ∗
2 we have to match the profile that we obtain on the

scale x = O(1) to two larger scales. The scale at order x = O(1) we call the inner
region, x = O(δ−1

1 ) is the intermediate region, and x = O(δ−1
1 δ−1

2 ) is the outer region
(see also Figure 4). One may wonder why we do not have a scale x = O(δ−1

2 ). The
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T ∗

T−

T+

O(x) O(δ−1
1 x)O(δ−1

1 x)O(δ−1
1 δ−1

2 x)

Fig. 4. The three different scales of the asymptotic problem. The shape of the profiles shown of
course uses some a posteriori knowledge which will be collected in the matched asymptotic analysis
in sections 3.2–3.4.

reason is that the profile turns out to be flat at this scale, and therefore no useful
information can be extracted. Throughout we calculate with δ1 and δ2 as independent
quantities. That they are possibly of the same order in ε does not matter whatsoever
for the calculations.

In the intermediate and remote regions introduced above, the variables are

intermediate: x̂ = δ1x, T̂ (x̂) = T (x) and q̂(x̂) = q(x);

outer: x̃ = δ1δ2x, T̃ (x̃) = T (x) and q̃(x̃) = q(x).

(This means x̃ is a factor 3 larger than announced in the introduction, alas.) Although
we are eventually interested in the value of T at the origin in the inner region, we
start our analysis in the outer region, since there we know the boundary conditions:

lim
x̂→±∞

T̂ (x̂) = T± and lim
x̂→±∞

q̂(x̂) = 0.

We are thus going to work from the outside inward.

3.2. The outer region. The problem in the outer region is

δ1δ2T̃
′ = μ(T̃ − T±) + q̃,

δ2q̃
′′ = q̃ + (T̃ 4)′,

with boundary conditions

T̃ (±∞) = T± and q̃(±∞) = 0.

Of course these equations must be solved on the right and on the left separately,
because there are an intermediate as well as an inner region in between. At this outer
scale the expansion for T̃ is

T̃ = T̃0 + δ1T̃1 + δ2T̃2,

with an analogous expansion for q̃.
The problem for T̃0 and q̃0 is⎧⎪⎨

⎪⎩
0 = μ(T̃0 − T±) + q̃0,

0 = q̃0 + (T̃ 4
0 )′,

T̃0(±∞) = T±, q̃0(±∞) = 0.



420 VAN DEN BERG, BRAUNER, HULSHOF, AND LUNARDI

Combining the equations we get

T̃ ′
0 =

μ(T̃0 − T±)

4T̃ 3
0

, with T̃0(±∞) = T±.(20)

On the right, the solution is constant:

T̃0(x̃) = T+ and q̃0(x̃) = 0 for x̃ > 0.(21)

This follows from the fact that no exponentially growing terms can be present, since it
is impossible to match those to the next scale. This argument is silently used several
times in what follows.

On the left, we have a choice of the constant solution, an increasing solution and
a decreasing solution. As it turns out, the increasing solution will be the one we need.
It starts from T− at x̃ = −∞, and since equation (20) is autonomous, the solution
can be translated, and hence the value at the origin is a priori unknown. It has to
be determined by matching with the intermediate region. For now, we just introduce
the undetermined constant

T̃ ∗
0

def
= lim

x̃↑0
T̃0(x̃).

In order to match with the intermediate region we will need the asymptotic behavior
near the origin, which in terms of T̃ ∗

0 is given by

T̃0(x̃) ∼ T̃ ∗
0 +

μ(T̃ ∗
0 − T−)

4T̃ ∗3
0

x̃ as x̃ ↑ 0,(22)

and q̃0(x̃) = μ(T̃0(x̃) − T−) for x̃ < 0.
Next, the problem for T̃1 and q̃1 (at order δ1) is⎧⎪⎨

⎪⎩
0 = μT̃1 + q̃1,

0 = q̃1 + (4T̃ 3
0 T̃1)

′,

T̃1(±∞) = 0, q̃1(±∞) = 0.

The limit behavior as x̃ → ±∞ is trivial since T± are independent of δ1 (and δ2).
As it turns out, we need only the solution on the right. There T̃0 = T+, so the two
equations can be reduced to

T̃ ′
1 =

μT̃1

4T 3
+

, with T̃1(+∞) = 0,

and hence the solution is simply

T̃1 = q̃1 = 0 for x̃ > 0.(23)

Similarly, the problem for T̃2 and q̃2 is⎧⎪⎨
⎪⎩

0 = μT̃2 + q̃2,

q̃0 = q̃2 + (4T̃ 3
0 T̃2)

′,

T̃2(±∞) = 0, q̃2(±∞) = 0.

Again, we need only the solution on the right, which is simply

T̃2 = q̃2 = 0 for x̃ > 0.(24)
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3.3. The intermediate problem. At the intermediate scale the problem reads

δ1T̂
′ = μ(T̂ − T±) + q̂,

q̂′′ = δ2q̂ + (T̂ 4)′,

with boundary conditions for x̂ → −∞

T̂ (x̂) = T̃ ∗
0 + δ1O(x̂0) + δ2

[
μ(T̃∗

0 −T−)

4T̃∗3
0

x̂ + O(x̂0)
]

+ o(δ1, δ2);(25)

q̂(x̂) = −μ(T̃ ∗
0 − T−) + δ1O(x̂0) + δ2

[
−μ2(T̃∗

0 −T−)

4T̃∗3
0

x̂ + O(x̂0)
]

+ o(δ1, δ2);

and for x̂ → ∞

T̂ (x̂) = T+ + o(δ1, δ2);(26)

q̂(x̂) = o(δ1, δ2).

These boundary conditions are determined by the outer solution; namely, (22) leads
to (25), while (21), (23), and (24) imply (26). At the intermediate scale the expansion
for T̂ is

T̂ = T̂0 + δ1T̂1 + δ2T̂2,

with an analogous expansion for q̂.
The problem for T̂0 and q̂0 is⎧⎪⎪⎪⎨

⎪⎪⎪⎩
0 = μ(T̂0 − T±) + q̂0,

q̂′′0 = (T̂ 4
0 )′,

T̂0(−∞) = T̃ ∗
0 , q̂0(−∞) = −μ(T̃ ∗

0 − T−),

T̂0(+∞) = T+, q̂0(+∞) = 0.

The two equations can be combined into

μT̂ ′′
0 + (T̂ 4

0 )′ = 0.(27)

On the left, we integrate from x̂ = −∞ and obtain μT̂ ′
0 + T̂ 4

0 − T̃ ∗4
0 = 0. Since

T̂0(−∞) = T̃ ∗
0 the solution on the left is

T̂0(x̂) = T̃ ∗
0 and q̂0(x̂) = −μ(T̃ ∗

0 − T−) for x̂ < 0.(28)

On the right, integration of (27) from x̂ = ∞ gives

μT̂ ′
0 = −T̂ 4

0 + T 4
+, with T̂0(+∞) = T+.(29)

This situation is very similar to that in the left outer region. We have a choice of
the constant solution, an increasing solution and a decreasing solution, and it is the
latter that we need. Since the equation is autonomous, the solution can be translated,
and hence the value at the origin is a priori unknown. It has to be determined by
matching with the inner region. Again, we introduce an undetermined constant

T̂ ∗
0

def
= lim

x̂↓0
T̂0(x̂).
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For the asymptotic behavior near x̂ = 0 we get, using (27) and (29),

T̂0(x̂) ∼ T̂ ∗
0 − μ−1(T̂ ∗4

0 − T 4
+) x̂ + 2μ−2T̂ ∗3

0 (T̂ ∗4
0 − T 4

+) x̂2 as x̂ ↓ 0,(30)

and of course q̂0(x̂) = −μ(T̂0(x̂) − T+) for x̂ > 0.

The problem for T̂1 and q̂1 is⎧⎪⎨
⎪⎩

T̂ ′
0 = μT̂1 + q̂1,

q̂′′1 = (4T̂ 3
0 T̂1)

′,

T̂1(±∞) = 0, q̂1(±∞) = 0.

On the left, the equation reduces to μT̂ ′′
1 + 4T̃ ∗3

0 T̂ ′
1 = 0, and hence the solution is

constant. The value of the constant is unknown at this point. Since we shortly have
to match with the inner region, we use the undetermined limit value at the origin
T̂−

1
def
= T̂1(0

−) to denote the constant:

T̂1(x̂) = T̂−
1 and q̂1(x̂) = −μT̂−

1 for x̂ < 0.(31)

On the right, one obtains μT̂ ′′
1 = −4(T̂ 3

0 T̂1)
′ + T̂ ′′′

0 . Integrating from 0 to ∞ we
get, using (30) and setting T̂+

1
def
= T̂1(0

+),

T̂ ′
1(0

+) = −4μ−1T̂ ∗3
0 T̂+

1 + 4μ−3T̂ ∗3
0 (T̂ ∗4

0 − T 4
+).(32)

This equation expresses T̂ ′
1(0

+) in the unknown constant T̂+
1 . The behavior of q̂1 near

the origin is given by

q̂1(x̂) ∼ T̂ ′
0(0

+) − μT̂+
1 + (T̂ ′′

0 (0+) − μT̂ ′
1(0

+)) x̂

∼ −μ−1(T̂ ∗4
0 − T 4

+) − μT̂+
1 + 4T̂ ∗3

0 T̂+
1 x̂ as x̂ ↓ 0.

The problem for T̂2 and q̂2 is⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

0 = μT̂2 + q̂2,

q̂′′2 = q̂0 + (4T̂ 3
0 T̂2)

′,

T̂2(+∞) = 0, q̂2(+∞) = 0,

T̂ ′
2(−∞) =

μ(T̃∗
0 −T−)

4T̃∗3
0

, q̂′2(−∞) = −μ2(T̃∗
0 −T−)

4T̃∗3
0

.

On the left, the equation reduces to μT̂ ′′
2 = −4T̃ ∗3

0 T̂ ′
2 + μ(T̃ ∗

0 − T−), with solution,
setting as usual T̂−

2
def
= T̂2(0

−),

T̂2(x̂) = T̂−
2 +

μ(T̃∗
0 −T−)

4T̃∗3
0

x̂ and q̂2(x̂) = −μT̂−
2 − μ2(T̃∗

0 −T−)

4T̃∗3
0

x̂ for x̂ < 0.(33)

On the right, the equation becomes μT̂ ′′
2 = −(4T̂ 3

0 T̂2)
′ + μ(T̂0 − T+). Integrating

from 0 to ∞ we get, setting T̂+
2

def
= T̂2(0

+),

T̂ ′
2(0

+) = −4μ−1T̂ ∗3
0 T̂+

2 −
∫ ∞

0

[
T̂0(x̂) − T+

]
dx̂.(34a)
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The last integral involves the function T̂0(x̂), which we have not computed explicitly.
The integral can be simplified using equation (29) for T̂0:

I2
def
=

∫ ∞

0

[
T̂0(x̂) − T+

]
dx̂ = −

∫ T̂∗
0 −T+

0

T̂0 − T+

(T̂0 − T+)
′ d(T̂0 − T+)

=
μ

T 2
+

∫ T̂∗
0 /T+−1

0

t

(t + 1)4 − 1
dt.(34b)

We could compute the primitive, but that does not lead to more insight. Finally, the
behavior of q̂2 near the origin is given by

q̂2(x̂) ∼ −μT̂+
2 + [4T̂ ∗3

0 T̂+
2 + μI2] x̂ as x̂ ↓ 0.

3.4. The inner problem. We are getting to the core of the problem. In the
inner scale we want to solve

T ′ = μ(T − T±) + q,

q′′ = δ2
1δ2q + δ1(T

4)′.

The boundary conditions are for x → −∞:

T (x) = T̃ ∗
0 + δ1T̂

−
1 + δ2T̂

−
2 + δ2

1O(x0)

+ δ1δ2

[
μ(T̃∗

0 −T−)

4T̃∗3
0

x + O(x0)
]

+ o(δ2
1 , δ1δ2, δ2);(35)

q(x) = −μ(T̃ ∗
0 − T−) − δ1μT̂

−
1 − δ2μT̂

−
2 + δ2

1O(x0)

− δ1δ2

[
μ2(T̃∗

0 −T−)

4T̃∗3
0

x + O(x0)
]

+ o(δ2
1 , δ1δ2, δ2).

For x → ∞ the boundary conditions look complicated:

T (x) = T̂ ∗
0 + δ1[−μ−1(T̂ ∗4

0 − T 4
+)x + T̂+

1 ] + δ2T̂
+
2

+ δ2
1 T̂

∗3
0

[
2μ−2(T̂ ∗4

0 − T 4
+)x2 + 4{−μ−1T̂+

1 + μ−3(T̂ ∗4
0 − T 4

+)}x + O(x0)
]

+ δ1δ2[(−4μ−1T̂ ∗3
0 T̂+

2 − I2)x + O(x0)] + o(δ2
1 , δ1δ2, δ2);(36)

q(x) = −μ(T̂ ∗
0 − T+) + δ1[(T̂

∗4
0 − T 4

+)x− μ−1(T̂ ∗4
0 − T 4

+) − μT̂+
1 ] − δ2μT̂

+
2

+ δ2
1 [−2μ−1T̂ ∗3

0 (T̂ ∗4
0 − T 4

+)x2 + 4T̂ ∗3
0 T̂+

1 x + O(x0)]

+ δ1δ2[(4T̂
∗3
0 T̂+

2 + μI2)x + O(x0)] + o(δ2
1 , δ1δ2, δ2).

These conditions follow from the analysis of the intermediate region; e.g., (35) follows
from (28), (31), and (33), whereas (36) follows from (30), (32), and (34). Of course the
boundary conditions for T (x) and q(x) as x → ±∞ are related through the equation
q = T ′ − μ(T − T±). Furthermore, at the origin q, q′ and T are continuous.

We expand T as

T ∼ T0 + δ1T1 + δ2T2 + δ2
1T3 + δ1δ2T4,

and analogously for q. As mentioned before, terms of order δ2
2 do not need to be

computed. We now solve subsequently the equations at zeroth, first, and second
order in the small parameters δ1 and δ2.
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3.4.1. Zeroth order. The equations for T0 and q0 are⎧⎪⎪⎨
⎪⎪⎩

T ′
0 = μ(T0 − T±) + q0,

q′′0 = 0,

T0(−∞) = T̃ ∗
0 , q0(−∞) = −μ(T̃ ∗

0 − T−),

T0(+∞) = T̂ ∗
0 , q0(+∞) = −μ(T̂ ∗

0 − T+).

The functions T0, q0, and q′0 are continuous across the origin. This means that q0(x)
is constant, and on the right T0(x) is constant as well. This implies

T ∗
0

def
= T0(0) = T0(+∞) and q0(−∞) = q0(+∞),

and hence a comparison with the boundary conditions (and (17)) leads to

T ∗
0 = T̂ ∗

0 = T̃ ∗
0 + T+ − T− = T̃ ∗

0 + Y−,

that is,

T̂ ∗
0 = T ∗

0 ,(37a)

T̃ ∗
0 = T ∗

0 − Y−.(37b)

On the left, the solution T (x) decays exponentially to T̃ ∗
0 = T ∗

0 − Y−, so

T0(x) =

{
Y−(eμx − 1) + T ∗

0 for x < 0,
T ∗

0 for x ≥ 0,
and q0(x) = −μ(T ∗

0 − T+).

3.4.2. First order. The equations for T1 and q1 are (using (37a))⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

T ′
1 = μT1 + q1,

q′′1 = (T 4
0 )′,

T1(−∞) = T̂−
1 , q1(−∞) = −μT̂−

1 ,

T1(x) ∼ −μ−1(T ∗4
0 − T 4

+)x + T̂+
1 as x → ∞,

q1(x) ∼ (T ∗4
0 − T 4

+)x− μ−1(T ∗4
0 − T 4

+) − μT̂+
1 as x → ∞.

We start by integrating the second equation from x = −∞:

q′1(x) = T0(x)4 − T0(−∞)4 =

{
[Y−(eμx − 1) + T ∗

0 ]4 − [T ∗
0 − Y−]4, x < 0,

T ∗4
0 − [T ∗

0 − Y−]4, x ≥ 0.
(38)

We thus have, by comparing with the boundary conditions for q1 as x → ∞,

T ∗4
0 − T 4

+ = q′1(+∞) = T ∗4
0 − [T ∗

0 − Y−]4,

and hence

T ∗
0 = T+ + Y−.(39)

Although we now have an expression for T ∗
0 , we keep using the notation T ∗

0 in the
proceeding for notational convenience.

Another integration of (38) from x = 0 in both directions gives

q1(x) → q1(0) − I1 as x → −∞,

q1(x) = q1(0) + (T ∗4
0 − T 4

+)x for x ≥ 0,
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where

I1
def
=

∫ 0

−∞
(Y−e

μx + T+)4 − T 4
+ dx = μ−1

(
4T 3

+Y− + 3T 2
+Y

2
− + 4

3T+Y
3
− + 1

4Y
4
−
)
.(40)

To obtain T1(x) on the right we solve T ′
1 −μT1 = q1(0)+ (T ∗4

0 −T 4
+)x, and we obtain

T1(x) = T ∗
1 − μ−1(T ∗4

0 − T 4
+)x for x ≥ 0,(41)

where

T ∗
1

def
= T1(0) = −μ−1q1(0) − μ−2(T ∗4

0 − T 4
+).(42)

On the left, the limit behavior of T1 is (using (42))

lim
x→−∞

T1(x) = −μ−1q1(0) + μ−1I1 = T ∗
1 + μ−2(T ∗4

0 − T 4
+) + μ−1I1.(43)

Comparing (41) and (43) with the boundary conditions gives the values for T̂±
1 :

T̂−
1 = T ∗

1 + μ−2(T ∗4
0 − T 4

+) + μ−1I1,

T̂+
1 = T ∗

1 .

Next, the equation at order δ2 is⎧⎪⎪⎨
⎪⎪⎩

T ′
2 = μT2 + q2,

q′′2 = 0,

T2(−∞) = T̂−
2 , q2(−∞) = −μT̂−

2 ,

T2(+∞) = T̂+
2 , q2(+∞) = −μT̂+

2 .

Since the equations are satisfied on R the solution is constant, so T̂−
2 = T̂+

2 = T2(0)
and

T2(x) = T ∗
2

def
= T2(0) for all x ∈ R.

3.4.3. Second order. The equation at order δ2
1 reads⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

T ′
3 = μT3 + q3,

q′′3 = 4(T 3
0 T1)

′,

T ′
3(−∞) = 0, q′3(−∞) = 0,

T ′
3(x) ∼ 4μ−2T ∗3

0 (T ∗4
0 − T 4

+)x + 4μ−3T ∗3
0 (−μ2T ∗

1 + T ∗4
0 − T 4

+) as x → ∞,
q′3(x) ∼ −4μ−1T ∗3

0 (T ∗4
0 − T 4

+)x + 4T ∗3
0 T ∗

1 as x → ∞.

Integrating the second equation from x = −∞ gives

q′3(x) = 4T0(x)3T1(x) − 4T 3
+T1(−∞),

and by using (41) and (43) we obtain for x ≥ 0

q′3(x) = −4μ−1T ∗3
0 (T ∗4

0 − T 4
+)x + 4T ∗3

0 T ∗
1 − 4T 3

+[T ∗
1 + μ−2(T ∗4

0 − T 4
+) + μ−1I1].

Comparing this with the boundary conditions for q′3(x) as x → ∞ gives

T ∗
1 = −μ−1I1 − μ−2

(
(T+ + Y−)4 − T 4

+

)
,(44)
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with I1 given in (40).
The equation at order δ1δ2 reads (using (37b))⎧⎪⎪⎪⎨

⎪⎪⎪⎩

T ′
4 = μT4 + q4,

q′′4 = 4(T 3
0 T2)

′,

T ′
4(−∞) = μY−

4T 3
+
, q′4(−∞) = −μ2Y−

4T 3
+
,

T ′
4(+∞) = −4μ−1T ∗3

0 T ∗
2 − I2, q

′
4(+∞) = 4T ∗3

0 T ∗
2 + μI2.

Integrating the second equation from x = −∞ to x = ∞ gives

q′4(+∞) − q′4(−∞) = 4[T ∗3
0 − T 3

+]T ∗
2 .

On the other hand, the boundary conditions say that

q′4(+∞) − q′4(−∞) = 4T ∗3
0 T ∗

2 + μI2 +
μ2Y−
4T 3

+

.

Comparing these expressions for q′4(+∞) − q′4(−∞) gives

T ∗
2 = − μ

4T 3
+

I2 −
μ2Y−
16T 6

+

,(45)

with I2 given in (34b).

4. The asymptotic law for the velocity. In this section we take a look at
what the speed law tells us. We compare the asymptotic formula with numerical com-
putations for small finite values of ε. In particular, we calculate bifurcation diagrams
where the radiative parameters α and β are the continuation parameters. For this,
the most delicate case where both terms in the right-hand side of (8) are present is
the most interesting, i.e., (8a). In this limit the activation energy ε−1 is coupled with
the radiative parameters via

α = α0ε
3/2 and β = β0ε

−1/2.

The relation between the wave speed μ and α0 and β0 is thus

ln(μY−) +
α0β0T

2
+

μ2
E1

(
Y−
T+

)
+

μ2

β2
0T

7
+

E2

(
Y−
T+

)
= 0.(46)

We note that due to our choice not to scale Y− (see section 2.2) this expression should
be invariant under the scaling

Y− → sY−, T+ → sT+, μ → s−1μ, α0 → s1/2α0, β0 → s−9/2β0,

and it is indeed. Furthermore, if one would replace the nonlinear term T 4 in (10c) by
a linear approximation, then the solution can be (almost) explicitly calculated for any
α and β. In the limit under consideration, an expression for the speed law analogous
to (46) is found; see [2]. It is in that context that the stability investigation is being
pursued.

The functions E1 and E2 depend only on the quotient Y−/T+, and since T+ =
Y−+T−, they thus depend on the ratio of the fuel mass fraction and the dimensionless
temperature far ahead of the front. These two functions are plotted in Figure 5.
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Fig. 5. The functions E1

(Y−
T+

)
and E2

(Y−
T+

)
. Notice that T+ = T− + Y− and thus 0 <

Y−
T+

< 1.
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Fig. 6. The surface in (μ, α0, β0)-space describing the speed law.

For the subsequent numerical calculations we need to pick some values for the
parameters, and we choose Y− = T− = 0.5 and hence T+ = 1, throughout. The
remaining variables in (46) are thus α0, β0, and μ. We can plot the surface most
easily by writing α0 as a function of μ and β0, and the result is shown in Figure 6.
When we fix β0, then for small α0 there are two solutions which merge in a saddle-
node bifurcation as α0 increases. On the other hand, when we fix α0 and use β0

as the bifurcation parameter we see that the set of solutions forms an isola in the
(β0, μ)-plane. This means that β0 has to be carefully selected, not too large and not
too small, for a flame with finite propagation speed to exist. If α0 is too large, then
there are no travelling waves. The maximum value of α0 for which solutions exist can
be calculated to be

αmax =

√
T 3

+

2e3Y 2
−E

2
1E2

.

To compare the asymptotic analysis with numerical computations, we imple-
mented the travelling wave problem in the AUTO software package [7] for the con-
tinuation of solutions to ODEs. We treated the three different spatial regions with
some care to reflect their respective scaling with ε (or with δ1 and δ2 to be more
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0 0.5 1 1.5
0

1

2

α0

μ

Fig. 7. The solution curves in the (α0, μ)-plane for fixed β0 = 0.3 and ε = 1, 0.5, 0.2, 0.11, 0.1,
0.09, 0.08, 0.07, 0.05, 0.02, 0.01, 0.005, 0.001. As ε decreases, the solution curves shift inwards, i.e.,
the curve at the top corresponds to ε = 1.

0 1 2
0

1

2

β0

μ

Fig. 8. The solution curves in the (β0, μ)-plane for fixed α0 = 0.3 and the same values of ε as
in Figure 7. As ε decreases, the solution curves shift inward.

precise). We calculated the bifurcation diagram using both α0 and β0 as parameters
for a set of small values of ε. The resulting pictures are shown in Figures 7 and 8,
and one can see how the asymptotic regime is approached. For the (α0, μ)-diagram
the solution curves become S-shaped as ε decreases and then approach a bell-shaped
curve as ε → 0. In the (β0, μ)-diagram the solution branch curves back more and
more and finally closes on itself as ε approaches 0.

To be able to compare with the analytic expression in the limit ε → 0, we fixed
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Fig. 9. On the left is the (β0, μ) bifurcation diagram for ε = 0.001 and α0 = 0.01, 0.02, 0.05, 0.1,
0.15, 0.2, 0.25, 0.3, 0.35, 0.375. As α0 increases, the curves are moving inward. On the right are, for
the same set of α0 values, the contour lines of the surface (see Figure 6) describing the asymptotic
speed law as ε → 0.

ε = 0.001 and computed the (β0, μ)-diagram for various values of α0. The resulting
curves can thus be compared with the contour lines of the surface in Figure 6. The
numerical computations and the contour lines of the analytic expression are depicted
in Figure 9 side by side. The agreement is excellent.

5. Conclusion. In a thermodiffusive combustion model we have studied the
influence of radiation effects on propagating flames. In particular, radiative heat
transfer enhances the flame temperature and its propagation speed. This so-called
Joulin effect is at its most prominent when the medium is fairly transparent while the
radiative flux dominates convection. In this asymptotic regime the flame temperature
approaches its upper bound. We have determined the law that describes the relation
between the propagation speed of the flame and the control parameters.

We have arrived at distinguished limits in four cases. Case I exhibits a rich gamut
of bifurcation diagrams, such as S-curves in the (α0, μ)-plane and S-curves and isolas
in the (β, μ)-plane. Case III is nothing but the classical bell-shaped curve in nona-
diabatic flame models with heat loss. Cases II and IV correspond to straightforward
travelling wave dynamics, and we have derived the corresponding laws for the sake of
completeness.

Although the matched asymptotic analysis in this paper is fairly cumbersome, we
think it would be fruitful to continue the work in the future in two directions. First,
a less simplified Arrhenius reaction term will contain the mass fraction Y , leading to
a more involved system of three equations instead of two. Second, a more detailed
description of the radiative transfer than the Eddington equation can be taken into
account. We hope this paper will serve as a guideline for these extensions.

Appendix A. The Eddington equation.

We consider radiative transfer in a medium of opacity κ at temperature T . A
photon travelling at the light speed c covers a distance L = 1/κ (the mean free path
length of the photon) before being absorbed. Loosely speaking, L = ∞ (κ = 0)
corresponds to a transparent medium (optically thin limit) and L = 0 (κ = ∞) to an
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opaque medium (optically thick limit).
We start from the equation of radiative transfer for the radiative intensity I =

I(r, ν,Ω, t),

1

c

∂I

∂t
+ Ω · ∇I = κ(B(T, ν) − I).(47)

Here r is the position, t the time, ν the frequency, and Ω the unit vector in the
direction of propagation. The Planck distribution B governs the emission of light by
the medium and is given by

B(T, ν) =
2h

c2

ν3

ehν/(kT ) − 1
,

where k and h are the Boltzmann and Planck constants.
Since we would like to consider the total amount of radiation, we denote by 〈φ〉

the integral of a function φ over all frequencies and directions, rescaled with c:

〈φ〉 =
1

c

∫ ∞

0

∫
S2

φ(ν,Ω) dΩ dν.

Observing that

〈B(T )〉 = aT 4 with a =
8π5k4

15h3c3
,

one obtains from (47) the system [14, 9, 10]

∂ER

∂t
+ ∇ · FR = cκ(aT 4 − ER);(48a)

1

c

∂FR

∂t
+ c∇PR = −κFR,(48b)

for the radiative energy density ER, the radiative flux FR, and the radiative pressure
PR, defined by

ER = 〈I〉,
FR = c 〈Ω I〉,
PR = 〈Ω ⊗ Ω I〉.

The factor c is, as usual, included in the definition of FR so that it represents an
energy flux. Notice that equations (48) do not form a closed system. They are the
first members of a hierarchy, and the system still needs to be closed. If the emission
and absorption would be isotropic, then we would have

FR = 0,

and also

PR =
1

3
ERId.(49)

In the so-called P1-model, which leads to the Eddington equation, (49) is taken as a
closure assumption, so that (48) is replaced by

∂ER

∂t
+ ∇ · FR = cκ(aT 4 − ER);(50a)

1

c

∂FR

∂t
+

1

3
c∇ER = −κFR.(50b)
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Since photons travel at light speed we may assume that the radiation is approximately
at steady state at the typical time scale of a moving flame; i.e., the system (50) reduces
to

∇ · FR = cκ(aT 4 − ER);
1

3
c∇ER = −κFR.

It is not difficult to eliminate one of the unknowns, say ER, by differentiating the
first equation, whence

cκ∇ER = cκa∇(T 4) −∇(∇ · FR),

so that

∇(∇ · FR) = 4κσsb∇T 4 + 3κ2FR.(51)

Here σsb = 1
4ac is the Stefan–Boltzmann constant.

Equation (51) is the Eddington equation for the radiative flux FR, which is often
written as

−L2∇(∇ · FR) + 3FR + 4σsbL∇T 4 = 0.
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POROUS MEDIA UPSCALING IN TERMS OF MATHEMATICAL
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Abstract. In this work we revisit the meaning of the term “solution” with respect to a math-
ematical model representing a physical media upscaling system. A central aim is to combine the
science of mind with human mathematical ideas to solve real-world upscaling problems. We pro-
pose that in certain cases a (nonconventional) epistemic cognition solution (which assumes that the
model describes incomplete knowledge about nature and focuses on conceptual mechanisms and
thinking processes) can lead to a more realistic upscaling analysis than a (conventional) ontologic
approach (which assumes that the model describes nature as is and focuses on form manipulations).
In the present work we apply the epistemic cognition approach to the solution of the two-dimensional
bounded porous media upscaling problem. A formal framework is presented, and implementation
issues related to the epistemic cognition methodology are considered. Numerical experiments are pre-
sented involving effective conductivities in bounded two-dimensional spatial domains, and insight is
gained by comparing the results to existing ontologic upscaling solutions. In addition to dealing with
new and more general upscaling situations, the proposed approach can reproduce some well-known
results, a fact that further demonstrates its power and nesting capabilities.
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1. Introduction. In the porous media upscaling literature we find various on-
tologic techniques (analytical and numerical) for deriving useful values of effective
hydraulic conductivities; see Cushman (1986), Dagan (1989), King (1989), Deutsch
(1989), Rubin and Gomez-Hernandez (1990), Kitanidis (1990), Neuman and Orr
(1993), Christakos, Miller, and Oliver (1993), Christakos, Hristopulos, and Miller
(1995), Gelhar (1993), Wen and Gomez-Hernandez (1996), Hristopulos and Chris-
takos (1997a and b, 1999), Tartakovsky et al. (2002), and Rubin (2003). Underlying
these techniques is an ontologic view of reality, i.e., the organization inherent in the
mathematical upscaling model describes nature in a realistic manner and, thus, one
is focusing on form manipulations (e.g., extracting from the algebra effective conduc-
tivity values so that a system of equations is satisfied).

In an earlier work (Christakos, 2003), an alternative view to porous media upscal-
ing was proposed based on an epistemic cognition approach (ECA), i.e., it involved
the epistemically evaluated cognitive integration and processing of various forms of
knowledge. The main ECA ideas were developed by Christakos (1992), and since then
the approach has been applied with considerable success to a number of physical and
life systems (e.g., Christakos, 1998, 2000; Kolovos et al., 2002; D’Or and Bogaert,
2003; Serre et al., 2003a and b; Douaik et al., 2004; Christakos et al., 2005; Quilfen
et al., 2004; Parkin, Savelieva, and Serre, 2005). A recent review of the ECA con-
ceptual framework and its various natural applications can be found in Christakos
(2005) and references therein. A central aim of the ECA is to combine the science of
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mind with human mathematical ideas to solve real-world upscaling problems. One of
its basic premises is that an examination of what constitutes a “solution” produces
useful tools for physical modelling and suggests greater emphasis on sound scientific
reasoning over technical criteria. Unlike the ontologic approach, the ECA seeks ef-
fective conductivity values that satisfy a set of epistemic principles (e.g., maximum
information and adaptation) subject to all the core knowledge (including the system
of equations mentioned above) as well as the various site-specific (and often uncertain)
databases available. The term “epistemic” refers to the construction of models of the
processes (perceptual and intellectual) by which knowledge and understanding about
the physical system are achieved and communicated. In the ECA framework, the
contribution of “cognition” is to identify basic knowledge-assimilation and problem-
solving processes, which are then examined by means of the evaluative standards
of epistemology. The organization structure inherent in the mathematical upscaling
model expresses our incomplete knowledge about a real-world situation rather than
nature itself, and its solution is neither a fixed nor an absolute matter in the conven-
tional ontologic sense. Instead, an adequate solution is deeply rooted in the process
that is concerned with conceptual mechanisms at work—not merely on form manip-
ulations. A distinction is made, e.g., between the individual’s way of thinking of a
concept and its formal definition, thus distinguishing between mathematical upscaling
solution as a mental activity vs. as a formal system.

In this work we apply the ECA to study upscaling in two-dimensional (2-D)
porous media situations. A rigorous theoretical definition of the effective hydraulic
conductivity (EHC) is given in terms of (2.1) below, which involves stochastic expec-
tation operators. In practice, the EHC is often viewed as a representative conductivity
value (spatial average or global property) associated with a porous media scale that
is larger than the scale of the available data (Rubin, 2003). The implementation of
the ECA starts by distinguishing between two major categories of knowledge, viz.,
the general knowledge base (G-KB) and the specificatory knowledge base (S-KB).
The G-KB may include human constructs like physical equations and stochastic laws,
whereas the S-KB consists of site-specific details of the specified porous medium, in-
cluding exact (“hard”) and uncertain (“soft”) conductivity data and hydraulic head
observations, as well as several secondary information sources. Subsequently, the up-
scaling reasoning we adopt consists of the following stages (a detailed discussion of
the upscaling methodology and the relevant terminology can be found in Christakos,
2003):

1. Structural stage, which transforms the G-KB available into a set of equa-
tions in terms of the EHC probability density function (pdf) model, fG . This trans-
formation is achieved by means of a maximum expected information principle T ,
which can be expressed, e.g., in terms of the Shannon information measures, i.e., T :

maxfG log(f−1
G ).

2. Specificatory stage, which represents the S-KB in a form suitable for quan-
titative analysis and processing. Common forms include

(i) Exact numerical values across space (hard data).
(ii) Intervals, i.e., there is not a unique data value available at a spatial location

but, instead, an interval of possible values (uncertain data).
(iii) Probability functions, i.e., the datum at the specified location is in the form

of a probability distribution (uncertain data).
3. Integration stage, which blends the results of the previous stages by means

of an adaptation principle A, thus leading to the final solution in terms of an updated
pdf model, fK, for the EHC (the subscript K denotes the total KB, i.e., the syn-
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thesis of the G- and the S-KB). The A principle may involve Bayesian induc-
tion pdf, fK = fG(EHC|S), or stochastic deduction pdf, fK = fG(S → EHC) and
fK = fG(S ↔ EHC); the symbols “|,” “→,” and “↔” denote, respectively, Bayesian
conditional (probability of EHC given S), material conditional (probability that S
implies EHC), and material biconditional (probability that EHC if and only if S). In
this work, the Bayesian pdf will be used to calculate EHC values.

Hence, there are several possibilities regarding the mathematical formulation of
the ECA methodology 1–3 above. For details, see Christakos (2000, 2002, 2005). In
the next section a mathematical formulation of the ECA is considered in the 2-D
porous media upscaling context.

2. Formulation and solution of the 2-D upscaling problem. Consider the
case of effective flow in a 2-D porous domain that is sufficiently characterized by the
local mean value law (e.g., Rubin, 2003)

K(s)Ji(s) =

2∑
j=1

Keff,ijJi(s)(2.1)

(i = 1, 2), where s = (s1, s2) is the spatial location vector, the bar denotes stochas-
tic expectation, K(s) is the random conductivity field at point s, Ji(s) is the mean
hydraulic gradient in the i direction expressed in terms of boundary conditions (BC)
and conductivity statistics, and the Keff,ij are the EHC components sought, i.e.,
Keff = [Keff,11,Keff,12 = Keff,21,Keff,22]

T . The tensorial nature of EHC was
established by Tartakovsky et al. (2002). Depending on the porous media flow situ-
ation, (2.1) can be associated with different BC. Note that (2.1) constitutes a local
law. Nonlocal laws may be considered as well (e.g., for nonhomogeneous situations),
but this is beyond the scope of the present work. In addition to the G-KB or core
knowledge that is expressed, in this case, by (2.1), in real-world situations a set of
conductivity and/or hydraulic gradient measurements is also available at a number
of points in space. These measurements constitute site-specific knowledge S-KB that
must be also taken into account in deriving meaningful EHC Keff values.

When talking about “solving” (2.1) in the conventional ontologic sense, we mean
extracting from the algebra Keff,ij-values at specified points so that the system of
(2.1) is satisfied (e.g., Zhang, 2002). In a different spirit, the proposed ECA considers
that the intellectual content of a mathematical solution lies in its ideas—not in the
symbols themselves—and it seeks Keff,ij-values that satisfy a set of epistemic princi-
ples (T and A) subject to all the G-KB and S-KB available. In view of the total KB
considered above, K (= G ∪ S), we can write the stochastic moment equations (2.1)
as the following set of equations in a matrix form:⎡

⎢⎢⎢⎢⎢⎣

Λs1 [κζ1]
Λs1 [κζ2]

...
Λsn [κζ1]
Λsn [κζ2]

⎤
⎥⎥⎥⎥⎥⎦−

⎡
⎢⎢⎢⎢⎢⎣

Λs1 [ζ1] Λs1 [ζ2] 0
0 Λs1

[ζ1] Λs1
[ζ2]

...
...

...
Λsn [ζ1] Λsn [ζ2] 0

0 Λsn [ζ1] Λsn [ζ2]

⎤
⎥⎥⎥⎥⎥⎦
⎡
⎣ Keff,11

Keff,12

Keff,22

⎤
⎦ = 0,(2.2)

where Λsq [·] =
∫
dκdζ1dζ2fK[·] is an operator at each point sq (q = 1, . . . , n) of the

2-D porous domain; the κ and ζi denote K(s) and Ji(s) realizations, respectively;
and the fK = fK(μ,g) is the integrated pdf, in the sense that it integrates knowledge
about the random fields K(s) and Ji(s) (i = 1, 2).
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Table 2.1

The gβ functions selected.

β gβ(sq), q = 1, . . . , n
0 g0(sq) = 1 (normalization)
1 g1(sq) = κ
2 g2(sq) = ζ1

3 g3(sq) = ζ2

4 g4(sq) = [κ−K(sq)]2

5 g5(sq) = [ζ1 − J1(sq)]2

6 g6(sq) = [ζ2 − J2(sq)]2

7 g7(sq) = [κ−K(sq)][ζ1 − J1(sq)]

8 g8(sq) = [κ−K(sq)][ζ2 − J2(sq)]

9 g9(sq) = [ζ1 − J1(sq)][ζ2 − J2(sq)]

The shape of fK as well as the form of the vectors μ and g depend on the principles
(T ,A) and the KB (G,S) of the ECA methodology above (see introduction); e.g., an
important case is the exponential form

fK ∝ exp(μTg),(2.3)

which is a general result obtained if we assume a maximum expected information
principle (in the Shannon sense) in stage 1, an S-KB consisting of hard (exact) K(s)
and Ji(s) data in stage 2, and a Bayesian principle in stage 3. In the 2-D upscaling
situation of interest in this work, the g = {gβ ; β = 0, 1, . . . , N} is a vector of functions
of the K(s) and Ji(s) fields. For example, in Table 2.1 the gβ functions involve several
one-point and two-point spatial statistics so that N = 9. In particular, the functions
g1–g6 are associated with one-point statistics of K(s) and Ji(s) across space, and the
g7–g9 with the two-point statistics; the g0 is a normalization constraint (assuring that
a mathematically proper pdf fK is derived). Note that, in principle, any high-order or
multiple-point spatial statistics can be incorporated into the upscaling analysis above.

The vector μ = {μβ} consists of space-dependent coefficients μβ associated with g
at every point s. In this work these coefficients were calculated as follows: (i) A set
of initial values μ = μ(0) is selected. (ii) The Bayesian updating of the values of the
vector μ is expressed as

f(μ|S) ∝ f(S|μ)f(μ),(2.4)

where S denotes the K(s), Ji(s) data available, as mentioned above, f(S|μ) is the
likelihood function, and the prior pdf fG(μ) is assumed to have a known form (e.g.,
Gaussian). (iii) The initial μ = μ(0) values are updated using (2.4) and the Monte
Carlo Markov chain (MCMC), which assures fast convergence to the final μ = μ(f)

values. These values are substituted into (2.2) and (2.3), which are subsequently
solved for the EHC components, Keff,ij . Numerical solution of (2.2) at sq (q =
1, . . . , n) can be derived by means of a regression technique using the least square
criterion. In particular, the regression technique generates Keff values so that the
left-hand side of (2.2) is as close to zero as possible, in the least square sense, at every
point sq in the porous domain (see, also, Appendix A).

In the next section we discuss a few numerical experiments in an effort to gain
insight regarding the performance of the proposed upscaling technique in the case
of flow in 2-D bounded porous domains. The ECA is formulated in a way that can
reproduce the results obtained by well-established techniques, which are its limiting
cases (this property is sometimes called nesting).
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3. Numerical experiences.

3.1. Experiment 1. We consider the simple case of uniform flow in a 2-D spatial
domain A with an area of 12.8× 12.8 units2; Dirichlet boundary conditions (BC) are
assumed on all sides of A; and the distribution of the hydraulic head H(s) values at the
boundaries are shown in Figure 1a. Hydraulic head is related to hydraulic gradient
Ji(s) by Ji(s) = −∂H(s)/∂si (i = 1, 2). A hydraulic conductivity random field
K(s) is assumed to be lognormally distributed and exhibits a homogenous/isotropic
spatial variation characterized by an exponential covariance model with mean logK =
1 unit, variance σ2

log K = 0.1 unit2, and correlation range (length) εlog K = 0.8 units.
The above constitute part of the G-KB of the porous media flow situation under
consideration. Log-conductivity realizations were generated at n = 50 points sq =
(sq1, sq2), q = 1, . . . , 50, using the fast Fourier transform technique of Ruan and
McLaughlin (1998). One such realization is plotted in Figure 1b, and then used to
obtain hydraulic head values at the 50 points (Figure 1c) by means of a code based
on the finite difference technique for solving saturated 2-D flow equations discussed in
Wang and Anderson (1982). Using the K and H values at the 50 points as the S-KB,
the EHC values were derived by the proposed ECA upscaling technique as follows:

Keff = [Keff,11,Keff,12 = Keff,21,Keff,22]
T = [2.83, 0.22, 2.53]T(3.1)

for the entire (bounded) domain A. Note that in a bounded domain the EHC Keff

values generally depend on the distance from the boundaries, although for uniform
flow this dependency often dies out within a few correlation lengths from the bound-
aries. More specifically, the correlation length is defined as λ =

∫∞
0

dκρlog K(κ),
where ρlog K is the correlation function of logK. The λ assesses spatial dependence
between hydraulic conductivity values. In this simulation example, the random field
is exponentially correlated, in which case the correlation between two points dies out
at a distance equal to 4λ (see Figure 2). Note that a similar conclusion concerning
the effects of certain boundaries on EHC was presented in Paleologos, Neuman, and
Tartakovsky (1996).

3.2. Experiment 2. Assuming a lognormal and statistically isotropic 2-D con-
ductivity field in an unbounded (infinite) 2-D domain, a well-known upscaling result
(e.g., Zhang, 2002) leads to the following EHC values:

Kg = [Kg, 0,Kg]
T ,(3.2)

where Kg is the geometric mean of the K(s) field. Despite certain differences in
the underlying assumptions (e.g., bounded vs. unbounded domains), an attempt
was made to compare the Keff values obtained by the proposed upscaling technique
with the Kg result of (3.2). Naturally, such an attempt should require an adequate
simulation of the unboundedness condition of the Kg result, at least approximately.
More specifically, in Figure 3 we plot the Keff,11 and Keff,22 values obtained by the
proposed method assuming a series of 2-D conductivity K(s) realizations (the Keff,12

values are very close to zero in every realization and, thus, they are not plotted). Two
cases were considered in this figure:

(i) Boundary effects were included, in the sense that the Keff,11 and Keff,22

values were the outcomes of the upscaling technique in Experiment 1 above (K and H
values were used at points sq located throughout the bounded domain A in Figure 1a).

(ii) Approximately no boundary effects were assumed, in the sense that K and H
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(a)

(b)

(c)

Fig. 1. (a) Domain geometry and BC (hydraulic head distributions), (b) log-hydraulic conduc-
tivity realization, and (c) hydraulic head map.
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Fig. 2. Conductivity correlation ρlog K as a function of spatial distance (in λ units).

values were used at points sq located only within a small subdomain of A and away
from its boundaries (in this way the boundary effects were somehow reduced and,
hence, a better simulation of the unboundedness condition of the Kg result was
achieved).

As should be expected, the Keff,11 and Keff,22 values differ for cases (i) and (ii)
above. Note that the Keff,11 and Keff,22 values obtained in case (ii) are, in general,
closer to the Kg values than the Keff,11 and Keff,22 values of case (i).

3.3. Experiment 3. Some more numerical tests concerning the (approximately)
unbounded case (ii) of Experiment 2 above were considered here. More specifically,
in Figure 4 we plot the Keff values as a function of the logK variance σ2

log K . The
calculated Keff,11 and Keff,22 values differ from Kg (since the assumptions of the
unbounded Kg case do not exactly apply in the specific experimental setup consid-
ered here). Generally, the Keff,11 and Keff,22 values seem to follow the Kg variation,
whereas the Keff,12 values fluctuate around zero. Notice that as the σ2

log K increases,
the Keff,11, Keff,22 show larger fluctuations around Kg and the Keff,12 larger fluctu-
ations around zero. We subsequently plot the Keff as a function of εlog K (Figure 5).
For the specific 2-D situation, the calculated Keff values are very close to the Kg

values for εlog K < 1; the Keff values fluctuate considerably around the Kg values for
larger εlog K values (which may be due to the small size of the domain considered).
If the εlog K is too large, the EHC calculation will seriously depend on the locations
from the boundaries. Furthermore, as the εlog K increases considerably, the EHC field
is no longer isotropic (Keff,11 exhibits a decreasing trend and Keff,22 an increasing
trend in Figure 5a). In Figure 6 we plot the Keff components vs. the number n of
points considered within the domain A. As might have been expected, after a certain
number, n = n∗, further increasing the number n has no significant effect on the
magnitude of the fluctuations of the EHC values around the values of the Kg result.

Several other cases can be handled by the proposed upscaling methodology. For
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(a)

(b)

Fig. 3. Realization number vs. (a) calculated Keff,11, and (b) calculated Keff,22; with bound-
ary effects and without boundary effects. The corresponding Kg result is shown as a dashed line for
comparison.

illustration purposes, another numerical experiment with a different feature (pumping
well) from the ones above is investigated next.

3.4. Experiment 4. In this experiment, the same arrangement as in Experi-
ment 1 was considered with regards to the 2-D spatial domain A, the BC, and the
hydraulic conductivity random field characteristics. However, in the present case
a pumping well is assumed in the center of the domain A with a pumping rate of
100 units/time. Under these conditions, in Figure 7 we plot the log-conductivity field
(Kg = 2.73) and the corresponding hydraulic head map. In this case, the calcu-
lated EHC components were found by the proposed upscaling technique, as follows:
Keff = [Keff,11,Keff,12,Keff,22]

T = [2.87, 0.20, 2.83]T . We would like to conclude
by noticing that a variety of different flow situations, BC, domain geometries, etc. can
be studied by means of the upscaling technique. The discussion of some of these cases
will be the topic of a future publication.
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(a)

(b)

Fig. 4. LogK variance σ2
log K vs. (a) calculated Keff,ii (i = 1, 2), and (b) calculated Keff,12.

The corresponding Kg result is shown as a dashed line for comparison.

4. Summary. In this short paper, a new epistemic cognition approach was used
to formulate and solve a bounded 2-D porous media upscaling problem. An ECA
generates mind-based mathematical solutions of the upscaling problem, which do
not rely solely on symbolic logic and form manipulations; the cognitive processes in-
volved in the creation and conceptualization of the mathematical solutions are also
considered. A systematic stochastic upscaling framework was presented and prac-
tical implementation issues were considered. Numerical experiments were discussed
involving effective conductivities in 2-D domains, the effects of important flow pa-
rameters in the upscaling solution were examined, and comparisons were made with
the results of previous ontologic upscaling solutions. Note that, in addition to deal-
ing with new and more general porous media upscaling situations, the proposed ap-
proach can reproduce some well-known results, a fact that further demonstrates the
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(a)

(b)

Fig. 5. K correlation length εlog K vs. (a) calculated Keff,ii (i = 1, 2), and (b) calculated
Keff,12. The corresponding Kg result is shown as a dashed line for comparison.

power of the ECA approach. By way of a summary, the ECA-based upscaling re-
sults obtained so far are promising, in which case further theoretical and application
issues concerning the proposed upscaling technique will be the subject of future re-
search.

Appendix A.

A.1. The regression technique produces an EHC solution that satisfies (2.2) in
the least square sense, at every point of the porous domain. The so-derived solution
of (2.2) will have the form

Keff = (XTX)−1XTY,(A.1)
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(a)

(b)

Fig. 6. Number n of points vs. (a) calculated Keff,ii (i = 1, 2), and (b) calculated Keff,12;
the corresponding Kg result is shown as a dashed line for comparison.

where

Y =

⎡
⎢⎢⎢⎢⎢⎣

Λs1 [κζ1]
Λs1 [κζ2]

...
Λsn [κζ1]
Λsn [κζ2]

⎤
⎥⎥⎥⎥⎥⎦, X =

⎡
⎢⎢⎢⎢⎢⎣

Λs1 [ζ1] Λs1
[ζ2] 0

0 Λs1
[ζ1] Λs1

[ζ2]
...

...
...

Λsn [ζ1] Λsn [ζ2] 0
0 Λsn [ζ1] Λsn [ζ2]

⎤
⎥⎥⎥⎥⎥⎦, and Keff =

⎡
⎣ Keff,11

Keff,12

Keff,22

⎤
⎦.

Since the form (A.1) may involve numerical instabilities, it is recommended to reduce
it by applying the QR decomposition on the matrix X. The regression technique
has been used in a variety of problems (see, e.g., White and Horne, 1987; Wen and
Gomez-Hernandez, 1996).

A.2. Note that one set of EHC values is obtained from (2.2) or (A.1) that rep-
resents the EHC of the entire field. If, on the other hand, the EHC Keff values at
every point sq (q = 1, . . . , n) within the porous domain are sought, the easiest way to
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(a)

(b)

Fig. 7. (a) Log-hydraulic conductivity realization; and (b) hydraulic head map.

do this is to impose a constraint on (2.2); e.g., by solving (2.2) with the constraint

{
Λsq [Keff,11ζ1 + Keff,12ζ2 − κζ1] = 0,

Λsq [Keff,21ζ1 + Keff,22ζ2 − κζ2] = 0
(A.2)

at every point sq, the resulting EHC values will be the local EHC values, Keff,ij(sq),
at each point sq. In this case, if a single EHC value for the entire domain A is
needed, one should calculate the arithmetic mean of the EHC over all n points, i.e.,
Keff,ij = n−1

∑n
q=1 Keff,ij(sq). Assuming a homogeneous conductivity field K(s),

the arithmetic mean Keff,ij and the previously obtained solution Keff,ij of (2.2)
should be very close to each other.
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Abstract. This is the second paper in the series A Mixture Theory for the Genesis of Residual
Stresses in Growing Tissues. While the first paper in the series elaborated a general formulation
for such a theory, the present paper develops a simple biphasic model of residual stress evolution
in a growing multicell spheroid comprising a linear-elastic cellular phase and an inviscid interstitial
fluid. Both isotropic and anisotropic growth are considered in this study, highlighting the necessity
to incorporate stress relaxation in order to predict an evolution of stresses over a period of growth.

The solutions to the biphasic equations are juxtaposed with the corresponding solutions to the
single phase equations, illuminating the approximate nature of the single phase formulation for
growing tissues. Moreover, the analysis demonstrates the significance of both interphase drag and
the stress-relaxation characteristics of the solid phase in distinguishing between the single phase and
multiphase paradigms.
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1. Introduction. The genesis of growth-induced tissue stresses is an important
consideration in the study of tumor growth. The experimental studies by Helmlinger
et al. [15] on the growth of multicell tumor spheroids in agarose gels, for example,
have demonstrated that “solid stress controls tumour growth at both the macroscopic
and cellular levels, and thus influences tumour progression and delivery of therapeu-
tic agents.” Indeed, an increasing gel stiffness gave rise to smaller equilibrium-size
spheroids, in addition to decreasing percentages of proliferating and apoptotic cells
and increasing cellular densities. Later experiments by Koike et al. [20] illustrated
that solid stress can facilitate the formation of spheroids in cell lines that do not
form spheroids in free suspension, in addition to inhibiting their growth. Relieving
this stress contributed to a loss of spheroid integrity. Furthermore, the experiments
suggested that solid stress increases the synthesis of the extracellular matrix macro-
molecule, hyaluronan, by tumor cells.

While these two noteworthy experiments varied solid stress by changing the ex-
ternal hydrostatic pressure applied to the tumor spheroids at their outer boundaries,
it is important to recognize that any residual stresses generated within the tumor
either add to or relieve these externally applied stresses to increase or decrease the
local state of stress. For this reason, an understanding of the evolution of residual
stresses in growing tumors is of crucial importance.

Nevertheless, very few mathematical models of residual stress evolution in growing
tissues have been proposed. Since residual stresses arise from incompatible growth,
a mathematical model of such a phenomenon must consider the tissue’s solid charac-
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teristics via either an elastic or a viscoelastic constitutive law. Significantly, the vast
majority of mechanical models of tumor growth employ fluid constitutive laws [5]
which either incorporate [9, 11] or neglect [10, 24, 22] viscosity.

The first model to consider an evolution of residual stresses over a period of growth
was that proposed by Jones et al. [16], who considered nutrient-regulated isotropic
growth of a linear-elastic tissue—a model which highlighted the necessity to incor-
porate stress relaxation in the tissue’s constitutive law in order to maintain bound-
edness of the solutions. The two models of tumor residual stress evolution proposed
since that time have incorporated stress relaxation by various means—MacArthur and
Please [21] by viscoelasticity and Araujo and McElwain [6] by anisotropic growth.

Nevertheless, all three mathematical models of residual stress evolution in grow-
ing tissues [6, 16, 21] are single phase models. The single phase approach consists of
incorporating a source term in the balance of mass and a growth-expansion term in
the constitutive equation, so that tissue mass is “created” in regions of cell prolifera-
tion and “destroyed” in regions of cell death. While this simple approach represents
an excellent tool for studying the effects of the spatial nonuniformity of the growth
process and is well suited to incorporating phenomenological relationships between
growth and factors such as nutrient concentration and stress-modulated cell prolifer-
ation, it must be conceded that the behavior of any extracellular phases, such as the
interstitial fluid, cannot be studied using this technique. In addition, a more serious
shortcoming of this approach lies in the fact that the “Darcy-like” drag terms are
neglected from the equilibrium equation, giving rise to an approximate form of the
linear momentum equation which may not be valid in all situations.

The present paper is the second in a series of papers which studies the evolution
of residual stresses using multiphase mechanics. The preceding paper in this series [1]
(hereafter referred to as “Paper 1”) presented a general method of deducing consti-
tutive equations for multiphase materials which undergo a combination of continuous
volumetric expansion and interphase mass exchange—a combination which reflects
the process of biological growth. In this second paper, the simplest set of multiphase
equations which allow residual stresses to develop—the biphasic equations for a linear
elastic solid and an inviscid fluid—are solved in spherical polar coordinates in order
to model the growth-induced stresses in a multicell spheroid.

Following the framework presented in Paper 1, a number of simplifying assump-
tions are made—constant volume fractions, intrinsically incompressible phases with
equal densities, and a linear-elastic solid phase (regularized by anisotropic growth)
with an inviscid fluid phase. While the assumption of constant volume fractions pre-
cludes a study of necrosis formation due to the comparatively high fluid content in
such regions, the study of nonnecrotic tumors is not without basis. The experiments
of Sutherland and Durand [27] demonstrated that multicell spheroids could reach a
dormant size without central necrosis, suggesting an alternative cell loss mechanism
in these tumors. It was the work of Kerr [18] and Kerr, Wyllie, and Currie [19] which
demonstrated that apoptosis can always be detected in malignant neoplasms. The
mathematical model by McElwain and Morris [23], which was proposed in response
to these important experimental findings, was the first to study a tumor’s arrival at a
dormant state by incorporating apoptosis as a cell loss mechanism and is an antecedent
to much of the subsequent mathematical literature relating to tumor development. It
is the purpose of this paper to compare the solutions to these biphasic equations with
their single phase counterparts, demonstrating the approximate nature of the single
phase formulation for the stresses within the solid phase and illustrating the behavior
of the interstitial fluid.
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In section 2, the modelling equations underpinning the tissue’s growth profile and
the associated stress development are presented, with the solution procedure for this
suite of equations being given in section 2.2. Numerical solutions are then presented in
section 3 and are discussed in section 4. Section 5 presents some concluding remarks
and outlines various avenues for future work in this important area of solid tumor
growth research.

2. The mathematical model. A spherically symmetric multicell spheroid sur-
rounded by a nutrient-rich medium and consisting exclusively of proliferating/apop-
totic cells (the solid phase, with volume fraction φs) and interstitial fluid (the fluid
phase, with volume fraction φf = 1 − φs) is considered. Both phases are assumed to
be intrinsically incompressible with density ρ on account of the high water content
of both phases. Following Jones et al. [16] and Araujo and McElwain [6], it is as-
sumed that the growth of the spheroid is dependent upon the concentration, c, of a
key nutrient which is supplied from the well-stirred surrounding medium and diffuses
inwards. Assuming the nutrient diffusion to be very rapid, with constant diffusion
coefficient, Dc, and the consumption of oxygen to be proportional to the local nutri-
ent concentration, with proportionality constant, m, the nutrient profile maintains a
pseudosteady-state distribution which satisfies

Dc∇2c−mc = 0.(2.1)

Further, the rate of mass supply to the solid (cellular) phase, Γs, due to the uptake
of interstitial fluid during cell proliferation and growth is assumed to be proportional
to both the nutrient concentration and the cell density (φsρ). Central to the devel-
opment of the biphasic equations presented in Paper 1 was the assumption that the
volume fractions of the two phases were constants, thereby precluding a consideration
of necrotic regions which are characterized by a significantly higher porosity than
the “live” tumor regions. For this reason, cell death is assumed to occur by apop-
tosis alone, with the associated rate of mass conversion to the fluid phase assumed
proportional to the cell density. Hence,

Γs = αφsρc− kφsρ,(2.2)

where α and k are the rate constants associated with cell proliferation and cell death,
respectively. Now the balance of mass becomes

∇ · vs =
Γs

φsρ
= αc− k,(2.3)

where vs is the velocity of the solid phase. Recall from Paper 1 that the constitutive
equation for the solid phase in the most general case of anisotropic growth is given by

DsEs

Dt
= ∇ · vsΩ +

1

2μ

(
Dsσs

Dt
− 1

3

Ds

Dt
(trσs)I + φs

DsP

Dt
(3Ω − I)

)
,(2.4)

where Es is the infinitesimal strain tensor, σs is the Cauchy stress tensor, P is the
hydrostatic pressure arising due to the intrinsic incompressibility of the phases, I is the
identity tensor, and DsEs

Dt is the material derivative of the strain tensor. Note that the
corotational (or Jaumann [8, 17]) derivative of the constitutive equation has reduced
to the material derivative in this case because of the assumed spherical symmetry.
Note also that (2.4) is a rearrangement of (8.24) in Paper 1 to make the strain tensor
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the subject of the equation, rather than the stress tensor. In addition, the anisotropy
tensor has the form

Ω =

⎡
⎣γr 0 0

0 γθ 0
0 0 γφ

⎤
⎦,(2.5)

where spherical symmetry requires that γθ = γφ. Thus,

γr = 1 − 2γθ,(2.6)

since the trace of the anisotropy tensor must be unity (see [2]). Araujo and McEl-
wain [6] have shown that, in order to incorporate stress relaxation via anisotropic
growth, the anisotropic strain multipliers, γr and γθ, must be functions of the dif-
ference between the radial and circumferential stress components, βs = σsr − σsθ.
Furthermore, a different set of anisotropic multipliers should apply to the two sepa-
rate growth processes of cell proliferation (represented by αc in (2.3)) and apoptotic
cell death (represented by k in (2.3)) since volumetric expansion should occur pref-
erentially in the direction of least compressive stress, while volumetric contraction
should occur preferentially in the direction of greatest compressive stress. Thus, the
constitutive equation (2.4) becomes

DsEs

Dt
= αcΩη − kΩζ +

1

2μ

(
Dsσs

Dt
− 1

3

Ds

Dt
(trσs)I + φs

DsP

Dt
(3Ωp − I)

)
,(2.7)

where

Ωη =

⎡
⎣ηr 0 0

0 ηθ 0
0 0 ηφ

⎤
⎦(2.8)

represents the anisotropy tensor for the process of cell proliferation, and

Ωζ =

⎡
⎣ζr 0 0

0 ζθ 0
0 0 ζφ

⎤
⎦(2.9)

represents the anisotropy tensor for the process of cell death. Moreover, since P is
a hydrostatic pressure acting on the mixture as a whole as a result of the intrinsic
incompressibility of the phases, which is distributed to each phase by its volume
fraction, the anisotropy tensor associated with its convected time derivative, Ωp,
should assume the isotropic value of

Ωp =

⎡
⎣ 1

3 0 0
0 1

3 0
0 0 1

3

⎤
⎦ .(2.10)

Following earlier work [6], the forms to be taken for these anisotropic strain multipliers
in the present paper will be

ηr =
1

2
+

1

2

(
λβs + tanh−1

(
−1

3

))
(2.11)
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and

ζr =
1

2
− 1

2

(
λβs + tanh−1

(
1

3

))
.(2.12)

These relations, depicted in Figure 1, allow the multipliers to adopt their isotropic
values of 1

3 when βs = σsr−σsθ = 0, while asymptotically approaching their maximum
and minimum values of unity and zero, respectively, as βs becomes large. Moreover,
the stress-relaxation parameter, λ, reflects how readily the anisotropic nature of the
growth process responds to the prevailing stresses. (Note that by the convention
adopted here, compressive stresses are negative.)
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Fig. 1. The dependence of the growth-strain multipliers on β (λ = 3).

Noting that, in spherical polar coordinates,

DsEs

Dt
=

⎡
⎣∂vs

∂r 0 0
0 vs

r 0
0 0 vs

r

⎤
⎦,(2.13)
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where vs is the radial component of vs, the radial component of (2.7) is

∂vs
∂r

= αcηr − kζr +
1

2μ

Ds

Dt

(
σsr −

1

3
(σsr + 2σsθ)

)

= αcηr − kζr +
1

3μ

Dsβs

Dt
.(2.14)

This equation may also be deduced from a consideration of the circumferential com-
ponent of (2.7) by recalling that ηθ = 1

2 (1 − ηr). In the special case of isotropic
growth, where ηr = ζr = 1

3 , (2.14) reduces to

∂vs
∂r

=
vs
r

+
1

2μ

Dsβs

Dt
.(2.15)

Combining (2.1) through (2.14) with the remaining biphasic equations presented in
Paper 1 gives rise to the following suite of modelling equations:
Diffusion of nutrient:

Dc∇2c−mc = 0.(2.16)

Balance of mass:

∇ · vs = αc− k,(2.17)

ρ
Dsφs

Dt
= 0,(2.18)

∇ · (φsvs + φfvf ) = 0.(2.19)

Constitutive equations:

∂vs
∂r

= αcηr − kζr +
1

3μ

Dsβs

Dt
,(2.20)

where

βs = σsr − σsθ,(2.21)

with

ηr =
1

2
+

1

2

(
λβs + tanh−1

(
−1

3

))

and

ζr =
1

2
− 1

2

(
λβs + tanh−1

(
1

3

))
,

for anisotropic growth and ηr = ζr = 1
3 for isotropic growth,

σf = −φfP I.(2.22)
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Momentum equations:

∇ · σs + κ(vf − vs) = 0,(2.23)

φf∇P = −κ(vf − vs).(2.24)

The momentum equations (2.23) and (2.24) may also be combined to give a single
equation relating the stress tensor of the solid phase, σs, to the hydrostatic pressure,
P ,

∇ · σs = φf∇P.(2.25)

2.1. Nondimensionalization. The following dimensionless quantities are de-
fined:

r̂ =
r

L
, t̂ =

t

T
, ĉ =

c

C0
, v̂ =

vT

L
, σ̂ =

σ

2μ
, P̂ =

P

2μ
,

where C0 is the nutrient concentration at the tumor edge (assumed constant), with
L =

√
Dc
m and T = 1

αC0
. This transformation allows the modelling equations to be

expressed in spherical polar coordinates in the following dimensionless forms:
Nutrient profile:

1

r2

∂

∂r

(
r2 ∂c

∂r

)
− c = 0.(2.26)

Balance of mass:

1

r2

∂

∂r

(
r2vs

)
= c− ε,(2.27)

1

r2

∂

∂r

(
r2φsvs + r2φfvf

)
= 0.(2.28)

Constitutive equations:

∂vs
∂r

= cηr − εζr +
1

3μ

Dsβs

Dt
,(2.29)

σfr = σfθ = −φfP.(2.30)

Momentum equations:

∂σsr

∂r
+

2βs

r
+ χ (vf − vs) = 0,(2.31)

φf
∂P

∂r
= −χ (vf − vs) ,(2.32)

or

∂

∂r
(σsr + φfP ) +

2βs

r
= 0,(2.33)

where the hat notation has been omitted for clarity, with ε = k
αC0

and χ = κL2

2μT . Thus,
the parameter ε represents the rate of cell death as a proportion of the maximum
possible growth rate. For a given diffusion length scale and tumor doubling time,
the parameter χ gives a measure of the relative importance of interphase drag in
comparison with the elasticity of the tissue.

The suite of equations (2.26) through (2.33) is now to be solved subject to the
boundary conditions vs = 0 and c finite at r = 0, and σfr = σfθ = P = 0 and c = 1
at the tumor’s outer boundary.
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2.2. Solution procedure. Let r = a(t) denote the position of the tumor bound-
ary at time t, so that the tumor occupies the region 0 ≤ r ≤ a(t). Now, integrating
(2.26) subject to the boundary conditions c(a, t) = 1 and finite c at r = 0 gives

c(r, t) =
a sinh r

r sinh a
.(2.34)

Substituting (2.34) into (2.27) and integrating subject to the boundary condition
vs = 0 at r = 0 now gives

vs(r, t) =
a(r cosh r − sinh r)

r2 sinh a
− εr

3
.(2.35)

Thus, the nutrient-regulated equilibrium size of the tumor is given by a = a∗, where

coth a∗ − 1

a∗
− εa∗

3
= 0.(2.36)

Now (2.28) may be integrated, noting that vf = vs = 0 at r = 0, to give

vf = −φs

φf
vs =

aφs(sinh r − r cosh r)

r2φf sinh a
+

φsεr

3φf
.(2.37)

Substituting (2.35) and (2.37) into (2.32) gives

∂P

∂r
= χ

vs
φ2
f

=
χ

φ2
f

(
a(r cosh r − sinh r)

r2 sinh a
− εr

3

)
,(2.38)

which may be integrated subject to the boundary condition P = 0 at r = a (i.e., scal-
ing the fluid pressure in the medium surrounding the tumor to zero) to give

P =
χ

φ2
f

(
a sinh r

r sinh a
− ε

6

(
r2 − a2

)
− 1

)
.(2.39)

The hydrostatic pressure in the fluid, σf , may now be determined from (2.22), which
gives

σfr = σfθ = σf =
χ

φf

(
1 +

ε

6
(r2 − a2) − a sinh r

r sinh a

)
.(2.40)

In order to proceed, (2.29) must now be solved numerically for βs = σsr − σsθ. In
this paper, the integration is performed using the modified Lax–Wendroff scheme
presented in [16] for isotropic growth and [6] for anisotropic growth. As noted by
Araujo and McElwain [3], this modified scheme “is very useful for a growing domain
since it consists of a fixed number of evenly-distributed moving gridpoints. Computing
times are significantly reduced when compared with the method of characteristics,
the latter method having the additional disadvantages of unequally-spaced gridpoints
and the tendency to develop instabilities for solutions at large times.” The interested
reader is referred to [16] and [6] for the details of this numerical method.

Having determined βs, (2.31) may then be integrated using a Runge–Kutta scheme
(for example) to give the radial stress component in the solid phase, σsr, subject to the
boundary condition σsr = 0 at r = a. The corresponding circumferential component,
σsθ, is then to be determined from the definition of βs.



RESIDUAL STRESSES IN A BIPHASIC MULTICELL SPHEROID 455

Note that residual stresses are those which exist in a solid body in the absence
of, or in addition to, the stresses caused by external loads. The assumption of a
zero hydrostatic pressure at the periphery of the tumor (σr = P = 0 at r = a being
the boundary conditions used to integrate (2.31) and (2.38)) for all time allows the
model to emphasize the residual nature of any induced stresses, since they arise in
the absence of any external loads.

3. Results. In the solutions to follow, the parameter ε will assume the value
of 0.1, which implies a low cell death rate in comparison with the maximum possible
cell proliferation rate. Jones et al. [16] explain that this assumption gives rise to a
tumor structure in which the radius of the tumor boundary at equilibrium (when
the processes of cell proliferation and cell death are in balance) is large in compar-
ison with the diffusion length scale, L =

√
Dc
m . Indeed, the nutrient concentration is

only significant in a region within a distance of L from the tumor surface, with the
equilibrium tumor size being achieved by a large growth rate in the thin region near
the tumor surface and a low death rate throughout the tumor. This tumor structure
is most representative of experimentally observed multicell spheroids and avascular
tumors [12, 13, 14, 18, 19]. Figure 2 depicts the solutions to (2.26), (2.27), and (2.28)
based on this assumption.
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Fig. 2. Distribution of nutrient, c, velocity profile for the cellular phase, vs, and velocity profile
for the interstitial fluid, vf . ε = 0.1; φf = 0.1.

Furthermore, to emphasize the development of growth-induced stresses for large
times, most of the solutions for stresses depict the (admittedly artificial) situation in
which the tumor begins stress-free at its nutrient-regulated equilibrium size, neglecting
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the initial transient period required to attain this size. Figure 10 gives an example
of the evolution of stresses in a tumor which begins stress-free at a size much smaller
than the equilibrium size.

In addition to presenting the solutions of the biphasic equations developed in
the present paper, Figures 3, 4, 7, 8, and 9 present the solutions of the single phase
equations developed by Jones et al. [16] (in the case of isotropic growth) and Araujo
and McElwain [6] (in the case of anisotropic growth) by way of comparison with the
biphasic solutions. These single phase equations were summarized in Paper 1, in
juxtaposition with the biphasic equations.

Note that, with the exception of Figure 10, the solutions for βs are not shown
since the difference between the radial and circumferential stress components in the
solid phase is unaffected by the choice of single phase or multiphase frameworks.

3.1. Solutions to the stress equations with isotropic growth. Figures
3 and 4 show the solutions to the stress equations for isotropic growth, for which
Ωη = Ωζ = 1

3I, or ηr = ηθ = ζr = ζθ = 1
3 , for ascending values of the interphase drag

parameter, χ.
These solutions illustrate the problem with the combination of elasticity and

isotropic growth—a combination which is unable to impart the crucial property of
stress relaxation to the tissue’s constitutive law and gives rise to singular behavior
in the evolution of the stress profiles. Thus, although this combination is sufficient
to give general information about the spatial variations in stresses, the elasticity
must be regularized in order to predict the evolution of stresses over a period of
growth. This may be accomplished by either incorporating a viscous term into the
tissue’s constitutive law, giving rise to a viscoelastic constitutive equation, or, as is the
case here, by allowing the tissue to expand and contract anisotropically in response
to the induced stress field. For anisotropic growth to regularize the elasticity of
the tissue, expansion due to cell proliferation must occur in the direction of least
compressive stress, while contraction due to cell death must occur in the direction of
greatest compressive stress. In the context of spherical symmetry, these directional
characteristics of the growth process are conferred by the anisotropy tensor which
directs the expansion and contraction into the radial and circumferential principal
directions. In this way, anisotropic growth imparts a pseudoviscoelasticity to growing
tissues.

Nevertheless, these isotropic solutions enable comparisons to be made between
the single phase and biphasic mathematical paradigms. As these results illustrate, a
value as small as χ = 10−4 gives rise to stress profiles which differ only subtly from
their single phase counterparts. By contrast, a larger value of χ = 10−1 affects the
stress profiles quite dramatically.

Figures 5 and 6 present the distributions of the hydrostatic pressure, P , as well as
the hydrostatic pressure in the fluid, σf . Note that these two pressures are unaffected
by the choice of isotropic or anisotropic growth.

3.2. Solutions to the stress equations with anisotropic growth. Figures 7
through 9 show the solutions to the stress equations for anisotropic growth, for which
Ωη and Ωζ are as defined by (2.8), (2.9), (2.11), and (2.12), for ascending values of
the interphase drag parameter, χ.

These solutions illustrate the stress-relaxation properties of anisotropic growth,
enabling steady-state stress profiles to prevail. With the exception of Figure 9, the
“moderate” value of λ = 10 has been used for the stress relaxation parameter. A
comparison of the results of the single phase and biphasic equations reveals that
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Fig. 3. The distribution of radial stresses in the solid phase, σsr, for a single phase model,
and for a biphasic model with χ = 0.0001, 0.001, 0.01, 0.1 as labelled, for t = 0 to t = 8 in equal
time increments. Growth is isotropic. The tumor is initially stress-free and at its nutrient-regulated
equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

even extremely small interphase drag, with χ = 10−4, gives rise to stress profiles
which differ markedly from the single phase stress profiles. Figure 9 illustrates how
this effect is accentuated by the larger stress-relaxation parameter of λ = 100. This
intriguing result will be discussed in the next section. (It is also interesting to note
that in Figures 7 and 8, when the comparatively large value of χ = 0.1 has been used,
the effect of introducing the second (fluid) phase is so pronounced that the evolution
of solid stresses is almost imperceptible in comparison.)

4. Discussion. This paper illustrates the mechanical behavior of a spherically
symmetric biphasic model of a growing multicell spheroid comprising a linear-elastic
solid phase and an inviscid interstitial fluid phase. The growth process itself, which
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Fig. 4. The distribution of circumferential stresses in the solid phase, σsθ, for a single phase
model, and for a biphasic model with χ = 0.001, 0.01, 0.1 as labelled, for t = 0 to t = 8 in equal
time increments. Growth is isotropic. The tumor is initially stress-free and at its nutrient-regulated
equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

may occur either isotropically or anisotropically, is regulated by an inwardly diffusing
nutrient.

The solutions to the modelling equations give information about the distribution
of nutrient concentration, c, within the tumor, the tumor’s nutrient-regulated dormant
radius, a∗, and the behavior of the individual phases—their movement (solid velocity,
vs, and fluid velocity, vf ) and their stress profiles (σf in the fluid phase, and σsr

and σsθ for the radial and circumferential stress components, respectively, in the
solid phase, as well as the hydrostatic pressure P acting on both phases). Of these
quantities, several are independent of whether a single phase or multiphase modelling
approach is taken—c, vs, and a∗. Moreover, where a biphasic approach is adopted,
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Fig. 5. The distribution of the hydrostatic pressure acting on the mixture, P , for a biphasic
model with χ = 0.001, 0.01, 0.1 as labelled, for t = 0 to t = 8 in equal time increments. The tumor
is initially stress-free and at its nutrient-regulated equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

the variables associated with the fluid phase are unaffected by the choice of isotropic
growth (which neglects stress relaxation) or anisotropic growth (which incorporates
stress relaxation)—P , σf , and vf .

The stresses in the solid phase, however, depend crucially on whether a single
phase or a multiphase framework is employed. Comparing (2.25) and (2.33) with their
single phase counterparts, ∇ · σs = 0 and ∂σr

∂r + 2β
r = 0 (see Paper 1), gives some

interesting insights into the distinction between the two mathematical paradigms.
Whereas in the case of a spherically symmetric single phase solid the radial stress
component (see (2.33)) is given by

σr = −
∫ r

0

(
2β

r̂

)
dr̂,

the multiphase momentum equation predicts a radial stress of

σsr = φfP −
∫ r

0

(
2βs

r̂

)
dr̂,

where β or βs is determined from compatibility considerations via the constitutive
equation (2.29). Thus, the two expressions for radial stress differ by the quantity
φfP , being the proportion of the hydrostatic pressure P distributed to the fluid
phase. This pressure arises from the mechanical interactions between the two phases
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Fig. 6. The distribution of the hydrostatic pressure in the fluid phase, σf , for a biphasic model
with χ = 0.001, 0.01, 0.1 as labelled, for t = 0 to t = 8 in equal time increments. The tumor is
initially stress-free and at its nutrient-regulated equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

and from (2.32) is given by

φfP = −χ

∫ r

0

(vf (r̂) − vs(r̂)) dr̂.

Therefore, since the circumferential stress component is given by σsθ = σsr + βs from
(2.21), both the circumferential and the radial stress components are augmented by
the extra stress created by the relative motion between the phases. Note that this
extra stress is directly proportional to the interphase drag parameter, χ.

Thus, in a multiphase model, solid stresses may be decomposed into two compo-
nents—the temporally constant hydrostatic pressure,1 φfP , and a time-dependent
component. Theoretically, if the processes of cell proliferation and cell death (apop-
tosis) were to cease, the hydrostatic component would vanish, leaving only the (pre-
viously) time-dependent component. The existence of the latter in the absence of any
externally applied loads attests to its residual nature. Thus, the residual stresses in
the solid phase are, of themselves, unaffected by the presence of additional phases;
nevertheless, they do not occur in isolation but are augmented by a hydrostatic pres-
sure through the presence of additional phases.

1Note that P is only constant with time once the tumor has reached its nutrient-regulated
equilibrium size. When the tumor size is still evolving, the distribution of P is also evolving (see
Figure 10).
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Fig. 7. The distribution of radial stresses in the solid phase, σsr, for a single phase model,
and for a biphasic model with χ = 0.0001, 0.001, 0.01, 0.1 as labelled, for t = 0 to t = 8 in equal
time increments. Growth is anisotropic with λ = 10. The tumor is initially stress-free and at its
nutrient-regulated equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

This study also demonstrates the important result that a consideration of multiple
phases does nothing to alleviate the singularities associated with the combination of
isotropic growth and an elastic constitutive law. Jones et al. [16] had supposed that
this measure could resolve the problem, postulating that “in regions of the tumour
where the number of live cells is low, the compensatory increase in the number of dead
cells and extracellular water should prevent the stress tensor increasing indefinitely
over time.”

As one would intuitively expect, the magnitude of the interphase drag parameter,
χ, strongly influences the extent to which the single phase and multiphase paradigms
diverge, as reflected in Figures 3 through 8. In the case of isotropic growth, the
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Fig. 8. The distribution of circumferential stresses in the solid phase, σsθ, for a single phase
model, and for a biphasic model with χ = 0.0001, 0.001, 0.01, 0.1 as labelled, for t = 0 to t = 8 in
equal time increments. Growth is anisotropic with λ = 10. The tumor is initially stress-free and at
its nutrient-regulated equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

solutions are noticeably affected by the choice of modelling framework for χ > 0.01,
with χ > 0.1 affecting the stress profiles quite dramatically. Interestingly, as noted
in section 3.2, the stress profiles are much more sensitive to the choice of modelling
framework when growth is anisotropic, where the biphasic results contrast with their
single phase counterparts quite remarkably even with the minute value of χ = 0.0001.
This intriguing result may be understood by noting that, when growth is anisotropic,
the evolution of residual stresses is gradually arrested in order to permit a steady-
state stress profile at the tumor’s nutrient-regulated dormant size. The greater the
stress relaxation (corresponding to larger values of λ), the smaller are the steady-state
stresses, and the shorter the time required to reach the steady-state profile. Therefore,
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Fig. 9. Radial stress distributions (top row) and circumferential stress distributions (bottom
row) for a single phase model, and a biphasic model with χ = 0.0001, as marked. Growth is
anisotropic with λ = 100. t = 0 to t = 8 in equal time increments. The tumor is initially stress-free
and at its nutrient-regulated equilibrium size (a � 29), with ε = 0.1. φf = 0.1.

the greater the stress relaxation, the more significant is the hydrostatic pressure, P ,
in comparison with the residual stresses. (This is to be compared with the single
phase framework in which only residual stresses are induced.) As shown by (2.24)
and illustrated in Figure 5, P is proportional to χ (all other things being equal), which
implies that for a given value of χ, the difference between the stresses predicted by
the single phase and multiphase models is more significant for a greater value of the
stress-relaxation parameter.

Therefore, it is the combination of stress relaxation (a characteristic of the solid
(cellular) phase, which may be associated with either anisotropic growth or viscoelas-
ticity) and interphase drag (associated with the existence of multiple phases) which
separates the single phase and multiphase approaches. Both properties must be con-
sidered in order to determine if single phase techniques give a reasonable approxima-
tion to the stresses in the solid phase. This is a most significant outcome of this study,
given that stress-relaxation must occur in growing biological tissues. As demonstrated
by Jones et al. [16] and by Figures 3 and 4 in the present paper, failure to incorpo-
rate this crucial property causes stresses to evolve indefinitely, eventually becoming
infinite.

Thus, this study deracinates the assertion by Skalak [26] that volumetric growth
of biological tissues is entirely analogous to thermal expansion—an analogy which lies
at the very heart of the single phase paradigm.
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Fig. 10. Stress distributions for a tumor which begins stress-free and much smaller than its
nutrient-regulated equilibrium size, a = 15, for a biphasic model with χ = 0.1. Here, t = 0 to t = 700
in time increments of 35. The tumor appears to have reached a steady state in both its size and its
stress distributions by about t = 280. φf = 0.1; ε = 0.1.

Caveat. As noted earlier, two distinctly different types of stresses contribute to the
total stress in the solid phase—residual stresses, and a hydrostatic mixture stress, P ,
associated with the pressure in the fluid phase. However, it is essential to bear in mind
that, unlike residual stresses, fluid stresses cannot sustain themselves. Therefore, if
the growth process were sufficiently slow, the hydrostatic pressure, P , may dissipate.
This would have two important implications for mathematical models of stresses in
tumors:

1. Multiphase models of residual stresses with only one solid phase (such as the
present model) could be replaced by single phase models, since the existence
of fluid phases would not influence stresses in the solid phases.
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2. Any mathematical model of tumor stresses in which the tissue is composed
entirely of fluids would be invalid, since any stresses predicted by the model
would dissipate over the timescale of growth. Note that, with the exception
of the models by Jones et al. [16], Araujo and McElwain [1, 2, 3, 4, 6, 7],
and MacArthur and Please [21], all mathematical models of tumor stresses
currently in the literature consider the tissue to be composed entirely of fluids.

5. Concluding remarks. This paper has studied the evolution of residual
stresses in a biphasic model of a multicell spheroid comprising a linear-elastic cel-
lular phase and an inviscid fluid phase. In addition, the solutions to the biphasic
equations have been compared with their single phase counterparts, elucidating the
approximate nature of the single phase formulation for a growing tissue.

A number of important results have been uncovered by this study. In particular,
in view of the minute values of the interphase drag parameter, χ, required to rec-
oncile the single phase and multiphase modelling frameworks (generally χ � 0.001),
it is likely that single phase models give a poor approximation to the evolving stress
profiles in many situations. Most significantly, for a given value of χ, the difference be-
tween the two frameworks is more significant for greater values of the stress-relaxation
parameter. In the present model, stress relaxation has been imparted via anisotropic
growth, with stress relaxation parameter, λ.

While stress relaxation has been addressed qualitatively in both this model and
previous models [6, 21], it remains to determine realistic values of stress-relaxation
parameters by experimental investigation. It is acknowledged that realistic values of
the interphase drag parameter, χ, for real tissues may be somewhat more difficult to
determine. Nevertheless, a sustained input by experimental investigators, in comple-
menting these novel theoretical studies, will be the key to continued progress in this
important area of tumor growth research.

Furthermore, this study has demonstrated that the consideration of multiple
phases alone is unable to alleviate the singularities associated with the isotropic growth
of an elastic tissue. Thus, in the context of growth-induced stresses, viscoelasticity
and anisotropic growth remain the only two methods of regularizing elasticity.

The model presented here may be extended to consider additional phases such as
extracellular matrix and blood vessels, permitting a much wider class of problems to
be pursued using these novel theoretical tools. In addition, as discussed in the con-
cluding section of Paper 1, more complicated relationships between interphase mass
exchange and solid phase expansion may be proposed, enabling these models to con-
sider the formation of necrotic regions in tumors. Necrosis formation remains a poorly
understood aspect of tumor development, and recent investigators [21, 24, 25] have
argued that mechanical factors are paramount. Since the formation of necrotic regions
appears to correlate with tumor aggressiveness, further insights into this important
phenomenon may yield fresh information on tumor invasion and metastasis.

Thus, these new multiphase techniques have the potential to make a powerful
contribution to a variety of future projects in cancer research, embryogenesis, and
tissue engineering. Indeed, in considering interactions amongst multiple phases, both
solid and fluid, the models furnish valuable insights into both the stress profiles within
the tissue, as well as the flow of interstitial fluid, permitting a unified study of many
diverse aspects of tissue growth. With these techniques, a study of drug delivery may
be conducted within an investigation of tumor vascular collapse, for example, where
growth-induced stresses compress the weak-walled tumor blood vessels. In addition,
the complex relationships between solid stresses and a variety of cellular and molecular
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responses in tumors, as illustrated by the experimental work of Helmlinger et al. [15]
and Koike et al. [20], may be considered in such theoretical investigations.
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REFERENCES

[1] R. P. Araujo and D. L. S. McElwain, A mixture theory for the genesis of residual stresses in
growing tissues I: A general formulation, SIAM J. Appl. Math., 65 (2005), pp. 1261–1284.

[2] R. P. Araujo and D. L. S. McElwain, The nature of the stresses induced during tissue growth,
Appl. Math. Lett., 18 (2005), pp. 1081–1085.

[3] R. P. Araujo and D. L. S. McElwain, An anisotropic model of vascular tumor growth:
Implications for vascular collapse, in Proceedings of the Second M.I.T. Conference on
Computational Fluid and Solid Mechanics, K. J. Bathe, ed., Elsevier Ltd., Oxford, UK,
2003, pp. 1613–1616.

[4] R. P. Araujo and D. L. S. McElwain, The genesis of residual stresses and vascular collapse
in solid tumours, in Proceedings of the Sixth Engineering Mathematics and Applications
Conference, R. L. May and W. F. Bluth, eds., Engineering Mathematics Group, ANZIAM,
Sydney, Australia, 2003, pp. 1–6.

[5] R. P. Araujo and D. L. S. McElwain, A history of the study of solid tumour growth: The
contribution of mathematical modelling, Bull. Math. Biol., 66 (2004), pp. 1039–1091.

[6] R. P. Araujo and D. L. S. McElwain, A linear-elastic model of anisotropic tumour growth,
European J. Appl. Math., 15 (2004), pp. 365–384.

[7] R. P. Araujo and D. L. S. McElwain, New insights into vascular collapse and growth dy-
namics in solid tumours, J. Theoret. Biol., 228 (2004), pp. 335–346.

[8] R. B. Bird, R. C. Armstrong, and O. Hassager, Dynamics of Polymeric Liquids, John
Wiley & Sons, New York, 1977.

[9] C. J. W. Breward, H. M. Byrne, and C. E. Lewis, The role of cell-cell interactions in a
two-phase model for avascular tumour growth, J. Math. Biol., 45 (2002), pp. 125–152.

[10] H. M. Byrne, J. R. King, D. L. S. McElwain, and L. Preziosi, A two-phase model of solid
tumour growth, Appl. Math. Lett., 16 (2003), pp. 567–673.

[11] H. M. Byrne and L. Preziosi, Modelling solid tumor growth using the theory of mixtures,
Math. Med. Biol., 20 (2003), pp. 341–366.

[12] J. Carlsson, A proliferation gradient in three-dimensional colonies of cultured human glioma
cells, Int. J. Cancer, 20 (1977), pp. 129–136.

[13] J. Folkman and M. Hochberg, Self-regulation of growth in three dimensions, J. Exp. Med.,
138 (1973), pp. 745–753.

[14] K. Groebe and W. Mueller-Klieser, Distributions of oxygen, nutrient and metabolic waste
concentrations in multicellular spheroids and their dependence on spheroid parameters,
Eur. Biophys. J., 19 (1991), pp. 169–181.

[15] G. Helmlinger, P. A. Netti, H. D. Lichtenbeld, R. J. Melder, and R. K. Jain, Solid stress
inhibits the growth of multicellular tumour spheroids, Nature Biotechnology, 15 (1997),
pp. 778–783.

[16] A. F. Jones, H. M. Byrne, J. S. Gibson, and J. W. Dold, A mathematical model of the
stress induced during avascular tumour growth, J. Math. Biol., 40 (2000), pp. 473–499.

[17] D. D. Joseph, Fluid Dynamics of Viscoelastic Liquids, Springer-Verlag, New York, 1990.
[18] J. F. R. Kerr, Shrinkage necrosis: A distinct mode of cellular death, J. Path., 105 (1971),

pp. 13–20.
[19] J. F. R. Kerr, A. H. Wyllie, and A. R. Currie, Apoptosis: A basic biological phenomenon

with wide-ranging implications in tissue kinetics, Br. J. Cancer, 26 (1972), pp. 239–257.
[20] C. Koike, T. D. McKee, A. Pluen, S. Ramanujan, K. Burton, L. L. Munn, Y. Boucher,

and R. K. Jain, Solid stress facilitates spheroid formation: Potential involvement of
hyaluronan, Br. J. Cancer, 86 (2002), pp. 947–953.

[21] B. D. MacArthur and C. P. Please, Residual stress generation and necrosis formation in
multi-cell tumour spheroids, J. Math. Biol., 49 (2004), pp. 537–552.

[22] D. L. S. McElwain, R. Callcott, and L. E. Morris, A model of vascular compression in
solid tumours, J. Theoret. Biol., 78 (1979), pp. 405–415.

[23] D. L. S. McElwain and L. E. Morris, Apoptosis as a volume loss mechanism in mathematical
models of solid tumor growth, Math. Biosci., 39 (1978), pp. 147–157.



RESIDUAL STRESSES IN A BIPHASIC MULTICELL SPHEROID 467

[24] C. P. Please, G. J. Pettet, and D. L. S. McElwain, A new approach to modelling the
formation of necrotic regions in tumours, Appl. Math. Lett., 11 (1998), pp. 89–94.

[25] C. P. Please, G. J. Pettet, and D. L. S. McElwain, Avascular tumour dynamics and
necrosis, Math. Models Methods Appl. Sci., 9 (1999), pp. 569–579.

[26] R. Skalak, Growth as a finite displacement field, in Proceedings of the IUTAM Symposium
on Finite Elasticity, D. E. Carlson and R. T. Shield, eds., Martinus Nijhoff, The Hague,
The Netherlands, 1981, pp. 347–355.

[27] R. M. Sutherland and R. E. Durand, Hypoxic cells in an in vitro tumour model, Int. J.
Radiat. Biol., 23 (1973), pp. 235–246.



SIAM J. APPL. MATH. c© 2005 Society for Industrial and Applied Mathematics
Vol. 66, No. 2, pp. 468–488

CLASS-D AUDIO AMPLIFIERS WITH NEGATIVE FEEDBACK∗
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Abstract. There are many different designs for audio amplifiers. Class-D, or switching, ampli-
fiers generate their output signal in the form of a high-frequency square wave of variable duty cycle
(ratio of on time to off time). The square-wave nature of the output allows a particularly efficient
output stage, with minimal losses. The output is ultimately filtered to remove components of the
spectrum above the audio range. Mathematical models are derived here for a variety of related
class-D amplifier designs that use negative feedback. These models use an asymptotic expansion
in powers of a small parameter related to the ratio of typical audio frequencies to the switching
frequency to develop a power series for the output component in the audio spectrum. These models
confirm that there is a form of distortion intrinsic to such amplifier designs. The models also explain
why two approaches used commercially succeed in largely eliminating this distortion; a new means
of overcoming the intrinsic distortion is revealed by the analysis.

Key words. class-D amplifier, total harmonic distortion, mathematical model
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1. Introduction. Class-D audio amplifiers are becoming increasingly popular,
particularly at the high end of the hi-fi audio amplification market. The key feature
of their design is that they switch their output between two voltage levels at a very
high frequency (typically 500kHz), well above the audio range. The audio signal is
essentially encoded in the relative durations of the pulses at the two output voltage
levels. The discrete nature of the switching then allows the output stage to be highly
efficient; the audio signal is recovered by low-pass filtering of the output. Although
the concept of class-D amplifiers using this pulse-width modulation technique has
been known for at least fifty years [1], it is only much more recently that electronic
components have become available that make its practical implementation feasible.
Several commercial amplifiers at the high end of the audio market use class-D amplifier
technology.

In its simplest manifestation, the class-D amplifier is known to be capable of
producing no distortion to audio signals [1, 4, 5], at least when the mathematical model
assumes, as we shall do, that electronic components perform in an ideal fashion, and
that the circuit is free from noise. (Significant effort has also been applied to devising
remedies for the effects of imperfections in the circuit components [2], for example,
nonlinearities in a carrier waveform that is generally modeled mathematically as a
piecewise-linear (triangular or sawtooth) wave [6].)

Unfortunately, the simplest design is prone to noise (including thermal and output-
stage power-supply noise), due to a lack of negative feedback, and so more sophisti-
cated versions of the class-D design have been developed, incorporating such feedback,
in an attempt to counter the poor noise performance. While these negative-feedback

∗Received by the editors October 21, 2004; accepted for publication (in revised form) August
16, 2005; published electronically December 2, 2005. This work was supported by Extraordinary
Technology Pty Ltd, Australia. This work appeared in preliminary form in the Proceedings of the
117th Audio Engineering Society Convention, San Francisco, 2004.

http://www.siam.org/journals/siap/66-2/61746.html
†School of Mathematical Sciences, University of Adelaide, Adelaide 5005, Australia (stephen.cox@

adelaide.edu.au).
‡Halcro, 118 Hayward Avenue, Torrensville 5031, Australia (brucec@adam.com.au).

468



CLASS-D AUDIO AMPLIFIERS 469

designs do indeed have better noise performance, they also significantly distort the
output, even with perfect components, and there have been various attempts to de-
velop further negative-feedback designs to counter this intrinsic distortion.

Despite the great practical value of the application, and the variety of “engineer-
ing” solutions available, there appears to be a dearth of mathematical models for
class-D amplifier designs with negative feedback. By contrast, the no-feedback case
was analyzed over fifty years ago by Black in his treatise [1] and was shown to allow
distortion-free output of sinusoidal input signals. More recently the same problem was
reconsidered in greater depth [4, 5], and it was shown that there is no distortion to
any audio signal, sinusoidal or otherwise. The latter result is significant because the
amplifier design is nonlinear, and thus the distortion characteristics of an arbitrary
signal cannot be inferred from those of its Fourier components.

We develop mathematical models for class-D amplifiers with negative feedback.
The models proceed from the governing differential equations that relate the voltage
signals at the various parts of the device, assuming perfect components. The result-
ing system of equations may be formally integrated to yield what is essentially a set
of nonlinear difference equations for the various internal signals at multiples of the
switching period. The solution to these equations is then developed in an asymptotic
series based on the separation of scales between the (relatively high-frequency) switch-
ing stage and the (relatively low-frequency) audio signal. The analysis is continued
as far as the first term in the series that reveals the inherent distortion of the system.
We then show how two successful commercial approaches to significantly reducing
this component of the distortion can be modeled, and confirm what is already known
empirically, that they do indeed work. The analysis reveals a third means of reducing
the intrinsic distortion. We conclude by briefly considering the effects of nonlinear
distortion to the carrier wave upon the audio output.

2. Mathematical model: General considerations. The “classical” class-D
amplifier design, without negative feedback, is illustrated in Figure 2.1. The audio
input signal is denoted by s(t); generally this signal comprises a Fourier spectrum in
the audible range up to 20kHz. This audio signal is added to a triangular carrier wave
v(t), with period T , that satisfies

v(t) =

⎧⎪⎨
⎪⎩

1 − 4t

T
for 0 ≤ t <

T

2
,

−3 +
4t

T
for

T

2
≤ t < T,

(2.1)

s(t)
+

−
+

0

v(t)

g(t)

Fig. 2.1. Classical class-D amplifier (without negative feedback). The audio input signal is s(t);
this is summed with a high-frequency triangular carrier wave v(t) and input to the noninverting input
(+) of a comparator, whose inverting input (−) is grounded. The output of the comparator is g(t),
given by (2.2).



470 STEPHEN M. COX AND BRUCE H. CANDY

and v(t + T ) = v(t) for all t. Thus v(nT ) = 1 and v((n + 1
2 )T ) = −1, for any integer

n, and v(t) is piecewise linear between these two values. It will be significant for the
analysis that follows that if ω is a typical audio frequency, then ωT � 1. The main
circuit element is a comparator, which compares the voltage at its noninverting input
(denoted by a “+” in the figure) with the voltage at its inverting input (denoted by
a “−”) and gives an output g(t) that satisfies

g(t) =

{
+1 if s(t) + v(t) > 0,
−1 if s(t) + v(t) < 0.

(2.2)

Note that the output voltages have been normalized to ±1; furthermore, we assume
throughout this paper that −1 < s(t) < 1 for all t. The switching times of g(t) are
thus governed by s(t) + v(t) = 0; we denote the switching times from +1 to −1 by
t = nT + αn, with the reverse switchings at times t = nT + βn. For the classical
design in Figure 2.1 these switching times are governed by

0 < αn =
T

4
(1 + s(nT + αn)) <

T

2
< βn =

T

4
(3 − s(nT + βn)) < T.(2.3)

Note that the equations in (2.3) give αn and βn only implicitly. We shall consider
their solution later.

We now examine how the switching times are used in computing the component
of g(t) in the audio spectrum, i.e., the amplifier output.

2.1. Comparator output g(t). In all class-D designs, regardless of the details,
the output g(t) takes the form

g(t) =

{
+1 if nT < t < nT + αn or nT + βn < t < (n + 1)T ,
−1 if nT + αn < t < nT + βn,

(2.4)

for some switching times t = nT + αn and nT + βn. Thus we may write

g(t) = 1 − 2

∞∑
n=−∞

Hn(t),(2.5)

where

Hn(t) = H(t− (nT + αn)) −H(t− (nT + βn))(2.6)

and where H(t) is the Heaviside step function (H(t) = 0 for t < 0 and H(t) = 1 for
t > 0). Note that each Hn(t) has finite support:

Hn(t) =

{
1, nT + αn < t < nT + βn,
0 otherwise,

(2.7)

so the sum in (2.5) is well defined almost everywhere (i.e., except at the exact switching
times). The corresponding Fourier transform

ĝ(ω) ≡ 1

(2π)1/2

∫ ∞

−∞
g(t)e−iωt dt(2.8)

is then

ĝ(ω) = (2π)1/2δ(ω) − 2i

(2π)1/2ω

∞∑
n=−∞

{
e−iω(nT+βn) − e−iω(nT+αn)

}
.(2.9)
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A formal analysis of this expression allows us to write the output g(t) more usefully
in terms of the switching times. We begin by denoting by S the sum in (2.9). Then

S =

∞∑
n=−∞

e−iωnT
(
e−iωβn − e−iωαn

)

=
∞∑

n=−∞
e−iωnT

∞∑
m=1

1

m!
(−iω)m(βm

n − αm
n )

=
∞∑

m=1

1

m!
(−iω)m

∞∑
n=−∞

e−iωnT (βm
n − αm

n ).(2.10)

Now we note that

e−iωnT (βm
n − αm

n ) =

∫ ∞

−∞
e−iωt [Bm(t) −Am(t)] δ(t− nT ) dt,(2.11)

where A(t) and B(t) are any smooth functions that satisfy

A(nT ) = αn, B(nT ) = βn.(2.12)

We shall refer to A(t) and B(t) as generalized switching-time functions. Substituting
(2.11) into (2.10) and using the discrete Fourier transform identity

∞∑
n=−∞

δ(t− nT ) =
1

T

∞∑
n=−∞

eiωcnt,(2.13)

where ωc = 2π/T is the carrier-wave frequency, we find

S =
1

T

∞∑
m=1

1

m!
(−iω)m

∞∑
n=−∞

∫ ∞

−∞
e−i(ω−nωc)t [Bm(t) −Am(t)] dt

=
(2π)1/2

T

∞∑
m=1

1

m!
(−iω)m

∞∑
n=−∞

[
B̂m(ω − nωc) − Âm(ω − nωc)

]
.(2.14)

Here Âm and B̂m are, respectively, the Fourier transforms of Am and Bm.
Now we use the separation of time scales between the audio signal and the carrier

wave to generate a simpler approximation to this expression for S. We begin by
noting that since the signal s(t) varies only slowly over a single period of the carrier
wave, the switching times αn and βn vary only slowly with n. Thus we assume that
A(t) and B(t) are chosen to vary only on the relatively slow time scale of the signal
and contain no components that vary on the shorter time scale of the carrier wave.
(Of course, in practice, this “bandwidth limiting” is only approximate.) The upshot
of this assumption is that we take into account only the term n = 0 in the sum in
(2.14); then, with this approximation,

S =
(2π)1/2

T

∞∑
m=1

1

m!
(−1)m(iω)m

[
B̂m(ω) − Âm(ω)

]
.(2.15)

Correspondingly, from (2.9) it follows that

ĝ(ω) = (2π)1/2δ(ω) +
2

T

∞∑
m=1

1

m!
(−1)m(iω)m−1

[
B̂m(ω) − Âm(ω)

]
,(2.16)



472 STEPHEN M. COX AND BRUCE H. CANDY

and hence, upon inverting the Fourier transform, we obtain for the component of g(t)
in the audio spectrum (cf. [4, 5])

ga(t) = 1 +
2

T

∞∑
m=1

1

m!
(−1)m

dm−1

dtm−1
[Bm(t) −Am(t)] .(2.17)

This expression applies regardless of the details of the class-D amplifier design: the
differences between the various designs lie in the specific relationships between the
generalized switching-time functions and the signal s(t); these correspondingly result
in different audio outputs ga(t).

2.1.1. Discussion. The infinite sum in (2.17) should, of course, be viewed with
some caution, given the approximations underlying it. Even if A(t) and B(t) are
signals whose frequency spectra lie entirely within the audio range, the powers Am

and Bm include successively higher frequencies in their spectra. For example, if A
and B are pure sinusoidal signals, each with frequency ω, then Am and Bm involve
frequencies up to mω. For sufficiently large m, when |ωc∓mω| lies in the audio range,
terms with n = ±1 must be included in the sum (2.14), rendering inappropriate our
assumption that only terms with n = 0 contribute to the output audio spectrum (for
larger values of m, additional values of n also become relevant). However, in the
analysis that follows we shall consider only the first few terms in (2.17), because these
are sufficient to determine the principal distortion characteristics of the amplifier
designs; hence for our purposes the difficulty with large values of m in (2.17) is
immaterial.

2.2. Alternative expression for ga(t). This section may be omitted by read-
ers interested only in the class-D amplifier designs with negative feedback, since it is
primarily of importance for the classical design without feedback, in which case we
shall see below that the equations governing A(t) and B(t) take the form

A(t) = Ā(t + A(t)), B(t) = B̄(t + B(t)),(2.18)

for some functions Ā and B̄. Clearly some conditions must be imposed upon A(t)
and B(t) in order that (2.18) define Ā and B̄ uniquely; it is sufficient that A(t) and
B(t) should vary sufficiently slowly, i.e., |A′(t)| < 1 and |B′(t)| < 1 (cf. [5]). It then
proves useful to introduce “warped times”

tA = t + A(t), tB = t + B(t),(2.19)

so that

tA = t + Ā(tA), tB = t + B̄(tB).(2.20)

Now to obtain a simpler expression for ga(t), we note from the definition of the Fourier
transform (2.8) and (2.15) that S may be written as

S =
1

T

∞∑
m=1

(−iω)m

m!

∫ ∞

−∞
[Bm(t) −Am(t)]e−iωt dt,(2.21)

and hence, provided the order of the summation and integration may be interchanged,

S =
1

T

∫ ∞

−∞

∞∑
m=1

(−iω)m

m!
[Bm(t) −Am(t)]e−iωt dt

=
1

T

∫ ∞

−∞
e−iω(t+B(t)) − e−iω(t+A(t)) dt,(2.22)
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from which it follows that

iωĝ(ω) =
2

T

1

(2π)1/2

∫ ∞

−∞
e−iω(t+B(t)) − e−iω(t+A(t)) dt

=
2

T

1

(2π)1/2

{∫ ∞

−∞
e−iωtB

dt

dtB
dtB −

∫ ∞

−∞
e−iωtA

dt

dtA
dtA

}

=
2

T

iω

(2π)1/2

{∫ ∞

−∞
e−iωtB t(tB) dtB −

∫ ∞

−∞
e−iωtAt(tA) dtA

}
.(2.23)

Thus, by inverting the Fourier transform, we find that

ga(t) = Ca +
2

T
[gA(t) + gB(t)] ,(2.24)

where Ca is a constant of integration, gA(tA) = −t(tA), and gB(tB) = t(tB). From
(2.20), t(tA) = tA − Ā(tA) and t(tB) = tB − B̄(tB). Thus

gA(tA) = −tA + Ā(tA), gB(tB) = tB − B̄(tB),(2.25)

or, equivalently,

gA(t) = −t + Ā(t), gB(t) = t− B̄(t),(2.26)

so that, finally, we obtain from (2.24) and (2.26)

ga(t) = 1 +
2

T

[
Ā(t) − B̄(t)

]
.(2.27)

The constant of integration Ca = 1 has been fixed by noting that for zero input signal
(s(t) ≡ 0) it follows from (2.2) that ga(t) ≡ 0, while Ā(t) ≡ T/4 and B̄(t) ≡ 3T/4.
Thus when the problem for the generalized switching times is of the form (2.18), the
audio output takes a particularly simple form, which does not appear to have been
noted previously.

2.3. Classical class-D amplifier. For the classical class-D amplifier illustrated
in Figure 2.1, we find from (2.3) and (2.12) that

A(nT ) =
T

4
[1 + s(nT + A(nT ))] , B(nT ) =

T

4
[3 − s(nT + B(nT ))] .(2.28)

It is then straightforward to extend this definition of A(t) and B(t) appropriately to
other times by globally mapping nT �→ t in (2.28). Then, in view of (2.18) and (2.27),
it follows that

ga(t) = 1 +
2

T

{
T

4
[1 + s(t)] − T

4
[3 − s(t)]

}
= s(t).(2.29)

Thus (as is well known [1, 4, 5]) this amplifier gives no distortion to the signal (given
the modeling assumptions).

Note in particular that no assumption has been made regarding the shape of the
audio waveform s(t) other than that its spectrum lies entirely in the audio band,
well below the carrier-wave frequency; most significantly, the input signal need not
be a pure sinusoid. Our derivation of this result differs somewhat from that given
recently [4, 5], since we use (2.27) rather than applying a theorem in complex analysis
due to Lagrange [4, 5].
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g(t)
+ +

−
+

kx

dt−c ∫
0s(t)

h(t)

v(t)

Fig. 3.1. Class-D amplifier with negative feedback. The signal s(t) is fed into a device that
multiplies it by a constant k, and also into an integrator, whose output we denote by h(t). The
outputs of the integrator and the multiplier are summed, together with a high-frequency triangular
carrier wave v(t) and input to the noninverting input of a comparator whose inverting input is
grounded. The output of the comparator is g(t).

3. Class-D amplifier with negative feedback. With negative feedback, the
basic class-D amplifier design is as illustrated in Figure 3.1.

In analyzing the amplifier design, we find it convenient to introduce f(t), the
integral of the input signal, defined by f ′(t) = s(t); the constant of integration in
determining f(t) uniquely is not important in what follows. The triangular carrier
wave v(t) again satisfies (2.1) and the periodicity condition v(t + T ) = v(t) for all t.
The output g(t) of the comparator now satisfies

g(t) =

{
+1 if h(t) + ks(t) + v(t) > 0,
−1 if h(t) + ks(t) + v(t) < 0.

(3.1)

Finally, the integrator output is given by

h(t) = −c

∫ t

g(τ) + s(τ) dτ.(3.2)

The time constant c is such that cT = O(1). Since −1 < s(t) < 1, h(t) alternately
increases and decreases, when g(t) is, respectively, negative and positive. The rela-
tionships between v(t), g(t), and h(t) are illustrated in Figure 3.2. We note that for
illustrative purposes the figure shows h(t) as a piecewise linear function of time, which
is appropriate only for a constant input signal; otherwise h(t) has a slight nonlinearity.

3.1. Analysis of the model. We analyze the model by first constructing a
system of nonlinear implicit difference equations for the switching times αn and βn.
To do so, we consider a time interval nT < t < (n + 1)T . Referring to the waveform
in Figure 3.2, we see that at the start and end of this interval, h(t) is decreasing;
in-between, h(t) is increasing. We define three subintervals:

I: nT < t < nT + αn, h′(t) < 0 [g(t) = 1],
II: nT + αn < t < nT + βn, h′(t) > 0 [g(t) = −1],

III: nT + βn < t < (n + 1)T, h′(t) < 0 [g(t) = 1],
(3.3)

and consider each in turn.

Subinterval I. By integrating (3.2) we find

h(t) = h(nT ) − c[f(t) − f(nT )] − c(t− nT ).(3.4)
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III

v(t)

h(t)
−1

+1

−1

+1

(n−1)T nT (n+1)T t

g(t)

I I III II IIIIIII III

Fig. 3.2. Diagram showing relationships between v(t), g(t), and h(t) for the class-D amplifier
with negative feedback. Note that, although h(t) is drawn here as piecewise linear, it is in fact
nonlinear for any nontrivial input signal s(t). The subintervals I, II, and III are indicated, as
defined in (3.3).

According to (3.1), the value of αn is defined by

h(nT + αn) + ks(nT + αn) + v(nT + αn) = 0;(3.5)

that is,

h(nT ) − c[f(nT + αn) − f(nT )] − cαn + ks(nT + αn) + 1 − 4αn

T
= 0.(3.6)

Subinterval II. By integrating (3.2) and enforcing continuity of h(t) at time
t = nT + αn, we find

h(t) = h(nT ) − c[f(t) − f(nT )] − cαn + c(t− nT − αn).(3.7)

From (3.1), the value of βn is defined by

h(nT + βn) + ks(nT + βn) + v(nT + βn) = 0;(3.8)

that is,

h(nT ) − c[f(nT + βn) − f(nT )] + c(βn − 2αn) + ks(nT + βn) − 3 +
4βn

T
= 0.(3.9)

Subinterval III. By integrating (3.2) and enforcing continuity of h(t) at time
t = nT + βn, we find

h(t) = h(nT ) − c[f(t) − f(nT )] + c(βn − 2αn) − c(t− nT − βn).(3.10)

For the remaining analysis, we note that at the end of this subinterval

h((n + 1)T ) = h(nT ) − c[f((n + 1)T ) − f(nT )] + c(2βn − 2αn − T ).(3.11)
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nT

η
h(t)

t(n+4)T(n+3)T(n+2)T(n+1)T

(t)

Fig. 3.3. Diagram showing the relationship between h(t) and η(t). The two functions agree
at times nT (for integers n), but h(t) varies significantly at intermediate times, whereas η is only
slowly varying.

3.2. Solution of the governing equations. Our goal is to use (2.17) to de-
termine the audio output of the amplifier. To do so we first need to determine the
switching times of g(t). Given a signal s(t), we determine these switching times, to-
gether with the values of h(nT ), from the coupled equations (3.6), (3.9), and (3.11),
which are, so far, exact.

We first use (2.12) to substitute the generalized switching-time functions for αn

and βn; the result is a system of three equations involving A(nT ), B(nT ), and h(nT ).
These equations are readily extended to intermediate times by mapping nT �→ t:

(
4

T
+ c

)
A(t) = 1 + ks(t + A(t)) + η(t) − c[f(t + A(t)) − f(t)],(3.12) (

4

T
+ c

)
B(t) = 3 − ks(t + B(t)) − η(t) + c[f(t + B(t)) − f(t)] + 2cA(t),(3.13)

η(t + T ) = η(t) − c[f(t + T ) − f(t)] + c[2B(t) − 2A(t) − T ].(3.14)

Since the functions A(t) and B(t) vary only on the time scale of the audio signal and
not on that of the carrier wave, the function h(t) is replaced in these expressions by
a slowly varying function η(t) such that

η(nT ) = h(nT )(3.15)

(see Figure 3.3).

Given the mild restrictions on the form of the input signal s(t) and its first integral
f(t), it seems unlikely that a general solution can be found to the coupled nonlinear
equations (3.12)–(3.14). Furthermore, it seems unlikely that any solution will be
unique, although we are unable to demonstrate nonuniqueness for the system of three
equations as posed. (A suggestion of nonuniqueness comes from the following thought
experiment. Suppose A(t) and B(t) are known and independent of η(t). Then the
solution η(t) to (3.14) is unique only up to the addition of a function of period T [3].
Note that here the nonuniqueness involves high-frequency components only.)

We find that we are able to construct a solution to (3.12)–(3.14) with frequency
spectrum in the audio range, as follows. The derivation is admittedly rather informal.
We introduce the small parameter ε = ωtyp/ωc � 1, where ωtyp is a typical audio
frequency component of the input. Then we note that (3.12)–(3.14) relate to variations
in s, A, B, and η on a time scale t = O(T ), and that such variations satisfy

dn

dtn
= O(εn).
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We then expand A(t), B(t), and η(t) as series

A(t) =

∞∑
m=0

Am(t), B(t) =

∞∑
m=0

Bm(t), η(t) =

∞∑
m=0

ηm(t),(3.16)

where the terms in (3.16) satisfy

Am, Bm, ηm = O(εm).

For all functions in (3.12)–(3.14) not evaluated at time t, we make use of Taylor
expansions such as

η(t + T ) =

∞∑
n=0

Tn η
(n)(t)

n!
(3.17)

to write them in terms of functions and derivatives evaluated at time t.
As an aside, we note that an alternative mathematical solution may possibly be

developed using the calculus of finite differences [3], where problems such as (3.14),
of the form u(t + T ) − u(t) = U(t), are examples of the so-called “summation prob-
lem.” However, the added complication of (3.12) and (3.13) makes a complete explicit
solution unlikely. We note, however, that (3.14) has the exact formal solution

η(t) = −cf(t) + c

∞∑
n=1

[2B(t− nT ) − 2A(t− nT ) − T ] .

Some of the key terms in the various expansions are

f(t + T ) − f(t) = Ts(t) + 1
2T

2s′(t) + 1
6T

3s′′(t) + O(ε3),

η(t + T ) − η(t) = Tη′0(t) +
[
Tη′1(t) + 1

2T
2η′′0 (t)

]
+ O(ε3),

s(t + A(t)) = s(t) + A0(t)s
′(t) +

[
1
2A

2
0(t)s

′′(t) + A1(t)s
′(t)

]
+ O(ε3),

s(t + B(t)) = s(t) + B0(t)s
′(t) +

[
1
2B

2
0(t)s′′(t) + B1(t)s

′(t)
]
+ O(ε3),

f(t + A(t)) − f(t) = A0(t)s(t) +
[

1
2A

2
0(t)s

′(t) + A1(t)s(t)
]

+
[

1
6A

3
0(t)s

′′(t) + A0(t)A1(t)s
′(t) + A2(t)s(t)

]
+ O(ε3),

f(t + B(t)) − f(t) = B0(t)s(t) +
[

1
2B

2
0(t)s′(t) + B1(t)s(t)

]
+
[

1
6B

3
0(t)s′′(t) + B0(t)B1(t)s

′(t) + B2(t)s(t)
]
+ O(ε3).

In view of (2.17), we also have the expansion

ga(t) = 1 − 2

T
(B0 −A0)

+
1

T

[
(B2

0 −A2
0)

′ − 2(B1 −A1)
]

+
1

T

[
− 1

3 (B3
0 −A3

0)
′′ + 2(B0B1 −A0A1)

′ − 2(B2 −A2)
]
+ O(ε3)(3.18)

for the audio output. With obvious notation, we write this as

ga(t) = g0(t) + g1(t) + g2(t) + O(ε3).(3.19)
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Let us now consider the problem (3.12)–(3.14) at successive powers of ε, starting
with terms of O(ε0). In doing so, it proves useful to note that upon adding (3.12)
to (3.13) we eliminate the unknown function η(t) and arrive at an equation that at
O(εn) takes the form

{4 − cT [1 − s(t)]}An(t) + {4 + cT [1 − s(t)]}Bn(t) = Pn(t),(3.20)

where Pn(t) is known in terms of quantities calculated at previous stages in the
calculation. Furthermore, (3.14) can be written in the form

Bn(t) −An(t) = Qn(t),(3.21)

where again Qn(t) comprises known quantities. This system is readily solved to give

An(t) = 1
8 {Pn(t) − [4 + cT (1 − s(t))]Qn(t)} ,(3.22)

Bn(t) = 1
8 {Pn(t) + [4 − cT (1 − s(t))]Qn(t)} .(3.23)

At O(ε0), we find P0 = 4T and Q0 = 1
2T (1 + s(t)). Correspondingly,

A0 = 1
16T (1 − s(t)) [4 − cT (1 + s(t))] ,(3.24)

B0 = 1
2T + 1

16T (1 + s(t)) [4 − cT (1 − s(t))] ,(3.25)

and thus the switching times approximately satisfy

αn = 1
16T (1 − s(nT )) [4 − cT (1 + s(nT ))] ,(3.26)

βn = 1
2T + 1

16T (1 + s(nT )) [4 − cT (1 − s(nT ))] .(3.27)

Of most significance is the result, which now follows from (3.24), (3.25), and (3.18),
that

g0(t) = −s(t).(3.28)

Thus to this order there is no distortion from signal to output, apart from a sign
change, which is unimportant for audio applications. However, in contrast to the
classical design, the next orders in the expansion of the audio output reveal distortion
inherent in the nonlinear-feedback design. (The minus sign in (3.28) is an artifact of
applying the triangular wave input to the noninverting input of the comparator; if it
is instead applied to the inverting input, then there is no sign change to the output.)

3.3. Amplifier output. The next steps in the calculation are algebraically cum-
bersome and shed little further light on the problem, so the full details are not pre-
sented here. Our primary interest lies in the audio output, and this turns out to
be

ga(t) = −s(t) +
1 + k

c
s′(t)

− 1

48c2

{
[48(1 + k) − c2T 2]s(t) − c2T 2s3(t)

}′′
+ O(ε3).(3.29)

Note that there arises a nonlinear (cubic) distortion term; this term is to leading
order independent of k, so it cannot be removed by any choice of this parameter.
This nonlinear term represents the “intrinsic” distortion of class-D amplifiers with
negative feedback to which we have alluded above.



CLASS-D AUDIO AMPLIFIERS 479

The linear terms in (3.29) also represent a form of distortion to the signal since
they affect different frequency components to different extents. This distortion can
be removed by making an appropriate choice of k such that the linear terms in (3.29)
form the beginnings of a Taylor series for a slightly delayed signal −s(t− (1 + k)/c).
It is readily determined that the appropriate value of k satisfies

k2 = 1 − 1

24
c2T 2;(3.30)

correspondingly, the audio output is then given by

ga(t) = −s

(
t− (1 + k)

c

)
+

1

48
T 2

(
s3(t)

)′′
+ O(ε3).(3.31)

Note that the delay to the output indicated here is independent of signal amplitude
and frequency, and thus is entirely benign. Furthermore, (1 + k)/c is a time of the
order of the carrier-wave period, so the delay to the audio signal is slight. However,
the nonlinear distortion term remains.

For the specific case of a sinusoidal input signal s(t) = s0 sinωt, (3.29) becomes

ga(t) = −s0 sinωt + (1 + k)μs0 cosωt

+
μ2

192

{[
192(1 + k) − (4 + 3s2

0)c
2T 2

]
s0 sinωt + 9c2T 2s3

0 sin 3ωt
}

+ O(μ3),(3.32)

where μ = O(ε): specifically,

μ =
ωT

cT
� 1.(3.33)

We note from (3.32) that the intrinsic nonlinear distortion manifests itself through
both a nonlinear influence on the amplitude of the fundamental and the presence of
a third-harmonic term.

3.4. Alternative expression for ga(t). An alternative expression for the audio
output may be derived as follows. First we note that the switching times for g(t)
satisfy

αn =
T

4
[1 + h(nT + αn) + ks(nT + αn)] ,

βn =
T

4
[3 − h(nT + βn) − ks(nT + βn)] .

If we introduce two new slowly varying functions η(t;α) and η(t;β) defined so that

η(nT + αn;α) = h(nT + αn), η(nT + βn;β) = h(nT + βn),(3.34)

then it follows from (2.29) that

ga(t) =
1

2
[η(t;α) + η(t;β)] + ks(t).(3.35)

Although this expression does not yield a useful explicit exact formula for ga(t), it
does provide an alternative means of calculating ga(t). This in turn gives us an
independent check on our results, which we have used to verify expressions such as
(3.29).

Having highlighted the third-harmonic distortion generated by the simplest class-
D amplifier design with negative feedback, we proceed to describe some remedies.



480 STEPHEN M. COX AND BRUCE H. CANDY

w(t)
+

v(t)

dt∫−c1r(t)

Fig. 4.1. Circuit diagram for modulation of the carrier wave. The modulation function r(t) is
input to an integrator, whose output v(t) is input to a hysteresis loop. The output w(t) of the last
device takes the value +1 once its input has reached the value +1; thereafter w(t) remains at +1
until the input v(t) falls to −1, from which point onwards w(t) = −1 until the input v(t) reaches +1
again, and so on.

1

+ +
−
+

kx

dt−c ∫
0

h(t)

g(t)

v(t)

s(t)

r(t)
d/dtc1

−

Fig. 4.2. Class-D amplifier with negative feedback and modulation of the carrier-wave sym-
metry. Note that the entire circuitry of Figure 4.1 is represented by the single box marked “v(t).”
The appropriate modulation signal r(t) = c−1

1 s′(t) is indicated on the diagram, as determined in
section 4.1.2.

4. Modulation of the carrier wave. We now examine one means of eliminat-
ing the “intrinsic distortion” term in (3.29). The key to the technique is to modulate
the carrier wave in such a way that the switching times of g(t) are slightly altered in
a fashion appropriate to countering the distortion. This technique is used successfully
for distortion reduction in amplifiers manufactured by Halcro (www.halcro.com).

We suppose that the carrier wave is modulated by a slowly varying input signal
r(t), where r(t) = e′(t), for some function e(t); since r(t) involves a first derivative, it
is taken to be O(ε) and the modulation of the carrier wave correspondingly slight. The
modulation circuit is illustrated in Figure 4.1; the full amplifier circuit is caricatured
in Figure 4.2. Now the carrier wave v(t) is governed by

v(t) = −c1

∫ t

w(τ) + r(τ) dτ,(4.1)

where c1 is a time constant associated with the integrator in the modulation circuit
(see Figure 4.1), and is no longer quite piecewise linear. The signal w(t) is a square
wave of variable duty cycle, taking the values w(t) = ±1, depending on the carrier
wave v(t) as follows. First, suppose that w = −1; then v is increasing. When v
reaches +1, w changes to +1 and v starts to decrease. Once v has decreased to −1,
w changes to −1; then v starts to increase once more, until it reaches +1 again, at
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which point the cycle starts over.

4.1. Analysis of the model. Suppose that w(t) changes to the value w = 1
at times t = Tn, and changes to the value w = −1 at times t = Un. Then for
Tn < t < Un, w(t) = 1 and hence

v(t) = 1 − c1[e(t) − e(Tn)] − c1(t− Tn).(4.2)

For Un < t < Tn+1, w(t) = −1 and

v(t) = −1 − c1[e(t) − e(Un)] + c1(t− Un).(4.3)

The time constant c1 (determined below) is such that c1T = O(1). Constants of
integration have been chosen so that each of these expressions gives the correct value
for v(t) at the start of each time interval. Imposing the appropriate value for v(t) at
the end of each time interval then gives the two conditions

c1[e(Un) − e(Tn)] + c1(Un − Tn) = 2,(4.4)

−c1[e(Tn+1) − e(Un)] + c1(Tn+1 − Un) = 2.(4.5)

For the special case in which r(t) ≡ r0 is constant, the carrier-wave v(t) is time-
periodic, with period of oscillation

T =
4

(1 − r2
0)c1

∼ 4

c1
(1 + r2

0).

Furthermore, in this case

Un − Tn =
2

(1 + r0)c1
∼ 2

c1
(1 − r0).

Note that T is in general increased by the presence of a nonzero modulation signal
(i.e., the frequency of the carrier wave is reduced). In what follows, we shall require
corrections to the carrier-wave due to modulation only up to O(ε), and thus, since
r2 = O(ε2), we may take T as fixed. Then the time constant c1 must be chosen so
that

c1 =
4

T
.(4.6)

With this approximation, it turns out that we may consistently calculate terms in ga(t)
up to O(ε2), which is sufficient to determine the effects of carrier-wave modulation on
the amplifier’s distortion characteristics.

If we write the times at which the slope of the triangular wave changes as

Tn = nT + an, Un = nT + bn,(4.7)

where 0 < an < bn < T , then these times are now governed by

0 = h(nT ) − c[f(nT + αn) − f(nT )] − cαn + ks(nT + αn)

+ 1 − c1[e(nT + αn) − e(nT + an)] − c1(αn − an),(4.8)

0 = h(nT ) − c[f(nT + βn) − f(nT )] + c(βn − 2αn) + ks(nT + βn)

− 1 − c1[e(nT + βn) − e(nT + bn)] + c1(βn − bn),(4.9)
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rather than by (3.6) and (3.9). As in the absence of modulation, we have (3.14).
The solution technique is just as with no modulation. Again we seek slowly

varying generalized switching times A(t) and B(t) of the output g(t), but now we
need two further slowly varying functions, C(t) and D(t), such that

C(nT ) = an, D(nT ) = bn.(4.10)

The equations to be solved arise from (3.14), (4.4), (4.5), (4.8), and (4.9), and are

c1[e(t + D(t)) − e(t + C(t))] + c1(D(t) − C(t)) = 2,(4.11)

−c1[e(t + T + C(t + T )) − e(t + D(t))] + c1(T + C(t + T ) −D(t)) = 2,(4.12)

η(t) − c[f(t + A(t)) − f(t)] − cA(t) + ks(t + A(t))

+ 1 − c1[e(t + A(t)) − e(t + C(t))] − c1(A(t) − C(t)) = 0,(4.13)

η(t) − c[f(t + B(t)) − f(t)] + c(B(t) − 2A(t)) + ks(t + B(t))

− 1 − c1[e(t + B(t)) − e(t + D(t))] + c1(B(t) −D(t)) = 0,(4.14)

η(t + T ) − η(t) + c[f(t + T ) − f(t)] − c[2B(t) − 2A(t) − T ] = 0.(4.15)

As with the simpler case of an unmodulated carrier-wave, we expand all unknown
functions (here A, B, C, D, and η) as series, as in (3.16), and solve in succession for
the terms in these series at the first few orders.

4.1.1. Discussion. When expanded, (4.11) and (4.12) each yield at O(1) and
at O(ε) identical equations of the forms

D0(t) − C0(t) =
1

2
T, D1(t) − C1(t) = −1

2
Tr(t),(4.16)

respectively. The fact that only the difference between the times C and D may
be determined partly reflects an arbitrariness in the time origin for the circuit that
generates the carrier wave. However, if we continue to the next order we find that the
two equations for D2(t) − C2(t) are in fact inconsistent, reflecting the more serious
limitation imposed upon the analysis by our assumption that the mean carrier-wave
period is unaltered by the modulation. Fortunately, a consistent calculation of C
and D up to terms C1 and D1 proves sufficient to determine the audio output of the
amplifier up to g2, which allows us to calculate the elimination of the distortion.

4.1.2. Elimination of the distortion. We find the audio output to be

ga(t) = −s(t) +
1 + k

c
s′(t)

− 1

3c2
1c

2

{
3c1c

2(rs2)′ +
[
3(1 + k)c2

1 − c2
]
s′′ − 3c1c

2r′ − c2(s3)′′
}

+ O(ε3),(4.17)

where c1 is given by (4.6). There are two nonlinear distortion terms in this expression,
proportional to (rs2)′ and (s3)′′. If we set r = νs′(t), we may eliminate both of them
by choosing ν = 1/c1 = T/4. Then

ga(t) = −s(t) +
1 + k

c
s′(t) − 1

12c2

[
12(1 + k) − c2T 2

]
s′′(t) + O(ε3).(4.18)

Thus all nonlinear distortion is removed, at least to the order calculated. A key
result of the present analysis is that the appropriate modulation of the carrier wave is
through a derivative of the input signal; this is, in fact, the method used in practice.
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Now if we choose k2 = 1 − 1
6c

2T 2, then the audio output is of the form

ga(t) = −s

(
t− (1 + k)

c

)
+ O(ε3),(4.19)

and, to the order calculated, there is no distortion beyond a slight delay to the output.

5. “Sample-and-hold” class-D amplifier with negative feedback. Modu-
lation of the carrier wave is not the only means by which the leading-order nonlinear
distortion can be removed from class-D amplifiers with negative feedback. We now
describe an alternative means of eliminating this distortion, without carrier-wave mod-
ulation. This alternative amplifier design has also been constructed, in prototype, by
Halcro and is illustrated in Figure 5.1. There is no modulation of the carrier-wave
symmetry.

Now the output of the integrator inputs to a sample-and-hold device, which
samples h(t) at times t = nT and (n + 1

2 )T ; its output p(t) is then a piecewise-
constant function. For nT ≤ t < (n + 1

2 )T , p(t) takes the value h(nT ), while for
(n + 1

2 )T ≤ t < (n + 1)T , p(t) takes the value h((n + 1
2 )T ). Aside from this new

feature, most details of the model remain essentially unchanged. The triangular wave
v(t) again satisfies (2.1) and v(t + T ) = v(t) for all t. The output g(t) of the com-
parator is now +1 if p(t) + ks(t) + v(t) > 0, and −1 if the inequality is reversed; the
switching times thus satisfy

p(nT + αn) + ks(nT + αn) + v(nT + αn) = 0,

p(nT + βn) + ks(nT + βn) + v(nT + βn) = 0.

The integrator output h(t) is again given by (3.2). In any interval nT < t < (n+1)T ,
there are three subintervals, as in (3.3); we describe these below. The analysis is
somewhat simplified by the sampling.

k

+ dt−c ∫
−
++S/H

s(t)

h(t)

g(t)0

v(t)

p(t)

x

Fig. 5.1. “Sample-and-hold” class-D amplifier with negative feedback. The sample-and-hold
(S/H) device is synchronized with the carrier-wave generator and gives an output p(t) equal to its
input h(t) sampled at times t = nT and t = (n + 1

2
)T . Thus for nT ≤ t < (n + 1

2
)T , p(t) = h(nT );

correspondingly, for (n + 1
2
)T ≤ t < (n + 1)T , p(t) = h((n + 1

2
)T ).

Subinterval I. By integrating (3.2) we find that h(t) is again given by (3.4), but
now the value of αn is defined by

p(nT + αn) + ks(nT + αn) + v(nT + αn) = 0;(5.1)

that is,

h(nT ) + ks(nT + αn) + 1 − 4αn

T
= 0.(5.2)
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Subinterval II. By integrating (3.2) we again find (3.7) for h(t); the value of βn

is defined by

p(nT + βn) + ks(nT + βn) + v(nT + βn) = 0;(5.3)

that is,

h((n + 1
2 )T ) + ks(nT + βn) − 3 +

4βn

T
= 0.(5.4)

Subinterval III. By integrating (3.2) we find (3.10) for h(t); it follows that
h((n + 1)T ) is again given by (3.11).

5.1. Solution of the governing equations. The three governing equations
are now

4

T
αn = 1 + ks(nT + αn) + h(nT ),(5.5)

4

T
βn = 3 − ks(nT + βn) − h

((
n +

1

2

)
T

)
,(5.6)

h((n + 1)T ) = h(nT ) − c[f((n + 1)T ) − f(nT )] + c(2βn − 2αn − T ).(5.7)

Furthermore, by considering subinterval II, we find that

h

((
n +

1

2

)
T

)
= h(nT ) − c

[
f

((
n +

1

2

)
T

)
− f(nT )

]
+ c

(
T

2
− 2αn

)
.(5.8)

As above, we introduce the slowly varying functions A(t), B(t), and η(t), which
now satisfy

4

T
A(t) = 1 + ks(t + A(t)) + η(t),

4

T
B(t) = 3 − ks(t + B(t)) − η(t) + c

[
f

(
t +

T

2

)
− f(t)

]
− c

[
T

2
− 2A(t)

]
,

η(t + T ) = η(t) − c[f(t + T ) − f(t)] + c[2B(t) − 2A(t) − T ],

and solve these equations at successive orders in ε. The audio output is eventually
found to be

ga(t) = −s(t) +
1 + k

c
s′(t)

+
1

96c2(4 − cT )

{[
c3T 3 − (28 + 24k)c2T 2 + 192(1 + k)cT − 384(1 + k)

]
s(t)

+ [cT − 4(1 + 2k)] c2T 2s3(t)
}′′

+ O(ε3).(5.9)

Now the nonlinear distortion term proportional to (s3)′′ may be removed from this
expression by choosing

k = −1

2
+

1

8
cT,(5.10)

in which case

ga(t) = −s(t) +
4 + cT

8c
s′(t) − 24 − c2T 2

48c2
s′′(t) + O(ε3).(5.11)
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Once the nonlinear distortion term has been so removed, we may similarly remove
linear distortion, so that the audio output suffers only a slight delay, i.e.,

ga(t) = −s

(
t−

1
8 (4 + cT )

c

)
+ O(ε3),

by choosing cT = 12(2
√

3 − 1)/11 ≈ 2.6881.

5.2. Alternative means of sampling. Suppose now that the sampling is car-
ried out only at times t = nT (i.e., not also at times t = (n+ 1

2 )T ). Then the equations
to be solved for A(t), B(t), and η(t) are somewhat simplified:

4

T
A(t) = 1 + ks(t + A(t)) + η(t),(5.12)

4

T
B(t) = 3 − ks(t + B(t)) − η(t),(5.13)

η(t + T ) − η(t) = −c[f(t + T ) − f(t)] + c[2B(t) − 2A(t) − T ].(5.14)

The audio output is, correspondingly, found to be

ga(t) = −s(t) +
1 + k

c
s′(t) +

1

96c2

{
−(2k + 1)c2T 2(3s2(t) + s3(t))′′

+
[
−c2T 2 − 6(1 + k)c2T 2 + 48(1 + k)cT − 96(1 + k)

]
s′′(t)

}
.(5.15)

In view of the asymmetrical sampling, there are now second and third harmonics at
O(ε2), but these can simultaneously be removed by choosing

k = −1

2
.

If this choice is made, then ga(t) becomes

ga(t) = −s(t) +
1

2c
s′(t) − 1

24c2

[
12 − 6cT + c2T 2

]
s′′(t) + O(ε3).(5.16)

This is a delayed version of the original signal (ga(t) = −s(t − 1
2c) + O(ε3)) if the

choice cT = 3 is made.

6. A new class-D amplifier, with reduced distortion. We now describe a
third modification to the standard negative-feedback class-D amplifier, which elim-
inates the intrinsic distortion at O(ε2). While the two designs described above in
sections 4 and 5 were developed first on physical principles and subsequently mod-
eled here mathematically, this new design arose as a consequence of the mathematical
models described herein. Prototypes do indeed enjoy significant distortion reduction.

To see how this new design is derived, we consider adding to the noninverting
input of the comparator a function F (t) such that F (t) is constant over each interval
nT ≤ t < (n+1)T . At present the values taken by this function over each interval are
arbitrary; we shall compute the effects of F (t) on the audio output spectrum, then
choose it so as to cancel out the intrinsic distortion.

With this additional design feature, the audio output of the amplifier is found to
be

ga(t) = −s(t) +
1

c
[(1 + k)s(t) + θ(t)]

′

− 1

48c2

{(
48 + 24cT − 3c2T 2

)
θ′(t) +

(
48(1 + k) − c2T 2

)
s′(t)

+ 3c2T 2 [θ(t) − s(t)]
′
s2(t)

}′
+ O(ε3),(6.1)
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where θ(t) is a slowly varying function that agrees with F (t) at times t = nT . The last
line of (6.1) represents the nonlinear distortion, and it is clear that this component
can be eliminated by choosing

F (nT ) = s(nT ),(6.2)

and hence θ(t) = s(t). Fortunately, no further distortion is introduced by this choice
for F (t), and we have

g(t) = −s(t) +
2 + k

c
s′(t) − 12(2 + k) + 6cT − c2T 2

12c2
s′′(t) + O(ε3),(6.3)

which is free from any nonlinear distortion. As in the other models above, it is possible
to choose k so that the output is, to the order calculated, a delayed version of the
input signal and suffers no further distortion beyond the slight delay.

7. Nonlinearity in the carrier wave. We now consider one way in which
imperfect electronic components can introduce distortion into the output. Specifically,
we note that it is difficult in practice to generate a high-frequency triangular carrier
wave whose slopes are precisely linear. In general the wave comprises sections of
exponential functions, which approximate very closely the desired piecewise-linear
profile [6]. For instance, let us suppose that instead of (2.1) we have for the carrier
wave

v(t) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 − 2(et/t0 − 1)

eT/2t0 − 1
≡ v1(t) for 0 ≤ t <

T

2
,

−1 +
2(e(t−T/2)/t0 − 1)

eT/2t0 − 1
≡ v2(t) for

T

2
≤ t < T,

(7.1)

and v(t+T ) = v(t) for all t. Note that the piecewise-linear profile of (2.1) is recovered
as t0/T → ∞.

7.1. “Classical” class-D amplifier design. Let us first consider the effects of
carrier-wave nonlinearity on the classical class-D amplifier design, without negative
feedback. Here switching of g(t) takes place whenever v(t) + s(t) = 0, i.e., when

v1(nT + αn) + s(nT + αn) = 0 or v2(nT + βn) + s(nT + βn) = 0.(7.2)

These expressions are readily rearranged to give implicit equations for the switching
times:

αn = t0 log
{

1 + 1
2 [1 + s(nT + αn)](eT/2t0 − 1)

}
,(7.3)

βn = 1
2T + t0 log

{
1 + 1

2 [1 − s(nT + βn)](eT/2t0 − 1)
}
.(7.4)

It now follows readily from (2.27) that the audio output is

ga(t) =
2t0
T

log
1 + 1

2 [1 + s(t)](eT/2t0 − 1)

1 + 1
2 [1 − s(t)](eT/2t0 − 1)

.(7.5)

(It is straightforward from this expression to check that g(t) ∼ s(t) as t0/T → ∞, in
accordance with (2.29).) Since it follows by Taylor expansion that

ga(t) ∼
4t0
T

∞∑
n=0

1

2n + 1

[
(eT/2t0 − 1)s(t)

eT/2t0 + 1

]2n+1

,(7.6)
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we may in principle compute the audio spectrum, for instance, due to a sinusoidal
input s(t).

We contrast the result here, where ga �≡ s and there is nonlinear distortion of
O(T/t0), with that for a perfectly piecewise-linear carrier wave, where there is no
distortion to the output.

7.2. Class-D amplifier with negative feedback. We now consider the ef-
fects of carrier-wave nonlinearity on the class-D amplifier with negative feedback (as
illustrated in Figure 3.1). It turns out that, provided T/t0 � 1, then to leading order
in the nonlinearity, the output ga(t) as given by (3.29) is augmented by a term of the
form

T 2

16t0

(
s3(t) − s(t)

)′
.(7.7)

Note that the nonlinear distortion term here (proportional to (s3)′) can be thought
of as having a phase different from that inherent in the basic amplifier design (pro-
portional to (s3)′′), so one cannot be used to cancel the other.

However, if we modify the design by adding to the comparator input a quantity

− 1

ct0
h(t)(7.8)

sampled at times

t = nT and

(
n +

1

2

)
T,(7.9)

in addition to the modification proposed in section 6, then the third-harmonic distor-
tion term due to the carrier wave nonlinearity is canceled, and

ga(t) = −s(t) + c−1(2 + k)s′(t)

+ c−2

[
− 1

12

(
12(2 + k) + 6cT − c2T 2

)
s′′(t) + t−1

0 (2 + k)s′(t)

]
+ O(ε3).(7.10)

With an appropriate choice for k, this expression is essentially just a slightly delayed
version of the input signal, i.e.,

ga(t) = −s(t− t1) + O(ε3).(7.11)

To achieve this simplification we take

k = −1 +

(
1 + cT − 1

6
c2T 2

)1/2

;

then the delay is

t1 =
2 + k

c

(
1 +

1

ct0

)
.

To the order calculated, there is no further distortion; the delay computed here is
independent of the signal amplitude or frequency.
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8. Conclusions. We have developed mathematical models for a variety of class-
D amplifier designs. While models for the classical design with no negative feedback
have been known for some time [1, 4, 5], the models presented here appear to be the
first to treat in detail the negative-distortion design. One model describes the use of
modulation to the carrier wave symmetry in order to reduce the intrinsic distortion of
the negative-feedback design; another describes the use of a sample-and-hold device
to achieve essentially the same ends. The mathematical analysis has, in each case,
given theoretical backing to the design idea and quantitative statements about the
parameter sets under which the designs are effective. A new means of reducing the
intrinsic distortion has been proposed, on the basis of the mathematical models devel-
oped, which involves the use of a sample-and-hold device, but in a manner different
from that in the existing design.

One of the authors (BHC) has tested all three designs (i.e., those described in
sections 4, 5, and 6) in prototype and found them all to achieve significant reduction
in harmonic distortion. The two designs involving a sample-and-hold unit are found
not to work as well in practice as the carrier-wave modulation system, and are more
expensive to produce. The carrier-wave modulation design is the basis of a successful
commercial amplifier manufactured by Halcro.

It should be noted that the models developed here do not reflect a range of
important practical issues, such as the noise and stability characteristics of the de-
signs, nor their electromagnetic emissions. The models assume perfect components,
an assumption that has particularly significant shortcomings in relation to sample-
and-hold devices, for which the errors are relatively severe (in comparison with, say,
integrators).

The models developed in this paper appear to be the first to provide an in-depth
mathematical treatment of class-D amplifiers with negative feedback, and should be
capable of extension to more complicated designs that reflect more accurately actual
audio amplifiers.
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ACOUSTIC PROPAGATION IN DISPERSIONS IN THE LONG
WAVELENGTH LIMIT∗

V. J. PINFIELD† , O. G. HARLEN‡ , M. J. W. POVEY† , AND B. D. SLEEMAN‡

Abstract. The problem of scattering of ultrasound by particles in the long wavelength limit
has a well-established solution in terms of Rayleigh expansions of the scattered fields. However,
this solution is ill-conditioned numerically, and recent work has attempted to identify an alternative
method. The scattered fields have been expressed as a perturbation expansion in the parameter Ka
(the wavenumber multiplied by the particle radius), which is small in the long wavelength region.
In the work reported here the problem has been formulated so as to be valid for all values of the
thermal wavelength, which varies in order of magnitude, from much smaller to much larger than
the particle size in the long wavelength region. Thus the present solution overlaps the limiting
solutions for very small thermal wavelength (geometric theory) and very large thermal wavelength
(low frequency) previously reported. Close agreement is demonstrated with the established Rayleigh
expansion solution.

Key words. Helmholtz equation, scattering theory, ultrasound spectroscopy, dispersions
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1. Introduction. Ultrasound spectroscopy is an increasingly popular technique
for characterizing the physical properties of dispersions, emulsions, gels, and solutions
of biomolecules. It is a noninvasive technique that can address the extensive range of
particle sizes encountered in many particulate systems and can be used with optically
opaque materials. The technique has been adopted in manufacturing processes in
the food and chemical industries. Ultrasonic instruments may be used to determine
particle size distribution and/or concentration of the dispersed particles. In order
to do this, it is necessary to use a strong theoretical basis to relate the ultrasound
properties, i.e., velocity and attenuation, to the particle size and physical properties
of the materials.

The problem of scattering of sound waves by a single spherical object (a fluid
droplet) was solved by Rayleigh [1] and later refined by Epstein and Carhart [2].
A similar problem, with solid particles, was addressed by Allegra and Hawley [3].
Their solution is referred to as ECAH. The scattered fields are expanded as spherical
harmonics in order to allow the application of boundary conditions at the particle
surface. Although the solution is analytically exact, its numerical solution can be
troublesome, because the matrix equation is ill-conditioned, and the series does not
converge uniformly. In addition, calculation of spherical Bessel functions at large
complex arguments is imprecise, and at large distances the Hankel functions oscillate
rapidly. Such numerical limitations cause difficulty in applying the ultrasound method
in practical applications.
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The aim of the present work in this area has been to formulate a numerically stable
solution to the single scatterer problem in such a way as to allow its potential extension
to multiple scatterers and to nonspherical scatterers. The frequency range of interest is
termed the long wavelength limit, in which the wavelength of the propagating acoustic
wave is much larger than the size of the droplet (Ka � 1, where K is the wavenumber
and a the radius of the particles). In this case, Kleinman’s approach can be applied,
in which the problem is reformulated to satisfy the radiation condition and uses a
perturbation series solution in powers of Ka. At the lowest frequencies, at which the
wavelength of the thermal waves produced by scattering is also much larger than the
particle radius (La � 1, where L is the thermal wavenumber), the same technique can
be applied to the thermal wave. The method was applied to single particle scattering
in the low-frequency potential scattering theory (LFPST) previously published (Harlen
et al. [4]). A later paper (Harlen et al. [5]) considered the case La � 1, where
the thermal wavelength is much smaller than the particle size, and the Kleinman
series expansion in La cannot be used. In this case, a geometric theory method
was developed to approximate the solution for the thermal waves while retaining the
Kleinman technique for the propagational waves.

In the work reported here, the Kleinman principles have again been used to
separate the radiative terms of the waves and to define a series expansion which is
convergent for the long wavelength limit (Ka � 1). The significant difference is that
all wave modes are expanded as a series in Ka, leaving dependence on the thermal
wavenumber implicit in the coefficients. This avoids assumptions on the size of La.

In the next section, the propagation of sound in fluids is considered in the context
of a plane wave incident on a isolated spherical particle. The full ECAH method for
the solution of the scattering problem is summarized and the perturbation expan-
sion technique introduced. Sections 3 and 4 define the analytical forms of the wave
potentials outside and inside the particle. Section 5 constructs the solution to the
scattering problem in the perturbation method, showing the general solution and ex-
plicit results for the first few terms. Calculations are presented in section 6 to show
that the method agrees with the full Rayleigh expansion method.

2. Sound fields in a fluid. The principles of sound propagation in homogeneous
fluids are well documented, and only the most important results are given here. The
equations of conservation of mass (continuity equation), momentum (Navier–Stokes
equation), and energy, together with some thermodynamic relations, can be simplified
by use of a velocity potential, φ, such that

u = −∇φ,(1)

where u is the velocity of the fluid. The resulting biharmonic equation is further
separated by defining two potentials, one for each of two types of wave mode (prop-
agational and thermal). Propagational modes are the “usual” mode by which sound
travels in a fluid. The thermal mode represents heat flow and is dissipative and there-
fore highly localized. There is an additional solution to the equations resulting from
use of a vector potential, which corresponds to shear wave modes. Again these are
dissipative with a very short decay length in fluids. In many practical applications
of ultrasound, the shear wave modes resulting from scattering at dispersed particles
are small. Hence for the subsequent analysis and in the previously published work
(Harlen et al. [4], [5]), the vector potential solution is neglected. It was, however,
included in the ECAH solutions.
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Periodic solutions for the wave potentials have a time dependence defined by a
factor e−iωt , where ω is the angular frequency, which results in two separate Helmholtz
equations, one each for the propagational and thermal modes, thus:(

∇2 + K2
)
ϕ = 0,

(
∇2 + L2

)
ψ = 0.(2)

The overall velocity potential in the fluid is the sum of the propagational (ϕ) and
thermal (ψ) potentials.

The wavenumbers are given to a very good approximation in fluids by

K =
ω

v

(
1 + i

(γ − 1)σω

2v2

)
, L =

( ω

2σ

)1/2

(1 + i) ,(3)

where γ is the ratio of specific heat capacities, v the speed of sound, and σ the thermal
diffusivity, such that σ = τ/ρCp, where τ is the thermal conductivity, ρ is the density,
and Cp is the specific heat capacity at constant pressure.

The common expression for the wavenumber of the propagational mode has the
form

K =
ω

v
+ iα,(4)

where α is the attenuation. There are many absorption effects in fluids which are not
accounted for in the classical thermal and fluid momentum equations used to derive
the wavenumber in (3). Hence the measured attenuation should be used instead, as
in (4).

The pressure and temperature fluctuations which result from the wave motions
are related to the velocity potentials as follows:

P = −iωρ (ϕ + ψ) , T = Γcϕ + Γtψ,(5)

where the thermal factor for each wave mode is

Γc =
−iK2 (γ − 1)

β (ω + iγσK2)
, Γt =

−iL2 (γ − 1)

β (ω + iγσL2)
.(6)

Subscript c is used to denote the compressional (or propagational) mode and t the
thermal mode. Note that these temperature factors were quoted incorrectly in the
previous paper (Harlen et al. [5]).

A useful thermodynamic relation is

γ − 1 =
v2β2T0

Cp
,(7)

where β is the thermal expansivity and T0 is the temperature of the system, not the
small temperature changes caused by the wave motion.

2.1. Scattering of sound waves by particles. In order to calculate the ultra-
sound field produced by a dispersion of particles, it is first necessary to consider the
effect on a sound wave of a single particle immersed in isolation in an infinite uniform
fluid. The most relevant and simple system to study is that of a plane wave of angular
frequency ω incident on a spherical particle of radius a. The fluid inside the particle
has different physical properties and so will respond in a different way from the fluid
surrounding it to the compression and rarefaction of the wave. Scattered waves of
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each mode are produced inside and outside the particle. At the surface of the particle
certain boundary conditions must be met. These include the requirement that the
boundary not be disrupted, i.e., that material immediately inside and outside of the
particle move at the same speed, and that temperature and heat flow be continuous
(the same either side of the interface). In terms of the wave potentials, the boundary
conditions are as follows.

The normal velocity of fluid on both sides of the boundary must be equal to avoid
formation of a void:

∂

∂r
(ϕ0 + ϕ + ψ) =

∂

∂r
(ϕ′ + ψ′) .(8)

The pressure must be equal on each side of the boundary:

ϕ0 + ϕ + ψ = ρ̂ (ϕ′ + ψ′) .(9)

The temperature must be equal on each side of the boundary:

Γcϕ0 + Γcϕ + Γtψ = Γ′
cϕ

′ + Γ′
tψ

′.(10)

The heat flux must be equal on each side of the boundary:

Γc
∂

∂r
(ϕ0 + ϕ) + Γt

∂ψ

∂r
= τ̂

(
Γ′
c

∂ϕ′

∂r
+ Γ′

t

∂ψ′

∂r

)
,(11)

where primed quantities refer to the inside of the particle,

ρ̂ =
ρ′

ρ
, τ̂ =

τ ′

τ
,(12)

and ϕ0 is the potential of the incident wave.
The objective is to determine the amplitude and phase of the scattered propaga-

tional mode, which is the only part which is still nonnegligible at a significant distance
from the particle (the thermal field having decayed to zero). Other published work is
used to determine the wavenumber for a dispersion of particles, by a multiple scat-
tering approach, to obtain the net effect of many particles. For the present work, the
aim is to calculate the scattered wave amplitude.

In order to obtain the solution to the scattering problem, a general form for each
wave mode must be proposed. The potentials of the scattered fields must be solutions
of the appropriate Helmholtz equation (2), whether inside or outside the particle. In
addition, the waves inside the particle must be defined at the origin (the center of the
particle), and those outside the particle must satisfy the radiation condition. Finally,
the boundary conditions at the surface of the particle must be satisfied. In sections
3 and 4 appropriate forms for the solutions are constructed to allow the scattering
problem to be resolved.

2.2. ECAH method. The Epstein and Carhart method [2] for the scattering
problem expanded the solutions of the Helmholtz equation in spherical coordinates.
The solutions are Rayleigh series in the spherical harmonics, that is, a combined series
in the spherical Bessel functions (for the radial dependence) and Legendre polynomials
(for the angular dependence). The Bessel functions are chosen appropriately for the
region in which the wave exists; in the continuous phase the solution must be defined
at large distances, so the Hankel function hn is used, whereas inside the particle the
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solution must be defined at the origin, so the jn function is used. ECAH took the
forms for each wave potential to be as follows:

ϕ =

∞∑
n=0

in (2n + 1)Anhn (Kr)Pn (cos θ) ,

ψ =

∞∑
n=0

in (2n + 1)Bnhn (Lr)Pn (cos θ) ,

ϕ′ =

∞∑
n=0

in (2n + 1)A′
njn (K ′r)Pn (cos θ) ,

ψ′ =

∞∑
n=0

in (2n + 1)B′
njn (L′r)Pn (cos θ) .

(13)

Similarly the incident field (a plane wave) can be expressed as

ϕ0 =

∞∑
n=0

in(2n + 1)jn (Kr)Pn (cos θ) .(14)

In the ECAH method, these functions and the relevant derivatives are directly
evaluated at the surface of the particle and substituted into the set of boundary
conditions. For a spherical particle of radius a the Bessel functions must be determined
at r = a. In the long wavelength limit, |Ka| � 1 and |K ′a| � 1, the Hankel and Bessel
functions can cause difficulties, and the difference in scale of the values appearing in
the boundary equations results in an ill-conditioned matrix equation which must be
solved.

In order to avoid these problems, a solution is sought which uses alternative forms
for the wave potentials, both to avoid the direct use of the Bessel functions and to
produce a direct solution not relying on a matrix inversion for its solution.

2.3. Kleinman method and Poincaré series. In the long wavelength limit,
the condition |Ka| � 1 applies. Kleinman developed a method for solving low-
frequency scattering problems (see Harlen et al. [4]) in which he expressed the poten-
tials as a perturbation expansion, i.e., as a series in powers of iKa:

φ =
∞∑

m=0

(iKa)
m
φm,(15)

where φ is one of the wave potentials. The series is known to converge rapidly,
with an error bounded by O

(
|Ka|m+1)

if the mth order solution is used. Thus the
problem becomes one of finding the solution to a set of potential functions. Although
this may seem to increase the number of equations which must be solved, it avoids
the ill-conditioned numerical calculation suffered by the ECAH approach and allows
the series to be terminated with some confidence that an accurate result has been
obtained. Further details of the method are given in Harlen et al. [4] and [5].

In the present work, all potentials are expanded as a series in iKa. The previous
low-frequency work (Harlen et al. [4]) expanded each wave potential as a series in
its appropriate wavenumber; for example, the thermal wave mode was defined as
a series in powers of L. Later, the work on the short thermal wavelength region
(geometric theory [5]) introduced combined power series, with positive powers of the
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propagational wavenumbers, and inverse powers of the thermal wavenumbers. In the
frequency range considered in that work, the values of |La| and |L′a| were large, hence
an inverse power series was appropriate. For example, for a scattered propagational
mode potential,

φ =

∞∑
n=0

∞∑
m=0

(iKa)
n

(iLa)
m φnm.(16)

In order to achieve a method which is valid across the entire frequency range in the long
wavelength limit, it is appropriate to use only a power series in iKa since this value is
by definition small over the entire range, |Ka| � 1, thus assuring convergence of the
series. Series in positive or inverse powers of La are limited in their scope because of
the variation in magnitude of this parameter within the long wavelength region. Its
value ranges from small at low frequency to very large at the upper frequency limit
of the long wavelength region. Hence in the current work, the power series in iKa
is applied to each wave potential, with any dependence on other wavenumbers being
implicit in the rest of the potential.

3. Solution forms outside the particle. In the continuous phase outside the
particle, the solutions of the Helmholtz equation must also satisfy the radiation con-
dition, which restricts its form at large distances from the particle. The Sommerfield
radiation condition is as follows:

lim
r→∞

[
r

(
∂φ

∂r
− ikφ

)]
= 0.(17)

In physical terms, the condition means that there is no energy radiating inwards from
infinity. Thus the solution appears as an outgoing spherical wave at large distances
from the particle (cf. Colton and Kress [6, p. 21]).

The spherical Hankel function used in the ECAH method is one such solution,
each hn(kr) including a factor eikr

/
r which represents a spherical wave. However,

radiating solutions to the Helmholtz equation are not regular at infinity, and it is the
exponential part of the function which caused numerical difficulties at large arguments
(for the thermal waves).

In general terms, the form of the solution is

φ =
eikr

r
φ̃ =

eikr

r

∞∑
l=0

fl (ϑ,Ω)

rl
,(18)

where fl is the angular dependence (Harlen et al. [4]). The function φ̃ does not suffer
from the mathematical difficulties of the overall potential φ, and is regular at infinity.

Following the previous method (Harlen et al. [4]), it is therefore appropriate to
introduce new potential functions, ϕ̃ and ψ̃, for the propagational and thermal modes,
respectively, outside the particle such that

ϕ = eiK(r−a)ϕ̃,(19)

ψ = eiL(r−a)ψ̃.(20)

The exponential spherical-wave factors have been explicitly taken out, so that the
remaining functions ϕ̃ and ψ̃ are regular and differentiable. In addition when applying
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boundary conditions for a spherical particle at r = a the exponential factors do not
contribute.

Continuing the Kleinman approach, the next step is to express the new potential
functions as a series in iKa (see previous section), thus(

ϕ̃, ψ̃
)

=
∑
m

(iKa)
m
(
ϕ̃m, ψ̃m

)
.(21)

3.1. Propagational mode. Using the spherical harmonic solutions to the Helm-
holtz equation, the partial fields for the propagational mode can then be written as

ϕ̃m =

∞∑
n=0

∑
j=0

Anmj ·
rj

aj
· a

n+1

rn+1
· Pn (cosϑ) .(22)

This form of the solution is suggested by the results of the LFPST method (Harlen et
al. [4]), although it is expressed here as a general series in r. The full wave potential
can be constructed using (21) and (19). The Helmholtz equation (2) can then be
shown to relate the potentials of consecutive order m by the equation

∇2ϕ̃m = − 2

ar

∂

∂r
(rϕ̃m−1) .(23)

By substituting the general solution (22) into this form of the Helmholtz equation,
and matching powers of (iKa) for each (spherical harmonic) order n, it can be shown
that the coefficients are related by the following recurrence relation:

An,m,j = − 2 (j − 1 − n)

j (j − 1 − 2n)
An,m−1,j−1 for j ≥ 1.(24)

Thus coefficients for the potential of order m are related to those for the previous
order. Only the j = 0 coefficient remains to be solved from the boundary equations.
By definition, all coefficients for orders m < 0 are zero. Note that the coefficients are
zero for j ≥ n + 1, and hence the coefficients may be nonzero up to and including
j = n, i.e., it is a finite series. The solution for the lowest orders (see section 5.6)
demonstrates that, excepting n = 0, the first (in m) nonzero coefficient is for m = n,
which implies that at larger orders m the last nonzero term in the j-series will be for
j = m − n. The result also shows that (22) does give a solution of the Helmholtz
equation. Although the propagational mode solution (22) does not appear to have
the same form as that required for a radiating solution (18), it is clear that since the
coefficients are nonzero only for j ≤ n, each term in l (18) includes contributions from
different m, n, and j combinations, which together give the angular dependence fl.

The ECAH method expresses the propagational scattered wave in terms of the
spherical Hankel functions hn(Kr). Our result is not simply a power series expansion
in Kr of the Hankel function. This is because the wave potential has been written
as a power series in iKa, which removes all the K-dependence, leaving a series in r,
whose coefficients are to be determined. Contributions from different orders m make
up the overall potential series in Kr.

3.2. Thermal mode. In the ECAH method, the thermal wave potential in
the continuous phase was based on the spherical Hankel function hn(Lr). Since the
perturbation series expansion (21) is taken in powers of (iKa), rather than in powers
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of L, the thermal potential can be expressed simply using the series expansion of the
spherical Hankel function. Thus

hn(x) = eix
n+1∑
j=1

hnj

xj
(25)

(see the appendix for the factors hnj), so that the thermal wave potential takes the
form

ψ̃m =

∞∑
n=0

n+1∑
j=1

Bnm · hnj

(Lr)j
· Pn (cosϑ) .(26)

All factors of L are taken implicitly as part of the potential function. The spherical
Hankel function, in fact, results in a finite series in inverse powers of Lr, whose
coefficients are known. These are all included in the appropriate term in the series in
powers of (iKa)m.

3.3. The incident wave. The incident wave is a plane wave and can be ex-
pressed as a series of spherical harmonics, as in the ECAH method (see (14)). In
order to follow the same method as used for the other waves, the spherical Bessel
function can be expanded as a power series in (iKa), using the power series expansion
of the spherical Bessel function

jn (x) = 2nxn
∞∑
s=0

(−1)
s
(s + n)!

s! (2s + 2n + 1)!
x2s(27)

(Arfken [7, p. 625]).
Thus the plane wave can be written

ϕ0 =

∞∑
n=0

∞∑
s=0

(iKa)
n+2s

( r
a

)n+2s

Fn (s)Pn (cosϑ) ,(28)

where

Fn (s) =
2n (2n + 1) (s + n)!

s! (2s + 2n + 1)!
,(29)

where n and s are nonnegative integers (F is zero otherwise). For purposes of numer-
ical calculation, the factorial functions suffer from overflow for all but very low orders
(n, s). The following recurrence relations can be used for accurate calculation:

F0 (0) = 1,(30)

Fn (0)

Fn−1 (0)
=

1

(2n− 1)
for n ≥ 1,(31)

Fn (s)

Fn (s− 1)
=

1

2s (2n + 2s + 1)
for s ≥ 1.(32)

In the low-frequency scattering method (Harlen et al. [4]), the incident field was
included in the form of (14), with the jn(Kr) function retained. Thus the contri-
bution of the incident field was included entirely in the zeroth and first order terms
of the perturbation series in (iKa). The later work for the higher frequency region
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(Harlen et al. [5]) expressed the incident field through the power series expansion of
the exponential form:

eiKz = eiKr cos θ =

∞∑
n=0

(iKa cos θ)
n

n!
.(33)

However, this requires that each of the powers of cos θ be expressed in terms of the
associated Legendre polynomials Pn (cos θ) which appear in the other wave potentials
in order to match the angular dependence in the boundary conditions. Hence the
expansion used here, (28), appears to be most consistent with the method, since the
powers of iKa and the angular dependence Pn (cos θ) can be matched directly in the
boundary equations.

4. Solution forms inside the particle. Within the particle or droplet, the
solutions to the Helmholtz equation need not satisfy the radiation condition, since
the waves are in a bounded region. However, the solutions must be defined at the
origin (r = 0). In spherical coordinates the appropriate solutions for the radial part of
the potential are the spherical Bessel functions, jn, rather than the spherical Hankel
functions, hn, which are not defined at the origin. When the boundary conditions are
applied, the Bessel function for the thermal wave must be evaluated for an argument
L′a which can have a large imaginary component in the frequency range of interest.
Hence, it is again desirable to avoid the use of Bessel functions.

4.1. Propagational mode. There are many different ways of expressing the
spherical Bessel functions jn—for example, as an infinite power series or as a combi-
nation of trigonometric functions sin and cos. For the propagational mode inside the
particle, the power series form can be used, since the value K ′a (which is the argu-
ment of the function used in the boundary equations) is small in the long wavelength
region. First, applying the perturbation series expansion as

ϕ′ =
∑
m

(iKa)
m
ϕ′
m(34)

and then expressing the potential as a series in powers of r gives

ϕ′
m =

∞∑
n=0

∑
j=0

A′
nmj ·

rj

aj
· r

n

an
· Pn (cosϑ) .(35)

The Helmholtz equation (2) can again be used with (34) to relate potentials to those
of a different order, and thus

∇2ϕ′
m =

ĉ

a2
ϕ′
m−2,(36)

where

ĉ =
K ′2

K2
,(37)

which is frequency independent to a very good approximation. Substituting the gen-
eral solution, (35), into (36) and matching powers of iKa as before results in the
following recurrence relation for the coefficients:

A′
n,m,j =

ĉ

j (2n + j + 1)
A′

n,m−2,j−2 for j ≥ 2,(38)

A′
n,m,j = 0 for j = 1 and all odd values of j.(39)
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As in the case of the propagational mode in the continuous phase, the above equations
show that the coefficients A′

n,m,j for order m can be calculated from those of a previous
order, given that all coefficients for m < 0 are zero. Only the j = 0 coefficient remains
to be determined from the boundary conditions. In this case the limit of the series is
determined by the number of nonzero coefficients for the previous order, producing
an expanding triangle of coefficients. The solution of the boundary conditions shows
that the first nonzero coefficient is for n = m, j = 0, so that the limit of the series in
j would be j = m− n, where m > n.

4.2. Thermal mode. For the thermal wave, the argument of the function at
the boundary, L′a, may be small or very large, depending on the frequency. The usual
power series expansion of jn would be inappropriate at large arguments. Similarly an
infinite inverse power series in L′r, as used by Harlen et al. [5], would be unsuitable
at small arguments and is not defined at the origin. Hence, either form is restricted
in its frequency range.

The trigonometric form of the Bessel function jn (e.g., j0 (x) = sinx/x) can
be modified by expressing the trigonometric functions as a sum or difference of two
exponential terms eix and e−ix, and thus

jn(x) = eix
n+1∑
j=1

jnj+

xj
− e−ix

n+1∑
j=1

jnj−
xj

(40)

(see the appendix for the coefficients).
Hence, the wave potential for the thermal wave in the particle could be written

as a sum of modified outward and inward spherical waves. Arfken [7, p. 627] states
that “jn(x) and nn(x) are appropriate for a description of standing spherical waves;
h1
n(x) and h2

n(x) correspond to traveling spherical waves.” A standing wave results
from a superposition of traveling waves in opposite directions.

Hence the thermal wave inside the particle can be written as

ψ′ = eiL
′(r−a)ψ̃′

+ − e−iL′(r−a)ψ̃′
−.(41)

Following the previous perturbation series method with each of the new wave poten-
tials, {

ψ̃′
+, ψ̃

′
−

}
=

∑
m

(iKa)
m
{
ψ̃′

+m, ψ̃′
−m

}
.(42)

And each of the terms has the usual angular dependence; thus

ψ̃′
+m =

∞∑
n=0

n+1∑
j=1

B′
nm · e2iL′a · jnj+

(L′r)j
· Pn (cosϑ) ,(43)

ψ̃′
−m =

∞∑
n=0

n+1∑
j=1

B′
nm · jnj−

(L′r)j
· Pn (cosϑ) .(44)

The factor e2iL′a results from the condition that the potential be defined at the origin.
All inverse powers of r must cancel at the origin, leaving only a single term from n = 0.

The previous work on scattering at the high-frequency end of the long wavelength
limit (Harlen et al. [5]) used only the second of the two terms given in (41). When a
series solution is used in powers of L′a the only solution for the zeroth order term is
a/r (Harlen et al. [5, equation (4.9)]), which results in a function which is not defined
at the origin. The result given above avoids this problem.
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5. Construction of the solution.

5.1. Pressure and temperature factors. When applying the boundary con-
ditions, terms in the same powers of iKa must be matched, as must the angular
dependence Pn (cos θ). For consistency, any other parameters which appear in the
boundary conditions must be expressed as the appropriate power of iKa. The pres-
sure and temperature changes caused by the different waves were defined in (5). The
pressure is related to the wave potential by a factor which includes the frequency and
density. Since the frequency is the same for all wave forms, this factor will cancel
from the relevant boundary equation. However, the thermal factors (equation (6))
have different frequency dependence for the different wave modes, and these need to
be defined in relation to powers of iKa.

For the propagational modes, the thermal factors can be simplified by using the
relation ∣∣∣∣K2

L2

∣∣∣∣ ≈ ωσ

v2
� 1.(45)

The approximation is not limited in frequency range, but relies on the small value of
ωσ

/
v2 which is of order 10−5 at 100 MHz in water at 30◦ C, so that

Γc =
−iK2 (γ − 1)

β (ω + iγσK2)
≈ K2 (γ − 1)

βσL2
(46)

and

Γ′
c =

−iK ′2 (γ′ − 1)

β′ (ω + iγ′σ′K ′2)
≈ ĉK2 (γ′ − 1)

β′σ′L′2 .(47)

The dependence on L is left implicit, whereas the power series in (iKa) requires
explicit consideration of powers of K. Hence the K-dependence of thermal factors are
expressed by two new parameters, and thus

Γc = (iKa)
2
gc, Γ′

c = (iKa)
2
g′c.(48)

The thermal factors for the thermal wave modes can be simplified,

Γt =
−iL2 (γ − 1)

β (ω + iγσL2)
≈ − 1

βσ
,(49)

and similarly in the dispersed phase. The temperature factors for the thermal waves
can therefore be seen to be approximately independent of frequency, and hence inde-
pendent of K, which is the power series being used.

5.2. Definitions. The application of the boundary conditions leads to some
complicated equations, which can be made easier to read by using some further sym-
bols to define collections of terms. In addition, in numerical calculation, greater accu-
racy is achieved (avoiding subtraction of nearly equal terms) by using the recurrence
relation (24) to write

∑
j=0

An,m−1,j+

m−n∑
j=0

jAnmj =

m−n∑
j=1

− j

(j − 2n)
An,m−1,j + δn0An,m−1,0,(50)
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where δn0 is a Kronecker delta. The second term on the right-hand side which affects
only the n = 0 results was omitted in the reported LFPST solution (Harlen et al. [4]).

Other symbols are defined as follows:

Sh =

n+1∑
j=1

hnj

(La)
j
,(51)

Sdh =

n+1∑
j=1

(iLa− j)hnj

(La)
j

,(52)

Sj = e2iL′a
n+1∑
j=1

jnj+

(L′a)
j
−

n+1∑
j=1

jnj−

(L′a)
j
,(53)

Sdj = e2iL′a
n+1∑
j=1

(iL′a− j) jnj+

(L′a)
j

+

n+1∑
j=1

(iL′a + j) jnj−

(L′a)
j

,(54)

SA,m−s =

n∑
j=0

An,m−s,j for s = 1, 2, 3, SA,m =

n∑
j=1

An,m,j ,(55)

SjA,m−s =

n∑
j=1

− j

(j − 2n)
An,m−s,j + δn0An,m−s,0 for s = 0, 1, 2, 3,(56)

SA′,m−s =

m−n∑
j=0

A′
n,m−s,j for s = 1, 2, 3, SA′,m =

m−n∑
j=1

A′
n,m,j ,(57)

SjA′,m−s =

m−n∑
j=1

jA′
n,m−s,j for s = 0, 1, 2.(58)

5.3. Boundary conditions. Having defined the wave potentials in a consistent
form, as perturbation series in powers of iKa, and with the Legendre polynomials
defining the angular dependence, the boundary conditions can now be applied at
the surface of the spherical particle, r = a. Each boundary equation consists of
summations over orders n,m. The spherical harmonic terms which define the angular
dependence are independent and hence must be matched—so all terms in the same n
must be matched. In addition, terms in powers of (iKa)m are matched on each side of
the equation, which may arise from various orders of m. If each order m is determined
in turn, all coefficients for previous orders, e.g., m−1, are already known. In addition,
the propagational mode coefficients for order m for j ≥ 1 can be calculated from the
previous order results (see (24) and (38)). Hence, the boundary equations for the
n,mth order include four unknowns:

Anm0, A′
nm0, Bnm, B′

nm.
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The four boundary conditions (8)–(11) result in the equations below:

mFn

(
m− n

2

)
+

m−1−n∑
j=0

An,m−1,j +

m−n∑
j=1

(j − n− 1)Anmj − (n + 1)Anm0 + SdhBnm

=

m−n∑
j=1

(j + n)A′
nmj + nA′

nm0 + SdjB
′
nm,(59)

Fn

(
m− n

2

)
+

m−n∑
j=1

Anmj + Anm0 + ShBnm

= ρ̂

m−n∑
j=1

A′
nmj + ρ̂A′

nm0 + ρ̂SjB
′
nm,(60)

gcFn

(
m− n− 2

2

)
+ gc

m−2−n∑
j=0

An,m−2,j + ΓtShBnm

= g′c

m−2−n∑
j=0

A′
n,m−2,j + Γ′

tSjB
′
nm,(61)

gc (m− 2)Fn

(
m− n− 2

2

)
+ gc

m−3−n∑
j=0

An,m−3,j

+ gc

m−2−n∑
j=0

(j − n− 1)An,m−2,j + ΓtSdhBnm

= τ̂ g′c

m−2−n∑
j=0

(j + n)A′
n,m−2,j + τ̂Γ′

tSdjB
′
nm.(62)

5.4. Solution. The solution proceeds by stepping through the orders of m start-
ing at m = 0. All coefficients are zero for m < 0. For each m the recurrence relations
are used to derive any nonzero propagational mode coefficients for order m (equations
(24) and (38)). The two thermal boundary conditions, (61) and (62), for the n,mth
order include only the unknown thermal coefficients; other terms, being from previous
orders m−2 and m−3, are already known. Hence (61) and (62) can be solved for the
thermal coefficients Bnmand B′

nm. These can be substituted into the other boundary
equations, (59) and (60), in order to determine the remaining propagational mode
coefficients Anm0, A′

nm0.
The thermal coefficients for n,m are

Bnm =
[
−gc (τ̂Sdj − (m− 2)Sj)Fn ((m− n− 2)/2)

− gc {(τ̂Sdj + (n + 1)Sj)SA,m−2 − SjSjA,m−3}(63)

+ τ̂ g′c {(Sdj − nSj)SA′,m−2 − SjSjA′,m−2}
]
/Γt (τ̂SdjSh − SjSdh) ,
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B′
nm =

[
−gc (Sdh − (m− 2)Sh)Fn ((m− n− 2)/2)

− gc {(Sdh + (n + 1)Sh)SA,m−2 − ShSjA,m−3}(64)

+ g′c {(Sdh − nτ̂Sh)SA′,m−2 − τ̂ShSjA′,m−2}
]
/Γ′

t (τ̂SdjSh − SjSdh) .

Substituting into the boundary conditions, (59) and (60), thus gives

Anm0 =
[
(mρ̂− n)Fn ((m− n)/2)

− (n + (n + 1) ρ̂)SA,m + ρ̂ (SjA,m−1 − SjA′,m)(65)

+ (ρ̂Sdh − nSh)Bnm − ρ̂ (Sdj − nSj)B
′
nm

]
/[n + (n + 1) ρ̂] ,

A′
nm0 =

[
(m + n + 1)Fn ((m− n)/2)

− (n + (n + 1) ρ̂)SA′,m + (SjA,m−1 − SjA′,m)(66)

+ (Sdh + (n + 1)Sh)Bnm − (Sdj + (n + 1) ρ̂Sj)B
′
nm

]
/[n + (n + 1) ρ̂] .

Since the thermal boundary equations (61) and (62) include terms in order m−2
and lower orders, this implies that the first nonzero thermal field contribution is at
second order in iKa.

5.5. Multiple scattering. For practical application of the scattering results, it
is necessary to relate the scattering from a single particle to the wavenumber (and
corresponding velocity and attenuation) of a dispersion of such particles. The com-
monly used formulation for multiple scattering is that of Lloyd and Berry [8], whose
result was derived in a different way by Waterman and Truell and later works [9],
[10]. Taking the limiting form of the solution, (18), in the far field as r approaches
infinity, the scattered field takes the form

ϕ → eiKr

r
f (θ) .(67)

In terms of the Legendre polynomials,

f (θ) =
1

iK

∞∑
n=0

(2n + 1)TnPn (cos θ) .(68)

The scattered propagational field, combining (19), (21), and (22), has the form

ϕ =
∞∑

m=0

∞∑
n=0

∑
j=0

Anmj (iKa)
m
eiK(r−a) · r

j

aj
· a

n+1

rn+1
· Pn (cosϑ) ,(69)

from which the far field coefficient Tn is

Tn =
e−iKa

(2n + 1)

∞∑
m=0

(iKa)
m+1

Anmn,(70)

showing that only the terms j = n contribute in the far field. For each spherical
harmonic n (except for n = 0), the first nonzero term for the j = 0 coefficients (from
the boundary equations) is for m = n (see, for example, the results in Table 1).
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Following the recurrence relation (equation (24)) through the orders m shows that
the first nonzero term appearing in the far field (i.e., for j = n) will be at order
m = 2n. So for the n = 1 far field coefficient, T1, the first contribution results from
A121; for n = 2 the first nonzero term in T2 corresponds to m = 4, i.e., A242. It is
very important to include sufficient orders m ≥ 2n when an accurate solution for the
nth order far field coefficient is required.

The multiple scattering result for the wavenumber of the dispersion, B, is

(
B

K

)2

= 1 +
3φ

K2a3
f (0)

+
9φ2

4K4a6

(
f2 (π) − f2 (0) −

∫ π

0

dθ
1

sin (θ/2)

(
d

dθ
f2 (θ)

))
,(71)

which to second order gives

(
B

K

)2

= 1 − 3iφ

K3a3
(T0 + 3T1 + 5T2)

− 27φ2

K6a6

(
T0T1 +

10

3
T0T2 + 2T 2

1 + 11T1T2 +
230

21
T 2

2

)
.(72)

Note that here the symbol φ refers to the volume fraction of the dispersed particles.

5.6. Explicit solutions for low orders. In order to demonstrate the method
of solution and to derive explicit solutions which may be used instead of the gen-
eral solution, the results are here derived for low orders of n and m. The following
parameters are those which are used to obtain the low order solutions:

For n = 0

h01 = −i,(73)

Sh = −i/(La) , Sdh = −i(iLa− 1)/(La) ,(74)

j01+ = j01− = 1/(2i) ,(75)

Sj =
(
e2iL′a − 1

)/
(2iL′a) ,(76)

Sdj =
{
iL′a

(
e2iL′a + 1

)
−
(
e2iL′a − 1

)}/
(2iL′a) ,(77)

F0(0) = 1, F0(1) = 1/6,(78)

and for n = 1

F1(0) = 1.(79)

All the nonzero coefficients are given in Table 1 for orders n ≤ 2 and m ≤ 2. The
method for obtaining these solutions is summarized below.
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Table 1

Explicit solutions for scattering coefficients at low orders.

n = 0 n = 1 n = 2
m = 0

A′
000 = 1/ρ̂

m = 1

A110 =
(ρ̂− 1)

(2ρ̂ + 1)

A′
110 =

3

(2ρ̂ + 1)

m = 2

A′
022 =

ĉ

6ρ̂

B02 =
τ̂ (g′c − ρ̂gc)Sdj

ρ̂Γt

(
τ̂SdjSh − SjSdh

)
B′

02 =
(g′c − ρ̂gc)Sdh

ρ̂Γ′
t

(
τ̂SdjSh − SjSdh

)

A120 =
(ρ̂− 1)

(2ρ̂ + 1)

A121 = − (ρ̂− 1)

(2ρ̂ + 1)

A220 =
2 (ρ̂− 1)

3 (3ρ̂ + 2)

A′
220 =

5

3 (3ρ̂ + 2)

A020 =
(ρ̂− ĉ)

3ρ̂
+

(g′c − ρ̂gc)
(
τ̂Γ′

t − Γt

)
SdjSdh

ρ̂ΓtΓ′
t

(
τ̂SdjSh − SjSdh

)
A′

020 =
1

2ρ̂
− ĉ (ρ̂ + 2)

6ρ̂2

+
(g′c − ρ̂gc)

[
τ̂Γ′

tSdj (Sdh + Sh) − ΓtSdh

(
Sdj + ρ̂Sj

)]
ρ̂2ΓtΓ′

t

(
τ̂SdjSh − SjSdh

)

By definition, all coefficients for orders m < 0 are zero; hence the recurrence
relations (equations (24) and (38)) show that all propagational mode coefficients are
zero for j > 0. There is no incident field contribution to the thermal boundary
conditions (equations (61) and (62)) (since s = (m− n− 2)/2 = −1), so the thermal
coefficients are zero:

B00 = B′
00 = 0.

The velocity and pressure boundary conditions (equations (59) and (60)) include a
nonzero contribution from the incident field, such that the zeroth order of the incident
field affects the zeroth order propagational mode. The resulting coefficients for the
propagational modes are

A000 = 0, A′
000 = 1/ρ̂.(80)

For m = 1 the incident field makes no contribution at the boundary (since the ar-
guments s = (m− n− 2)/2 or s = (m− n)/2 are noninteger). No nonzero coeffi-
cients are found from the recurrence relations, so again the thermal field is zero. The
propagational coefficients are also zero in this case (by substitution in the boundary
equations):

A010 = A′
010 = 0.(81)
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For m = 2, the recurrence relations now give a nonzero coefficient, A′
022, resulting

from the A′
000 coefficients, as shown in the table.

The summations over coefficients also now have nonzero terms:

SA′,m =
ĉ

6ρ̂
, SjA′,m =

ĉ

3ρ̂
, SA′,m−2 =

1

ρ̂
.(82)

All coefficients (j > 0) of the continuous phase propagational mode are again zero.
The incident field contributes both to the thermal boundary conditions and to

the velocity and pressure conditions producing the first nonzero thermal coefficients,
B02, B

′
02 (Table 1). These results are consistent with the results in the geometric

theory paper (Harlen et al. [5]) for large values of La. The LFPST paper (Harlen et
al. [4]) did not assign the incident field to the different orders of Ka, instead assigning
it all to the zeroth and first order terms, so analytical comparison is not possible. The
propagational coefficients, A020, A

′
020 (Table 1) are found by substituting the thermal

coefficients into the velocity and pressure boundary equations. For higher orders in
n the process is exactly the same, but there are no thermal contributions up to order
m = 2, resulting in coefficients which depend only on density.

To obtain the velocity and attenuation of a dispersion using the coefficients up
to second order, the relevant far field coefficients, Tn, must be determined. Equation
(70) shows that only coefficients for j = n contribute to each Tn. Thus the far field
coefficients to second order in m are

T0 = e−iKa (iKa)
3
A020, T1 =

e−iKa

3
(iKa)

3
A121, T2 = 0.(83)

Substituting these coefficients into the equation for the wavenumber of the dispersion,
B (equation (72)), gives

(
B

K

)2

= 1 − 3φe−iKa (A020 + A121) + 3φ2e−2iKa
(
3A020A121 + 2A2

121

)
.(84)

Since the exponential factors are near unity (Ka being small), and the coefficient A121

depends only on density, the particle size and frequency dependence appear almost
entirely through the A020 coefficient. It is the parameters Sh, Sdh, Sj , Sdj (equations
(74) and (76)) which define the dependence on particle size and frequency through
the relationship between the thermal wavelengths and the particle size, expressed by
the parameters La and L′a. Thus we have an analytical result for the wavenumber
of the dispersion which is valid over the entire long wavelength region, and is simple
enough to be calculated in a standard spreadsheet. It is, of course, an approximate
result, but, as will be demonstrated in the next section, it is a good approximation
unless the parameter Ka > 0.01. Visco-inertial scattering has not been included in
the present theory, so for dispersions with a large density difference between the two
components, the results will not be as accurate.

6. Results. Calculations have been carried out using MATLAB for a model
system of sunflower oil in water at 30◦ C. The calculations are straightforward, and
take only a few seconds to complete a spectrum of 50 frequency values. The physical
properties of the two components are given in Table 2. A particle diameter of 1 μm
was chosen so that a complete range of thermal wavelengths could be covered within
the long wavelength limit. The concentration (by volume) was 20%. The attenuation
of each material was not included in the calculation, so the attenuation determined by



506 PINFIELD, HARLEN, POVEY, AND SLEEMAN

Table 2

Physical properties of sunflower oil and water at 30◦ C.

Water Sunflower oil

Ultrasound velocity / m s−1 1509.1 1437.9

Density / kg m−3 995.7 912.9

Thermal expansivity / K−1 0.00030 0.00073

Specific heat capacity / J kg−1 K−1 4178.2 1980.0

Thermal conductivity / W m−1 K−1 0.603 0.17
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Fig. 1. Ultrasound velocity as a function of the parameter Ka for 20% sunflower oil in water at
30◦C with a particle diameter of 1 μm. Four different calculation methods are shown: the “general”
method presented in this paper, the LFPST method (Harlen et al. [4]), the geometric theory method
(Harlen et al. [5]), and the ECAH method (Epstein and Carhart [2]). The thermal parameter
|La| is shown above the plot. The parameters for the dispersed phase are |L′a| = 1.24 |La| and
K′a = 1.05Ka.

the scattering calculation is in addition to the nonscattering contribution. Figures 1
and 2 show the velocity and attenuation per wavelength (αλ) as a function of frequency
in the form of the parameters Ka and La. The ultrasound properties have been
calculated by four different methods, including ECAH and the general theory results
presented here.

It was found that the LFPST theory (Harlen et al. [4]) for low frequencies required
orders up to m = 8 in order to obtain even the first part of the change in velocity and
attenuation as the frequency increases. The theory is very much confined to the lowest
frequency range. Similarly the geometric theory (Harlen et al. [5]) (which here was
calculated only to second order in m and n) is valid only for high frequencies within
the long wavelength region and deviates from the ECAH values as the frequency
decreases.

The general theory presented in the current work is valid over the entire frequency
range within the long wavelength region. The results for velocity and attenuation
match closely those determined using the ECAH method. Visco-inertial scattering,
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Fig. 2. Attenuation per wavelength as a function of the parameter |La| for 20% sunflower oil
in water at 30◦C. Four different calculation methods are shown: the “general” method presented in
this paper, the LFPST method (Harlen et al. [4]), the geometric theory method (Harlen et al. [5]),
and the ECAH method (Epstein and Carhart [2]). Corresponding values of Ka are shown above the
plot. The parameters for the dispersed phase are |L′a| = 1.24 |La| and K′a = 1.05Ka.

which relates to a difference in density between the two components and their viscosity,
is not included in the general theory but is included in ECAH. The densities of the
two components are similar, but the additional scattering accounts for the difference
between the general theory and ECAH results. Terms for m ≤ 4 were included for
the general theory, as higher orders did not significantly change the result. At higher
frequencies, the long wavelength criterion (Ka � 1) is no longer valid, and more and
more terms are needed to obtain an accurate result. Figure 3 shows the contribution
of including these terms. The second order solution is very accurate for frequencies
below the point Ka = 0.007. The fourth order solution gives a more accurate result
over a much wider frequency range.

7. Conclusions. A method has been presented for the solution of the ultrasound
scattering problem in the long wavelength region. The work builds on previously
published studies which covered only part of the frequency range, when the thermal
wavelength is either much smaller or much larger than the particle size. The technique
consists of expressing the scattered fields as perturbation series in the parameter Ka,
which is always small in the long wavelength region, and explicitly removing the
radiating field factor eiKr. A result has been obtained which covers the complete long
wavelength region. The calculation is much more straightforward than the widely
used ECAH method, which relies on spherical harmonic expansions and suffers from
numerical instability. A simplified analytical version of the result has been produced
which enables calculation in an ordinary spreadsheet.

8. Appendix. The thermal wave solutions use expansions of the spherical Bessel
functions which are not generally found in mathematical texts. The coefficients can
be calculated in the order n by the formula below.
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Fig. 3. General theory results for 20% sunflower oil in water at 30◦C showing the contributions
of higher order terms in the series expansion, especially at larger values of Ka. The parameters for
the dispersed phase are |L′a| = 1.24 |La| and K′a = 1.05Ka.

For the spherical Hankel function,

h01 = −i for n = 0,

for n > 0 hn,j =

⎧⎪⎨
⎪⎩

−ihn−1,j for j = 1,

−ihn−1,j + (n + j − 2)hn−1,j−1 for 1 < j < n + 1,

(2n− 1)hn−1,j−1 for j = n + 1.

Similarly for the spherical Bessel function, which was defined in two parts, an outgoing
and an ingoing traveling wave:

j0,1+ = 1/2i for n = 0,

for n > 0 jn,j+ =

⎧⎪⎨
⎪⎩

−ijn−1,j+ for j = 1,

−ijn−1,j+ + (n + j − 2)jn−1,j−1+ for 1 < j < n + 1,

(2n− 1)jn−1,j−1+ for j = n + 1,

j0,1− = 1/2i for n = 0,

for n > 0 jn,j− =

⎧⎪⎨
⎪⎩

ijn−1,j− for j = 1,

ijn−1,j− + (n + j − 2)jn−1,j−1− for 1 < j < n + 1,

(2n− 1)jn−1,j−1− for j = n + 1.
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THE INITIAL SURFACE TENSION–DRIVEN FLOW OF A WEDGE
OF VISCOUS FLUID∗

J. BILLINGHAM†

Abstract. In this paper, we consider the two-dimensional motion of a viscous, incompressible
fluid with a free surface, initially lying inside a wedge. The fluid flows under the action of surface
tension, and we analyze its small time motion using the method of matched asymptotic expansions.
We show that, in contrast to the case where there is a surrounding fluid with viscosity [M. J. Miksis
and J.-M. Vanden-Broeck, Phys. Fluids, 11 (1999), pp. 3227–3231], the initial motion is not self-
similar but develops over two asymptotic regions: an inner, nonlinear, surface tension–driven Stokes
flow region near the tip of the wedge, and an outer, linear, unsteady Stokes flow region, where inertia
is important but surface tension is not. The initial velocity of the tip of the wedge is singular, of
O(log t) as t → 0. We calculate numerical solutions of both the inner and outer problem for a general
wedge semiangle, α, and also construct asymptotic solutions in the limits α → 0 and α → π.

Key words. fluid mechanics, surface tension, matched asymptotic expansions
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1. Introduction. In the time since Keller and Miksis [2] identified a similarity
scaling, with lengths scaling like t2/3, suitable for the solution of two- and three-
dimensional inviscid, surface tension–driven flows in initial configurations with no
geometrical lengthscale (for example, wedges and cones), many authors have studied
related problems (for example, [3], [4], [5], [6], [7]). Such problems are of relevance
to the recoil of fluid sheets and jets after rupture. However, at sufficiently small
times, viscosity is always relevant in this type of problem. In order to investigate this,
Miksis and Vanden-Broeck [1] studied the two-dimensional, surface tension–driven
Stokes flow of two fluids initially lying in four wedges. This canonical problem is
relevant to the rupture of liquid sheets (see, for example, [8]), and a similarity scaling
is available, with lengths scaling like t. Miksis and Vanden-Broeck [1] solved this
similarity problem numerically using the boundary integral method. However, they
were unable to find a solution for the case of an inviscid outer fluid and hypothesized
that no such solution exists.

In this paper, we consider the problem of the recoil of a single wedge of viscous,
incompressible fluid under the action of surface tension. Noting that the solutions
studied by Miksis and Vanden-Broeck [1] give the small time asymptotic behavior of
the two-fluid problem, we study the small time solution of the single-fluid problem.
Drawing on the results given in [4] for the case of an almost flat wedge, we show that
inertia is never negligible, and the solution has a two-region asymptotic structure,
consistent with the hypothesis of [1] that no similarity solution exists. In an outer
region, with size O(t1/2), surface tension is negligible and linearized inertia acts at
leading order, while in an inner region, with size O(t), inertia is negligible, and the
leading order problem is a surface tension–driven Stokes flow, similar to that studied
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by Miksis and Vanden-Broeck [1]. The crucial difference is that the tip of the wedge
recoils through a distance of O(t log t) in the single fluid problem that we study here,
so that the fluid velocity is singular of O(log t) as t → 0. The recoil distance is fixed
by matching between the inner and outer solutions.

After setting up the initial/boundary value problem in section 2, we detail the
asymptotic structure and matching conditions in section 3. We discuss numerical
solutions of the outer problem in section 4 and of the inner problem in section 5.
Finally, we consider the limiting cases of slender wedges, first of the interior, viscous
fluid in section 6, and then of the exterior, inviscid fluid in section 7.

2. The initial/boundary value problem. The dimensionless initial/boundary
value problem appropriate to the surface tension–driven recoil of a single wedge of
viscous fluid consists of the Navier–Stokes equations for an incompressible, viscous
fluid,

∂u

∂t
+ u · ∇u = −∇p + ∇2u for y > Y (x, t),(2.1)

∇ · u = 0 for y > Y (x, t)(2.2)

subject to the kinematic condition,

∂Y

∂t
= uy − ux

∂Y

∂x
at y = Y (x, t),(2.3)

and the shear and normal stress continuity conditions,{
1 −

(
∂Y

∂x

)2
}(

∂ux

∂y
+

∂uy

∂x

)
− 4

∂Y

∂x

∂ux

∂x
= 0 at y = Y (x, t),(2.4)

−p− 2

{
1 +

(
∂Y

∂x

)2
}−1 [{

1 −
(
∂Y

∂x

)2
}

∂ux

∂x
+

∂Y

∂x

(
∂ux

∂y
+

∂uy

∂x

)]

= −∂2Y

∂x2

{
1 +

(
∂Y

∂x

)2
}−3/2

at y = Y (x, t),(2.5)

where u = (ux, uy) is the velocity field, p is the pressure, and the free surface lies at
y = Y (x, t). The initial conditions are

u = 0, Y = cotαx when t = 0,(2.6)

so that the fluid is initially at rest in a wedge of semiangle α, and the far field
conditions are

u → 0, p → 0 as x2 + y2 → ∞,(2.7)

Y − cotαx → 0 as x → ∞.(2.8)

The problem has been made dimensionless using the length, time, velocity, and pres-
sure scales,

l∗ = μ2/σρ, t∗ = μ3/σ2ρ, u∗ = σ/μ, p∗ = ρσ2/μ2,

where μ, σ, and ρ are the constant viscosity, surface tension, and density of the
fluid, respectively. These are the only physical quantities available, since the initial
conditions provide no geometrical lengthscale. Note that (2.1) to (2.8) contain just
one parameter: the wedge semiangle, α.
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3. Asymptotic solution for t � 1: Structure and matching. We will
now construct the small time asymptotic solution of this problem. This has already
been done by Miksis and Vanden-Broeck [1] for the equivalent problem with an outer
viscous fluid, where a similarity solution of the Stokes flow limit, with lengths scaling
on t, provides the solution for t � 1 of the full Navier–Stokes problem. However,
as we noted earlier, no such solution can be found when the viscosity of the exterior
fluid is zero. The form of the asymptotic solution of (2.1) to (2.8) when t � 1
and |α− π/2| � 1 is described in [4], where we found that the solution develops
over two asymptotic regions: an inner, surface tension–driven Stokes flow region,
where lengths scale with t, and an outer, unsteady Stokes flow region with no surface
tension at leading order, where lengths scale with t1/2. In addition, the tip of the
wedge recoils through a distance of O(t log t), not simply of O(t), as was the case for
a viscous exterior fluid. An explanation for the presence of this logarithm is given by
an argument equivalent to one made in [9], which analyzes the coalescence of viscous
liquid drops. In [9, section 2], it is shown that the velocity field due to a point force
at the tip of a wedge with free boundaries is singular at the tip, and that the velocity
there must depend upon the logarithm of the size of an inner region, consistent with
the scalings we use here.

The following are appropriate asymptotic scalings:
1. Outer region: x, y = O(t1/2), Y = cotαx + O(t), p = O(t−1/2), ux, uy =

O(1).
2. Inner region: x = O(t), y = −Kt log t + O(t), Y = −Kt log t + O(t), p =

O(t−1), ux = O(1), uy = −K log t + O(1).
The function K ≡ K(α) is an eigenvalue that must be determined as part of the
solution for each value of α.

3.1. Leading order equations and matching conditions. In the outer re-
gion, we define the scaled variables

x = t1/2x̃, y = t1/2ỹ, Y = cotαx + tỸ , p = t−1/2p̃, ux = ũx, uy = ũy,

in terms of which, at leading order for t � 1, (2.1) to (2.8) become

−1

2
x̃ · ∇̃ũ = −∇̃p̃ + ∇̃2ũ for ỹ > cotα x̃,(3.1)

∇̃ · ũ = 0 for ỹ > cotα x̃,(3.2)

Ỹ − 1

2
x̃
dỸ

dx̃
= ũy − cotα ũx at ỹ = cotα x̃,(3.3)

(
1 − cot2 α

)(∂ũx

∂ỹ
+

∂ũy

∂x̃

)
− 4 cotα

∂ũx

∂x̃
= 0 at ỹ = cotα x̃,(3.4)

−p̃ + 2 cos 2α
∂ũx

∂x̃
− sin 2α

(
∂ũx

∂ỹ
+

∂ũy

∂x̃

)
= 0 at ỹ = cotα x̃,(3.5)

ũ → 0, p̃ → 0 as x̃2 + ỹ2 → ∞,(3.6)
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Ỹ → 0 as x̃ → ∞.(3.7)

These are the equations for unsteady Stokes flow in a wedge, with stress-free boundary
conditions. Surface tension does not appear at leading order. The kinematic condi-
tion, (3.3), decouples from the other equations and allows Ỹ to be calculated once the
velocity field is known. Note that uniform flow in the ỹ-direction is a simple solution
of these equations, although it does not satisfy the far field boundary condition. The
system is forced by the matching conditions as x̃2 + ỹ2 → 0, and we shall determine
these below.

In the inner region, we define the scaled variables

x = tx̄, y = −Kt log t + tȳ, Y = −Kt log t + tȲ , p = t−1p̄,

ux = ūx, uy = −K log t + ūy,

in terms of which, at leading order for t � 1, (2.1) to (2.8) become

0 = −∇̄p̄ + ∇̄2ū for ȳ > Ȳ (x̄),(3.8)

∇̄ · ū = 0 for ȳ > Ȳ (x̄),(3.9)

Ȳ − x̄
dȲ

dx̄
= K + ūy − ūx

dȲ

dx̄
at ȳ = Ȳ (x̄),(3.10)

{
1 −

(
dȲ

dx̄

)2
}(

∂ūx

∂ȳ
+

∂ūy

∂x̄

)
− 4

dȲ

dx̄

∂ūx

∂x̄
= 0 at ȳ = Ȳ (x̄),(3.11)

−p̄− 2

{
1 +

(
dȲ

dx̄

)2
}−1 [{

1 −
(
dȲ

dx̄

)2
}

∂ūx

∂x̄
+

dȲ

dx̄

(
∂ūx

∂ȳ
+

∂ūy

∂x̄

)]

= −d2Ȳ

dx̄2

{
1 +

(
dȲ

dx̄

)2
}−3/2

at ȳ = Ȳ (x̄).(3.12)

These are the equations for steady, surface tension–driven Stokes flow, but with the
modified kinematic condition (3.10). We now need to consider the far field behavior
of solutions of this inner problem so that we can determine appropriate matching
conditions between the two asymptotic regions.

Since we must have Ȳ ∼ cotαx̄ as x̄ → ∞, the flow in the far field lies within a
wedge at leading order. By writing the equations in terms of polar coordinates, it is
straightforward to show that

Ȳ ∼ cotαx̄− 2K log x̄ + K (b∞ − 3 + 2 log sinα) as x̄ → ∞,(3.13)

p̄ ∼ 4K
ȳ

x̄2 + ȳ2
, ūx ∼ 2K

x̄ȳ

x̄2 + ȳ2
,

ūy ∼ −K log
(
x̄2 + ȳ2

)
− 2K

x̄2

x̄2 + ȳ2
+ Kb∞ as x̄2 + ȳ2 → ∞.(3.14)
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The function b∞(α) is, as yet, undetermined.
We can now write the matching condition for the outer problem,

p̃ ∼ 4K
ỹ

x̃2 + ỹ2
, ũx ∼ 2K

x̃ỹ

x̃2 + ỹ2
,

ũy ∼ −K log
(
x̃2 + ỹ2

)
− 2K

x̃2

x̃2 + ỹ2
+ Kb∞ as x̃2 + ỹ2 → 0.(3.15)

4. Solution of the outer problem. Since the outer problem is linear and
forced by the matching condition (3.15), we can scale the constant K out of the
problem and solve to determine b∞. Once we know b∞, we have enough information
to solve the inner problem. It is also convenient to rewrite the outer problem in
streamfunction-vorticity form, so we define the scaled streamfunction ψ and vorticity
ω using

ũx = K
∂ψ

∂ỹ
, ũy = −K

∂ψ

∂x̃
, ω = −∇̃2ψ.

The outer problem then becomes, using the symmetry of the problem about the ỹ-axis,
in terms of polar coordinates

∇̃2ψ + ω = 0 for π/2 < θ < π/2 + α,(4.1)

∇̃2ω +
1

2

∂

∂r̃
(r̃ω) = 0 for π/2 < θ < π/2 + α(4.2)

subject to

ω +
∂2ψ

∂r̃2
= 0 at θ = π/2 + α,(4.3)

2

r̃

∂3ψ

∂r̃2∂θ
+

(
1

2
− 4

r̃2

)(
∂2ψ

∂r̃∂θ
− 1

r̃

∂ψ

∂θ

)
− 1

r̃

∂ω

∂θ
= 0 at θ = π/2 + α,(4.4)

the symmetry conditions

ψ = ω = 0 at θ = π/2,(4.5)

the far field conditions

ψ → 0, ω → 0 as r̃ → ∞,(4.6)

and the matching conditions

ψ ∼ 2r̃ log r̃ cos θ − b∞r̃ cos θ, ω ∼ −4 cos θ

r̃
as r̃ → 0.(4.7)

As we noted earlier, a constant flow in the ỹ-direction, ψ = kr̃ cos θ, ω = 0, satisfies the
equations and boundary conditions, except for the far field and matching conditions.
We can think of b∞ as the strength of the uniform component of the flow that must
emerge from the inner region to ensure that there is no flow at infinity. Note that the
singular part of the flow near the origin given by (4.7) is simply a Stokeslet, which
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indicates that the outer flow sees a point force and a uniform flow at the tip of the
wedge, which is provided by the surface tension–driven inner flow.

Although this is a linear boundary value problem in a wedge, there is no obvious
way of solving it analytically using integral transforms. This remains true even when
α = π and the domain of the solution is a half-plane. However, when α = π/2,
we can use the results given in [4], which show that b∞(π/2) ≈ 1.869. We can also
consider the limit of a slender wedge, α � 1, for which a simple asymptotic solution
is available, before we discuss the numerical solution of (4.1) to (4.7).

4.1. The slender wedge, α � 1. When α � 1, θ = π
2 + O(α), so we define

the scaled variables

θ =
π

2
− αθ̄, ψ = αψ̄, ω = αω̄.

Equations (4.1) and (4.2) at leading order then show that ψ̄ and ω̄ are linear in θ,
and the symmetry conditions give

ψ̄ = A0(r̃)θ̄, ω̄ = B0(r̃)θ̄.(4.8)

The boundary conditions (4.3) and (4.4) are unchanged by this rescaling and show
that

B0 + 2A′′
0 = 0,

2

r̃
A′′

0 +

(
1

2
− 4

r̃2

)(
A′

0 −
1

r̃
A0

)
− 1

r̃
B0 = 0,

where a prime denotes a derivative. We can eliminate B0(r̃) between these equations
and arrive at

4

r̃
A′′

0 +

(
1

2
− 4

r̃2

)
A′

0 −
1

r̃

(
1

2
− 4

r̃2

)
A0 = 0,(4.9)

to be solved subject to

A0 ∼ 2r̃ log r̃ − b∞(0)r̃ as r̃ → 0,(4.10)

A0 → 0 as r̃ → ∞.(4.11)

Since A0 = r̃ is an obvious solution of (4.9), which corresponds to the uniform flow
solution of the original equations, we can use reduction of order to find the solution
in the form

A0 = k1r̃

∫ r̃2/16

1/16

e−u

u
du + k2r̃.

The boundary condition (4.10) then shows that

k1 = 1, k2 = −b∞(0) − 1

16
,

and finally, (4.11) shows that

b∞(0) =

∫ ∞

1/16

e−u

u
du− 1

16
≈ 2.194.(4.12)
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4.2. Numerical solutions. Before attempting to solve (4.1) to (4.7) numeri-
cally, it is convenient to subtract out the singularity at the origin by defining

ψ = 2r̃ log r̃ cos θ + ψ̂, ω = −4 cos θ

r̃
+ ω̂.

We then find that

∇̃2ψ̂ + ω̂ = 0 for π/2 < θ < π/2 + α,(4.13)

∇̃2ω̂ +
1

2

∂

∂r̃
(r̃ω̂) = 0 for π/2 < θ < π/2 + α(4.14)

subject to

ω̂ +
∂2ψ̂

∂r̃2
= 0 at θ = π/2 + α,(4.15)

2

r̃

∂3ψ̂

∂r̃2∂θ
+

(
1

2
− 4

r̃2

)(
∂2ψ̂

∂r̃∂θ
− 1

r̃

∂ψ̂

∂θ

)
− 1

r̃

∂ω̂

∂θ
= cosα at θ = π/2 + α,(4.16)

ψ̂ = ω̂ = 0 at θ = π/2,(4.17)

ψ̂ ∼ −2r̃ log r̃ cos θ, ω̂ ∼ 4 cos θ

r̃
as r̃ → ∞,(4.18)

ψ̂ → 0, ω̂ → 0 as r̃ → 0,(4.19)

∂ψ̂

∂r̃
∼ b∞ cos θ, as r̃ → 0.(4.20)

Note that this rescaled problem contains a forcing term at the boundary in (4.16).
We have also written the boundary conditions at the origin in a form that allows us
to solve (4.13) to (4.19), and then use (4.20) to determine b∞.

We solve (4.13) to (4.19) using finite differences on a polar grid. We discretize
θ at constant intervals and use a nonuniform grid in the r̃-direction in order to ac-
curately capture the behavior of the solution as r̃ → ∞. By considering solutions
on progressively finer grids, we found that we could achieve converged solutions (b∞
accurate to two decimal places) with 50 equally spaced grid points in the θ-direction,
and 275 grid points in the r̃-direction with spacing gradually changing from 0.01 to
1 as r̃ increases to 100. We approximate derivatives using central differences and use
three-point formulas at the boundaries. After solving, we obtained b∞ from (4.20),

using a three-point formula to calculate ∂ψ̂/∂θ at the origin, and taking the mean
value of b∞ calculated at the half of the discretized values of θ furthest from the
boundaries.

Figure 4.1 shows the streamlines, in terms of the original variable, ψ, at various
values of α. We can see that the solution has a local maximum of vorticity in the
interior for sufficiently large values of α. Figure 4.2 shows the calculated value of
b∞. The numerical solution is in good agreement with the asymptotic solutions for
α = 0 and π/2. Note that the form of the scaled equations when α � 1 indicates
that b∞ = 2.194+O(α2), consistent with Figure 4.2. The range of values of b∞ is not
large, with 2.194 > b∞ > 1.714. We fitted a cubic spline to the numerically calculated
values of b∞, and used this in the numerical solutions of the inner problem, which we
describe below.
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Fig. 4.1. The streamlines in the outer region when α = π/4, π/2, 3π/4, and π.
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5. Solution of the inner problem. Now that we know b∞(α), we are in a
position to solve the inner problem (3.8) to (3.14). For this free boundary problem,
it is natural to use the boundary integral method (see, for example, [10]). For Stokes
flow in a bounded domain B,

u(x0) =
1

2π

∫
∂B

{
−f(x) log r̂ +

x̂ (f · x̂)

r̂2
+

4 (u · x̂) (n · x̂) x̂

r̂4

}
ds(x),(5.1)

where n is the outward unit normal, f is the force on the free surface, x0 lies on
the free surface, s is arc length, x̂ = x − x0, and r̂ = |x̂|. We can now proceed by
truncating our domain of solution with a circle of radius R∞, centered on the origin,
so that ∂B consists of the free surface, S, and the arc of the circle, S∞. We discretize
the free surface at n points an arc length s = si, i = 1, 2, . . . , n, from the tip, with
s1 = 0 at the tip. At these points, (x̄, ȳ) = (Xi, Yi) ≡ (X(si), Y (si)). We also let v(s)
be the tangential fluid velocity at the free surface. We must therefore solve for the
3n + 1 unknowns Xi, Yi, vi ≡ v(si), and K.

Equations (3.10) to (3.12) show that

f = (Y ′X ′′ −X ′Y ′′)n, u = (n · X + KX ′)n + vt on S,(5.2)

where X = (X,Y ) and t is the unit tangent vector at the free surface. On S∞ we
assume that f and u take their far field values, so that

u = K (−2 logR∞ + b∞) sin θ n −K {2(1 + logR∞) + b∞} cos θ t,

f = −8K sin θ

R∞
n on S∞.(5.3)

We represent the free surface, (X(s), Y (s)), and tangential velocity v(s) using
cubic splines. We evaluate the normal and tangential components of (5.1) using two-
point Gaussian quadrature, collocating at the midpoint of each boundary element,
using (5.2) and (5.3) to give the surface force and velocity, and making use of symmetry
about the y-axis. We discretized most of S∞ using equally spaced points. However,
close to the point where S∞ meets S in x > 0 we added extra points to resolve the
rapid variation of the integrand when collocating at the midpoint of the final element
of S. This provides 2n − 2 nonlinear algebraic equations. We must also enforce the
arc length condition

(X ′)
2

+ (Y ′)
2

= 1.(5.4)

We do this at the midpoint of each element, which provides a further n− 1 nonlinear
algebraic equations. We now need four more conditions to close the problem. The far
field conditions (3.13) and (3.14) give

Yn = cotαXn − 2K logXn + K(b∞ − 3 + 2 log sinα),(5.5)

vn = −K sin θ∞(2 logR∞ − b∞),(5.6)

where θ∞ is the value of θ at the point where S∞ meets S. At s = 0, we imposed the
symmetry conditions

X1 = 0, v1 = 0.(5.7)
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Fig. 5.1. The numerical solution for α = 15◦, 30◦, 45◦, 60◦, 75◦, 105◦, 120◦, 135◦, 150◦,
165◦, and 175◦.

We solved this system of 3n + 1 nonlinear algebraic equations using Newton’s
method, calculating the Jacobian by numerical differentiation. We started with the
known solution for α = π/2, namely, the flat interface with K = 0, and progressively
increased or decreased α. In this manner, we were able to obtain converged numerical
solutions for 1◦ ≤ α ≤ 178◦ or, in radians, 0.0175 ≤ α ≤ 3.1067. For α < π/2, we
used n = 532 and sn = 104, with a grid for which Δsi progressively increased from
Δs1 = 10−2. This enabled us to compute down to small values of α for which, as we
shall see in section 6, the curvature at the tip is bounded, and changes occur over a
long lengthscale. Solutions on coarser grids indicate that the errors in our calculations
of K are less than 1%. For α > π/2, we used n = 1074 and sn = 50, with a grid whose
spacing became progressively finer for smaller s, with Δs1 = 5 × 10−4. This allowed
us to resolve the small region close to the tip, which we shall discuss in section 7.
Solutions on coarser grids again indicate that the errors in our calculations of K are
less than 1%.

Figure 5.1 shows the solution for various values of α ≥ 15◦. We can see that for
α close to π, the curvature of the tip becomes large, but that this does not occur as
α approaches zero. The behavior for small α is illustrated in Figure 5.2, which shows
that the curvature remains bounded, but that the position of the tip moves off in the
negative y-direction as α decreases.

Figures 5.3, 5.4, and 5.5 show how K, the curvature at the tip, and the position
of the tip vary with α. Also shown are the linearized predictions for |α − π/2| � 1
given by Billingham [4]. To summarize, these are

K ∼ − 1

2π

(
α− π

2

)
, κ(0) ∼ − 4

π

(
α− π

2

)
,

Y (0) ∼ 0.359
(
α− π

2

)
for |α− π/2| � 1.(5.8)

The numerical and asymptotic solutions are in excellent agreement. We can also see
that K is singular as α → 0, as is Y (0), while the curvature remains bounded. As
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Fig. 5.2. The numerical solution for α = 10◦, 5◦, 4◦, 3◦, 2◦, and 1◦.
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π/2| � 1 (broken line). The value of K when α = π, calculated in section 7 (K = K0 = −1/4π), is
marked with a circle.
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Fig. 5.4. The numerically calculated value of the curvature at the tip of the recoiling wedge,
along with the asymptotic solution for |α − π/2| � 1 (broken line). The curvature when α = 0,
calculated in section 6, is marked with a circle.
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Fig. 5.5. The numerically calculated value of the position of the tip of the recoiling wedge,
along with the asymptotic solution for |α− π/2| � 1 (broken line).

α → π, K is bounded, while the curvature is strongly singular, and Y (0) is weakly
singular. We will now investigate these cases further using the method of matched
asymptotic expansions.
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6. Asymptotic solution of the inner problem for α � 1. In this lubrica-
tion limit, it is more convenient to parameterize the free surface as lying at x̄ = X̄(ȳ),
in terms of which (3.8) to (3.12) become

0 = −∇̄p̄ + ∇̄2ū for 0 < x̄ < X̄(ȳ),(6.1)

∇̄ · ū = 0 for 0 < x̄ < X̄(ȳ),(6.2)

ȳ
dX̄

dȳ
− X̄ = K

dX̄

dȳ
+ ūy

dX̄

dȳ
− ūx at x̄ = X̄(ȳ),(6.3)

{(
dX̄

dȳ

)2

− 1

}(
∂ūx

∂ȳ
+

∂ūy

∂x̄

)
− 4

dX̄

dȳ

∂ūx

∂x̄
= 0 at x̄ = X̄(ȳ),(6.4)

−p̄− 2

{
1 +

(
dX̄

dȳ

)2
}−1 [{(

dX̄

dȳ

)2

− 1

}
∂ūx

∂x̄
+

dX̄

dȳ

(
∂ūx

∂ȳ
+

∂ūy

∂x̄

)]

=
d2X̄

dȳ2

{
1 +

(
dX̄

dȳ

)2
}−3/2

at x̄ = X̄(ȳ),(6.5)

along with the symmetry conditions

ūx =
∂ūy

∂x̄
=

∂p̄

∂x̄
= 0 at x̄ = 0(6.6)

subject to the matching conditions (3.14) and

X̄ ∼ tanα
{
ȳ + 2K log

( ȳ

cosα

)
−K (b∞(0) − 3)

}
as ȳ → ∞,(6.7)

where b∞(0) is given by (4.12).
In order to be able to match the solutions in the two regions that we describe

below, we need K = K̂/α with K̂ = O(1) as α → 0. We then use a simple lubrication
scaling that produces a leading order balance in (6.2), namely,

ȳ = ŷ/α, x̄ = x̂, X̄ = X̂, ūx = ûx, ūy = ûy/α, p̄ = p̂.

On substituting these scalings into (6.1) to (6.7), we find that, at leading order,
ûy ≡ ûy(ŷ), ûx = −x̂û′

y, and p̂ = −2ûy, where a prime denotes d/dŷ. Equation (6.3)
then shows that

X̂ ′

X̂
=

1 + û′
y

ŷ − K̂ − ûy

.(6.8)

In order to close the problem, we need to consider the tangential stress condition,
(6.4), at O(α2), which shows that

û′
y = −2K̂

X̂
.(6.9)
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By eliminating ûy between (6.8) and (6.9), we obtain an equation for X̂, which can
be solved analytically to give the implicit solution that satisfies (6.7),

ŷ = X̂ − 2K̂ log X̂ + 2K̂ logα− (3 − b∞(0)) K̂,

ûy = −2K̂ log X̂ − 4K̂2

X̂
+ 2K̂ logα + K̂b∞(0).(6.10)

We will see below why we can justify treating the term of O(logα) as a constant in
this procedure. Note that the leading order shape of the free surface just reproduces
the far field boundary condition.

Since X̂ ′ = X̂/(X̂ − 2K̂), the slope of the free surface becomes unbounded as
X̂ → 2K̂, and we need an inner-inner region in the neighborhood of X̂ = 2K̂ in order
to complete the solution. Note that ŷ → ŷ0 and ûy → ûy0 as X̂ → 2K̂, where

ŷ0 = (b∞(0) − 1) K̂ − 2K̂ log
(
2K̂/α

)
, ûy0 = ŷ0 − K̂.(6.11)

By determining the form of the next correction to the asymptotic expansion in the
neighborhood of ŷ = ŷ0, we find that there is a nonuniformity in the expansion when
ŷ − ŷ0 = O (α).

6.1. Inner-inner region. Appropriate scaled variables in the inner-inner region
are1

ŷ = ŷ0 + αỹ, x̂ = x̃, X̂ = X̃, ûx = ũx, ûy = ûy0 + αũy, p̂ = p̃.

In terms of the original inner variable defined in section 3, this rescaling just represents
a shift of O(α−1) in the y-direction along with the removal of a uniform flow of O(α−1)
in the y-direction. As we would expect, we therefore recover the equations for surface
tension–driven Stokes flow. However, the kinematic condition becomes

(ỹ − ũy)
dX̃

dỹ
= X̃ − ũx,(6.12)

which specifies the normal component of the fluid velocity at the free surface, and the
far field conditions are given by matching as

ũx ∼ x̃, ũy ∼ −ỹ, p̃ → 2, X̃ → 2K̂ as ỹ → ∞.(6.13)

We can solve this boundary value problem using the boundary element method de-
scribed in section 5. Note that in this case it is easier to truncate the domain of
solution using the straight line ỹ = ỹ∞, and that we can evaluate the contribution to
the integral in (5.1) along this line analytically for the simple far field given by (6.13).

We found the solution by introducing an artificial continuation parameter, β,
modifying the far field conditions to be

X̃ ′ cosβ − Ỹ ′ sinβ = 0, ũy = −ỹ∞ cosβ at ỹ = ỹ∞.

When the continuation parameter β is π/2, we can converge to a solution from an
initial guess with X̃ = ũy = ũx = 0, and when β = 0, we recover the problem whose

1We have used tildes here for notational convenience, and note that these variables should not
be confused with those used in the outer region.
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Fig. 6.2. The asymptotic solution in the inner-inner region for α � 1.

solution we are interested in. Starting from β = π/2 and successively solving for
smaller values of β, we were able to obtain a converged solution with β = 0. From the
condition that X̃ → 2K̂ as ỹ → ∞, we find that K̂ ≈ 0.125, and hence K ≈ 0.125/α,
and that the curvature at the tip of the fluid is κ(0) ≈ 5.13, consistent with the
behavior of the full numerical solution shown in Figure 5.4. Figure 6.1 shows the
asymptotic and numerical values of K and Ȳ (0), which are in very good agreement.
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Note that

Ȳ (0) = (b∞(0) − 1)K − 2K log 2K,

so that the logarithmic constant that appears in (6.11) is absorbed into the definition
of K. Figure 6.2 shows the asymptotic solution in the inner-inner region, and should
be compared to the solutions shown in Figure 5.2. Note that, although Ȳ (0) < 0 in
Figure 5.2, the tip lies at

Y (0) ≡ −Kt log t + tȲ (0) ∼ K̂t

α
log

(
α2eb∞(0)−1

K̂2t

)
as α → 0 for t � 1.(6.14)

We conclude that in the double limit α → 0, t → 0 we require that t � α2 or
t = O(α2) for this solution to be valid.

7. Asymptotic solution of the inner problem for π − α � 1. As we saw
in the previous section, it is more convenient to parameterize the free surface as lying
at x̄ = X̄(ȳ). By balancing terms in the equations, we find that the richest asymptotic
balance arises when we leave K and all of the variables unscaled, except for X̄, which
we write as X̄ = εχ̄, where χ = O(1) for ε = π − α � 1. The region D, where the
fluid lies, is given by x̄ > 0 for ȳ ≥ ȳ0, and x̄ > εχ̄(ȳ) for ȳ ≤ ȳ0. The free surface
meets the ȳ-axis at ȳ = ȳ0, which we need to determine. We must therefore solve

0 = −∇̄p̄ + ∇̄2ū in D,(7.1)

∇̄ · ū = 0 in D,(7.2)

ȳ
dχ̄

dȳ
− χ̄ = K

dχ̄

dȳ
+ ūy

dχ̄

dȳ
− ε−1ūx at x̄ = εχ̄(ȳ) for ȳ < ȳ0,(7.3)

{
ε2

(
dχ̄

dȳ

)2

− 1

}(
∂ūx

∂ȳ
+

∂ūy

∂x̄

)
− 4ε

dχ̄

dȳ

∂ūx

∂x̄
= 0 at x̄ = εχ̄(ȳ) for ȳ < ȳ0,(7.4)

−p̄− 2

{
1 + ε2

(
dχ̄

dȳ

)2
}−1 [{

ε2
(
dχ̄

dȳ

)2

− 1

}
∂ūx

∂x̄
+ ε

dχ̄

dȳ

(
∂ūx

∂ȳ
+

∂ūy

∂x̄

)]

= ε
d2χ̄

dȳ2

{
1 +

(
dχ̄

dȳ

)2
}−3/2

at x̄ = εχ̄(ȳ) for ȳ < ȳ0,(7.5)

ūx =
∂ūy

∂x̄
=

∂p̄

∂x̄
= 0 at x̄ = 0 for ȳ > ȳ0(7.6)

subject to the matching conditions (3.14) and

χ̄ ∼ − tan ε

ε

{
ȳ + 2K log

(
−ȳ

cos ε

)
−K (b∞(π) − 3)

}
as ȳ → −∞.(7.7)

The numerical results presented in section 4 show that b∞(π) ≈ 1.82.



526 J. BILLINGHAM

We expand ūx = ūx0 +εūx1 +O(ε2), and similarly for the other variables. The far
field solution, (3.14), is a solution of the full problem at leading order. This solution
is singular, which indicates that an inner-inner region will be needed. Since the
singularity must be where the free surface meets the ȳ-axis, the appropriate leading
order solution is

p̄0 = 4K0
ȳ − ȳ0

x̄2 + (ȳ − ȳ0)2
, ūx0 = 2K0

x̄(ȳ − ȳ0)

x̄2 + (ȳ − ȳ0)2
,

ūy0 = −K0 log
{
x̄2 + (ȳ − ȳ0)

2
}
− 2K0

x̄2

x̄2 + (ȳ − ȳ0)2
+ K0b∞.(7.8)

Note that χ̄0, the leading order position of the free surface, is not determined by the
leading order problem, and is coupled to the solution at O(ε), which satisfies, in terms
of a streamfunction in polar coordinates,

∇̄4ψ = 0 for 0 < θ < π,(7.9)

− [K0 {b∞(π) + 1 − 2 log r} − ȳ0 + r]
dχ̄0

dr

+

(
1 +

2K0

r

)
χ̄0 =

∂ψ

∂r
at θ = π,(7.10)

∂2ψ

∂r2
− 1

r

∂ψ

∂r
− 1

r2

∂ψ

∂θ2
= 8K0

d

dr

( χ̄0

r

)
at θ = π,(7.11)

−3

r

∂3ψ

∂r2∂θ
+

3

r2

∂2ψ

∂r∂θ
− 4

r3

∂ψ

∂θ
− 1

r3

∂3ψ

∂θ3
=

d3χ̄0

dr3
at θ = π,(7.12)

ψ =
∂2ψ

∂θ2
= 0 at θ = 0,(7.13)

ψ ∼ −2K1r log r sin θ + (K1b∞(π) + K0b
′
∞(π)) r sin θ as r → ∞,(7.14)

χ̄0 ∼ r − ȳ0 − 2K0 log r + (b∞(π) − 3)K0 as r → ∞.(7.15)

Note that we have chosen a polar coordinate system with the ȳ-axis at θ = 0, which
is more convenient for the following calculations. We must therefore solve for Stokes
flow in the upper half-plane, driven by a stress and normal velocity prescribed on the
negative ȳ-axis, and coupled linearly to the unknown position of the free surface, χ̄0.

Clearly, the behavior of the solution as r → 0 is crucial, and we investigate
this first. If we assume that χ̄0 ∼ krn as r → 0 for some constant k, then the
streamfunction must take the form ψ ∼ rn log r f(θ)+ rn g(θ). If we first consider the
terms of O(rn log r) and make use of the symmetry condition (7.13), we find that a
biharmonic streamfunction has

f(θ) = A0 sinnθ + B0 sin(n− 2)θ

for some constants A0 and B0. On substituting this form into the boundary conditions
(7.10) to (7.12), we obtain three linear equations in these two constants. The only
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way that we can satisfy these is if n is a half integer. In order for this to be able
to match the solution in the inner-inner region, χ̄0 must be bounded, with nonzero
derivative as r → 0, which means that n = 1/2 and χ̄0 ∼ kr1/2 as r → 0. This then
allows us to fix A0 and B0 and obtain

f(θ) =
1

2
K0k

(
3 sin

1

2
θ − sin

3

2
θ

)
.(7.16)

At O(r1/2) we obtain

g(θ) = A1 sin
1

2
θ + B1 sin

3

2
θ +

1

2
K0kθ

(
3 cos

1

2
θ + cos

3

2
θ

)
.

On substituting this into the normal stress boundary condition, (7.12), we find that
A1 and B1 do not appear, so that K0 is determined at this point in the analysis, with
K0 = −1/4π. This is in excellent agreement with numerical solutions of the full inner
problem, as shown in Figure 5.3. The boundary conditions (7.10) and (7.11) then fix
A1 and B1, so that

g(θ) = k

[
−1

4
{K0 (3b∞(π) − 1) − 3ȳ0} sin

1

2
θ +

1

4
{K0 (b∞(π) + 5) − ȳ0} sin

3

2
θ

+
1

2
K0θ

(
3 cos

1

2
θ + cos

3

2
θ

)]
.(7.17)

It now remains to determine k as a function of ȳ0. We could proceed numerically,
but, as we shall see in section 7.2, ȳ0 is large and negative for ε � 1, consistent with
the behavior shown in Figure 5.5.

7.1. Inner solution for −ȳ0 � 1. We seek to solve (7.9) to (7.15) when ȳ0

is large and negative. Note that since this problem is linear, the results that we
obtained above for r � 1 remain valid when −ȳ0 is large. In particular, we must
have χ̄0 ∼ kr1/2 as r → 0 and K0 = −1/4π. Note also that arbitrary multiples of
the solutions of the homogeneous problem, r log r sin θ and r sin θ, can be added to
ψ without affecting the equations satisfied by χ̄0. We therefore subtract the far field
behavior, given by (7.14), from ψ, so that we require ψ = o(r) as r → ∞.

If we define δ = −ȳ−1
0 � 1, we find that we can obtain a suitable leading order

balance by defining scaled variables

r = δ−1r̃, χ̄0 = δ−1χ̃, ψ = δ−2ψ̃, k = δ−1/2k̃,

in terms of which (7.9) to (7.15) become

∇̄4ψ̃ = 0 for 0 < θ < π,(7.18)

− [K0 {b∞(π) + 1 − 2 log r̃ + 2 log δ} δ + 1 + r̃]
dχ̃

dr̃

+

(
1 +

2K0δ

r̃

)
χ̃ =

∂ψ̃

∂r̃
at θ = π,(7.19)

∂2ψ̃

∂r̃2
− 1

r̃

∂ψ̃

∂r̃
− 1

r̃2

∂ψ̃

∂θ2
= 8K0δ

d

dr̃

(
χ̃

r̃

)
at θ = π,(7.20)
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−3

r̃

∂3ψ̃

∂r̃2∂θ
+

3

r̃2

∂2ψ̃

∂r̃∂θ
− 4

r̃3

∂ψ̃

∂θ
− 1

r̃3

∂3ψ̃

∂θ3
= −δ

d3χ̃

dr̃3
at θ = π,(7.21)

ψ̃ =
∂2ψ̃

∂θ2
= 0 at θ = 0,(7.22)

ψ̃ = o(r̃) as r̃ → ∞,(7.23)

χ̃ ∼ r̃ + 1 − 2K0δ log r̃ + 2K0δ log δ + (b∞(π) − 3)K0δ as r̃ → ∞,(7.24)

χ̃ ∼ k̃r̃1/2 as r̃ → 0,(7.25)

ψ̃ ∼ −1

4
k̃

(
3 sin

1

2
θ − sin

3

2
θ

)
+

1

2
K0k̃δ

(
3 sin

1

2
θ − sin

3

2
θ

)
r̃1/2 (log r̃ − log δ)

+ k̃K0δ

{
−1

4
(3b∞(π) − 1) sin

1

2
θ +

1

4
(b∞(π) + 5) sin

3

2
θ(7.26)

+
1

2
θ

(
3 cos

1

2
θ + cos

3

2
θ

)}
r̃1/2 as r̃ → 0.

We now expand ψ̃ = ψ̃0 + δ log δψ̃1 + δψ̃2 + o(δ), and similarly for χ̃ and k̃. At
leading order and at O(δ log δ), analytical solutions are available, with

ψ̃0 = −1

4
k̃0

(
3 sin

1

2
θ − sin

3

2
θ

)
r̃1/2,

χ̃0 =
1

2
k̃0

{
(r̃ + 1) tan−1 r̃1/2 + r̃1/2

}
, k̃0 =

4

π
,(7.27)

ψ̃1 = −
(

1

4
k̃1 +

1

2
K0k̃0

)(
3 sin

1

2
θ − sin

1

2
θ

)
r̃1/2,

χ̃1 = k̃1 tan−1 r̃1/2, k̃1 =
4K0

π
.(7.28)

At O(δ) the problem is forced by the leading order solution, and no analytical
solution is available directly. Although the problem can be solved, in principle, using
Mellin integral transforms, this is not a practical approach, since the Mellin transform
of χ̃0 is not available analytically. The problem at O(δ) can be solved numerically,
using a technique similar to that used in section 4.2, but, as we shall see, we do not
actually need it in what follows. Finally, note that the weak nonuniformity between
the terms in the expansion of χ̃ for r̃ � 1 is just a reordering and can be ignored.

7.2. The inner-inner region for π − α = ε � 1. Since χ̄0 ∼ 4δ−1/2r1/2/π
as r → 0 for δ = −ȳ−1

0 � 1, and we expect a nonuniformity when εdχ̄0/dr = O(1),
the inner-inner region has ȳ = ȳ0 + O(ε2δ−1), x̄ = O(ε2δ−1). We therefore define
scaled variables

x̄ = ε2δ−1 ˜̃x, ȳ = ȳ0 + ε2δ−1˜̃y, X̄ = εχ̄ = ε2δ−1 ˜̃X, ū = ˜̃u, p̄ = ε−2δ˜̃p.
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Fig. 7.1. The numerically calculated value of the position of the tip of the recoiling wedge and
the asymptotic approximation given by (7.30).

At leading order we obtain surface tension–driven Stokes flow, but with kinematic
condition

˜̃uy
d ˜̃X

d˜̃y
− ˜̃ux = (ȳ0 −K0)

d ˜̃X

d˜̃y
.(7.29)

By writing the inner solution in terms of these inner-inner variables, we can

obtain the matching condition, which gives the inner-inner behavior as ˜̃x
2
+ ˜̃y

2 → ∞,
in the usual way. Note, however, that we must retain the contribution from the O(ε)
correction to ūx in the inner region, since it was this that determined the scalings
for the inner region. Moreover, we have to be careful with logarithmic terms. The
matching condition for ˜̃uy is

˜̃uy ∼ −2K0 log
(
ε2δ−1

)
−K0 log

(
˜̃x

2
+ ˜̃y

2
)
− 2K0

˜̃x
2

˜̃x
2

+ ˜̃y
2 +K0b∞(π)+o(1) as ˜̃x

2
+ ˜̃y

2 → ∞.

If we define ˜̃Uy = ˜̃uy + 2K0 log
(
ε2δ−1

)
and ỹ0 = ȳ0 + 2K0 log

(
ε2δ−1

)
= ȳ0 +

2K0 log
(
−ε2ȳ0

)
, with ˜̃Uy, ỹ0 = O(1), we can remove the logarithm from the problem.

This means that ȳ0, the position of the tip, is weakly singular, with

ȳ0 ≡ −δ−1 = −4K0 log ε− 2K0 log (4K0 log ε) + ỹ0 + o(1)

≡ 1

π
log ε +

1

2π
log

(
− 1

π
log ε

)
+ ỹ0 + o(1).(7.30)

Figure 7.1 shows that numerical solutions of the full inner problem are consistent
with this weak singularity in the position of the tip of the wedge. It now remains to
determine ỹ0 by solving the inner-inner problem numerically.

Note that the kinematic condition (7.29) is now

˜̃Uy
d ˜̃X

d˜̃y
− ˜̃ux = (ỹ0 −K0)

d ˜̃X

d˜̃y
.(7.31)
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Fig. 7.2. The numerical solution of the inner-inner problem.
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Fig. 7.3. The numerically calculated value of the curvature at the tip of the recoiling wedge,
and our asymptotic estimate for π − α � 1.

We also have the matching conditions

˜̃X ∼ 4

π

(
−˜̃y

)1/2
as ˜̃y → −∞,(7.32)

and, in terms of a streamfunction and polar coordinates,

˜̃
ψ ∼ 1

2π
˜̃r log ˜̃r sin θ− b∞(π)

4π
˜̃r sin θ− 1

π

(
3 sin

1

2
θ − sin

3

2
θ

)
˜̃r

1/2
as ˜̃r → ∞.(7.33)

We can solve this boundary value problem using the numerical method described
in section 5. Since we were unable to find a suitable artificial continuation parameter,
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analogous to β in section 6.1, we used the outer asymptotic solution, (7.27), as our
initial guess, from which we were able to obtain a converged solution. We found that
ȳ0 ≈ −0.381, which gives the asymptotic solution for the position of the tip of the
wedge shown in Figure 7.1. The numerical solution for the free surface is shown in
Figure 7.2, which should be compared to the solutions shown in Figure 5.1. From
this, we can calculate the curvature at the tip of the wedge, which is of O(δ/ε2). This
asymptotic estimate is shown in Figure 7.3.

8. Conclusions. In this paper, we have presented an analysis of the initial mo-
tion of a viscous fluid with a free surface under the action of surface tension when
the fluid lies in a wedge at t = 0. We showed that this is an example of a problem in
which inertia is never negligible as t → 0, even though an obvious viscous-dominated
similarity scaling exists, since the solution develops over two asymptotic regions: a
nonlinear inner region a distance of O(t log t) from the origin with size O(t) dominated
by surface tension and viscous forces, and a linear outer region with size O(t1/2) dom-
inated by viscous and inertial forces. The results of [1] show that the addition of
an exterior fluid with viscosity much less than that of the interior fluid is a singular
perturbation, and the solution can then be described in terms of a region with size
O(t), where the flow is dominated by surface tension and viscosity. It would be in-
teresting to investigate the structure of the initial flow in the two-fluid problem when
the viscosity ratio is small. Another interesting problem is the case of an initial cone
of fluid. The inviscid version of this problem has been studied in [6] and [7].

One reason for attempting this analysis was that it was hoped that the limiting
cases presented in sections 6 and 7 would provide some insight into the initial stages
of the coalescence of droplets and bubbles. This analogy has proved to be useful in the
case of inviscid coalescence (see [11]). However, as discussed in the appendix, this idea
does not work here. An analysis of this problem, which shows that t log t-dependence
does occur in these coalescence problems, but with coefficients different than those
that arise in the wedge problem, is given in [9].

Appendix. Inapplicability to the coalescence of drops and bubbles.
Since the asymptotic structure of the solution of the wedge problem indicates that
the inner region is small, and that the tip of the wedge lies a distance from the origin
much greater than the size of the inner region, we can postulate that the inner flow
sees only the local slope of the interface, even if the free surface is actually curved on
a much longer lengthscale, an idea that works well for inviscid coalescence (see [11]).
Unfortunately, because the separation of scales between the size of the inner region
and its distance from the origin is only of O(log t), we find that this simple idea is not
applicable.

A.1. Drops. The wedge solution with α � 1 indicates that

Y (0) ∼ K̂t

α

{
− log t + log

(
α2eb∞(0)−1

K̂2

)}
as α → 0 for t � 1.(A.1)

If initially x = εy2 with ε � 1, then, locally,

α ∼ dx

dy
∼ 2εy ∼ −2ε

K̂

α
t log t,

and hence α ∼
√
−2εK̂t log t. However, this means that the two terms inside the

braces in (A.1) are of comparable size, and there is no separation of scales.
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A.2. Bubbles. The wedge solution with π − α � 1 indicates that

Y (0) ∼ − 1

2π
t log t + t

{
1

π
log(π − α) +

1

2π
log

(
− 1

π
log (π − α)

)
+ ỹ0

}
as α → π for t � 1.(A.2)

The same argument as given in the previous subsection indicates that, if initially
x = εy2 with ε � 1, then π − α ∼ −εt log t/2π. The second term in (A.2) is then
comparable to the first, and, again, there is no separation of scales.
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KINETICS OF MARTENSITIC PHASE TRANSITIONS:
LATTICE MODEL∗
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Abstract. Martensitic phase transitions are often modeled by mixed-type hyperbolic-elliptic
systems. Such systems lead to ill-posed initial-value problems unless they are supplemented by an
additional kinetic relation. In this paper we explicitly compute an appropriate closing relation by
replacing the continuum model with its natural discrete prototype. The procedure can be viewed
as either regularization by discretization or a physically motivated account of underlying discrete
microstructure. We model phase boundaries by traveling wave solutions of a fully inertial discrete
model for a bi-stable lattice with harmonic long-range interactions. Although the microscopic model
is Hamiltonian, it generates macroscopic dissipation which can be specified in the form of a rela-
tion between the velocity of the discontinuity and the conjugate configurational force. This kinetic
relation respects entropy inequality but is not a consequence of the usual Rankine–Hugoniot jump
conditions. According to the constructed solution, the dissipation at the macrolevel is due to the
induced radiation of lattice waves carrying energy away from the propagating front. We show that
sufficiently strong nonlocality of the lattice model may be responsible for the multivaluedness of
the kinetic relation and can quantitatively affect kinetics in the near-sonic region. Direct numerical
simulations of the transient dynamics suggest stability of at least some of the computed traveling
waves.

Key words. martensitic phase transitions, lattice models, nonlocal interactions, driving force,
lattice waves, radiative damping

AMS subject classifications. 37K60, 74N10, 74N20, 74H05
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1. Introduction. A characteristic feature of martensitic phase transitions in ac-
tive materials is the energy dissipation leading to experimentally observed hysteresis.
The dissipation is due to propagating phase boundaries that can be represented at the
continuum level as surfaces of discontinuity. Classical elastodynamics admits nonzero
dissipation on moving discontinuities but provides no information about its origin and
kinetics. Although the arbitrariness of the rate of dissipation does not create problems
in the case of classical shock waves, it is known to be the cause of nonuniqueness in
the presence of subsonic phase boundaries (see [7, 13, 20] for recent reviews).

The ambiguity at the macroscale reflects the failure of the continuum theory to
describe phenomena inside the narrow transition fronts where dissipation actually
takes place. The missing closing relation can be found by analyzing a regularized
theory which describes the fine structure of the transition front. When the local cur-
vature effects can be neglected, the problem reduces to the study of a one-dimensional
steady-state problem. To formulate the simplest problem of this type it is sufficient
to consider longitudinal motions of a homogeneous elastic bar. The total energy of
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such bar is the sum of kinetic and potential contributions

E =

∫ [
ρu̇2

2
+ φ(ux)

]
dx,(1.1)

where u(x, t) is the displacement field, u̇ ≡ ∂u/∂t is the velocity, ux ≡ ∂u/∂x is the
strain, ρ is the constant mass density, and φ(ux) is the elastic energy density. The
function u(x, t) satisfies the nonlinear wave equation

ρü = (σ(ux))x,(1.2)

where σ(ux) = φ′(ux) is the stress-strain relation.
Although in classical elastodynamics (1.2), which is often presented as a first-

order p-system, is assumed to be hyperbolic, the hyperbolicity condition σ′(ux) > 0 is
violated for martensitic materials with nonmonotone stress-strain relation σ(ux) [8].
This makes the initial-value problem associated with the mixed-type equation (1.2)
ill-posed; in particular, it leads to the appearance of discontinuities violating the Lax
condition (subsonic phase boundaries or kinks, e.g., [16, 17, 31]).

To be more specific, consider a discontinuity moving with velocity V . Let f−
and f+ denote the limiting values of a function f(x) to the left and to the right of
the interface, and introduce the notations [[f ]] ≡ f+ − f− for the jump and {f} ≡
(f+ + f−)/2 for the average of f across the discontinuity. The parameters on a
discontinuity must satisfy both the classical Rankine–Hugoniot jump conditions,

[[u̇]] + V [[ux]] = 0, ρV [[u̇]] + [[σ(ux)]] = 0,(1.3)

and the entropy inequality R = GV ≥ 0, where

G = [[φ]] − {σ}[[ux]](1.4)

is the configurational (driving) force. Contrary to conventional shock waves, the
martensitic phase boundaries usually fail to satisfy the Lax condition c+ < V < c−,
where c± are the values of the sound velocity in front and behind the discontinuity.

One way to remedy the resulting nonuniqueness is to supplement (1.3) by a ki-
netic relation specifying the dependence of the configurational force on the velocity
of the phase boundary G = G(V ) [1, 30]. Since the nonlinear wave equation (1.2)
provides no information about the kinetic relation, the dependence G(V ) has often
been modeled phenomenologically [1, 29, 30]. An alternative approach has been to
derive the kinetic relation from an augmented model incorporating regularizing terms.
A typical example is the viscosity-capillarity model, accounting for both dispersive
and dissipative corrections [21, 29]. The problem with both approaches is that they
introduce into the theory parameters of unclear physical origin.

The aim of the present paper is to obtain the kinetic relation without any phe-
nomenological assumptions at the macroscale by means of direct replacement of the
continuum model (1.2) with its natural discrete prototype. Such procedure of going
back from continuum to discrete level can be viewed as either regularization by dis-
cretization or as a physically motivated account of underlying atomic or mesoscopic
microstructure. It is clear that the discrete model must be Hamiltonian to reproduce
the conservative structure of the smooth solutions of (1.2). The energy dissipation on
the discontinuities can then be interpreted as the nonlinearity-induced radiation of
lattice-scale waves which takes the energy away from the long-wave continuum level.
This phenomenon is known in physics literature as radiative damping (e.g., [11, 12]).



KINETICS OF PHASE TRANSITIONS 535

To regularize (1.2) from “first principles,” we consider in this paper fully inertial
dynamics of a one-dimensional lattice with bi-stability and long-range interactions.
Following some previous work on cracks [22] and dislocations [2], we assume piecewise
linear approximation of nonlinearity and construct an explicit traveling wave solution
of the discrete problem. There exists an extensive literature on shock waves and
solitons in the local and nonlocal discrete systems with convex interatomic potentials
(e.g., [9, 10, 19, 27]) and on the semilinear prototypes of the present bi-stable system
(e.g., [3, 5, 18]). A discrete quasilinear problem for martensitic phase transitions and
failure waves in the chains with nearest-neighbor (NN) interactions was considered in
[24, 25, 26, 35]. In the present paper we extend these results to the case of harmonic
interactions of finite but arbitrary long range. We show that the local (NN) model
is degenerate, find a general solution of the nonlocal model, and provide detailed
illustrations for a particular case.

Our analytic solutions demonstrate that the nonlocal model generates a much
broader class of admissible solutions than the local model; in particular, it allows the
possibility of radiation both in front and behind the moving discontinuity. We also
show that sufficiently strong nonlocality may be responsible for the multivaluedness of
the kinetic relation and can quantitatively affect kinetics in the near-sonic region. The
advantage of the explicit formulas obtained in the paper is that they capture certain
details that are difficult or even impossible to detect in numerical simulations, such as
singular behavior of solutions near static-dynamic bifurcation and around resonances.

The paper is organized as follows. The piecewise linear discrete model with long-
range interactions and the associated dynamical system are introduced in section 2.
In section 3 we formulate the dimensionless equations for the traveling waves, the
boundary conditions, and the admissibility conditions. An explicit solution for the
steady state motion of an isolated phase boundary is obtained by Fourier transform
in section 4. In section 5 we obtain static solutions describing lattice-trapped phase
boundaries and link them to a nontrivial limit of the dynamic solutions. The energy
transfer from long to short waves is studied in section 6, where we obtain a closed-
form kinetic relation. In section 7 we illustrate the general theory via the case when
the only long-range interactions are due to the second nearest neighbors. Numerical
simulations of the transient problem suggesting stability of at least sufficiently fast
traveling waves are described in section 8. The last section contains our conclusions.

2. Discrete model. The simplest lattice structure can be modeled as a chain
of point masses connected by elastic springs. Suppose that the interactions are of
long-range type and that every particle interacts with its q neighbors on each side.
If un(t) is the displacement of the nth particle, the total energy of the chain can be
written as

E = ε
∞∑

n=−∞

[
ρu̇2

n

2
+

q∑
p=1

pφp

(
un+p − un

pε

)]
,(2.1)

where ε is the reference interparticle distance and φp(w) is the energy density of the
interaction between pth nearest neighbors. The dynamics of the chain with energy
(2.1) is governed by an infinite system of ordinary differential equations:

ρün =
1

ε

q∑
p=1

[
φ′
p

(
un+p − un

pε

)
− φ′

p

(
un − un−p

pε

)]
.(2.2)
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A continuum system, formally obtained by identifying u(x, t) with a limit of u(nε, t) =
un(t) as ε → 0, reduces to the nonlinear wave equation (1.2) with a specific macro-
scopic stress-strain relation

σ(w) =

q∑
p=1

pφ′
p(w).(2.3)

When the function σ(w) is nonmonotone, (1.2) constitutes an incomplete description
of the limit. As we show, in this case the correct limit procedure starting from the
discrete problem (2.1), (2.2) must also produce a specific kinetic relation G = G(V ).
This relation, expressed exclusively in terms of the elastic potentials entering (2.1),
provides the desired closure for the macroscopic problem (1.2), (1.3). Here we do not
consider the issue of a nucleation criterion, whose discrete prototype was studied in
[17].

To obtain analytical results, we consider the simplest potentials allowing for a pos-
sibility of a phase transitions: bi-quadratic for local interactions (NN) and quadratic
for nonlocal interactions (NNN, NNNN, etc.). Specifically we define

φ1(w) =

⎧⎪⎪⎨
⎪⎪⎩

1

2
Ψ(1)w2, w ≤ wc,

1

2
Ψ(1)(w − a)2 + aΨ(1)

(
wc −

a

2

)
, w ≥ wc,

(2.4)

and

φp(w) =
1

2
pΨ(p)w2, p = 2, . . . , q.(2.5)

One can see that the nonlinear springs representing NN interactions can be found in
two different states depending on whether the strain w is below (phase I) or above
(phase II) the critical value wc. Parameter a defines the microscopic transformation
strain (distance between the two linear branches); note that a and wc are in general
independent. For simplicity we assume that the two energy wells of the bi-stable NN
potential have equal curvatures Ψ(1) > 0.

It is convenient to reformulate the problem using dimensionless variables:

t̄ = t(Ψ(1)/ρ)1/2/ε, ūn = un/(aε), w̄c = wc/a, Ψ̄(p) = Ψ(p)/Ψ(1), p = 1, . . . , q.

(2.6)

In terms of these variables with the bars dropped, the energy (2.1) becomes

E =

∞∑
n=−∞

[
u̇2
n

2
− 1

2

∑
|k−n|≤q

unΨ(k − n)uk − (un − un−1 − wc)θ(un − un−1 − wc)

]
.

(2.7)

By introducing the strain variables wn = un − un−1, we can rewrite the governing
equations (2.2) in the form

ẅn −
∑

|k−n|≤q

Ψ(k − n)wk = 2θ(wn − wc) − θ(wn+1 − wc) − θ(wn−1 − wc),(2.8)
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wwc

phase I

phase II

�

w+ w−

A2

A1

Fig. 2.1. The bi-linear macroscopic stress-strain law and the Rayleigh line connecting the
states at infinity for a traveling wave solution describing an isolated phase boundary. The difference
between the shaded areas A2 −A1 represents the configurational force.

where

Ψ(0) = −2

q∑
p=1

Ψ(p), Ψ(−p) = Ψ(p),(2.9)

and θ(w) is a unit step function. The macroscopic stress-strain relation (2.3) takes
the form

σ(w) = c2w − θ(w − wc),(2.10)

where

c =

( q∑
p=1

p2Ψ(p)

)1/2

(2.11)

is the dimensionless macroscopic sound speed. The microscopic elastic moduli Ψ(p)
must be chosen to ensure that the uniform deformation wn = w is stable in each of the
phases. For this it is necessary and sufficient that all phonon frequencies ω2(k) > 0,
with ω(k) defined in (3.6) and k ∈ (0, π], are real. This implies, in particular, that the
square of the macroscopic sound speed (2.11) is positive. The resulting macroscopic
stress-strain relation (2.10) is shown in Figure 2.1.

3. Traveling waves. An isolated phase boundary moving with a constant ve-
locity V can be obtained as a traveling wave solution of (2.8) with wn(t) = w(ξ),
ξ = n − V t. We assume further that in the moving coordinate system all springs in
the region ξ > 0 are in phase I (wn < wc), and all springs with ξ < 0 are in phase II.
The system (2.8) can then be replaced by a single nonlinear advance-delay differential
equation:

V 2w′′ −
∑
|p|≤q

Ψ(p)w(ξ + p) = 2θ(−ξ) − θ(−ξ − 1) − θ(1 − ξ).(3.1)

The configurations at ξ = ±∞ must correspond to stable homogeneous equilibria
plus superimposed short-wave oscillations with zero average; the averaging is over the
largest period of oscillations but can be also defined as

〈w(ξ)〉 = lim
s→∞

1

s

∫ ξ+s

ξ

w(ζ) dζ.(3.2)
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In terms of the averaged quantities we obtain the following boundary conditions:

〈w(ξ)〉 → w± as ξ → ±∞.(3.3)

The nonlinearity of the problem is in the switching condition

w(0) = wc.(3.4)

We assume that a solution is admissible if the NN springs in front of the moving
interface are still in phase I and behind it already in phase II. This implies that

w(ξ) < wc for ξ > 0, w(ξ) > wc for ξ < 0.(3.5)

Consequently, the mathematical problem reduces to solving (3.1) subject to (3.3),
(3.4), and (3.5).

Observe first that the equation (2.8) is linear in each phase (ξ < 0 and ξ > 0),
which means that the solution can be represented as a superposition of linear waves
wn = exp(i(kn− ωt)). Since the elastic moduli are equal, the dispersion relation

ω2(k) = 4

q∑
p=1

Ψ(p) sin2 pk

2
(3.6)

is the same in both phases. For the linear modes to be compatible with the traveling
wave ansatz, their phase velocity Vp(k) = ω/k must be equal to V . This gives the
restriction on the admissible wave numbers in the form

L(k, V ) = 0,(3.7)

where

L(k, V ) = 4

q∑
p=1

Ψ(p) sin2 pk

2
− V 2k2.(3.8)

Among the modes selected by (3.7), the ones with complex wave numbers must be
exponentially decaying on both sides of the front. They describe the core structure
of the phase boundary. The modes with nonzero real wave numbers correspond to
radiation. The waves with k = 0 are naturally associated with the macroscopic part
of the solution.

4. Exact solution. We solve (3.1) by writing w(ξ) = h(ξ) + w− and applying
the complex Fourier transform

ĥ(k) =

∫ ∞

−∞
h(ξ)ei(k+iα)ξdξ, h(ξ) =

1

2π

∫ ∞+iα

−∞+iα

ĥ(k)e−ikξdk,

where α > 0 is a small parameter which guarantees convergence of the integrals. After
inverting the Fourier transform and letting α → 0, we obtain

w(ξ) = w− − 2

πi

∫
Γ

sin2(k/2)eikξdk

kL(k, V )
,(4.1)

where the contour Γ coincides with the real axis passing the singular point k = 0
from below. The singularities associated with nonzero real roots of L(k, V ) = 0 must
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comply with the radiation conditions. Specifically, the modes with group velocity
Vg = ∂ω/∂k larger than V can appear only in front, while the modes with Vg < V
can appear only behind the phase boundary [24]. Using the relation

Vg = V +
Lk(k, V )

2V k
,(4.2)

where Lk(k, V ) = ∂L/∂k and assuming V > 0, we obtain that Vg ≷ V whenever
kLk(k, V ) ≷ 0. Therefore, to satisfy the radiation conditions, we need to dent the
integration contour in (4.1) in such a way that it passes below the singularities on the
real axis if kLk(k, V ) > 0 and above if kLk(k, V ) < 0.

To compute the integral (4.1) explicitly, we use the residue method closing the
contour in the upper half-plane when ξ > 0 and in the lower half-plane when ξ < 0.
The solutions look different in the generic case q > 1 and the degenerate case q = 1.

For q > 1 the Jordan lemma can be applied directly, and by separating the
macroscopic part of the solution from the microscopic one, we obtain

w(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w− +
∑

k∈M−(V )

4 sin2(k/2)eikξ

kLk(k, V )
for ξ < 0,

w− − 1

c2 − V 2
−

∑
k∈M+(V )

4 sin2(k/2)eikξ

kLk(k, V )
for ξ > 0.

(4.3)

Here

M±(V ) = {k : L(k, V ) = 0, Imk ≷ 0}
⋃

N±(V )(4.4)

are all roots of the dispersion relation contributing to the solution on either side of
the front, with

N±(V ) = {k : L(k, V ) = 0, Imk = 0, kLk(k, V ) ≷ 0}(4.5)

denoting the sets of real roots describing radiation.
For q = 1 (NN interactions only) the contribution from a semi-arch at infinity

does not vanish at ξ = ±0 and relations (4.3) must be supplemented by the following
limiting conditions:

w(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w− +
∑

k∈M−(V )

4 sin2(k/2)eikξ

kLk(k, V )
− 1

2
for ξ = −0,

w− − 1

c2 − V 2
−

∑
k∈M+(V )

4 sin2(k/2)eikξ

kLk(k, V )
+

1

2
for ξ = +0.

(4.6)

In both cases, by applying the boundary conditions (3.3) at infinity we obtain

w+ = w− − 1

c2 − V 2
.(4.7)

It is easy to see that (4.7) coincides with the Rankine–Hugoniot relation V 2[[w]] = [[σ]],
computed for the macroscopic stress-strain relation (2.10). The continuity of w(ξ) at
ξ = 0 implies that

1

c2 − V 2
+

∑
k∈M(V )

4 sin2(k/2)

kLk(k, V )
=

{
1, q = 1,
0, q > 1,

(4.8)
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where M(V ) = M+(V )
⋃
M−(V ). Condition (4.8) is automatically satisfied for q > 1

since the sum of residues at all poles (including k = 0) equals zero; for q = 1 and ξ = 0
the integral over a contour at infinity contributes additional unity in the right-hand
side of (4.8). The switching condition (3.4) together with (4.8) requires that

w± = wc ∓
1

2(c2 − V 2)
+

∑
k∈Npos(V )

4 sin2(k/2)

|kLk(k, V )| ,(4.9)

where Npos(V ) = {k : L(k, V ) = 0, Imk = 0, k > 0} ⊂ M(V ) is the set of positive
real roots of the dispersion relation. By virtue of (4.7), the two conditions (4.9) are
dependent and can be replaced by a single condition:

1

2
(w− + w+) − wc =

∑
k∈Npos(V )

4 sin2(k/2)

|kLk(k, V )| .(4.10)

As we show in section 6, (4.10) represents the desired kinetic relation.
We can use the explicit formulas for w(ξ) to reconstruct the particle velocity

profile from v(ξ) = −V u′(ξ) if we assume that V �= 0. The relation between the
velocity and the strain fields reads

v(ξ) − v(ξ − 1) = −V w′(ξ),(4.11)

and the right-hand side is already known from (4.3). Solving (4.11) by Fourier trans-
form, we obtain

v(ξ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

v+ − V

c2 − V 2
− 2V

∑
k∈M−(V )

sin(k/2)eik(ξ+ 1
2 )

Lk(k, V )
for ξ < −1

2
,

v+ + 2V
∑

k∈M+(V )

sin(k/2)eik(ξ+ 1
2 )

Lk(k, V )
for ξ > −1

2
.

(4.12)

It is easy to check that the average velocities at infinity satisfy the remaining Rankine–
Hugoniot condition (1.3)1, which in our case takes the form

v+ − v− =
V

c2 − V 2
.(4.13)

Notice that the obtained set of traveling wave solutions is parametrized by the
velocity V and the boundary value data w± and v±. The average particle velocity
v+ in front can always be set equal to zero due to the Gallilean invariance. If the
strain in front of the discontinuity is also prescribed, the remaining three macroscopic
parameters are fully constrained by the two classical Rankine–Hugoniot conditions
(4.7) and (4.13), plus the nonclassical admissibility condition (4.10).

5. Static solutions. A special consideration is needed when V = 0. In this
case continuous variable ξ = n − V t takes integer values, and the strain profile be-
comes discontinuous at every ξ = n. The differential equation reduces to a system of
finite-difference equations, and we can replace the continuous Fourier transform by its
discrete analogue (see also [6, 11, 23]). First observe that for a piecewise continuous
function w(ξ) with discontinuities at integer ξ we have

ŵ(k) =

∫ ∞

−∞
w(ξ)eikξdξ =

∞∑
n=−∞

∫ n+1

n

w(ξ)eikξdξ.
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Therefore, assuming that the strain profile w(ξ) converges to w0(n) as V → 0, we
obtain

ŵ0(k) =

∞∑
n=−∞

w0(n)
eik(n+1) − eikn

ik
=

eik − 1

ik
ŵD

0 (k),(5.1)

where ŵD
0 (k) =

∑∞
n=−∞ w0(n)eikn is the discrete Fourier transform of w0(n). Now

we can use (4.1) to obtain

ŵ0(k) = 2πδ(k)w− +
4 sin2(k/2)

ikω2(k)
,

where δ(k) is the Dirac delta function and ω2(k) is given by (3.6). Using (5.1) we can
then find ŵD

0 (k) and, applying inverse discrete Fourier transform, obtain a represen-
tation of the discrete solution:

wn =
1

2π

∫ π

−π

ŵD
0 (k)e−ikndk = w− − 1

πi

∫ π

−π

sin(k/2)eik(n+1/2)dk

ω2(k)
.

To avoid the singularity at k = 0 we must pass it from below; all other roots of
the equation ω2(k) = 0 inside the strip −π ≤ Rek ≤ π have nonzero imaginary
parts. Closing the contour of integration in the upper half-plane for n ≥ 0 and lower
half-plane for n < 0, we obtain by residue theorem

wn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

w− +
∑

k∈F−

sin(k/2)eik(n+1/2)

ω(k)ω′(k)
, n < 0,

w− − 1

c2
−

∑
k∈F+

sin(k/2)eik(n+1/2)

ω(k)ω′(k)
, n ≥ 0,

(5.2)

where F± = {k : ω2(k) = 0, Imk ≷ 0,−π ≤ Rek ≤ π}. Solutions satisfying the
admissibility constraints

wn ≥ wc for n ≤ −1, wn ≤ wc for n ≥ 0(5.3)

form a family of lattice-trapped equilibria parametrized by the total stress in the chain
σ = c2w− − 1; the set of such stresses constitutes the trapping region.

To specify the trapping region we observe that in our static solutions the phase
boundary is pinned at the site n = −1. If the strain profile (5.2) is monotone, which
occurs, for example, when all long-range interactions are repulsive (Ψ(p) < 0 for
p ≥ 21), the constraints (5.3) can be replaced by w0 ≤ wc and w−1 ≥ wc. The
trapping region can then be described explicitly:

σM − σP ≤ σ ≤ σM + σP,(5.4)

where σM = c2wc − 1/2 is the Maxwell stress and

σP =
1

2
+ c2

∑
k∈F+

sin(k/2)eik/2

ω(k)ω′(k)
(5.5)

1Since Ψ(1) = 1 > 0, the homogeneous phases can still be stable if the negative long-range
moduli are sufficiently small.
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is the Peierls stress (see also [4, 32]). The phase boundary remains trapped until the
stress reaches one of the limiting values: σ = σM − σP, corresponding to w−1 = wc

when the interface starts moving to the left (V < 0), or σ = σM + σP, corresponding
to w0 = wc when the interface starts moving to the right (V > 0). The two limiting
solutions represent unstable equilibria from which the dynamic solution bifurcates.

6. Kinetic relation. The waves generated in the core of the moving phase
boundary carry the energy away from the front without changing the average values
of parameters at infinity. At the continuum level these lattice waves are invisible and
therefore the associated energy transfer is perceived as dissipation. To evaluate the
rate of dissipation, we start with the microscopic energy balance

dE
dt

= A(t),

where E is the total energy of the chain and A(t) is the power supplied by the external
loads. Since the solution of the discrete problem at infinity can be represented as a
sum of the macroscopic contribution and the superimposed oscillations, we can split
the averaged power accordingly. We obtain

〈A〉 = P −R,(6.1)

where P = σ+v+ − σ−v− is the macroscopic rate of work and R is the energy release
due to radiated waves which is invisible at the macroscale. While in the general
case the expression for R may contain coupling terms, in the piecewise linear model
adopted in this paper, the macroscopic and microscopic contributions decouple (see
also [11, 24]). The dissipation rate R can be written as the sum of the contributions
from the areas ahead and behind the front:

R(V ) = R+(V ) + R−(V ).(6.2)

To specify the entries in the right-hand side, we observe that due to the exponential
decay of the modes with complex wave numbers, the strain and velocity fields given
by (4.3) and (4.12) have the following asymptotic representation at ξ = ±∞:

v(ξ) ≈ v0(ξ) +
∑

k∈Npos(V )

vk(ξ), w(ξ) ≈ w0(ξ) +
∑

k∈Npos(V )

wk(ξ),

where

v0(ξ) =

{
v−, ξ < 0,
v+, ξ > 0,

w0(ξ) =

{
w−, ξ < 0,
w+ ξ > 0,

are the homogeneous components and

vk(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

−4V sin(k/2) cos(k(ξ − 1/2))

Lk(k, V )
, ξ < 0, k ∈ N−

pos(V ),

4V sin(k/2) cos(k(ξ − 1/2))

Lk(k, V )
, ξ > 0, k ∈ N+

pos(V ),

wk(ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

8 sin2(k/2) cos kξ

kLk(k, V )
, ξ < 0, k ∈ N−

pos(V ),

−8 sin2(k/2) cos kξ

kLk(k, V )
, ξ > 0, k ∈ N+

pos(V ),

(6.3)
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are the oscillatory components. Here N±
pos(V ) ≡ {k ∈ N±(V ) : k > 0} (recall (4.5)),

N+
pos(V )

⋃
N−

pos(V ) = Npos(V ). Due to the asymptotic orthogonality of the linear
modes, the terms in the right-hand side of (6.2) can be expressed as contributions due
to individual modes. Since the energy flux associated with the linear mode k is the
product of the average energy density 〈Gk〉 and the relative velocity |Vg − V | of the
energy transport with respect to the moving front, we can write

R+(V ) =
∑

k∈N+
pos(V )

〈Gk〉+(Vg − V ), R−(V ) =
∑

k∈N−
pos(V )

〈Gk〉−(V − Vg).(6.4)

Here 〈Gk〉± is the average energy density carried by the wave with the wave number
k ∈ N±

pos(V ). It is given by

〈Gk〉± = lim
n→±∞

1

2V τ(k)

∫ n

n−V τ(k)

[
v2
k(ξ) + c2(wk(ξ))

2

−
q−1∑
p=1

B(p){(wk(ξ + p) − wk(ξ))
2 + (wk(ξ) − wk(ξ − p))2}

]
dξ,

where B(p) = 1
2

∑q−p
l=1 lΨ(l + p) and τ(k) = 2π/ω(k) = 2π/(V k). Using (6.3), we

obtain

〈Gk〉± =
8V 2 sin2(k/2)

(Lk(k, V ))2
,

which gives for the total energy flux

R(V ) =
∑

k∈N+
pos(V )

4V sin2(k/2)

kLk(k, V )
−

∑
k∈N−

pos(V )

4V sin2(k/2)

kLk(k, V )
=

∑
k∈Npos(V )

4V sin2(k/2)

|kLk(k, V )| .

Recalling the definition R(V ) = G(V )V we can write the microscopic expression for
the configurational force:

G(V ) =
∑

k∈Npos(V )

4 sin2(k/2)

|kLk(k, V )| .(6.5)

The function G(V ) is well-defined since both L(k, V ) and Npos(V ) depend on V in a
known way. Comparing (6.5) with the macroscopic definition of the configurational
force (1.4) we obtain

G =
1

2
(w− + w+) − wc,(6.6)

which can be interpreted geometrically as the area difference between two shaded
triangles in Figure 2.1. Combining (6.5) and (6.6), we obtain exactly (4.10), which
shows that (4.10) is indeed the desired kinetic relation and that micro and macro
assessments of dissipation are compatible.

7. An example. To illustrate the general solution, consider a special case q = 2
(see Figure 7.1). The model is then fully characterized by a single dimensionless
parameter,

β = 4Ψ(2)/Ψ(1),



544 LEV TRUSKINOVSKY AND ANNA VAINCHTEIN

0 1

ε

2ε

linear springbi-stable  spring

2 3−3 −2 −1

Fig. 7.1. Discrete chain with nearest and next-to-nearest-neighbor interactions (q = 2).

measuring the relative strength of NNN and NN interactions. The stability constraints
(e.g., [36]) give −1 < β ≤ ∞. Recalling that the inequality Ψ(2) < 0 is suggested by
the linearization of the potentials of the Lennard–Jones type [32, 33], we can further
restrict the admissible interval to

−1 < β ≤ 0.(7.1)

The total energy of the system can be written as

E =
∞∑

n=−∞

[
v2
n

2
+

1 + β

2
w2

n − θ(wn − wc)(wn − wc) −
β

4
(wn+1 − wn)2

]
.(7.2)

One can see that parameter β/(1 + β) characterizes the effect of discreteness: β ∼ 0
corresponds to weak and β ∼ −1 to strong coupling. This identification is compatible
with the fact that at β = 0 the Peierls stress characterizing the size of the lattice-
trapping domain takes the largest value (equal to the spinodal limit), while at β = −1
the Peierls stress is equal to zero.2

The energy (7.2) produces the following equation for the traveling waves:

V 2w′′ − β

4

(
w(ξ + 2) − 2w(ξ) + w(ξ − 2)

)
− w(ξ + 1) + 2w(ξ) − w(ξ − 1)

= 2θ(−ξ) − θ(−ξ − 1) − θ(1 − ξ).

(7.3)

The formal solution of this equation has been obtained in section 4. Below we provide
detailed illustrations for the physically relevant range of parameters β.

7.1. Dispersion relation. To compute the strain and velocity profiles at a given
V we need to find the nonzero roots k of the dispersion relation

L(k, V ) = 4 sin2(k/2) + β sin2 k − V 2k2 = 0.(7.4)

It is convenient to present the complex roots explicitly as k = k1+ik2 and divide them
into three categories: real, responsible for radiation; purely imaginary, providing the
monotone structure of the core region; and complex with nonzero real part, describing
oscillatory contributions to the core.

Since L(k, V ) is an even function of k, the real roots appear in pairs k = ±k1.
Assuming positive V , we obtain

V (k1) =

√
4 sin2(k1/2) + β sin2 k1

|k1|
.

This function is plotted in Figure 7.2(a). An infinite number of local maxima on

2The picture emerging in our piecewise linear model is somewhat obscured by the fact that in
the limit of strong coupling the macroscopic sound speed tends to zero.
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Fig. 7.2. Real (a) and imaginary (b) roots of the dispersion relation L(k, V ) = 0 at different β.

this graph, denoted by V = Vi, correspond to resonance velocities: at these points
Lk(k, V ) = 0 and the sums in (4.3), (4.9), and (4.12) diverge. Between the resonance
velocities, (7.4) possesses a finite number of positive real roots corresponding to prop-
agating waves. To determine whether these waves propagate ahead or behind the
front, we need to check whether kLk(k, V ) = 2k3V (k)V ′(k) is positive or negative.
At V > 0 the radiation conditions say that the waves with kV ′(k) > 0 propagate in
front of the phase boundary, while the waves with kV ′(k) < 0 propagate behind.

Changing β affects the function V (k) noticeably only at long waves (small k).
A straightforward computation shows that V (0) is equal to the macroscopic sound
speed c = (1 + β)1/2. We also obtain that V ′(0) = 0 and

V ′′(0) = − 1 + 4β

12
√

1 + β
.

At −1/4 < β ≤ 0, the function V (k) has a maximum at k = 0 while at −1 < β < −1/4
it has a local minimum implying that sufficiently strong coupling (β < −1/4) creates
the possibility for the lattice waves to move faster than the macroscopic sound speed.
The range of supersonic speeds increases as β → −1, and in the limiting case β = −1
all propagating waves are macroscopically supersonic. It is interesting that the critical
value β = −1/4 also emerges in the strain-gradient approximation of the energy
(7.2), where it corresponds to the change of sign of the coefficient in front of the
strain gradient term [15, 28]. In this approximation the dispersion relation V (k) is
replaced by a parabola: for β > −1/4 (weak nonlocality) the parabola is directed
downward and the strain-gradient coefficient is negative while for β < −1/4 (strong
nonlocality) the parabola is upward and the strain-gradient contribution to the energy
is positive definite. The latter implies that subsonic phase boundaries can only be
dissipation free. To yield a nontrivial kinetic relation in this range of parameters the
quasicontinuum model must be augmented by higher-order terms [37].

The purely imaginary roots of (7.4) appear in symmetric pairs and correspond
to nonoscillatory modes exponentially decreasing away from the front. By solving
L(ik2, V ) = 0 for V we obtain

V (k2) =

√
4 sinh2(k2/2) + β sinh2 k2

|k2|
.

This function is shown in Figure 7.2b. One can show that V (0) = c, V ′(0) = 0,
and V ′′(0) = (1 + 4β)/(12

√
1 + β). For −1 < β < −1/4 the maximum of the curve
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Fig. 7.3. The structure of nonzero roots of L(k, V ) = 0 in the cases of strong (β = −2/3)
and weak (β = −1/16) nonlocality. Thin lines: real roots, set N ; thick lines: P -roots; gray lines:
Q-roots.

V (k2) is reached at k2 = 0, which means that in the case of strong coupling only
macroscopically subsonic phase boundaries have monotone contribution to the core
structure. Both the value V (0) and the range of available wave numbers decrease as
β → −1, so that in the limit purely imaginary roots disappear. In the case β = 0 the
function V (k2) is convex and no imaginary roots contribute to the subsonic solution.
This is compatible with the fact that in the degenerate NN limit the static interface
(V = 0) is atomically sharp.

Complex roots with nonzero real part contribute to the oscillatory structure of
the core region. For the given V the real (k1) and imaginary (k2) parts of the relevant
wave numbers satisfy the system of two equations: ReL(k1+ik2, V ) = 0 and ImL(k1+
ik2, V ) = 0. The set of complex roots contains infinitely many branches that come in
symmetric quadruples. The first quadrant of the complex plane is shown in Figure 7.3.
The complex roots can be divided into two sets: Q and P . The set Q (thick gray
lines), has a purely dynamic nature and contributes to the boundary layers around
the front only at nonzero V . The set P , shown in Figure 7.3 by thick black lines,
contains purely imaginary branches which intersect the plane V = 0 and contribute
to the static solution: at V = 0 they are given by

k = 2πn± iλ, λ = 2arccosh

[
1√
|β|

]
,(7.5)

where n is an integer [33]. As β tends to zero, the imaginary parts of P -roots approach
±∞; the eventual disappearance of these roots in the limit β → 0 is responsible for
the sharpening of the front in the NN approximation.

7.2. Strain and velocity profiles. Typical profiles of strain w(ξ) and veloc-
ity v(ξ) computed for the NNN model from (4.3), (4.12) are shown in Figure 7.4,
where β = −0.2. For this case the first two resonance velocities are V1 = 0.2164
and V2 = 0.1282. Accordingly, at V = 0.5 > V1 we see only one radiative mode
propagating behind the phase boundary; at V2 < V = 0.16 < V1 the solution exhibits
two additional radiative modes, one propagating behind and one in front of the phase
boundary.
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A closer inspection of the solutions at V < 0.266 reveals a violation of the con-
straints (3.5): in the strain profile corresponding to V = 0.16 in Figure 7.4 the
threshold w = wc is crossed at both ξ = 0 and ξ > 0. Moreover, for this value of β
our numerical computations suggest that the entire velocity interval (0, 0.266) around
the resonances has to be excluded as inadmissible. Similar “velocity gaps” also have
been detected in [11, 12, 14] for the semilinear Frenkel–Kontorova problem.

At larger β steady interface propagation becomes possible in certain subcritical
velocity intervals. For instance, at β = −0.75 we found admissible traveling wave
solutions in the intervals: [0.24, 0.5] (between V1 = 0.215 and c = 0.5); [0.142, 0.19]
(between V1 and V2 = 0.1279); [0.1, 0.11] (between V2 and V3 = 0.0912); [0.078, 0.08]
(between V3 and V4 = 0.0708); and possibly in some shorter intervals at smaller V .
Two such solutions are shown in Figure 7.5. The first one corresponds to V = 0.16,
which is between the first and second resonances; unlike its counterpart at β = −0.2,
this solution is admissible. The second admissible profile corresponds to the value
of velocity V = 0.105 located between the second and third resonances. In this case
there are five radiative modes, two in front and three behind the phase boundary. The
appearance of the small-velocity intervals of existence of the traveling wave solutions
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Fig. 7.6. Kinetic relation G(V ) for β = −1/8. The region inside the rectangle should be
excluded because the corresponding solutions violate admissibility constraints (3.5).

at nonzero β is due to the presence of P -roots at nonzero β: as β grows in absolute
value, these roots move closer to the real axis, widening the transition layer and
suppressing oscillations due to the Q-roots (see Figure 7.3).

7.3. Kinetic relation. Using (6.5) and the known dispersion spectrum, we can
now explicitly evaluate the kinetic relation G(V ). A representative example is shown
in Figure 7.6. At resonance velocities the configurational force required to move the
interface tends to infinity. The singularities are due to equal curvatures of the energy
wells ensuring that the energy transport is simultaneously blocked in both phases.
The main physical reasons are related to low dimensionality of the model and the
absence of microscopic dissipation.

As we discussed above, at sufficiently small β the entire region around the small-
velocity resonances has to be excluded because the corresponding solutions violate
the admissibility constraints (3.5). With β increasing, some of the small-velocity
solutions between the resonances become admissible, as shown in Figure 7.7(b)–(d).
Observe also that there is an infinite number of β at which the sonic speed c coincides
with one of the resonance velocity. Thus, at β = −0.9539 we have c = V1 = 0.2147,
implying that for β ≤ −0.9539 the subsonic region lies below the first resonance (see
Figure 7.7(d)). Overall, the total domain of existence of the traveling wave solutions
shrinks as β → −1, while the domain of admissible traveling waves between the
resonances expands.

Zero-velocity limit. To check the compatibility of static and dynamic branches
of solutions it is instructive to trace the zero velocity limit of our dynamic theory.
At V = 0 we can use (5.2) with F± = {±iλ}, where λ is defined in (7.5). After
some algebraic manipulations, the family of lattice-trapped equilibria (5.2) can be
represented in the form

wn =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

σ + 1

1 + β
− eλ(n+1/2)

2(1 + β) cosh(λ/2)
, n < 0,

σ

1 + β
+

e−λ(n+1/2)

2(1 + β) cosh(λ/2)
, n ≥ 0,

(7.6)

where σ lies in the region (5.4). The solutions (7.6) can be shown to be metastable
[32]. The expression for the Peierls stress (5.5) marking the threshold of metastability
can now be written explicitly as

σP =
1

2

√
1 + β.
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Observe that at β = 0 the Peierls stress coincides with the spinodal stress σS = 1/2. As
β grows, the trapping region becomes narrower and eventually disappears at β = −1
(σP = 0). The upper boundary of the trapping region (5.4) corresponds to the case
when w0 = wc, which is exactly the condition (3.4). The corresponding saddle-point
configuration is given by

wn = lim
V→0

w(n− V t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

wc +
eλ/2 − eλ(n+1/2)

2(1 + β) cosh(λ/2)
, n < 0,

wc +
e−λ(n+1/2) − e−λ/2

2(1 + β) cosh(λ/2)
, n ≥ 0.

(7.7)

Using this solution, we can obtain the value of the configurational force at the depin-
ning limit:

G(0) =
1

2
(w− + w+) − wc =

1

2
√

1 + β
.(7.8)

Notice that although the Peierls stress tends to zero when β → −1, the corresponding
value of the configurational force G(0) tends to infinity. This is, of course, an artifact
of our specific assumptions concerning the elastic moduli and is due to the divergence
of the macroscopic transformation strain in the limit.

Sonic limit. The qualitative behavior of the function G(V ) in the limit V → c
depends on β. If −1/4 < β ≤ 0, and V � c, the wave spectrum contains a single
wave number k which approaches zero as V → c. Expanding the expression for the
configurational force (6.5) at small k we obtain

G ∼ 6

(1 + 4β)k2
,
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Fig. 8.1. Positions xn(t) of every fifth particle in the interval 290 ≤ n ≤ 345 in numerical
solution of the Riemann problem with initial data compatible with the traveling wave at V = 0.375
at β = −0.2. The phase boundary is initially placed at n0 = 300, and the problem is solved on
the interval 1 ≤ n ≤ 600. The corresponding point on the kinetic relation G(V ) is marked by x in
Figure 7.7a.

which implies that G(V ) → ∞ as V → c (see Figures 7.6 and 7.7(a)). The picture
is qualitatively different when −1 < β < −1/4. In this case as V approaches c from
below, the limit of the corresponding real wave number k is nonzero ks, and therefore
configurational force G(V ) remains finite (see Figure 7.7(b)–(d)).

8. Stability of the traveling waves. We now present some numerical exper-
iments aimed at accessing stability of the admissible traveling wave solutions. To
simplify the consideration of the transient regimes for the system (2.8), we consider
Riemann initial data of the form

(wn, vn)
∣∣
t=0

=

⎧⎪⎨
⎪⎩

(w0
−, 0), n < n0,

(wc, 0), n = n0,

(w0
+, 0), n > n0.

(8.1)

We assume that w0
+ < wc and w0

− > wc. The analysis of the corresponding continuum
problem for the p-system (1.2) suggests the formation of a phase boundary with two
shocks in front and behind (e.g., [17]). This is indeed what we see in Figure 8.1, which
shows a typical numerical solution of (2.8) obtained using the Verlet algorithm on a
large domain.

After a transient period, the phase boundary starts moving with a constant speed.
To check convergence of the non-steady-state problem to the admissible traveling wave
solution we used the following algorithm. For a traveling wave solution with velocity
V , (4.9) provides the average strains at both sides of the discontinuity w±(V ). We
can then use (4.13) and the Rankine–Hugoniot jump conditions across the shocks to
compute the corresponding initial strains w0

± in terms of V and v+. Without loss of
generality, we choose v+ so that w0

+ = 0 and obtain an explicit formula relating the
Riemann data with the observed phase boundary velocity:

w0
−(V ) = w−(V ) + w+(V ) +

V

c(c2 − V 2)
= 2

(
wc +

∑
k∈Npos(V )

4 sin2(k/2)

|kLk(k, V )|

)
+

V

c(c2 − V 2)
.
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Fig. 8.2. (a) Strain profile wn(200) for the numerical solution shown in Figure 8.1. (b) The
same solution (solid line) zoomed in around the phase boundary (inside the rectangle in (a)) and
compared to the analytical traveling wave solution (thick dashed line).

Computations based on this relation consistently indicate that the fast branch of the
kinetic relation (V > V1) corresponds to traveling wave solutions with a finite domain
of attraction. An example corresponding to β = −0.2 and V = 0.375 is shown in
Figures 8.1 and 8.2. One can see not only that the generated phase boundary prop-
agates steadily with the predicted velocity but that the strain profile wn(t) zoomed
around the phase boundary (solid line in Figure 8.2(b)) compares perfectly with the
analytical solution (4.3) (thick dashed line). The above analysis suggests that the fast
branch of the kinetic relation with V > V1, corresponding to traveling wave solutions
with a single oscillatory mode behind and monotonic leading edge, is locally stable;
proving this conjecture rigorously is highly nontrivial.

Unfortunately, we were not able to find similar evidence of numerical stability for
admissible traveling waves with V < V1 exhibiting oscillations both behind and in
front of the phase boundary. Numerical simulation for the data expected to converge
to the particular traveling wave lead instead to a solution which does not agree with
the traveling wave ansatz although the phase boundary propagates steadily (with a
slightly smaller velocity). The macroscopic solution is very close to the corresponding
traveling wave; the analytical formula captures the core structure but not the oscilla-
tions. One can conjecture that while an admissible traveling wave with radiation on
both sides of the front is not a global attractor, it is surprisingly close to one.

Finally, we refer to [17] for a related study of the phase boundary stability in the
context of a different discretization of the mixed-type p-system.

9. Conclusions. In this paper we used a physically motivated discretization of
the p-system to derive an explicit kinetic relation for a one-dimensional theory of
martensitic phase transitions. The macroscopic dissipation was interpreted as the
energy of the lattice waves emitted by a moving macroscopic discontinuity. By using
the simplest piecewise linear model, we obtained an explicit formula for the contin-
uum rate of entropy production which depends only on interatomic potentials. We
showed that despite the difference in the structure of micro and macro theories, the
assessments of dissipation at different scales are fully compatible. The present study
complements previous analyses of related systems in fracture and plasticity framework
by including general harmonic long-range interactions.

More specifically, we showed that contrary to the simplest theory with NN interac-
tions, which has a mean field character and is therefore degenerate, strongly nonlocal
models produce multivalued kinetic relations with several admissible branches and
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rich variety of configurations of emitted lattice waves. In addition to enlarging the
domain of existence of steady-state regimes, sufficiently strong long-range interactions
significantly alter the structure of mobility curves near sonic speeds. The nonlocality
also affects the size of lattice trapping: as long-range interactions become stronger,
the trapping region reduces in size in terms of stress. At the same time, it widens
in our model in terms of driving forces, which emphasizes an important difference
between the physical and configurational descriptions. Although the main effects of
nonlocality were illustrated in the paper by the explicit computations for the NNN
model, we have also conducted a similar study of the NNNN model which showed
qualitatively similar behavior.

The present work was motivated by similar studies of the semilinear discrete
Frenkel–Kontorova model (e.g., [11, 12]). While the two models turn out to be equiv-
alent in static and overdamped limits [32, 34], the fully inertial versions are quite
different. An additional level of complexity in the quasilinear model considered here
is associated with a different structure of nonlinearity that results in the presence of
the limiting characteristic velocity, microscopic and macroscopic particle velocities,
and the discrete Rankine–Hugoniot jump conditions.
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ASMA EL AYYADI† AND ANSGAR JÜNGEL†

Abstract. A coupled quantum drift-diffusion Schrödinger–Poisson model for stationary reso-
nant tunneling simulations in one space dimension is proposed. In the ballistic quantum zone with
the resonant quantum barriers, the Schrödinger equation is solved. Near the contacts, where col-
lisional effects are assumed to be important, the quantum drift-diffusion model is employed. The
quantum drift-diffusion model was derived by a quantum moment method from a collisional Wigner
equation by Degond et al. [J. Statist. Phys., 118 (2005), pp. 625–665]. The derivation yields an O(�4)
approximation of the equilibrium Wigner function which is used as the “alimentation function” in the
mixed-state formula for the electron and current densities at the interface. The coupling of the two
models is realized by assuming the continuity of the electron and current densities at the interface
points. Current-voltage characteristics of a one-dimensional tunneling diode are numerically com-
puted. The results are compared to those from the three models: quantum drift-diffusion equations,
the Schrödinger–Poisson system, and the coupled drift-diffusion Schrödinger–Poisson equations.

Key words. Schrödinger–Poisson system, quantum drift-diffusion model, quantum microscopic-
macroscopic coupling, finite differences, resonant tunneling diode, hysteresis

AMS subject classifications. 65M06, 82D37, 81V99

DOI. 10.1137/040610805

1. Introduction. Quantum effects in modern semiconductor devices are becom-
ing of increasing importance in VLSI design. Devices which are based on quantum
effects, like resonant tunneling diodes, can be used in logic applications [19] and are
expected to improve the system performance of multi-GHz circuits in wireless com-
munication systems [27]. Resonant tunneling diodes can be modeled by the Wigner
equation [23] or the mixed-state Schrödinger equation [26]. However, the numeri-
cal computation of these equations is very expensive, even in one space dimension.
Therefore, macroscopic quantum equations like quantum hydrodynamic or quantum
drift-diffusion models have been devised [1, 15], whose numerical solution is much
cheaper than solving microscopic models [18, 20, 22]. On the other hand, quantum
diffusion models do not always give sufficiently physical accurate solutions [7].

In order to meet both demands (physical accuracy and numerical efficiency), cou-
pled microscopic-macroscopic models can be employed. In these models, a microscopic
quantum description is used in regions with dominant quantum effects, and a macro-
scopic (fluid-type) model is employed in subregions in which collisional effects are
expected to be dominant. In the case of a resonant tunneling diode, it was proposed
in [10] to use the stationary mixed-state Schrödinger equation in the (ballistic) chan-
nel region and the stationary drift-diffusion equations in the diffusion zones near the
contacts. This approach has two advantages. First, the spatial domain in which the
Schrödinger equation is solved can be reduced, thus also reducing the computational
effort. Second, as the diffusion zone is assumed to be collision dominated, a diffusion
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approximation of the Wigner equation leads naturally to a coupling strategy between
the quantum and classical equations.

Similar coupling approaches have been proposed in the literature. A coupled
kinetic-quantum model was introduced in [4]. More precisely, a Boltzmann equation
is solved in the classical zone and the stationary Schrödinger equation is computed
in the quantum zone. At the interface between the classical and quantum zones,
the boundary conditions for the Boltzmann equation depend on the reflection and
transmission coefficients of the Schrödinger solution. The distribution function solv-
ing the Boltzmann equation is used as an “alimentation function” in the definition
of the electron density in the quantum region. A time-dependent classical-quantum
coupling strategy was studied in [5]. Employing the drift-diffusion model with inter-
face conditions from a diffusion approximation leads to the mentioned approach of
[10]. The coupled drift-diffusion Schrödinger model was recently extended to include
collisions via a Pauli master equation [2]. A model in which a classical transport is
assumed in the direction parallel to the electron gas and a quantum description in
the transversal direction is analyzed in [6]. In [14] the quantum drift-diffusion model
is used in the parallel direction instead of a classical transport description. For other
coupling models, see, e.g., [3, 8].

In this paper we propose a slightly different approach compared to [10]. Instead of
choosing a classical collision operator in the Boltzmann equation (from which the drift-
diffusion model is derived) we start from the Wigner equation with a Bhatganar-Gross-
Krook (BGK) collision operator. In [11] it was shown that a diffusion approximation
of the Wigner–BGK model leads to the so-called quantum drift-diffusion model (also
called the density-gradient model [1]),

∂n

∂t
− 1

e
divJ = 0, J = μn (Uth∇n− n∇(V + Q[n])) ,

where the variables are the electron density n(x, t), the current density J(x, t), and
the electrostatic potential V (x, t); the physical constants are the elementary charge
e, the electron mobility μn = eτ/m, the effective electron mass m, the momentum
relaxation time τ , and the thermal voltage Uth. The expression

Q[n] =
�

2

6em

Δ
√
n√
n

denotes the quantum Bohm potential, where � is the reduced Planck constant. The
fourth-order parabolic quantum drift-diffusion model was analyzed and numerically
solved in [22].

More precisely, we use the quantum drift-diffusion model in the diffusion region
and the mixed-state Schrödinger equation in the ballistic zone. We restrict our-
selves to the spatial one-dimensional stationary case in order to avoid complicated
topological conditions on the device geometry. The advantage of our approach is
that no (artificial) separation of the quantum and classical zones is necessary since a
quantum description is employed in the whole device. The coupled model is solved
self-consistently with the Poisson equation.

The coupling of the models is realized through connection conditions relating the
macroscopic variables, namely, the electron density and the current density, at the
interface boundary points. We suppose that the particle and current densities are
continuous across the interface. The current density computed from the Schrödinger
equation depends on the statistics (or alimentation function) used in the mixed-state
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formula. At the interface we assume that the statistics of the incoming particles equal
the O(�4) approximation of the so-called quantum Maxwellian, which is related to
the quantum drift-diffusion model. This yields nonlinear boundary conditions for the
macroscopic electron density and its derivatives.

The coupled model is numerically implemented using a finite-difference discretiza-
tion and tested against a test case for a one-dimensional resonant tunneling diode
taken from [26]. The numerical results show negative differential resistance in the
current-voltage characteristic at room temperature, whereas the quantum drift-
diffusion model in the whole domain is not able to reproduce these effects at room
temperature (with the physical effective electron mass). Furthermore, hysteresis in
the current-voltage curve can be observed in computations from our coupled model
but not from the quantum drift-diffusion model. Compared to the numerical solution
of the Schrödinger–Poisson (SP) system in the whole domain, the numerical effort of
the coupled model is significantly reduced with comparable numerical solutions.

The paper is organized as follows. In the next section, the Schrödinger equation
with open boundary conditions is presented and a sketch of the derivation of the
quantum drift-diffusion model following [11] is given. Furthermore, the coupling of
the two models is explained. Section 3 is concerned with the numerical discretization
of the equations and the iteration procedure. Finally, some numerical results for a
one-dimensional resonant tunneling diode are presented in section 4.

2. Presentation of the models. The semiconductor is assumed to occupy the
interval Ω = (0, L) in which the ballistic quantum zone Ωs = (x1, x2) is sandwiched
between two quantum diffusion regions Ωq = (0, x1) ∪ (x2, L) and 0 < x1 < x2 < L.

2.1. The Schrödinger model. We consider the Schrödinger equation in the
interval (a, b), where a = 0, b = L or a = x1, b = x2. In the first case we solve the
Schrödinger equation in the whole semiconductor domain; in the latter case we solve
only in the ballistic quantum zone.

Let the electrostatic potential V (x) be given and let Ṽ = V + Vext be the sum of
electrostatic and external potential (Vext models, for instance, the double barriers).
We solve the Schrödinger equation

−�
2

d

dx

(
1

m

dψp

dx

)
− eṼ (x)ψp = Epψp, x ∈ (a, b), p ∈ R,(2.1)

where � = h/2π is the reduced Planck constant, m the (generally position-dependent)
effective mass of the electrons, e the elementary charge, and Ep is the total energy of
the corresponding scattering state ψp, given by

Ep =

{
p2/2m− eṼ (a) : p > 0,

p2/2m− eṼ (b) : p < 0.

Here, p = �k is the crystal momentum and k the wave vector. We use the Lent–
Kirkner boundary conditions for (2.1) [16, 24],

�ψ′
p(a) + ipψp(a) = 2ip, �ψ′

p(b) = ip+(p)ψb(b) if p > 0,(2.2)

�ψ′
p(b) − ipψp(b) = −2ip, �ψ′

p(a) = −ip−(p)ψp(a) if p < 0,(2.3)

where

p±(p) =

√
p2 ± 2em(Ṽ (b) − Ṽ (a)).(2.4)
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These boundary conditions can be derived by solving the above Schrödinger equa-
tion in R, extending the potential by the definitions Ṽ (x) = Ṽ (a) for x < a and

Ṽ (x) = Ṽ (b) for x > b. Then the solutions are plane waves in the intervals (−∞, a)
and (b,∞), i.e., for p > 0 [10],

ψp(x) = eip(x−a)/� + r(p)e−ip(x−a)/� (x < a),(2.5)

ψp(x) = t(p)eip+(p)(x−b)/� (x > b),

and for p < 0,

ψp(x) = e−ip(x−b)/� + r(p)eip(x−b)/� (x > b),

ψp(x) = t(p)e−ip−(p)(x−a)/� (x < a).(2.6)

The incoming wave is thus assumed to have amplitude one. The reflection and trans-
mission amplitudes r(p) and t(p) are uniquely determined from the solution (see [10,
p. 226]). By elimination of the unknowns r(p) and t(p), the boundary conditions
(2.2)–(2.3) are obtained.

From the amplitudes r(p) and t(p) the reflection and transmission coefficients can
be computed:

R(p) = |r(p)|2, T (p) =
Re(p±(p))

|p| |t(p)|2 if ± p > 0,

where Re denotes the real part of a complex number. It holds R(p) +T (p) = 1 for all
p ∈ R and T (p) = T (−p+(p)) for all p > 0 (reciprocity property).

We must introduce some macroscopic quantities. The electron density ns(x) is
defined by

ns(x) =

∫
R

g(p)|ψp|2dp,(2.7)

where g(p) is the statistics of the left reservoir if p > 0 and of the right reservoir if
p < 0 (also called alimentation function), and the current density is given by

Js(x) =
e�

m

∫
R

g(p)Im(ψp(x)ψ′
p(x))dp,(2.8)

where Im denotes the imaginary part of a complex number. In one space dimension,
the expression for the current density can be reformulated. Indeed, using (2.2)–(2.3)
and (2.5)–(2.6), we obtain

� Im(ψp(a)ψ
′
p(a)) = Im(ip(1 − |r(p)|)2) = pT (p) for p > 0,

� Im(ψp(a)ψ
′
p(a)) = −Im(ip−(p)|t(p)|2) = pT (p) for p < −p0,

and � Im(ψp(a)ψ
′
p(a)) = 0 if −p0 < p ≤ 0, where p0 = Re(2em(Ṽ (b) − Ṽ (a)))1/2.

Therefore, since Js(x) is constant,

Js(x) = Js(a) =
e

m

∫ ∞

0

g(p)T (p)pdp +
e

m

∫ −p0

−∞
g(p)T (p)pdp

=
e

m

∫ ∞

0

g(p)T (p)pdp +
e

m

∫ 0

∞
g(−p+)T (−p+)pdp

=
e

m

∫ ∞

0

(g(p) − g(−p+))T (p)pdp,(2.9)
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where we have used the substitution p �→ −p+(p) and the reciprocity property of
T (p).

The choice of the alimentation function g(p) depends on the choice of a and b. If
a = 0 and b = L, it is taken to be the Fermi–Dirac distribution:

g(p) =
mkBT0

2π2�3
ln

{
1 + exp

[
1

kBT0

(
− p2

2m
+ EF

)]}
,

where kB is the Boltzmann constant, T0 the lattice temperature, and EF the Fermi
energy computed from the charge-neutrality condition at the left or right reservoir
boundary. This formula holds if the system is macroscopically large in its transversal
dimensions (see [17, Ch. 9] or [25, Ch. 1.5.2.1]). In the case a = x1 and b = x2 we
choose g(p) as an approximation of the so-called quantum Maxwellian (see (2.16) and
(2.11)).

2.2. The quantum drift-diffusion model. In order to explain the coupling
with the quantum drift-diffusion equations, we need to review its derivation from a
Wigner–BGK model as performed by Degond, Méhats, Ringhofer [11, 12]. We start
from the collisional Wigner equation in one space dimension,

wt +
p

m
wx +

e

m
θ[Ṽ ] = Q(w), x, p ∈ R, t > 0,(2.10)

where wt, wx denote the partial derivatives of w with respect to t and x, respectively,
and θ[Ṽ ] is a pseudodifferential operator given by

(θ[Ṽ ]w)(x, p, t) =
i

2π�

∫
R2

[
Ṽ

(
x +

�

2m
η

)
− Ṽ

(
x− �

2m
η

)]

× w(x, p′, t)eiη(p−p′)/mdp′dη.

(We do not indicate here the time-dependency of Ṽ .) The collision operator is assumed
to be of BGK type, i.e.,

Q(w) =
1

τ
(M [w] − w),

where τ is the relaxation time and M [w] is the so-called quantum Maxwellian defined
as the minimizer of the quantum entropy, subject to the constraint of given particle
density [13]. To make this precise, we introduce first the so-called relative quantum
entropy.

Let W−1 be the inverse Wigner transform (or Weyl quantization):

(W−1[w])φ(x) =
1

2π�

∫
R2

w

(
x + y

2
, p, t

)
φ(y)eip(x−y)/�dpdy for suitable φ(x).

The relative quantum entropy for the density matrix ρ = W−1[w] is defined as follows:

S(ρ) =
1

2π�

∫
R2

w

(
Ln(w) − 1 +

H

kBT0

)
dxdp,

where H = |p|2/2m− eṼ (x) is the classical Hamiltonian, Ln(w) := W [ln(W−1[w])] is
called the quantum logarithm, and ln(f) is the usual operator logarithm. We wish to
find, for given n(x), the minimizer of

S(ρ∗) = min

{
S(ρ) :

1

2π�

∫
R

W [ρ]dp = n(x) ∀x
}
.
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The solution (if it exists) is ρa = W−1[wa], where wa = Exp(a(x) − H/kBT0) and
Exp(f) := W [exp(W−1[f ])] is called the quantum exponential. The function a(x)
is such that

∫
wa(x, p)dp/2π� = n(x). We call wa a quantum Maxwellian. In other

words, for given w(x, p), we define M [w] as the quantum Maxwellian

M [w] = Exp

(
b(x) − |p|2

2mkBT0

)

such that
∫

(M [w] − w)dp = 0 and b(x) = a(x) − eṼ (x)/kBT0. We assume that the
integral constraint fixes the function b(x) in a unique way [11].

The quantum drift-diffusion model is derived from (2.10) in the diffusion limit.
For this, we introduce the scaling t → t/δ and Q(w) → Q(w)/δ, which yields

δ2wδ
t + δ

( p

m
wδ

x +
e

m
θ[Ṽ ]

)
= Q(wδ).

As δ → 0, the formal limit w0 = limδ→0 w
δ satisfies Q(w0) = 0, hence w0 = M [w0] =

Exp(b0(x) − |p|2/2mkBT0) for some function b0(x), and n(x) =
∫
w0(x, p)dp/2π�.

In [11] it was shown by a Chapman–Enskog expansion method that n satisfies the
equation

nt −
1

e
Jx = 0, J =

τekBT0

m
nb0,x − τe2

m
nṼx,

and n and b0 are related by

n =

∫
R

Exp

(
b0(x) − |p|2

2mkBT0

)
dp

2π�

(see [12, Lemma 6.5]). Furthermore, we can expand w0 = Exp(b0−|p|2/2mkBT0) and
thus n and J in terms of �.

Lemma 2.1. The following (formal) expansion holds for all x, p ∈ R up to order
O(�4):

w0(x, p) = A0e
−p2/2mkBT0n

[
1 +

�
2

12mkBT0

(
1 − p2

mkBT0

)(
(
√
n)xx√
n

− (
√
n)2

x

n

)]
,

(2.11)

where A0 =
√

2π�2/mkBT0.
Notice that (

√
n)xx/

√
n − (

√
n)2

x/n = (logn)xx but the formulation in (2.11) is
more convenient later.

Proof. We use Lemma 5.6 of [11] to obtain

w0(x, p) = exp

(
b0 −

p2

2mkBT0

)
− �

2

8mkBT0
exp

(
b0 −

p2

2mkBT0

)

×
[(

−1 +
p2

3mkBT0

)
b0,xx − 1

3
b2
0,x

]
+ O(�4).(2.12)

This gives

n(x) =

∫
R

w0(x, p)
dp

2π�
= n0(x) +

�
2

24mkBT0
n0(x)(2b0,xx + b2

0,x) + O(�4),
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where n0 := exp(b0)/A0. Consequently, n = n0 + O(�2) and we can solve the above
equation for n0:

n0 = n− �
2

24mkBT0
n(2b0,xx + b2

0,x) + O(�4).

Insertion of the above formula into (2.12) yields, after some computations,

w0 = A0e
−p2/2mkBT0n

[
1 +

�
2

24mkBT0

(
1 − p2

mkBT0

)
b0,xx

]
+ O(�4).

Since

b0,xx = 2
(
√
n)xx√
n

− n2
x

2n2
+ O(�2) = 2

(
√
n)xx√
n

− 2
(
√
n)2

x

n
+ O(�2)

(see [11, sec. 5.3]), we conclude the assertion.

In [11] it has been shown that we can expand n = nq + O(�4), J = Jq + O(�4),
and nq, Jq in such a way that nq, Jq satisfy the so-called quantum drift-diffusion
equations

nq,t −
1

e
Jq,x = 0, Jq =

τekBT0

m
nq,x − τe2

m
nq(Ṽ + Q[nq])x,(2.13)

where

Q[nq] =
�

2

6em

(
√
nq)xx
√
nq

is the so-called Bohm potential.

We can rewrite (2.13) by introducing the function σ =
√
nq and the quantum

quasi-Fermi potential

F = Uth lnnq − Ṽ −Q[nq]

(with the thermal voltage Uth = kBT0/e). Then the stationary version of (2.13)
becomes

(σ2Fx)x = 0, F = Uth lnσ2 − Ṽ − �
2

6em

σxx

σ
.(2.14)

The current density equals Jq = (τe2/m)σ2Fx = eμnσ
2Fx.

In order to specify boundary conditions for (2.14), we need to distinguish the two
cases for the choice of a and b. Let first a = 0 and b = L. Then, following [22], we
assume that the total space charge vanishes and that no quantum effects occur at the
boundary (in the sense (

√
nq)xx = 0). Thus

nq(0) = nD(0), nq(L) = nD(L), F (0) = 0, F (L) = −Va,(2.15)

where Va denotes the applied voltage. The case a = x1 and b = x2 is studied in the
next subsection.
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2.3. The coupled model. Let a = x1 and b = x2. We solve the Schrödinger
equation (2.1) in (a, b) with boundary conditions (2.2)–(2.3) and the quantum drift-
diffusion model (2.14) in the intervals (0, x1) and (x2, L).

To compute the electron and current densities ns and Js, respectively (see (2.7)
and (2.8)), we need to specify the alimentation function g(p). We choose g(p) as the
O(�4) approximation (2.11) of the quantum Maxwellian (see Lemma 2.1):

g(p) = w0(a, p) if p > 0, g(p) = w0(b, p) if p < 0.(2.16)

Although in general w0 does not need to be a nonnegative function, we observed in
the numerical simulations that w0(a, p) and w0(b, p) are always positive. Another
idea could be to choose the classical Maxwellian instead of the (approximation of the)
quantum Maxwellian w0 in (2.16). However, this choice did not lead to a converging
algorithm. (See section 3 for details on the discretization and the iterative proce-
dure.) A possible explanation could be that the use of the classical Maxwellian is not
consistent with the use of the quantum drift-diffusion model.

The coupling of both models is realized through connection conditions relating
the macroscopic unknowns (the electron density and the current density) at the two
interface points x1 and x2. We assume that at the interface, the particle density and
the current density are continuous, i.e.,

nq(x1) = ns(x1), nq(x2) = ns(x2), Jq(x1) = Js(x1), Jq(x2) = Js(x2).

Thus, the quantum drift-diffusion model is solved in (0, x1) with the four boundary
conditions

nq(0) = nD(0), F (0) = 0, nq(x1) = ns(x1), Jq(x1) = Js(x1).(2.17)

On the boundary of the interval (x2, L) we impose the conditions

nq(x2) = ns(x2), Jq(x2) = Js(x2), nq(L) = nD(L), F (L) = −Va.(2.18)

The interface conditions for the current densities can be written in a form which
is more convenient for the numerical computations. For this, we remark that we have
from (2.16) and (2.9)

Js(x1) =

∫ ∞

0

w0(a, p)T (p)pdp−
∫ ∞

0

w0(b,−p+(p))T (p)pdp

and Js is constant in [x1, x2]. Insertion of the above formula into Jq(xj) = Js(xj)
(j = 1, 2) gives, after some elementary computations, up to order O(�4),

Jq(x2) = Jq(x1) =
√

2πθA0

(
ns(x1) − e−δV/2θns(x2)

)
I1

+
√

2πθ
�

2A0

12
ns(x1)

(
σxx

σ
− σ2

x

σ2

)
x=x1

(θI1 − I2)

+
√

2πθ
�

2A0

12
ns(x2)

(
σxx

σ
− σ2

x

σ2

)
x=x2

e−δV/2θ((θ − δV )I1 − I2),

where σ =
√
nq, θ = mkBT0, δV = 2em(Ṽ (x2)−̃V (x1)), and

I1 =
1√
2πθ

∫ ∞

0

pT (p)e−p2/2θdp, I2 =
1√
2πθ

∫ ∞

0

p3T (p)e−p2/2θdp.
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For the numerical computations we replace the Bohm potential term σxx/σ by the
expression (2.14) in order to avoid the computation of the second derivatives of σ.
This gives two nonlinear boundary conditions for the quantum quasi-Fermi potential
F :

ns(xj)Fx(xj) = f(F (x1), F (x2), σx(x1), σx(x2)), j = 1, 2,

where

f(F (x1), F (x2), σx(x1), σx(x2)) =
√

2πθA0I1

(
ns(x1) − e−δV/2θns(x2)

)
+

em

2

√
2πθA0(θI1 − I2)ns(x1)

(
F (x1) − Uth lnns(x1) + Ṽ (x1) +

�
2

6em

σ2
x(x1)

ns(x1)

)

+
em

2

√
2πθA0e

−δV/2θ((θ − δV )I1 − I2)ns(x2)

×
(
F (x2) − Uth lnns(x2) + Ṽ (x2) +

�
2

6em

σ2
x(x2)

ns(x2)

)
.

Finally, the electrostatic potential is self-consistently coupled through the Poisson
equation

d

dx

(
εs

dV

dx

)
= e(n− nD(x)), x ∈ (0, L),

where εs is the semiconductor permittivity and the particle density n(x) is given by

n(x) =

{
nq(x) : x ∈ (0, x1) ∪ (x2, L),
ns(x) : x ∈ (x1, x2).

(2.19)

3. Numerical discretization. We discretize the equations by introducing a
uniform mesh ξk = k�x, �x > 0, k = 0, . . . ,K, and L = K�x.

The Schrödinger equation is solved by central finite differences as in [10]. For the
convenience of the reader we recall the discretization scheme. We assume that the
effective mass is constant in [x1, x2] since we wish to compare our results with those
from the literature, e.g., [7, 26]. Moreover, a space-dependent effective electron mass
leads to quite complicated quantum drift-diffusion models whose numerical solution
is delicate [28]. The Schrödinger equation (2.1) with boundary conditions (2.2) for
p > 0 (the case p < 0 can be treated analogously) can be equivalently rewritten as

y′′ = −2m

�2
(Ep + eṼ )y in (x1, x2), y(x2) = 1, y′(x2) =

i

�
p+(p),(3.1)

where p+(p) is defined in (2.4) and y and ψp are related by

ψp(x) =
2ipy(x)

�y′(x1) + ipy(x1)
.

With the approximations yk ≈ y(ξk) and Ṽk ≈ Ṽ (ξk) = Vext(ξk) + V (ξk) the discrete
problem is

1

(�x)2
(yk+1 − 2yk + yk−1) = −2m

�2
(Ep + eṼk)yk.
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This problem is solved as in [10] by Stoermer’s method, i.e., writing

zk =
yk+1 − yk

�x
(k = 0, . . . ,K − 1), zK = y′(x2) −

m

�2
(Ep + eṼ (x2))y(x2)

and noticing that zK is known in view of (3.1), the iteration reads

zk = zk+1 −
m

�2
�x(Ep + eṼk−1)yk−1,

yk = yk+1 −�xzk,

y′0 = y′(x1) = z1 −
m

�2
�x(Ep + eṼ0)y0,

which allows us to calculate zk and yk recursively. The algorithm is vectorized and
implemented in MATLAB.

The quantum drift-diffusion model (2.14) is approximated by central finite differ-
ences as in [22]. The proposed scheme has been proved to be positivity preserving,
i.e., the discrete electron density is positive (see [21, 22] for details). Let σk and
Fk be approximations of σ(ξk) and F (ξk), respectively. Then the discrete problem
corresponding to (2.14) is

1

(�x)2

(
σ2
k+1/2Fk+1 − (σk+1/2 + σk−1/2)Fk + σ2

k−1/2Fk−1

)
= 0,(3.2)

Fk = Uth lnσ2
k − Ṽk − �

2

6em(�x)2

σk+1 − 2σk + σk−1

σk
,(3.3)

where σk±1/2 = (σk + σk±1)/2.
Finally, the discrete Poisson equation for Vk ≈ V (ξk) reads as follows:

εs
(�x)2

(Vk+1−2Vk+Vk−1) = e(nk−nD(ξk)) (k = 1, . . . ,K−1), V0 = 0, VK = U,

where we have assumed a constant semiconductor permittivity εs, and the electron
density is either given by (2.7) (discretized by a standard quadrature formulae) in the
interval [x1, x2] or by σ2

k otherwise.
We describe now the iterative procedures for the various models. We use a fixed-

point strategy to solve the SP system in (0, L) (i.e., a = 0 and b = L). More precisely,
we choose the electrostatic potential V (0) of the thermal equilibrium state as an initial
guess. This potential is the (discrete) solution of the Poisson equation in which the
electron density is replaced by the Thomas–Fermi approximation:

εs
d2V

dx2
= e

(
NcF1/2

(
μ− V

kBT0

)
− nD(x)

)
in (0, L), V (0) = V (L) = 0.

Here, Nc = 2(mkBT0/2π�
2)3/2 is the effective density of states and F1/2 is the Fermi

integral of order 1/2 [17, Ch. 9]. The chemical potential μ is a constant in thermal
equilibrium and computed from the nonlinear equation nD(0) = n(0) = F1/2(μ/kBT0)
(where we assumed charge neutrality). With this initial potential we solve the dis-
crete Schrödinger problem to obtain the (discrete) scattering states which allow us
to compute the discrete electron density from (2.7) and the discrete current density
from (2.8). Finally, the update of the electrostatic potential can be computed from
the Poisson equation written in the Gummel formulation (see (3.8) in [10]),

εs
d2V (j+1)

dx2
+ e(V (j+1) − V (j))n(j) = e(n(j) − nD(x)).
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The solution of the Schrödinger eigenvalue problem is the most costly part of
the iteration. Indeed, we use a uniform grid of 10,000 values for p with grid size
�p = 0.0005

√
mkBT0. An adaptive mesh size strategy has been proposed for the SP

system in the whole domain in [7], but we observed that the adaptive algorithm did
not converge for the coupled model.

Another idea to reduce the computing time is to choose different mesh sizes �xq

in the collisional zone and �xs in the ballistic zone. However, it turned out in our
numerical experiments that the computing time is minimized when using the same
mesh size in both zones, i.e., �x = �xs = �xq. We have used �x = 0.25 nm (540
grid points).

The quantum drift-diffusion model in the whole interval (0, L) is solved by New-
ton’s method. The initial guess is chosen to be the potential in thermal equilibrium
with Va = 0 (see (2.15)). In thermal equilibrium, the quantum quasi-Fermi potential
F is constant and, in view of the boundary conditions (2.15), the constant is zero.
Then the thermal equilibrium potential is computed by a fixed-point scheme, i.e., we
solve first the discrete equation

�
2

6em(�x)2
(σk+1 − 2σk + σk−1) = σk(Uth lnσ2

k − Ṽk), σ0 = nD(0), σK = nD(L),

employing Newton’s method and then the linear Poisson equation with homogeneous
boundary conditions.

In the case a = x1 and b = x2 we use again a fixed-point-type iteration. More pre-
cisely, let an initial guess for the potential be given (namely, the thermal equilibrium
potential of the quantum drift-diffusion model). Then compute the scattering states
from the discrete Schrödinger equation. The electron and current densities are calcu-
lated according to (2.7) and (2.8), where the approximation (2.16) is employed. The
quantum drift-diffusion system is solved by Newton’s method according to (3.2)–(3.3)
using the boundary conditions (2.17) and (2.18), respectively. Finally, an update for
the electrostatic potential is obtained through the solution of the Poisson equation
using the definition (2.19).

For all models we use the continuation method in the applied voltage, i.e., with the
solution for the applied voltage U as an initial guess, we solve the problem applying the
potential Va = U+�U and use this solution again as initial guess for the next applied
voltage. For the computations of the next section, we have choosen �U = 0.005 V.

4. Numerical results. In this section we simulate a simple one-dimensional
resonant tunneling diode. We choose the same geometry and data as in [26] (essentially
taken from [23]). The tunneling diode consists of highly doped GaAs regions near the
contacts and a lightly doped middle region of 35-nm length (see Figure 4.1). The
middle region contains a quantum well of 5-nm length sandwiched between two 5-nm
AlGaAs barriers. The double barrier heterostructure is placed between two 10-nm
GaAs spacer layer with a doping of 5 · 1015 cm−3. These spacers are enclosed by two
layers of 50-nm length and with doping 1018 cm−3. The total length is thus 135 nm.
The double barrier height is 0.3 eV. The physical effect of the barriers is a shift in
the quasi-Fermi potential level, which we model by an additional step function Vext

added to the electrostatic potential. The physical constants are chosen as in [26] and
are summarized in Table 4.1.

First we present the current-voltage characteristics of the above tunneling diode
for four different model equations: the SP model in the whole interval, the coupled
drift-diffusion SP (DD-SP) model of [10], the coupled quantum DD-SP (QDD-SP)
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Fig. 4.1. Geometry of the resonant tunneling diode and external potential Vext modeling the
double barriers.

Table 4.1

Physical parameters and their numerical values.

Parameter Physical meaning Numerical value

m electron mass 0.067 · 9.11 · 10−31 kg
T lattice temperature 300 K
εs semiconductor permittivity 11.44 · 8.85 · 10−12 As/Vm
τ relaxation time 10−12 s
kB Boltzmann constant 1.36 · 10−23 J/K
� reduced Boltzmann constant 1.055 · 10−34 Js

model presented in this paper, and the quantum drift-diffusion (QDD) model in the
whole interval. See [2, 10] for a description of the DD-SP model and its numerical
discretization. Figure 4.2 displays the current-voltage curves for the first three models.
In all these models, a region of negative differential resistance (NDR), in which the
current is decreasing, can be observed. The valley current appears at approximately
the same voltage, but the voltage at which the peak current is observed is slightly
different in the models. Moreover, the peak-to-valley ratio in the QDD-SP model is
smaller than in the SP model. This comes probably from the fact that there are no
collisions modeled in the SP system. In [2], a decrease of the peak-to-valley ratio
was also observed in simulations from the collisional DD-SP model (compared to the
ballistic DD-SP model). The electron density and the electrostatic potential at applied
voltage Va = 0.25 V are presented in Figures 4.3 and 4.4, respectively. The results
obtained here compare well with those of [2] and [26], where the coupled DD-SP model
and the SP model, respectively, were solved.

The current-voltage curve computed from the QDD model does not show any
NDR region (Figure 4.5). In fact, the QDD model is too diffusive, thus destroying
the quantum resonance behavior (at least at large temperatures). It is known that
a nonmonotone behavior of the current-voltage characteristic from the QDD model
can be obtained by fitting the effective electron mass. Notice that the values for the
current density are overestimated compared to the other models. Since we are using a
constant relaxation time model (see section 2.2), the scattering effects are comparable
for both temperatures and the current density for T = 300 K is larger than that for
T = 77 K in view of the larger thermal energy.

For comparison, the current-voltage characteristics for the SP, QDD-SP, and DD-
SP models at T = 77 K are displayed in Figure 4.6. The current-voltage curves of
the two coupled models differ significantly from the curve computed from the SP
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Fig. 4.2. Current-voltage characteristics for a resonant tunneling diode using the SP, QDD-SP,
and DD-SP models.
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models.

model. This can be understood by the fact that at this low temperature, collisional
effects are expected to be less important such that the use of diffusion models is
questionable. Mathematically, the difference of the curves rather comes from the
Bohm potential term than from the interface conditions, since a similar difference can
be observed comparing the QDD and DD models without coupling to the SP system.
The peak current from the QDD-SP model coincides with the peak current from the
SP model, whereas the DD-SP model overestimates the peak current. Therefore, for
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Fig. 4.5. Current-voltage characteristics for a resonant tunneling diode using the QDD model
for two different lattice temperatures.

low temperature, the QDD-SP model seems to provide more accurate results than the
DD-SP model.

In [10] it was observed that the current-voltage values depend quite sensitively on
the position of the left interface point a = x1, but the influence of the position of the
right interface b = x2 is very small. This observation holds true also for the QDD-
SP model (Figures 4.7 and 4.8). When the left interface is too close to the double
barrier, the potential in the quantum region cannot reproduce the correct quantum
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Fig. 4.6. Current-voltage characteristics for a resonant tunneling diode using the SP, QDD-SP,
and DD-SP models at temperature T = 77 K.
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Fig. 4.7. Influence of changes of the interface a = x1 on the current-voltage characteristics
using the QDD-SP model.

resonances. It is argued in [10] that the insensitivity of the choice of the right interface
position comes from the fact that the electrons crossing the double barriers have high
energy and can be described equally well by a classical or a quantum model.

We have also investigated the effect of the relaxation time τ on the current-voltage
curve. Figure 4.9 shows that the results are insensitive of the choice of τ . This holds
true also in the ballistic DD-SP model of [10] (see Figure 4.10). In the collisional
DD-SP model of [2], however, the characteristic is very sensitive with respect to τ .
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Fig. 4.8. Influence of changes of the interface b = x2 on the current-voltage characteristics
using the QDD-SP model.
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Fig. 4.9. Influence of the relaxation time on the current-voltage characteristic using the QDD-
SP model.

This seems to come from the collision events in the quantum region modeled by the
Pauli master equation. Notice that in the coupled DD-SP and QDD-SP models, no
collisions are taken into account in the microscopic quantum region.

It is well known that the current-voltage curve of a tunneling diode exhibits
hysteresis, probably resulting from storage effects of the charges in the quantum well
[23]. Hysteresis can be found in simulations from the Wigner–Poisson model [23] or
from the quantum hydrodynamic equations [9]. It cannot be observed in simulations
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Fig. 4.10. Influence of the relaxation time on the current-voltage characteristic using the DD-
SP model.
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Fig. 4.11. Hysteresis in the current-voltage characteristic using the QDD-SP model.

from the QDD model. However, employing the coupled QDD-SP model, the current-
voltage characteristic shows hysteresis (Figure 4.11). We notice that also with the
DD-SP model, hysteresis effects can be found (Figure 4.12).

Finally, Table 4.2 displays the CPU times (for a 2.4-GHz Pentium 4 processor)
needed to compute the current-voltage characteristics in various voltage ranges for
the SP, QDD-SP, and DD-SP models. All algorithms are vectorized in the same way
such that the CPU times are comparable. The CPU time needed to calculate the
current-voltage curve with the QDD model is of the order of a few seconds only;
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Fig. 4.12. Hysteresis in the current-voltage characteristic using the DD-SP model.

Table 4.2

CPU times needed to compute the current-voltage characteristic in the indicated voltage ranges,
using different models.

model [0 0.25eV] [0.25eV 0.3eV] [0.3eV 0.375eV] [0 0.375eV]

SP 5776 s 1255 s 1371 s 8402 s
QDD-SP 2305 s 570 s 629 s 3504 s
DD-SP 695 s 187 s 168 s 1050 s

however, the numerical results are not satisfactory. The QDD-SP model needs only
about half the CPU time compared to the SP model. This shows that the coupled
model allows to reduce significantly the computing time compared to the full SP
model. The DD-SP model is even faster; the reduction factor is about 8 compared to
the SP model and about 3 compared to the QDD-SP model. The latter model is faster
since the current density in the drift-diffusion region can be computed by an analytic
expression [2, formula (16)], whereas the current density of the QDD-SP model is a
result of the solution of the QDD model. Although the CPU time for the DD-SP
model is smaller than for the QDD-SP model, the latter model has the advantage
that there is a quantum description in the whole semiconductor device, avoiding any
artificial separation of classical and quantum zones. From a more practical point of
view, the DD-SP model may be prefered due to the smaller CPU time.
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[21] A. Jüngel, Quasi-Hydrodynamic Semiconductor Equations, Birkhäuser, Basel, 2001.
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CRITERIA FOR THE CONVERGENCE, OSCILLATION, AND
BISTABILITY OF PULSE CIRCULATION IN A RING OF

EXCITABLE MEDIA∗
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Abstract. A discrete model based on a nonlinear difference equation (equivalent to a coupled
map lattice of high dimension) is used to study the dynamics of a circulating pulse in a ring of
excitable media, such as cardiac cells. Based on the global and local properties of monotonic resti-
tution and dispersion curves, criteria are obtained for the asymptotic stability of the unique steady
state (pulse circulating at constant frequency) as well as for nonconvergent oscillatory behavior of all
nonequilibrium trajectories (pulse circulating at variable frequency). We also demonstrate that in
certain cases the system is bistable, where an asymptotically stable equilibrium coexists with stable
oscillatory solutions.

Key words. difference equation, nonlinear, reentry, restitution, asymptotic stability, persistent
oscillations, bistability

AMS subject classifications. 39A11, 37N25, 92C99

DOI. 10.1137/040617078

1. Introduction. The periodic contractions of muscles that result in the beating
of our hearts are caused by electrochemical signals or excitations called action poten-
tials that propagate through chains of cardiac cells. Normally, cardiac cells generate
and conduct action potentials in response to excitation by the self-oscillatory pace-
maker cells in the heart’s sinoatrial and atrioventricular nodes. However, in certain
circumstances a closed loop or ring of tissue is formed within the heart that unidi-
rectionally recycles a previously generated action potential. Such a reentrant circuit
is capable of blocking the much slower pacemaker signals by transmitting its rapid
pulses outward through adjacent cell layers, thus taking over the beating of the heart
and leading to potentially life-threatening arrhythmias.

Reentry of an action potential pulse in a ring of cardiac cells or other excitable
media and the resulting self-sustained propagation is relatively easy to model mathe-
matically because of the simple one-dimensional geometry. The study of such models
contributes to our understanding of cardiac arrhythmias, and the results of the study
find concrete applications to experimental models of reentrant electrical activity in
cardiac muscle. Nevertheless, the mathematical expressions of the manner in which a
reentrant pulse propagates in a loop involve complex nonlinear equations whose study
requires the application of a variety of different methods from the dynamical systems
theory.

In [14] a discrete model of a reentrant circuit is developed based on the restitution
and dispersion properties of cardiac cells. Mathematically, the centerpiece of this
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model is a coupled-map lattice whose dimension is equal to the number of cells (or
excitable units) in the loop. Close agreement was shown between certain important
experimental facts and the model’s simulations (using typical exponential-type maps
to fit the restitution curve data). The authors discuss a number of issues, including
the formation of a unidirectional block. For sustained propagation, they also study
local stability and through numerical simulations establish the occurrence of discrete
Hopf (or Neimark–Sacker) bifurcations with the variation of a parameter in their
dispersion curve. In this way they exhibit the occurrence of almost periodic solutions
with multiple incomensurate frequencies.

Two subsequent papers [5], [6] presented equivalent continuous space versions of
the above model in terms of a delay differential equation and an integral delay equa-
tion, respectively. These papers present a mix of analytical and numerical results. The
analytical results establish the occurrence of solutions with multiple frequencies via
Hopf bifurcations in the continuous case. The length of the ring is used as the bifur-
cation parameter in these papers, where the nonconvergent solutions arise when this
length is sufficiently reduced. These issues are discussed in greater detail in [6] than
in [5]. Notably, the numerical simulations of the delay-differential and the integral
delay equation used different versions of the mapping in [14] for their discretizations.
These versions are nearly equivalent and one of them is discussed in this paper.

The concepts of restitution and dispersion are well known and have been widely
studied in various contexts, both theoretical and experimental; see, e.g., [2], [3], [5],
[6], [7], [10], [13], [14], [15], [16], [24], [25], [26]. In this paper we reexamine the
dynamical system in [14], limiting our focus to dynamics of sustained reentry. Our
purpose is twofold: First, for sustained propagation our results extend those obtained
in [14] to include global behavior in a bounded (but not infinitesimal) invariant region
of the phase space. In particular, we obtain conditions for (a) the convergence of all
orbits within the invariant region to a unique stable equilibrium so that the reentrant
pulse circulates at constant frequency; (b) the persistent oscillation (bounded but
nonconverging) of all nonequilibrium orbits, resulting in pulse circulation at variable
frequency; and (c) the occurrence of bistable behavior with coexisting stable oscil-
latory and convergent steady states so that it becomes possible to shift from one of
these states to another through premature stimulations. Standard methods from the
mathematical literature on discrete dynamics (e.g., [1], [8], [12], [17], [18], [19], [20],
[23]) are used to advantage in the proofs of Theorems 1 and 2.

Our second goal in this paper is to further generalize various results in previous
studies by using generic restitution and dispersion curves that satisfy a few minimal
conditions. This shows indirectly that the aforementioned qualitatively different types
of behavior are general manifestations of the dynamical system under consideration
and are not peculiar to a specific class of elementary mathematical functions. This
substantial extension of the previously published material is made possible by reliance
on rigorous analytical methods that lead to a deeper understanding of the mathemat-
ical nature of the model. We limit use of numerical simulations largely to examples
to illustrate the main results.

2. The model. We consider a loop of cardiac tissue (or, more generally, of
excitable cells) of fixed length L that consists of a fixed number m of cells or, more
generally, aggregate units or nodes in the sense of [14]. If the real number ΔLi > 0
denotes the ith cardiac unit spacing or internodal separation, then L =

∑m
i=1 ΔLi. If

we denote the average of ΔLi, i = 1, 2, . . . ,m, by ΔL and define

δi =
ΔLi

ΔL
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for each i, then

m∑
i=1

δi =

m∑
i=1

ΔLi

ΔL
= m and L = mΔL.(1)

In most published works in the literature the spacings ΔLi are assumed to deviate
negligibly from the average ΔL. In such cases one assumes that δi = 1 for all i and
considers a homogeneous loop in which all nodes are uniformly spaced. This is an
important special case which captures all the significant features with a minimum
of technical details. Finally, for numerical simulations we arbitrarily take m = 500,
although much smaller values of m give qualitatively similar outcomes [14].

2.1. Restitution curves.
The action potential duration restitution. The action potential duration

(APD) is the length of time (usually measured in milliseconds (ms)) that a node or
cell is active after excitation by a pulse. After passage of the APD, if no new excitation
takes place, the cell enters a recovery period called the diastolic interval (DI), also
measured in ms. The DI ends only by the arrival of a new excitation and it is only
during the DI that a cell can fire or become active again if excited.

Let APDi,n and DIi,n denote the APD and DI, respectively, for the cell i in beat
n. The most basic temporal relationship that is possible between the APD and the
DI may be stated as

APDi,n = A(DIi,n−1), i = 1, 2, . . . ,m,(2)

where A is an increasing single variable function whose graph is called the APD-
restitution curve.

We use the basic form (2) in this paper but point out that in various papers (e.g.,
[4], [9], [11], [13], [15], [26]) it has been suggested that in general the function A may
contain additional delays or past APD dependence to account for memory effects.

Dispersion and the conduction time (CT) restitution. Each cardiac cell
is capable of conducting the action potential pulse through it in a finite amount of
time. The speed with which the pulse propagates through a cell is the conduction
velocity or CV, often measured in cm/sec. If CVi,n is the conduction velocity through
cell i in beat n, then we may express our second restitution hypothesis as follows:

CVi,n = V (DIi,n−1), i = 1, 2, . . . ,m,(3)

where V is a nondecreasing single variable function. Its graph is called the dispersion
curve. With ΔL sufficiently small, we may assume that V does not change from one
end of a unit or cell to its other end, so (3) defines a unitwise or cellular conduction
time restitution as follows:

CTi,n = T (i,DIi,n−1) =
ΔLi

V (DIi,n−1)
=

δiΔL

V (DIi,n−1)
.

If we define the function of one variable,

C(t) =
ΔL

V (t)
,

then CTi,n = δiC(DIi,n−1) for i = 1, 2, . . . ,m. Note that the function C is nonin-
creasing; we refer to its graph as the CT-restitution curve. Except for the factor ΔL
the function C is the same as the recovery curve in [14].
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2.2. The propagation equation. During sustained reentry the pulse or the
excitation front moves from node to node around the loop. The length of each cycle
(or beat) n is divided into two distinct periods, the APD followed by DI. The length
of each cycle is also the sum of CT for all nodes or cells in the loop. Therefore, we
have

APDi,n + DIi,n =

i−1∑
j=1

CTj,n+1 +

m∑
j=i

CTj,n, i = 1, 2, . . . ,m.(4)

Since in this setting i = 1 is the reference point on the loop where a cycle begins
and ends, the split in the sums reflects the fact that for i > 1 conduction in cells 1
through i− 1 takes place during beat n + 1. Using the restitution relations, (4) may
be written as the following system:

DIi,n =

i−1∑
j=1

T (j,DIj,n) +

m∑
j=i

T (j,DIj,n−1) −A(DIi,n−1), i = 1, . . . ,m.(5)

Equation (5) is the coupled-map lattice discussed in [14]. It is also a partial
difference equation in the spatial variable i and the temporal variable n. See [24] for
an adaptation of this argument to a nonloop structure.

Rather than working directly with (5), we first transform it to an ordinary mth-
order difference equation by taking advantage of the periodic nature of the loop.
Define the combined space-time variable

xmn+i = DIi,n

and note that

A(DIi,n−1) = A(xm(n−1)+i)

and

i−1∑
j=1

T (j,DIj,n) +

m∑
j=i

T (j,DIj,n−1) =

i−1∑
j=1

T (j, xmn+j) +

m∑
j=i

T (j, xm(n−1)+j)

=

mn+i−1∑
j=mn−m+i

T (j, xj).

Next, we substitute k = mn + i to get the following:

xk =

k−1∑
j=k−m

δjC(xj) −A(xk−m).(6)

This equation is the main object of interest in this paper. It is equivalent to (5)
provided that we extend the coefficient δ periodically, i.e., δi+mn = δi for all positive
integers n and each i = 1, 2, . . . ,m (a valid assumption since the loop consists of a
finite number m of units).

In the homogeneous case where δi = 1 for all i, (6) becomes an autonomous
difference equation for which a greater number of results exist in the literature. This
autonomous version of (6) is the same as that obtained in [6] on a discretization of
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their independently developed integral equation (also see [7]). However, no analysis
of the discrete case is given in these references.

Each solution of (6) is an infinite sequence {xk}∞k=1 of DI quantities that is gen-
erated by a given set of initial values which may be thought of as an initial state
vector,

DI0 = [DI1,0, DI2,0, . . . , DIm,0] = [x−m+1, x−m+2, . . . , x0].

Also, each subsequent state vector

DIn = [xm(n−1)+1, xm(n−1)+2, . . . , xmn], n ≥ 0,

constitutes the dynamic state of the loop in one cycle. Each such vector determines
the DI values for all the cells in the loop within a given cycle, and from the DI
values and the restitution and dispersion functions, other quantities such as APD and
CV can be computed. Further, plotting the components of DIn as functions of the
spatial coordinate i, one obtains the spatial profile of the DI values in each cycle (see
Figure 2).

Exponential restitution and dispersion curves. Experimental data from
pacing experiments as well as data generated by the numerical simulations of the
ionic PDE models are typically fitted with exponential maps for numerical studies of
pulse propagation. Monotonic maps that are variations of the following two functions
appear frequently in the literature on cardiac electrophysiology:

A(t) = a− be−σt + pe−γ(t−τ)2

, C(t) =
ΔL

c
[1 + de−ωt],(7)

where the parameters a, b, c, d, τ , σ, γ, ω > 0 and p is a real number. We use
these representations in our examples and figures below. The parameter c is in fact
the limiting (or maximum) value of conduction velocity; i.e., c = limt→∞ V (t). The
second exponential term has been added here to the definition of A as a simple device
for modifying A locally near the value τ. For small values of |p| the mapping A is
strictly increasing and in this paper we shall be concerned with this range of p values
only. In particular, if p = 0, then A takes the form used in [14]; where the above
definition of A is used in the sequel (except for the one on bistability) we assume that
p = 0.

Using definitions (7) in (6) and rearranging a few terms gives the following:

xk =
dΔL

c

k−1∑
j=k−m

δje
−ωxj + be−σxk−m − pe−γ(xk−m−τ)2

+
L

c
− a.(8)

Equation (8) defines a complex dynamical system that displays a wide range of
behaviors. Nevertheless, it is mathematically a rather special case of (6) in which
certain situations do not occur that are possible for (6); e.g., nonconcavity or non-
differentiability. In this paper we generally use the following parameter values in (8),
unless otherwise stated:

a = 24, b = 12, σ = 0.5, p = 0, c = 6, d = 1, ω = 1, ΔL = 0.3.(9)

These values are largely arbitrary but not far-fetched; they are within scientifically
acceptable ranges and here they are used mainly for numerical verifications of our
results in illustrative examples. For the sake of interpretation, L = mΔL = 150
may be considered to be in millimeters and time units for DI, APD, etc. in various
diagrams will be 10 milliseconds each, unless otherwise specified.
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3. Dynamics of sustained reentry. A positive solution {xk}∞k=1 of (6), being
an infinite sequence, represents sustained reentry. As noted above, a partitioning of
this sequence into m-dimensional vectors gives the history of the loop’s dynamic states
in the phase space. In this section we study the qualitative properties of the solutions
of (6).

3.1. The existence of a unique equilibrium. We begin with a set of ba-
sic assumptions concerning the restitution functions. The functions A,C in (7) in
particular satisfy all these hypotheses.

(A1) There is rA ≥ 0 such that the APD restitution function A is
continuous and increasing on the interval [rA,∞) with A(rA) ≥ 0.
(A2) There is rC ≥ 0 such that the CT restitution function C is con-
tinuous and nonincreasing on the interval [rC ,∞) with infx≥rC C(x) ≥
0.
(A3) There is r ≥ max{rA, rC} such that

mC(r) > A(r) + r.

The first two assumptions express basic physiological facts that are commonly
attributed to the functions A and C. The third assumption guarantees (via Lemma
1) the existence of a structurally stable equilibrium or steady state. Physiologically,
this means that conduction around the ring must be sufficiently slow to achieve the
desired effect. Note also that (A1)–(A3) allow for the possibility that the restitution
functions may not be monotonic or otherwise well-behaved near the origin.

Next, we define the auxiliary function F = mC −A and note that by (A1)–(A3),
F is continuous and decreasing on the interval [r,∞) and satisfies

F (r) > r.(10)

Let x∗ be a steady state solution or equilibrium of (6), i.e., a solution of the
equation

x =

k−1∑
j=k−m

δjC(x) −A(x) = mC(x) −A(x) = F (x).(11)

In particular, x∗ is also a fixed point of the auxiliary map F so it is the same in
the autonomous case δi = 1.

Lemma 1. Assume that (A1)–(A3) hold.
(a) Equation (6) has a unique positive equilibrium x∗ ∈ (r, F (r)).
(b) (x∗, F (r)] = F ([r, x∗)).
(c) [r, F (r)] = [r, x∗] ∪ F ([r, x∗)) disjointly.
Proof. (a) Let f(x) = F (x) − x so that by (11) x∗ is a zero of f. Then by (10)

f(r) > 0. Further, since F is decreasing for x ≥ r, applying F to (10) gives

f(F (r)) = F (F (r)) − F (r) < 0.

The existence of x∗ ∈ (r, F (r)) is now established by applying the intermediate
value theorem to the continuous f. The uniqueness of x∗ is a clear consequence of the
strictly decreasing nature of f.

(b) Let y ∈ (x∗, F (r)]. Then x = F−1(y) > F−1(F (r)) = r and x < F−1(x∗) =
x∗. Thus (x∗, F (r)] ⊂ F ([r, x∗)). The converse is clear.

(c) The disjoint union follows immediately from part (b).
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The interval [r, F (r)] represents a relevant interval for this model since what
happens outside this interval is not relevant to our discussion of sustained reentry.
The relevant interval is not generally invariant, although it may contain an invariant
interval.

Remark. We are interested only in nonnegative DI values; therefore, if a zero of
F occurs in the relevant interval, i.e., if there is p ∈ [r, F (r)] such that F (p) = 0,
then F (x) < 0 for x > p so the relevant interval reduces to [r, p]. We note that since
F (x∗) = x∗ > 0, it must be that x∗ ∈ (r, p).

3.2. The invariant interval. The existence of a nontrivial invariant interval in
particular guarantees an open set of bounded solutions for (6) and thus assures the
robust occurrence of sustained reentry. An additional hypothesis is required.

(A4) There is s ∈ [r, x∗) such that s ≤ F (F (s)) = F 2(s).
Lemma 2. Assuming (A1)–(A4), the interval I = [s, F (s)] is nontrivial, contains

x∗, and is invariant for (6); i.e., if the initial values x0, . . . , x−m+1 are in I, then
xk ∈ I for all k ≥ 1. Also I ⊂ [r, F (r)].

Proof. First, observe that since s < x∗ and F is decreasing, then F (s) > x∗ > s.
Hence, the interval I contains x∗ and is nontrivial, i.e., it has a nonempty interior.
Next, assume that x0, . . . , x−m+1 ∈ I. Then for j = −m + 1, . . . , 0, xj ≥ s, so
A(x−m+1) ≥ A(s) and C(xj) ≤ C(s). Therefore,

x1 =

0∑
j=−m+1

δjC(xj) −A(x−m+1) ≤ mC(s) −A(s) = F (s).

Similarly, for j = −m+1, . . . , 0, xj ≤ F (s) so A(x−m+1) ≤ A(F (s)) and C(xj) ≥
C(F (s)). Therefore,

x1 =

0∑
j=−m+1

δjC(xj) −A(x−m+1)

≥ mC(F (s)) −A(F (s))

= F (F (s))

≥ s.

It follows that x1 ∈ I. Now, assume inductively that for k ≥ 1, we have established
that xk−1, . . . , xk−m ∈ I. Then repeating the above argument gives xk ∈ I and shows
I to be invariant.

3.3. Convergence to a stable steady state. In this section we look at a spe-
cial case of (A4) that implies the asymptotic stability of the equilibrium (convergence
of all trajectories in I to a stable steady state). This special case of condition (A4) is
stated as follows:

(A4S) There is s ∈ [r, x∗) such that F 2(x) > x for all x ∈ (s, x∗).
Figure 1 depicts a case where (A4S) holds with r = s = 0. Note in particular

that if A′(x∗) < 1, then it is easy to see that (A4S) holds, at least when C ′(x∗) = 0
(although C need not be constant). However, (A4S) is a weaker condition in that
the differentiability of A is not required and that if differentiable, then the derivative
A′ need not be uniformly bounded by 1 in a left-neighborhood of x∗ (i.e., small
irregularities in the APD curve do not affect the qualitative behavior of the circulating
pulse).
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Fig. 1. Conditions for the stability of the fixed point x∗ of the mapping F, which is required in
Theorem 1. When the graph of F 2 = F ◦ F crosses the diagonal going from above it to below it as
shown, x∗ is asymptotically stable.

Before Theorem 1 is presented, it is necessary to consider the dynamics of the
auxiliary map F under (A4S). It is known [23, sec. 2.1], that condition (A4S) is in
fact necessary and sufficient for x∗ to attract all orbits of F that start in (s, F (s)).
But since F is a relatively simple mapping, we can be more specific here.

Lemma 3. Assume that (A1)–(A3) plus (A4S) hold. Then for every x0 ∈ (s, x∗)

s < x0 < F 2(x0) < · · · < x∗ < · · · < F 3(x0) < F (x0) < F (s)(12)

and

lim
n→∞

F 2k(x0) = lim
n→∞

F 2k+1(x0) = x∗.(13)

Proof. Since F is decreasing, if x0 ∈ (s, x∗), then F (x0) > F (x∗) = x∗ and
F (x0) < F (s). Thus

x∗ < F (x0) < F (s).(14)

Applying F to (14) in the above fashion gives

F 2(s) < F 2(x0) < x∗.

Now (12) follows by simple induction. Statements (13) follow from (12) because
F has no fixed points in (s, F (s)) other than x∗ to which the odd and even iterates
of F can converge.

Theorem 1. Let (A1)–(A3) and (A4S) hold. Then the equilibrium x∗ is stable
and every solution of (6) with initial values in (s, F (s)) is attracted to x∗.

Proof. First we establish the attracting nature of x∗. Let x0, . . . , x−m+1 be in the
interval (s, F (s)), and define

μ1 = min{x∗, x0, . . . , x−m+1}, μ2 = max{x∗, x0, . . . , x−m+1}.
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Since F is continuous, we have F (x) → F (s) as x → s. Thus we can find
q ∈ (s, μ1) sufficiently close to s that F (q) ∈ (μ2, F (s)). Next, observe that since
x0, . . . , x−m+1 > q,

x1 =

0∑
j=−m+1

δjC(xj) −A(x−m+1) < mC(q) −A(q) = F (q).

Similarly, x0, . . . , x−m+1 < F (q) implies

x1 =

0∑
j=−m+1

δjC(xj) −A(x−m+1) > mC(F (q)) −A(F (q)) = F 2(q).

If (A4S) holds, then F 2(q) > q so that x1 ∈ (F 2(q), F (q)) ⊂ (q, F (q)). Repeating
a similar calculation for x2, . . . , xm we conclude that

xk ∈ (F 2(q), F (q)) ⊂ (q, F (q)), k = 1, . . . ,m.(15)

Next, we move on to the next cycle and look at xm+1. Since by (15) x1, . . . , xm >
F 2(q),

xm+1 =

m∑
j=1

δjC(xj) −A(x1) < mC(F 2(q)) −A(F 2(q)) = F 3(q);

further, x1, . . . , xm < F (q) gives

xm+1 =

m∑
j=1

δjC(xj) −A(x1) > mC(F (q)) −A(F (q)) = F 2(q).

Since F 3(q) < F (q), this argument can be repeated for xm+2, . . . , x2m to yield

xk ∈ (F 2(q), F 3(q)) ⊂ (F 2(q), F (q)), k = m + 1, . . . , 2m.

Continuing this argument inductively leads to the conclusion that

xk ∈ (F 2n(q), F 2n−1(q)), k = m(2n− 2) + 1, . . . ,m(2n− 1),(16)

xk ∈ (F 2n(q), F 2n+1(q)), k = m(2n− 1) + 1, . . . , 2mn.

From these relations and Lemma 3 it is clear that xk converges to x∗ as k → ∞.
It remains to show that x∗ is stable (dynamically in the sense of Liapunov). Let ε > 0
and use the continuity of F to pick δ ∈ (0, ε) small enough that F (x∗ − δ) < x∗ + ε.
If x0, . . . , x−m+1 ∈ (x∗ − δ, x∗ + δ), then it follows from Lemma 3 and (16) that

xk ∈ (x∗ − δ, F (x∗ − δ)) ⊂ (x∗ − ε, x∗ + ε), k ≥ 1.

Hence x∗ is stable.
Remark 1. If x∗ is attracting (e.g., conditions of Theorem 1 hold), then the cycle

length mC(x∗) may be easily computed as the fixed period T ∗ (analogous to the basic
cycle length (BCL)) for the oscillation of the reentrant pulse. Note that

T ∗ = mC(x∗) =
mΔL

V (x∗)
=

L

V ∗ ,
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where V ∗ is steady state conduction velocity in the loop. Similarly, the APD is
calculated from the restitution relation as A∗ = A(x∗). It may be emphasized that
since F (x∗) = x∗ we have the cycle period T ∗ = A∗ + x∗ > A∗ as required.

The frequency 1/T ∗ can be quite high in this sort of reentrant regime. We cal-
culate this frequency in a hypothetical case using (8) subject to the parameter values
(9) but with L increased to 162 (from 150 by increasing m to 540). In this case, we
obtain the situation depicted in Figure 1 so by Theorem 1 the fixed point x∗ ≈ 4.55
(estimated numerically and interpreted as a steady state DI of 45.5 ms) is globally
asymptotically stable (with respect to I ).

The fixed cycle length or period of the reentrant pulse is approximately

mC(4.55) =
L

c
(1 + de−4.55ω) =

162

6
(1 + e−4.55) = 27.3,

which we interpret as 273 milliseconds, corresponding to a frequency of 60000/273 or
a rather fast 220 cycles (or beats) per minute.

Remark 2. (A1)–(A3) plus (A4S) are sufficient for the asymptotic stability of
the equilibrium but in general they are not necessary. A special case where these
hypotheses are both necessary and sufficient for asymptotic stability is when C is
constant (see Theorem 2.1.2 in [23]).

3.4. Persistent oscillations. In a series of experiments on animal cardiac tissue
by Frame and Simson [10] it was found that the reentrant pulse does not always cycle
around a loop with a fixed period. In some cases, the cycle length tended to oscillate
without approaching a specific value. In [14] these oscillations were attributed to
the appearance of quasiperiodic solutions for (5) due to local bifurcations (Neimark–
Sacker or discrete Hopf). In this section we discuss sufficient conditions for oscillations
to occur in all nontrivial solutions of (6) within the invariant Im. Throughout this sec-
tion we assume that the restitution functions A and C are continuously differentiable
and that δi = 1 for all i, i.e., the loop is homogeneous.

For the autonomous version of (6), the characteristic polynomial of the lineariza-
tion at x∗ is given as

P (λ) = λm +

m−1∑
i=1

βλi + β + α, α = A′(x∗) > 0, β = −C ′(x∗) ≥ 0.

See, e.g., [18] or [23]. Note that the roots of P are the eigenvalues of the lineariza-
tion of (6) at x∗. We now list some special properties of P .

Lemma 4.

(a) P has no nonnegative (real) roots.
(b) If some root of P lies on the unit circle in the complex plane, then α+β = 1.
(c) If α + β = 1, then for each root λ of P , 1/λ is also a root.
(d) If β = 0 (even if C is not constant), then either all roots of P are inside the

unit disk in the complex plane if α < 1 or they are all outside if α > 1.
Proof. (a) This is clear from the facts that β ≥ 0 and α + β > 0. (b) First we

show that (i) implies (iii). Let α + β = 1. By part (b), roots λj = ρj exp(iθj) of P
must have modulus ρj = 1 for all j = 1, . . . ,m and thus they are on the unit circle.
In particular, the only possible real root of P is −1 which occurs when m is odd.

Next, (iii) trivially implies (ii), so it remains to show that (ii) implies (i). Let λ1

be a root that is on the unit circle. Then λ1 = exp(iθ1) so the conjugate exp(−iθ1) =
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1/λ1 is also a root. Since P (λ1) = 0 it follows that

β

m−1∑
i=1

λi
1 = −λm

1 − α− β.(17)

Also, P (1/λ1) = 0 so

0 =
1

λm
1

+ β

m−1∑
i=1

1

λi
1

+ β + α

=
1

λm
1

[
1 + β

m−1∑
i=1

λi
1

]
+ α + β

=
1 − λm

1 − α− β

λm
1

+ α + β

=

(
1

λm
1

− 1

)
(1 − α− β).(18)

Note that λm
1 
= 1, since otherwise the sum of the mth roots of unity in (17) would

add up to −1, leaving −β on the left but giving −1 − α− β on the right. Therefore,
by (18) it is the case that 1 − α− β = 0 as required.

(c) If α + β = 1, then

P

(
1

λ

)
=

1

λm
+ β

m−1∑
i=1

1

λi
+ 1 =

1

λm

[
λm + β

m−1∑
i=1

λi + 1

]
=

P (λ)

λm
.

(d) This is straightforward since P reduces to the simple equation λm + α
if β = 0.

Next, a global oscillation result [23, p. 166] is needed which we quote here as a
lemma. We say that a sequence {xn}∞n=1 oscillates persistently if it is bounded and
has at least two distinct limit points. In particular, persistently oscillating solutions
cannot converge to a point.

Lemma 5. Consider the general difference equation

xn = f(xn−1, . . . , xn−m),(19)

where f : D → R for a set D ⊂ R
m. Assume that (19) has a unique fixed point

x∗ and that all the eigenvalues of the linearization of (19) at x∗ (i.e., the roots of
its characteristic polynomial) lie outside the unit disk in the complex plane. Further,
assume that

f(x∗, . . . , x∗, x) 
= x∗ if x 
= x∗.(20)

Then all nontrivial solutions of (19) that are bounded oscillate persistently.
We are now ready for the main result of this subsection.
Theorem 2. Assume that (A1)–(A4) and one of the following inequalities hold:

A′(x∗) + (m− 2)C ′(x∗) > 1(21)

or

A′(x∗) > 0, C ′(x∗) ≤ −1.(22)
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Then x∗ is unstable and all nontrivial solutions of (6) oscillate persistently in the
invariant interval I.

Proof. In the notation of Lemma 4, inequality (21) may be written as

α− (m− 2)β > 1.(23)

We first show that if (23) holds, then all roots of the characteristic polynomial P
lie outside the unit disk in the complex plane. To this end, define the polynomial

Q(λ) =
λm

α + β
P

(
1

λ

)
= λm +

1

α + β

m−1∑
j=1

βλj +
1

α + β

and observe that λ0 is a root of Q if and only if 1/λ0 is a root of P. Thus if every
root of Q is inside the unit disk, then every root of P will be outside as desired. A
well-known sufficient condition (e.g., [23, pp. 209, 210]) for all the roots of Q to be
inside the unit disk is that the sum of all the coefficients (except for that of the highest
power λm) be less than unity, i.e.,

1 >
m−1∑
j=1

β

α + β
+

1

α + β
=

(m− 1)β + 1

α + β
.(24)

It is easy to see that (24) is equivalent to (23).
Next, assume that (22) holds. Then in the notation of Lemma 4, β ≥ 1 with

α > 0; in particular, α + β > 1. If all roots of P are not outside the unit disk, then
some root

λ0 = r0e
iθ0 = r0(cos θ0 + i sin θ0)

of P has modulus r0 ≤ 1. By Lemma 4(c) we may assume that r0 < 1. Setting
P (λ) = 0 and writing its middle terms in a compact way gives the equation

λm + β
λm − 1

λ− 1
+ α = 0.(25)

Since by part (a) λ 
= 1 for any root, the zeros of (25) are precisely those of
P (λ) = 0 and also the same as the nonunit zeros of

λm(λ− 1) + β(λm − 1) + α(λ− 1) = 0.(26)

Inserting λ0 in (26) and rearranging terms, we get

λm+1
0 + (β − 1)λm

0 + αλ0 = α + β.(27)

Setting the real parts on the two sides of (27) equal we obtain

rm+1
0 cos(m + 1)θ0 + (β − 1)rm0 cosmθ0 + αr0 cos θ0 = α + β.(28)

For β ≥ 1 and α > 0 the left side of (28) is bounded above by the quantity

rm+1
0 + (β − 1)rm0 + αr0 < 1 + β − 1 + α = α + β.

But this contradicts (28), which was assumed to hold with r0 ∈ (0, 1) for some
θ0. It follows that λ0 cannot exist and thus all roots of P must be outside the unit
circle.
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Having shown that a unique, unstable equilibrium exists in a positively invariant
region, the proof can now be concluded by Lemma 5 as soon as we show that (20)
holds. For (6), the function f is given by

f(u1, . . . , um) =

m∑
j=1

C(uj) −A(um),

so (20) is equivalent to

(m− 1)C(x∗) + C(x) −A(x) 
= x∗ if x 
= x∗.(29)

Since x∗ = F (x∗) = mC(x∗) −A(x∗), (29) is equivalent to

C(x) −A(x) 
= C(x∗) −A(x∗) if x 
= x∗.

This last inequality is true since the function C(x) − A(x) is strictly decreasing
on the invariant interval I.

Remark 3. Writing (21) in the equivalent form

A′(x∗) > 1 + (m− 2)|C ′(x∗)|

we see that for any given value of A′(x∗) larger than 1, persistent oscillations occur by
Theorem 2 if |C ′(x∗)| is sufficiently small, i.e., if C is sufficiently flat in a neighborhood
of x∗. On the other hand, if A′(x∗) < 1, then the steepness condition |C ′(x∗)| ≥ 1
is sufficient to guarantee the occurrence of persistent oscillations. Thus in this sense
(21) and (22) are complementary conditions.

As an application of Theorem 2, consider (8) subject to the parameter values (9)
except with ω = 2 now. Then we may estimate x∗ ≈ 3.32 (DI of about 33.2 ms) and
compute

A′(x∗) ≈ 1.141, 1 + (m− 2)|C ′(x∗)| ≈ 1.065.

Thus (21) is satisfied and solutions oscillate by Theorem 2. Figure 2 shows both
the spatial and temporal DI profile in six consecutive cycles of a sample trajectory (the
thick curve) after the transient effects have dissipated; in addition to its oscillatory
nature, this solution is quasi-periodic, a fact that does not follow from Theorem 2 but
may be inferred from local analysis.

Alternatively, if we have a CT restitution curve that flattens more quickly (e.g.,
ω = 3), then we would get the solution shown by the thin curves in Figure 2. In this
case, Theorem 2 again confirms that this solution is oscillatory because

x∗ ≈ 3.29, A′(x∗) ≈ 1.158, 1 + (m− 2)|C ′(x∗)| ≈ 1.004.

We note in passing that although A is independent of ω, if C is not constant,
then changes in ω affect x∗ and thus the value of the slope A′(x∗).

Remark 4. In [14] it is conjectured that x∗ is locally asymptotically stable (or un-
stable) if the quantity A′(x∗)−C ′(x∗)−1 is negative (respectively, positive). Although
neither (21) nor (22) implies the positivity of this quantity, numerical simulations and
certain results such as Lemma 4 suggest that this conjecture is probably true. In the
notation of this paper, we restate this open problem as follows: All roots of the char-
acteristic polynomial P are inside (respectively, outside) the unit disk if and only if
α + β < 1 (respectively, α + β > 1).
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Fig. 2. Two different types of oscillatory solution: The thick curve shows quasi-periodic oscil-
lations when ω = 2 and the thin curves show periodic oscillations when ω = 3. Each point on either
curve indicates the DI value of a particular unit in a given cycle. Both curves shown are generated
from the same initial configuration vector DI0 = [c, . . . , c], where c is a positive constant that may
represent, e.g., the dynamic state of the loop in terms of cellular DI values just before the initiation
of reentry. In each of the vertial strips each curve indicates the configuration of DI values over the
entire ring (500 units) in one cycle or beat.

3.5. Bistability. When cardiac tissue receives a premature stimulus such as an
electrical shock of the type imparted by a defibrillator or through electrodes in a lab
preparation, this can change its rhythm. In the case of a one-dimensional reentrant
circuit, a particular type of behavior such as stably convergent may change to stably
persistent oscillatory or conversely. Such changes can occur if (6) is bistable (or,
more generally, multistable; note that a premature stimulus in cycle n changes the
components of DIn, thus shifting the orbit in phase space). In this section we use
Theorems 1 and 2 to show that a type of bistability that is caused by slight “dents”
in the APD curve may exist in a general setting. An advantage of this approach is
that the emergence of bistability in the higher-order equation (6) can be observed in
a bifurcation diagram of the one-dimensional auxiliary map F even when C is not
constant; see Remark 5.

The main idea. Consider a case where the solutions of (6) are persistently
oscillatory, e.g., inequality (21) is satisfied at the equilibrium under hypotheses (A1)–
(A4). Suppose that now the APD curve is made locally flat (i.e., its slope small) in
the vicinity of the unstable equilibrium so that condition (A4S) holds in an interval
I0 containing x∗ (A is unaltered or altered negligibly outside I0). The endpoints of
I0 then represent an unstable 2-cycle for the auxiliary map F . Further, assume that
I0 is small enough to not contain some previously oscillatory solutions (in the sense
that the oscillatory orbit in the phase space does not enter the hypercube Im0 ). Then
by Theorem 1 solutions that are generated by initial values inside I0 will converge
to a new stable equilibrium without substantially affecting the previously oscillatory
solutions that were outside I0. The resulting system is thus bistable.

We emphasize that the existence of I0 is sufficient but not necessary for the
bistability of (6), unless of course the CT restitution curve C is constant. Let us now
illustrate the preceding ideas using (8) subject to the parameter values (9) except
that we now set p = 0.3 (with γ = 1, τ = 2.5) to modify the APD curve, and also
pick a suitable value for ω to enhance the bistability effect. The graph of F 2(t) − t
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Fig. 3. The two invariant intervals I = [1.3, 7.25] and I0 = [2.55, 4.1] with the latter highlighted
as the interval of convergence.

Fig. 4. Qualitatively different outcomes that result from slightly different initial values. With
initial values DI0 = [3.9, . . . , 3.9] we obtain the convergent solution shown as the thin, square-shaped
oscillatory curve, since 3.9 is in I0. However, with DI0 = [4.5, . . . , 4.5] we obtain the divergent,
thick oscillatory curve. Note that 4.5 is in I but not in I0. The horizontal strip between the dotted
lines represents I0.

in Figure 3 shows the primary invariant interval I discussed previously, as well as the
smaller one I0 for a particular value of ω.

Figure 4 shows the different outcomes that result depending on whether we choose
the initial values in I0 or outside it. Evidently, the divergent oscillatory curve does
not enter I0 in this case. If DI0 is not constant and its components are only partially
in I0, then the corresponding solution may or may not converge.

More complex types of oscillatory behavior (not shown) where the trajectory may
pass through I0 repeatedly also occur in the above context with different parameter
values. In such cases, the occurrence of convergent solutions may again be explained
by Theorem 1 if DI0 ∈ Im0 (even with inhomogeneities). However, explaining the
stable occurrence of the nonconvergent orbits requires further extensions of Theorem
2, or perhaps different methods that are global; local arguments and linearization in
m dimensions do not apply since the equilibrium is asymptotically stable within Im0 .

Remark 5. (emergence of bistability). Variations of shapes or changes in the
relationship between the CT and APD curves may cause the emergence of bistability
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Fig. 5. As the length L of the ring decreases, bistable behavior emerges in (a) but not in (b).
The occurrences of tangent (or fold) bifurcations in (a) create two different period-2 orbits, the inner
ones being unstable and enclosing a copy of the interval I0 of Fig. 3 between them.

by bringing x∗ close to the region of local flatness for the APD. For illustration,
consider (8) again where we change the parameter L (the length of the loop, a common
bifurcation parameter). Note that x∗ = φ−1(L) is a strictly increasing function of L,
where

φ(x) =
144 + 6x− 72e−0.5x + 1.8e−(x−2.5)2

1 + e−4x
, x > 0,

is easily obtained by solving (11) for L subject to the functions A,C and their pa-
rameter values for Figure 3. Thus we can reduce x∗ by decreasing L and examine the
effect of local APD flatness on bistability as x∗ passes through the region of relative
flatness for the APD curve. To visually demonstrate this effect of L on bistability we
plot the two variable curve

F (L,F (L, x)) = x, where F (L, x) =
L

6
[1 + e−4x] − 24 + 12e−0.5x − pe−(x−2.5)2

,

for both zero and nonzero (fixed) values of p. Such a bifurcation diagram shows the
motion of the equilibrium for (8) as well as the occurrence and development of all
period-2 points of the auxiliary map F as L varies. Figure 5 shows a comparison
between two cases.

In both of the cases (a) and (b) shown in Figure 5, the nearly horizontal thick
curve indicates the path of x∗ as L changes. The other thick curve in Figure 5(a)
where p 
= 0 (local flatness exists in APD) clearly shows the emergence of bistability
at L1 ≈ 151.1 where tangent (or fold) bifurcations of the auxiliary map F create
two period-2 orbits (for F ). The two outer curves indicate the stable 2-cycles of F
and the inner curves show the unstable 2-cycles which converge to the equilibrium
x∗ at L0 ≈ 149 through a reverse period-doubling (or flip) bifurcation. The interval
between the two inner curves exists nontrivially for each L ∈ (L0, L1) and gives the
interval I0 = I0(L) of bistability (by Theorem 1, x∗ is asymptotically stable for all
L ∈ (L0, L1).) The line segment with arrows in Figure 5(a) indicates the interval I0
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at the particular value L = 150; this is just the interval I0 that appears in Figures 3
and 4. By contrast, in Figure 5(b) where there is no region of relative flatness for
the APD curve, the interval I0 does not exist. For some related remarks concerning
the occurrence of bistable behavior, see Vinet [25]. Vinet also uses a parameter p by
which the APD function can be altered. However, the bifurcation diagrams in [25]
are based on variation of p rather than L.

4. Concluding remarks. As indicated, many models of reentry in a loop of
cardiac tissue or, more generally, of excitable media have been studied in the literature
both in continuous and discrete form. In this paper, we refined and extended previous
work using ideas and methods that yield global results. But more work remains to
be done, especially at the theoretical level. For instance, it is necessary to extend
Theorems 1 and 2 to cover a broader range of possibilities that include the relevant
ranges of parameters in specific equations like (8), which is likely to be obtained
through curve fitting of experimental data.

The interaction between Theorems 1 and 2 is a simple but not sufficiently satis-
factory way to explain the occurrence of bistability. For instance, certain oscillatory
solutions (periodic or almost periodic ones) repeatedly enter and exit the interval I0

without converging, although solutions that start inside I0 do converge (by Theorem
1). This situation requires a more detailed explanation than what is provided here.

The occurrence of almost periodic solutions has a standard description in terms
of the Hopf–Neimark–Sacker bifurcation. However, it is less clear why these solutions
break up into periodic solutions in some cases as the parameter ω increases from 2
to 3. A more detailed study of both periodic and almost periodic solutions of (6) is
certainly desirable.

Beyond the mathematical issues mentioned above and related matters, it is also
necessary to study extensions of the model that use more general types of restitution,
e.g., to account for beat-to-beat memory, latency, etc. In particular, the addition of
latency may lead to the occurrence of complex behavior for small values of DI.

Indeed, one sees that the persistent oscillation exhibited by the solutions of (6) is
generally not complicated. (The reasons for the absence of complexity with monotonic
APD are easy to discern when C is constant.) Can more complex types of persistent
oscillations occur, e.g., with higher periods? Can they be possibly chaotic? In certain
papers evidence is given that the APD restitution curve A may be nonmonotonic,
e.g., be unimodal [24] or contain dents [22] at small DI values. In these works it is
shown that chaotic behavior and complex bifurcations may occur whether it is for
reentry in a loop [22] or for a regularly paced, nonclosed strip of tissue [24]. These
observations may also be confirmed through numerical simulations of (8) with large
enough p (not presented here). Such studies indicate the existence of a spatiotemporal
form of chaotic behavior that needs further mathematical study and clarification.
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Abstract. A monochromatic, i.e., fixed-frequency, back-scattering kernel measured at all an-
gles does not uniquely determine the index of refraction in an inhomogeneous medium, nor can it
guarantee any upper bound on the support of the inhomogeneity. We show that it is possible to
associate with any such kernel its convex back-scattering support, a convex set which must be a
subset of the convex hull of the support of any inhomogeneity with that back-scattering kernel. For
the Born approximation, we further demonstrate that there is an inhomogeneity supported in any
neighborhood of the convex back-scattering support which has exactly that back-scattering kernel.
Last, we discuss a practical implementation of these results and include a numerical example.
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1. Introduction. The goal of inverse scattering is to use acoustic or electro-
magnetic waves to deduce properties of a scatterer from remote observations. Exactly
which properties and how well we can deduce them depend on exactly what scattering
data we measure. In this paper the measured data are the back-scattered far field
at all angles and a single frequency. A back-scattering experiment requires only a
single sensor, which acts as both source and receiver. The sensor radiates at a sin-
gle temporal frequency and measures the amplitude and phase of the resulting time-
harmonic field. We can move the sensor to an arbitrary location on a sphere of large
radius that surrounds the scatterer and repeat the experiment. The complex field
(amplitude and phase) measured at each point on the sphere is the back-scattering
data.

We will use the Helmholtz equation as our model for the propagation of time-
harmonic waves,

(Δ + k2n2(x))u = 0, x ∈ Rd, d ≥ 2.(1.1)

Here, n(x) = c0

c(x) is the index of refraction, which is the ratio of the wave speed in

the vacuum to that in the medium, while k = 2π/λ denotes the wave number. It will
be convenient to define the scattering potential, q(x) := k2(1 − n2), and to rewrite
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(1.1) as

(Δ + k2)u = qu,(1.2)

u = eikΘ·x + usc,(1.3)

usc ∼
eikr

r
d−1

2

sq(Φ,Θ), |x| = r → ∞.(1.4)

Equation (1.3) expresses the fact that although the sensor, located at Θ ∈ Sd−1,
acts as a point source and emits a spherical wave, the sphere is far enough from
the scatterer that the incident wave appears to be a plane wave in a neighborhood
of the scatterer. Equation (1.4) expresses the asymptotics of the outgoing scattered
wave.1 The field measured by an additional dislocated sensor positioned at Φ ∈ Sd−1

is denoted by sq(Φ,Θ). This quantity is called the scattering kernel. We define the
back-scattering kernel as s(Θ) := sq(Θ,−Θ). The back-scattering kernel represents
the complex time-harmonic scattered field measured at the source position. We will
discuss both the back-scattering kernel and what we will call the Born-back-scattering
kernel. We denote the latter quantity by b(Θ) := bq(Θ,−Θ) and remark that it is
the analogue of s(Θ) in the Born, or single scattering, approximation. In both cases,
a main feature is that the fixed frequency back-scattering data does not uniquely
determine the scattering potential q(x). Indeed, the Born-back-scattering kernel is
equal to a constant (in Θ) multiple of the Fourier transform of q, restricted to the
sphere of radius 2k, i.e.,

b(Θ) =
kd−2

2i
q̂(2kΘ).(1.5)

We learn from (1.5) that as long as g(x) is a smooth compactly supported function,
then q̃ = (Δ + (2k)2)g has zero Born-back-scattering kernel, so that

bq+q̃(Θ) = bq(Θ).(1.6)

The theorems below will relate the back-scattering data to the support of q. A
glance at (1.6) makes it clear that it is impossible to produce an upper bound for the
supp q. We will, however, compute a lower bound. We will associate (and compute
numerically) with b(Θ), or s(Θ), its convex back-scattering support, a convex set
which must be a subset of the convex hull of the support of any q which produces
that back-scattering data. In the Born approximation we will also find a potential
supported in any neighborhood of this set that reproduces the data. In this case,
the convex back-scattering support is the unique smallest convex set that supports a
potential that can produce this data.

We state all our theorems below, and we include only very brief descriptions of
the necessary notation here and defer both their detailed discussion and proofs to
the following sections. In what follows, the symbol σn(2kR) denotes the L2 norm of
the d-dimensional Bessel function of order n, and argument 2k|x|, restricted to the
ball of radius R. The number N = N(n, d) ≈ nd−2 denotes the dimension of the
space of spherical harmonics of degree n. For a function b ∈ L2(Sd−1), the functions

b
(c)
n (Θ) represent the terms in the condensed spherical harmonic expansion (Fourier

series expansion in two dimensions) of the function e2iΘ·cb(Θ). Additionally, Bc(R)
denotes the closed ball of radius R centered at the point c ∈ Rd.

1We will give a more precise mathematical description in the next section.
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We now state our main results.
Theorem 1.1 (linear, born-back-scattering). Let q ∈ L2(Rd) be compactly sup-

ported with Born-back-scattering kernel b(Θ), i.e.,

b(Θ) := bq(Θ,−Θ) =
kd−2

2i
q̂(2kΘ),(1.7)

and let

e2ikΘ·cb(Θ) =

∞∑
n=0

b(c)
n (Θ)

be its expansion in spherical harmonics centered at c. If the supp q ⊂ Bc(R), then

∞∑
n=0

||b(c)
n ||2L2(Sd−1)

σ2
n(2kR)

< ∞.(1.8)

Conversely, if b ∈ L2(Sd−1) satisfies (1.8), then there exists a q ∈ L2(Rd) with
supp q ⊂ Bc(R) and Born-back-scattering kernel b(Θ).

Moreover, if b ∈ L2(Sd−1) and B denotes the collection of all balls, Bc(R), for
which (1.8) is satisfied, then for any ε > 0, there exists q ∈ C∞(Rd) with2

supp q ⊂ Nε

⎛
⎝ ⋂

Bc(R)∈B
Bc(R)

⎞
⎠(1.9)

and Born-back-scattering kernel equal to b(Θ).
Theorem 1.2 (nonlinear, full back-scattering). Let q ∈ Lp(Rd), where p >

max(2, d
2 ), be compactly supported with back-scattering kernel

s(Θ) := sq(Θ,−Θ),

and let

e2ikΘ·cs(Θ) =

∞∑
n=0

s(c)
n (Θ)

be its expansion in spherical harmonics centered at c. If the supp q ⊂ Bc(R), then,
for n > max(4R, 2R2),

||s(c)
n ||2L2(Sd−1) ≤ C(q) Nσ2

n(2kR),(1.10)

where C(q) is given explicitly in (4.13).
If we observe that for any ε > 0, (1.10) implies (1.8) with R replaced by R + ε,

we obtain the following corollary.
Corollary 1.3. If the supp q ⊂ Bc(R), then there is a (complex-valued) q̃ ∈

C∞(Rd) supported in an ε-neighborhood of Bc(R) with Born-back-scattering kernel
exactly equal to the full back-scattering kernel of q, i.e.,

bq̃(Θ) = sq(Θ).

2Nε(Ω) denotes an open ε-neighborhood of Ω, the set of points whose distance from Ω is less
than ε.
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As a consequence of these theorems, we define the convex scattering support to
be as follows.

Definition 1.4 (convex scattering support).

cSksupp b =
⋂

Bc(R)∈B
Bc(R),

cSksupp s =
⋂

Bc(R)∈S
Bc(R),

where B denotes the collection of balls such that b satisfies (1.8) and S is the collection
of balls such that s satisfies (1.10).

We record the main property of the convex scattering support below.
Theorem 1.5. In both the Born approximation and in the full back-scattering

cases, the convex scattering support must be a subset of the convex hull of the support
of any potential q with that back-scattering kernel.

Proof. Note that any point that does not belong to the convex hull of the support
of q can be separated from that set by a ball. The Hahn–Banach theorem tells us there
is a separating hyperplane, and because this convex set is bounded (q has compact
support), a large enough ball will approximate the hyperplane as close as necessary
on any compact set and thus accomplish the separation.

In the Born approximation, the linear dependence on q allows a stronger state-
ment.

Theorem 1.6. For any b ∈ L2(Sd−1), the convex scattering support of the Born
back-scattering kernel b is

1. the smallest convex set such that there is a q, supported in every neighborhood
of that set, with Born back-scattering kernel b;

2. the largest convex set that is contained in the convex hull of the support of
every q with Born back-scattering kernel equal to b.

A simple consequence of Theorem 1.6 is that the convex scattering support of a
nonzero Born back-scattering kernel is nonempty. A consequence of Corollary 1.3 is
that this same conclusion holds for the full back-scattering kernel.

We introduced the convex scattering support of a far field of a source in [8] and
[9]. We extended the notion to include fields scattered by a variation in wave speed
or an obstacle, in response to a single incident wave, and described one method to
compute it. Different methods that compute roughly the same set have also appeared
in [10], [12], [13], [4], [6], and [5].

Our main reason for extending the notion of convex scattering support to back-
scattering is that the data are more realistically acquired, and therefore, the methods
can be more readily adapted to be of practical use. To measure the far field of a single
incident wave requires at least two sensors, one at a fixed position that radiates and
another that will move around the scatterer to measure the field. Calibration requires
accurate knowledge of the angle between the two devices, while back-scattering simply
requires moving a single sensor.

It may appear that a condition like (1.10) is difficult to apply to noisy data.
Exactly the opposite is true. The coefficients in a Fourier series or spherical harmonic
expansion are easily computed. As we will point out in the final section, the function
σn(2kR), viewed as a function of n at a fixed value of 2kR, is uniformly large for
n < 2kR and rapidly becomes uniformly small when n > 2kR. Thus, the norm of the
terms in the spherical harmonic expansion for ei2kΘ·cs(Θ) undergo a rapid transition
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to, and become approximately, zero as n passes through the radius of the smallest
ball that contains the convex scattering support. This transition is readily observable
and remains so in the presence of appreciable noise.

2. The Herglotz, far field, and scattering operators. For any δ > 1
2 , the

unique L2
−δ solution3 of the free (homogeneous) Helmholtz equation, parametrized by

α, satisfies

(Δ + k2)v = 0,(2.1)

v ∼ eikr

r
d−1

2

α(−Θ) +
e−ikr

r
d−1

2

α(Θ), |x| = r → ∞,(2.2)

and may be expressed in terms of the Herglotz operator

v(rΦ) = (Hα) (rΦ) := k
d−1

2

∫
Sd−1

eikrΘ·Φα(Θ)dΘ.

The adjoint of the Herglotz operator, which maps L2
δ(R

d) into L2(Sd−1), is therefore
the Fourier transform (times a power of k), followed by restriction to the sphere of
radius k, and may be written as

(H∗f) (Θ) = k
d−1

2

∫
Rd

e−ikrΘ·Φf(rΦ)rd−1drdΦ = k
d−1

2 f̂(kΘ).(2.3)

Here we have simply written dΦ and dΘ rather than dS(Φ) and dS(Θ) to denote the
surface measure on the unit sphere Sd−1.

We note that for any right-hand-side f ∈ L2
δ , with δ > 1/2, the source problem

(Δ + k2)u = f(2.4)

has a unique outgoing solution. Such an outgoing solution has asymptotics similar to
those in (2.2); however, the second term vanishes. Specifically,

u ∼ eikr

r
d−1

2

β(Θ) +
e−ikr

r
d−1

2

× 0, |x| = r → ∞.(2.5)

The function β ∈ L2(Sd−1) is called the far field of the outgoing solution u. We will
use the notation

u = Gf

to denote the solution operator which solves (2.4). Additionally, we define the far
field operator F as the map between the source f and the far field β, so that

β = Ff.

We will make use of the fact that, except for a factor of 2ik, the far field operator is
the adjoint of the Herglotz operator, as follows.

3||u||L2
δ
(Rd) = ||(1+ |x|2)

δ
2 u||L2(Rd). These spaces were first used in the context of the Helmholtz

equation in [1] as a means for studying long-range potentials. The existence and uniqueness state-
ments we quote here can be found in [8].
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Proposition 2.1.

Ff =
1

2ik
H∗f =

k
d−3

2

2i
f̂(kΘ).

Proof. The second equality is a consequence of the first and (2.3). To establish
the first, we apply Green’s formula to u and v as previously defined in (2.4) and (2.1),
i.e.,

(Hα, f) = (v, f)

=

∫
Rd

vf

=

∫
Rd

v(Δ + k2)u− (Δ + k2)vu

= lim
R→∞

∫
Sd−1
R

(
v
∂u

∂ν
− ∂v

∂ν
u

)
dΘ,

which becomes, on inserting the asymptotics from (2.2) and (2.5),

= 2ik

∫
Sd−1

αβdΘ

= (α, 2ikFf).

To define the scattering operator, we return to (1.2),

(Δ + k2)u = qu,

and seek u as an outgoing perturbation of the solution of the free Helmholtz equation
with the incident field Hα so that

u = Hα + usc,

where usc is an outgoing solution. This means that usc is the unique outgoing solution
of

(Δ + k2)usc = qHα + qusc.(2.6)

Such an outgoing field has the asymptotics

usc ∼
eikr

r
d−1

2

βq(Θ) +
e−ikr

r
d−1

2

× 0.

This observation allows us to define the relative scattering operator

Sα = βq.

The Born approximation replaces (2.6) with

(Δ + k2)uborn = qHα.(2.7)

The unique outgoing solution has the asymptotics

uborn ∼ eikr

r
d−1

2

βborn(Θ) +
e−ikr

r
d−1

2

× 0
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and so we define the (relative) Born scattering operator

Bα = βborn.

The Born scattering operator is the Fréchet derivative of the relative scattering op-
erator with respect to q, evaluated at q ≡ 0. The factorizations below (similar to
those in [7]) will enable us to derive useful properties of the scattering operator from
analogous properties of the Herglotz operator.

Proposition 2.2. The full relative scattering operator admits the factorization

S =
1

2ik
H∗q(I −Gq)−1H,(2.8)

=
1

2ik
H∗(I − qG)−1qH,(2.9)

while the Born relative scattering operator may be decomposed as

B =
1

2ik
H∗qH.(2.10)

The kernel of the Born relative scattering operator is

b(Θ,Φ) =
kd−2

2i
q̂(k(Θ − Φ)).(2.11)

Proof. The proof below relies on the invertibility of (I − qG), the proof of which
we defer to Lemma 4.1. We begin with (2.6) and apply G to both sides,

usc = G(qHα + qusc),

(I −Gq)usc = GqHα,

usc = (I −Gq)−1GqHα,

= G(I − qG)−1qHα

so that the far field of usc is

Sα = F(I − qG)−1qHα

=
1

2ik
H∗(I − qG)−1qHα,

establishing (2.8). The analogous calculation applied to (2.7) instead of (2.6) estab-
lishes (2.10). Once we know that (I − qG) is invertible, the identity

(I − qG)−1q = q(I −Gq)−1

follows from
q(I −Gq) = (I − qG)q,

which transforms (2.9) into (2.8). Finally, writing the integral representation of (2.10)
as

Bα =
kd−2

2i

∫
Rd

e−irkΨ·Φq(rΨ)

[∫
Sd−1

eirkΘ·Ψα(Θ)dΘ

]
rd−1drdΨ

=
kd−2

2i

∫
Sd−1

[∫
Rd

e−irk(Φ−Θ)·Ψq(rΨ)rd−1drdΨ

]
α(Θ)dΘ

yields (2.11).
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3. The Herglotz operator and the spherical harmonics. In this and the
next sections, the notation will be slightly less cluttered if we restrict to the case
k = 1. Because of the representations of the scattering operator in (2.8) and (2.9),
the properties of the Herglotz operator will figure prominently into our analysis of
the scattering operator. The singular value decomposition of the Herglotz operator in
terms of the spherical harmonics and (spherical) Bessel functions will provide a basic
tool for all our subsequent calculations. We begin with the expansion of an incident
plane wave in spherical harmonics, which for Θ,Φ ∈ Sd−1 and 0 ≤ r < ∞ is

eirΘ·Φ =

∞∑
n=0

injn(r)pn(Θ · Φ).

The most useful way to define the functions pn in our context is as the kernel of
the orthogonal projection, Pn, from L2(Sd−1) onto the subspace of degree n spherical
harmonics, i.e.,

(Pnα) (Θ) =

∫
Sd−1

pn(Θ · Φ)α(Φ)dΦ.

The functions pn(Θ · Φ) play a dual role: they act as both kernels of projection
operators and are themselves spherical harmonics. When we wish to emphasize their
second role we will write

pΦ
n (Θ) := pn(Θ · Φ).

Up to a constant, the function pΦ
n is the unique spherical harmonic that is invariant

under rotations about the Φ axis [11]. The constants involved here will be important
to us, hence we compute

Pnp
Φ
n = pΦ

n ,∫
Sd−1

pΨ
n (Θ)pΦ

n (Θ)dΘ = pΦ
n (Ψ),

from which we learn that

||pΨ
n ||2L2 = pΨ

n (Ψ)

is independent of Ψ and

= ||pΨ
n ||L∞ .

If we take the trace of the operator Pn, we see that

trPn =

∫
Sd−1

pn(Θ · Θ)dΘ,

N = pn(Θ · Θ) ω,

where ω denotes the volume of the d-dimensional sphere and N = N(n, d) the dimen-
sion of the space of spherical harmonics of degree n. Hence, we conclude that

||pΦ
n ||2L2 = ||pΦ

n ||L∞ = pΦ
n (Φ) =

N

ω
.
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In terms of the standard Legendre functions, Pn, we have the relation

pn(Θ · Φ) =
N

ω
Pn(Θ · Φ).

The Bessel functions jn(r) are most easily defined in terms of the Herglotz opera-
tor acting on the pn. Recalling that pΦ

n = pn(Θ ·Φ) acts as both a spherical harmonic
and the kernel of a projection, we see that

HpΦ
n =

∫
Sd−1

eirΘ·Ψpn(Θ · Φ)dΘ(3.1)

= Pne
irΘ·Ψ

so that HpΦ
n , for each fixed r, must again be a spherical harmonic of degree n. We can

check that the right-hand side of (3.1) is invariant under rotations about the Φ-axis
and thus must be equal to a constant multiple of pΦ

n itself. Specifically, this constant
is in times the spherical Bessel function, i.e.,

HpΦ
n = injn(r)pΦ

n .(3.2)

Because the pn’s act also as projection kernels, we see that any spherical harmonic of
degree n may replace pΦ

n in (3.2). The Herglotz operator is not compact. However, if
we compose it with the restriction to the ball of radius R, the composition is compact.
We denote the resulting operator by HR and describe its singular value decomosition.

HR =

∞∑
n=0

σn(R)
jRn (r)

||jRn || Pn

=

∞∑
n=0

σn(R)Qn.(3.3)

We have used the notation jRn to denote the Bessel function multiplied by the charac-
teristic function of B0(R), the ball of radius R centered at 0, and defined the singular
values

σ2
n(R) := ||jn||2L2(B0(R)).

Each projection operator

Qn :=
jRn (r)

||jRn || Pn

is an isometry from the N -dimensional space of spherical harmonics of degree n in
L2(Sd−1) to an N -dimensional subspace of L2(B0(R)). In short, we find that the Qn

simply project onto the spherical harmonics of degree n and then multiply the result

by
jRn (r)
||jRn || .

Since the singular values all have multiplicity greater than one, this looks a lit-
tle different from the more familiar version of the singular value decomposition. A
compact linear operator K admits the representation

K =
∞∑

n=0

λnΨn ⊗ Φn

=

∞∑
n=0

λnQ̃n.(3.4)
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In this case, Ψn and Φn are orthonormal basis vectors so that the tensor products
Q̃n = Ψn ⊗ Φn are isometries between one-dimensional subspaces.

The corresponding singular value decomposition for the operator HR
∗ is

HR
∗ =

∞∑
n=0

σn(R)Q∗
n,(3.5)

and the ranges of the Q∗
n are exactly the subspaces of spherical harmonics of degree

n. Note that as no σn(R) is zero, HR
∗ has dense range in L2(Sd−1).

Now, we recall the following.
Theorem 3.1 (Picard’s theorem). If K : X → Y is a compact linear operator

with dense range in Y and has a singular value decomposition of the form given in
(3.4), then

α = Kf

if and only if
∞∑

n=0

||Qnα||2
λ2
n

< ∞

and α ∈ N(K∗)⊥.
The proof of Theorem 1.1 is now in hand.
Proof of Theorem 1.1. The second equality in (1.7) follows from (2.11) on setting

Φ = −Θ. Now, scaling the Fourier transform gives

b(Θ) =
1

2i
q̂(2Θ) = 2−dH∗q(x/2).

The Picard theorem applied to H∗
R tells us that in the case c = 0, if the supp q ⊂

Bc(R), then b satisfies (1.8). It also tells us the converse, that if b satisfies (1.8), there
exists a q ∈ L2(Rd) with supp q ⊂ Bc(R) and Born-back-scattering kernel b(Θ).

The Fourier shift theorem tells us that the Fourier transform—and therefore H∗

and H∗
R—intertwines translation by c and multiplication by eikΘ·c, i.e.,

eikΘ·cH∗q = H∗Tcq := H∗q(x− c),

which establishes the corresponding conclusions for arbitrary c.
So far we have shown that every ball for which (1.8) is satisfied supports a q

with Born-back-scattering kernel b. We now wish to demonstrate that any open
neighborhood of their intersection supports such a q as well. As a consequence of
Lemma 3.2, given below, we find that if each of two convex sets support potentials q
with corresponding Born-back-scattering kernel b, then so must any neighborhood of
their intersection.

Lemma 3.2. Suppose the supp q1 ⊂ Ω1, the supp q2 ⊂ Ω2, and that Rd \
(Ω1

⋃
Ω2) is connected and contains a neighborhood of ∞. If

H∗q1 = H∗q2 = b,(3.6)

then, for any ε > 0, there exists an q3 ∈ C∞(Rd) with

supp q3 ⊂ Nε(Ω1 ∩ Ω2)
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and

H∗q3 = b.

Proof. A consequence of (3.6) is that the outgoing solutions of(
Δ + (2k)2

)
ui = qi, i = 1, 2,

u1 = Gq1, and u2 = Gq2 have the same far field. According to Rellich’s lemma and
the unique continuation principle [2], u1 and u2 also agree on the Rd \ (Ω1

⋃
Ω2). Let

φ ∈ C∞(Rd) satisfy

φ =

{
1, x ∈ Rn\Nε(Ω1 ∩ Ω2),

0, x ∈ N ε
2
(Ω1 ∩ Ω2);

then,

v =

⎧⎪⎨
⎪⎩
φu1, x ∈ Rd\Ω1,

φu2, x ∈ Rd\Ω2,

0, x ∈ Ω1 ∩ Ω2,

is a well-defined C∞ function and v = u1 = u2 outside a compact set so that

q3 = (Δ + (2k)2)v

must also have H∗q3 = b.
Because the intersection of convex sets is convex, and the complement of the union

of two convex sets must be connected, the lemma can be applied repeatedly to produce
a q ∈ C∞ satisfying the (apparently weaker) analogue of (1.9) with B replaced by
any finite collection of balls, Bc(R), for which (1.8) holds. The following compactness
argument shows that (1.9) follows from this analogue. Let R0 be large enough that
Nε(∩Bc(R)∈BBc(R)) ⊂ B0(R0), then B0(R0) \ Nε(∩Bc(R)∈BBc(R)) is a compact set
covered by the relatively open subsets B0(R0) \Bc(R), so a finite subcollection, BM,
of these open subsets suffices to cover that compact set, i.e.,

B0(R0) \ Nε

( ⋂
Bc(R)∈B

Bc(R)

)
⊂

⋃
Bc(R)∈BM

(
B0(R0) \Bc(R)

)
.(3.7)

Taking complements of this inclusion yields

Nε

( ⋂
Bc(R)∈B

Bc(R)

)
⊃

⋂
Bc(R)∈BM

Bc(R),

from which we conclude that (1.9) follows from its apparently weaker analogue. This
finishes the proof of Theorem 1.1.

4. Estimating the full back-scattering kernel. This section is composed
of three main propositions, and a few supporting lemmas, which combine to prove
Theorem 1.2. We begin with the following lemma concerning the invertibility of the
operator I −Gq.
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Lemma 4.1. Let q ∈ L∞(Rd) and be compactly supported. Then q(I−Gq)−1 is a
bounded operator from L2(Rd) to itself. Moreover, let q ∈ Lp(Rd), with p > max(2, d

2 ),
be compactly supported. Then,

q(I −Gq)−1 = q + Gq(I −Gq)−1

and Gq(I −Gq)−1 and (I −Gq)−1 are bounded operators from L2(Rd) to itself.
Proof. The lemma is a special consequence of Lemma 12 and Corollaries 13, 14,

and 15 of [9]. Roughly speaking, multiplication by q loses d
p L2-derivatives, while G

gains two. This implies that Gq is compact and that I−Gq is Fredholm. If zero were
an eigenvalue of I − Gq, then the corresponding eigenfunction would be a nonzero
outgoing solution to (1.2). An application of Green’s formula to this solution and
its complex conjugate shows that this outgoing solution would have zero far field.
Rellich’s lemma and unique continuation imply that any outgoing solution with zero
far field is identically zero. Thus zero is not an eigenvalue and I −Gq is invertible.

Proposition 4.2. If q ∈ L∞, the supp q ⊂ Bc(R), then scattering operator may
be factored as,

S = e−iΘ·cH∗
RBHRe

iΘ·c,(4.1)

where B is a bounded operator from L2(Rd) to itself.
Proof. Because H intertwines translation by c and multiplication by eikΘ·c, i.e.,

He−iΘ·c = TcH,

it is enough to treat the case c = 0. We begin with (2.9),

S = H∗(I − qG)−1qH,

then insert a characteristic function of the ball

= H∗(I − qG)−1qχRH,(4.2)

then shift to (2.8)

= H∗q(I −Gq)−1χRH

and again insert another characteristic function

= H∗χRq(I −Gq)−1χRH,(4.3)

which we recognize as

= H∗
Rq(I −Gq)−1HR.(4.4)

Finally, we observe that the operator in the middle is bounded according to Lemma
4.1.

Remark 4.3. The only property of the scattering operator that we will use in the
sequel is (4.1). The conclusions of Theorem 1.2 apply to any operator which admits
such a factorization.

Remark 4.4. So as not to unnecessarily complicate the subsequent discussion, we
will continue working with q ∈ L∞ in the rest of this section. Theorem 1.2, however,
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remains true for compactly supported q ∈ Lp(Rd) with p > max(2, d
2 ). In this case,

the scattering operator is the sum of two operators,

S = H∗
Rq(I −Gq)−1HR

= H∗
RqHR + H∗

RGq(I −Gq)−1HR.(4.5)

The first is the Born scattering operator and the second satisfies (4.1) with a B =
Gq(I −Gq)−1 which is bounded from L2(Rd) to itself.

The factorization (4.1) combines with the singular values of the Herglotz operator
to give some natural estimates for the terms in what we might call a block decompo-
sition of the scattering operator.

Proposition 4.5. Let S, mapping L2(Sd−1) to itself, admit the factorization
(4.1); then Snm, defined as

Snm = PnSPm,(4.6)

has an L∞ kernel snm(Θ,Φ) and satisfies

||Snm|| ≤ σn(R)σm(R) ||B||,
|snm(Θ,Φ)| ≤

√
Nσn(R)

√
Mσm(R) ||B||.(4.7)

Proof. We insert the factorization (4.1) into (4.6),

Snm = PnH∗
RBHRPm

= (HRPn)∗BHRPm,

and use our singular value decompositions, (3.3) and (3.5),

= σnσmQ∗
nBQm,(4.8)

so that

||Snm|| ≤ σnσm||B||.

Recalling again that the pΘ
n are kernels of the Pn, we see that the kernel of Snm is

given by

snm(Θ,Φ) =
(
pΘ
n ,SpΦ

m

)
L2(Sd−1)

=
(
pΘ
n ,SnmpΦ

m

)
L2(Sd−1)

,

|snm(Θ,Φ)| ≤ ||pΘ
n || ||Snm|| ||pΦ

m||
≤

√
Nσn(R)σm(R)||B||

√
M.

The main conclusion of Theorem 1.2 is the estimate (1.10) of the left-hand side of
the identity (4.9) below. We will apply (4.7) to show that the series on the right-hand
side is summable and then to prove (1.10).

Pls(Θ,−Θ) =
∑
n,m

Plsnm(Θ,−Θ).(4.9)

The next proposition tells us that many of the terms in the series are zero.
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Proposition 4.6.

Pl(snm(Θ,−Θ) ≡ 0

unless the sum of any two indices is greater than or equal to the third.

Proof.

snm(Θ,−Θ) =
(
p−Θ
n ,SpΘ

m

)
L2(Sd−1)

=

(∫
Sd−1

pn(Θ · Ψ1)p
Ψ1
n dΨ1,S

∫
Sd−1

pm(Θ · Ψ2)p
Ψ2
m dΨ2

)

=

∫
Sd−1

∫
Sd−1

pn(Θ · Ψ1)pm(Θ · Ψ2)
(
pΨ1
n ,SpΨ2

m

)
dΨ1dΨ2

Plsnm(τ) =

∫
Sd−1

∫
Sd−1

[∫
Sd−1

pl(Θ · τ)pn(Θ · Ψ1)pm(Θ · Ψ2)dΘ

] (
pΨ1
n ,SpΨ2

m

)
dΨ1dΨ2.

The quantities in the square brackets are closely related to the Clebsch–Gordon co-
efficients [14]. To see that they must be zero, fix Ψ1 and Ψ2, and call the quantity in
the square brackets cnml(τ). Since pτl (Θ) = pl(Θ · τ) is the kernel of the projection
operator Pl onto degree l spherical harmonics, we see that cnml(τ) are the degree l
spherical harmonics in the condensed spherical harmonic expansion of the product of
the two spherical harmonics, pΨ1

n and pΨ2
m , i.e.,

pΨ1
n (Θ)pΨ2

m (Θ) =

∞∑
l=0

cnml(Θ).

Recalling that every spherical harmonic extends to a homogeneous polynomial
of the same degree, we see that the left-hand side extends to the unit ball as a
homogeneous polynomial of degree n + m if we replace Θ by rΘ. Since the left-hand
side goes to zero as rn+m as r → 0, so must the right-hand side. This is possible
only if the cnml, which extend as homogeneous degree l polynomials, are zero for all
l < n + m. Finally, note that all conclusions remain valid if we permute the indices
n, m, and l.

Proof of Theorem 1.2. We start by applying Propositions 4.2 and 4.5 to conclude
that

|snm(Θ,Φ)| ≤ ||q(I −Gq)−1||
√
Nσn(R)

√
Mσm(R).(4.10)

We set Φ = −Θ and let snm(Θ) = snm(Θ,−Θ).

Now, (4.10) tells us that the terms |snm(Θ)| are summable. Hence, we may write

s(Θ) =
∞∑

n,m=0

snm(Θ)

and therefore

Pls(Θ) =

∞∑
n,m=0

Plsnm(Θ),

which is the same as
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=
∑

n+m≥l

Plsnm(Θ)

according to Proposition 4.6. Hence

||Pls||L2 ≤
∑

n+m≥l

||Plsnm(Θ)||L2(4.11)

≤
∑

n+m≥l

||snm(Θ)||L2.

Recalling that ω is the area of Sd−1,

≤
√
ω

∑
n+m≥l

||snm(Θ)||L∞(4.12)

≤
√
ω||q(I −Gq)−1||

∑
n+m≥l

√
Nσn(R)

√
Mσm(R).

Finally, Proposition 4.7, which we state and prove below, estimates the sum on the
right-hand side in terms of σl(2R).

≤ ||q(I −Gq)−1|| ω
√

2 R
d
2

(1 − 2R
l )(1 − R2

l+ d
2

)2

√
L σl(2R).(4.13)

This completes the proof for q ∈ L∞. For q ∈ Lp(Rd) with p > max(2, d
2 ), we return

to (4.5) and notice that Theorem 1.2 holds for each of the two terms. It holds for
the first because it is a Born back-scattering kernel and for the second because the
operator in the middle is bounded. It is not hard to see that the conclusion will persist
for the sum.

The next proposition provides an estimate of the right-hand side of (4.13) and
thus yields the last ingredient necessary to establish Theorem 1.2.

Proposition 4.7.

∑
n+m≥l

√
N σn(R)

√
M σm(R) ≤

√
2ω R

d
2

(1 − 2R
l )(1 − R2

l+ d
2

)2

√
L σl(2R).(4.14)

Proof. The proof requires several small lemmas. The first allows us to estimate
the σn(r) from above and below by ratios of Γ-functions and powers of r.

Lemma 4.8.

Γ(d2 )( r2 )n

Γ(n + d
2 )

(
1 −

( r2 )2

n + d
2

)
≤jn(r)≤

Γ(d2 )( r2 )n

Γ(n + d
2 )

,(4.15)

√
ω 2

d−1
2 Γ(d2 )( r2 )n+ d

2

Γ(n + d+1
2 )

(
1 −

( r2 )2

n + d
2

)
≤σn(r)≤

√
ω 2

d
2 Γ(d2 )( r2 )n+ d

2

Γ(n + d+1
2 )

.(4.16)

Proof. The first inequality, (4.15), is just the statement that the spherical Bessel
function lies between the first and the partial sum of the first two terms of its al-
ternating power series expansion. The second is obtained from the first by squaring,
integrating over the ball of radius r, and making use of (4.18).
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The dimensions N of the spaces of spherical harmonics of degree n also appear
on the left-hand side of (4.14). We will estimate them from above and below in terms
of Γ-functions as well.

Lemma 4.9.

N(n, d) =

⎧⎪⎨
⎪⎩

1, n = 0,

d, n = 1,
(2n+d−2)(n+d−3)!

n!(d−2)! otherwise,

Γ(n + d− 1)

Γ(n + 1)Γ((d− 1)
≤ N ≤ 2

Γ(n + d− 1)

Γ(n + 1)Γ(d− 1)
.(4.17)

Proof. The first formula follows from the observation that N satisfies the differ-
ence equation

N(n, d) = N(n, d− 1) + N(n− 1, d)

and the fact that (4.9) holds in the special cases n = 0 and d = 2. See [11] for a
different proof. The inequality (4.17) follows from this formula and

n + d− 2 ≤ 2n + d− 2 ≤ 2(n + d− 2).

The ratio s!
(s−1)! = Γ(s+1)

Γ(s) = s. We need to estimate the analogous ratio when one

of the arguments is a half integer. For this we state the following lemma.
Lemma 4.10.

(
s− 1

2

) 1
2

≤
Γ(s + 1

2 )

Γ(s)
≤ s

1
2 .(4.18)

Proof. Because the gamma function is log-convex [3],

Γ

(
s +

1

2

)
≤ Γ(s)

1
2 Γ(s + 1)

1
2 ,

Γ(s + 1
2 )

Γ(s)
≤ Γ(s + 1)

1
2

Γ(s)
1
2

= s
1
2 .

Analogously,

Γ(s) ≤ Γ

(
s− 1

2

) 1
2

Γ

(
s +

1

2

) 1
2

,

Γ(s)

Γ(s + 1
2 )

≤
Γ(s− 1

2 )
1
2

Γ(s + 1
2 )

1
2

=
1

(s− 1
2 )

1
2

.

We use Lemma 4.10 to establish a replacement for the binomial theorem involving
Γ-functions of half integers rather than just factorials.

Lemma 4.11.

∑
n+m=l

1

Γ(n + d+1
2 )

1

Γ(m + d+1
2 )

≤ 2l+d−1

Γ(l + d)
.



THE CONVEX BACK-SCATTERING SUPPORT 607

Proof. If d is odd, the inequality is an equality which follows from the binomial
expansion of (1 + 1)l+d−1. If d is even, we use (4.18),

∑
n+m=l

1

Γ(n + d+1
2 )

1

Γ(m + d+1
2 )

≤
∑

n+m=l

(n + d
2 )

1
2

Γ(n + d
2 + 1)

(m + d
2 )

1
2

Γ(m + d
2 + 1)

≤
(
l +

d

2

) ∑
n+m=l

1

Γ(n + d
2 + 1)

1

Γ(m + d
2 + 1)

=

(
l +

d

2

)
2l+d

Γ(l + d + 1)

≤ 2l+d

Γ(l + d)
.

The sum in (4.14) is in fact a double summation over the indices n and m. Hence,
we first estimate each single sum in Lemma 4.12 and then sum those estimates in
Lemma 4.13 to estimate the double summation.

Lemma 4.12.∑
n+m=l

√
N σn(R)

√
M σm(R) ≤

√
2ω R

d
2

(1 − R2

l+ d
2

)

√
L σl(2R).

Proof. ∑
n+m=l

√
N σn(R)

√
M σm(R) ≤ L

∑
n+m=l

σn(R) σm(R).(4.19)

We apply (4.15) from Lemma 4.8,

≤ ω2d−1Γ2

(
d

2

)(
R

2

)l+d

L
∑

n+m=l

1

Γ(n + d+1
2 )

1

Γ(m + d+1
2 )

,

then Lemma 4.11

≤ ω2d−1Γ2

(
d

2

)(
R

2

)l+d

L
2l+d

Γ(l + d)
,

followed by the left inequality in (4.16) of Lemma 4.8,

≤
√
ω
√
Lσl(2R)

(1 − R2

l+ d
2

)

(
2

d−1
2

(
R

2

) d
2

) (
Γ(

d

2
)
√
L

Γ(l + d+1
2 )

Γ(l + d)

)
,(4.20)

and finally (4.17) to see that the third factor in (4.20) is less than 2,

≤
√
ω
√
Lσl(2R)

(1 − R2

l+ d
2

)

(
2

d+1
2

(
R

2

) d
2

)
.(4.21)

Finally, we complete these estimates with the next lemma.
Lemma 4.13.

∞∑
l=l0

√
L σl ≤

√
L0 σl0

(1 − R
l0

)(1 − R2

4l0+2d )
.(4.22)
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Proof.

∞∑
l=l0

√
L σl ≤

√
L0 σl0

(
1 +

∞∑
l=l0+1

√
L

L0

σl

σl0

)
.

According to Lemma 4.9,

≤
√
L0σl0

(
1 +

∞∑
k=1

√
Γ(l0 + k + d− 1)Γ(l0 + 1)

Γ(l0 + d− 1)Γ(l0 + k + 1)

σl

σ l0

)
.

Estimating the square root gives

≤
√
L0σl0

(
1 +

∞∑
k=1

(
1 +

d− 2

l0 + 1

) k
2 σl

σ l0

)
.(4.23)

Next, we apply both upper and lower bounds in (4.16) of Lemma 4.8,

≤
√
L0σl0

(
1 +

∞∑
k=1

(
1 +

d− 2

l0 + 1

) k
2
(
R

2

)k Γ(l0 + d+1
2 )

Γ(l0 + k + d+1
2 )

1

1 − R2

4l0+2d

)
,(4.24)

and finally estimate the ratio of Gamma functions, and compare to a geometric series,

≤
√
L0σl0

(
1 +

∞∑
k=1

(
1 +

d− 2

l0 + 1

) k
2

(
R
2

)k
(l0 + d+1

2 )k
1

1 − R2

4l0+2d

)
(4.25)

≤
√
L0σl0

1 − R2

4l0+2d

⎛
⎝1 +

∞∑
k=1

(
(1 + d−2

l0+1 )
1
2 r

l0 + d+1
2

)k
⎞
⎠

≤
√
L0σl0

1 − R2

4l0+2d

∞∑
k=0

⎛
⎝ r

l0

√
1 + d−2

l0+1

1 + d+1
2l0

⎞
⎠

k

≤
√
L0σl0

1 − R2

4l0+2d

∞∑
k=0

(
r

l0

)k

.

Hence, (4.22) follows on summing the geometric series.

We need only observe that a combination of Lemmas 4.12 and 4.13 implies (4.14)
to finish the proof of Proposition 4.7.

5. Numerical applications. In this section, we illustrate a method for finding
the convex back-scattering support with a simple example in two dimensions. Here,
our scatterer is rectangle Rq,

Rq = {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1/2 ≤ y ≤ 1/2},

having horizontal sides at x = ±1 and vertical sides at y = ±0.5. We computed the
full (not the Born) back-scattering kernel numerically, using the Helmholtz equation

(Δ + k2n2(x))u = 0
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with the wavenumber k = 5 and index of refraction given by the formula

n2 =

{
2 x ∈ Rq,

1 x /∈ Rq.

5.1. The forward solution. In this section we explain how we computed the
back-scattering kernel that we will use as data to numerically determine the convex
back-scattering support for our example to follow.

For each incident wave, we employ a two-step process. First, we solved a dis-
cretized version of the Lippmann–Schwinger integral equation (LSIE) for the total
field u on (a region slightly larger than) the support of the scatterer, using a Nyström,
or collocation, method. Next, we use the product qu as a source and numerically in-
tegrate it against the two-dimensional version of the far field operator F , computing
only the value of the scattered field in the direction opposite that of the incident wave.

More specifically, we solved the LSIE numerically by discretizing the operator
I − Gq, and the incident wave ui, over a large, but finite, number of nodes on a
prescribed rectangular region D = Dx × Dy containing the scatterer q and then
solved the ensuing large system of simultaneous equations (of the form Au = ui) for
the unknown u on our grid of evaluation nodes. This process was then repeated over
a collection of incident directions on the unit circle.

In two dimensions, we use a collection of equally spaced points (xl̂, yp̂) ∈ D,
(l = 1, 2, . . . ,M ,p = 1, 2, . . . , N), and then express the LSIE as

u(x̂l, ŷp) +

∫
Dx

∫
Dy

K(x̂l − x, ŷp − y)u(x, y)dydx = ui(x̂l, ŷp),

where the kernel K is

K(x̂l − x, ŷp − y) =
i

4
H

(1)
0

(
k
√

(x̂l − x)2 + (ŷp − y)2

)
q(x, y)

and H
(1)
0 is the usual Hankel function of the first kind. We discretize the points

of integration similarly, defining the additional points (xl, yp), at the same points of
evaluation of the LSIE. Using the trapezoid rule on this same set of nodes allows us
to write the fully discrete version of the LSIE as

ul̂,p̂ +
ΔxΔy

4

N−1∑
p=1
p	=p̂

M−1∑
l=1
l 	=l̂

(Kl̂,l;p̂,pul,p + Kl̂,l+1;p̂,pul+1,p + Kl̂,l;p̂,p+1ul,p+1

+ Kl̂,l+1;p̂,p+1ul+1,p+1) + wl̂,p̂Sl̂,p̂ul̂,p̂ = ui
l̂,p̂
.

The notation given above has been abbreviated so that the subscripts indicate the
points of evaluation, namely, ul̂,p̂ = u(x̂l, ŷp), ul,p := u(xl, yp), and Kl̂,l;p̂,p = K(x̂l−
xl, ŷp − yp). Since the kernel of the integral operator is singular along the diago-
nal, these terms must be treated separately in the discretization scheme. The term
wl̂,p̂Sl̂,p̂ul̂,p̂ above corresponds to the appropriate trapezoid-rule weighted average of
the diagonal terms in the discretization. Specifically,

Sl̂,p̂ :=

{
k2

4 δ2ql̂,p̂ (1 − 2 log δ − 4Ck) if (x̂l, ŷp) ∈ D,
k2

8 δ2ql̂,p̂ (1 − 2 log δ − 4Ck) if (x̂l, ŷp) ∈ ∂D,



610 HOUSSEM HADDAR, STEVEN KUSIAK, AND JOHN SYLVESTER

where

Ck =
1

2

(
log

k

2
− γ

)
− iπ

4

and γ is the Euler–Mascheroni constant.
In more detail, what we have done is to assume that product qu is nearly constant

over some small ball of radius δ and integrated the logarithmic singularity of the kernel
on this set to define the appropriate matrix entry in the numerical integration along
the diagonal. Provided we take a fine mesh of integration points, this presents a viable
way to treat this weakly singular behavior. We use an equispaced grid in both x and
y and chose δ to be Δx/2.

Last, we obtained the back-scattered field by simply computing the discrete sum
of the form

sq(θ) = ei
5π
4

√
1

8kπ

M−1∑
l=1

(Al(θ) + Al+1(θ))
Δx

2
,

where we define the iterated areas Al(θ) and Al+1(θ) as

Al(θ) =

N−1∑
p=1

(f(xl, yp, θ) + f(xl, yp+1, θ))
Δy

2
,

Al+1(θ) =

N−1∑
p=1

(f(xl+1, yp, θ) + f(xl+1, yp+1, θ))
Δy

2

and where we used the computed values of the total field u on the grid to compute

f(xl, yp, θ) = e−ik(xl cos θ+yp sin θ)q(xl, yp)u(xl, yp).

Again, we ran the above numerical scheme for a rectangular scatterer, i.e., q =
k2χRq with χRq the characteristic function of the rectangle

Rq = {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1/2 ≤ y ≤ 1/2}

and computed the back-scattering kernel at 100 equispaced points on the unit circle.
We used a wavenumber of k = 5 and distributed 40 nodes along each of the x and y
axes within the bounding region

D = {(x, y) ∈ R2 : −1 ≤ x ≤ 1,−1 ≤ y ≤ 1}.

Just over 1.5 wavelengths fall within D, so that 40 trapezoid-rule integration nodes
(roughly 25 nodes per wavelength) should yield an accurate simulated solution.

5.2. Numerical computation of the convex back-scattering support. In
this section, we illustrate how we use the back-scattering data to find only the rect-
angle.4 The general outline of our method for locating the rectangle from the back-
scattering kernel will be the following:

4In general, we can expect to find only the convex back-scattering support of the scatterer, which
may be smaller than the convex hull of the scatterer. In the Born approximation, it follows from
Theorem 14 of [8] that the convex back-scattering support of a rectangle is exactly the rectangle. We
have not proved this for the full back-scattering data, but the numerical computations below suggest
that this is the case.
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1. Choose a center, c ∈ R2 (we take c = 0 the first time through), and expand
the back-scattering kernel in a Fourier series centered at this point.

2. Find the support, i.e., the value of n where these coefficients rapidly transition
to zero, in order to calculate the radius of the smallest ball centered at c
that contains the (convex back-scattering support of the) rectangle. We will
explain this in detail below.

3. Choose other centers and repeat the above process to produce other balls.
4. The scatterer, e.g., the rectangle, must be contained in the common intersec-

tion of all these balls.
We will illustrate this procedure with the sequence of Figures 2–5 and again with

the sequence of Figures 6–9. Before proceeding to the figures, however, we need to
explain the logic behind the second step in more detail. We begin by expanding the
back-scattering kernel, i.e., the measured back-scattered signal, in a Fourier series
centered at c. On the circle, it is more convenient to work with the azimuthal angle
θ ∈ [0, 2π], which is related to the unit vector Θ through Θ = (cos θ, sin θ). The
Fourier series expansion, centered at c, is

eic·Θs(Θ) =

∞∑
n=−∞

tne
inθ.

Numerically, we compute a finite sequence {tn} as the discrete Fourier transform of
the sequence {eic·Θns(Θn)}, where {Θn} are equispaced points on the unit circle. In
Theorem 1.2 we expanded in condensed spherical harmonics. In two dimensions, the
condensed spherical harmonics of degree n are the linear combinations of einθ and

e−inθ, i.e., s
(c)
0 (Θ) = t0 and

s(c)
n (Θ) = tne

inθ + t−ne
−inθ, n ≥ 1,(5.1)

so that ‖s(c)
0 ‖L2(S1) = |t0| and

||s(c)
n ||L2(S1) =

(
|t−n|2 + |tn|2

) 1
2 , n ≥ 1.(5.2)

Now, if the scatterer, i.e., our rectangle, is contained in the ball of radius R, then the
sn’s satisfy the estimate (1.10), which simplifies slightly in two dimensions because
N(n, 2) = 2. Specifically,

||s(c)
n ||L2(S1) ≤ C(q)Nσn(2kR) ≤ 2C(q)σn(2kR).

Theorem 1.2 only tells us that if the rectangle is contained in the ball of radius R

centered at c, then the sn’s (a shorthand notation for the ||s(c)
n ||L2) are bounded by a

constant times the σn(2kR)’s. We shall operate as if we knew the converse were true
as well.5 The wavenumber k is fixed (k = 5 in the example below), so we want to
examine the sn’s and find the smallest value of R for which such a bound holds. Our
test principle for finding R from the Fourier coefficients will be the following.

Test Principle 5.1. The sn’s are effectively supported in the interval (0, N) if
and only if the the convex back-scattering support is contained in the ball of radius
R = |N2k |.

We expect the sn’s to be effectively supported in the interval (0, N) because the
σn(2kR)’s have exactly this property. As a function of n, σn(2kR) is positive and

5For the Born approximation, the converse is part of Theorem 1.1.
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Fig. 1. σn(50) plotted as a function of n. Notice that σn(50) is large (> 6) for n < 45 and
small (< 0.5) for n > 55. If we knew only that this was a plot of σn(R) for some R, we could have
deduced an approximation for R by finding the value of n where the function rapidly transitioned to
zero.

bounded away from zero for n < |2kR| and effectively zero for n > |2kR|, with a
transition region of width proportinal to (2kR)1/3. We see evidence of this behavior
in the graph of σn(50) in Figure 1 and in the asymptotic formulas

σn(2kR) ∼
{√

2
(
(2kR)2 − n2

) 1
4 , n < |2kR|,(

ekR
n

)n+1 ∼ 0, n > |2kR|.
(5.3)

Equation (5.3) follows from classical asymptotics of Bessel functions when at least one
of either n or kR is large. We don’t yet know a proof when neither is large, but we
rely on numerical computations in this case. It can be shown that the two sequences
σ2n(2kR) and σ2n+1(2kR) are monotone decreasing as n > 0 increases.

The two sequences of graphs, Figures 2–5 and Figures 6–9, demonstrate that the
transitions we witness in the σn’s are also observed in the back-scattering data as well.

As illustrated in Figures 2–5, our test principle is based on a transition which
occurs at a finite value of n, while Theorems 1.1 and 1.2 depend only on large n
asymptotics. The strict conditions of these theorems may never be verified experi-
mentally, while the test principle, or any condition that does not include a limit as
n → ∞, cannot be a mathematically correct theorem. One can always construct a
potential q, supported in the ball of radius R, having any finite number of Fourier
coefficients of q̂(kΘ) equal to an arbitrary set of numbers. This set of numbers can
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Fig. 2. We plot the modulus of the Fourier coefficients of the back-scattering kernel on the right
and locate the transition to zero at n = 13, indicating that value of n by the dashed vertical line.
We draw the deduced circle of radius n

2k
= 13

2×5
on the left, including the rectangle for comparison.
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Fig. 3. We choose a new center, indicated by the black dot in the plot on the left. We compute
the modulus of the translated Fourier coefficients, plot them on the right, and locate the transition
to zero at n = 32. We draw the deduced circle of radius n

2k
= 32

2×5
in the plot on the left. The

dashed line represents the circle from Figure 2.
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Fig. 4. We choose another new center, indicated by the black dot. We again plot the modulus
of the translated coefficients, locate the transition to zero at n = 28, and draw the new circle. The
dashed lines represents the previous circles from Figures 2 and 3. Recall that the back-scattering
support must lie in their intersection.
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Fig. 5. We chose the sequence of centers so that we could approximate the rectangle with just
a few circles and thus illustrate the method with only a few plots. Of course, we based this choice
on a priori knowledge. We don’t discuss strategies for efficiently choosing the centers.

be—somewhat artificially—chosen to be identically zero or to mimic the transition we
seek and thus foil our test principle. Nonetheless, such an example would always be
exposed by increasing the wave number. Theoretically, we can use a wave of any fixed
wavelength to probe any medium—even one which varies very rapidly as a function of
position on the scale of that wavelength—to discover its convex back-scattering sup-
port. Practically speaking, however, we cannot expect to effectively probe a medium
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Fig. 6. The sequence of plots in Figures 6–9 uses the same data as the previous sequence, but
we have added white noise to both the the amplitude and the phase of the data. We chose the noise
level to be 15% (i.e., variance equal to 0.15 times maximum amplitude (16) of the original data for
the amplitudes and 0.15 × 2π for the phases).
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Fig. 7. We locate the transition to the noise level rather than the transition to zero. If we
didn’t know that the noise level was 2.4 (0.15×16), we could readily estimate it from any of the four
plots.
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Fig. 8. Our estimates of the radii in the noisy case are consistently smaller than in the noiseless
case.

whose features vary rapidly on the scale of a wavelength. Some dichotomy between
theory and practice is inevitable. One goal for future work will be a more accurate
description of those media that we can confidently test with this data and this method.

We should mention that there are certainly other reasonable, and perhaps better,
methods for deducing R than our proposed Test Principle 5.1. For instance, one might
attempt to sum a regularized version of the series given in (1.8) over various values of R
and seek the value of R where the sum becomes bigger than some prescribed threshold.
We use Test Principle 5.1 since the very steep transition remained easily visible in the
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presence of noise. This is not a property shared by the partial summations we tried.
For our proposed test scheme, we did not need to choose a regularization parameter;
however, we did need to decide where the transition to zero, or to the observable noise
level, occurred. We found the transition by eye.
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NONEXISTENCE OF SYNCHRONOUS ORBITS AND CLASS
COEXISTENCE IN MATRIX POPULATION MODELS∗
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Abstract. Existence of synchronous orbits in a general class of matrix population models is
considered. Our results show that a matrix population model does not possess a synchronous orbit
if the associated directed graph is primitive. Furthermore, it is also shown that if there are no
synchronous orbits, then all classes coexist. To illustrate these results, the density dependent Leslie
matrix model is analyzed.
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1. Introduction. In this paper, we consider the dynamics of structured popu-
lations that are modeled by the following difference equation:

x(t + 1) = Ax(t)x(t), t ∈ Z+,(1)

where Z+ = {0, 1, 2, . . . , }, x(t) = (x1(t), x2(t), . . . , xn(t))�, and Ax = (aij(x)) is an
n×n matrix function of x. This equation is a general framework for matrix population
models in which a population is divided into n classes (e.g., by chronological age,
developmental stage, or habitat position) and the density (or number) of individuals
in the ith class is denoted by xi. Therefore, our interest concentrates on solutions in
the nonnegative cone Rn

+ := {x ∈ Rn : x1 ≥ 0, x2 ≥ 0, . . . , xn ≥ 0}.
The following equation is a specific example of (1):⎛

⎜⎜⎜⎜⎜⎝

x1(t + 1)
x2(t + 1)
x3(t + 1)

...
xn(t + 1)

⎞
⎟⎟⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎜⎜⎝

f1(x(t)) f2(x(t)) · · · fn−1(x(t)) fn(x(t))
p1(x(t)) 0 · · · 0 0

0 p2(x(t)) · · · 0 0
...

...
. . .

...
...

0 0 · · · pn−1(x(t)) 0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

x1(t)
x2(t)
x3(t)

...
xn(t)

⎞
⎟⎟⎟⎟⎟⎠ .

This equation is the (density dependent) Leslie matrix model for the dynamics of
an age-structured population. The variables xi, i = 1, 2, . . . , n, denote the densities
(or numbers) of individuals of age i. The functions fi(x), i = 1, 2, . . . , n, denote the
numbers of offspring produced by one individual of age i, and pi(x), i = 1, 2, . . . , n−1,
denote the probabilities of surviving the ith age-class in one unit of time. This model
assumes that the length of life cycle is fixed at n. In addition to the Leslie matrix
model, we can find many examples of matrix population models in the literature
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[5, 7]. For example, we can find matrix population models incorporating stage or
spatial structure (e.g., see [20, 22]).

One of the interesting topics in the study of matrix population models is syn-
chronization. A typical example of synchronous phenomena is found in a density
dependent Leslie matrix model with a single reproductive age-class (e.g., see [1,
4, 8, 9, 10, 12, 19, 24]). More precisely, in the Leslie matrix model with f1 =
· · · = fn−1 = 0, we can find an orbit {x(t)}t∈Z+

such that each x(t) consists of
a single nonzero entry whose position moves to the right in a unit of time (e.g.,
x(0) = (+, 0, 0, . . . , 0)�,x(1) = (0,+, 0, . . . , 0)�, . . . ). This kind of behavior is called
single year class (SYC) dynamics (e.g., see Davydova, Diekmann, and van Gils [12])
since all but one year class are missing. Recently, the concept of SYC dynamics
was extended, and the term “multiple year class (MYC) dynamics” was introduced
by Mjølhus, Wikan, and Solberg [19]. Synchronous phenomena are also observed in
natural insect populations (e.g., see [14, 17, 18, 21]). Periodical cicadas, inhabiting
the eastern United States, are typical examples. Their nymphs remain underground
for precisely 17 years (or, in the south, 13 years) before emerging from the ground
synchronously and in tremendous numbers. Mature nymphs become adults, mate,
lay their eggs, and die within the few weeks (see [17]). Therefore, the lengths of their
life cycles are fixed (17 or 13 years), and all individuals in each population have the
same age; i.e., all but one year class are missing (this phenomenon corresponds to
SYC dynamics). In order to explain this synchronization, the Leslie matrix model
with f1 = · · · = fn−1 = 0 has been studied.

Although it is known that the structure of the Leslie matrix with a single repro-
ductive age-class can give rise to synchronous phenomena, it is unknown whether this
is the only structure leading to synchronous phenomena. For example, some insect
undoubtedly has two or more reproductive age-classes, but it is not clear whether
the additional reproductive age-classes dissipate synchronous phenomena. In order to
clarify this relationship between the structure of the life cycle and the phenomenon
of synchronization, we will investigate a structure that eliminates synchronous phe-
nomena from a general class of matrix population models.

Synchronous phenomena are characterized by an orbit on the boundary of the
nonnegative cone bdRn

+ := {x ∈ Rn
+ : x1x2 · · ·xn = 0}. Hence, following Cushing [8],

we define a synchronous orbit as follows.
Definition 1.1 (synchronous orbits). An orbit {x(t)}t∈Z+ of system (1) is said

to be synchronous if x(t) ∈ bdRn
+ for all t ≥ 0. A synchronous orbit is said to be

nontrivial if x(0) �= 0.
Notice that a synchronous orbit does not have to be periodic. It is clear that an

SYC dynamics pattern does not appear as long as there are no nontrivial synchronous
orbits. Moreover, we see that a nontrivial synchronous orbit always includes some
missing classes.

In this paper, we will show that, under certain assumptions, the primitivity of
the matrix Ax determines the existence of nontrivial synchronous orbits. It is worth
mentioning that Cull and Vogt [6] have addressed the primitivity of a density inde-
pendent Leslie matrix model to study its periodic behavior of age distributions, i.e.,
the periodicity of x(t)/

∑n
i=1 xi(t). As in the study by Cull and Vogt [6], the theory

of nonnegative matrices is very useful in our study, although we are concerned not
with the periodicity of age distributions but with the existence of synchronous orbits.
Since our system involves nonlinear terms, unlike the system of Cull and Vogt [6],
we will obtain a result on class coexistence with bounded population densities due to
the nonlinearity. That is, we will show that, under certain assumptions, nonexistence
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of nontrivial synchronous orbits ensures coexistence of all classes in the sense of c-
permanence, which is defined as follows. (The definition of p-permanence is introduced
below to distinguish population survival from class coexistence.)

Definition 1.2 (c-permanence). System (1) is said to be c-permanent if there
exist positive constants δ > 0 and D > 0 such that

δ ≤ lim inf
t→∞

xi(t) ≤ lim sup
t→∞

xi(t) ≤ D, i = 1, 2, . . . , n,

for all solutions {x(t)}t∈Z+ with x(0) ∈ Rn
+\{(0, 0, . . . , 0)}.

The remainder of this paper is organized as follows. In section 2, we introduce
some notation and assumptions. That section also includes a new result on the bound-
edness of solutions, which will be used to prove permanence of a specific matrix pop-
ulation model in section 5. In section 3, we review a known result on permanence for
population survival (i.e., p-permanence), which is used to consider c-permanence in
the subsequent sections. In section 4, we consider existence of nontrivial synchronous
orbits and class coexistence. That section includes the main results of this paper. In
section 5, we apply our results to the density dependent Leslie matrix model, which
is introduced above, to illustrate our main results. The final section discusses future
problems.

2. Preliminaries. In this section, we introduce some notation, assumptions,
and preliminary results.

For vectors x = (x1, x2, . . . , xn)� and y = (y1, y2, . . . , yn)�, we write x ≥ y if
xi ≥ yi for all i, and x > y if x ≥ y and x �= y. A vector x is called nonnegative
if x ≥ 0, where 0 denotes the zero vector. A matrix A = (aij) is called nonnegative
if aij ≥ 0 for all i, j. Some important properties of nonnegative matrices are listed
in the appendix, which also includes the definitions of irreducibility and primitivity
of matrices and their characteristics. These properties of nonnegative matrices are
extensively used in this paper. For matrices A = (aij) and B = (bij), we write
sign(A) = sign(B) if aij and bij have the same sign −, 0, or +; i.e., the sign pattern
of A is identical with that of B. We also write sign(x) = sign(y) for vectors x and y
if they have the same sign pattern. The set consisting of only the origin is denoted
by O.

Throughout this paper, we always assume that system (1) satisfies the following
conditions (H1)–(H4):

(H1) each aij(x) is continuous,
(H2) Axx ≥ 0 for all x ≥ 0,
(H3) Axx > 0 for all x > 0,
(H4) system (1) is dissipative; i.e., there exists a positive constant D > 0 such that

lim supt→∞
∑n

i=1 xi(t) ≤ D for all solutions {x(t)}t∈Z+
with x(0) ≥ 0.

Assumption (H1) ensures that the map f(x) := Axx, which is the right-hand side
of (1), is continuous. Assumption (H2) implies that all solutions of (1) with x(0) ≥ 0
are always nonnegative. Hence, the nonnegative cone Rn

+ is forward invariant; i.e.,
f(Rn

+) ⊂ Rn
+. Notice that (H2) holds if Ax is nonnegative for all x ≥ 0. Assumption

(H3) implies that no points x > 0 are mapped to the origin. Therefore, assumption
(H3) ensures that Rn

+\O is forward invariant; i.e., f(Rn
+\O) ⊂ R

n
+\O. We can show

that (H3) holds if Ax is nonnegative and irreducible for all x ≥ 0 as follows. Since
Ax is nonnegative for all x > 0, Axx ≥ 0 holds for all x > 0. Suppose that Ayy = 0
for some y > 0 with yk > 0. The irreducibility of Ay ensures that aik(y) > 0 for
some i. Otherwise, there are no paths from the vertices Pk to the other vertices in
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the directed graph of Ay. This implies that Ay is not strongly connected and hence
not irreducible (see Definition A.3 and Theorem A.4 of the appendix). Therefore,
Axx > 0 holds for all x > 0. Assumption (H4) implies that the total population
density does not explode. We can find many matrix population models that satisfy
assumptions (H1)–(H4) (e.g., see [5, 7]).

In comparison with (H1)–(H3), it is not always easy to check whether system
(1) satisfies (H4). In the rest of this section, we obtain a sufficient condition for the
dissipativity of system (1). To obtain the sufficient condition in Theorem 2.2, we need
the following lemma on dynamical systems.

Lemma 2.1 (Hutson [15, Lemma 2.1]). Let (X, d) be a metric space, and let
f : X → X be a continuous function. Let γ+(x) = {x, f(x), f2(x), . . . } be a semi-
orbit of the discrete dynamical system f : X → X. Let Y ⊂ X be open, and let N
be open with a compact closure N ⊂ Y . Assume that Y is forward invariant and that
γ+(x) ∩ N �= ∅ for every x ∈ Y . Then M = γ+(N) is a compact absorbing set for
Y ; i.e., M is a forward invariant compact subset of Y and γ+(x) ∩M �= ∅ for every
x ∈ Y .

By using this lemma, under assumptions (H1)–(H3), we can obtain the following
theorem of dissipativity.

Theorem 2.2. Assume that (H1)–(H3) hold. Suppose that there exist positive
constants K > 0 and λ∞ > 0 such that the inequalities

∑n
i=1 aij(x) ≤ λ∞, j =

1, 2, . . . , n, hold for all x ∈ Rn
+ with

∑n
i=1 xi ≥ K. Then system (1) is dissipative if

λ∞ < 1.
Proof. Let {x(t)}t∈Z+ be a solution of (1) with x(0) ∈ R

n
+. Suppose that∑n

i=1 xi(t) ≥ K for all t ≥ 0. Then, from (1), we have

n∑
i=1

xi(t) =

n∑
i=1

n∑
j=1

aij(x(t− 1))xj(t− 1)

≤ λ∞

n∑
i=1

xi(t− 1)

...

≤ λt
∞

n∑
i=1

xi(0).

Since λ∞ < 1, we have x(t) → 0 as t → ∞. This is a contradiction. Hence, for every
x(0) ∈ Rn

+ there exists a T ≥ 0 such that
∑n

i=1 xi(T ) < K.
Let X = Y = R

n
+ and N = {x ∈ R

n
+ :

∑n
i=1 xi < K}. Then it is clear that

Y is a forward invariant open subset of X, and N is an open set with a compact
closure N ⊂ Y . By the above argument, we see that γ+(x) ∩N �= ∅ for every x ∈ Y .
Therefore, Lemma 2.1 implies that γ+(N) is a compact absorbing set for Y , that
is, every solution eventually enters the compact set γ+(N) and remains there. This
implies that system (1) is dissipative.

Remark. It is straightforward to see that this theorem improves a result by
Cushing [7] (cf. Theorem 1.2.2 of [7]). In Theorem 1.2.1 of [7], we can find a sufficient
condition that ensures global extinction, i.e., limt→∞ x(t) = 0 for all x(0) ∈ Rn

+. In
this case, the system is certainly dissipative.

3. P-permanence. In this section, we introduce a known result on the p-
permanence of system (1), which is defined as follows.
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Definition 3.1 (p-permanence). System (1) is said to be p-permanent if there
exist positive constants δ > 0 and D > 0 such that

δ ≤ lim inf
t→∞

n∑
i=1

xi(t) ≤ lim sup
t→∞

n∑
i=1

xi(t) ≤ D

for all solutions {x(t)}t∈Z+ with x(0) ∈ Rn
+\O.

A result on p-permanence shall be used to consider class coexistence, i.e., c-
permanence, in sections 4 and 5. We see that if system (1) is p-permanent, then the
total population density

∑n
i=1 xi(t) is eventually bounded within some positive in-

terval. Therefore, p-permanence is a mathematical term corresponding to population
survival.

The recent study by Kon, Saito, and Takeuchi [16] provides a sufficient condition
for the p-permanence of system (1) as follows.

Theorem 3.2 (see [16]). Assume that (H1)–(H4) hold. Suppose that the ma-
trix Ax at the origin, which is denoted by A0, is irreducible. Then system (1) is
p-permanent if the dominant eigenvalue λ0 of A0 satisfies λ0 > 1.

Remark. Since A0 corresponds to the Jacobian matrix of (1) evaluated at the
origin, λ0 > 1 implies that the origin is unstable. Moreover, λ0 < 1 implies that the
origin is stable, i.e., that system (1) is not p-permanent. Therefore, the magnitude
of λ0 determines whether or not system (1) is p-permanent except in the critical case
λ0 = 1.

4. Synchronous orbits and class coexistence. In this main section, we con-
sider the existence of synchronous orbits and the possibility of class coexistence, i.e.,
c-permanence.

The following theorem provides a necessary and sufficient condition for the exis-
tence of a nontrivial synchronous orbit.

Theorem 4.1. Assume that (H1)–(H4) hold. Suppose that A0 is irreducible
and sign(Ax) = sign(A0) holds for all x ∈ bdRn

+. Then system (1) has a nontrivial
synchronous orbit if and only if A0 is imprimitive.

Proof. Suppose that A0 is imprimitive with index of imprimitivity h > 1. Then,
by Theorem A.7 of the appendix, Ah

0 can be rearranged into quasi-diagonal form by
renumbering the indices of rows and columns. So, without loss of generality, we can
assume

Ah
0 = diag{B1, B2, . . . , Bh},

where B1, B2, . . . , Bh are primitive matrices. Hence, we can choose a z ∈ bdRn
+\O

such that Akh
0 z ∈ bdRn

+\O for all k ∈ Z+ (e.g., if B1 is an n1×n1 matrix, then choose
z = (z1, z2, . . . , zn)� with zi > 0 for i = 1, . . . , n1 and zi = 0 for i = n1 + 1, . . . , n).
Since A0 is irreducible and nonnegative, once AT

0 z ∈ intRn
+ := R

n
+\bdRn

+ holds for
some T ≥ 0, At

0z ∈ intRn
+ holds for all t ≥ T . Otherwise, A0 has a row with only

zero entries, so that A0 is reducible. Therefore, for the z ∈ bdRn
+\O chosen above,

At
0z ∈ bdRn

+\O holds for all t ≥ 0.
It is clear that if sign(A) = sign(B) and sign(x) = sign(y) hold for some nonnega-

tive matrices A,B and some nonnegative vectors x,y ∈ Rn
+, then sign(Ax) = sign(By)

holds. Therefore, if we let {x(t)}t∈Z+
be a solution of system (1) with x(0) = z,

then sign(Ax(0)x(0)) = sign(A0z) holds, and inductively sign(Ax(t)) = sign(A0) and
sign(Ax(t−1)x(t−1)) = sign(At

0z) hold for all t ≥ 0. This implies that x(t) ∈ bdRn
+\O

for all t ∈ Z+, and then {x(t)}t∈Z+
is a nontrivial synchronous orbit.
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Suppose that A0 is primitive. Then, by Theorem A.6 of the appendix, there exists
an integer k ≥ 1 such that Ak

0 > 0. Suppose that there exists a solution {x(t)}t∈Z+

such that x(t) ∈ bdRn
+\O for all t ≥ 0. Then we have Ax(k−1)Ax(k−2) · · ·Ax(0) > 0.

This is a contradiction. Therefore, there are no nontrivial synchronous orbits.
This theorem ensures that if A0 is primitive, then there are no orbits remaining

in bdRn
+; that is, every orbit starting in bdRn

+ leaves there and enters the interior of
R

n
+ after finite iterations. In the rest of this section, we consider whether or not an

interior orbit approaches bdRn
+ and show that primitivity implies c-permanence. The

following lemma is used below to consider such a problem.
Lemma 4.2. Let (X, d) be a compact metric space, and let f and γ+(x) be the

same as in Lemma 2.1. Let Y be a compact subset of X. Suppose that γ+(x) ∩
(X\Y ) �= ∅ for every x ∈ X and that X\Y is forward invariant. Then there exists a
compact absorbing set M for X with d(M,Y ) > 0.

Proof. Define Ut = {x ∈ X : f t(x) ∈ X\Y }. Let x ∈ Ut. Then f t(x) ∈
X\Y . By the continuity of f , there exists an open neighborhood V (x) of x such
that f t(V (x)) ⊂ X\Y . Hence, V (x) ⊂ Ut. This implies that Ut is open. Since
γ+(x)∩(X\Y ) �= ∅ for every x ∈ X, the family of open sets Ut forms an open cover for
X. Then, by the compactness of X, there exists a finite subcover {Ut1 , Ut2 , . . . , Utm}.
The forward invariance of X\Y implies Ut ⊂ Ut+1. Hence, X ⊂ UT holds for T =
max{t1, t2, . . . , tm}; i.e., fT (X) ⊂ X\Y .

Since f is continuous and X is compact, fT (X) is compact. Let N = fT (X).

Then γ+(N) =
⋃T−1

t=0 f t(N) holds and is compact. Since γ+(N) and Y are compact
and γ+(N) ∩ Y = ∅, d(γ+(N), Y ) > 0 holds. Therefore, we see that γ+(N) is a
compact absorbing set for X with d(γ+(N), Y ) > 0.

By using this lemma, we can show that if A0 is primitive, i.e., there are no
nontrivial synchronous orbits, then there are no interior orbits converging to bdRn

+,
as follows.

Theorem 4.3. Assume that (H1)–(H4) hold. Suppose that Ax is irreducible
for all x ∈ R

n
+, sign(Ax) = sign(A0) holds for all x ∈ bdRn

+, and system (1) is
p-permanent. Then system (1) is c-permanent if and only if A0 is primitive.

Proof. By Theorem 4.1, the (⇒) part is clear since an imprimitive A0 leads to a
nontrivial synchronous orbit.

Suppose that A0 is primitive. Since system (1) is p-permanent, by using Lemma
2.1, we can construct a compact absorbing set X for Rn

+\O such that X ∩O = ∅. Let
Y = bdRn

+ ∩X. By Theorem 4.1, for every x(0) ∈ Y there exists a T ≥ 0 such that
x(T ) ∈ X\Y . Furthermore, since Ax(t) is irreducible for all t ≥ 0, x(t) ∈ X\Y holds
for all t ≥ T . Otherwise, Ax(t) has a row with only zero entries, and thus Ax(t) is
reducible. This fact implies that X\Y is forward invariant. Hence, Lemma 4.2 shows
that there exists a compact absorbing set M for X with d(M,Y ) > 0. This completes
the proof.

Remark. Notice that Ax is assumed to be irreducible not only at x = 0 but also
at x ∈ Rn

+. If Ax is assumed to be irreducible only at x = 0, then we can construct a
matrix function Ax such that (1) has a periodic orbit that visits alternately an interior
point and a boundary point. For instance, consider the following example:

Ax =

(
0 16σ(x1, x2) exp(−x1 − x2)

0.5 0.5σ(x1, x2)

)
,

where σ(x1, x2) is the continuous function defined by

σ(x1, x2) =

{
−x1x2 + 1, 0 ≤ x1x2 < 1,
0, x1x2 ≥ 1.
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1 2 3 n

Fig. 1. The graph of Ax for a semelparous population. This graph has a
loop {1, 2, . . . , n, 1}, whose length is n. Since there are only loops whose lengths
are multiples of n, the greatest common divisor of the lengths are equal to n.
Hence, this graph is imprimitive with index of imprimitivity n.

Note that A0 is irreducible (and primitive), but Ax is reducible if x1x2 ≥ 1. Moreover,
sign(Ax) = sign(A0) holds for all x ∈ bdR2

+. We see that {(6 ln 2, (3/2) ln 2), (0, 3 ln 2)}
is a periodic orbit of this example.

5. Applications. In this section, we apply the results obtained in the preceding
sections to the (density dependent) Leslie matrix model, which was introduced in
section 1.

For the functions fi(x), i = 1, 2, . . . , n, and pi(x), i = 1, 2, . . . , n − 1, we assume
the following:

(A1) All fi(x) and pi(x) are continuous. f1(x), f2(x), . . . , fn−1(x) are nonnegative,
and fn(x) and p1(x), p2(x), . . . , pn−1(x) are positive for all x ∈ Rn

+.

In order to emphasize that the irreducibility of Ax is determined solely by its sign
pattern, in (A1) we do not assume that the functions pi(x) are less than one. However,
from a biological point of view, they must be less than one since they are survival
probabilities. In the example studied below, we assume the specific functions pi(x)
that satisfy 0 < pi(x) < 1 for all x ∈ Rn

+. It is clear that (A1) ensures that (H1) and
(H2) hold. Since fn(x) and p1(x), p2(x), . . . , pn−1(x) are positive for every x ≥ 0,
the graph G(Ax) of Ax has a loop along which we can run through every vertex of
the graph (see Figure 1), so that G(Ax) is strongly connected (see Theorem A.6 of
the appendix). This implies that Ax is irreducible for every x ≥ 0. Therefore, (A1)
also ensures that (H3) holds. It is clear that dissipativity of the Leslie matrix model
is dependent on the forms of the functions fi and pi. In fact, if they are all constants,
the system becomes linear and hence can exhibit exponential growth. As a nonlinear
example, consider the functions fi(x) and pi(x):

fi(x) =
φi

1 + (
∑n

i=1 μijxj)αi
, i = 1, 2, . . . , n,

pi(x) =
σi

1 + (
∑n

i=1 νijxj)βi
, i = 1, 2, . . . , n− 1,

(2)

where the parameters satisfy φ1, φ2, . . . , φn−1 ≥ 0, φn > 0, 0 < σi < 1, μij > 0,
νij ≥ 0, αi > 0, βi > 0 for all i, j. Note that this specific example satisfies the
condition (A1) and that p1(x), p2(x), . . . , pn−1(x) < 1 hold for all x ∈ Rn

+. In this
specific case, we can choose K > 0 and 0 < λ∞ < 1 such that

f1(x) + p1(x) ≤ λ∞
...

fn−1(x) + pn−1(x) ≤ λ∞

fn(x) ≤ λ∞
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hold for all x ∈ Rn
+ with

∑n
i=1 xi ≥ K. Therefore, Theorem 2.2 ensures that the Leslie

matrix model with such functions is dissipative; i.e., the assumption (H4) holds.
Let us consider p-permanence of the Leslie matrix model. As shown in The-

orem 3.2, the magnitude of the dominant eigenvalue of A0 plays a crucial role for
p-permanence of system (1). The dominant eigenvalue λ0 of A0 usually has a strong
relationship with the so-called inherent net reproductive number R0, which is defined
to be the expected number of offspring per individual per lifetime evaluated by the
constant matrix A0 (see Theorem 1.1.3 of Cushing [7] and Theorem 3 and section 3.1
of Cushing and Yicang [11]). The inherent net reproductive number R0 of the Leslie
matrix is given by

R0 =

n∑
i=1

fi(0)

i∏
j=1

pj−1(0),

where for notational convenience p0(0) is defined to be 1. For the Leslie matrix model,
it is known that R0 > 1 (resp., R0 < 1) if and only if λ0 > 1 (resp., λ0 < 1) (see
Cushing [7] and Cushing and Yicang [11]). Therefore, Theorem 3.2 implies that the
Leslie matrix model is p-permanent if it is dissipative and R0 > 1.

Let us consider primitivity of Ax under the assumption (A1). As mentioned
above, under the assumption (A1), Ax is irreducible for every x ≥ 0. The graph of
Ax with f1(x) = f2(x) = · · · = fn−1(x) = 0 is depicted in Figure 1. A population
with this life cycle is called semelparous. In a semelparous population, individuals
can reproduce only once in their lives. By Theorem A.5 of the appendix, we see that
the index of imprimitivity of Ax for a semelparous population is equal to n, the order
of the matrix Ax; that is, Ax is not primitive for all x ≥ 0. Therefore, Theorem 4.1
ensures that a semelparous population has a nontrivial synchronous orbit. On the
other hand, consider the case where f1(x) = f2(x) = · · · = fn−1(x) = 0 does not
hold. By Theorem A.5, we see that if there are two consecutive fertile age-classes
such that fi(x) > 0 for all x ∈ bdRn

+, then Ax is primitive for all x ∈ bdRn
+. Hence,

if f1(x), f2(x), . . . , fn(x) > 0 for all x ∈ bdRn
+, i.e., all age-classes are fertile, then Ax

is clearly primitive for all x ∈ bdRn
+. In such a primitive case, Theorem 4.3 ensures

that all age-classes coexist if system (1) is p-permanent.
Figure 2 considers the dynamics of the Leslie matrix model with four age-classes.

We use the functions fi and pi defined by (2). Figure 2(a) shows the population
dynamics of the fourth age-class in an imprimitive Leslie matrix model. From this
figure, we see that the orbit converges to a nontrivial synchronous orbit, where all
but one year class are missing. If individuals in the third age-class are also fertile,
then the orbit stays in the interior of the nonnegative cone. So, we see that all classes
coexists as ensured by Theorem 4.3 (see Figures 2(b) and (c)).

6. Discussion. In this paper, we have considered the existence of nontrivial
synchronous orbits in a general class of matrix population models. In Theorem 4.1,
we showed that the primitivity of the matrix Ax on the boundary bdRn

+ is essential for
this existence. Furthermore, in Theorem 4.3, we showed that if there are no nontrivial
synchronous orbits, then all classes coexist in the sense of c-permanence. By using
the specific Leslie matrix model, we confirmed these results in section 5.

Since Theorem 4.1 ensures only existence of a nontrivial synchronous orbit, that
orbit’s stability is unknown. However, in our example in Figure 2(a), the nontrivial
synchronous orbit seems to be stable. It is a future problem to consider the rela-
tionship between stability of synchronous orbits and structure of matrix population
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Fig. 2. The population dynamics of the Leslie matrix model with four
age-classes. The left figures show temporal fluctuations of the fourth age-class
density. The parameters are φ1 = 0, φ2 = 0, φ4 = 20, σ1 = σ2 = σ3 = 0.5,
μij = νij = αi = βi = 1 for all i, j, and the initial condition satisfies x1(0) =
x2(0) = x3(0) = x4(0) = 1. The parameter φ3 is chosen as follows: (a) φ3 = 0,
(b) φ3 = 1, (c) φ3 = 5.

models (see [4, 9, 10, 12, 19, 24] for stability of synchronous orbits in semelparous
populations).

In the definition of c-permanence (Definition 1.2), all nonzero orbits are required
to be attracted by some compact set in the interior of the nonnegative cone, intRn

+.
However, we often observe the case where all positive orbits are attracted by some
compact set in intRn

+ even if the system has a nontrivial synchronous orbit; i.e., the
system is not c-permanent. For example, in the Leslie matrix model for a semelparous
population, we can find this type of class coexistence. Therefore, it is an important
future problem to study class coexistence involving synchronous orbits.

Appendix. In this section, we list some useful theorems of nonnegative matrices.
There are several books which discuss the properties of such matrices (e.g., see [2, 3,
5, 13, 23]).

One of the most important properties of nonnegative matrices is irreducibility,
which is defined as follows.

Definition A.1 (irreducibility). A square matrix A is said to be irreducible if
it can be rearranged into the following form by renumbering the indices of rows and
columns: (

B 0
C D

)
,
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where B and D are square matrices and 0 denotes the matrix with only zero entries.
Otherwise A is called irreducible.

An irreducible nonnegative matrix can have multiple eigenvalues whose magni-
tudes are equal to the magnitude of the dominant eigenvalue λ. By the number of
such eigenvalues, irreducible nonnegative matrices are classified as follows.

Definition A.2. Let A be an irreducible nonnegative matrix that has h eigen-
values λ1, λ2, . . . , λh, whose magnitudes are equal to the magnitude of the dominant
eigenvalue λ = λ1. A is called primitive if h = 1, and imprimitive if h > 1. h is
called the index of imprimitivity of A.

The theory of nonnegative matrices has a strong relationship with a graph theory.
Definition A.3. The associated directed graph, G(A), of an n × n matrix A

consists of n vertices P1, P2, . . . , Pn, where an edge leads from Pj to Pi if aij �= 0.
A directed graph G is said to be strongly connected if for any ordered pair (Pi, Pj) of
vertices of G there exists a path which leads from Pi to Pj. Let P = {Pi0 , Pi1 , . . . , Pi�}
be a path in a graph G. Then 
 is the length of P . P is a loop if Pi0 = Pi� .

Irreducibility and the index of imprimitivity are characterized by directed graphs
as follows.

Theorem A.4 (e.g., see Theorem 2.2.7 of [3]). A matrix A is irreducible if and
only if G(A) is strongly connected.

Theorem A.5 (e.g., see Theorem 2.2.30 of [3]). Let A be an irreducible nonneg-
ative matrix. The index of imprimitivity of A is equal to the greatest common divisor
of the lengths of loops in G(A).

Remark. This theorem shows that indices of imprimitivity h (like irreducibility)
depend only on the pattern of a matrix; i.e., every irreducible nonnegative matrix that
has positive entries in exactly the same positions has the same index of imprimitivity.

The following two theorems are utilized in obtaining Theorem 4.1.
Theorem A.6 (e.g., see Theorem 13.8 of [13]). A nonnegative square matrix A

is primitive if and only if there exists an integer k ≥ 1 such Ak > 0.
Theorem A.7 (e.g., see Corollary 13.2 of [13]). If A is an imprimitive matrix

with index of imprimitivity h, then Ah can be rearranged into the following quasi-
diagonal form by renumbering the indices of rows and columns:

diag{A1, A2, . . . , Ah} =

⎛
⎜⎜⎜⎝

A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . Ah

⎞
⎟⎟⎟⎠ ,(3)

where A1, A2, . . . , Ah are primitive matrices with the same dominant eigenvalue and
0 denotes the matrix with only zero entries.
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MODELING INTERVENTION MEASURES AND
SEVERITY-DEPENDENT PUBLIC RESPONSE DURING SEVERE

ACUTE RESPIRATORY SYNDROME OUTBREAK∗

SZE-BI HSU† AND YING-HEN HSIEH‡

Abstract. The 2003 severe acute respiratory syndrome (SARS) epidemic came and left swiftly,
resulting in more than 8,000 probable cases worldwide and 774 casualties. It is generally believed that
quarantine of those individuals suspected of being infected was instrumental in quick containment
of the outbreaks. In this work we propose a differential equation model that includes quarantine
and other intervention measures implemented by the health authority, including those to prevent
nosocomial infections and decrease frequency of contacts among the general public. We also consider
the possible behavior change by the general populace to avoid infection, in response to the severity
of the outbreak in general and to these intervention measures in particular. Complete analysis is
given for the model without quarantine. For the general model with quarantine, a basic reproduction
number is derived and full description of its dynamics is provided. We will show that introducing
quarantine measures in the model could produce bistability in the system, thus changing the basic
dynamics of the model. We give numerical examples of parameter values with which bistable steady
states, where one is disease-free and the other endemic, could exist. However, realistic parameter
values indicate that, assuming limited imported cases, the occurrence of the stable endemic steady
state or bistability is unlikely. The modeling results indicate that for an infectious disease with
infectivity and patterns of transmission typical of SARS, the outbreak can always be eradicated by
implementing border control of imported cases and limited quarantine, along with the public’s social
response to avoid infections. Moreover, the results also suggest that quarantine measures will be
effective in reducing infections only if the quarantined/isolated SARS patients and their potential
contacts can successfully reduce their contact rate and/or transmission probabilities. Hence the
effectiveness of quarantine for infectious diseases like SARS, for which no infection is being prevented
during the quarantine period, can only be indirect and therefore must be combined with other
intervention measures in order to quickly contain the outbreaks.

Key words. SARS, mathematical model, basic reproduction number, quarantine, bistable
steady states, Taiwan
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1. Introduction. The worldwide severe acute respiratory syndrome (SARS)
epidemic outbreak of November 2002–July 2003 accounted for more than 8,000 in-
fections with 774 fatalities directly attributable to SARS [1]. It is generally be-
lieved [2] that the experience of affected regions showed that the transmission of
SARS-Coronavirus (SARS-CoV) can be effectively controlled by adherence to basic
public health measures, including rapid case detection, case isolation, contact trac-
ing, and good infection control such as hand-washing and use of personal protective
equipment. Another measure believed to be instrumental in breaking the transmis-
sion chain is the quarantine of well but potentially infective individuals to prevent
infections [3, 4, 5, 6]. During the outbreak in Taiwan from April to June 2003, the
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health authority attempted to quarantine more than 150,000 people who either had
possible contact with a suspected SARS case or had just arrived from an affected
area as determined by the World Health Organization (WHO). Of these quarantined
individuals, only 17 were later officially confirmed as SARS cases. Hence questions
remain as to the effectiveness of the quarantine.

During the outbreak, two distinct levels of quarantine were implemented in Tai-
wan. Level A quarantine, aimed at people suspected of having close contact with
a suspected SARS case, was implemented on March 18, 2003. Level B quarantine,
aimed at travelers from affected areas, was initiated on April 28 in the aftermath
of the first SARS fatality in Taiwan on April 26. Details of the implementation of
quarantine measures in Taiwan were described in [7]. By the end of the summer, a
total of more than 150,000 people had been quarantined during the SARS outbreak.

There were 346 officially confirmed SARS cases as defined by WHO during the
outbreak of 2003 in Taiwan, among which were 37 direct SARS casualties and 36
SARS-related deaths. In addition, 180 patients, who either had a previous negative
PCR or antibody test or had been suspected or ruled-out cases, tested SARS an-
tibody positive. However, Level B quarantine detected no confirmed SARS cases,
while Level A quarantined persons included 17 officially confirmed SARS cases and
7 suspected or ruled-out cases with positive antibody tests [8]. Using the case data
of the 480 laboratory-confirmed SARS cases, [8] showed that, compared to all other
patients, previously quarantined persons had a significantly shorter onset-to-diagnosis
time, i.e., the time it took a person with onset of symptoms to be diagnosed with sus-
pected SARS and hospitalized. Hence quarantine had at least been useful in attaining
more rapid detection and hospitalization of cases.

Rapid case definition also depends on knowledge regarding the clinical and molec-
ular aspect of the disease, an inherently difficult task when facing a newly emerging
disease like SARS. Contact tracing and quarantine of the traced contacts is another
effective but difficult measure especially in an established democratic society, due to
the ethical and legal ramifications [9]. Adherence to infection control, in the hospital
or in the community, by the health care workers or the general populace, depends very
much on the individual. The personal decision whether to diligently avoid contacts
and infection is often based on the circumstances, i.e., whether there is any perceived
cause for behavior change by the individual. The increasing severity of an outbreak
or the implementation of massive intervention measures, e.g., the images of everyone
wearing a face mask while in public places, is surely a cause for behavior change to
avoid infection. This perhaps critically important factor will also be considered in our
model.

In this work we will focus on three types of interventions evident during the past
SARS outbreak: quarantine of potential infectives, isolation of suspected cases, and
behavior change of the general public (including health care workers) in response to
the increasing severity of the outbreak in an effort to avoid contacts which might lead
to SARS infection. The focus is to study the roles played by intervention measures
and social response in the quick containment of the outbreak. Previous modeling work
of the SARS epidemic includes the early modeling of SARS by [10, 11] to obtain the
all-important basic reproduction number for SARS, [12] on modeling the community
and hospital transmission of SARS, and [13, 14] on models for data-fitting of SARS in
Taiwan. Also see [15] for a review of mathematical models of SARS. Recent modeling
work of epidemics with intervention measures (quarantine, vaccination, evacuation,
etc.) includes [16, 17, 18, 19, 20] on smallpox, [17] on flu, [21] on bubonic plague,
[22] on measles and whooping cough, [23] on optimal intervention strategies, and
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[18] on a class of infectious disease models with quarantine.
This article is organized as follows: In section 2 we describe the general model with

the intervention measures to be considered and the computation of basic reproduction
numbers. In section 3 we give the complete analysis of the model with severity-
dependent public response but without quarantine. Section 4 gives analytical results
for the full model with quarantine and full description of its dynamics. Finally in
section 5 we discuss the biological significance of our results.

2. The model. In this work, we propose a general model with Level A and B
quarantines, as well as imported cases who entered the exposed class upon their arrival
before April 28, but were quarantined (Level B) as they entered from the affected areas
after April 28. The model variables are given as follows; note that the time unit is in
days:

S—the number of susceptible individuals at time t;
E—the number of infected asymptomatic persons at time t;
QA—the number of asymptomatic infected persons at time t under Level A quar-

antine;
QB—the number of imported asymptomatic infected persons at time t (who were

under B quarantine if arriving from affected areas after April 28);
I—the number of infective persons with onset of symptoms not isolated or quar-

antined at time t;
P—the number of isolated probable SARS cases at time t;
D—the cumulative number of SARS deaths at time t;
R—the cumulative number of discharged SARS patients at time t.
The key assumptions used are as follows:
1. A SARS-infected person is infective after onset of symptoms.
2. A quarantined person is quarantined without symptoms (hence is not infective),

becoming infective with reduced contact rates due to quarantine, and is isolated upon
diagnosis.

3. An infected person can infect others unless quarantined or isolated as a probable
case with reduced contact rate depending on the effectiveness of the isolation. The
underlying assumption here is that once diagnosed as a probable SARS case and
hospitalized, a patient cannot infect others.

4. A probable case is removed from isolation either by death or discharge.
5. As behavior change by individuals occurs as a result of public response to the

severity of the outbreak, the infection rate (or the product of transmission probabil-
ity and contact rate) decreases with the increasing cumulative number of probable
cases. Similarly, the effectiveness of quarantine and isolation also increases with the
increasing number of probable cases, resulting in a decreased number of infections. To
account for this decrease, we make use of a rational function 1

1+a[P (t)+R(t)+D(t)] , where

P + R + D is the cumulative number of probable cases. We note that the decreasing
rational function used, which resembles Holling’s functional response in predator-prey
models [24], is not the only choice of function to portray the phenomenon in question.
A decreasing exponential function, for example, could do just as well.

6. We assume homogeneous mixing with quarantine-adjusted incidence.
7. Quarantine for Level A is proportionate to the number of infected asymptomatic

persons.
8. Imported cases are a function of time (Q(t) = 0, 1, or 2 as deduced from data),

with Level B quarantine after April 28.
The model parameters are as follows:
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λ—infection rate due to contact with infective class;
q1—proportion of recruitment of asymptomatic infected persons for Level A quar-

antine;
γ3—isolation rate of infectives not under quarantine;
μ—progression rate from exposure to onset of symptoms;
γi, i = 1, 2—isolation rates of QA and QB , respectively;
αA, αB , αP—the proportionate reduction in infectivity of quarantined persons

due to Level A and B quarantines (before isolation) and probable cases, respectively;
ρi, i = 1, 2—respective fatality rates of infective cases and isolated probable SARS

patients;
σi, i = 1, 2—respective discharge rates of infective cases and isolated probable

SARS patients;
c—contact rate in absence of an outbreak;
a—the effect of behavior change in reduction of contact due to the cumulative

number of probable cases;
β—transmission probability per effective contact.
The flowchart for the model is given in Figure 2.1.
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Fig. 2.1. Flowchart for the model.

Finally, the model equations with imported cases, Level A and B quarantines,
and behavior change are as follows:

S′ = −λ(S,E, I,QA, QB , P,R,D)S,(2.1)

E′ = λ(S,E, I,QA, QB , P,R,D)S − μE − q1E,(2.2)

Q′
A = q1E − γ1QA,(2.3)

Q′
B = Q(t) − γ2QB ,(2.4)

I ′ = μE + γ2QB − (σ1 + ρ1 + γ3)I,(2.5)

P ′ = γ1QA + γ3I − (σ2 + ρ2)P ,(2.6)

R′ = σ1I + σ2P ,(2.7)

D′ = ρ1I + ρ2P ,(2.8)

where the incidence of infection with quarantine is given by
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λ(S,E, I,QA, QB , P,R,D) = β
c

1 + a(P + R + D)

× I + αAQA + αBQB + αPP

S + E + I + αAQA + αBQB + αPP
.

Note that S + E + QA + QB + I + P + R + D = S0 + I0, where S0 and I0 are
the initial susceptible population sizes. The system is nonautonomous, due to the
imported case term Q(t) in the right-hand side of the equation for Q′

B . Brauer and
van den Driessche [25] have shown that, if there is a positive flow of infectives into
the population, disease-free equilibrium might not exist. However, during the SARS
outbreak border control was implemented in Taiwan as well as all other affected areas.
Therefore we can reasonably assume that Q(t) has compact support and subsequently
the asymptotic properties of the nonautonomous system given in (2.1)–(2.8) are the
same as the corresponding autonomous system, i.e., with Q(t) = 0. Hence we need
only consider the autonomous system hereafter.

For the model without quarantine, the model equations become

S′ = −λ(S,E, I, P,D)S,(2.9)

E′ = λ(S,E, I, P,D)S − μE,(2.10)

I ′ = μE − (σ1 + ρ1 + γ3)I,(2.11)

P ′ = γ3I − (σ2 + ρ2)P ,(2.12)

R′ = σ1I + σ2P ,(2.13)

D′ = ρ1I + ρ2P ,(2.14)

where

λ(S,E, I, P,R,D) = β

[
c

1 + a(P + R + D)

]
I + αPP

S + E + I + αPP
.

The disease-free equilibrium (DFE) for the six-dimensional system in (S,E, I, P,R,D)
is (S∗, 0, 0, 0, R∗, D∗) with S∗ + R∗ + D∗ = S0 + I0; the endemic equilibrium is
(0, 0, 0, 0, R#, D#) with R# + D# = S0 + I0.

Making use of the method in [26], we obtain the expression for the basic repro-
duction number R0 of this case:

R0 =
βc

(σ1 + ρ1 + γ3)[1 + a(R∗ + D∗)]

+
βcαP γ3

(σ1 + ρ1 + γ3)[1 + a(R∗ + D∗)](σ2 + ρ2)
.(2.15)

Similarly as for the original model with quarantine, we have the more general
expression for the effective basic reproduction number with quarantine RQ, again
using the procedure developed in [26]:

RQ = β
c

[1 + a(R∗ + D∗)]

{
μ

(σ1 + ρ1 + γ3)[μ + q1]
+

αAq1

γ1[μ + q1]

}

+ β
c

[1 + a(R∗ + D∗)]

αP

(σ2 + ρ2)

{
γ3

(σ1 + ρ1 + γ3)

μ

[μ + q1]
+

q1

μ + q1

}
.(2.16)

Note that both R0 and RQ have very clear biological interpretations which will be
discussed in section 5.
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3. Analysis for model without quarantine. In this section we provide full
analysis for the model without quarantine. To simplify, we let αp = 0. That is,
hospitalized and isolated probable cases do not make a significant contribution to the
infections, as indicated by the result in a data-motivated modeling study of Taiwan’s
SARS outbreak in [27]. We note that while it is true that nosocomial infections
played a crucial role during the SARS outbreak in all affected, as confirmed by the
fact that nearly 80% of SARS infections in Taiwan occurred nosocomially [28], most
had occurred before the infective individuals had been diagnosed with SARS and
hospitalized with adequate isolation. Only a small number of infections in Taiwan as
well as in other affected areas have been documented as being caused by a confirmed
or probable SARS patient who most likely had been isolated.

Hence the system in (2.9)–(2.14) becomes

S′ = − βIS

E + I + S

c

1 + a(P + R + D)
,(3.1)

E′ =
βIS

E + I + S

c

1 + a(P + R + D)
− μE,(3.2)

I ′ = μE − (σ1 + ρ1 + γ3)I,(3.3)

P ′ = γ3I − (σ2 + ρ2)P ,(3.4)

R′ = σ1I + σ2P ,(3.5)

D′ = ρ1I + ρ2P ,(3.6)

with S(0) = S0 > 0, I(0) = I0 > 0, E(0) = P (0) = R(0) = D(0) = 0.
We first give the following lemma, the proof of which is in [29].
Lemma 3.1. Let f be continuously differentiable. If f(t) −→ constant as t → ∞

and |f ′′(t)| ≤ M for all t, then f ′(t) → 0 as t → ∞.
Theorem 3.2. We have the following asymptotic properties: S(t) −→ S∞ ≥ 0,

R(t) −→ R∞ > 0, D(t) −→ D∞ > 0, and limt→∞ I(t) = 0, limt→∞ E(t) = 0,
limt→∞ P (t) = 0.

Proof. Obviously S(t) is monotone decreasing and bounded below; hence limt→∞
S(t) = S∞ ≥ 0, 0 ≤ S∞ < S0. Moreover, (E + S)′ = −μE, and therefore E(t) + S(t)
is monotone decreasing for t ≥ 0. Hence E(t) −→ E∞ ≥ 0 as t → ∞. Since
S(t) + E(t) + I(t) + P (t) + R(t) + D(t) ≡ N = S0 + I0 for all t, R′ ≥ 0, D′ ≥ 0 =⇒
R(t) −→ R∞ > 0, D(t) −→ D∞ > 0. Obviously R′′ = σ1I

′ + σ2P
′, |I ′| and |P ′|

are bounded, and hence |R′′| ≤ M for some M > 0. Consequently by Lemma 3.1
I(t) −→ I∞ = 0, P (t) −→ P∞ = 0 as t → ∞.

Claim: E∞ = 0. Suppose E∞ > 0; then I ′ = μE− (σ1 +ρ1 +γ3)I ≥ μ(E∞−ε)−
(σ1 + ρ1 + γ3)ε > 0 for ε small, t large. It follows that I(t) becomes unbounded. This
is a contradiction.

Next, we let q = σ1 + ρ1 + γ3 and c = 1 (i.e., β denotes contact rate times
transmission probability) for the sake of simplicity. We also, for the moment, assume
a = 0, i.e., no behavior change. We will return to discuss the case with behavior change
later in this section. Subsequently, we consider the following simplified system:

S′ = − βIS

E + I + S
,(3.7)

E′ =
βIS

E + I + S
− μE,(3.8)

I ′ = μE − qI,(3.9)
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with S(0) = S0 > 0, I(0) = I0 > 0, E(0) = 0.
Now, we let W1 = S/I, W2 = E/I. Then (3.7)–(3.9) become

W ′
1 = − βW1

1 + W1 + W2
−W1(μW2 − q),(3.10)

W ′
2 =

βW1

1 + W1 + W2
− μW2 −W2(μW2 − q),(3.11)

with W1(0) > 0, W2(0) = 0.
To study the flow of (3.10)–(3.11) in the W2W1-phase plane, we first consider the

isoclines W ′
1 = 0 and W ′

2 = 0. Clearly, W ′
1 < 0 if W2 > q/μ. Moreover,

W ′
1 ≥ 0 ⇐⇒ q − μW2 ≥ β

1 + W1 + W2

⇐⇒ 1 + W1 + W2 ≥ β

q − μW2
for q − μW2 ≥ 0

⇐⇒ W1 ≥ β

q − μW2
− (1 + W2) = f(W2) for q − μW2 ≥ 0,

and

W ′
2 ≥ 0 ⇐⇒ βW1

1 + W1 + W2
≥ [μ + (μW2 − q)]W2

⇐⇒ βW1 ≥ [μ + (μW2 − q)]W2(1 + W1 + W2)

⇐⇒ β −W2[μ + (μW2 − q)]W1 > [μ + (μW2 − q)]W2(1 + W2)

⇐⇒ W1 >
W2(1 + W2)[μ + (μW2 − q)]

β −W2[μ + (μW2 − q)]
= g(W2).

Consequently, it is easy to verify that the curves W1 = f(W2) and W1 = g(W2) do
not intersect.

There are four cases to be considered:
1. q < β, q < μ.

Let W̃2 be the positive root of

h(W2) = β −W2[μ + (μW2 − q)] = 0.

Clearly h( q
μ ) = β − q > 0. Hence q

μ < W̃2. In the first quadrant of the

W2W1-phase plane, the isocline W1 = 0, (W1 = f(W2))0 ≤ W2 < q
μ , satisfies

f(0) = β
q − 1 > 0 and f(( q

μ )−) = ∞. The isocline Ẇ2 = 0(W1 = g(W2))

satisfies g(0) = 0, g(W̃2−) = ∞. We note that the isocline Ẇ1 = 0 is
above that of Ẇ2 = 0. Every trajectory converges to the endemic equilibrium
(S/I,E/I) = (0, 0) as t → ∞.

2. β > q, μ < q.
There are two equilibria (0, 0) and (W ∗

2 , 0), where W ∗
2 = q

μ − 1. Similar to

case 1, every trajectory converges to (W ∗
2 , 0).

3. β < q, μ < q.
Clearly f(W ∗

2 ) = f( q
μ−1) = β

μ−
q
μ < 0. Observe that h( q

μ ) = β−q < 0 and we

have W̃2 < q
μ . Since the isocline Ẇ2 = 0 is above that of Ẇ1 = 0, it follows

that, as t −→ ∞, h(W2(t)) −→ W̃2, the positive root of h(W2) = 0, and
W1(t) −→ ∞. Moreover, (W1(t),W2(t)) approaches the curve W1 = g(W2),
i.e., W2 = 0, as t → ∞.
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4. β < q, q < μ.
Obviously, this case is similar to the previous case with W2(t) → W̃2 and
W1(t) → ∞ as t → ∞.

We then have the following theorem.
Theorem 3.3. For system (3.7)–(3.9), if β > q, then S(t) → 0 as t → ∞. If

β < q, then S(t) → S∞ > 0 as t → ∞.

Proof. For cases 1 and 2 as described earlier, S(t)
I(t) = W1(t) → 0 as t → ∞. Since

I(t) −→ 0 and S(t) −→ S∞ ≥ 0, we have S∞ = 0. Hence, β > q implies S(t) −→ 0 as

t → ∞. If β < q, then, by cases 3 and 4, we have W1(t) −→ ∞ and W2(t) −→ W̃2 > 0
as t → ∞.

Claim: S∞ > 0. If S∞ = 0, then∫ ∞

0

1

1 + W1(t) + W2(t)
dt = ∞ and

∫ ∞

0

1

W1(t)
dt ≥

∫ ∞

0

1

1 + W1(t) + W2(t)
dt = ∞.

Therefore we have
∫∞

0
1

W1(t)dt = ∞.

From (4.10),

W ′
1 =

−βW1

1 + W1 + W2
−W1(μW2 − q) ≥ −βW1

1 + W1 + W̃2 − ε
+ W1[q − μ(W̃2 + ε)],

where W̃2 − ε < W2(t) < W̃2 + ε for t ≥ t0.
For t ≥ t0,

W ′
1

W1
≥ −β

1 + W1 + W̃2 − ε
+ [q − μ(W̃2 + ε)].

Because W1(t) → ∞ as t → ∞,

W ′
1

W1
≥ 1

2
[q − μ(W̃2 + ε)] > 0 for t ≥ T, for some T large.

Therefore W1 → ∞ exponentially, and

W1(t) ≥ W1(T ) exp

{
1

2
[q − μ(W̃2 + ε)](t− T )

}
.

But

∞ =

∫ ∞

T

1

W1(t)
dt ≤

∫ ∞

T

1

W1(T ) exp{ 1
2 [q − μ(W̃2 + ε)(t− T )]}

dt < ∞.

This is a contradiction.
Now we return to consider system (3.1)–(3.6) with behavior change.

Theorem 3.4. Let β̃ = βc
1+aN , where N = R∗

∞ + D∗
∞.

(i) If q = σ1 + ρ1 + γ3 > β̃, then the solution of system (3.1)–(3.6) satisfies
S(t) −→ S∞ > 0 as t → ∞.

(ii) If q < β̃, then S(t) −→ 0 as t → ∞.

Note that the condition q < β̃ in the above theorem is equivalent to R0 > 1 with
R0 as defined in (2.15) and αP = 0. Hence with this theorem we have shown that the
asymptotic result for R0 is global.
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Proof. (i) Suppose not; then limt→∞ S(t) = S∗
∞ = 0. Consider the limiting

system of

S′ = − βIS

E + I + S

c

1 + a(P + R + D)
a ≥ 0,(3.12)

E′ =
βIS

E + I + S

c

1 + a(P + R + D)
− μE,(3.13)

I ′ = μE − (σ1 + ρ1 + γ3)I.(3.14)

Since P (t) −→ 0, R(t) −→ R∗
∞, and D(t) −→ D∗

∞ as t → ∞, we have the limiting
system as follows:

S′ = − βIS

E + I + S

c

1 + aN
, a ≥ 0,(3.15)

E′ =
βIS

E + I + S

c

1 + aN
− μE,(3.16)

I ′ = μE − (σ1 + ρ1 + γ3)I.(3.17)

From the analysis of system (3.7)–(3.9) with

β̃ =
βc

1 + aN
,

if q > β̃, then S(t) → S∞ > 0. This is a contradiction.

(ii) Assuming q < β̃, we want to show limt→∞ S(t) = 0. If not, then limt→∞ S(t)
= S∞ > 0. In this case, we have R∞ + D∞ + S∞ = N , where R∞ = limt→∞ R(t),
D∞ = limt→∞ D(t).

Since S∞ > 0, D∞ + R∞ < N . The limiting system of (3.12)–(3.14) is sys-
tem (3.15)–(3.17) with D∗

∞, R∗
∞ replaced by D∞, R∞. From the analysis of system

(3.7)–(3.9) and the assumption q < β̃, we have

β̂ =
cβ

1 + a(D∞ + R∞)
>

cβ

1 + aN
= β̃ > q;

hence S(t) −→ 0 as t → ∞. This is a contradiction.

4. Analysis for model with quarantine. We now give some analytical results
on the model with Level A quarantine only. We then have the system

S′ = −λ(S,E, I,QA, P,R,D)S,(4.1)

E′ = λ(S,E, I,QA, P,R,D)S − μE − q1E,(4.2)

Q′
A = q1E − γ1QA,(4.3)

I ′ = μE − (σ1 + ρ1 + γ3)I,(4.4)

P ′ = γ1QA + γ3I − (σ2 + ρ2)P ,(4.5)

R′ = σ1I + σ2P ,(4.6)

D′ = ρ1I + ρ2P ,(4.7)

where the incidence of infection with quarantine rates is given by

λ(S,E, I,QA, P,R,D) = β
I + αAQA

S + E + I + αAQA

c

1 + a(P + R + D)
.(4.8)
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Again S+E+QA+I+P +R+D = S0+I0 ≡ N , where S(0) = S0 > 0, I(0) = I0 > 0.

As in Theorem 3.2, we have S(t) −→ S∞ ≥ 0, R(t) −→ R∞ > 0, D(t) −→ D∞ >
0 and I(t) −→ 0, E(t) −→ 0, P (t) −→ 0, QA(t) −→ 0 as t −→ ∞.

Next we let q̃ = σ1 + ρ1 + γ3, c = 1, and a = 0 and consider the limiting system

S′ =
−β(I + αAQA)

S + E + I + αAQA
S,

E′ =
β(I + αAQA)

S + E + I + αAQA
S − μE − q1E,(4.9)

Q′
A = q1E − γ1QA,

I ′ = μE − q̃I.

Let W1 = S
I , W2 = E

I , W3 = QA

I . Then we have

W ′
1 = − β(1 + αAW3)

1 + W1 + W2 + αAW3
W1 − (μW2 − q̃)W1,

W ′
2 =

β(1 + αAW3)

1 + W1 + W2 + αAW3
W1 − (μ + q1)W2 − (μW2 − q̃)W2,(4.10)

W ′
3 = (q1W2 − γ1W3) − (μW2 − q̃)W3.

We note that if αA = 0, q1 > 0, then (4.10) is reduced to the two-dimensional
system

W ′
1 =

−βW1

1 + W1 + W2
− (μW2 − q̃)W1,

W ′
2 =

βW1

1 + W1 + W2
− (μ + q1)W2 − (μW2 − q̃)W2.

As in Theorem 3.4, it can be shown that (i) if β̃ < q̃(μ+q1

μ ), then S(t) → S∞ > 0 as

t → ∞ and (ii) if β̃ > q̃(μ+q1

μ ), then S(t) → 0 as t → ∞.

We give the following equilibria and their respective stability analyses:

1. E0 = (0, 0, 0) is an equilibrium of (4.10). Then the variational matrix at E0 is

M0 =

⎡
⎣ −β + q̃ 0 0

β −(μ + q1) + q̃ 0
0 q1 −γ1 + q̃

⎤
⎦.

We then have the following trivial lemma.

Lemma 4.1. E0 = (0, 0, 0) is locally asymptotically stable if β > q̃, μ + q1 > q̃,
γ1 > q̃.

2. E∗
23 = (0,W ∗

2 ,W
∗
3 ), where

W ∗
2 =

q̃ − (μ + q1)

μ
> 0 ⇐⇒ q̃ > μ + q1,

W ∗
3 =

q1W
∗
2

(μW ∗
2 − q̃) + γ1

> 0 ⇐⇒ γ1 > μ + q1.

Note that E∗
23 = (0,W ∗

2 ,W
∗
3 ) exists if q̃ > μ + q1, γ1 > μ + q1.
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The variational matrix at E∗
23 is

M∗ =

⎡
⎢⎣

−β(1+αAW∗
3 )

1+W∗
2 +αAW∗

3
− (μW ∗

2 − q) 0 0
β(1+αAW∗

3 )
1+W∗

2 +αAW∗
3

−(μ + q1) − (2μW ∗
2 − q̃) 0

0 q1 − μW ∗
3 −γ1 − (μW ∗

2 − q̃)

⎤
⎥⎦.

The local stability result is given below, the proof of which is also trivial.

Lemma 4.2. E∗
23 is locally asymptotically stable if β >

1+W∗
2 +αAW∗

3

1+αAW∗
3

(μ + q1).

3. E∞ = (+∞, W̃2, W̃3), where W̃2 < q
μ . From the first equation of (4.10), we

have
W ′

1

W1
≤ −(μW2− q̃). If limt→∞ W1(t) = ∞, then we must have W̃2 < q

μ . From the

second and third equations of (4.10) and limt→∞ W1(t) = ∞, it can be shown that

(W̃2, W̃3) is the solution of

β(1 + αAW3) − (μW2 − q̃)W2 − (μ + q1)W2 = 0,

(q1W2 − γ1W3) − (μW2 − q̃)W3 = 0.

By the Poincare transform, Z1 = 1
W1

, Z2 = W2

W1
, Z3 = W3

W1
. Consequently, system

(4.10) becomes

Z ′
1 = βZ1

Z1 + αAZ3

1 + Z1 + Z2 + αAZ3
+ μZ2 − q̃Z1,

Z ′
2 = (1 + Z2)

β(Z1 + αAZ3)

1 + Z1 + Z2 + αAZ3
− (μ + q1)Z2,(4.11)

Z ′
3 = q1Z2 − γ1Z3 + Z3

β(Z1 + αAZ3)

1 + Z1 + Z2 + αAZ3
.

The local stability of E∞ for system (4.10) is equivalent to the local stability of

Ê0 = (0, 0, 0) for system (4.11). The variational matrix of Ê0 for system (4.11) is
computed as ⎡

⎣ −q̃ μ 0
β −(μ + q1) βαA

0 q1 −γ1

⎤
⎦.

From the Routh–Hurwitz criterion, the stability conditions can be rewritten as

1. β < A1, A1 = γ1q̃+(μ+q1)(γ1+q̃)
μ+αAq̃ .

2. β < A2, A2 = (μ+q1)γ1q̃
μγ1+αAq1q̃

.

3. β < A3, A3 = (μ+q1)2(γ1+q̃)+γ1q̃+(μ+q1)(γ1+q̃)2

μ(μ+q1)+μq̃+αAq1((μ+q1)+γ1) .

We now have the following trivial results.
Lemma 4.3. E∞ is stable if β < A2.
Proof. By routine computation, we have A2 < A1, A2 < A3.
Lemma 4.4. If γ1 > q̃, then A2 > q̃.
Proof. Clearly, A2 > q̃ ⇐⇒ γ1 > αAq̃, 0 ≤ αA ≤ 1.
Thus, when γ1 > q̃, we have the stability of E0 and E∞ diagramed as in Figure 4.1.
We note that if q1 = 0, αA = 0, then A2 = q̃. If αA = 0, then A2 = q̃ μ+q1

μ . If
0 < αA < 1, then

A2 = γ1q̃
μ + q1

μγ1 + αAq1q̃
→ γ1

αA
as q1 −→ ∞.
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Fig. 4.1. Stability of E0 and E∞ when γ1 > q̃.

Thus for the model with quarantine measure, there is a region of bistability. The
smaller αA and larger q1 give a large region of bistability. According to analysis, if
the contact rate β < q̃, we would have only the DFE no matter if the quarantine
measure is implemented or not. However, if β > A2, then we have the endemic case,
i.e., S(t) −→ 0 as t −→ ∞.

The following lemma is trivial to prove.
Lemma 4.5. If μ + q1 > q̃, γ1 > q̃, q̃ < β < A2, then both E0 and E∞ are

locally asymptotically stable. Furthermore, there exists a unique interior equilibrium
Ec = (W1c,W2c,W3c), 0 < W2c <

q̃
μ .

Remark. We conjecture that Ec is a saddle point with two-dimensional stable
manifold, although we are unable to give a rigorous proof. Instead we will give a full
description of the dynamics for the model with quarantine.

Next we consider the case q̃ > μ+ q1, γ1 > μ+ q1, which guarantees the existence
of E∗

23. The following inequality is also easy to obtain.

Lemma 4.6. A2 > (μ + q1)
1+W∗

2 +αAW∗
3

1+αAW∗
3

.

An illustration of the stability of E23 and E∞ in this case is given in Figure 4.2.

stable

unstable23

∞E

E
unstable

stable23

∞E

E

*
3

*
3

*
2

1 1

1
)(

W

WW
q

A

A

α
αμ

+  
+  +  

+  2A

β

stable

stable23

∞E

E

Fig. 4.2. Stability of E23 and E∞ when A2 > (μ + q1)
1+W∗

2 +αAW∗
3

1+αAW∗
3

.

We note that if αA = 0, q1 = 0, then

(μ + q1)
1 + W ∗

2 + αAW
∗
3

1 + αAW ∗
3

= q̃ and A2 = q̃.

It is also easy to show that

(μ + q1)
1 + W ∗

2 + αAW
∗
3

1 + αAW ∗
3

> q̃ ⇐⇒ 1

αA
>

q̃ − (μ + q1)

γ1 − (μ + q1)
.

Thus if 1
αA

> q̃−(μ+q1)
γ1−(μ+q1) (e.g., if γ1 > q̃), we have a diagram for the relative sizes of

parameters in Figure 4.3.
Thus, for the model with the quarantine measures and the contact rate β, q̃ <

β < (μ + q1)(1 +
W∗

2

1+αAW∗
3
) yields the DFE. On the other hand, we would have the
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Fig. 4.3. Diagram for the relative sizes of parameters when 1
αA

> q̃−(μ+q1)
γ1−(μ+q1)

(e.g., if γ1 > q̃).

endemic steady state if no quarantine action is taken (i.e., β > q̃ =⇒ endemic steady

state in the case of no quarantine). The diagram for the case 1
αA

> q̃−(μ+q1)
γ1−(μ+q1) , which

is possible if γ1 < q̃, has been deleted for brevity.

For the case (μ + q1)(1 +
W∗

2

1+αAW∗
3
) < β < q̃, E∗

23 and E∞ are both stable.

Consequently, having quarantine measures implemented might lead to an adverse
effect. More precisely, since β < q̃, we have the system approaching DFE when there
is no quarantine, but with quarantine, we would have the bistable case where the
system could approach an endemic steady state, given that the appropriate initial
population is in the stability region of the endemic equilibrium.

Remark. In the bistable case, we again conjecture that the interior equilib-
rium (Ec) exists and (Ec) is a saddle point with two-dimensional stable manifold.

Now we return to the original system (4.1)–(4.7). Consider the limiting system

S′ = − β(I + αAQA)

S + E + I + αAQA

cS

1 + a(D∞ + R∞)
,

E′ =
β(I + αAQA)

S + E + I + αAQA

cS

1 + a(D∞ + R∞)
− (μ + q1)E,(4.12)

Q′
A = q1E − γ1QA,

I ′ = μE − q̃I.

Letting β̂ = βc
1+a(D∗

∞+R∗
∞) , we have the following theorem, the proof of which is similar

to that of the case without quarantine.
Lemma 4.7. If W1(t) → ∞ as t → ∞, then we have W2(t) → W̃2 < ∞,

Z3 = W3

W1
→ 0, and S(t) → S∞ > 0.

We now have the main theorem.
Theorem 4.8. Let β̃ = βc

1+aN .

1. If W1(t) → ∞ as t → ∞, β̃ < A2, and E0, E
∗
23 are unstable, then S(t) →

S∞ > 0.
2. If W1(t) → 0 as t → ∞, β̃ > A2, and one of the two equilibria, E0 or E∗

23, is
asymptotically stable, then S(t) → 0 as t → ∞.

3. The bistable case occurs when q̃ < β̃ < A2, or (μ+q1)(1+
W∗

2

1+αAW 3
3
) < β̃ < A2.

Proof.
1. If not, S(t) → 0 as t → ∞, i.e., S∗

∞ = 0. Consider the limiting system (4.11)
where we have

β̂ =
βc

1 + a(D∗
∞ + R∗

∞)
=

βc

1 + aN
= β̃ < A2.

It follows that limt→∞ W1(t) = +∞ (assuming the convergence is global) =⇒
S(t) → S∞ > 0. Hence we have a contradiction.
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2. If not, assume S(t) → S∗
∞ > 0. Then S∗

∞ + D∗
∞ + R∗

∞ = N . Consequently,

β̂ =
βc

1 + a(D∗
∞ + R∗

∞)
>

βC

1 + a(S∗
∞ + D∗

∞ + R∗
∞)

=
βC

1 + aN
= β̃ > A2

and limt→∞ S(t) = S∞ = 0, again a contradiction.
Remark. It can be shown that the local stability condition for the effective repro-

duction number with quarantine RQ < 1 is equivalent to condition 1 of Theorem 4.8,

namely, β̃ = βc
1+a(S∗

∞+D∗
∞+R∗

∞) < A2.

We further consider the case where E0 = (0, 0, 0) is unstable and E∗
23 = (0,W ∗

2 ,W
∗
3 )

does not exist. We note that E0 = (0, 0, 0) is stable ⇐⇒ β > q̃, μ + q1 > q̃, γ1 > q̃
and E∗

23 exists ⇐⇒ μ + q1 < q̃, γ1 > μ + q1.
We consider the case W3(t) → ∞ as t → ∞. Let U1 = W1, U2 = W2, U3 = 1

W3
.

Then system (4.10) becomes

U ′
1 =

−β(U3 + αA)

U3(1 + U1 + U2) + αA
U1 − (μU2 − q̃)U1,

U ′
2 =

β(U3 + αA)

U3(1 + U1 + U2) + αA
U1 − (μ + q1)U2 − (μU2 − q̃)U2,(4.13)

U ′
3 = −q1U2U

2
3 + γ1U3 + U3(μU2 − q̃).

We give the equilibria and stability analysis of (4.13):

1. Ẽ0 = (0, 0, 0) always exists.

2. Ẽ2 = (0, Ũ2, 0), where Ũ2 satisfies −(μ+ q1)Ũ2 − (μŨ2 − q̃)Ũ2 = 0. Therefore

Ũ2 = q̃−(μ+q1)
μ > 0 ⇐⇒ q̃ > μ + q1. Subsequently, Ẽ2 exists if and only if

q̃ > μ + q1.

3. Ẽ12 = (U∗
1 , U

∗
2 , 0).

From the first equation of (4.13), U∗
2 > 0 satisfies −β − (μU∗

2 − q̃) = 0.

Therefore U∗
2 = q̃−β

μ > 0.

From the second equation of (4.13), U∗
1 satisfies βU∗

1 − (μ + q1)U
∗
2 − (μU∗

2 −
q̃)U∗

2 = 0. Therefore U∗
1 = 1

β ((μ + q1) − β)U∗
2 > 0.

It follows that Ẽ12 exists ⇐⇒ q̃ > β, μ + q1 > β.
(i) Stability of Ẽ0. The variational matrix of (4.13) at Ẽ0 is

M0 =

⎡
⎣ −β + q̃ 0 0

β −(μ + q1) + q̃ 0
0 0 γ1 − q̃

⎤
⎦.

Thus Ẽ0 is stable ⇐⇒ q̃ < β, q̃ < μ + q1, γ1 < q̃.
(ii) Stability of Ẽ2. The variational matrix of (4.13) at Ẽ2 is⎡

⎣ −β + (μ + q1) 0 0
β −q̃ + (μ + q1) 0
0 0 γ1 − (μ + q1)

⎤
⎦.

Thus Ẽ2 is stable ⇐⇒ μ + q1 < β, q̃ > μ + q1, γ1 < μ + q1.

(iii) Stability of Ẽ12. The variational matrix of (4.13) at Ẽ12 is⎡
⎣ 0 −μU∗

1 ∗
β −(μ + q1) − 2μU∗

2 + q̃ ∗
0 0 γ1 + (μU∗

2 − q̃)

⎤
⎦.
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The eigenvalue λ satisfies

(λ− (γ1 + (μU∗
2 − q̃)))(λ2 + (μ + q1 + 2μU∗

2 − q̃)λ + βμU∗
1 ) = 0,(4.14)

γ1 + μU∗
2 − q̃ = γ1 − β implies μ + q1 + 2μU∗

2 − q̃ = q̃ + (μ + q1) − 2β.

Since Ẽ12 exists =⇒ q̃ > β, μ + q1 > β, we have μ + q1 + 2μU∗
2 − q̃ > 0 and Ẽ12 is

stable ⇐⇒ γ1 < β, q̃ > β, μ + q1 > β.
Now, when we assume that E0 = (0, 0, 0) is unstable and E∗

23 does not exist, there
are three cases:

Case 1. q̃ > μ + q1 > γ1, and we have three subcases:
Subcase 1. A2 > q̃ ⇐⇒ γ1 > αAq̃.
Subcase 2. A2 > γ1 ⇐⇒ (q̃ − γ1) + q̃q1 > αAq1q̃.
Subcase 3. A2 > μ + q1 ⇐⇒ γ1(q̃ − μ) > αAq1q̃.

Figure 4.4 illustrates the possibilities for the stability of Ẽ12 and E∞ in Case 1.

Fig. 4.4. Stability of Ẽ12 and E∞ when q̃ > μ + q1 > γ1.

Case 2. q̃ < μ + q1, γ1 < μ + q1, and we have two subcases:
Subcase (i). γ1 < q̃. The stability of Ẽ0, Ẽ12, and E∞ is as follows.

• γ1 < q < A2 < μ + q1.
If β < γ1, then E∞ is an attractor; if γ1 < β < q̃, then E∞, Ẽ12 are

stable; if q̃ < β < A2, then E∞, Ẽ0 are stable; if β > A2, then Ẽ0 is an
attractor.

• γ1 < q̃ < μ + q1 < A2.
Same as above.

• γ1 < A2 < q̃ < μ + q1.
If β < γ1, then E∞ is an attractor; if γ1 < β < A2, then Ẽ12, E∞ are

stable; if A2 < β < q̃, then Ẽ12 is an attractor; if β > q̃, then Ẽ0 is an
attractor.

Subcase (ii). γ1 > q̃. Then A2 > q̃. If β < q̃, then E∞ is an attractor. If

q̃ < β < A2, then Ẽ0 and E∞ are stable. If β > A2, then Ẽ0 is an attractor.
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Case 3. q̃ < μ + q1 < γ1, and γ1 > q̃. Then A2 > q̃, and we have a result similar
to that in Subcase (ii).

5. Concluding remarks. For the model without quarantine but with behavior
change due to public response to the severity of the disease, we have shown that the
local stability condition in Theorem 3.4 is equivalent to the condition that the basic
reproduction number R0 given in (2.15) with αP = 0 is less than 1. If βc > σ1+ρ1+γ3,
the epidemic would persist without public response; however, if the magnitude of
public response, as measured by the parameter a, is sufficiently large so that R0 < 1,
the reduction of infections through public response will be large enough to drive the
epidemic down to a disease-free state.

For the model with both quarantine and behavior change, the dynamics is much
more complicated. The effective reproduction number with quarantine RQ in (2.16)
gives local stability of DFE when RQ < 1. However, there are ranges of the parameters
which would lead to bistable steady states, i.e., one locally stable DFE and another
locally stable endemic equilibrium. In such cases, we conjecture that there is a saddle
point with two-dimensional stable manifold. As an illustration, we give the following
numerical example.

We let αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2, and use the initial
values of S(0) = 1, E(0) = 0, QA(0) = 0, I(0) = 1, i.e., one infective case entering
a totally susceptible population of one individual so that (W1(0),W2(0),W3(0)) =
(1, 0, 0). The result is given in Figure 5.1, where the system goes to the endemic
equilibrium.

Fig. 5.1. Numerical example with αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2,
and initial population S(0) = 1, E(0) = 0, QA(0) = 0, I(0) = 1, where system approaches endemic
equilibrium. X(t) is W1(t) = S(t)/I(t), which goes to zero.

However, if we let the initial values be S(0) = 10, E(0) = 0, QA(0) = 0, I(0) = 1,
i.e., 10 infective cases entering a totally susceptible population of 100 individuals, so
that (W1(0),W2(0),W3(0)) = (10, 0, 0), the system will approach DFE as shown in
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Figures 5.2 and 5.3. Note that for this set of parameters, A2 = 0.56 > β̃ = 0.5 >
q̃ = 0.3, μ + q1 = 0.2 + 0.2 > q̃ = 0.3, γ1 = 0.4 > q̃ = 0.3. Moreover, Case 3 of The-
orem 4.8 holds for this data. Therefore we have bistability where both E0 = (0, 0, 0)
and E∞ are locally stable.

Fig. 5.2. Numerical example with αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2, and
initial population S(0) = 10, E(0) = 0, QA(0) = 0, I(0) = 1, where the system approaches DFE.
X(t) is W1(t) = S(t)/I(t), which goes to a nonzero equilibrium, and S(t) → 14.58322.

Fig. 5.3. Numerical example with αA = 0.1, β̃ = 0.5, q̃ = 0.3, γ1 = 0.4, q1 = 0.2, μ = 0.2, and
initial population S(0) = 10, E(0) = 0, QA(0) = 0, I(0) = 1, where the system approaches DFE.
W (t) is I(t), which goes to zero.

The epidemiological interpretation is most interesting. In an epidemic where there
is public response to the increasing severity of the epidemic to cut down infections
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through individual behavior change, sufficient decrease of the infection rate through
the parameter a would be enough to contain the epidemic, regardless of the initial
population sizes at the onset of outbreak.

Suppose that, in addition to the severity-dependent public response, quarantine is
implemented. If the adherence to quarantine to decrease contact rate c and transmis-
sion probability β is satisfactory, the effective infection rate β̃ = βc

1+aN is sufficiently

lowered. Case 1 in Theorem 4.8 will be satisfied along with β̃ < q̃, and the epidemic
can be successfully contained, again regardless of the initial population sizes at the
onset of outbreak. If, on the other hand, β̃ is not sufficiently lowered and we have
Case 2 of Theorem 4.8, the epidemic will persist and the susceptible population S(t)

will be depleted eventually. There is the third scenario, where β̃ is decreased but not
sufficiently so, to less than A2 but greater than q̃. Then the system could approach
either the DFE or the endemic steady state, depending on the initial values of the
system.

In the worst case scenario, if the quarantine were not adhered to faithfully, the
false sense of security brought about by the quarantine that all infective persons were
in quarantine could lead to increased β̃. Thus the quarantine might in fact have an
adverse effect by contributing to the persistence of the epidemic. For illustration,
we consider the hypothetical case where β < q̃ = σ1 + ρ1 + γ3. Since β > β̃ when
c = 1, from Theorem 3.4 we know the system goes to DFE with no quarantine
implemented. However, for Case 1 (Figure 4.4), Subcase 3, when μ + q1 < β < q̃ the
system will converge to the endemic equilibrium. This demonstrates the (distinct)
possibility that, under appropriate parameter values, a quarantine program which is
not sufficiently comprehensive (q1 < β − μ) could have the adverse effect of causing
a system which would have approached DFE without quarantine to converge to the
endemic equilibrium instead.

We should note, however, that β̃ = βc
1+aN , where N is the constant total pop-

ulation size, which numbers in at least millions whether in Hong Kong, Singapore,
Taipei, Beijing, or Toronto. In [27], it was determined that a = 0.0013 and cβ = 0.429

for Taiwan’s SARS outbreak. Subsequently the real value for β̃ is of the order
0.429/(1+0.0013∗106) 
 1, making it most unlikely for either Case 2 (asymptotically
stable endemic equilibrium) or Case 3 (bistability) in Theorem 4.8 to prevail. In other
words, the modeling results indicate that for an infectious disease with infectivity and
patterns of transmission typical of SARS, the outbreak can always be eradicated by
implementing border control of imported cases and limited quarantine, along with the
public’s social response to avoid infections.

It is also interesting to note that if αA = 0, the stability condition for E∞ becomes
β < q̃μ/(μ + q1). Hence quarantine is always beneficial and an effective Level A
quarantine is always helpful in containing the epidemic. However, if for some disease
unlike SARS in its ability to infect during the asymptomatic stage, some fraction
of the quarantined population is not fully isolated and can still infect others (i.e.,
αA > 0), then quarantine might also affect the outbreak adversely. A numerical
example of this scenario is as follows: Let αA = 0.1, β = 0.5, μ = 0.5, q̃ = 0.7,
q1 = 0.1, γ1 = 0.01, A2 = 0.35. Here Ẽ12 = (0.08, 0.4,+∞) is a global attractor as
in Case 1, Subcase 3 in Figure 4.4. However, if there is no quarantine (i.e., q1 = 0
and hence αA = 0), DFE is the global attractor. Additional examples of this type

can be observed in Case 1, Subcases 2 and 3 (Figure 4.4), where Ẽ2 can become
the global attractor for the appropriate parameter range of β, as well as in Case 2,
Subcase (i), where again it is possible for Ẽ12 to become a global attractor. Note that
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a condition for these cases to emerge is q̃ > A2 or, equivalently, γ1/q̃ < αA. Hence if
there is a nonzero reduction in the infection rate of the quarantined class αA which
is larger than the ratio of the progression rate of the quarantined persons γ1 to the
removal rate of the unquarantined infectives q̃, an adverse effect could take place with
implementation of quarantine. To keep this possibility from occurring, one would need
either (i) significant reduction of infection by the quarantined individuals (small αA)
or (ii) quick isolation of quarantined persons at onset (large γ1) compared to the
removal of the infective class (small q̃). Similar possible adverse effects of intervention
measures have also been observed in other theoretical models of infectious diseases
(e.g., [30, 31]).

Going back to the quarantine for SARS, we assume that αP = αA = 0. If all other
pertinent parameters remain the same, we have RQ = R0μ/(μ+q1) from (2.15)–(2.16).
That is, the implementation of quarantine would give the mean reproduction number
of an infective individual a factor of μ/(μ + q1), where q1 is the effective quarantine
rate. That is, through quarantine alone, the mean reproduction number of an infective
individual is reduced by a factor of 1 − μ/(μ + q1).

In a data-based modeling study where the pertinent parameters were estimated
from the Taiwan SARS data [27], the quarantine rate q1 was estimated to be 0.0277.
It was reported by Donnelly et al. [32] that the maximum likelihood estimate for
the mean time from exposure to onset of symptoms is 6.37 days. Hence the mean
progression rate from exposure to onset is approximately μ = 1/6.37 = 0.157. Making
use of the two estimates, we conclude that if all other parameters remain unchanged,
the quarantine in Taiwan would result in a reduction of 15% (μ/(μ+q1) = 0.850) in the
mean reproduction number by an infective individual. Given that current studies of
SARS indicate that the basic reproduction numbers R0 in all the SARS-affected areas
were greater than 2 at the beginning of the outbreak in 2003, one can conclude that
quarantine alone would not have been able to contain the epidemic (i.e., reduce R0 to
less than 1) in Taiwan. For a given affected area with a basic reproduction number R0,
we need to have an effective quarantine rate of q1 > q∗1 = 0.157(R0 − 1) for RQ to be
less than 1. Using the estimated values of R0 for Hong Kong, Toronto, and Taiwan in
current literature, we give in Table 5.1 the effective quarantine rate q∗1 needed in the
affected areas to reduce the reproduction number to less than 1, if all else remains the
same. Note that the estimate for Taiwan [13] assumes that a symptomatic patient is
infective from onset to classification as a probable case followed by isolation. If we
assume the patient is not infective during the first two days of onset as suggested by
some studies (see [2]), the reproduction number is reduced to 3.56 and subsequently
q∗1 = 0.402.

Table 5.1

Affected area Reproduction number Effective quarantine rate q∗1
[literature cited] needed to contain outbreak

Hong Kong 2.7 [32] 0.267

3 [10] 0.314

Toronto 3.3 [33] 0.361

Taiwan 4.23 [13] 0.507

Since the SARS-CoV virus does not appear to be infective before onset of symp-
toms [2], quarantine does not directly prevent infections by the exposed individuals
during the quarantine period. However, studies on SARS quarantine data in Tai-
wan [8] indicate that quarantined persons are significantly more quickly diagnosed
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and hospitalized as compared to the unquarantined individuals. Hence the effective-
ness of quarantine for infectious diseases like SARS, for which no infection is being
prevented during the quarantine period, can only be indirect and therefore must be
combined with other intervention measures in order to fully contain the outbreaks.
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IRREVERSIBLE PASSIVE ENERGY TRANSFER IN COUPLED
OSCILLATORS WITH ESSENTIAL NONLINEARITY∗
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Abstract. We study numerically and analytically the dynamics of passive energy transfer from
a damped linear oscillator to an essentially nonlinear end attachment. This transfer is caused by ei-
ther fundamental or subharmonic resonance capture, and in some cases is initiated by nonlinear beat
phenomena. It is shown that, due to the essential nonlinearity, the end attachment is capable of pas-
sively absorbing broadband energy at both high and low frequencies, acting, in essence, as a passive
broadband boundary controller. Complicated transitions in the damped dynamics can be interpreted
based on the topological structure and bifurcations of the periodic solutions of the underlying un-
damped system. Moreover, complex resonance capture cascades are numerically encountered when
we increase the number of degrees of freedom of the system. The ungrounded essentially nonlinear
end attachment discussed in this work can find application in numerous practical settings, including
vibration and shock isolation of structures, seismic isolation, flutter suppression, and packaging.
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1. Introduction. We study passive and irreversible energy transfer from a lin-
ear oscillator to an essentially nonlinear attachment, which, in essence, acts as a
nonlinear energy sink (NES); such energy transfer we refer to as nonlinear energy
pumping. In previous works (Vakakis and Gendelman (2001), Vakakis et al. (2003))
grounded and relatively heavy nonlinear attachments were considered, a feature that
limits their attractiveness in practical applications. To eliminate these restrictions,
an ungrounded and light nonlinear attachment is considered in this work, which, in
addition, possesses the feature of modularity. As shown in Lee et al. (2005), even
though the system considered has a simple configuration, it possesses a very compli-
cated structure of undamped periodic orbits, which, in turn, give rise to a complicated
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Liège, Belgium (g.kerschen@ulg.ac.be); National Technical University of Athens, P.O. Box 64042,
GR-157 10 Zografos, Athens, Greece; and University of Illinois at Urbana-Champaign, 104 S. Wright
St., Urbana, IL 61801. The work of this author was partially supported by grants from the Belgian
National Fund for Scientific Research—FNRS, the Belgian Rotary District 1630, and the Fulbright
and Duesberg Foundations, which made his visit to the National Technical University of Athens and
the University of Illinois possible.

‡Department of Mechanical and Industrial Engineering, University of Illinois at Urbana-
Champaign, 104 S. Wright St., Urbana, IL 61801 (yslee4@uiuc.edu).

§Corresponding author. Department of Applied Mathematical and Physical Sciences, National
Technical University of Athens, P.O. Box 64042, GR-157 10 Zografos, Athens, Greece (vakakis@
central.ntua.gr), and Departments of Mechanical and Industrial Engineering and of Aerospace Engi-
neering, University of Illinois at Urbana-Champaign, 104 S. Wright St., Urbana, IL 61801 (avakakis@
uiuc.edu). The work of this author was partially supported by the research grant HRAKLEITOS
awarded by the Hellenic Ministry of Development (program EPEAEK II).

¶Department of Aerospace Engineering, University of Illinois at Urbana-Champaign, 104 S. Wright
St., Urbana, IL 61801 (dmmcf@uiuc.edu, lbergman@uiuc.edu).

648



PASSIVE ENERGY TRANSFER 649

series of transitions and energy exchange phenomena in the damped dynamics. We
aim to show that in this system there are at least three different mechanisms for en-
ergy pumping, based either on fundamental and subharmonic resonance captures or
on nonlinear beat phenomena.

Previous works examined targeted energy transfer in systems of coupled nonlinear
oscillators through energy exchanges between donor and acceptor discrete breathers
due to nonlinear resonance (Kopidakis, Aubry, and Tsironis (2001), Aubry et al.
(2001), Morgante et al. (2002)). In Vainchtein et al. (2004) resonant interactions be-
tween monochromatic electromagnetic waves and charged particles were studied, lead-
ing to chaotization of particles and transport in phase space. In Khusnutdinova and
Pelinovsky (2003) the processes governing energy exchange between coupled Klein–
Gordon oscillators were analyzed; the same weakly coupled system was studied in
Maniadis, Kopidakis, and Aubry (2004), and it was shown that, under appropriate
tuning, total energy transfer can be achieved for coupling above a critical threshold.
In related work, localization of modes in a periodic chain with a local nonlinear disor-
der was analyzed (Cai, Chan, and Cheung (2000)); transfer of energy between widely
spaced modes in harmonically forced beams was analytically and experimentally stud-
ied (Malatkar and Nayfeh (2003)); and a nonlinear dynamic absorber designed for a
nonlinear primary was analyzed (Zhu, Zheng, and Fu (2004)).

In this work we consider the two-degree-of-freedom (DOF) system

m1ÿ + k1y + c1ẏ + c2(ẏ − v̇) + k2(y − v)3 = P (t)

⇒ ÿ + ω2
0y + λ1ẏ + λ2(ẏ − v̇) + C(y − v)3 = F (t),

m2v̈ + c2(v̇ − ẏ) + k2(v − y)3 = 0 ⇒ εv̈ + λ2(v̇ − ẏ) + C(v − y)3 = 0,

(1)

where ω2
0 = k1/m1, C = k2/m1, ε = m2/m1, λ1 = c1/m1, λ2 = c2/m1, and F (t) =

P (t)/m1. Our basic aim is to study the dynamics of irreversible energy transfer
(“energy pumping”) from the linear oscillator (which will be directly excited) to the
nonlinear attachment (which will be assumed to be initially at rest). We show that
there are at least three dynamic mechanisms that can initiate or cause such energy
transfer in the damped system, and these can be studied and understood by first
considering the dynamics of the underlying undamped system.

2. Review of the dynamics of the undamped system (Lee et al., 2005).
Since the structure and bifurcations of the periodic orbits of the undamped and un-
forced system play an essential role in energy transfer phenomena in the damped
and forced system, we start with a brief review of the dynamics of system (1) with
λ1 = λ2 = F (t) = 0; for a more detailed discussion we refer to Lee et al. (2005).

In Figure 1 we present the various branches of periodic solutions in a frequency-
energy plot. A periodic orbit is represented by a point in the plot, and a branch,
represented by a solid line, is a collection of periodic orbits possessing the same qual-
itative features. For instance, the branch S11+ gathers all the periodic orbits for
which the linear and nonlinear oscillators vibrate with the same frequency and in
an in-phase fashion. There are two general classes of solutions: symmetric solutions
Snm± correspond to orbits that satisfy the initial conditions v̇(0) = ±v̇(T/2) and
ẏ(0) = ±ẏ(T/2), where T is the period, n is the number of half-waves in v, and m the
number of half-waves in y in a half-period interval; unsymmetric solutions Unm are
orbits that fail to satisfy the initial conditions of the symmetric orbits, with the same
notation for the two indices. We adopt the following convention regarding the place-
ment of the various branches in the frequency domain: we assign to a specific branch
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Fig. 1. Frequency-energy plot of the periodic orbits: for the sake of clarity, no stability is
indicated; special orbits are denoted by bullets (•) and are connected by dashed-dot lines; other
symbols indicate bifurcation points (stability-instability boundaries): (+) four Floquet multipliers
at +1, and (©) two Floquet multipliers at +1 and two at −1 (see Lee et al. (2005)).

of solutions a frequency index equal to the ratio of its indices; e.g., S21± is represented
by the frequency index ω = 2/1 = 2, as is U21; S13± is represented by ω = 1/3;
etc. This convention rule holds for every branch except S11±, which, however, are
particular branches forming the basic backbone of the entire plot. On the energy
axis we depict the (conserved) total energy of the system when it oscillates in the
corresponding periodic motion. Transitions between certain branches seem to involve
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Fig. 2. Detailed plot of branch S11+ in the frequency index-logarithm of energy plane. A dot
(•) represents the initial condition of the motion depicted in Figure 4. (At certain points of the
branch the corresponding motions in the configuration plane (y, v) are depicted.)

“jumps,” but this is only due to the frequency convention adopted, and no actual dis-
continuities in the dynamics occur. (By definition, branches S(kn)(km)±, k integer,
are identified with Snm±.) Periodic orbits that correspond to synchronous motions
of the two particles of the system, and correspond to curves in the configuration plane
(y, v), will be termed nonlinear normal modes (NNMs) (Vakakis et al. (1996)).

The main backbone of the frequency-energy plot is formed by the branches S11±,
which represent in- or out-of-phase NNMs possessing one half-wave per half-period.
Moreover, the natural frequency of the linear oscillator ω0 = 1 (which we identify
with a frequency index equal to unity, ω = 1) naturally divides the periodic solutions
into higher- and lower-frequency modes. A close-up of S11+ is presented in Figure 2
together with some modal curves depicted in the configuration plane (y, v) of the
system. The horizontal and vertical axes in the plots in the configuration plane are the
nonlinear and linear, respectively, oscillator responses, and the aspect ratios in these
plots are set so that equal tick mark increments on the horizontal and vertical axes are
equal in size, enabling one to directly deduce whether the motion is localized in the
linear or the nonlinear oscillator. Figure 2 clearly highlights the energy dependence of
the NNMs; the NNMs become strongly localized to the nonlinear attachment as the
total energy in the system decreases. This observation shows how useful a frequency-
energy plot can be for the interpretation of the dynamics. For the out-of-phase branch
S11−, the NNMs become localized to y or v as ω → 1+ or ω � 1, respectively.

There is a sequence of higher- and lower-frequency periodic solutions bifurcating
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Fig. 3. Detailed plot of tongues S13± in the frequency index-logarithm of the energy plane.
Points G1, G2, G3 refer to the text, and the special periodic orbit is represented by triple stars (∗ ∗ ∗);
the dot (•) represents the initial condition of the motion depicted in Figure 5. (At certain points of
the branch the corresponding motions in the configuration plane (y, v) are depicted.)

or emanating from branches S11±, which we will denote as tongues. Each tongue
occurs in the neighborhood of an internal resonance between the linear oscillator and
the nonlinear attachment, and corresponds to either symmetric (S-tongue; e.g., S13±)
or unsymmetric (U -tongue; e.g., U21±) periodic motion of the system.

Considering first the symmetric solutions, the branches S1(2k+1)±, k = 1, 2, . . . ,
appear in the neighborhoods of frequencies ω = 1/(2k+1), i.e., at progressively lower
frequencies with increasing k. For fixed k, each of the two branches S1(2k + 1)±
is linked through a smooth transition with its neighboring branches S1(2k − 1)± or
S1(2k + 3)± and exists over a finite interval of energy. The pair S1(2k + 1)± is
eliminated through a saddle-node bifurcation at a higher energy value (cf. Figure 3
for branches S13±). The pairs of branches S1(2k)±, k = 1, 2, . . . , bifurcate out of
S1(2k + 1)± and exist over finite energy intervals. Branches Sn1±, n = 2, 3, . . . ,
appear in the neighborhoods of frequencies ω = n, i.e., at progressively higher fre-
quencies with increasing n; the pair of branches Sn1± emanates from S11− and
coalesces with S11+ through a saddle-node bifurcation. Consider the subharmonic
NNMs on tongues S13± (similar results hold for the other S-branches), which corre-
spond to motions where the linear oscillator oscillates “three times faster” than the
nonlinear attachment. We refer to Figure 3, where a detailed frequency-energy plot
for this branch is depicted.

We now discuss the evolution of the motion along S13−. As point G1 is reached in
the neighborhood of ω = 1/3, it holds that v(t) � y(t), and the nonlinear attachment
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vibrates nearly independently, in essence “driving” the linear oscillator; moreover, at
that regime of the motion the force generated by the essentially nonlinear coupling
spring is approximately equal to that generated by the linear spring. As the energy
increases towards point G2 the nonlinear attachment still “drives” the primary mass,
but now the force generated by the linear spring tends to overcome that of the non-
linear spring; this means that the motion of the linear oscillator is less influenced
by the motion of the nonlinear attachment. Once point G2 is reached (with initial
displacements v(0) = 0.0915, y(0) = 0.013 and zero initial velocities), both the linear
oscillator and the nonlinear attachment approximately vibrate as a set of uncoupled
linear oscillators with natural frequencies at ratio 1/3,

v̈ +

(
1

9

)
v = 0, ÿ + y = 0.

This means that in the neighborhood of point G2 of S13− the system oscillates ap-
proximately as a system of two uncoupled linear oscillators, a result which explains
why the branches S13± appear as horizontal straight line segments at frequency
index 1/3 of the frequency-energy plot of Figure 1. As energy increases towards
point G3 of Figure 2, the situation is reversed; because the force generated by the
nonlinear spring is now negligible compared to that generated by the linear spring, the
linear oscillator vibrates nearly independently and drives the nonlinear attachment.
Eventually point G3 is reached, where the periodic motion is approximately given by
y(t) ≈ Y cosωt, v(t) ≈ V cosωt, and there occurs triple coalescence of branches S13±
and S33− (which is identical to S11−).

Focusing now on the unsymmetric branches, we observe a family of U(m + 1)m
branches bifurcating from branch S11− that exist over finite energy levels and are
eliminated through saddle-node bifurcations with other branches of solutions. The
transition of branches U21 and U32 to S11+ seems to involve jumps, but this is
only due to the frequency convention adopted, and no actual discontinuities in the
dynamics occur. It should be mentioned that periodic motions on the U -tongues are
not NNMs because nontrivial phases between the two oscillators are realized. The
motion on these tongues is represented by Lissajous curves in the configuration plane,
whereas motion on S-tongues corresponds to one-dimensional curves. Localization
phenomena are also detected at certain regions of U -tongues (Lee et al. (2005)).

It turns out that certain periodic orbits (termed special orbits and depicted by
dots in Figure 1) are of particular importance concerning the passive and irreversible
energy transfer from the linear to the nonlinear oscillator. These special orbits satisfy
the initial conditions v(0) = v̇(0) = y(0) = 0 and ẏ(0) �= 0, which happen to be
identical to the state of the undamped system (1) at t = 0+ (being at rest at t = 0−)
after application of an impulse of magnitude ẏ(0) to the linear oscillator. Moreover,
certain stable special orbits are localized to the nonlinear oscillator (Lee et al. (2005))
which implies that if the system initially at rest is forced impulsively and one of the
stable, localized special orbits is excited, the major portion of the induced energy is
channeled directly to the invariant manifold of that special orbit, and hence the mo-
tion is rapidly and passively transferred (“pumped”) from the linear to the nonlinear
oscillator. Therefore, the impulsive excitation of one of the stable special orbits is one
of the triggering mechanisms initiating (direct) passive energy pumping in the system.

In the following section we discuss in detail three mechanisms for passive energy
pumping in system (1). In addition to the mechanism based on excitation of special
orbits, we analyze two energy pumping mechanisms that rely on the spatial localiza-
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tion of the mode shapes of certain NNMs of Figure 1 as the energy of oscillation of
the system decreases due to damping dissipation.

3. Energy pumping mechanisms in the damped system. In this section,
the impulsively forced, damped system (1) is considered, and three basic mechanisms
for the initiation of nonlinear energy pumping are studied. The first mechanism (fun-
damental energy pumping) is realized when the motion takes place along the backbone
curve S11+ of the frequency-energy plot of Figure 1, occurring for relatively low fre-
quencies ω < ω0. The second mechanism (subharmonic energy pumping) resembles
the first and occurs when the motion takes place along a lower frequency branch Snm,
n < m. The third mechanism (energy pumping initiated by nonlinear beat), which
leads to stronger energy pumping, involves the excitation of a special orbit with main
frequency ωSO greater than the natural frequency of the linear oscillator ω0; in this
case energy pumping is initiated by a nonlinear beat phenomenon, as discussed in the
previous section. In what follows we discuss each mechanism separately, and provide
numerical simulations that demonstrate passive and irreversible energy transfer from
the linear oscillator to the nonlinear attachment in each case.

3.1. Fundamental energy pumping. The first mechanism for energy pump-
ing involves excitation of the branch of in-phase synchronous periodic solutions S11+,
where the linear oscillator and the nonlinear attachment oscillate with identical fre-
quencies in the neighborhood of the fundamental frequency ω0. Although energy
pumping is considered only in the damped system, in order to gain an understanding
of the governing dynamics it is necessary to consider the case of no damping.

In Figure 2 we depicted a detailed plot of branch S11+ of the undamped sys-
tem and noted that, at higher energies, the in-phase NNMs are spatially extended
(involving finite-amplitude oscillations of both the linear oscillator and the nonlin-
ear attachment). However, the nonlinear mode shapes of solutions on S11+ depend
essentially on the level of energy, and at low energies they become localized to the
attachment. Considering now the motion in phase space, this low-energy localization
is a basic characteristic of the two-dimensional NNM invariant manifold correspond-
ing to S11+; moreover, this localization property is preserved in the weakly damped
system, where the motion takes place in a two-dimensional damped NNM invariant
manifold. This means that when the initial conditions of the damped system are
such that they excite the damped analogue of S11+, the corresponding mode shape
of the oscillation, initially spatially extended, becomes localized to the nonlinear at-
tachment with decreasing energy due to damping dissipation. This, in turn, leads to
passive, continuous, and irreversible transfer of energy from the linear oscillator to the
nonlinear attachment which acts, in essence, as an NES. The underlying dynamical
phenomenon governing fundamental energy pumping was proven to be a resonance
capture on a 1:1 resonance manifold of the system (Vakakis and Gendelman (2001)).

Numerical evidence of fundamental energy pumping is given in Figure 4 for the
system with parameters ε = 0.05, ω2

0 = 1, C = 1, and λ1 = λ2 = 0.0015. Small
damping is considered in order to better highlight the energy pumping phenomenon,
and the motion is initiated near the black dot of Figure 2. Comparing the transient
responses of Figures 4(a)–(b), we note that the response of the primary system de-
cays faster than that of the NES. The percentage of instantaneous energy captured
by the NES versus time is depicted in Figure 4(e) and confirms the assertion that
continuous and irreversible transfer of energy from the linear oscillator to the NES
takes place; this is more evident by computing the percentage of total input energy
that is eventually dissipated by the damper of the NES (cf. Figure 4(f)), which in this
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Fig. 4. Fundamental energy pumping. Shown are the transient responses of the (a) linear
oscillator and (b) NES; WTs of the motion of (c) NES and (d) linear oscillator; (e) percentage of
instantaneous total energy in the NES; (f) percentage of total input energy dissipated by the NES;
transition of the motion from S11+ to S13+ at smaller energy levels using the (g) NES (observe
the settlement of the motion at frequency 1/3) and (h) linear oscillator.
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particular simulation amounts to 72%; the energy dissipated at the NES is computed
by the relation

ENES(t) = λ2

∫ t

0

[v̇(τ) − ẏ(τ)]
2
dτ.

The evolution of the frequency components of the motions of the two oscilla-
tors as energy decreases can be studied by numerical wavelet transforms (WTs) (Lee
et al. (2005)) of the transient responses, as depicted in Figures 4(c)–(d). These plots
highlight that a 1:1 resonance capture is indeed responsible for energy pumping. Be-
low the value of −4 of the logarithm of energy level, the motion of the linear oscillator
is too small to be analyzed by the particular windows used in the WT; however, a
more detailed WT over smaller energy regimes (cf. Figures 4(g)–(h)) reveals a smooth
transition from S11+ to S13+, in accordance with the frequency-energy plot of Fig-
ure 1. This transition manifests itself by the appearance of two predominant frequency
components in the responses (at frequencies 1 and 1/3) as energy decreases.

3.2. Subharmonic energy pumping. Subharmonic energy pumping involves
excitation of a low-frequency S-tongue. As mentioned previously, by low-frequency
tongues we mean the particular regions of the frequency-energy plot where the NES
engages in m:n (m,n integers such that m < n) resonance captures with the linear
oscillator. Another feature of lower tongues is that in these regions the frequency
of the motion remains approximately constant with varying energy; as a result, the
tongues are represented by horizontal lines in the frequency-energy plot, and the
response of system (1) resembles locally that of a linear system (see also discussion
about the tongues S13± in section 2). In addition, at each specific m:n resonance
capture there appears a pair of closely spaced tongues corresponding to in- and out-
of-phase oscillations of the two subsystems.

To discuss the dynamics of subharmonic energy pumping we now focus on a
particular pair of lower tongues, say S13±, and refer to Figure 3. As discussed in
section 2, at the extremity of a lower pair of tongues, the curve in the configuration
plane is strongly localized to the linear oscillator. However, as for the fundamental
mechanism for energy pumping, the decrease of energy by viscous dissipation leads
to curves in the configuration plane that are increasingly localized to the NES, and
nonlinear energy pumping to the NES occurs. In this case, the underlying dynamical
phenomenon causing energy pumping is resonance capture in the neighborhood of
an m:n resonance manifold of the dynamics. Specifically, for the pair of tongues
S13±, a 1:3 resonance capture occurs that leads to subharmonic energy pumping
with the linear oscillator vibrating with a frequency three times that of the NES. It
is emphasized that due to the stability properties of the tongues S13±, subharmonic
energy pumping involves excitation of S13− but not of S13+.

The transient dynamics when the motion is initiated at the extremity of S13−
(cf. the initial condition denoted by the black dot in Figure 3) is displayed in Fig-
ure 5. The same parameters as in section 3.1 are considered. Until 500 s, subharmonic
energy pumping takes place: despite the presence of viscous dissipation, the NES re-
sponse grows continuously, with simultaneous rapid decrease of the response of the
linear oscillator. A substantial amount of energy is transferred to the NES (cf. Fig-
ure 5(e)), and eventually nearly 70% of the energy is dissipated by the NES damper
(cf. Figure 5(f)). A prolonged 1:3 resonance capture is nicely evidenced by the WT of
Figures 5(c)–(d), and the motion follows the whole lower tongue S13− from the right
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Fig. 5. Subharmonic energy pumping initiated on S13−. Shown are the transient responses
of the (a) linear oscillator and (b) NES; WTs of the motion of (c) the NES and (d) the linear
oscillator; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input
energy dissipated by the NES.

to the left. Once escape from resonance capture occurs (around 620–630 s), energy is
no longer transferred to the NES.

3.3. Energy pumping initiated by nonlinear beating. The previous two
mechanisms cannot be activated with the NES at rest, since in both cases the motion
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is initialized from a nonlocalized state of the system. This means that these energy
pumping mechanisms cannot be activated directly after the application of an impul-
sive excitation to the linear oscillator with the NES initially at rest. Such a forcing
situation, however, is important from a practical point of view; indeed, this is the
situation where local NESs are utilized to confine and passively dissipate unwanted
vibrations from linear structures that are forced by impulsive (or broadband) loads.

Hence, it is necessary to discuss an alternative, third energy pumping mechanism
capable of initiating passive energy transfer with the NES being initially at rest. This
alternative mechanism is based on the excitation of a special orbit (as defined and
discussed in section 2) that plays the role of a “bridging orbit” for activation of either
fundamental or subharmonic energy pumping. Excitation of a special orbit results in
the transfer of a substantial amount of energy from the initially excited linear oscillator
directly to the NES through a nonlinear beat phenomenon. In that context, the
special orbit may be regarded as an initial bridging orbit or trigger, which eventually
activates fundamental or subharmonic energy pumping, once the initial nonlinear
beat initiates the energy transfer. Indeed, as shown below, the third mechanism
for energy pumping represents an efficient initial (triggering) mechanism for rapid
transfer of energy from the linear oscillator to the NES at the crucial initial stage of
the motion, before activating either one of the (fundamental or subharmonic) main
energy pumping mechanisms through a nonlinear transition (jump) in the dynamics.

To study the dynamics of this triggering mechanism, we first formulate the follow-
ing conjecture: Due to the essential (nonlinearizable) nonlinearity, the NES is capable
of engaging in an m:n resonance capture with the linear oscillator, m and n being a
set of integers. Accordingly, in the undamped system there exists a sequence of spe-
cial orbits (corresponding to nonzero initial velocity of the linear oscillator with all
other initial conditions zero), aligned along a one-dimensional smooth manifold in the
frequency-energy plot. As a first step to test this conjecture, a nonlinear boundary
value problem (NLBVP) was formulated to compute the periodic orbits of system (1)
with no forcing and damping, and the additional restriction for the special orbits was
imposed. (For a detailed formulation of the NLBVP, we refer to Lee et al. (2005).)
The numerical results in the frequency-energy plane are depicted in Figure 6 for pa-
rameters ε = 0.05, ω2

0 = 1, C = 1. Each triangle in the plot represents a special orbit,
and a one-dimensional manifold appears to connect the special orbits (though a rigor-
ous proof of the existence of this manifold is not given here). In addition, it appears
that there exists a countable infinity of special orbits, occurring in the neighborhoods
of the countable infinities of internal resonances m:n (m,n integers) of the system, but
again no rigorous proof of this conjecture is given in this paper. We note that a subset
of high-frequency branches (for ω > 1) possesses two special orbits instead of one (for
example, all U(p + 1)p branches with p ≥ 3). To distinguish between the two special
solutions in such high-frequency branches we partition them into two subclasses: the
a-special orbits, which exist in the neighborhood of ω = ω0 = 1, and the b-special
orbits, which occur away from this neighborhood (cf. Figure 6); it was numerically
proven in Lee et al. (2005) that the a-special orbits are unstable, whereas the b-special
orbits are stable. As shown below, it is the excitation of the stable b-special orbits
that activates the third mechanism for energy pumping.

Representative special orbits are given in Figure 7. By construction, all special
orbits have a common feature; namely, they pass with vertical slope through the
origin of the configuration plane (y, v). This feature renders them compatible with
an impulse applied to the linear oscillator, which corresponds to a nonzero velocity of
the linear oscillator with all other initial conditions zero. The curves corresponding to
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Fig. 6. Manifold of special orbits (represented by triangles) in the frequency-energy plot.

the special orbits in the configuration plane can be either closed or open, depending
upon the differences between the two indices characterizing the orbits; specifically,
odd differences between indices correspond to closed curves in the configuration plane
and lie on U -branches, whereas even differences between indices correspond to open
curves on S-branches. In addition, higher-frequency special orbits (with frequency
index ω > ω0) in the upper part of the frequency-energy plot (i.e., m > n) are
localized to the nonlinear oscillator; conversely, special orbits in the lower part of the
frequency-energy plot (with frequency index ω < ω0) tend to be localized to the linear
oscillator. This last observation is of particular importance since it directly affects
the transfer of a significant amount of energy from the linear oscillator to the NES
through the mechanism discussed in this section: indeed, there seems to be a well-
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Fig. 7. Representative special orbits in the configuration plane (y, v). Closed curves correspond
to special orbits on U-branches, and open curves to special orbits on S-branches.
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defined critical threshold of energy that separates high- from low-frequency special
orbits, i.e., those that do or do not localize, respectively, to the NES (cf. Figure 6).
The third mechanism for energy pumping can be activated only for input energies above
the critical threshold, since below that the (low-frequency) special orbits are incapable
of transferring significant amounts of input energy from the linear oscillator to the
NES; in other words, the critical level of energy represents a lower bound below which
no significant energy pumping can be initiated through activation of a special orbit.
Moreover, combining this result with the topology of the one-dimensional manifold
of special orbits of Figure 6, it follows that it is the subclass of stable b-special orbits
that is responsible for activating the third energy pumping mechanism, whereas the
subclass of unstable a-special orbits does not affect energy pumping. This theoretical
insight will be fully validated by the numerical simulations that follow.

We now proceed to analyze in detail the nonlinear beat phenomenon that takes
place when a special orbit is excited by the initial conditions. When the NES engages
in an m:n resonance capture with the linear oscillator, a nonlinear beat phenomenon
takes place. Due to the essential (nonlinearizable) nonlinearity of the NES and the
lack of any preferential frequency, the considered nonlinear beat phenomenon does
not require any a priori “tuning” of the nonlinear attachment, since at the specific
frequency-energy range of the m:n resonance capture the nonlinear attachment adjusts
its amplitude (“tunes itself”) to fulfill the necessary conditions of internal resonance.
This represents a significant departure from the classical nonlinear beat phenomenon
observed in coupled oscillators with linearizable nonlinear stiffnesses (e.g., spring-
pendulum systems), where the defined ratios of linearized natural frequencies of the
component subsystems dictate the type of internal resonances that can be realized
(Golnaraghi (1991), Salemi, Golnaraghi, and Heppler (1997)). As an example, in
Figure 8 we depict the exchanges of energy during the nonlinear beat phenomena
corresponding to the special orbits of branches U21 and U54 for parameters ε = 0.05,
ω2

0 = 1, C = 1 and no damping. As expected, energy is continuously exchanged
between the linear oscillator and the NES, so the energy transfer is not irreversible as
is required for energy pumping; we conclude that excitation of a special orbit can only
initiate (trigger) energy pumping, but not cause it in itself. The amount of energy
transferred during each cycle of the beat varies with the special orbit considered; for
U21 and U54, as much as 32% and 86% of energy, respectively, can be transferred to
the NES. It can be shown that, for increasing integers m and n with corresponding
ratios m/n → 1+, the maximum energy transferred during a cycle of the special orbit
tends to 100%; at the same time, however, the resulting period of the cycle of the beat
(and, hence, of the time needed to transfer the maximum amount of energy) should
increase as the least common multiple of m and n.

We note at this point that the nonlinear beat phenomenon associated with the
excitation of the special orbits can be studied analytically using the complexification-
averaging method first introduced by Manevitch (1999). To demonstrate the analyti-
cal procedure, we analyze in detail the special orbit on branch U21 of the system with
no damping. In Lee et al. (2005), the periodic motions on this entire branch were
studied, and it was shown that the responses of the linear oscillator and the nonlinear
attachment can be approximately expressed as

y(t) = Y1 sinωt + Y2 sin 2ωt ≡ y1(t) + y2(t),

v(t) = V1 sinωt + V2 sin 2ωt ≡ v1(t) + v2(t),
(2)

where
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Fig. 8. Exchanges of energy during nonlinear beat phenomena corresponding to special orbits
on (a), (b) U21, and (c), (d) U54.
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Hence, a two-frequency approximation is satisfactory for this family of periodic
motions. The frequency ωSO at which the special orbit appears is computed by
imposing the initial conditions y(0) = v(0) = v̇(0) = 0, which leads to the relation

B = −2G (special orbit).
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The instantaneous fraction of total energy in the linear oscillator during the non-
linear beat phenomenon is estimated to be

Elinear(t) =

[
(ω2

0 − 4ω2
SO) sinωSOt− 2(ω2

0 − ω2
SO) sin 2ωSOt

]2

9ω2
SOω

2
0

+

[
(ω2

0 − 4ω2
SO) cosωSOt− 4(ω2

0 − ω2
SO) cos 2ωSOt

]2

9ω4
0

.(3)

The nonlinear coefficient C has no influence on the fraction of total energy trans-
ferred to the NES during the nonlinear beat ; this means that, during the beat, the
instantaneous energies of the linear oscillator and the NES are directly proportional
to the nonlinear coefficient. Moreover, as the mass of the NES tends to zero, the
frequency where the special orbit is realized tends to the limit ωSO → ω0, and, as a
result, Elinear(t) → 1, and the energy transferred to the NES during the beat tends
to zero. However, we note that this is a result satisfied only asymptotically, since,
as indicated by the results depicted in Figure 8, even for very small mass ratios, i.e.,
ε = 0.05, as much as 86% of the total energy can be transferred to the NES during a
cycle of the special orbit of branch U54.

Considering now the damped system, we will show that following an initial non-
linear beat phenomenon, either one of the main (fundamental or subharmonic) energy
pumping mechanisms can be activated through a nonlinear transition (jump) in the
dynamics. It was previously mentioned that the two main energy pumping mech-
anisms are qualitatively different from the third mechanism, which is based on the
excitation of a nonlinear beat phenomenon (special orbit); indeed, damping is a pre-
requisite for the realization of the two main mechanisms, leading to an irreversible
energy transfer from the linear oscillator to the NES, whereas a special orbit is capa-
ble of transferring energy without dissipation, though this transfer is not irreversible
but periodic. This justifies our earlier assertion that the third mechanism does not
represent an independent mechanism for energy pumping, but rather triggers it, and
through a nonlinear transition activates either of the two main mechanisms. This will
become apparent in the following numerical simulations.

The following simulations concern the transient dynamics of the damped sys-
tem (1) with parameters ε = 0.05, ω2

0 = 1, C = 1, λ1 = λ2 = 0.0015 and an impulse
of magnitude Y applied to the linear oscillator (corresponding to initial conditions
y(0+) = v(0+) = v̇(0+) = 0, ẏ(0+) = Y ). By varying the magnitude of the im-
pulse we study the different nonlinear transitions that take place in the dynamics and
their effects on energy pumping. The responses of the system to the relatively strong
impulse Y = 0.25 are depicted in Figure 9. Inspection of the WTs of the responses
(cf. Figures 9(c)–(d)), and of the portion of total instantaneous energy captured by
the NES (cf. Figure 9(e)), reveals that at the initial stage of the motion (until ap-
proximately t = 120 s) the (stable) b-special orbit on branch U32 is excited (since
the NES response possesses two main frequency components at 1 and 3/2 rad/s), and
a nonlinear beat phenomenon takes place. (Note the continuous exchange of energy
between the two subsystems—reversibility in this initial stage of the motion.) For
t > 120 s, the dynamics undergoes a transition (jump) to branch S11+, and fun-
damental energy pumping to the NES occurs on a prolonged 1:1 resonance capture
(cf. Figures 9(c)–(d)); eventually, 84% of the input energy is dissipated by the damper
of the NES (cf. Figure 9(f)).

Lowering the magnitude of the impulse to Y = 0.11 gives rise to a different set of
nonlinear transitions, as the simulations of Figure 10 indicate. In this case the (stable)
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Fig. 9. Energy pumping by nonlinear beat, transition to S11+. Shown are transient responses
of (a) the linear oscillator and (b) NES; WTs of the motion of (c) NES and (d) the linear oscil-
lator; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input energy
dissipated by the NES.

b-special orbit of branch U43 is initially excited, which then activates subharmonic
energy pumping through a nonlinear transition to the tongue S13−. In other words,
the lower tongue appears to act as “bait” and activates energy pumping through
1:3 resonance capture, i.e., by capturing locally the transient dynamics in its domain
of attraction. Figure 10(e) reveals that a nonlinear beat phenomenon occurs until
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Fig. 10. Energy pumping by nonlinear beat, transition to S13−. Shown are transient responses
of (a) the linear oscillator and (b) NES; WTs of the motion of (c) NES and (d) the linear oscil-
lator; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input energy
dissipated by the NES.

t = 150 s approximately, and in turn activates 1:3 subharmonic energy pumping to
the NES (cf. Figures 10(c)–(d)); eventually, 94% of the input energy is dissipated by
the NES (cf. Figure 10(f)).

Comparing the two simulations, we conclude that excitation of the b-special orbit
of U43 leads to more effective energy pumping compared to the b-special orbit of
U32. The reason rests with the localization properties of the special orbits, i.e.,
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their capacity to transfer a larger fraction of the total energy to the NES during a
cycle of the oscillation. Indeed, the localization properties of the b-special orbits of
branches U(p+1)p are enhanced as the order p increases, i.e., as their second frequency
component, ω = (p + 1)/p, approaches that of the first, ω = 1, and the special orbits
topologically approach the branch S11− (Lee et al. (2005)). In that context, the
b-special orbit of U43 is capable of transferring a larger fraction of the input than
that being transferred by the b-special orbit of U32 (compare Figures 9(e) and 10(e)),
and hence the enhanced energy pumping results of the second simulation. We note
at this point that the (unstable) a-special orbits of these branches are localized in the
linear oscillator and do not affect energy pumping.

We now test the previous theoretical finding that, for sufficiently small impulse
magnitudes, no energy pumping can occur, i.e., none of the three aforementioned
energy pumping mechanisms can be activated. The simulations for Y = 0.08 are
depicted in Figure 11. The WT of the NES response of Figure 11(c) shows the
presence of a frequency component below ω = 1 at the initial stage of the motion,
which indicates excitation of a low-frequency special orbit in the lower part (ω < 1)
of the frequency-energy plot (i.e., U12). As explained previously, those orbits are
localized to the linear oscillator and, as a result, cannot transfer a sufficient amount
of energy to the NES in the initial stage of the motion. Accordingly, neither the
fundamental nor the subharmonic energy pumping mechanism is eventually activated,
leading to a much smaller amount of energy dissipated by the NES (around 45% in
this case). This result confirms our previous assertion that energy pumping through
nonlinear beat can be activated only above a critical energy threshold (cf. Figure 6).

To demonstrate more clearly the effect of the b-special orbits on energy pumping,
in Figure 12 we depict the percentage of input energy eventually dissipated at the
NES for varying magnitudes of the impulse for the system with parameters ε = 0.05,
ω2

0 = 1, C = 1, λ1 = λ2 = 0.01. In the same plot we depict the positions of
the special orbits of the undamped system and the critical threshold predicted in
Figure 6. We conclude that strong energy pumping is associated with the excitation
of b-special orbits of the branches U(p + 1)p in the neighborhood above the critical
threshold, whereas excitation of a-special orbits below the critical threshold does not
lead to rigorous energy pumping. As mentioned previously, in the neighborhood of
the critical threshold the b-special orbits are strongly localized to the NES, whereas
a-orbits are nonlocalized. We also note from Figure 12 the deterioration of energy
pumping as we increase the magnitude of the impulse well above the critical threshold,
where high-frequency special orbits are excited; this is a consequence of the fact
that well above the critical threshold the special orbits are weakly localized to the
NES.

Extending the previous result, in Figure 13 we depict the contours of energy
eventually dissipated at the NES, but now for the case of two impulses of magnitudes
ẏ(0) and εv̇(0) applied to both the linear oscillator and the NES, respectively. The
system parameters used were identical to those of the previous simulation of Figure 12.
Superimposed on contours of energy dissipated at the NES are certain high- and low-
frequency U - and S-branches of the undamped system together with their special
orbits, in order to confirm for this case the essential role of the high-frequency special
orbits in energy pumping. Indeed, high levels of energy dissipation are encountered
in neighborhoods of contours of high-frequency U -branches, whereas low values are
noted in the vicinity of low-frequency branches. These results agree qualitatively with
our earlier theoretical and numerical findings and enable us to assess and establish
the robustness of energy pumping when the NES is not initially at rest.



PASSIVE ENERGY TRANSFER 667

Fig. 11. Absence of energy pumping for low excitation. Shown are transient responses of
(a) the linear oscillator and (b) NES; WTs of the motion of (c) NES and (d) the linear oscilla-
tor; (e) percentage of instantaneous total energy in the NES; (f) percentage of total input energy
dissipated by the NES.

In the next section we provide analytical studies of the fundamental and subhar-
monic energy pumping mechanisms encountered in the damped system; since excita-
tion of nonlinear beats is merely a means for activating the main two energy pumping
mechanisms, it will not be analyzed below. We show that in each case we can reduce
the governing dynamics of energy pumping to low-order slow-flow dynamical systems.
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Fig. 12. Percentage of input energy eventually dissipated at the NES for varying magnitudes
of the impulse (the positions of certain special orbits are indicated).

4. Slow-flow analysis. We now focus on the resonance capture dynamics that
governs energy pumping in the damped system. This can be studied by performing a
reduction of the dynamics, an approximate partition between slow and fast dynamics,
and considering the evolution of the slow-flow dynamics when energy pumping takes
place. We show that even though the system of coupled oscillators possesses essential
(nonlinearizable) stiffness nonlinearities, analytical modeling of its dynamics at certain
motion regimes can still be performed.

The theory of resonance processes for multifrequency systems was developed by
Neishtadt (1997), (1999), where capture into and scattering on the resonance were
discussed by considering them as random events and computing probabilities of cap-
ture and probabilistic distributions of the scattering amplitudes. By assuming small
perturbations (e.g., weak nonlinearities), action-angle formulations and the averaging
theorem were applied to provide analytical asymptotic validity of the approximations.
Also, by introducing a mapping (called the in-out function) from a state of resonance
capture to that of escape, glued averaging approximation was utilized to analytically
describe motions when they are away from, captured into, and escaped from the
resonance manifold.

Similar formulations were considered in Vakakis and Gendelman (2001), where the
slow-flow equations were established also by the complexification/averaging technique.
This method does not necessarily require the perturbations to be small, although
it is similar to the (classical) averaging method; once the proper ansatz regarding
the frequency content of the response is included, it is numerically verified that the
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Fig. 13. Contours of percentages of input energy eventually dissipated at the NES for the case
when both oscillators are excited by impulses: superimposed are contours of high- and low-frequency
branches of the undamped system (solid line: in phase, dashed line: out of phase branches); special
curves in high- and low-frequency branches are denoted by (©) and (Δ), respectively.

slow-flow model provides good approximation of the original dynamics and the entire
resonance processes as well.

In this study, we show that even though the system of coupled oscillators possesses
essential (nonlinearizable) stiffness nonlinearities, analytical modeling of its dynamics
at certain motion regimes can still be performed by means of the multifrequency
complexification/averaging method.

Focusing first on the fundamental energy pumping mechanism, we again consider
system (1) and introduce the new complex variables

ψ1(t) = v̇(t) + jv(t) ≡ ϕ1(t) e
jt,

ψ2(t) = ẏ(t) + jy(t) ≡ ϕ2(t) e
jt,

(4)

where ϕi(t), i = 1, 2, represent slowly varying complex amplitudes and j = (−1)1/2.
By writing (4) we introduce a partition of the dynamics into slow and fast components
and seek slowly modulated fast oscillations at frequency ω = ω0 = 1. As discussed
previously, fundamental energy pumping is associated with this type of motion in
the neighborhood of branch S11+ in the frequency-energy plot of the undamped
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dynamics. Expressing the system responses in terms of the new complex variables,
y = (ψ2 − ψ∗

2)/2j, v = (ψ1 − ψ∗
1)/2j (where (∗) denotes complex conjugate); substi-

tuting into (1) with P (t) = 0; and averaging over the fast frequency, we derive a set
of approximate slow modulation equations that govern the evolutions of the complex
amplitudes,

ϕ̇1 +

(
j

2

)
ϕ1 +

(
λ

2

)
(ϕ1 − ϕ2) −

(
3jC

8ε

)
|ϕ1 − ϕ2|2 (ϕ1 − ϕ2) = 0,

ϕ̇2 −
(
ελ

2

)
(ϕ1 − ϕ2) −

(
3jC

8

)
|ϕ2 − ϕ1|2 (ϕ2 − ϕ1) +

(
ελ

2

)
ϕ2 = 0.

(5)

For the sake of simplicity, we have assumed that λ1 = λ2 = λ in (1). To derive
a set of real modulation equations, we express the complex amplitudes in polar form,
ϕi(t) = ai(t) e

jβi(t), i = 1, 2, substitute into (5), and separately set equal to zero the
real and imaginary parts. We then reduce (5) to an autonomous set of equations
that govern the slow evolution of the two amplitudes a1(t) and a2(t) and the phase
difference φ(t) = β2(t) − β1(t):
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(6)

This reduced dynamical system governs the slow-flow dynamics of fundamental energy
pumping. In particular, 1:1 resonance capture (the underlying dynamical mechanism
of fundamental energy pumping) is associated with non–time-like behavior of the phase
variable φ or, equivalently, failure of the averaging theorem in the slow-flow (6). In-
deed, when φ exhibits time-like, nonoscillatory behavior, one can apply the averaging
theorem over φ and prove that the amplitudes a1 and a2 decay exponentially with
time and that no significant energy exchanges (energy pumping) can take place. In
Figure 14(a) we depict 1:1 resonance capture in the slow-flow phase plane (φ̇, φ) for
system (6) with ε = 0.05, λ = 0.01, C = 1, ω0 = 1 and initial conditions a1(0) = 0.01,
a2(0) = 0.24, φ(0) = 0. The oscillatory behavior of the phase variable in the neighbor-
hood of the in-phase limit φ = 0+ indicates 1:1 resonance capture (on branch S11+
of the frequency-energy plot of Figure 1) and leads to energy pumping from the linear
oscillator to the NES, as evidenced by the build-up of amplitude a1 (cf. Figure 14(b)).
Escape from resonance capture is associated with time-like behavior of φ and rapid
decrease of the amplitudes a1 and a2 (as predicted by averaging in (6)). A compar-
ison of the analytical approximation (4)–(6) and direct numerical simulation for the
previous initial conditions confirms the accuracy of the analysis.

Considering subharmonic energy pumping, we will focus on energy pumping in
the neighborhood of tongue S13− (similar analysis can be applied for other orders of
subharmonic resonance captures). Due to the fact that motions in the neighborhood
of S13− possess two main frequency components, at frequencies 1 and 1/3, we express
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Fig. 14. Fundamental energy pumping: (a) 1:1 resonance capture in the slow flow, (b) ampli-
tude modulations, (c) comparison between analytical approximation (dashed line) and direct numer-
ical simulation (solid line) for v(t), (d) transient responses of the system.
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the responses of system (1) as

y(t) = y1(t) + y1/3(t), v(t) = v1(t) + v1/3(t),(7)

where the indices represent the frequency of each term. As in the previous case, we
introduce new complex variables,

ψ1(t) = ẏ1(t) + jωy1(t) ≡ ϕ1(t) e
jωt, ψ3(t) = ẏ1/3(t) + j(ω/3)y1/3(t) ≡ ϕ3(t) e

j(ω/3)t,

ψ2(t) = v̇1(t) + jωv1(t) ≡ ϕ2(t) e
jωt, ψ4(t) = v̇1/3(t) + j(ω/3)v1/3(t) ≡ ϕ4(t) e

j(ω/3)t,

(8)

where ϕi(t) represent slowly varying modulations of fast oscillations of frequencies 1
or 1/3. Expressing the system responses in terms of the new complex variables,
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,(9)

substituting into (1) with P (t) = 0, and averaging over each of the two fast frequencies,
we derive the slow modulation equations that govern the evolutions of the complex
amplitudes,
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(10)

where again it was assumed that λ1 = λ2 = λ in (1). To derive a set of real modulation
equations, we express the complex amplitudes in polar forms ϕi(t) = ai(t) e

jβi(t)

and derive an autonomous set of seven slow-flow modulation equations that govern
the amplitudes ai = |ϕi|, i = 1, . . . , 4, and the phase differences φ12 = β1 − β2,
φ13 = β1 − 3β3, and φ14 = β1 − 3β4.
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The equations of the autonomous slow flow will not be reproduced here, but it
suffices to state that they are of the form
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φ̇13 + f13(a) + g13(a, φ) = 0,

φ̇14 + f14(a) + g14(a, φ; ε) = 0,

(11)

where the functions gi and gij are 2π-periodic in terms of the phase angles φ =
(φ12 φ13 φ14)

T and by a we denote the (4 × 1) vector of the amplitudes ai. In this
case (as for the fundamental energy pumping mechanism), strong energy transfer
between the linear and nonlinear oscillators can occur only when a subset of phase
angles φij does not exhibit time-like behavior; that is, when some phase angles possess
oscillatory (nonmonotonic) behavior with respect to time. This can be seen from the
structure of the slow flow (11) where, if the phase angles exhibit time-like behavior and
the functions gi are small, averaging over these phase angles can be performed to show
that the amplitudes ai decrease monotonically with time; in that case no significant
energy exchanges between the linear and nonlinear components of the system can take
place. It follows that subharmonic energy pumping is associated with non–time-like
behavior of (at least) a subset of the slow phase angles φij in (11).

In Figure 15 we present the results of the numerical integration of the slow-flow
(10)–(11) for the system with parameters ε = 0.05, λ = 0.03, C = 1, ω0 = 1. The
motion is initiated on branch S13− with initial conditions v(0) = y(0) = 0 and
v̇(0) = 0.01499, ẏ(0) = −0.059443 (it corresponds exactly to the simulation of Fig-
ure 5). The corresponding initial conditions and the value of the frequency ω of
the reduced slow-flow model were computed by minimizing the difference between
the analytical and numerical responses of the system in the interval t ∈ [0, 100]:
ϕ1(0) = −0.0577, ϕ2(0) = 0.0016, ϕ3(0) = −0.0017, ϕ4(0) = 0.0134, and ω = 1.0073.
This result indicates that, initially, nearly all energy is stored in the fundamental fre-
quency component of the linear oscillator, with the remainder confined to the subhar-
monic frequency component of the NES. In Figures 15(a)–(b) we depict the temporal
evolution of the amplitudes ai, from which we conclude that subharmonic energy
pumping in the system is mainly realized through energy transfer from the (fun-
damental) component at frequency ω of the linear oscillator, to the (subharmonic)
component at frequency ω/3 of the NES (as judged from the build-up of the ampli-
tude a3 and the diminishing of a1). A smaller amount of energy is transferred from
the fundamental frequency component of the linear oscillator to the corresponding
fundamental component of the NES (as judged by the evolution of the amplitude a2).

These conclusions are supported by the plots of Figures 15(c)–(e), where the
temporal evolutions of the phase differences φ12 = β1 − β2, φ13 = β1 − 3β3, and
φ14 = β1 − 3β4 are shown. Absence of strong energy exchange between the funda-
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Fig. 15. Subharmonic energy pumping: (a), (b) amplitude modulations; (c), (d), (e) phase
modulations.
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Fig. 16. Transient response of NES for 1:3 subharmonic energy pumping: comparison between
analytical approximation (dashed line) and direct numerical simulation (solid line).

mental and subharmonic frequency components of the linear oscillator is associated
with the time-like behavior of the phase difference φ13, whereas energy pumping from
the fundamental component of the linear oscillator to the two frequency components
of the NES is associated with oscillatory early-time behavior of the phase differences
φ12 and φ14. Oscillatory responses of φ12 and φ14 correspond to 1:1 and 1:3 res-
onance captures, respectively, between the corresponding frequency components of
the linear oscillator and the NES; as time increases, time-like responses of the phase
variables are associated with escapes from the corresponding regimes of resonance
capture. In addition, we note that the oscillations of the angles φ12 and φ14 take
place in the neighborhood of π, which confirms that, in this particular example, sub-
harmonic energy pumping is activated by the excitation of an antiphase branch of
periodic solutions (such as S13−). The analytical results are in full agreement with
the wavelet transforms depicted in Figures 5(c)–(d), where the response of the lin-
ear oscillator possesses a strong frequency component at the fundamental frequency
ω0 = 1, whereas the NES oscillates mainly at frequency ω0/3.

The accuracy of the analytical model (10)–(11) in capturing the dynamics of
subharmonic energy pumping is confirmed by the plot depicted in Figure 16, where
the analytical response of the NES is found to be in satisfactory agreement with
the numerical response obtained by the direct simulation of (1). It is interesting to
note that the reduced analytical model is capable of accurately modeling the strongly
nonlinear, damped, transient response of the NES in the resonance capture region.
The analytical model fails, however, during the escape from resonance capture since
the ansatz (7)–(8) is not valid in that regime of the motion. Indeed, after escape
from resonance capture, the motion approximately evolves along the backbone curve
of the frequency-energy plot; eventually S15 is reached, the motion of which cannot
be described by the ansatz (7)–(8), thereby leading to the failure of the analytical
model.

The results presented so far provide a measure of the complicated dynamics en-
countered in the two-DOF system under consideration. It is logical to assume that by
increasing the degrees of freedom of the system the dynamics will be even more com-
plex. That this is indeed the case is evidenced by the numerical simulations presented
in the next section, where resonance capture cascades are reported in multi-degree-
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of-freedom (MDOF) linear systems with essentially nonlinear end attachments. By
resonance capture cascades we denote complicated sudden transitions between dif-
ferent branches of solutions (modes), which are accompanied by sudden changes in
the frequency content of the system responses. As shown in previous works (Vakakis
et al. (2003)), such multifrequency transitions can drastically enhance energy pumping
from the linear system to the essentially nonlinear attachment.

5. Increasing the DOF of the linear system: Resonance capture cas-
cades. To provide an indication of the complex multifrequency transitions that can
take place in coupled oscillators with essentially nonlinear local attachments, we now
increase the number of DOF of the linear subsystem to two and examine the system

ÿ2 + ω2
0y2 + λ2ẏ2 + d(y2 − y1) = 0,

ÿ1 + ω2
0y1 + λ1ẏ1 + λ3(ẏ1 − v̇) + d(y1 − y2) + C(y1 − v)3 = 0,

εv̈ + λ3(v̇ − ẏ1) + C(v − y1)
3 = 0.

(12)

The system parameters are chosen as ω2
0 = 136.9, λ1 = λ2 = 0.155, λ3 = 0.544,

d = 1.2× 103, ε = 1.8, and C = 1.63× 107, with linear natural frequencies ω1 = 11.68
and ω2 = 50.14.

In Figure 17(a) we depict the relative response v(t) − y1(t) of the system for
initial displacements y1(0) = 0.01, y2(0) = v(0) = −0.01 and zero initial velocities.
The multifrequency content of the transient response is evident and is quantified in
Figure 17(b), where the instantaneous frequency of the time series is computed by
applying the numerical Hilbert transform (Huang et al. (1998)).

As energy decreases due to damping dissipation, a series of eight resonance cap-
ture cascades is observed, i.e., of transient resonances of the NES with a number of
nonlinear modes of the system. The complexity of the nonlinear dynamics of the
system is evidenced by the fact that of these eight captures only two (labeled IV
and VII in Figure 17(b)) involve the linearized in-phase and out-of-phase modes of
the linear oscillator, with the remaining involving essentially nonlinear interactions
of the NES with different low- and high-frequency nonlinear modes of the system.
During each resonance capture the NES passively absorbs energy from the nonlinear
mode involved, before escape from resonance capture occurs and the NES transiently
resonates with the next mode in the series. In essence, the NES acts as a passive,
broadband boundary controller, absorbing, confining, and eliminating vibration energy
from the linear oscillator. Similar types of resonance capture cascades were reported
in previous works where grounded NESs, weakly coupled to the linear structure, were
examined (Vakakis et al. (2003)). The capacity of the NES to resonantly interact
with linear and nonlinear modes in different frequency ranges is due to its essential
nonlinearity (i.e., the absence of a linear term in the nonlinear stiffness characteristic),
which precludes any preferential resonant frequency.

Finally, we note that the complex nonlinear transitions between modes depicted
in Figure 17 can be interpreted and understood by studying the topology and bifurca-
tions of periodic orbits of the corresponding undamped system. As shown in previous
sections, the weakly damped, forced dynamics is expected to depend on the periodic
dynamics of the underlying undamped system.

6. Concluding remarks. Even though the systems considered in this work pos-
sess rather simple configurations and small numbers of DOF, they exhibit interesting
passive energy transfer properties. Indeed, under rather general conditions, it is pos-
sible to transfer passively, irreversibly, and robustly a significant portion of the energy
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Fig. 17. Resonance capture cascades in the 2-DOF system with nonlinear end attachment:
(a) relative transient response v(t) − y1(t); (b) instantaneous frequency (resonance captures indi-
cated).

of the linear oscillator to the nonlinear attachment; confine it; and passively dissipate
it locally without “radiating back” the transferred energy to the primary system.
Moreover, this nonlinear energy pumping occurs over low- as well as high-frequency
ranges, and involves broadband disturbances. This last feature clearly distinguishes
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the present configuration from previous classical vibration absorber designs, where
energy absorption was limited to narrowband disturbances, and the absorbers were
effective only in the vicinity of a single frequency.

Three mechanisms for energy pumping were discussed in this work. Two of them
rely on resonance capture of the damped dynamics on either fundamental or sub-
harmonic resonant manifolds in phase space. Viewed from a different perspective, in
these cases irreversible energy transfer from the linear oscillator to the nonlinear at-
tachment takes place when the dynamics is restricted to a damped nonlinear normal
mode invariant manifold, whose mode shape becomes strongly localized to the nonlin-
ear attachment as the energy deceases due to damping dissipation. A third mechanism
relies on nonlinear beats to initiate (but not cause) strong energy pumping; these beats
act as “bridging orbits” (or “catalysts”) for facilitating energy transfer by activating
either one of the previously mentioned mechanisms. It is interesting that all these
phenomena occur despite the lightness of the nonlinear attachment compared to the
linear oscillator and the complete absence of any active (energy source) element in
the system.

The considered nonlinear attachment holds promise as an efficient, robust, and
modular passive absorbing device for eliminating undesired broadband disturbances
of small- or large-scale structures. As such it can find application in diverse problems
in engineering and physics, including vibration and shock isolation of machines and
structures, seismic mitigation, packaging, and instability (such as limit cycle oscilla-
tion or flutter) suppression.
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SOLUTIONS TO A MODEL WITH NONUNIFORMLY PARABOLIC
TERMS FOR PHASE EVOLUTION DRIVEN BY

CONFIGURATIONAL FORCES∗

HANS-DIETER ALBER† AND PEICHENG ZHU†

Abstract. We prove the existence of solutions global in time to an initial-boundary value prob-
lem for a system of partial differential equations, which consists of the equations of linear elasticity
and a nonlinear nonuniformly parabolic equation of second order. The problem models the behav-
ior in time of materials with martensitic phase transformations. This model with diffusive phase
interfaces was derived from a model with sharp interfaces, whose evolution is driven by configura-
tional forces, and can be considered to be a regularization of that model. Our existence proof, which
contributes to the verification of the model, is only valid in one space dimension.

Key words. nonlinear degenerate parabolic equation, existence of solutions, evolution of phase
boundaries, martensitic transformations, configurational forces
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1. Introduction. Two main types of phase transformations in solid materials
can be distinguished, diffusion dominated and diffusionless transformations. In this
article we study a model for the behavior in time of materials with diffusionless trans-
formations. The model has diffusive interfaces and consists of the partial differential
equations of linear elasticity coupled to a quasilinear nonuniformly parabolic equation
of second order. It is derived in [2, 3] from a sharp interface model for diffusionless
phase transitions and can be considered to be a regularization of that model. The
physical background, the sharp interface model, and the derivation of the new model
are sketched in the appendix. To verify the validity of the new model investigations
are necessary, in which not only must simulations be carried out but also the analyti-
cal properties of the model must be determined. We contribute to the verification by
showing that in the case of one space dimension an initial-boundary value problem
to this model has solutions global in time. We first formulate this initial-boundary
value problem in the three-dimensional case, reduce it to the one-dimensional case,
and conclude the introduction by stating our main result.

Let Ω ⊂ R
3 be an open set. It represents the material points of a solid body.

The different phases are characterized by the order parameter S(t, x) ∈ R. A value
of S(t, x) near to zero indicates that the material is in the matrix phase at the point
x ∈ Ω at time t; a value near to one indicates that the material is in the second phase.
The other unknowns are the displacement u(t, x) ∈ R3 of the material point x at time
t and the Cauchy stress tensor T (t, x) ∈ S3, where S3 denotes the set of symmetric
3 × 3-matrices. The unknowns must satisfy the following quasi-static equations:
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−divx T (t, x) = b(t, x),(1.1)

T (t, x) = D
(
ε(∇x u(t, x)) − ε̄S(t, x)

)
,(1.2)

St(t, x) = −c
(
ψS(ε(∇xu(t, x)), S(t, x)) − νΔxS(t, x)

)
|∇xS(t, x)|(1.3)

for (t, x) ∈ (0,∞) × Ω. The boundary and initial conditions are

u(t, x) = γ(t, x), S(t, x) = 0, (t, x) ∈ [0,∞) × ∂Ω,(1.4)

S(0, x) = S0(x), x ∈ Ω.(1.5)

Here ∇xu denotes the 3 × 3-matrix of first order derivatives of u, the deformation
gradient; (∇xu)T denotes the transposed matrix; and

ε(∇xu) =
1

2

(
∇xu + (∇xu)T

)
is the strain tensor. ε̄ ∈ S3 is a given matrix, the misfit strain, and D : S3 → S3 is a
linear, symmetric, positive definite mapping, the elasticity tensor. In the free energy

ψ(ε, S) =
1

2

(
D(ε− ε̄S)

)
· (ε− ε̄S) + ψ̂(S)(1.6)

we choose for ψ̂ ∈ C2(R, [0,∞)) a double well potential with minima at S = 0 and
S = 1. The scalar product of two matrices is A ·B =

∑
aijbij . Also, ψS is the partial

derivative, c > 0 is a constant, and ν is a small positive constant. Given are the
volume force b : [0,∞) × Ω → R

3 and the data γ : [0,∞) × ∂Ω → R
3, S0 : Ω → R.

This completes the formulation of the initial-boundary value problem. The equa-
tions (1.1) and (1.2) differ from the system of linear elasticity only by the term ε̄S.
The evolution equation (1.3) for the order parameter S is nonuniformly parabolic
because of the term νΔS|∇xS|. Since this initial-boundary value problem is derived
from a sharp interface model, to verify that it is indeed a diffusive interface model
regularizing the sharp interface model, it must be shown that (1.1)–(1.5) with posi-
tive ν have global in time solutions, and that these solutions tend to solutions of the
sharp interface model for ν → 0. This would also be a method to prove existence of
solutions to the original sharp interface model.

In this article we contribute to only the first part of this program and show that
in one space dimension the initial-boundary value problem has solutions. Whether
solutions in three space dimensions exist and whether these solutions converge to a
solution of the sharp interface model for ν → 0 is an open problem not investigated
here. The model and therefore the existence result is of interest not only in three
dimensions but also in one space dimension. However, we believe that this one-
dimensional existence result can also be a basic building block in an existence proof
for higher space dimensions, which is sketched at the end of this introduction.

Related to our investigations is the model for diffusion dominated phase trans-
formations obtained by coupling the elasticity equations (1.1), (1.2) with the Cahn–
Hilliard equation, which is mentioned in the appendix. This model has recently been
studied in [5, 7, 8].

Statement of the main result. We now assume that all functions depend only
on the variables x1 and t, and, to simplify the notation, denote x1 by x. The set Ω =
(a, d) is a bounded open interval with constants a < d. We write QTe := (0, Te) × Ω,
where Te is a positive constant, and define

(v, ϕ)Z =

∫
Z

v(y)ϕ(y) dy
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for Z = Ω or Z = QTe
. If v is a function defined on QTe

, we denote the mapping
x → v(t, x) by v(t). If no confusion is possible, we sometimes drop the argument t
and write v = v(t). We still allow that the material points can be displaced in three
directions; hence u(t, x) ∈ R3, T (t, x) ∈ S3, and S ∈ R. If we denote the first column
of the matrix T (t, x) by T1(t, x) and set

ε(ux) =
1

2
((ux, 0, 0) + (ux, 0, 0)T ) ∈ S3,

then with these definitions (1.1)–(1.3) in the case of one space dimension can be
written in the form

−T1x = b,(1.7)

T = D(ε(ux) − ε̄S),(1.8)

St = c
(
T · ε̄− ψ̂′(S) + νSxx

)
|Sx|,(1.9)

which must be satisfied in QTe
. Here we have inserted ψS(ε, S) = −T · ε̄ + ψ̂′(S).

Since (1.7), (1.8) are linear, the inhomogeneous Dirichlet boundary condition for u
can be reduced in the standard way to the homogeneous condition. For simplicity we
thus assume that γ = 0. The initial and boundary conditions therefore are

u(t, x) = 0, (t, x) ∈ (0, Te) × ∂Ω,(1.10)

S(t, x) = 0, (t, x) ∈ (0, Te) × ∂Ω,(1.11)

S(0, x) = S0(x), x ∈ Ω.(1.12)

To define weak solutions of this initial-boundary value problem we note that because
of 1

2 (|y|y)′ = |y|, equation (1.9) is equivalent to

St − cν
1

2
(|Sx|Sx)x − c

(
T · ε̄− ψ̂′(S)

)
|Sx| = 0.(1.13)

Definition 1.1. Let b ∈ L∞(0, Te, L
2(Ω)), S0 ∈ L∞(Ω). A function (u, T, S)

with

u ∈ L∞(0, Te;W
1,∞
0 (Ω)),(1.14)

T ∈ L∞(QTe),(1.15)

S ∈ L∞(QTe
) ∩ L∞(0, Te;H

1
0 (Ω))(1.16)

is a weak solution to the problem (1.7)–(1.12) if (1.7), (1.8), (1.10) are satisfied weakly
and if, for all ϕ ∈ C∞

0 ((−∞, Te) × Ω),

(1.17)

(S, ϕt)QTe
− cν

1

2
(|Sx|Sx, ϕx)QTe

+ c
((
T · ε− ψ̂′(S)

)
|Sx|, ϕ

)
QTe

+ (S0, ϕ(0))Ω = 0.

The main result of this article is the following.
Theorem 1.1. For all S0 ∈ H1

0 (Ω) and b ∈ C(QTe
) with bt ∈ C(QTe

) there exists
a weak solution (u, T, S) of the problem (1.7)–(1.12), which in addition to (1.14)–(1.17)
satisfies

St ∈ L
4
3 (QTe

), Sx ∈ L
8
3 (0, Te;L

q(Ω)) for any 1 < q < ∞(1.18)
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and

(|Sx|Sx)x ∈ L
4
3 (QTe), Sxt ∈ L

4
3 (0, Te;W

−1, 4
3 (Ω)).(1.19)

The remaining sections are devoted to the proof of this theorem. The main
difficulty in the proof stems from the fact that the coefficient ν|Sx| of the highest order
derivative Sxx in (1.9) is not bounded away from zero and that it is not differentiable
with respect to Sx.

To prove Theorem 1.1 we therefore consider in section 2 a modified initial-
boundary value problem, which consists of (1.7), (1.8), (1.10)–(1.12) and

St − (cν|Sx|κ + κ)Sxx − c
(
T · ε̄− ψ̂′(S)

)
|Sx|κ = 0, x ∈ Ω, t > 0,(1.20)

with a constant κ > 0. Here we use the notation

|p|κ :=
|p|2√

κ2 + |p|2
.(1.21)

Since (1.20) is a uniformly parabolic equation, we can use a standard theorem to
conclude that the modified initial-boundary value problem has a sufficiently smooth
solution (uκ, Tκ, Sκ). For this solution we derive in section 3 a priori estimates inde-
pendent of κ.

To select a subsequence converging to a solution for κ → 0 we need a compact-
ness result. However, our a priori estimates are not strong enough to show that
the sequence Sκ

x is compact; instead, we can show only that the sequence |Sκ
x |Sκ

x ,
or more precisely an approximation to this sequence, has bounded derivatives and
thus is compact. It turns out that this is enough to prove existence of a solution.
For the compactness proof in section 4 we use the Aubin–Lions lemma; since one of
our a priori estimates for derivatives of the approximating sequence is valid only in
L1(0, Te;H

−2(Ω)), we must use the generalized form of this lemma given by Roub́icěk
[14], which is valid in L1.

The method of proof is limited to one space dimension, since for the a priori
estimates it is crucial that the term |Sx|Sxx in (1.9) can be written in the form
1
2 (|Sx|Sx)x. In the higher-dimensional case the corresponding term |∇xS|ΔxS cannot
be rewritten in this way. Yet, if in the case of two space dimensions new coordinates
(r, χ) are chosen such that r is constant on the level curves of the function (x1, x2) �→
S(t, x1, x2) and such that ∇xS(t, x) is a tangential vector to the curve χ = const,
then the evolution equation (1.3) can be written in the form

St = −c
(
ψS(ε(∇xu), S) − νSrr)|Sr| + cν|Sr|SrK,(1.22)

where K is the curvature of the curve r = const. Applying this formula, it might
be possible to prove existence in two space dimensions by iteration: Choose the
coordinate system (r, χ) to a known approximate solution S(n) and determine the
next iterate S(n+1) by solving the initial-boundary value problem to (1.1), (1.2),
(1.22), using the methods of our one-dimensional existence proof and considering

gn = cν|S(n)
r |S(n)

r K to be a known right-hand side. A solution would be obtained if
convergence of this procedure can be shown. The same idea could also be used in
three and higher space dimensions.
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2. Existence of solutions to the modified problem. In this section, we
study the modified initial-boundary value problem and show that it has a Hölder
continuous classical solution. To formulate this problem, let χ ∈ C∞

0 (R, [0,∞)) satisfy∫∞
−∞ χ(t)dt = 1. For κ > 0, we set

χκ(t) :=
1

κ
χ

(
t

κ

)
,

and for S ∈ L∞(QTe ,R) we define

(χκ ∗ S)(t, x) =

∫ Te

0

χκ(t− s)S(s, x)ds.(2.1)

The modified initial-boundary value problem consists of the equations

−T1x = b,(2.2)

T = D(ε(ux) − ε̄χκ ∗ S),(2.3)

St = (cν|Sx|κ + κ)Sxx + c(T · ε̄− ψ̂′(S))|Sx|κ ,(2.4)

which must hold in QTe , and of the boundary and initial conditions

u(t, x) = 0, (t, x) ∈ (0, Te) × ∂Ω,(2.5)

S(t, x) = 0, (t, x) ∈ (0, Te) × ∂Ω,(2.6)

S(0, x) = S0(x), x ∈ Ω.(2.7)

To formulate an existence theorem for this problem we need some function spaces:
For nonnegative integers m,n and a real number α ∈ (0, 1) we denote by Cm+α(Ω)
the space of m-times differentiable functions on Ω, whose mth derivative is Hölder
continuous with exponent α. The space Cα,α/2(QTe

) consists of all functions on QTe
,

which are Hölder continuous in the parabolic distance

d((t, x), (s, y)) :=
√
|t− s| + |x− y|2.

Cm,n(QTe
) and Cm+α,n+α/2(QTe

), respectively, are the spaces of functions, whose

x-derivatives up to order m and t-derivatives up to order n belong to C(QTe
) or to

Cα,α/2(QTe
), respectively.

Theorem 2.1. Let ν, κ > 0, Te > 0; suppose that the function b ∈ C(QTe
) has

the derivative bt ∈ C(QTe
) and that the initial data S0 ∈ C2+α(Ω) satisfy S0|∂Ω =

S0,x|∂Ω = S0,xx|∂Ω = 0. Then there is a solution

(u, T, S) ∈ C2,1(QTe
) × C1,1(QTe

) × C2+α,1+α/2(QTe
)

of the modified initial-boundary value problem (2.2)–(2.7). This solution satisfies Stx ∈
L2(QTe) and

max
QTe

|S| ≤ max
Ω

|S0|.(2.8)

Proof. Note first that if S is given, then for every t, (2.2), (2.3), (2.5) form a linear
elliptic boundary value problem for the unknown function x �→ (u(t, x), T (t, x)). In
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[3] it is shown that the unique solution is given by

u(t, x) = u∗

(∫ x

a

(χκ ∗ S)(t, y)dy − x− a

d− a

∫ d

a

(χκ ∗ S)(t, y)dy

)
+ w(t, x),(2.9)

T (t, x) = D(ε∗ − ε̄)(χκ ∗ S)(t, x) − Dε∗

d− a

∫ d

a

(χκ ∗ S)(t, y)dy + σ(t, x),(2.10)

where u∗ ∈ R3, ε∗ ∈ S3 are suitable constants depending only on ε̄ and D, and where
for every t ∈ [0, Te] the function (w(t), σ(t)) : Ω → R

3 × S3 is the solution to the
boundary value problem

−σ1x(t) = b(t),

σ(t) = Dε(wx(t)),

w(t)|∂Ω = 0.

Since by assumption b and bt belong to C(Q̄Te
), it follows that (w, σ) ∈ C2,1(Q̄Te)×

C1,1(Q̄Te). We insert (2.10) into (2.4) and obtain the equation

St = a1(Sx)Sxx + a2

(
t, x, S, Sx, χκ ∗ S, 1

d− a

∫ d

a

(χκ ∗ S)(t, y)dy

)
(2.11)

in QTe , where

a1(p) = cν|p|κ + κ

and

a2(t, x, S, p, r, s) = c
(
ε̄ ·D(ε∗ − ε̄)r − ε̄ ·Dε∗s + ε̄ · σ(t, x) − ψ̂′(S)

)
|p|κ .

The equations (2.11), (2.6), and (2.7) form an initial-boundary value problem with
nonlocal terms, which is equivalent to the problem (2.2)–(2.7). To prove Theorem 2.1
it therefore suffices to show that this initial-boundary value problem is solvable. This
follows from the following claim.

Theorem 2.2. Let Te > 0, M > 0, and suppose that the coefficient functions
a1 ∈ C1(R, [0,∞)) and a2 ∈ C1(QTe

× [−M,M ] × R × [−M,M ]2,R) satisfy the
equations and inequalities

a2(t, x, S, 0, r, s) = 0,(2.12)

μ1(1 + |p|)m−2 ≤ a1(p) ≤ μ2(1 + |p|)m−2,(2.13)

∣∣∣∣∂a1

∂p

∣∣∣∣ (1 + |p|)3 +

∣∣∣∣∂a2

∂p

∣∣∣∣ (1 + |p|) + |a2| ≤ μ3(1 + |p|)m,(2.14)

∣∣∣∣∂a2

∂x

∣∣∣∣ ≤ (μ4 + P (|p|))(1 + |p|)m+1,(2.15)

max

(
∂a2

∂S
,
∂a2

∂r
,
∂a2

∂s

)
≤ (μ4 + P (|p|))(1 + |p|)m,(2.16)
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where P (ρ) is a nonnegative continuous function that tends to zero for ρ → ∞,
μ1, . . . , μ4 are positive constants, and m is an arbitrary number.

If the number μ4 is sufficiently small, depending on the numbers M,μ1, μ2, μ3,
and P̂ = maxρ≥0 P (ρ), and if the initial data S0 ∈ C2+α(Ω̄, [−M,M ]) satisfy the
compatibility conditions S0|∂Ω = 0 and

a1(S0,x(x))S0,xx(x) + a2(0, x, S0(x), S0,x(x), r, s) = 0(2.17)

for all x ∈ ∂Ω and for all −M ≤ r, s ≤ M , then a solution S ∈ C2+α,1+α/2(QTe
) of the

problem (2.11), (2.6), and (2.7) exists. This solution has derivatives Stx ∈ L2(QTe) .
A proof of Theorem 2.2 is obtained by modification of the proof of the analo-

gous Theorem 5.2 in [11, p. 564], which is valid for the quasi-linear parabolic initial
boundary value problem

St = a1(Sx)Sxx + a2(t, x, S, Sx),

S(t, x) = 0, (t, x) ∈ (0, Te) × ∂Ω,

S(0, x) = S0(x), x ∈ Ω,

which does not contain nonlocal terms. The theorem in [11] states that if the co-
efficient functions satisfy the conditions (2.12)–(2.16) and if the initial data satisfy
compatibility and regularity conditions analogous the ones given above, then this
initial-boundary value problem has a solution S with the regularity stated in Theo-
rem 2.2. Actually, in [11] more general coefficient functions are considered. The proof
is based on the Leray–Schauder fixed point theorem. We leave the modification, which
is technical, to the reader.

End of the proof of Theorem 2.1. It is immediately seen that the coefficients a1

and a2 in (2.11) satisfy the relations (2.12)–(2.16) with m = 3. In particular, we can
choose μ1, μ2, μ3, P̂ such that the inequalities (2.15), (2.16) hold for every μ4 > 0,
with a suitable function P depending on μ4. Moreover, from the assumption S0|∂Ω =
S0,x|∂Ω = S0,xx|∂Ω = 0 together with (2.12) it follows that the compatibility condition
(2.17) holds. Thus, Theorem 2.2 asserts that a solution S ∈ C2+α,1+α/2(QTe

) of
(2.11), (2.6), (2.7) exists with Sxt ∈ L2(QTe

). The functions T and u with the
regularity stated in Theorem 2.1 are obtained from (2.10), (2.9). Finally, since a1(0) =
κ > 0 and a2(t, x, S, 0, r, s) = 0, we can apply [11, Theorem 2.9, p. 23] to (2.11) and
conclude that the estimate (2.8) holds.

3. A priori estimates. In this section we establish a priori estimates for solu-
tions of the modified problem, which are uniform with respect to κ. We remark that
the estimates in Lemma 3.1 and Corollary 1, though stated in the one-dimensional
case, can be generalized to higher space dimensions.

In what follows we assume that

0 < κ ≤ 1,(3.1)

since we consider the limit κ → 0. The L2(Ω)-norm is denoted by ‖ · ‖, and the letter
C stands for varies positive constants independent of κ. Supplementing (1.21), we
also use the notation

[p]κ :=
p|p|√
κ2 + p2

.(3.2)
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We start by constructing a family of approximate solutions to the modified problem.
To this end let Te be a fixed positive number, and choose for every κ a function
Sκ

0 ∈ C∞
0 (Ω) such that

‖Sκ
0 − S0‖H1

0 (Ω) → 0, κ → 0,(3.3)

where S0 ∈ H1
0 (Ω) are the initial data given in Theorem 1.1. We insert for S0 in

(2.7) the function Sκ
0 and choose for b in (2.2) the function given in Theorem 1.1.

These functions satisfy the assumptions of Theorem 2.1, and hence there is a solution
(uκ, Tκ, Sκ) of the modified problem (2.2)–(2.7), which exists in QTe . The inequality
(2.8) and Sobolev’s embedding theorem yield for this solution

sup
0<κ≤1

‖Sκ‖L∞(QTe ) ≤ sup
0<κ≤1

‖Sκ
0 ‖L∞(Ω) ≤ C.(3.4)

Remembering that σ in (2.10) belongs to C1,1(Q̄Te
), we conclude from (3.4) that also

max
QTe

|c(Tκ · ε− ψ̂′(Sκ))| ≤ C.(3.5)

Lemma 3.1. There holds for any t ∈ [0, Te]

‖Sκ
x (t)‖2 +

∫ t

0

∫
Ω

(ν|Sκ
x |κ + 2κ) |Sκ

xx|2dxdτ ≤ C.(3.6)

Proof. Observe first that Sκ
tx ∈ L2(QTe), by Theorem 2.1, which yields that for

almost all t

1

2

d

dt
‖Sκ

x (t)‖2 =

∫
Ω

Sκ
x (t)Sκ

xt(t)dx.

Using this relation and (3.5), we obtain, by multiplication of (2.4) by −Sκ
xx and

integration by parts with respect to x, where we take the boundary condition (2.6)
into account, that for almost all t

1

2

d

dt
‖Sκ

x‖2 +

∫
Ω

(ν|Sκ
x |κ + κ) |Sκ

xx|2dx =

∫
Ω

c(ψ̂′(Sκ) − Tκ · ε)|Sκ
x |κSκ

xxdx

≤ C

∫
Ω

|Sκ
x |κ|Sκ

xx|dx = C

∫
Ω

|Sκ
x |

1
2
κ |Sκ

x |
1
2
κ |Sκ

xx|dx

≤ ν

2

∫
Ω

|Sκ
x |κ|Sκ

xx|2dx +
2C2

ν

∫
Ω

(|Sκ
x |κ)2dx.(3.7)

We subtract the term ν
2

∫
Ω
|Sκ

x |κ|Sκ
xx|2dx on both sides of this inequality and use

Gronwall’s lemma to derive (3.6) from the resulting estimate, noting also (3.3).

Corollary 1. There holds for any t ∈ [0, Te]∫ t

0

∫
Ω

(|Sκ
x |κ|Sκ

xx|)
4
3 dxdτ ≤ C.(3.8)

Proof. By Hölder’s inequality, we have for some 2 > p ≥ 1, q = 2
p , and 1

q + 1
q′ = 1
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that ∫ t

0

∫
Ω

(|Sκ
x |κ|Sκ

xx|)
p
dxdτ

=

∫ t

0

∫
Ω

(|Sκ
x |κ)

p
2

(
(|Sκ

x |κ)
p
2 |Sκ

xx|p
)
dxdτ

≤
(∫ t

0

∫
Ω

(|Sκ
x |κ)

pq′
2 dxdτ

) 1
q′
(∫ t

0

∫
Ω

(|Sκ
x |κ)

pq
2 |Sκ

xx|pqdxdτ
) 1

q

≤
(∫ t

0

∫
Ω

(|Sκ
x |κ)

p
2−p dxdτ

) 2−p
2

(∫ t

0

∫
Ω

|Sκ
x |κ|Sκ

xx|2dxdτ
) p

2

.(3.9)

Inequality (3.6) implies for p
2−p ≤ 2, i.e., p ≤ 4

3 , that the right-hand side of (3.9) is
bounded.

Lemma 3.2. There hold∫ t

0

∫
Ω

∣∣([Sκ
x ]κ |Sκ

x |κ)x
∣∣ 4

3 dxdτ ≤ 2
8
3

∫ t

0

∫
Ω

||Sκ
x |κ Sκ

xx|
4
3 dxdτ ≤ C,(3.10) ∫ t

0

‖|Sκ
x |κ‖

8
3

L∞(Ω) dτ =

∫ t

0

‖[Sκ
x ]κ |Sκ

x |κ‖
4
3

L∞(Ω) dτ ≤ C.(3.11)

Proof. We first show that (3.11) is a consequence of (3.10). Equation (3.10) and
the Poincaré inequality imply

∫ t

0

‖ [Sκ
x ]κ |Sκ

x |κ − [Sκ
x ]κ |Sκ

x |κ‖
4
3

L
4
3
dτ ≤ C

∫ t

0

∫
Ω

∣∣([Sκ
x ]κ |Sκ

x |κ)x
∣∣ 4

3 dxdτ

≤ C,(3.12)

where for the function f = f(t, x) we have used the notation

f̄(t) =
1

|Ω|

∫
Ω

f(t, x)dx.

|Ω| is the volume of the domain Ω. Equations (1.21) and (3.2) imply |Sκ
x |κ ≤ |Sκ

x | and
| [Sκ

x ]κ | ≤ |Sκ
x |. From Lemma 3.1 we thus conclude

∫ t

0

∫
Ω

∣∣∣[Sκ
x ]κ |Sκ

x |κ
∣∣∣ 4

3

dxdτ ≤ 1

|Ω| 4
3

∫ t

0

∫
Ω

(∫
Ω

|Sκ
x |2dx

) 4
3

dxdτ

=
1

|Ω| 1
3

∫ t

0

‖Sκ
x‖

8
3 dτ ≤

∫ t

0

Cdτ ≤ Ct.(3.13)

Combination of the above two inequalities yields

∫ t

0

‖[Sκ
x ]κ |Sκ

x |κ‖
4
3

L
4
3 (Ω)

dτ ≤ C.(3.14)

Invoking (3.10), we assert that

[Sκ
x ]κ |Sκ

x |κ ∈ L
4
3 (0, Te;W

1, 4
3 (Ω)),
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whence by the Sobolev imbedding theorem we obtain∫ t

0

‖ [Sκ
x ]κ |Sκ

x |κ ‖
4
3

L∞(Ω)dτ ≤ C

∫ t

0

‖ [Sκ
x ]κ |Sκ

x |κ ‖
4
3

W 1, 4
3 (Ω)

dτ ≤ C.(3.15)

Thus (3.11) is proved, and it remains to verify (3.10).
To simplify the notation in the following computation we write y = Sκ

x . Using
that

([y]κ |y|κ)
x

=

(
y3|y|

κ2 + y2

)
x

=
2|y|3(2κ2 + y2)

(κ2 + y2)2
yx

= |y|κ
2|y|(2κ2 + y2)

(κ2 + y2)
3
2

yx,(3.16)

we obtain from Young’s inequality that

∣∣([y]κ |y|κ)x
∣∣ = |y|κ

2|y|(κ2 + y2)

(κ2 + y2)
3
2

|yx|

≤ 2|y|κ
1
3 |y|3 + 2

3 (κ2 + y2)
3
2

(κ2 + y2)
3
2

|yx|

= 2|y|κ
1
3 |y|2

3
2 + 2

3 (κ2 + y2)
3
2

(κ2 + y2)
3
2

|yx|

≤ 2| |y|κ yx| = 2| |Sκ
x |κ Sκ

xx|.(3.17)

Therefore, from (3.8) we have∫ t

0

∫
Ω

∣∣([Sκ
x ]κ |Sκ

x |κ)x
∣∣ 4

3 dxdτ ≤
∫ t

0

∫
Ω

|2 |Sκ
x |κ Sκ

xx|
4
3 dxdτ ≤ 2

4
3C,(3.18)

which is (3.10) and completes the proof of this lemma.

Lemma 3.3. The function Sκ
t belongs to L

4
3 (QTe), and we have the estimates

‖Sκ
t ‖L4/3(QTe ) ≤ C,(3.19)

‖Sκ
xS

κ
xt‖L1(0,Te;H−2(Ω)) ≤ C,(3.20)

‖ ([Sκ
x ]κ|Sκ

x |κ)t ‖L1(0,Te;H−2(Ω)) ≤ C.(3.21)

Proof. From (2.4) and the estimates (3.6), (3.5), and (3.8) we immediately see

that Sκ
t ∈ L

4
3 (QTe) and that (3.19) holds. Therefore we need to prove only the

remaining two estimates.
To prove the first one we show that there is a constant C, which is independent

of κ, such that ∣∣(Sκ
xS

κ
xt, ϕ)QTe

∣∣ ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω))(3.22)

for all ϕ ∈ L∞(0, Te;H
2
0 (Ω)). This estimate implies (3.20), since L1(0, Te;H

−2(Ω)) is
isometrically imbedded into the dual space of L∞(0, Te;H

2
0 (Ω)).

For the proof of (3.22) recall first that Sκ
xt ∈ L2(QTe), which implies that the

right-hand side is well defined. We integrate by parts to get

(Sκ
xS

κ
xt, ϕ)QTe

= (Sκ
t ,−Sκ

xxϕ)QTe
+ (Sκ

t ,−Sκ
xϕx)QTe

=: I1 + I2.(3.23)
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To estimate I1 we apply (2.4) and obtain

(Sκ
t ,−Sκ

xxϕ)QTe
=

(
(cν|Sκ

x |κ + κ)Sκ
xx + c

(
T · ε̄′ − ψ̂′(Sκ)

)
|Sκ

x |κ,−Sκ
xxϕ

)
QTe

.

(3.24)

We estimate the right-hand side of this equation term by term. For the first term we
obtain from Lemma 3.1

∣∣∣((cν|Sκ
x |κ + κ)Sκ

xx,−Sκ
xxϕ)QTe

∣∣∣ ≤ ‖ϕ‖L∞(QTe )

∫
QTe

(cν|Sκ
x |κ + κ)|Sκ

xx|2d(x, τ)

≤ C‖ϕ‖L∞(QTe ) ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)) .(3.25)

For the second term it follows from (3.5) and (3.8) that

∣∣(c(T · ε̄′ − ψ̂′(Sκ)
)
|Sκ

x |κ,−Sκ
xxϕ

)
QTe

∣∣ ≤ C‖ϕ‖L∞(QTe )

∫ Te

0

‖ |Sκ
x |κSκ

xx‖L1dτ

≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)).(3.26)

The estimates (3.25) and (3.26) together yield

|I1| ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)).(3.27)

Now we estimate I2. From (2.4) and (3.5) we have

I2 =
∣∣(Sκ

t , S
κ
xϕx)QTe

∣∣
=

∣∣((cν|Sκ
x |κ + κ)Sκ

xx + c
(
T · ε̄′ − ψ̂′(Sκ)

)
|Sκ

x |κ,−Sκ
xϕx

)
QTe

∣∣
≤ C

∫
QTe

(|Sκ
x |κ|Sκ

xx| + κ|Sκ
xx| + |Sκ

x |κ) |Sκ
xϕx|d(x, t)

=: C(I2,1 + I2,2 + I2,3).(3.28)

We are now going to deal with I2,1, I2,2, and I2,3. Using the Cauchy–Schwarz inequal-
ity and invoking the estimates (3.6), (3.8), and (3.11), we arrive at

(3.29)

I2,1 =

∫
QTe

|Sκ
x |κ|Sκ

xxS
κ
xϕx|d(x, t)

≤ C

∫ Te

0

‖|Sκ
x |κ‖

1
2

L∞(Ω)‖ϕx‖L∞(Ω)

∫
Ω

(|Sκ
x |κ)

1
2 |Sκ

xxS
κ
x |dxdτ

≤ C

∫ Te

0

‖|Sκ
x |κ‖

1
2

L∞(Ω) ‖ϕx‖L∞(Ω)

(∫
Ω

|Sκ
x |2dx

) 1
2
(∫

Ω

(
|Sκ

x |κ|Sκ
xx|2

)
dx

) 1
2

dτ

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω))

∫ Te

0

‖|Sκ
x |κ‖

1
2

L∞(Ω)

∥∥∥(|Sκ
x |κ)

1
2Sκ

xx

∥∥∥
L2

dτ

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω))

(∫ Te

0

‖|Sκ
x |κ‖L∞(Ω)dτ

) 1
2
(∫ Te

0

∥∥∥(|Sκ
x |κ)

1
2 Sκ

xx

∥∥∥2

L2(Ω)
dτ

) 1
2

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω)).



A MODEL WITH NONUNIFORMLY PARABOLIC TERMS 691

The other terms are easier to handle. It follows from the estimate (3.6) and the
assumption 0 < κ ≤ 1 that

I2,2 =

∫
QTe

κ|Sκ
xxS

κ
xϕx|d(τ, x)

≤ Cκ
1
2 ‖ϕx‖L∞(QT )

∫
QTe

κ
1
2 |Sκ

xx||Sκ
x |d(τ, x)

≤ Cκ
1
2 ‖ϕx‖L∞(QT )

(∫
QTe

κ|Sκ
xx|2dx

) 1
2
(∫

QTe

|Sκ
x |2d(τ, x)

) 1
2

≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω)).(3.30)

Finally, (3.6) and the fact that |Sκ
x |κ ≤ |Sκ

x | imply

I2,3 =

∫
QTe

|Sκ
x |κ|Sκ

xϕx|d(t, x)

≤ C‖ϕx‖L∞(QTe )

∫
QTe

|Sκ
x |2d(t, x)

≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)).(3.31)

The estimates (3.28)–(3.31) yield

|I2| ≤ C‖ϕ‖L∞(0,T ;H2
0 (Ω)) .

This inequality and (3.23), (3.27) together yield the desired estimate (3.22); hence
(3.20) follows.

To prove the third statement of the lemma we define

Rκ := (cν|Sκ
x |κ + κ)Sκ

xx + c
(
T · ε̄′ − ψ̂′(Sκ)

)
|Sκ

x |κ(3.32)

and set y = Sκ
x . Remembering that Sκ

xt ∈ L2(QTe
), we obtain as in (3.16) that

([y]κ |y|κ)t =
2|y|3(2κ2 + y2)

(κ2 + y2)2
yt.(3.33)

Multiply (2.4) by (
Sκ
xϕ

y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

=

(
ϕ
|y|3(2κ2 + y2)

(κ2 + y2)2

)
x

,

integrate the resulting equation with respect to (x, t) over QTe , and note (3.33) to
obtain

0 =

(
Sκ
t −Rκ,

(
Sκ
xϕ

y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

= −
(
Sκ
xt, S

κ
xϕ

y|y|(2κ2 + y2)

(κ2 + y2)2

)
QTe

−
(
Rκ,

(
Sκ
xϕ

y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

= −1

2

(
([Sκ

x ]κ |Sκ
x |κ)

t
, ϕ

)
QTe

−
(
Rκ,

(
Sκ
xϕ

y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

= −1

2

(
([Sκ

x ]κ |Sκ
x |κ)t , ϕ

)
QTe

−
(
Rκ, (S

κ
xxϕ + Sκ

xϕx)
y|y|(2κ2 + y2)

(κ2 + y2)2

)
QTe

−
(
Rκ, S

κ
xϕ

(
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

.(3.34)
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To estimate the last two terms on the right-hand side of this inequality we note that(
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

=
4|y|κ4

(κ2 + y2)3
yx.

Thus we have the inequalities∣∣∣∣y|y|(2κ2 + y2)

(y2 + κ2)2

∣∣∣∣ ≤ (y2 + κ2)2

(κ2 + y2)2
= 1

and ∣∣∣∣y
(
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

∣∣∣∣ =
4y2κ4

(κ2 + y2)3
|yx| ≤

4

3

(y2 + κ2)3

(κ2 + y2)3
|yx| =

4

3
|Sκ

xx|,

which yield the estimates∣∣∣∣∣
(
Rκ, (S

κ
xxϕ + Sκ

xϕx)
y|y|(2κ2 + y2)

(κ2 + y2)2

)
QTe

∣∣∣∣∣
≤ C

∫
QTe

|Rκ| (|Sκ
xxϕ| + |Sκ

xϕx|) d(τ, x)(3.35)

and ∣∣∣∣∣
(
Rκ, S

κ
xϕ

(
y|y|(2κ2 + y2)

(κ2 + y2)2

)
x

)
QTe

∣∣∣∣∣ ≤ C

∫
QTe

|RκS
κ
xxϕ|d(τ, x).(3.36)

The term
∫
QTe

|RκS
κ
xxϕ|d(τ, x) coincides with the right-hand side of (3.24), which was

estimated in (3.25)–(3.27) by C‖ϕ‖L∞(0,T ;H2
0 (Ω)). The term∫

QTe

|RκS
κ
xϕx|d(τ, x) =

∫
QTe

|Sκ
t S

κ
xϕx|d(τ, x)

was estimated in (3.28)–(3.31) by C‖ϕ‖L∞(0,T ;H2
0 (Ω)). These results and (3.34)–(3.36)

yield ∣∣∣(([Sκ
x ]κ|Sκ

x |κ)t , ϕ)QTe

∣∣∣ ≤ C‖ϕ‖L∞(0,Te;H2
0 (Ω)),

which implies (3.21).

4. Existence of solutions to the phase field model. In this section we use
the a priori estimates established in the previous section to study the convergence of
(uκ, Tκ, Sκ) as κ → 0. We shall show that there is a subsequence, which converges to
a weak solution of the initial-boundary value problem (1.7)–(1.12), thereby proving
Theorem 1.1.

Note first that the estimates (3.6), (3.19), the fact that Sκ(t, x) = 0 for all (t, x) ∈
[0, Te] × ∂Ω, and Poincaré’s inequality imply

‖Sκ‖W 1,4/3(QTe ) ≤ C ,(4.1)

for a constant C independent of κ. Hence, we can select a sequence κn → 0 and a
function S ∈ W 1,4/3(QTe) such that the sequence Sκn , which we again denote by Sκ,
satisfies

‖Sκ − S‖L4/3(QTe ) → 0, Sκ
x ⇀ Sx , Sκ

t ⇀ St ,(4.2)
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where the weak convergence is in L4/3(QTe
) .

As usual, since (1.9) is nonlinear, the weak convergence of Sκ
x is not enough to

prove that the limit function solves this equation. In the following lemma we therefore
show that Sκ

x converges pointwise almost everywhere.
Lemma 4.1. There exists a subsequence of Sκ

x (we still denote it by Sκ
x) such that

Sκ
x → Sx, a.e. in QTe ,(4.3)

[Sκ
x ]κ → Sx, |Sκ

x |κ → |Sx|, a.e. in QTe
,(4.4)

|Sκ
x |κ ⇀ |Sx|, [Sκ

x ]κ ⇀ Sx, weakly in L
4
3 (QTe

),(4.5)

[Sκ
x ]κ|Sκ

x |κ → Sx|Sx|, strongly in L
4
3 (0, Te;L

2(Ω)),(4.6)

as κ → 0.
The proof is based on the following two results.
Theorem 4.1. Let B0 be a normed linear space imbedded compactly into another

normed linear space B, which is continuously imbedded into a Hausdorff locally convex
space B1, and 1 ≤ p < +∞. If v, vi ∈ Lp(0, Te;B0), i ∈ N, the sequence {vi}i∈N

converges weakly to v in Lp(0, Te;B0), and {∂vi

∂t }i∈N is bounded in L1(0, Te;B1), then
vi converges to v strongly in Lp(0, Te;B).

Lemma 4.2. Let (0, Te) × Ω be an open set in R+ ×Rn. Suppose functions gn, g
are in Lq((0, Te) × Ω) for any given 1 < q < ∞, which satisfy

‖gn‖Lq((0,Te)×Ω) ≤ C, gn → g a.e. in (0, Te) × Ω.

Then gn converges to g weakly in Lq((0, Te) × Ω).
Theorem 4.1 is a general version of the Aubin–Lions lemma valid under the weak

assumption ∂tvi ∈ L1(0, Te;B1). This version, which we need here, is proved in [14].
A proof of Lemma 4.2 can be found in [12, p. 12].

Proof of Lemma 4.1. We choose p = 4
3 and

B0 = W 1, 4
3 (Ω), B = L2(Ω), B1 = H−2(Ω).

These spaces satisfy the assumptions of the theorem. Since the estimates (3.10) and
(3.21) imply that the sequence ([Sκ

x ]κ|Sκ
x |κ) is uniformly bounded in Lp(0, Te;B0) for

κ → 0 and ([Sκ
x ]κ|Sκ

x |κ)t is uniformly bounded in L1(0, Te;B1), it follows from The-
orem 4.1 that there is a subsequence, still denoted by ([Sκ

x ]κ|Sκ
x |κ), which converges

strongly in Lp(0, Te;B) = L
4
3 (0, Te;L

2(Ω)) to a limit function G ∈ L
4
3 (0, Te;L

2(Ω)).
Consequently, from this sequence we can select another subsequence, denoted in the
same way, which converges almost everywhere in QTe

. Using that the mapping
y �→ f(y) := y|y| has a continuous inverse f−1 : R → R, we infer that also the
sequence [Sκ

x ]κ = f−1([Sκ
x ]κ|Sκ

x |κ) converges pointwise almost everywhere in QTe .
From this we deduce also that the sequence Sκ

x converges pointwise almost every-
where. To see this, let yκ = Sκ

x , vκ = [Sκ
x ]κ and v = limκ→0 vκ. From

y4
κ = v2

κ(κ2 + y2
κ) = v2

κκ
2 + v2

κy
2
κ

we conclude

y4
κ − v2

κκ
2 − v2

κy
2
κ = 0,(4.7)

and hence

y2
κ =

v2
κ +

√
v4
κ + 4v2

κκ
2

2
,
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since the second solution of (4.7) is negative. Therefore, for κ → 0,

y2
κ =

v2
κ +

√
v4
κ + 4v2

κκ
2

2
→ v2 +

√
v4

2
= v2.

From the fact that sign(vκ) = sign(yκ) we thus obtain

|yκ − vκ|2 = y2
κ − 2yκvκ + v2

κ

= y2
κ − 2|yκ||vκ| + v2

κ → v2 − 2|v||v| + |v|2 = 0,(4.8)

and hence

lim
κ→0

Sκ
x = lim

κ→0
yκ = lim

κ→0
vκ = v = lim

κ→0
[Sκ

x ]κ.

Therefore Sκ
x converges pointwise almost everywhere in QTe

. Since Sκ
x ⇀ Sx weakly

in L
4
3 (QTe

), we conclude from Lemma 4.2 that Sκ
x → Sx and [Sx]κ → Sx almost

everywhere in QTe . This proves (4.3) and (4.4). Relation (4.4) yields [Sκ
x ]κ|Sκ

x |κ →
Sx|Sx| almost everywhere in QTe , which implies that the limit function G of [Sκ

x ]κ|Sκ
x |κ

is equal to Sx|Sx|. This proves (4.6).
To prove (4.5) we note that the estimate |[Sκ

x ]κ| = |Sκ
x |κ ≤ |Sκ

x | and the inequality
(4.1) together imply that the sequences [Sκ

x ]κ and |Sκ
x |κ are uniformly bounded in

L
4
3 (QTe). Thus, (4.5) is a consequence of (4.4) and Lemma 4.2.

Proof of Theorem 1.1. Define the functions u and T by

u(t, x) = u∗

(∫ x

a

S(t, y)dy − x− a

d− a

∫ d

a

S(t, y)dy

)
+ w(t, x),

T (t, x) = D(ε∗ − ε̄)S −Dε∗
1

d− a

∫ d

a

S(t, y)dy + σ(t, x),(4.9)

where for S we insert the limit function of the sequence Sκ given in (4.2), and where
u∗ ∈ R3, ε∗ ∈ S3, and (w, σ) are the same constants and functions as in (2.9) and
(2.10). We prove that (u, T, S) is a weak solution of problem (1.7)–(1.12).

To this end note that (3.4) and (4.2) imply S ∈ L∞(QTe
). From this relation,

from the above definition of u and T , and from (w, σ) ∈ C2,1(Q̄Te) × C1,1(Q̄Te),
we immediately see that u and T satisfy (1.14) and (1.15). Observe next that
‖Sκ‖L∞(0,Te;H1

0 (Ω)) ≤ C, by (3.6). This implies S ∈ L∞(0, Te;H
1
0 (Ω)), since we can

select a subsequence of Sκ which converges weakly to S in this space. Thus, S satisfies
(1.16).

It is shown in [3] that the functions u and T defined in this way satisfy (1.7),
(1.8), and (1.11). (We remarked this previously.) It therefore suffices to show that
(1.9) and (1.12) are fulfilled in the weak sense. By definition, these equations are
satisfied in the weak sense if the relation (1.17) holds. To verify (1.17) we use that,
by construction, (Tκ, Sκ) solves (2.4), (2.6), and (2.7). If we multiply (2.4) by a test
function ϕ ∈ C∞

0 ((−∞, Te) × Ω) and integrate the resulting equation over QTe
, we

obtain

0 = (Sκ
t , ϕ)QTe

+
(
− (cν|Sκ

x |κ + κ)Sκ
xx − c

(
Tκ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)
QT

= −(Sκ
0 , ϕ(0))Ω − (Sκ, ϕt)QTe

+
(
cν

∫ Sκ
x

0

|y|κdy + κSκ
x , ϕx

)
QTe

+
(
c
(
Tκ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)
QTe

.
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Equation (1.17) follows from this relation if we show that

(Sκ
0 , ϕ(0))Ω → (S0, ϕ(0))Ω,(4.10)

(Sκ, ϕt)QTe
→ (S, ϕt)QTe

,(4.11)

(∫ Sκ
x

0

|y|κdy, ϕx

)
QTe

→
(

1

2
|Sx|Sx, ϕx

)
QTe

,(4.12)

((
Tκ · ε̄− ψ̂′(Sκ)

)
|Sκ

x |κ, ϕ
)
QTe

→
((
T · ε̄− ψ̂′(S)

)
|Sx|, ϕ

)
QTe

,(4.13)

(κSκ
x , ϕx)QTe

→ 0,(4.14)

for κ → 0. Now, the relation (4.10) follows from (3.3), the relation (4.11) is a conse-
quence of (4.2), and the relation (4.14) is obtained from (4.1). To prove (4.12) we use
that∫ Sκ

x

0

|y|κdy −
1

2
Sx|Sx| =

(∫ Sκ
x

0

|y|κdy −
1

2
[Sx]κ|Sx|κ

)
+

1

2
([Sx]κ|Sx|κ − Sx|Sx|)

=: I1 + I2.(4.15)

The relation (4.6) implies

‖I2‖
L

4
3 (0,Te;L2(Ω))

→ 0(4.16)

for κ → 0. Moreover,

|I1| =

∣∣∣∣∣
∫ Sκ

x

0

|y|κdy −
∫ Sκ

x

0

|y|dy
∣∣∣∣∣ =

∣∣∣∣∣
∫ Sκ

x

0

(
y2√

κ2 + y2
− |y|

)
dy

∣∣∣∣∣
≤

∫ |Sκ
x |

0

|y|√
κ2 + y2

∣∣∣√κ2 + y2 − |y|
∣∣∣ dy ≤

∫ |Sκ
x |

0

κdy = κ|Sκ
x |,

whence (3.6) implies

‖I1‖
L

4
3 (0,Te;L2(Ω))

≤ C‖I1‖L2(QTe ) ≤ Cκ → 0

for κ → 0. From this relation and from (4.15), (4.16) we obtain∥∥∥∥∥
∫ Sκ

x

0

|y|κdy −
1

2
Sx|Sx|

∥∥∥∥∥
L

4
3 (0,Te;L2(Ω))

→ 0,

which implies (4.12). To verify (4.13) we note that (2.10) and (4.9) yield

Tκ(t, x) − T (t, x)

= D(ε∗ − ε̄)(χκ ∗ Sκ − S)(t, x) − Dε∗

d− a

∫ d

a

(χκ ∗ Sκ − S)(t, y)dy.(4.17)
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From (2.1) and (4.2) we conclude that

‖χκ ∗ Sκ − S‖
L

4
3 (QTe )

≤ ‖χκ ∗ (Sκ − S)‖
L

4
3 (QTe )

+ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

≤ ‖(S − χκ ∗ S)‖
L

4
3 (QTe )

+ ‖Sκ − S‖
L

4
3 (QTe )

→ 0

for κ → 0. Since ε∗ and ε̄ are constants, we infer from this relation and from (4.17)
that

‖T − Tκ‖
L

4
3 (QTe )

→ 0

for κ → 0. Thus, after selecting a subsequence we have Tκ → T almost everywhere
in QTe . Putting this together with (4.3) and (4.4), we see that (Tκ · ε̄− ψ̂′(Sκ))|Sκ

x |κ
tends to (T · ε̄ − ψ̂′(S))|Sx| almost everywhere in QTe

. Since (3.6) and (3.5) imply

that (Tκ · ε̄− ψ̂′(Sκ))|Sκ
x |κ is uniformly bounded in L2(QTe), we deduce from Lemma

4.2 that

(Tκ · ε̄− ψ̂′(Sκ))|Sκ
x |κ ⇀ (T · ε̄− ψ̂′(S))|Sx|,

weakly in L2(QTe
), which implies (4.13). Consequently (1.17) holds.

It remains to prove that the solution has the regularity properties stated in (1.18)

and (1.19). The relation St ∈ L
4
3 (QTe) is implied by (4.2). To verify the second

assertion in (1.18), we use estimate (3.11) to get

∫ Te

0

‖[Sκ
x ]κ‖

8
3

Lq(Ω)dt ≤ C

for any 1 < q < ∞, since Ω is bounded. Using this estimate and (4.4), we infer

from Lemma 4.2 that [Sκ
x ]κ ⇀ Sx in L

8
3 (0, Te;L

q(Ω)), whence Sx ∈ L
8
3 (0, Te;L

q(Ω))
follows.

To prove (1.19), we recall that [Sκ
x ]κ|Sκ

x |κ converges to |Sx|Sx strongly in the space

L
4
3 (0, Te;L

2(Ω)) ⊂ L
4
3 (QTe) and that ([Sκ

x ]κ|Sκ
x |κ)x is uniformly bounded in L

4
3 (QTe)

for κ → 0, by (3.10). This taken together implies that (|Sx|Sx)x ∈ L
4
3 (QTe). Finally,

to prove the second assertion of (1.19) we choose a test function ϕ ∈ L4(0, Te;W
1,4
0 (Ω)),

multiply (2.4) by −ϕx, and integrate the resulting equation over QTe
to obtain

0 = (Sκ
t −Rκ,−ϕx)QTe

= (Sκ
xt, ϕ)QTe

+ (Rκ, ϕx)QTe
,(4.18)

with Rκ defined in (3.32). Invoking the estimates (3.6), (3.5), and (3.8), we deduce
that

‖Rκ‖
L

4
3 (QTe )

≤ C,

and hence (4.18) yields

(Sκ
xt, ϕ)QTe

≤ ‖Rκ‖
L

4
3 (QTe )

‖ϕx‖L4(QTe ) ≤ C‖ϕ‖L4(0,Te;W 1,4
0 (Ω)) ,

which means that Sκ
xt is uniformly bounded in L

4
3 (0, Te;W

−1, 4
3 (Ω)). From this esti-

mate and from Sκ
t ⇀ St in L

4
3 (QTe) we deduce easily that Sxt belongs to the dual

space of L4(0, Te;W
1,4
0 (Ω)), which is L

4
3 (0, Te;W

−1, 4
3 (Ω)).
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Appendix. Background of the model. We briefly sketch the physical back-
ground, the sharp interface model, and the derivation of the diffusive interface model
(1.1)–(1.5) from this sharp interface model.

Material phases are characterized by the structure of the crystal lattice, in which
the atoms are arranged. An interface between different material phases moves if
the crystal lattice in front of the interface is transformed from one structure to the
other. Often phase transformations are triggered by diffusion processes. A well-
known model for diffusion dominated transformations is the Cahn–Hilliard equation.
Here we consider a sharp interface model for diffusionless transformations, also called
martensitic transformations; cf. [9, p. 162]. This sharp interface model is an initial-
boundary value problem for the unknown functions u, T and for the unknown interface
Γ(t) ⊆ Ω between two material phases, which is a free boundary. It consists of (1.1),
(1.2); of the interface conditions

s(t, x)[S](t, x) = c
(
−〈T 〉(t, x) · ε̄ [S](t, x) + [ψ̂(S)](t, x)

)
,(A.1)

[u](t, x) = 0, [T ](t, x)n(t, x) = 0,(A.2)

which must hold for x ∈ Γ(t); of a Dirichlet boundary condition for u; and of the
initial condition (1.5). We use the notation [f ] = f+ − f− and 〈f〉 = 1

2 (f+ + f−),
where f+, f− are the limit values of the function f on both sides of Γ(t). Moreover,
s(t, x) ∈ R

3 denotes the normal speed of the interface Γ(t), which is measured as
positive in the direction for which [S](t, x) is positive. Here c is a positive constant.

Equation (A.1), a constitutive equation, determines the normal speed s of the

phase interface as a function of the term −〈T 〉 · ε̄[S] + [ψ̂(S)]. Some computations
show that this term is equal to the expression n · [C]n with the Eshelby tensor C
and the normal vector n to Γ(t) (cf. [3]) and thus is a configurational force. We
assume that s depends linearly on the configurational force, which is the most simple
constitutive assumption. Thus, in this model the evolution of the phase interface is
driven by the configurational force along the interface, an assumption appropriate for
martensitic transformations.

Though configurational forces were introduced in the first half of the last century,
it was clearly stated for the first time in [1] that (1.1), (1.2), (A.1), (A.2) form a closed
initial-boundary value problem. Applications of this model can be found, for example,
in [6, 13, 15], where equilibrium configurations for materials with phase transitions
are determined, and in [10], where the evolution of phase interfaces in ferroelectric
materials is modeled. In a sense, this free initial-boundary value problem from solid
mechanics is comparable to the Stefan problem in fluid mechanics.

The initial-boundary value problem (1.1)–(1.5) can be considered to be a regu-
larization of this sharp interface model, which could be used to prove existence of
solutions of the sharp interface model, and it can also be considered to be a diffusive
interface model for martensitic phase transitions, which is useful by itself and avoids
some disadvantages of the model with sharp interfaces. We are interested in both
aspects.

The derivation of (1.1)–(1.5) given in [2, 3] uses a rigorous method. To make
the model plausible, we derive the model here in a different, short, but formal way.
To this end we replace the phase interface Γ(t), across which the order parameter
jumps from 0 to 1, by finitely many interfaces parallel to the original interface, and
consider a new order parameter, again denoted by S, with small jumps across these
interfaces, such that the sum of the jumps is equal to 1. We assume that the new order
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parameter satisfies (A.1) and (A.2) along all interfaces. If we increase the number of
interfaces and decrease the jump height, the new order parameter will converge to a
continuous or even differentiable order parameter, for which the normal speed of the
level manifolds is equal to the limit of the normal speed of the interfaces. For this
limit speed we obtain from (A.1)

s(t, x) = c lim
[S]→0

(−〈T 〉 · ε̄ + ψ̂′(S∗)) = c(−T · ε̄ + ψ̂′(S)) = c ψS(ε(∇xu), S).

The limit order parameter thus satisfies the Hamilton–Jacobi transport equation

St = −c ψS(ε(∇xu), S) |∇xS|,(A.3)

since the level manifolds of solutions of this equation have this normal speed.
The idea suggests itself to approximate the solution of the sharp interface model

by smooth solutions (u, T, S) of the system (1.1), (1.2), (A.3). Yet, examples in one
space dimension show that in general the function S in such a smooth solution develops
a jump after finite time. The reason for this is that the function ψ̂′ appearing in ψS

is not monotone, since ψ̂ is a double well potential. After S has developed a jump,
(A.3) can no longer be used to govern the evolution of S. To avoid this problem and
to force solutions to stay smooth, (A.3) has been replaced by (1.3), which contains
the regularizing term ν|∇xS|ΔxS with the small positive parameter ν. This yields
the model (1.1)–(1.5).

The choice of this special regularizing term follows from the second law of ther-
modynamics, which every model must satisfy. This law requires that there exist a
free energy ψ∗ and a flux q such that ∂

∂t ψ
∗ + divxq ≤ b · ut holds; cf. [4]. If we choose

ψ∗(ε, S,∇xS) = ψ(ε, S) +
ν

2
|∇xS|2, q(ε, ut, S,∇xS, St) = −(Tut) − ν (St∇xS),

it follows by a short computation for solutions (u, T, S) of (1.1), (1.2) that

∂

∂t
ψ∗(ε, S,∇xS) − divx(Tut) − ν divx(St∇xS) − b · ut = (ψS(ε, S) − νΔxS)St.

Inserting (1.3) into this equation shows that the right-hand side is nonpositive, whence
the second law is fulfilled. This would not be true for the standard regularization
St = −cψS(ε(∇xu), S) |∇xS| + νΔS of (A.3).
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Abstract. We investigate bifurcations of stationary periodic solutions of a convective Cahn–
Hilliard equation, ut+Duux+(u−u3+uxx)xx = 0, describing phase separation in driven systems, and
study the stability of the main family of these solutions. For the driving parameter D < D0 =

√
2/3,

the periodic stationary solutions are unstable. For D > D0, the periodic stationary solutions are
stable if their wavelength belongs to a certain stability interval. It is therefore shown that in a driven
phase-separating system that undergoes spinodal decomposition the coarsening can be stopped by
the driving force, and formation of stable periodic structures is possible. The modes that destroy
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Key words. Cahn–Hilliard equation, pattern formation, stability

AMS subject classifications. 35B10, 35B32, 35K35, 70K44, 74N20

DOI. 10.1137/040615766

1. Introduction. In recent decades, the spontaneous formation of spatially in-
homogeneous patterns has been an object of extensive investigations. Many phe-
nomena have been understood by using the complex Ginzburg–Landau equation [1]
as a basic model. However, this equation is not valid when the growth or decay of
a spatially homogeneous disturbance is forbidden by symmetry arguments or by a
conservation law, and therefore such a disturbance is neutrally stable. The instability
spectrum contains a neutrally stable mode, with the zero wavenumber corresponding
to infinitesimal shift of the stationary solution [2]. In this case the situation is much
more intricate, and there is a variety of different order parameter equations that de-
scribe the nonlinear evolution of long-wave disturbances, depending on the symmetry
of the problem [3].

In the case of a monotonic instability, the nonlinear evolution of long-wave dis-
turbances is typically described by the Kuramoto–Sivashinsky (KS) equation

ut + uxxxx + uxx − κ1(u
2)x = 0,(1.1)

where u(x, t) is the order parameter and κ1 is a constant. This equation has been
derived in a large number of physical contexts; e.g., it describes the instability of
oscillations in reaction-diffusion systems [4], the instability of a flame front [5], film
flow instability [6, 7], and instability of solidification fronts [8, 9, 10]. Though for
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the KS equation there exists an interval of locally stable spatially periodic stationary
solutions [7, 11, 12], the most remarkable type of dynamics is spatio-temporal chaos
[13, 14].

If the problem is invariant with respect to the reflection x → −x, as well as to
the transformation u → −u, the appropriate order parameter equation is the Cahn–
Hilliard (CH) equation,

ut + uxxxx + uxx − κ2(u
3)xx = 0.(1.2)

This equation, originally proposed as a model of the phase-transition kinetics with a
conserved order parameter [15], arises in many physical problems, including faceting
transition by a temperature change [16, 17], secondary flows produced by the insta-
bility of the Kolmogorov flow [18], and zigzag instability of convection patterns [19].
Unlike the KS equation, the CH equation is potential; i.e., it has a Lyapunov functional
that monotonically decreases with time. The characteristic feature of the dynamics
governed by the CH equation is the formation of kinks, i.e., domain walls between
domains with nearly constant values of the order parameter. Stationary solutions
of the CH equation, which can be represented as equidistant sequences of kinks, are
unstable with respect to disturbances that change the distances between kinks [20, 18]
and lead to an exponentially slow coarsening of the structure [21, 22].

Recently, a nonpotential modification of the CH equation, the convective (or
driven) Cahn–Hilliard (CCH) equation,

ut + uxxxx + uxx − κ1(u
2)x − κ2(u

3)xx = 0,(1.3)

has been attracting a great deal of attention. This equation, containing nonlinearities
typical of both KS and CH equations, has been proposed to describe several physical
processes, namely spinodal decomposition of phase separating systems in an external
field [23, 24, 25], step instability on a crystal surface [26], faceting of growing thermo-
dynamically unstable surfaces [27, 28, 29, 30, 31], as well as dewetting of a thin film
flowing down an inclined plane [32]. A coordinate-invariant form of this equation has

been derived in [33, 34]. Depending on the value of the parameter D = 2κ1/κ
1/2
2 that

characterizes the relative “strength” of the two nonlinearities, one can observe the
coarsening of kinks (for small D) [25, 28, 29, 31], spatio-temporal chaos (for large D)
[26, 30], as well as other dynamic regimes [26, 30]. A characteristic feature of the dy-
namics governed by the CCH equation at intermediate values of D is the appearance
of wavy regimes with a simple temporal behavior (stationary and traveling waves) but
with a complicated spatial structure [30].

The present paper is devoted to the investigation of stationary patterns governed
by the CCH equation. The bifurcations of stationary solutions are discussed in sec-
tion 2. The stability analysis is performed in section 3.

2. Stationary solutions.

2.1. Formulation of the problem. Let us rescale the variable u, u(x) =

U(x)/(κ2)
1/2, and define D = 2κ1/κ

1/2
2 . The CCH equation (1.3) is transformed

into the form

Ut + (Uxx + U − U3)xx − D

2
(U2)x = 0.(2.1)

In the present paper we consider stationary solutions U = U(x) of (2.1) in the
infinite region −∞ < x < ∞. Only solutions bounded at infinity are relevant. In-
tegrating the corresponding ordinary differential equation ((2.1) with Ut = 0), one
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obtains the following problem:

Uxxx + (U − U3)x − D

2
U2 = −D

2
A, −∞ < x < ∞,(2.2)

x → ±∞, |U | < ∞.(2.3)

Recall that for D = 0, which corresponds to the CH equation, all stationary
solutions of (2.2) can be found analytically [35]. In the opposite limit, D → ∞
(the KS equation), the set of stationary solutions is much more complicated than in
the case of the CH equation. Bifurcations of periodic stationary and traveling-wave
solutions of the KS equation were studied in [36, 37]. Later, without loss of generality,
we assume D > 0.

It is convenient to investigate the bifurcations of stationary states of (2.1) in
terms of the dynamical system defined by (2.2) with parameters D and A. Notably,
this dynamical system is measure-preserving. It is also reversible, i.e., invariant with
respect to inversion, x → −x, U → −U , as well as invariant with respect to translation
x → x + C. Accordingly, all stationary solutions are either invariant with respect to
these transformations, or (up to an arbitrary shift along x) exist in pairs: if U(x+C)
is a family of solutions, then −U(C − x) is also a family of solutions. Both families
may coincide.

2.2. Constant and heteroclinic solutions. For A = 0 the only bounded
solution of the problem (2.2), (2.3) is the trivial equilibrium solution U = 0. The
linearized problem possesses three eigenvalues on the imaginary axis: λ1 = 0 and
λ2,3 = ±i; accordingly, the equilibrium state is structurally unstable. Increasing
A removes the degeneracy: the equilibrium splits into two constant solutions, U =
U± = ±

√
A; besides, the imaginary eigenvalues are responsible for the creation of the

periodic (with respect to x) orbit with period ≈ 2π whose amplitude locally grows as
∼

√
A (for small A); below, this orbit will be referred to as the “main family.”
In fact, the equilibria and the closed orbit are merely the simplest solutions born

in the course of unfolding the degeneracy: formation of the complicated invariant set
was investigated for the KS equation, where it was called the “cocoon bifurcation” [38].
For our purposes, however, these simple stationary states suffice.

Let us start the analysis of the problem (2.2), (2.3) with the consideration of the
equilibrium points U = U± = ±

√
A. Consider perturbations of the constant solution,

U = U± + Ũ(x), Ũ(x) ∼ eλx, and linearize (2.2) to obtain the following equation for
the eigenvalues:

λ3 + (1 − 3A)λ∓D
√
A = 0.(2.4)

All eigenvalues are real if

D2 ≤ D2
∗ =

4(3A− 1)3

27A
, A >

1

3
.(2.5)

Otherwise, two eigenvalues are complex conjugate, and the third one is real. For the
equilibrium point U = U+ =

√
A, one of the eigenvalues is positive and the other two

eigenvalues are either negative or have negative real parts. The unstable manifold
Wu(U+) is one-dimensional, while the stable manifold W s(U+) is two-dimensional.
For the symmetric counterpart of U+, the solution U− = −

√
A, the eigenvalues have
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Fig. 1. Different negative kinks at D = 0.1: (a) A = 0.929289 (solution (2.7)), (b) A =
0.799874, (c) A = 0.685489, (d) A = 0.588339.

opposite signs; hence its stable manifold W s(U−) is one-dimensional, and its unstable
manifold Wu(U−) is two-dimensional.

Heteroclinic solutions (“kinks”) joining the equilibrium points U = U+ and U =
U− correspond to trajectories on M+ = Wu(U−) ∩ W s(U+) (“positive kinks”) and
M− = Wu(U+) ∩ W s(U−) (“negative kinks”). As a matter of fact, there are exact
solutions of this kind [23], one for a positive kink with A = A+ = 1 + D/

√
2,

U = U+(x) = U0
+ tanh

U0
+√
2
(x− x0),(2.6)

U0
+ =

√
1 + D/

√
2, x0 = const,

and the other for a negative kink with A = A− = 1 −D/
√

2, D <
√

2,

U = U−(x) = −U0
− tanh

U0
−√
2
(x− x0),(2.7)

U0
− =

√
1 −D/

√
2, x0 = const.

Since the manifolds W s(U+) and Wu(U−) are two-dimensional for any A > 0, their
intersection in the three-dimensional phase space is generic, and therefore the solution
(2.6) is a representative of a family of positive kinks U+(x;A). A negative kink requires
matching of two one-dimensional manifolds in the three-dimensional space, which is
not generic, but a codimension-2 event. The symmetry reduces the codimension of
this event to 1. Accordingly, we can expect that, for a given D, negative kinks exist
only for isolated values of A. Solution (2.7) appears to have the largest value of A
and the simplest spatial profile among the possible negative kinks. Several examples
of negative kinks are shown in Figure 1.

Among the presented negative kinks only the solution (2.7) is monotonic; the
others have additional humps. At very small values of D these humps almost reach
the value U0

+; as D grows, the humps become smaller, and for D > 0.3 the profiles of all
negative kinks become practically monotonic. As seen in Figure 2, on the parameter
plane of D and A the lines of existence of negative kinks issue from the singular point
D = 0, A = 1. With growth of D the corresponding values of A rapidly decrease; in the
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from the main periodic solution, multipliers of the latter being exp(2πip/q); filled circle: point
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domain of small A, where the equilibrium solutions approach each other (recall that
A = 0 corresponds to the saddle-center bifurcation), these lines become involved in
the intricate pattern of the “cocoon bifurcation” [38]. Bifurcation curves for periodic
solutions were obtained with the help of the original code, which combines the Newton
algorithm on a suitable Poincaré surface with polynomial continuation in the extended
parameter space.

In the phase space, a negative kink provides a connection from U = U+ = U0
−

to U = U− = −U0
−; since the positive kink is generic, the “backward” link is always

there, and hence the presence of the negative kink implies the existence of a hetero-
clinic contour that connects the points U+ and U−. Accordingly, in the parameter
plane each point that represents a negative kink also corresponds to a heteroclinic
contour.

The scenario of the breakup of a heteroclinic contour depends on the eigenvalues
of participating points of the equilibrium. The lines of existence of all contours start in
the domain where the inequality (2.5) holds, all eigenvalues are real, and the equilibria
are saddle points. With the increase of D these lines cross the boundary (curve ssf
in Figure 2) on which saddles turn into saddle-foci.

The heteroclinic contour that includes the solution (2.7) (located on the line het
in Figure 2) plays the principal role in the evolution of stationary patterns. For this
contour the eigenvalues of the points U± = ±

√
A are

λ1 =

∓
(√

1 −D/
√

2 +
√

1 − 3D/
√

2

)
√

2
,

λ2 =

∓
(√

1 −D/
√

2 −
√

1 − 3D/
√

2

)
√

2
,

λ3 = ±
√

1 −D/
√

2 ·
√

2.
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These eigenvalues are real if D ≤ D0 =
√

2/3 ≈ 0.47; otherwise two of them are
complex conjugate and the third one is real.

2.3. Bifurcations of periodic solutions. Let us now consider solutions of
(2.2) satisfying the periodicity condition

U(x + l) = U(x), l > 0.(2.8)

Obviously, for this class of solutions

A = 〈U2〉 =
1

l

∫ l

0

U2(x)dx.(2.9)

Since the dynamical system (2.2) is volume-preserving, the product of Floquet
multipliers (eigenvalues of the monodromy matrix) for every periodic solution equals 1.
Accordingly, such solutions have either two complex-conjugate multipliers on the unit
circle (periodic orbit of elliptic type) or two real eigenvalues, one of them outside
of the unit circle (periodic orbit of hyperbolic type). For an elliptic orbit, variation
of parameters lets multipliers μ1,2 = exp(±2πiφ) wander along the circle; passage
of φ through each rational number p/q is accompanied by the “period q-tupling”:
branching of a periodic solution whose period is q times larger than the period of the
original orbit. The details of the branching depend on q [39, 40]. For q = 2 and q ≥ 5
the bifurcation is “one-sided”: in the parameter space the newborn periodic solutions
exist on only one side of the branching point. For q = 3 and q = 4, on the contrary,
the bifurcation is “two-sided” (transcritical): new branches exist on both sides of
the critical parameter value. On one of these branches the periodic solutions are of
elliptic type (and, therefore, give rise to secondary sequences of similar bifurcations);
the other branch corresponds to solutions of hyperbolic type.

One can see that, due to the symmetry properties of the equation, if U(x) is a
periodic solution of (2.2) with a certain value of A and

〈U〉 =
1

l

∫ l

0

U(x)dx = C,

then Ũ(x) = −U(2x0 −x), x0 = const, is also a solution of (2.2) for the same value of
A; obviously, 〈Ũ〉 = −C. The solutions U(x) and Ũ(x) can coincide. In this case the
solution U(x) is odd (antisymmetric to reflections) with respect to the point x = x0,
and C = 0.

In the present paper, we focus on the “main” family of odd stationary periodic
solutions: the family which bifurcates from the trivial solution U(x) = 0 with the
increase of A from zero. In the case of the CH equation, D = 0, this family exhausts
the set of odd stationary solutions that can be calculated analytically (using elliptic
Jacobi functions). The wavelength l grows monotonically with A. In the limit A →
1, the wavelength tends to infinity, and the periodic solution is transformed into
heteroclinic (kink) solutions U(x) = ± tanh((x− x0)/

√
2).

For D = 0, the main family with finite values of A was calculated numerically.
For small values of A the periodic orbit is elliptic; with the increase of A it undergoes
a countable set of bifurcations that create new periodic orbits (see [39, 40]). Several
curves corresponding to such bifurcations are shown by dashed and dash-dotted lines
in Figure 2. The last of those bifurcations is the period-doubling, which occurs on the
line pd1 where the main solution has two multipliers equal to –1; immediately beyond
this line the solution is hyperbolic.
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Fig. 3. Sketch of the dependence A = 〈U2〉 on the wavenumber K of the main stationary
solution. (a) D < D0 = 0.4714 . . . , (b) D0 < D < D1 = 0.8254 . . . , (c) D > D1; the dashed
curve corresponds to the stationary solution with doubled period. The main family terminates in the
“noose bifurcation.”

Depending on D, one can distinguish three different types of interrelation between
A and the wavelength of the periodic solution (Figure 3).

In the region 0 < D < D0 =
√

2/3, the main family exists for 0 < A < A− =
1−D/

√
2, i.e., just for all A below the value corresponding to the principal heteroclinic

contour discussed above (see Figure 2, line het). The dependence of the wavelength
l on the parameter A (or the dependence of A on the wavenumber K = 2π/l) is
monotonic, and the wavelength tends to infinity as A approaches A−.

In the region D0 < D < D1 ≈ 0.8254, the solutions which belong to the main
family exist for any l > 2π, but the dependence of A on l becomes nonmonotonic, and
thus the inverse dependence of l on A is not univalued (see Figure 3(b)). There exists
a countable set of values of l for which the function A(l) has maxima and minima.
At the extrema of A(l) that can be called turning points, a pair of periodic solutions
appears/disappears through a saddle-center bifurcation. Note that in the turning
point both multipliers of the periodic orbit equal 1; accordingly, each turning point is
a joint of two segments: one hyperbolic and the other elliptic. On the elliptic segment
a new set of q-tupling bifurcations takes place. The absolute maximum of A(l) is, in
a sense, the “ultimate” saddle-center bifurcation: numerical evidence suggests that
beyond this value of A no periodic solutions of (2.2) exist. In the bifurcation diagram
of (2.2), displayed in Figure 2, the last saddle-center bifurcation is shown by the line
tp, which (as well as the countable set of lines of other saddle-center bifurcations)
starts in the point D = D0, A = 1 − D0/

√
2 = 2/3, and proceeds to higher values

of D.
In the case D > D1, the configuration of the main branch of periodic solutions

changes again (see Figure 3(c)): there remains only one turning point. Plotting,
instead of l(A), the dependence of a suitable geometrical characteristic of the orbit
(we use for this purpose the value of du/dx at u = 0) on A, we observe in Figure 4
that the curve of the main family goes back and closes onto itself, forming a kind of a
noose. This phenomenon was described in the context of the KS equation [36, 37, 41],
where, for obvious reasons, it was named the noose bifurcation. The noose closes in the
point of the period-doubling bifurcation (line pd1 in bifurcation diagram of Figure 2).
More precisely, the stationary periodic solution, antisymmetric with respect to the
point x = x0, can be expanded into a Fourier series

U(x;A) =

∞∑
n=1

an(A) sin
2πn

l
(x− x0).(2.10)

On the upper branch of the noose, when A decreases and approaches the bifurcation
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Fig. 4. Transformations of the phase portrait along the noose branch; D = 5. Bifurcation
points: pd1,2 = period-doubling bifurcations, tp = turning point (saddle-center), sb = symmetry-
breaking (pitchfork).

value Apd1 , all coefficients with odd values of n tend to zero. Thereby, the solution
with the period l from the upper branch tends to the solution with the period 2l
from the lower branch. Subplots of Figure 4 show different stages of continuous
transformation of the phase portrait from the closed curve with two loops into the
curve with one loop. An additional loop of the orbit, created by the period-doubling
bifurcation, decreases in size during the motion along the upper branch of the noose
and finally disappears in the small cusp.

Note that the period-doubling bifurcation pd1 exists for all nonzero values of D,
but at D < D1 the orbit with the doubled period which branches off at pd1 does
not return to the main family. At D = D1 a reconnection of branches by means of
transcritical bifurcation takes place. Let us have a closer look at the details of this
transition, since it is typical for the changes which transform the relatively simple set
of stationary periodic solutions of the CH equation into the rich and diversified set of
such solutions of the KS equation.

Along with the main family, we track several families of relatively simple sec-
ondary orbits which branch off the main family in the course of, respectively, period-
doubling, period-tripling, and period-quadrupling. It is known that for reversible
systems the period-tripling is a transcritical bifurcation: the 3-looped periodic or-
bit exists on both sides of the parameter value at which the multipliers of the main
(1-looped) orbit equal exp(±4πi/3).

For very small values of D the behavior of periodic states with the increase of
A is reminiscent of the behavior typical of pure CH equations: their wavelength is
a monotonically growing function of A, and solutions which bifurcate from the main
family end up in respective heteroclinic contours. Due to pronounced additional
humps of negative kinks, a contour formed by an m-humped negative kink and its
positive counterpart is a closed curve with m + 1 loops. Accordingly, the periodic
solution born via the period-doubling bifurcation on the line pd1 of the parameter
plane terminates on the line het1, the solution born on the line 2 : 3 ends up on
the line het2, etc. As D grows, the curves of existence of contours cross the line
ssf (Figure 2), the saddle points in the contour are replaced by saddle-foci, and the
periodic orbits approach such contours in a nonmonotonic way, developing turning
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Fig. 6. Recombinations of curves of periodic solutions. Notation as in Figure 5. (a) D = 0.82,
(b) D = 0.8256, (c) D = 0.84.

points and segments of ellipticity. As D is further increased, the families of periodic
orbits detach from heteroclinic contours, and the respective curves on the “period-A”
diagram recombine. The configuration of those curves, typical for values of D slightly
below D0, is presented in Figure 5.

It can be seen that the branch which is born from the main solution in the period-
doubling bifurcation joins (by means of the turning point) one of the branches of the
period-tripled family, whereas the second “tripled” branch matches with the period-
quadrupled branch. Thereby, the doubled, tripled, and quadrupled orbits form, in
fact, one family, in which the shape of the orbit continuously changes, acquiring and
losing loops in the phase space. A similar effect for solutions of the KS equation was
described in [42].

As discussed above, the turning point appears on the curve of the main family as
soon as D exceeds the value D0. The corresponding interval of ellipticity is bounded
by the point in which both multipliers equal –1. This adds a new element to the picture
shown in Figure 5: an additional period-doubling bifurcation of the main family which
occurs only for D > D0. In the parameter plane the corresponding bifurcation curve
pd3 is located slightly below the curve tp. (In Figure 2 they practically coincide
graphically, and therefore pd3 is not shown.) Like the main family, the newborn 2-
looped solution has a (twice encircled) principal heteroclinic contour as an asymptote:
as A is varied, its wavelength grows unboundedly.

This configuration of periodic curves exists until D reaches the value D1; it is
easily recognizable in Figure 6(a). When D is increased, the rightmost turning point
of the main family approaches the turning point that joins the period-doubled and
the period-tripled family. At D = D1 = 0.8254 . . . these turning points coalesce, and
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a transcritical bifurcation takes place. The segments of the curves recombine: for
D > D1 the main family joins the period-doubled branch (thereby forming a noose),
whereas the period-tripled branch acquires the asymptotics of long periods and ends
up in the principal heteroclinic contour.

Solution curves for D = 0.8256 (i.e., just above D1) are shown in Figure 6(b).
Besides the noose formed by the main family, one can notice that the system is close
to the next transcritical bifurcation: the turning point which joins the second period-
tripled and period-quadrupled branches gets close to the turning point on the curve
of the period-doubled solution born at pd3. This transcritical bifurcation takes place
at D = 0.8257 . . . ; results of recombination of solution curves are seen in Figure 6(c):
now the period-tripled branch ends at the period-doubling bifurcation, whereas the
period-quadrupled solution terminates in the heteroclinic contour.

In Figure 6(c) there are still two branches of periodic solutions connected to
the principal heteroclinic contour. Since for D >

√
2 the contour is absent, those

branches detach from it in the course of increase of D and interconnect. As a result, for
moderate and high values of D one observers the picture typical of the KS equation [42]
(Figure 7(a)). In terms of geometric characteristics of the orbit, the discussed families
of secondary solutions merge into a single curve which has two turning points. It starts
at the period-quadrupling bifurcation of the main family and terminates in the period-
doubling bifurcation close to the turning point of the main family (Figure 7(b)).

Let us mention two more bifurcations of the main periodic solution, which occur
in the range of moderate and large values of D and produce new families of stationary
periodic solutions different from the main family. The symmetry-breaking bifurcation
sb (see Figure 8) is a pitchfork bifurcation which generates two families of stationary
periodic solutions Uup(x), Udown(x) = −Uup(2x0 − x) with nonzero mean values
〈Uup〉 = −〈Udown〉 = 0. These two types of solutions are shown in Figure 9(a),(b).

In this bifurcation point the periodic orbit has two multipliers equal to 1. The
symmetry-breaking bifurcation, which happens only in presence of the noose, i.e., for
D > D1, is a consequence of the symmetry caused by reversibility of the dynamical
system (2.2); for families of solutions which do not share the left-right symmetry
(e.g., for traveling waves) such bifurcation is precluded. In the course of further
evolution the wavelength of the solutions Uup(x), Udown(x) tends to infinity, and they
terminate in the homoclinic orbits of equilibrium points ±

√
Ah, respectively, where

Ah corresponds to the line hom1 in Figure 8. The other important bifurcation is also
a period-doubling bifurcation (line pd2 in Figure 8) that produces a new family of odd
stationary periodic solutions with a zero mean value, which looks like a sequence of
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Fig. 9. Solutions of (2.2) for D = 5: (a) the “up” solution, (b) the “down” solution, (c) the
superposition of “up” and “down.”

alternating “up”- and “down”-elements as shown in Figure 9(c). The corresponding
bifurcation value of A for the pd2-bifurcation is slightly lower than that for the sb-
bifurcation.

As seen in Figure 8, in the parameter plane the point (D0, A0 = 1 − D0/
√

2)
serves as a kind of an organizing center, origin of several bifurcation curves (in fact,
there is also a countable set of curves of secondary homoclinics to a saddle-focus U+,
which starts from this point).

3. Stability of stationary periodic solutions. In this section we investigate
the linear stability of the above-mentioned main family of spatially periodic stationary
solutions of the convective CH equation (2.1) with respect to arbitrary infinitesimal
perturbations in the infinite region. Stability of other families of stationary solutions
of (2.1) is beyond the scope of the present paper.
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3.1. Eigenvalue problem. Let U(x) be a stationary periodic solution satisfying
(2.1) with periodic boundary conditions U(x) = U(x + l). Recall that for the main
family of periodic solutions

∫ l

0

U(x)dx = 0,

because U(x) is odd.
Add a small perturbation ũ to the stationary solution, and linearize (2.1) to obtain

the following problem for ũ:

ũt = −ũxx − ũxxxx + D(Uũ)x + 3(U2ũ)xx,(3.1)

|ũ| < ∞ for |x| → ∞.

Following the standard approach of the linear stability theory, consider normal-mode
solutions of (3.1),

ũ(x, t) = etσV (x;σ).(3.2)

Substitute (3.2) into (3.1) to obtain the equation

V (x)σ = −Vxx − Vxxxx + D(UV )x + 3(U2V )xx.(3.3)

Generally, (3.3) has four linearly independent solutions for any value of x, Vj(x),
j = 1, 2, 3, 4. Because of the periodicity of u(x), the functions Vj(x) and Vj(x + L)
are simultaneously the solutions of (3.3). Therefore,

Vj(x + L) =

4∑
k=1

Bjk(σ)Vk(x),(3.4)

where B̂(σ) = {Bjk(σ)} is the monodromy matrix. We are interested only in bounded
solutions of (3.3),

V (x) =

4∑
k=1

CjVj(x), |V (x)| < ∞ for x → ±∞,(3.5)

which correspond to the eigenvectors of the monodromy matrix,

4∑
k=1

Bjk(σ)Ck = B(σ)Cj ,(3.6)

with the eigenvalues satisfying the additional condition,

|B(σ)| = 1.(3.7)

Hence, one can represent the eigenfunctions V (x) in the form

V (x) = v(x)eiqx,(3.8)
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where v(x) is a periodic function, v(x+L) = v(x), and q = arg(B(σ))/L is a real num-
ber (“quasi wavenumber”). The function V (x) is called the Floquet–Bloch function
[43, 44].

The quasi wavenumber q can be taken from the interval

−π

l
≤ q ≤ π

l
(3.9)

(i.e., inside the “Brillouin zone” [45]). Substituting (3.8) into (3.3), one obtains the
following eigenvalue problem:

σ(q)v(x) = D2
q [(3U

2(x) − 1)v(x)] −D4
qv(x) + DDq[U(x)v(x)],(3.10)

v(x + l) = v(x),

where Dq = d/dx+iq. If there exists an eigenvalue σ(q) with Reσ(q) > 0, the solution
U(x) is unstable.

3.2. Long-wave asymptotics. For q = 0, (3.10) always has a solution v(x) =
Ux(x) corresponding to σ(0) = 0. Indeed, differentiate (2.2) twice with respect to x,
to find

−vxxxx − vxx + D(Uv)x + 3(U2v)xx = 0.(3.11)

The disturbance v(x) = Ux(x) corresponds to an infinitesimal homogeneous transla-
tion of the stationary solution U(x). One can expect that Reσ(q) can become positive
at small q. In the present subsection we investigate the eigenvalue problem for long-
wave disturbances, which correspond to nonhomogeneous translations applied to the
stationary solution.

First, let us introduce the variable X = Kx, where K = 2π/l is the wavenumber
of the stationary regime, and rewrite the problem for the main-family stationary
solutions as

−K4U ′′′′ −K2U ′′ + DKUU ′ + K2(U3)′′ = 0,(3.12)

U(X + 2π) = U(X),

where a prime means differentiation with respect to X. Note that

∫ 2π

0

U(X)dX = 0.(3.13)

Later on, we shift the origin X = 0 in such a way that the stationary solution is an
odd function of X, and therefore its Fourier series is

U =

N∑
n=1

an(K) sinnX.(3.14)

Equation (3.10) can be written as

σ(Q)v(X) = K2D2
Q[(3U2(X) − 1)v(X)] −K4D4

Qv(X) + DKDQ[U(X)v(X)],(3.15)

v(X + 2π) = v(X),

where DQ = d/dX + iQ, Q ≡ q/K. According to (3.9), one can choose |Q| ≤ 1/2.
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Let Q be small. We are looking for a solution in the form

v =

∞∑
n=0

vnQ
n, σ =

∞∑
n=0

σ(n)Qn,(3.16)

where vn are periodic functions of X with period 2π. Substituting (3.16) into (3.15),
one obtains the sequence of problems in successive orders of Q.

In the zeroth order of Q one has

−K4v′′′′0 + K2[(3U2 − 1)v0]
′′ + DK(Uv0)

′ − σ(0)v0 = 0,(3.17)

v0(X + 2π) = v0(X),

where prime denotes differentiation with respect to X. As shown above, the solution
v0 = U ′, σ(0) = 0 always exists. Later on, we assume that there are no other 2π-
periodic solutions with σ(0) = 0 for the chosen values of K and D. This assumption
fails for the values of parameters corresponding to the symmetry-breaking bifurcation
(line sb in Figure 8).

For every integer i > 0, the equation for vi has the form

−k4v′′′′i + k2[(3U2 − 1)vi]
′′ + Dk(Uvi)

′ = Ri, vi(X + 2π) = vi(X),(3.18)

where Ri is some linear combination of the functions vj(X), 0 ≤ j < i, and their
derivatives. One can show that the left-hand side of (3.18) is a derivative of a periodic
function. Therefore, the integral of the right-hand-side, Ri, over X from 0 to 2π must
be zero.

In the first order of Q one obtains

−K4v′′′′1 + K2[(3U2 − 1)v1]
′′ + DK(Uv1)

′

= σ(1)v0 − iDUv0 − 2iK2[(3U2 − 1)v0]
′ + 4iK4v′′′0 ,(3.19)

v1(X + 2π) = v1(X).

In order to find the solution of (3.19), let us differentiate (3.12) with respect to the
parameter K:

−K4[∂KU ]′′′′ + K2[(3U2 − 1)∂KU ]′′ + DK[U∂KU ]′

− 4K3U ′′′′ − 2KU ′′ + DUU ′ + 6K[U2U ′]′ = 0.(3.20)

Comparing (3.19) with (3.20), one finds

v1 = iK∂KU − σ(1)f1(X) + const U ′,(3.21)

where f1(X) is the solution of the equation

−K4f ′′′′
1 −K2f ′′

1 + DK(Uf1)
′ + 3K2(U2f1)

′′ = U ′,

f1(X + 2π) = f1(X).

Note that f1(X) is an even function.
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In the second order of Q,

−K2v′′2 −K4v′′′′2 + DK(Uv2)
′ + 3K2(U2v2)

′′

= (σ(1) − iDKU)v1 + 4iK4v′′′1 + 2iK2[(1 − 3U2)v1]
′

+ σ(2)v0 − 6K4v′′0 + K2(3U2 − 1)v0,(3.22)

v2(X + 2π) = v2(X).

Integrating (3.22) over the period and substituting into (3.21), one finds

[
σ(1)

]2

= −
K2

∫ 2π

0
dXU∂U/∂K∫ 2π

0
dXf1(X)

= −K2

2

dA(K)/dK

〈f1〉
,(3.23)

where A = 〈U2〉.
If [σ(1)]2 > 0, two real roots with opposite signs exist. One of them is positive;

therefore the stationary solution is unstable. If [σ(1)]2 < 0, there are two imaginary
roots. In the latter case, the stability with respect to perturbations with small Q
depends on the sign of σ(2), which can be obtained in a similar way from the equation
in the third order of Q.

Thus, one can expect that there are boundaries between the regions of stability
and instability of stationary solutions with respect to long-wave disturbances that
coincide with the extrema of the function A(K).

Note that a similar relation between the nonmonotonicity of the dependence be-
tween the amplitude and the wavenumber was established for the KS equation [7] and
the reaction-diffusion equation [46].

3.3. Numerical method for finding eigenvalues. For arbitrary values of q
the problem (3.10) is solved numerically. We use the Fourier transform of a function
v(x, q),

v(x, q) =
∞∑

n=−∞
v̂n(q)einkx, k =

2π

l
.(3.24)

Substituting (3.24) into (3.10), we get the following matrix equation for the eigenvalues
and eigenvectors:

∞∑
n=−∞

[Mmn − σ(q)δmn]v̂n = 0, −∞ < m < +∞,(3.25)

where

Mmn = [(mk + q)2 − (mk + q)4]δmn

+ iD(mk + q)Ûm−n − 3(mk + q)2(Û2)m−n.(3.26)

The infinite system of equations (3.25) was replaced by a finite system,

N∑
n=−N

[Mmn − σ(q)δmn]v̂n = 0, −N < m < N,(3.27)

and solved numerically using Matlab. Numerical calculations were done with dou-
ble precision. The results of the numerical calculations are described in the next
subsection.
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3.4. Results of the numerical analysis. First, we check that our approach
confirms the known results concerning the stability of stationary periodic solutions for
the KS equation (the case D → ∞). Indeed, for the KS equation we have reproduced
the results formerly obtained in [7, 8, 9, 10, 11, 12]. The stability interval is 0.766 <
K < 0.838. The left end of the stability interval is determined by the condition
σ(2) = 0 in the expansion (3.16). Here we observe an oscillatory instability for small
quasi wavenumbers, q → 0. At the right end of the interval, which coincides with the
maximum of the function A(K) = 〈U2〉(K), we obtain a monotonic instability, also
for q → 0.

For D ≤ D0 the dependence A(K) for stationary solutions is monotonic (see
section 2), and it turns out that [σ(1)]2 > 0 for any K (see section 3.2). Therefore,
there is no stability interval in this region.

Table 1

Boundaries of the stability intervals. Abbreviations: osc. is oscillatory instability, mon. is
monotonic instability.

D Kleft Kright

∞ 0.766 0.838
osc.,q → 0 mon.,q → 0

5 0.677 0.775
osc.,q → 0 mon.,q → 0

2 0.537 0.640
osc., q → K/2 mon.,q → 0

1 0.376 0.4752
osc.,q → K/2 mon.,q → 0

0.8 0.314059 0.4065
mon.,q → 0 mon.,q → 0

0.5 0.111 0.1767048
mon.,q → K/2 mon.,q → 0

The investigation of the stability of main-family stationary solutions for D >
D0, where the dependence A(K) is not monotonic, has been done numerically. The
eigenvalue problem (3.27) determines 2N +1 eigenvalues. Let σ1(q) be the eigenvalue
with the maximum real part (see Figures 10–13). The analysis reveals the existence of
the stability interval. The boundaries of the stability interval are presented in Table 1.
Both boundaries move into the long-wave region with the decrease of D and tend to
zero when D approaches

√
2/3. In order to obtain accurate eigenvalues for decreasing

D it was sufficient to increase the size of matrix (number N in (3.27)). For example,
for D = 5, D = 2, and D = 1 we used matrices of the size N = 17; for D = 0.8,
N = 33; and for D = 0.5, N = 33 and N = 129. For each case we tried to find the
minimum size of the matrix that allowed us to obtain the correct result for a given
value of D. This was done by comparing the solutions obtained for different N and
checking the convergence.

We have found that the right boundary of the stability interval always coincides
with the global maximum of the function A(K), which corresponds to (3.23) with
〈f1〉 > 0. Therefore, on the right boundary of the stability interval a monotonic
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Fig. 10. Dependence of σ1, the eigenvalue with the maximal real part, on q; D = 5, K = 0.775.
The case of long-wave monotonic instability.
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Fig. 11. The real and imaginary parts of σ1, for small q; D = 5, K = 0.677. The oscillatory
long-wave instability is found.

long-wave instability always occurs (see Figure 10).

The type of the instability on the left boundary of the stability interval depends
on D. For sufficiently large values of D (D = 5), as in the case of the KS equation,
the destabilization of the stationary solutions for K < 0.677 is due to the oscillatory
instability with q → 0 (Figure 11). One can see from Figure 11 that for q � 1
Im[σ1(q)] = O(q), Re[σ1(q)] = O(q2) for q � 1. This is in accordance with the results
described in section 3.2.

For smaller values of D (D = 2 and D = 1), the dependence of Re[σ] on the
quasi wavenumber q has two maxima near the left stability boundary. We have found
that the destabilization scenario in this case is different: now the most “dangerous”
oscillatory perturbation (the one with the largest real part of σ1) at the left end of
the stability interval corresponds to q → K/2 (see Figure 12).
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Fig. 12. Dependence of the real and imaginary parts of σ1 on q; D = 2, K = 0.537. The
short-wave oscillatory instability is found.

For D = 0.8, we have obtained a monotonic instability with q → 0 at both
ends of the interval (see Figure 13). Note that the left boundary of the monotonic
instability is not connected with the extrema of A(K). As a matter of fact, in the
point K = 0.314059 the eigenvalue problem (3.17) has one more eigenfunction with
σ(0) = 0, in addition to the solution v0 = U ′. This eigenfunction has a nonzero mean
value and is related to the bifurcation sb of another family of asymmetric stationary
solutions with a nonzero mean value (see Figure 8).

For smallest values of D (D = 0.5), at the left end of the interval we have a
monotonic instability for q → K/2.

In [30], equation (2.1) was solved numerically in a long domain with periodic
boundary conditions. It was found that stationary solutions with a definite wavelength
are selected in the interval 1 < D < 5 (see Figure 14). It is clear that the black points
which correspond to the stationary solutions obtained in simulations [30] are inside
the stability intervals obtained in our computations.

4. Conclusions. We have studied bifurcations of stationary solutions of a con-
vective Cahn–Hilliard equation (2.1) that is generic for a wide class of systems ex-
hibiting phase separation in the presence of external driving (e.g., growth or external
field) and have analyzed the stability of the main family of the periodic stationary
solutions.

The stability analysis was done for odd stationary periodic solutions of (2.1) (the
main family of solutions) that bifurcate from the trivial state u ≡ 0 as a result of
a spinodal decomposition instability. The effect of the driving force, characterized
by the parameter D in (2.1), has been investigated. We have found that in the
region 0 < D < D0 =

√
2/3 these solutions are unstable. One can expect that the

coarsening (Ostwald ripening) of domains with two different phases occurs in this case.
For D > D0 the periodic stationary solutions are stable if their wavelength belongs to
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Fig. 13. Dependence of σ1 on q, for D = 0.8, at the two ends of the stability interval: K =
0.314059 (upper figure) and K = 0.4065 (lower figure). The case of long-wave monotonic instability.
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Fig. 14. Dependence of the solution wavelength on D; • corresponds to the stationary regime,
obtained for selected values of D in [30]. Vertical lines correspond to the stability intervals for
certain D, and ∗ corresponds to the boundaries of the stability intervals obtained in our investigation.

a certain stability interval. The instabilities of the periodic stationary solutions out
of the stability interval can give rise to other classes of solutions that may be stable.

Thus, we have shown that in a driven phase-separating system that undergoes
spinodal decomposition, the coarsening can be stopped by the driving force, and
the formation of stable periodic structures is possible. This shows an opportunity
to control the formation of spatially periodic structures in various phase-separating
systems (e.g., phase-separating polymer films) by adjusting the driving force (e.g.,
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external field). Note that some two-dimensional generalizations of convective CH
models that exhibit the formation of stationary two-dimensional periodic patterns
are investigated numerically in [47].
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1. Introduction. The CIR model of the term structure of interest rates was
proposed by Cox, Ingersoll, and Ross in [4]. Unlike the Vasicek model [18], the
CIR model does not permit negative interest rates. The interest rates under the
CIR model can always be positive under certain conditions, and thus American calls
and European calls on zero-coupon bonds have the same value [4], [15]. However,
critics of this model (and other models with constant parameters) note that it does
not provide a perfect fit to the initial term structure of interest rates. In [7] and
[8], Hull and White extended the Vasicek and CIR models to allow time-dependent
parameters. The extended models are consistent with both the current term structure
of interest rates and either the current volatilities of all spot interest rates or the
current volatilities of all forward interest rates. Recent theoretical study on the CIR
model and the extended CIR model can be found in [5], [14], and references cited
therein.

The important problem both in practice and in theory is to determine the time-
dependent parameters of the extended models. Since both the extended Vasicek model
and the extended CIR model are affine term structure models, the bond prices can be
determined by a system of ordinary differential equations with final conditions (see
section 2 for the Extended CIR model). By using the current market date, we can
add several initial conditions to the system and then formulate an inverse problem to
determine its solution and time-dependent coefficients [7]. The inverse problem can
be solved analytically in the case of the extended Vasicek model. However, for the
extended CIR model, it seems that numerical methods have to be used. Additionally,
to the best of our knowledge, the following is still an open problem: Does the inverse
problem proposed in [7] have a solution? The main objective of this paper is to
prove that the inverse problem for the extended CIR model has a unique solution
under appropriate assumptions. Since our proof is a constructive one, its numerical
implementation provides a numerical algorithm for computing the approximations of
the time-dependent parameters and the discount bond prices. This makes it possible
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for practitioners to evaluate interest rate derivatives under the extended CIR model
when it is fitted to the current market data.

The outline of the paper is as follows. In section 2, we introduce the inverse prob-
lem for determining the time-dependent parameters of the extended CIR model. The
solution existence and uniqueness of the inverse problem are established by a construc-
tive proof in section 3. We extend the results to the multifactor CIR models in section
4. In section 5, a fourth order numerical algorithm is proposed to compute the approx-
imations of the time-dependent parameters and the bond prices. Numerical results
are presented in section 6 to examine the accuracy of our algorithm and to compare
the extended CIR model with the Vasicek models. Conclusions are in section 7.

2. An inverse problem to calibrate the extended CIR model. In this
section, we introduce the inverse problem for the CIR model proposed in [7]. There
are two different economic approaches to the bond market: the equilibrium modeling
and the martingale modeling, which lead to the same partial differential equations.
Here we shall adopt the latter approach and assume the existence of a risk-neutral
measure [1] since we consider only the related mathematical problems.

For the extended CIR model, the process of interest rates, r(t), is assumed to
follow the stochastic differential equation

dr(t) = (φ(t) − ψ(t)r(t))dt + σ(t)
√

r(t)dW (t),(2.1)

under the risk-neutral measure, where ψ(t) is the speed of adjustment at time t,
φ(t)/ψ(t) is the interest rate of mean reversion at time t, σ(t) is a function of t related
to the volatility of short rates, and W (t) is a Wiener process. Consider a discount bond
with face value $1 and expiration date T not greater than some positive number T ∗.
The bond price P (r, t, T ) is the solution of the following partial differential equation
of the parabolic type (see Proposition 3.4 of [1]):

Pt + (φ(t) − ψ(t)r)Pr + d(t)rPrr − rP = 0, r > 0, 0 < t ≤ T,

with the final condition

P (r, T, T ) = 1, r ≥ 0,

where d(t) = 1
2σ(t)2. It has been proved that P (r, t, T ) takes the following form (see

[1] and [16]):

P (r, t, T ) = A(t, T )e−B(t,T )r.(2.2)

Then A(t, T ) and B(t, T ) are the solution of the final value problem

At(t, T ) − φ(t)A(t, T )B(t, T ) = 0, 0 ≤ t ≤ T,(2.3)

Bt(t, T ) − ψ(t)B(t, T ) − d(t)B2(t, T ) + 1 = 0, 0 ≤ t ≤ T,(2.4)

A(T, T ) = 1,(2.5)

B(T, T ) = 0.(2.6)

As shown in [7], A(0, T ) and B(0, T ) can be determined by the current term
structure of interest rates and the current term structure of spot rate or forward
rate volatilities. The function σ(t) can be chosen to reflect the current and future
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volatilities of the short-term interest rate. Therefore, we have the following inverse
problem:

(IP)

⎧⎪⎨
⎪⎩

For given functions σ(t), a(t), and b(t) defined on [0, T ∗], de-
termine functions A(t, T ), B(t, T ), φ(t), and ψ(t) such that they
satisfy (2.3)–(2.6) and A(0, T ) = a(T ) and B(0, T ) = b(T ) for
T ∈ [0, T ∗].

In the next section, we shall show that the inverse problem has a unique solu-
tion. The solution existence means that the model can be fitted to the current term
structure of interest rates. In particular, our constructive proof leads to a natural
numerical algorithm for computing the time-dependent parameters φ(t) and ψ(t) and
the bond prices.

3. Solution existence and uniqueness of the inverse problem. First, we
study how to determine B(t, T ) and ψ(t). Since (2.4) is a Riccati equation, by using
the standard transform

B(t, T ) = − ut(t, T )

d(t)u(t, T )
,

we have the following second order linear differential equation for the new unknown
function u(t, T ):

−utt(t, T ) + ν(t)ut(t, T ) + d(t)u(t, T ) = 0, 0 < t < T,(3.1)

where ν(t) = ψ(t) + d′(t)/d(t). Let u1(t) and u2(t), respectively, be solutions to the
following initial value problems:

−u′′
1(t) + ν(t)u′

1(t) + d(t)u1(t) = 0, 0 < t ≤ T ∗, u1(0) = 1, u′
1(0) = 0,(3.2)

−u′′
2(t) + ν(t)u′

2(t) + d(t)u2(t) = 0, 0 < t ≤ T ∗, u2(0) = 0, u′
2(0) = 1.(3.3)

It is apparent that u1(t) and u2(t) are two linearly independent solutions. The general
solution of (3.1) is thus a linear combination of u1(t) and u2(t). Hence we have

B(t, T ) = − c(T )u′
1(t) + u′

2(t)

d(t)(c(T )u1(t) + u2(t))
,

where c(T ) is a function of T . It follows from (2.6) that c(T )u′
1(T ) + u′

2(T ) = 0; i.e.,
c(T ) = −u′

2(T )/u′
1(T ). Then we have

B(t, T ) = − u′
1(T )u′

2(t) − u′
2(T )u′

1(t)

d(t)(u′
1(T )u2(t) − u′

2(T )u1(t))
, 0 ≤ t ≤ T, 0 ≤ T ≤ T ∗.(3.4)

Letting t = 0, we get

u′
1(T ) = g(T )u′

2(T ), 0 ≤ T ≤ T ∗,(3.5)

where

g(T ) = d(0)B(0, T ) = d(0)b(T ), 0 ≤ T ≤ T ∗.

Substituting (3.5) into (3.4), we have

B(t, T ) = − g(T )u′
2(t) − u′

1(t)

d(t)(g(T )u2(t) − u1(t))
, 0 ≤ t ≤ T, 0 ≤ T ≤ T ∗.(3.6)
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Integrating (3.5) from 0 to t plus integration by parts gives

u1(t) = 1 + g(t)u2(t) −
∫ t

0

g′(s)u2(s)ds, 0 ≤ t ≤ T ∗.(3.7)

Eliminating ν(t) from (3.2) and (3.3), we obtain

u′
1(t)

u′
2(t)

=
u′′

1(t) − d(t)u1(t)

u′′
2(t) − d(t)u2(t)

, 0 ≤ t ≤ T ∗.

Substituting (3.5) and (3.7) into the above equation, we have after simplification

u′
2(t) = − d(t)

g′(t)

∫ t

0

g′(s)u2(s)ds +
d(t)

g′(t)
, 0 ≤ t ≤ T ∗.(3.8)

Integration leads to

u2(t) +

∫ t

0

K(t, s)u2(s)ds = f(t), 0 ≤ t ≤ T ∗,(3.9)

where

f(t) =

∫ t

0

d(s)

g′(s)
ds, K(t, s) = (f(t) − f(s))g′(s).

Equation (3.9) is a Volterra integral equation of the second kind for u2(t). By Theorem
3.1 of [11], it has a unique solution C[0, T ∗] (the set of all continuous functions on
[0, T ∗]) if f(t) and g′(t) are continuous in 0 ≤ t ≤ T ∗.

Once u2(t) is determined by (3.9), we can compute u1(t) by (3.7) and then B(t, T )
by (3.6). It follows from (3.3) that

ν(t) =
u′′

2(t) − d(t)u2(t)

u′
2(t)

.

Thus parametric function ψ(t) is determined by

ψ(t) = ν(t) − d′(t)

d(t)
=

u′′
2(t) − d(t)u2(t)

u′
2(t)

− d′(t)

d(t)
.

By using (3.8) twice, we get the following simple formula for computing ψ(t) in terms
of u2(t) and u′

2(t):

ψ(t) = −g′′(t)

g′(t)
− 2d(t)

u2(t)

u′
2(t)

, 0 ≤ t ≤ T ∗.(3.10)

Next we discuss how to determine A(t, T ) and φ(t). Solving (2.3) with the final
condition (2.5), we get

A(t, T ) = exp

(
−
∫ T

t

φ(s)B(s, T )ds

)
, 0 ≤ t ≤ T, 0 ≤ T ≤ T ∗.(3.11)

Letting t = 0 and taking the natural logarithm, we have∫ T

0

φ(s)B(s, T )ds = − ln(a(T )), T ∈ [0, T ∗],(3.12)
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where A(0, T ) was replaced by a(T ). Recall that B(T, T ) = 0 on [0, T ∗]. The above
equation is a Volterra integral equation of the first kind with a degenerate kernel. To
remove this difficulty, we differentiate both sides of (3.12) to get∫ T

0

φ(s)BT (s, T )ds = −a′(T )

a(T )
, 0 ≤ T ≤ T ∗.(3.13)

This is still a Volterra integral equation of the first kind. It follows from B(T, T ) = 0
that BT (T, T ) = −Bt(T, T ). Letting t = T in (2.4), we have Bt(T, T ) = −1 and thus
BT (T, T ) = 1 for 0 ≤ T ≤ T ∗. Therefore, (3.13) has a nice kernel. Differentiating
(3.13), we get the following Volterra integral equation of the second kind for φ(t):

φ(T ) +

∫ T

0

φ(s)BTT (s, T )ds =
a′(T )2 − a(T )a′′(T )

a(T )2
, T ∈ [0, T ∗].(3.14)

Again, by Theorem 3.1 of [11], equation (3.14) has a unique solution in C[0, T ∗] if
BTT (s, T ) is continuous in 0 ≤ s ≤ T ≤ T ∗ and a′′(T ) is continuous in 0 ≤ T ≤ T ∗.

In order to validate the above calculations, we make the following assumptions:
(H1) a(T ), b(T ) ∈ C2[0, T ∗], d(T ) ∈ C1[0, T ∗].
(H2) a(T ), d(T ), and b′(T ) have positive lower bounds on [0, T ∗].
(H3) a(0) = 1, b(0) = 0, b′(0) = 1
(H4) The derivative of the solution u2(t) of (3.9) is positive on [0, T ∗].

Here we use Ck[0, T ∗] to denote the space of all kth continuously differentiable func-
tions on [0, T ∗] for a given positive integer k.

Assumption (H1) is for the regularity requirements of the calculations. Assump-
tion (H3) follows from (2.5), (2.6), and BT (T, T ) = 1. It is necessary to assume that
a(T ) and d(T ) have positive lower bounds on [0, T ∗]. Recall that the current bond
price P (r(0), 0, T ) = A(0, T ) exp(−B(0, T )r(0)) is a decreasing function of the expi-
ration date T . We may assume that B(0, T ) = b(T ) is an increasing function of T ,
which means that b′(T ) has a positive lower bound on [0, T ∗]. This assumption is
also implied by b′(0) = BT (0, 0) = 1. If we evaluate options under the extended CIR
(ECIR) model, we need only to know the bond price P (r, t, T ) for t ∈ [0, S], where
S is the option expiration date. In this case, it follows from (3.6) that b′(t) > 0 on
t ∈ [0, S] is sufficient. Assumption (H4) is needed to define ψ(t) by (3.10).

Now we are in a position to show the solution existence and uniqueness of the
inverse problem (IP).

Theorem 1. Under assumptions (H1)–(H4), the inverse problem (IP) has a
unique classic solution: B(t, T ), A(t, T ) ∈ C1(Ω), φ(t), ψ(t) ∈ C[0, T ∗], where Ω =
{(t, T ) : 0 ≤ t ≤ T ≤ T ∗}.

Proof. It is not difficult to check that (3.9) satisfies the conditions of Theorem
3.6 of [11] when assumptions (H1)–(H2) hold. So it has a unique solution u2(t) in
C2[0, T ∗] which also satisfies (3.8). Letting t = 0 in (3.8) and (3.9), we have u′

2(0) = 1
and u2(0) = 0, where the assumption (H3) was used. Then by assumption (H4), ψ(t)
defined by (3.10) is in C[0, T ∗], and thus u2(t) is the unique solution of the initial value
problem (3.3). It is easy to check that u1(t) defined by (3.7) is the unique solution
of the initial value problem (3.2) in C2[0, T ∗]. Therefore, function B(t, T ) defined
by (3.6) is the unique solution of (2.4) with the final condition (2.6) and the initial
condition B(0, T ) = b(T ). Notice from (3.6) that BTT (t, T ) is a continuous function
on Ω. By Theorem 3.1 of [11], the integral equation (3.14) has a unique solution φ(T )
in C[0, T ∗], and thus A(t, T ) ∈ C1(Ω) determined by (3.11) is the unique solution of
(2.3) with the final condition (2.5) and the initial condition A(0, T ) = a(T ).
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We may relax the conditions about the smoothness of functions a(t), b(t), and
d(t). Since such conditions are quite complicated, we refer the interested reader to
Chapter 3 of [11] for a general consideration. Define

Kφ(t) =

∫ t

0

K(t, s)φ(s)ds, Lφ(t) =

∫ t

0

g′(s)φ(s)ds .

Then we have from (3.9)

u2(t) = (I + K)−1f(t) =

∞∑
n=0

(−K)nf(t).

Since

(Kφ)′(t) = f ′(t)Lφ(t),

we have after some calculation

u′
2(t) = f ′(t)(1 − Lf(t)) + f ′(t)L

∞∑
m=0

K2m+1(I −K)f(t).

Notice that integral operators K and L have positive kernels and f(t) and f ′(t) are
positive. We propose the following sufficient conditions for u′

2(t) > 0 on t ∈ [0, T ∗]:

1 − Lf(T ∗) > 0, (I −K)f(T ∗) > 0.

The first inequality implies the second one and can be rewritten as∫ T∗

0

d(t)(g(T ∗) − g(t))

g′(t)
dt < 1.(3.15)

Hence assumption (H4) can be replaced by this stronger condition.
The extended CIR model can also be calibrated by assuming that ψ(t) and σ(t)

are constant or that φ(t) and ψ(t)/σ2(t) are constant. In the first case, we need to
determine only ψ(t) by (3.13) or (3.14) (see [4]). For the latter case, σ(t) and ψ(t)
can be determined analytically [17].

4. The multifactor CIR models. In this section, we extend the results in the
previous section to the multifactor CIR models. Empirical studies have shown that
multifactor models have more flexibility to capture more variability of interest rates
(see [3], [6], [13], and references therein). Without loss of generality, we consider only
the two-factor CIR model, which has the models in [3] and [13] as two specific cases
mathematically. The model specifies that the short rate process r(t) is the sum of
two square root processes x1(t) and x2(t); i.e.,

r(t) = x1(t) + x2(t),

xi(t) = (φi(t) − ψi(t)xi(t))dt + σi(t)
√
xi(t)dWi(t), i = 1, 2,

where (W1(t),W2(t)) is a two-dimensional standard Brownian motion under the risk-
neural measure. Let P (x1, x2, t, T ) be the price of the zero-coupon bond which pays
$1 at time T . Then it is the solution of the following fundamental partial differential
equation (see [1], [13], and [16]):

Pt +

2∑
i=1

(
1

2
σi(t)

2xiPii + (φi(t) − ψi(t)xi)Pi − xiP

)
= 0,
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where Pi and Pii denote the first and second order derivatives with respect to xi.
Write

P (x1, x2, t, T ) = A(t, T ) exp(−B(t, T )x1 − C(t, T )x2).(4.1)

Then we have the following ordinary differential equations for A(t, T ), B(t, T ), and
C(t, T ):

At(t, T ) − (φ1(t)B(t, T ) + φ2(t)C(t, T ))A(t, T ) = 0, 0 ≤ t ≤ T,(4.2)

Bt(t, T ) − ψ1(t)B(t, T ) − 1

2
σ1(t)

2B2(t, T ) + 1 = 0, 0 ≤ t ≤ T,(4.3)

Ct(t, T ) − ψ2(t)C(t, T ) − 1

2
σ2(t)

2C2(t, T ) + 1 = 0, 0 ≤ t ≤ T.(4.4)

Similarly to the one-factor model, we have the following final conditions:

A(T, T ) = 1,(4.5)

B(T, T ) = C(T, T ) = 0.(4.6)

When all parametric functions are constant, the above final value problem can be
solved analytically (see Example 6.2).

Assume that σ1(t), σ2(t), A(0, T ), B(0, T ), and C(0, T ) are determined by using
the current market data. Then, as in section 3, we can determine ψ1(t), B(t, T ),
ψ2(t), and C(t, T ) from (4.3), (4.4), and (4.6). Solving (4.2) for A(t, T ), we get

A(t, T ) = exp

(
−
∫ T

t

(φ1(s)B(s, T ) + φ2(s)C(s, T ))ds

)
.

Letting t = 0 and taking the natural logarithm, we get∫ T

0

(φ1(s)B(s, T ) + φ2(s)C(s, T )) ds = − ln(A(0, T )).

Since only one function can be determined by this integral equation, we need one of
the following assumptions:

(H5) φ1(t) or φ2(t) is constant.
(H6) φ1(t) and φ2(t) are linear dependent; i.e., for some constant λ, φ1(t) = λφ2(t).
(H7) The mean reversion value, φi(t)/ψi(t), is constant for i = 1 or 2.

Then we have the integral equations similar to (3.13) and (3.14) for φ1(t) or φ2(t).
Based on the above discussion, we can prove the following result similar to The-

orem 1.
Theorem 2. The parametric functions φi(t) and ψi(t) (i = 1, 2) of the two-

factor CIR model can be uniquely determined in C([0, T ∗]) from (4.2)–(4.6) together
with known σ1(t), σ2(t), A(0, T ), B(0, T ), and C(0, T ) under the assumptions similar
to (H1)–(H4) for A(0, T ), B(0, T ), and C(0, T ) and assumption (H5), (H6), or (H7).

Here we have assumed that dW1(t) and dW2(t) are uncorrelated. If their correla-
tion is ρdt for some nonzero constant ρ, then the zero-coupon bond price P (x1, x2, t, T )
can not be expressed in the form of (4.1). Indeed, it satisfies the following partial dif-
ferential equation:

Pt +

2∑
i=1

(
1

2
σi(t)

2xiPii + (φi(t) − ψi(t)xi)Pi − xiP

)
+ ρ

√
x1x2P12 = 0,
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where P12 are the mixed second derivatives. In this case, the inverse problem is
to determine P (x1, x2, t, T ) and the parametric functions from the above parabolic
partial differential equation together with the current term structure and the other
market information. Usually, it is difficult to show the solution existence of such
inverse problems and to solve them numerically. Interested readers are referred to [9]
for the theory of inverse problems for partial differential equations, and [2] and [10]
for the inverse problems for stock option problems.

5. Numerical solutions of the inverse problem (IP). In this section we
shall consider approximate solutions to the inverse problem (IP). To this end, we
summarize the proof of Theorem 1 as the following algorithm:

Step 1. Solve (3.9) for u2(t).
Step 2. Compute u′

2(t) by (3.8).
Step 3. Compute u1(t) and u′

1(t) by (3.7) and (3.5), respectively.
Step 4. Compute B(t, T ), BT (t, T ), and BTT (t, T ) by using (3.6).
Step 5. Compute ψ(t) by (3.10).
Step 6. Solve (3.13) or (3.14) for φ(t).
Step 7. Compute A(t, T ) by (3.11).
Step 8. Compute the bond price P (r, t, T ) by (2.2).

The crucial steps of the above algorithm are Steps 1 and 6, in which we need
to solve Volterra equations. There is a large literature in numerical methods and
their error analysis for Volterra equations. Interested readers are referred to [11] and
references cited therein. In the following, we outline the block-by-block method in
section 7.6 of [11] for (3.7) and (3.14) and propose a numerical implementation of our
algorithm with the accuracy of order 4.

For an even positive integer M , let the step size h = T ∗/M , tm = mh for m =
0, 1, . . . ,M , and tm+1/2 = tm + h/2 for m = 0, 1, . . . ,M − 1. Denote by u2,m the
approximation of u2(tm). Then the block-by-block method for (3.9) reads as follows:
for m = 0, 1, . . . ,M/2 − 1, compute u2,2m+1 and u2,2m+2 by{

amu2,2m+1 + bmu2,2m+2 = pm,
cmu2,2m+1 + dmu2,2m+2 = qm,

(5.1)

where

am = 1+
h

2
K(t2m+1, t2m+1/2)+

h

6
K(t2m+1, t2m+1), bm = − h

12
K(t2m+1, t2m+1/2),

cm =
4h

3
K(t2m+2, t2m+1), dm = 1 +

h

2
K(t2m+2, t2m+2),

pm = f(t2m+1)+
h

6
K(t2m+1, t2m)u2,2m− h

4
K(t2m+1, t0)u2,0−

h

3

2m∑
i=0

wm,iK(T2m+1, ti),

qm = f(t2m+2) −
h

3

2m∑
i=0

wm,iK(T2m+2, ti),

where {wm,0, wm,1, . . . , wm,m−1, wm,m} = {1, 4, 2, . . . , 2, 4, 1}. The above block-by-
block method is derived by using Simpson’s rule as the numerical integration for-
mula. System (5.1) has a unique solution when h is small enough. Furthermore, for
sufficiently smooth K(t, s) and f(t), we have the following error estimate:

max
1≤m≤M

|u2(tm) − u2,m| ≤ Ch4

for some constant C independent of h (see Chapter 7 of [11]).
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We can also apply the above block-by-block method to (3.14) for φ(t). Since b′′(T )
(g′′(T )) has to be computed in order to compute BTT (t, T ) by (3.6), the accuracy of
computation would be reduced when b(t) is obtained by using the current market
data through curve fitting. Instead, we may solve (3.13) by block-by-block methods,
for example, the method in section 9.4 of [11].

Now consider the approximations of u1(tm), u′
1(tm), and u′

2(tm). When m is
even, the integral in (3.8) can be approximated by Simpson’s rule at the mesh points
t0, t1, . . . , tm, and thus u′

2(tm) can be computed with the error of order 4. When
m is odd, u′

2(tm) will be computed by a fourth order interpolation formula on even
mesh points. The approximation of u′

1(tm) is then obtained by (3.5) with the same
accuracy. By (3.7) and (3.8), we have the following formula to compute u1(t) in terms
of u′

2(t):

u1(t) = g(t)u2(t) −
g′(t)u′

2(t)

d(t)
, 0 ≤ t ≤ T ∗.

Then we can compute the approximations of ψ(tm) and B(ti, tm) by (3.10) and by
(3.6), respectively. Differentiating (3.6) with respect to T , we get the following for-
mulas for computing BT (ti, tm) and BTT (ti, tm):

BT (t, T ) = −g′(T )(u′
1(t)u2(t) − u1(t)u

′
2(t))

d(t)(g(T )u2(t) − u1(t))2
,

BTT (t, T ) = − (g′′(T )(g(T )u2(t) − u1(t)) − 2g′(T )2u2(t))(u
′
1(t)u2(t) − u1(t)u

′
2(t))

d(t)(g(T )u2(t) − u1(t))3
.

Finally, we discuss how to compute A(ti, tm). When m − i is even, the integral
in (3.11) can be approximated by Simpson’s rule on mesh points. When i is even and
m is odd, we rewrite (3.11) as

A(t, T ) = A(0, T ) exp

(∫ t

0

φ(s)B(s, T )ds

)
, 0 ≤ t ≤ T, 0 ≤ T ≤ T ∗.

The integral in the above formula can also be approximated by Simpson’s rule on mesh
points. Therefore, A(ti, Tm) can be computed with an error of order 4 in these two
cases. For the other cases, A(ti, Tm) will be computed by a fourth order interpolation
formula.

To sum up, our algorithm in the beginning of this section can be implemented
numerically with fourth order accuracy.

6. Numerical examples. In this section, we will present numerical results to
examine the accuracy of the numerical implementation of our algorithm and to com-
pare the extended CIR model (ECIR) with the Vasicek and the extended Vasicek
models. Our C++ codes were run on a Dell 2.4 GHz PC with Red Hat 7.3. Although
the numerical experiments are also done for computation of φ(t) using (3.13), we
present the numerical results when the approximations of φ(t) are computed using
(3.14). We observed that both approaches give very accurate approximations for the
model problems considered below.

Example 6.1. Consider the CIR model; i.e., σ(t), ψ(t), and φ(t) are constant
functions in (2.1). The constants are denoted by σ0, ψ0, and φ0, respectively. Then
we have (see [4])

A(t, T ) =

(
c1e

c2s

c2(ec1s − 1) + c1

)c3

, B(t, T ) =
ec1s − 1

c2(ec1s − 1) + c1
, s = T ∗ − t,
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Table 6.1

Maximum errors.

M ψ(t) φ(t) A(t, T ) B(t, T ) CPU
20 1.39E − 4 1.13E − 3 1.90E − 4 1.04E − 3 0.00
40 1.03E − 5 8.01E − 5 1.33E − 5 7.52E − 5 0.01
80 7.08E − 7 5.33E − 6 8.39E − 7 5.11E − 6 0.02
160 4.64E − 8 3.44E − 7 5.19E − 8 3.34E − 7 0.10
320 2.97E − 9 2.19E − 8 3.22E − 9 2.13E − 8 0.60
640 1.88E − 10 1.38E − 9 2.00E − 10 1.35E − 9 4.15

c1 = (ψ2
0 + 2σ2

0)
1
2 , c2 =

(ψ0 + c1)

2
, c3 =

2φ0

σ2
0

.

Let a(T ) = A(0, T ), b(T ) = B(0, T ), and σ(t) = σ0 in the inverse problem (IP). It is
apparent that ψ(t) ≡ ψ0, φ(t) ≡ φ0, A(t, T ), and B(t, T ) are the exact solution of the
inverse problem (IP).

Take σ = 0.2, the long-term interest rate θ = 10%, the adjustment speed κ = 0.4,
and T ∗ = 10. Then ψ = κθ = 0.04 and φ = κ = 0.4. In Table 6.1, we display
the relative root mean squared errors and the CPU times in seconds. The CPU
time includes computing the approximations of ψ(ti), φ(ti), A(tj , ti), B(tj , ti) for
all i = 0, 1, . . . ,M , j = 0, 1, . . . , i, and errors. The results show that the proposed
numerical algorithm is very accurate and fast. One can check that the error ratios
in each column of Table 6.1 are approximately 16, which agrees with the theoretical
prediction of the convergence order 4.

Example 6.2. In this example, we shall calibrate the ECIR model by the Vasicek
model. The interest rate process r(t) of the Vasicek model follows

dr(t) = κ(θ − r(t))dt + σdW (t).

The bond price is given by (2.2) with

B(t, T ) =
1 − e−κ(T−t)

κ
,

A(t, T ) = exp

(
(2κ2θ − σ2)(B(t, T ) − T + t)

2κ2
− σ2

4κ
B2(t, T )

)
.

Take σ = 0.06, the adjustment speed κ = 0.4, and the long-term interest rate
θ = 10%. The face value is $100. Assume that the initial short rate r(0) is 9%. Let
a(t) = A(0, T ) and b(t) = B(0, T ) in the inverse problem (IP). For the ECIR model,
we set σ(t) = 0.06/

√
0.09 = 0.2. As indicated in [7], this ensures that the initial short

rate volatility equals that in the Vasicek model.
Numerical results show that u′

2(t) is a strictly increasing function, and its graph
looks like an exponential function, while the stronger condition (3.15) holds only for
T ∗ < 22.5. We display the graphs of ψ(t) and φ(t)/ψ(t) in Figure 6.1. The figure
shows that ψ(t) is a decreasing function having a horizontal asymptote ψ = 0.2828 and
that φ(t)/ψ(t) is an increasing function having a horizontal asymptote φ/ψ = 0.1071.
Thus the long-term adjustment speed for the ECIR model is approximately 0.2828,
which is smaller than that (0.4) for the Vasicek model, and the long-term interest rate
for the ECIR model is approximately 10.71%, which is greater than that (10%) for the
Vasicek model. In Figure 6.2, we display the contour maps of the differences of the
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Fig. 6.1. The graphs of ψ(t) and φ(t)/ψ(t).
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Fig. 6.2. Contour plots of price differences.

bond prices under the extended Vasicek model and the ECIR model. We observed that
the whole computing domain is divided into two parts. In the part corresponding to
small interest rates, the bond price under the extended Vasicek model is greater than
that under the ECIR model, and the reverse is true in the other part corresponding
to large interest rates. This is because high interest rates have a greater chance of
occurring under the ECIR model. The graphs of bond prices are displayed in Figure
6.3. We observe that the bond price is an increasing function of time and a decreasing
function of interest rates, which is as expected both in theory and in practice.

Example 6.3. As in [7], in this example we assume that the initial term structure
is determined by the two-factor CIR model with constant parameters. Then the
discount bond price is given by

P (x1, x2, t, T ) = A(t, T ) exp(−x1B1(t, T ) − x2B2(t, T )),
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Fig. 6.3. Bond prices.

where A(t, T ) = A1(t, T )A2(t, T ), and Ai(t, T ) and Bi(t, T ) are given by the corre-
sponding formulas, as in Example 6.1. The extended Vasicek model is fitted to the
two-factor CIR model as follows (see [7]):

σ =
√
σ2

1x1(0) + σ2
2x2(0),

σB(0, T ) =
√
σ2

1x1(0)B1(0, T )2 + σ2
2x2(0)B2(0, T )2,

P (r(0), 0, T ) = A(0, T )e−B(0,T )r(0).

Similarly, we fit the ECIR model as follows:

σ
√
r(0) =

√
σ2

1x1(0) + σ2
2x2(0),

σ
√
r(0)B(0, T ) =

√
σ2

1x1(0)B1(0, T )2 + σ2
2x2(0)B2(0, T )2,

P (r(0), 0, T ) = A(0, T )e−B(0,T )r(0),

where r(0) = x1(0) + x2(0). The parameter values are as follows:

σ1 = 0.1, ψ1 = 0.2, φ1 = 0.01, x1(0) = 0.06,

σ2 = 0.1, ψ2 = 0.3, φ2 = 0.009, x2(0) = 0.02.

The bond face value is $100.
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Fig. 6.4. The graphs of ψ(t) and φ(t)/ψ(t).
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Fig. 6.5. Contour plots of price differences.

Numerical results show that u′
2(t) is a strictly increasing function, and its graph

looks like an exponential function, while the stronger condition (3.15) holds only for
T ∗ < 53.29. The graphs of ψ(t) and φ(t)/ψ(t) are displayed in Figure 6.4, which shows
that the long-term adjustment speed of ECIR model is approximately 0.2, which is
the same as the smaller one of the TCIR model. The figure also shows that ψ(t) is a
decreasing function while φ(t)/ψ(t) is not monotone. We observed that the long-term
interest rate of the ECIR model is approximately 8.17%, which is smaller than that
(9%) of the TCIR model. We display the contour maps of the differences of the bond
prices under the extended Vasicek model and the ECIR model and graphs of bond
prices in Figure 6.5 and 6.6, respectively. We have the same observations from these
pictures as in Example 1.
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Fig. 6.6. Bond prices.

7. Conclusions. In this paper we studied the inverse problem for calibrating
the extended CIR model. The solution existence and uniqueness of the problem
are established under appropriate assumptions. In other words, the time-dependent
parameters of the extended CIR model can be uniquely determined by the current
term structure of interest rates and either the current volatilities of all spot interest
rates or the current volatilities of all forward interest rates. A fourth order algorithm
is proposed to compute the approximations of the time-dependent parameters and
the discount bond prices. Numerical results have shown that our algorithm is very
accurate and rapid. Comparisons with the Vasicek model and the extended Vasicek
model are also presented, and we find that the extended CIR model gives higher/lower
discount bond prices for high/lower interest rates. As expected, the bond price is an
increasing function of time and a decreasing function of interest rate. Work is ongoing
to study numerical methods for pricing other interest rate derivatives, for example,
bond options and caps, under the extended CIR model.
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THE CONVERGENCE OF REGULARIZED MINIMIZERS FOR
CAVITATION PROBLEMS IN NONLINEAR ELASTICITY∗
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Abstract. Consider a nonlinearly elastic body which occupies the region Ω ⊂ Rm (m = 2, 3)
in its reference state and which is held in tension under prescribed boundary displacements on
∂Ω. Let x0 ∈ Ω be any fixed point in the body. It is known from variational arguments that,
for sufficiently large boundary displacements, there may exist discontinuous weak solutions of the
equilibrium equations corresponding to a hole forming at x0 in the deformed body (this is the

phenomenon of cavitation). For each ε > 0, define the regularized domains Ωε = Ω\Bε(x0) which
contain a preexisting hole of radius ε > 0 centered on x0. Now consider the corresponding mixed
displacement/traction problem on Ωε in which the boundary ∂Ω is subject to the same boundary
displacements and the deformed cavity surface (i.e., the image of ∂Bε) is required to be stress-free.
It follows from variational arguments that there exists a weak solution uε of this problem for each
ε > 0. In this paper we prove convergence of these regularized minimizers uε in the limit as ε → 0. In
particular, we show that if εn → 0, then, passing to a subsequence, uεn → u, where u is a minimizer
for the original pure displacement problem on Ω.

Finally, we study the effect on cavitation of regularizing the variational problem by introducing
a surface energy term which penalizes the formation and growth of cavities.
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the displacement problem in which we require

u(x) = Ax for x ∈ ∂Ω,(1.3)

where A ∈ Mm×m
+ is fixed.

The radial problem. Following Ball’s seminal paper [1], much work has been
carried out in the variational setting on the existence of discontinuous radial mini-
mizers for (1.2) corresponding to cavitation (see, e.g., the review article [12] and the
references therein). In this approach A = λI, λ > 0, Ω = B is the unit ball in Rm,
and deformations are of the form

u(x) = r(R)
x

|x| ,

where r : [0, 1] → [0,∞) and R = |x|. It is known that there are large classes
of physically reasonable W for which there exists a critical value of the boundary
displacement λcrit such that

(i) for λ ≤ λcrit, the unique radial energy minimizer is the homogeneous defor-
mation corresponding to r(R) ≡ λR;

(ii) for λ > λcrit, the unique radial energy minimizer satisfies r(0) > 0, corre-
sponding to a deformation that produces a hole at the center of the initially perfect
ball (this is the phenomenon of cavitation).

Example 1.1. A typical class of stored energy functions for which the above
results hold is given by

W (x,F) = c|F|p + Γ(detF) ∀F ∈ Mm×m
+ and x ∈ Ω,(1.4)

where c > 0, 1 ≤ p < m, and Γ is a convex function that grows superlinearly and
satisfies Γ(d) → +∞ as d → 0+.

The discontinuous minimizers with r as in (ii) are weak solutions of the corre-
sponding equilibrium equations (see, e.g., [1]). Earlier approaches to cavitation had
not been variational and tended to model cavitation as the growth of small preexisting
voids in the material (see, e.g., [9] in the context of nonlinear elasticity and [10] in
the context of elastoplasticity).

There are various ways of reconciling the two approaches. In particular, results of
[18] in the variational setting (see also the example in [11]) show that radial equilibrium
solutions

uε(x) = rε(R)
x

|x|

for the mixed displacement/zero-traction problem in which B is replaced by Bε = {x :
ε < |x| < 1} (i.e., a ball with a preexisting hole of radius ε in the reference configu-
ration) converge to the radial minimizer for B studied in [1] as ε → 0. In particular,
supR∈[ε,1] |rε(R) − r(R)| → 0 as ε → 0, where r(R) is the minimizer given in (i) and
(ii) above (see Figure 1 and also the discussion in [1] for the case of incompressible
elasticity).

The nonsymmetric case. The first results extending Ball’s original variational
approach to nonsymmetric situations while allowing cavitation (i.e., discontinuities)
to occur at any point in the body are contained in Müller and Spector [16]. A
key element in their approach is an analytical restriction on the class of admissible
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Boundary displacement  

Radius of cavity
produced

 crit

r

r

Fig. 1. Bifurcation diagram for solid and punctured balls.

deformations u called condition (INV). Condition (INV) is the requirement that u be
monotone1 in the sense of Lebesgue and that, roughly speaking, holes created in one
part of the body cannot be filled by material from elsewhere (see section 2.3 for the
precise definition). Subsequent work in [19], in the variational setting, proposed an
alternative model in which cavitation could occur only at a, possibly large, number
of infinitesimal flaws in the material. This was modelled mathematically by using
admissible deformations whose possible point discontinuities are constrained to be
at the specified flaw points: let x0,x1, . . . ,xn ∈ Ω be the flaw points and minimize
the total energy (1.2) in the class of deformations that satisfy (1.1), (1.3), condition
(INV), and

Det∇u = (det∇u)Lm +

n∑
i=0

αiδxi ,

where Det∇u denotes the distributional Jacobian of u, Lm denotes m-dimensional
Lebesgue measure, δxi is the Dirac measure supported at xi, and αi ≥ 0 is the volume
of the hole formed at xi by the deformation u (see section 2.4 for further details).
The existence of a minimizer in this class follows from [19], and it is a consequence
of a result in [21] that if the matrix A in the boundary condition (1.3) is “sufficiently
large,”2 then any minimizer u must satisfy αi > 0 for at least one i.

In analogy with the radial problems outlined earlier, an alternative approach
is to regularize by replacing the flaw points with preexisting voids in the reference
configuration of maximum radius ε > 0. The purpose of this paper is to examine the
behavior of energy minimizers for these more regular problems in the limit as ε → 0. In
particular we consider the case of one flaw point at x0 ∈ Ω and study the convergence
of minimizers for these regularized problems to the minimizers obtained in [19]. For
the convenience of the reader, we next outline the main convergence result in the case
of the class of stored energy functions (1.4), deferring precise technical details to later
in the paper. However, it should be noted that the results of this paper apply to much
more general polyconvex energy functions (see hypotheses (H1)–(H4) in section 3).

1Condition (INV) requires, in particular, that u ∈ W 1,p(Ω,Rm), p > m− 1.
2This is the case, in particular, if A = tB, where B ∈ Mm×m

+ is fixed and t > 0 is sufficiently
large.
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X0 .
u

u

B (x0)

Fig. 2. Deformations of the original and regularized domains.

The underlying pure displacement problem. In essence, the underlying
problem is to minimize the integral functional E given by (1.2) on a class of deforma-
tions3,4 u ∈ W 1,p(Ω,Rm), p ∈ (m − 1,m), that satisfy (1.1), (1.3), condition (INV)
on Ω, and

Det∇u = (det∇u)Lm + α0δx0 , α0 ≥ 0.

The existence of a minimizer for this problem follows from [19].

The regularized mixed displacement/traction problem. For each ε > 0,
define the domains Ωε = Ω\Bε(x0) which contain a preexisting hole of radius ε > 0
centered on x0 (see Figure 2). Now consider the mixed displacement/traction problem
on Ωε in which the outer boundary ∂Ω is subject to the same boundary displacements
(1.3) and the deformed cavity surface (i.e., the image of ∂Bε) is required to be stress-
free. The corresponding variational problem is to minimize

Eε(uε) =

∫
Ωε

W (x,∇uε(x)) dx

on a class of deformations5 uε ∈ W 1,p(Ωε,R
m), p ∈ (m − 1,m), that satisfy (1.3),

condition (INV) on Ωε,

det∇uε > 0 a.e. in Ωε,

and

Det∇uε = (det∇uε)Lm.

3In fact, for technical reasons, we work with the homogeneous extension ue of u which is defined
on a slightly larger domain Ωe ⊃ Ω. It is obtained by extending u by the homogeneous deformation
Ax (see section 2.3 and Remark 3.2).

4For interesting results in the borderline case, p = m− 1, see Conti and De Lellis [4].
5As in the pure displacement problem, we work with homogeneous extensions of these maps.
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In Theorem 4.2 we prove convergence of minimizers for these regularized problems
in the limit as ε → 0. In particular, we show that if εn → 0 and (uεn) is a corresponding
sequence of minimizers, then, passing to a subsequence if necessary, uεn → u, where
u is a minimizer for the pure displacement problem on the original domain Ω.

The above results are quite general and do not depend on the shape of the excluded
regions used to obtain Ωε. In particular, the balls Bε(x0) which are removed to
produce Ωε could be replaced by a nested sequence of (nonspherical) regions around
x0 whose diameters converge to zero as ε → 0.

In section 5, we consider the effect of regularizing the pure displacement varia-
tional problem by adding a surface energy term to the total energy which penalizes
the formation and growth of cavities. In the standard model, in which surface energy
is proportional to the new surface area created, cavitation is still energetically favor-
able for sufficiently severe boundary displacements. However, in this case we show
that there is no longer bifurcation from a homogeneous deformation in the sense that
there do not exist discontinuous energy minimizers producing cavities of arbitrarily
small volume. Our results thus generalize the recent results of Dollhofer et al. [5],
who show that the addition of surface energy in radial cavitation of an incompressible
neo-Hookean material will induce the sudden formation of a single cavity of finite
radius, rather than the gradual opening of a hole from zero volume.

2. Background.

2.1. Notation. Let Ω denote a nonempty, bounded, connected, open subset of
R

m with Lipschitz boundary ∂Ω (see [6] or [13]). We denote by Lp(Ω) and W 1,p(Ω) the
usual spaces of p-summable and Sobolev functions, respectively. We use the notation
Lp(Ω;Rm), etc., for vector-valued maps. A function φ is in Lp

loc(Ω) if φ ∈ Lp(U) for
all open sets U ⊂⊂ Ω; i.e., U ⊂ KU ⊂ Ω for some compact set KU . Weak convergence
in these spaces will be indicated by the half arrow ⇀.

We denote m-dimensional Lebesgue measure by Lm and k-dimensional Hausdorff
measure by Hk. We write

B(z, ε) := {x ∈ Rm : |x − z| < ε}

for the open ball of radius ε > 0 centered at z ∈ Rm (we also use the notation Bε(z)
for B(z, ε)).

Let u ∈ W 1,p(Ω;Rm) with 1 ≤ p < m. We will be interested in pointwise
properties of u as well as restrictions of u to lower-dimensional sets. We will not
identify maps that are equal a.e. and choose to work with the precise representative
u∗ : Ω → R

m defined by

u∗(x) :=

⎧⎪⎨
⎪⎩

lim
ρ→0+

1

Lm(B(x, ρ))

∫
B(x,ρ)

u(z) dz if the limit exists,

0 otherwise.

We shall make use of the fact that if u ∈ W 1,p(Ω;Rm) with 1 ≤ p < m, then
the above limit exists for every x ∈ Ω\P , where Hm−1(P ) = 0. Thus, in particular,
one can use the precise representative as a representative of the trace on (m − 1)-
dimensional surfaces. Moreover, if p > m − 1, then H1(P ) = 0, and consequently
for each z ∈ Ω the above limit is defined at every point on ∂B(z, r) for almost every
r ∈ (0, rz), where rz = dist(z, ∂Ω). For a thorough discussion of precise representative
we refer the reader to [6].
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2.2. The topological image. In this section we briefly recall some facts about
the Brouwer degree (see, e.g., [7] or [22] for more details). Let u : Ω → R

m be a C1

map. If y0 ∈ Rm\u(∂Ω) is such that det∇u(x) �= 0 for all x ∈ u−1(y0), then the
degree is defined by

deg(u,Ω,y0) :=
∑

x∈u−1(y0)

sgn[det∇u(x)],(2.1)

where sgn(t) = 1 for t > 0 and sgn(t) = −1 for t < 0. In particular, if g : Ω → R
m is

a diffeomorphism with det∇g > 0 on Ω, then from (2.1) we conclude that

deg(g,Ω,y0) =

{
1 if y0 ∈ g(Ω),
0 if y0 ∈ Rm\g(Ω).

If φ is a C∞ function supported in the connected component of Rm\u(∂Ω) that
contains y0, then one can show that∫

Ω

φ(u(x)) det∇u(x) dx = deg(u,Ω,y0)

∫
Rm

φ(y) dy.

One can now define deg(u,Ω,y) for any continuous function u : Ω → R
m and any

y ∈ Rm\u(∂Ω) by using this formula and approximating by C∞ functions. Moreover,
the degree depends only on u|∂Ω. Accordingly we can write deg(u, ∂Ω,y) instead of
deg(u,Ω,y).

Definition 2.1. Let B(z, r) ⊂ Ω and suppose that u : ∂B(z, r) → R
m is contin-

uous. We define the topological image of B(z, r) under u by

imT(u, B(z, r)) := {y ∈ Rm\u(∂B(z, r)) : deg(u, ∂B(z, r),y) �= 0}.(2.2)

Remark 2.2. Let g : B(z, r) → R
m be a homeomorphism. If u : ∂B(z, r) → R

m

is such that u(∂B(z, r)) = g(∂B(z, r)), then

imT(u, B(z, r)) = g(B(z, r)).

2.3. Invertibility condition (INV). In nonlinear elasticity one is interested
in globally invertible maps since, in general, matter cannot interpenetrate itself. We
say that u ∈ W 1,p(Ω,Rm), p ≥ 1, is one-to-one a.e. if there is a Lebesgue null set
N ⊂ Ω such that u|Ω\N is injective. Unfortunately, if p < m, the weak limit of a
sequence of maps which are one-to-one a.e. need not be one-to-one a.e. (see, e.g.,
[16, section 11]). A property that is slightly stronger than one-to-one a.e. is therefore
needed.

Definition 2.3. Let rz = dist(z, ∂Ω). We say that u : Ω → R
m satisfies

invertibility condition (INV) on Ω, provided that for every z ∈ Ω there exists an L1

null set Nz such that, for all r ∈ (0, rz)\Nz,

(o) u|∂B(z,r) is continuous;

(i) u(x) ∈ imT(u, B(z, r)) ∪ u(∂B(z, r)) for Lm a.e. x ∈ B(z, r);

(ii) u(x) ∈ Rm\imT(u, B(z, r)) for Lm a.e. x ∈ Ω\B(z, r).

The next results show that condition (INV) is preserved under weak convergence
and that mappings that satisfy condition (INV) and have nonzero Jacobian a.e. are
one-to-one a.e.
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Proposition 2.4 (see [16, Lemma 3.3]). Let p > m − 1 and suppose that (u∗
n)

is a sequence in W 1,p(Ω;Rm) that satisfies condition (INV). Suppose also that

un ⇀ u in W 1,p(Ω;Rm).

Then u∗ satisfies condition (INV).

Proposition 2.5 (see [16, Lemma 3.4]). Let u ∈ W 1,p(Ω;Rm) with p > m− 1.
Suppose that det∇u �= 0 a.e. and that u∗ satisfies condition (INV). Then u is one-
to-one a.e.

Definition 2.6. We say that the function u satisfies condition (INV) on Ω\{x0}
if u satisfies condition (INV) on Ω\B(x0, δ) for every sufficiently small δ > 0.

Homogeneous extensions of maps. Let Ω ⊂⊂ Ωe, where Ωe is a bounded,
open, connected set with smooth boundary and suppose that uh : Ωe → R

m is the
orientation preserving homogeneous map

uh(x) ≡ Ax,

where A ∈ Mm×m
+ . If u ∈ W 1,p(Ω;Rm) satisfies u = uh on ∂Ω, then we define its

homogeneous extension ue : Ωe → R
m by

ue(x) :=

{
u(x) if x ∈ Ω,
Ax if x ∈ Ωe\Ω(2.3)

and note that ue ∈ W 1,p(Ωe;Rm). More generally, let x0 ∈ Ω and ε ≥ 0 satisfy
B(x0, ε) ⊂⊂ Ω ⊂⊂ Ωe and define

Ωε := Ω\B(x0, ε), Ωe
ε := Ωe\B(x0, ε)(2.4)

(this corresponds to a preexisting void of radius ε in the reference configuration). If
uε ∈ W 1,p(Ωε;R

m) satisfies uε = uh on ∂Ω, then we define its homogeneous extension
ue
ε : Ωe

ε → R
m by

ue
ε(x) :=

{
uε(x) if x ∈ Ωε,
Ax if x ∈ Ωe\Ω(2.5)

and note that6 ue
ε ∈ W 1,p(Ωe

ε;R
m). The use of such an extension allows us to obtain

the following result, whose proof we omit since it is similar to that of Theorem TL in
[17].

Lemma 2.7. Let uε ∈ W 1,p(Ωε;R
m), p > m − 1, ε ≥ 0, satisfy uε = uh on ∂Ω.

Suppose that its homogeneous extension ue
ε , given by (2.5), is one-to-one a.e. on Ωe

ε.
Then

uε(x) ∈ uh(Ω) for a.e. x ∈ Ωε.

6If ε = 0, then there is no preexisting hole. In this case, Ω0 = Ω, Ωe
0 = Ωe, and thus u0 = u ∈

W 1,p(Ω;Rm) and ue
0 = ue ∈ W 1,p(Ωe;Rm) in accordance with the earlier definition (2.3).
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2.4. The distributional Jacobian. Given a mapping u ∈ W 1,p(Ω,Rm), with

p > m2

m+1 , it follows (using the Sobolev embedding theorem) that the distributional
Jacobian defined by

(Det∇u)(φ) := −
∫

Ω

1

m
([adj∇u]u) · ∇φdx ∀φ ∈ C∞

0 (Ω)(2.6)

is a well-defined distribution (where adj∇u denotes the adjugate matrix of ∇u, that
is, the transposed matrix of cofactors of ∇u). The definition follows from the well-
known formula for expressing det∇u as a divergence (see, e.g., [14] for further details
and references).

Next, suppose that u ∈ W 1,p(Ω;Rm), p > m − 1, satisfies (INV) on Ω. Then
u ∈ L∞

loc(Ω), and hence Det∇u is again a well-defined distribution. Moreover, it
follows from [16, Lemma 8.1] that if u further satisfies det∇u > 0 a.e., then Det∇u
is a Radon measure and

Det∇u = (det∇u)Lm + μs,

where μs is singular with respect to Lm. In this paper we will be interested in the
case when μs is a Dirac measure7 of the form αδx0

(where α > 0 and x0 ∈ Ω) which
corresponds to u creating a cavity of volume α at the point x0.

8

Example 2.8. Let Ω = B be the unit ball in R3 (i.e., m = 3) and let

u(x) = (|x| + c)
x

|x| , c > 0.(2.7)

Then u produces a hole of radius c at the center of the deformed ball. In this case it
can be shown that

Det∇u = (det∇u)L3 +
4

3
πc3δ0.(2.8)

The last expression (2.8) is to be interpreted in the sense of distributions so that

(Det∇u)(φ) =

∫
Ω

(det∇u(x))φ(x) dx +
4

3
πc3φ(0) ∀φ ∈ C∞

0 (Ω)

(notice that the coefficient of δ0 in (2.8) is the volume of the hole that is formed at
the origin under the deformation (2.7)).

3. The energy: Existence of minimizers. We consider an m-dimensional
elastic body which, in its reference state, occupies the region Ω ⊂ R

m. We let W ∈
C(Ω × Mm×m

+ ; [0,∞)) denote the stored energy function for the body. For ease of
exposition we state the following conditions on W in the case of three dimensions
(i.e., m = 3). Let p > 2 = m − 1, D = M3×3 × M3×3 × (0,∞); then we will refer to
the following hypotheses on W :

(H1) (polyconvexity) there exists Φ : Ω ×D → R such that for a.e. x ∈ Ω

W (x,F) = Φ(x, (F, adjF,detF)) ∀F such that detF > 0,

where Φ(x, ·) : D → R is convex for a.e. x ∈ Ω;

7Other assumptions on the support of the singular measure μs may be relevant for modelling
different forms of fracture. See also [15] for further results on the singular support of the distributional
Jacobian.

8Note that such a cavity need not be spherical.
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(H2) (continuity) Φ(x, ·) : D → R is continuous for a.e. x ∈ Ω and Φ(·, N) : Ω →
R is measurable for every N ∈ D;

(H3) (coercivity) W (x,F) ≥ C|F|p+Γ(detF)+K for a.e. x ∈ Ω, where C > 0, K
are constants, and Γ : (0,∞) → R is a convex function satisfying Γ(t)/t → +∞ as
t → +∞;

(H4) Γ(t) → +∞ as t → 0+.

Now fix x0 ∈ Ω and for each 0 ≤ ε < dist(x0, ∂Ω) recall the definition of the
homogeneous extension of a map given in section 2.3 (see (2.3)–(2.5) in particular).
For each such ε we seek a minimizer for the total elastic energy

Eε(uε) =

∫
Ωε

W (x,∇uε(x)) dx

in the class of admissible functions

Aε(x0) = {uε ∈ W 1,p(Ωε;R
m) : uε|∂Ω = uh, (ue

ε)
∗ satisfies (INV) on Ωe

ε,

det∇uε > 0 a.e., Det∇ue
ε = (det∇ue

ε)Lm}

if ε > 0, and in the class

A0(x0) = {u ∈ W 1,p(Ω;Rm) : u|∂Ω = uh, (ue)∗ satisfies (INV) on Ωe,(3.1)

det∇u > 0 a.e., Det∇ue = (det∇ue)Lm + αuδx0
}

if ε = 0, where αu ≥ 0 is a scalar depending on the map u and δx0 denotes the Dirac
measure with support at x0. Thus, A0(x0) contains maps u that produce a cavity of
volume αu located at x0 ∈ Ω.

Proposition 3.1 (see [19, Theorem 4.1]). Let p > m − 1 and ε ≥ 0. Suppose
that W ∈ C(Ω × Mm×m

+ ; [0,∞)) satisfies hypotheses (H1)–(H4). Then Eε attains its
infimum on Aε(x0).

9

Thus both the mixed displacement/traction problem (ε > 0) and the pure dis-
placement problem (ε = 0) have energy minimizers. In the next section we will show
that a subsequence of the minimizers of the mixed problems converges to a minimizer
of the displacement problem as the preexisting hole size shrinks to zero.

Remark 3.2. The reasons for requiring that the homogeneous extensions ue,ue
ε ,

rather than the original maps u,uε, satisfy condition (INV) are to, first, prevent
the phenomenon of cavitation at the boundary of Ω (see [16, p. 55]) and, second, to
prevent leakage at the boundary (see [16, p. 56] and [17, p. 975]). For interesting
related results see Swanson and Ziemer [25, 26].

Remark 3.3. Suppose that in the above theorem A = λI and λ > λcrit (where λcrit

is the critical boundary displacement after which radial cavitation occurs). Suppose
further that the energy grows sufficiently slowly with respect to |F|; e.g., W is given
by (1.4) for some c > 0 and p ∈ (m−1,m) with Γ as in (H3) and (H4). It then follows
from results on radial cavitation (see [20]) that any minimizer u given by the above
result with ε = 0 must satisfy αu > 0; i.e., it must form a new cavity.

4. Convergence of minimizers. In this section we show that, as ε → 0+,
minimizers uε of the mixed displacement/traction problem given by Proposition 3.1
converge to a minimizer of the pure displacement problem u ∈ A0(x0). More precisely,
we prove the following main theorem of the paper.

9We refer the reader to [4] for interesting analytical difficulties that arise in the borderline case
p = m− 1.
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Theorem 4.1. Let x0 ∈ Ω be fixed and let W ∈ C(Ω × Mm×m
+ ; [0,∞)) satisfy

(H1)–(H4). Suppose that (εn) is a monotone decreasing sequence converging to zero
and let (uεn) be a corresponding sequence of minimizers whose existence is given by
Proposition 3.1. Then there exists u ∈ A0(x0) and a subsequence (uεnj

) such that

uεnj
⇀ u as j → ∞ in W 1,p(Ωe

δ;R
m)

for any δ > 0. Moreover, u is a minimizer of E0 on A0(x0).

The proof of this theorem is contained in the remainder of this section. Through-
out this section (εn) will denote a fixed monotone decreasing sequence converging to
zero, while (uεn) will denote a corresponding sequence of minimizers whose existence
is given by Proposition 3.1.

The convergence proof is split into three parts: We first identify a map u ∈
W 1,p(Ω;Rm) such that for a subsequence (uεnj

) of (uεn) we have uεnj
⇀ u in

W 1,p(Ωδ;R
m) as j → ∞ for any δ > 0 sufficiently small. It then follows from

Proposition 2.4 and Definition 2.6 that u satisfies condition (INV) on Ω\{x0}. In
section 4.2 we show in Theorem 4.3 that it then follows that u satisfies (INV) on Ω
and in Lemma 4.5 that Det∇u = (det∇u)Lm + αuδx0 . Thus we can conclude that
u ∈ A0(x0). Finally, in section 4.3 in Theorem 4.6 we prove that u is a minimizer of
the energy E0 on A0(x0) using lower semicontinuity arguments.

4.1. Identifying a weak limit for the sequence of minimizers.

Theorem 4.2. Let (uεn) be a sequence of minimizers given by Proposition 3.1.
Then there is a subsequence (uεnj

) and a mapping u : Ω → R
m such that, for any

δ > 0, u ∈ W 1,p(Ω\Bδ;R
m) and

uεnj
⇀ u as j → ∞ in W 1,p(Ω\B(x0, δ);R

m).

Proof. Let (uεn) be a sequence of minimizers given by Proposition 3.1. We first
note that, since W is continuous and nonnegative on the compact set Ω × {A}, the
homogeneous deformation uh has finite energy. Hence for any n ∈ N,

Eεn(uh) =

∫
Ωεn

W (x,A) dx ≤
∫

Ω

W (x,A) dx < ∞.(4.1)

Next, by the convexity of Γ and its growth at zero and infinity ((H3) and (H4))
it follows that Γ is bounded below. Thus, by the coercivity condition (H3) and the
Poincaré inequality, we find that for any N ∈ N and n > N

EεN
(uεn) ≥ C1‖uεn‖

p
W 1,p(ΩεN

) − C2Lm(ΩεN
),(4.2)

where C1 and C2 are positive constants. In addition, W is nonnegative and ΩεN
⊂ Ωεn

so that

EεN
(uεn) =

∫
ΩεN

W (x,∇uεn(x)) dx

≤
∫

Ωεn

W (x,∇uεn(x)) dx = Eεn(uεn).
(4.3)

Also, uh ∈ Aεn(x0) and uεn is a minimizer of Eεn on Aεn(x0), and so

Eεn(uεn) ≤ Eεn(uh).(4.4)
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Therefore by (4.1)–(4.4) the sequence (uεn) is bounded in the reflexive Banach
space W 1,p(ΩεN

;Rm), and consequently there exists a subsequence, still labeled (uεn),

converging weakly to some function uN in W 1,p(ΩεN
;Rm); that is,

uεn ⇀ uN in W 1,p(ΩεN
;Rm) as n → ∞.

Now inductively take successive subsequences with N = 1, 2, 3, . . . and then
choose a diagonal sequence to obtain a subsequence, labeled (uεnj

), of (uεn), that

satisfies

uεnj
⇀ u in W 1,p(ΩεN

;Rm) as j → ∞,

where u : Ω\{x0} → R
m is defined by

u(x) :=

{
u1(x) if x ∈ Ωε1

,
uN (x) if x ∈ ΩεN

\ΩεN−1
,

for N = 2, 3, 4, . . . . By construction u ∈ W 1,p(ΩεN
;Rm) for any N .

Note that u is well defined by the uniqueness of weak limits. We will henceforth
use (uεn) to denote the subsequence of minimizers (uεnj

) obtained in Theorem 4.2. It

now follows from standard arguments that the limit function u identified in the above
theorem lies in W 1,p(Ω;Rm) for p > m − 1. For example, let ψ ∈ C∞(R) be a fixed
monotone increasing function that satisfies

ψ(t) =

{
0 if t ≤ 1,
1 if t ≥ 4/3.

For each n ∈ N, extend uεn : Ωεn → R
m to a mapping ũεn : Ω → R

m by defining

ũεn(x) :=

{
ψ
(

2|x−x0|
|x−x0|+εn

)
uεn(x) for x ∈ Ωεn ,

0 otherwise.

Then verify that ũεn ⇀ u in W 1,p(Ω;Rm) as n → ∞.

4.2. The weak limit u lies in A0(x0). In this section we prove that the weak
limit u of the sequence (uεn) is in the class of admissible functions A0(x0). Since
uεn ⇀ u in W 1,p(ΩεN

;Rm) for any N , standard results imply that u = uh on ∂Ω, and
the arguments in the proof of Theorem 4.1 in [19] show that det∇ue > 0 a.e. Since
uh is a diffeomorphism, it follows that uh(Ω) is closed, and, since we may assume
uεn → u a.e. in Ω, we conclude that u(x) ∈ uh(Ω) for a.e. x ∈ Ω and consequently

ue(x) ∈ uh(Ωe) for a.e. x ∈ Ωe.(4.5)

We next prove that if ue satisfies condition (INV) on Ωe\{x0}, then ue satisfies
condition (INV) on Ωe. Following this, we then prove in Lemma 4.5 that the distri-
butional Jacobian of ue has the appropriate form, which will complete the proof that
ue lies in A0(x0).

Theorem 4.3. Let p > m − 1 and suppose that uεn ∈ Aεn(x0) is the se-
quence of minimizers given in Proposition 3.1. Suppose further that there exists
ue ∈ W 1,p(Ωe;Rm) such that det∇ue > 0 a.e. and that for any fixed N ∈ N

ue
εn ⇀ ue in W 1,p(Ωe

εN
;Rm).(4.6)

Then (ue)∗ satisfies (INV) on Ωe.
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Proof. Without loss of generality we take ue
εn = (ue

εn)
∗
, ue = (ue)

∗
, and fix

x1 ∈ Ωe. Then we must show that for L1 a.e. r ∈ (0,dist(x1, ∂Ωe))

(i) ue(x) ∈ imT(ue, Br(x1)) ∪ ue(∂Br(x1)) for a.e. x ∈ Br(x1);

(ii) ue(x) ∈ Rm\imT(ue, Br(x1)) for a.e. x ∈ Ωe\Br(x1),
(4.7)

where Br(x1) := B(x1, r).
Let N be fixed and suppose that n > N . By definition of Aεn(x0) the minimizers

ue
εn satisfy condition (INV) on Ωe

εN
and det∇ue

εn > 0 a.e. Consequently, by (4.6)

and Proposition 2.4, ue satisfies condition (INV) on Ωe
εN

. Since N is arbitrary, it

follows that ue satisfies condition (INV) on Ωe\{x0}. Next, fix r1 > 0 such that
B(x1, r1) ⊂ Ωe and x0 /∈ ∂B(x1, r1). Then for all r sufficiently close to r1 either
x0 ∈ B(x1, r) or x0 ∈ Ωe\B(x1, r). In the former case define

Ur := Ωe\B(x1, r) and Vr := B(x1, r)(4.8)

and in the latter case define

Ur := B(x1, r) and Vr := Ωe\B(x1, r).

Since ∂Ωe is smooth, Ur and Vr are each open sets with C1 boundary.
We prove the result in the first case, x0 ∈ B(x1, r) and (4.8), and note that

the proof in the second case is similar. Let δ > 0 be sufficiently small. Then by
[16, Theorem 9.1] (see the appendix) there exists an ε0 > 0 such that for a.e. r ∈
(r1 − ε0, r1 + ε0)

(o) ue|∂Ur ∈ W 1,p(∂Ur,R
m) ∩ C(∂Ur,R

m);

(i) ue(x) ∈ imT(ue, Ur) ∪ ue(∂Ur) for a.e. x ∈ Ur;

(ii) ue(x) ∈ Rm\imT(ue, Ur) for a.e. x ∈ Ωe\(Ur ∪B(x0, δ) ).

(4.9)

Fix one such r. For each n ∈ N we successively take δ = εn in (4.9)3. Then since
the countable union of null sets is a null set, as is the set {x0}, we conclude that

(i)
′

ue(x) ∈ imT(ue, Ur) ∪ ue(∂Ur) for a.e. x ∈ Ur = Ωe\Br(x1);

(ii)
′

ue(x) ∈ Rm\imT(ue, Ur) for a.e. x ∈ Ωe\Ur = Br(x1).
(4.10)

In order to obtain (4.7) we first note that Vr, Ur, and ∂Vr are pairwise disjoint
sets with Vr and Ur open, ∂Vr compact, and Ωe = Vr ∪ Ur ∪ ∂Vr. Thus standard
properties of degree10 imply

deg(ue,Ωe,y) = deg(ue, Ur,y) + deg(ue, Vr,y)(4.11)

for all y /∈ ue(∂Ωe ∪ ∂Vr) (note that ∂Ωe ∪ ∂Vr = ∂Ur).
Next, uh is an orientation-preserving diffeomorphism whose degree satisfies

deg(uh,Ωe,y) = 1 if y ∈ imT(uh,Ωe) = uh(Ωe) and deg(uh,Ωe,y) = 0 if y ∈
R

m\uh(Ω
e
). Since uh and ue assume the same boundary values on ∂Ωe and since the

degree depends only on the boundary values, it follows that their degrees are equal:

deg(ue,Ωe,y) =

{
1 if y ∈ uh(Ωe),

0 if y ∈ Rm\uh(Ω
e
).

10These are the domain decomposition and excision properties; see, e.g., [7] or [22].
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Consequently, in view of (4.11), if y ∈ uh(Ωe) and y /∈ ue(∂Ur), then

deg(ue, Ur,y) + deg(ue, Vr,y) = 1.(4.12)

We next recall that x0 ∈ Br(x1) = Vr and that ue satisfies (INV) on Ur =
Ωe\Vr ⊂ Ωe\{x0}. Therefore (4.10) and the proof of [16, Theorem 9.1] yield

deg(ue, Ur,y) =

{
1 if y ∈ imT(ue, Ur),
0 if y ∈ Rm\(imT(ue, Ur) ∪ ue(∂Ur)),

which, together with (4.12), allows us to conclude that if y ∈ uh(Ωe), then

deg(ue, Vr,y) =

{
0 if y ∈ imT(ue, Ur),
1 if y ∈ Rm\(imT(ue, Ur) ∪ ue(∂Ur)).

(4.13)

We are now ready to prove (4.7)1: by (4.5) we may assume that ue(x) ∈ uh(Ωe)
for a.e. x ∈ Br(x1). By (4.10)2 and (4.13)2 it follows that for a.e. x ∈ Br(x1)

ue(x) ∈ ue(∂Ur) or deg(ue, Vr,u
e(x)) = 1 .

However, ue(∂Ur) = ue(∂Vr)∪ue(∂Ωe), ue(∂Ωe)∩uh(Ωe) = ∅ , and by (4.5) we have
ue(x) ∈ uh(Ωe) for a.e. x ∈ Br(x1). Therefore (4.7)1 follows from the definition of
the topological image (2.2). Similarly, by (4.5), (4.10)1, and (4.13)1 it follows that for
a.e. x ∈ Ur = Ωe\Br(x1)

ue(x) ∈ ue(∂Vr) or deg(ue, Vr,u
e(x)) = 0,

and so (4.7)2 follows from (2.2).

Remark 4.4. The containment condition ue(x) ∈ uh(Ωe) for a.e. x ∈ Ωe, which
follows from Lemma 2.7, is crucial to the argument in the last proof.

The following lemma combined with the last two subsections will allow us to
conclude that ue lies in A(x0).

Lemma 4.5. Let m = 3, let p > 2 = m − 1, and suppose that uεn ∈ Aεn(x0)
is the sequence of minimizers of the mixed displacement/traction problem. Let u ∈
W 1,p(Ω;Rm) be the weak limit of the sequence as given in Theorem 4.2, so that the
precise representative of its homogeneous extension (ue)∗ ∈ W 1,p(Ωe;Rm) satisfies
(INV) on Ωe and

uεn ⇀ ue in W 1,p(Ωe
εN

;Rm)

for any N ∈ N. Then there exists αu ≥ 0 such that

Det∇ue = (det∇ue)Lm + αuδx0 ,

where δx0 denotes the Dirac measure supported at x0.

Proof. We first note that ue ∈ W 1,p(Ωe;Rm), det∇ue > 0 a.e., and (ue)
∗

satisfies
condition (INV) on Ωe. Therefore, Det∇ue is a Radon measure and

Det∇ue = (det∇ue)Lm + μs,(4.14)

where μs is a (nonnegative) Radon measure that is singular with respect to Lm (see
section 2.4).
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Next, uεn ⇀ ue in W 1,p(Ωe
εN

;Rm) for any N and uεn satisfies (INV) on Ωe
εN

.

Therefore, by Lemma 3.3 in [19], there exists a subsequence (still labeled uεn) that
satisfies

uεn → ue in Lq
loc(Ω

e
εN

;Rm)(4.15)

for every 1 < q < ∞. Moreover, since p > m− 1,

adj∇uεn ⇀ adj∇ue in L
p

m−1 (Ωe
εN

;Rm)(4.16)

(see [2, Theorem 3.4]). Consequently, by (4.15) and (4.16) (see [19, Lemma 6.7]),

(adj∇uεn)uεn ⇀ (adj∇ue)ue in L1
loc(Ω

e
εN

;Rm),

and hence, in view of (2.6),

(Det∇uεn)(φ) → (Det∇ue)(φ)(4.17)

for every φ ∈ C∞
0 (Ωe

εN
). Since uεn ∈ Aεn(x0), the sequence uεn satisfies

Det∇uεn = (det∇uεn)Lm on Ωe
εN
.(4.18)

Now, by (4.1), (4.3), (4.4), and hypothesis (H3), for any N ∈ N and all n > N∫
ΩεN

Γ(det∇uεn) dx ≤
∫

Ω

W (x,A) dx < ∞,

where Γ is the convex, superlinear function given in (H3). Thus, by the de la Vallée
Poussin and Dunford–Pettis criteria (see, e.g., [19, Theorem 4.1]), there is a θ ∈
L1(ΩεN

) such that (for a subsequence) det∇uεn ⇀ θ in L1(Ωe
εN

). Moreover, Lemma

3.2 in [19] implies that θ = det∇ue a.e. in Ωe
εN

. Therefore,

det∇uεn ⇀ det∇ue in L1(Ωe
εN

;Rm),(4.19)

and in view of (4.17)–(4.19) we find that, for every φ ∈ C∞
0 (Ωe

εN
),

(Det∇ue)(φ) =

∫
Ωe

εN

φ(x) det∇ue(x) dx

and consequently that

(Det∇ue)(Ωe
εN

) =

∫
Ωe

εN

det∇ue(x) dx.(4.20)

Finally, (4.14) and (4.20) imply that for every N ∈ N

μs(Ωe
εN

) = 0.

Thus, since

Ωe ⊂ {x0} ∪
∞⋃

N=1

Ωe
εN
,

we find that

μs(Ωe) ≤ μs({x0}) +

∞∑
N=1

μs(Ωe
εN

) = μs({x0}),

which yields the desired result (set αu = μs ({x0})).
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4.3. u is a minimizer for the pure displacement problem. Thus far we
have shown that the weak limit u of a subsequence of the minimizers uεn of the mixed
displacement/traction boundary value problem lies in A(x0). Next, we will prove
that u is a minimizer of the pure displacement boundary value problem considered in
Proposition 3.1. Throughout this section we will use uεn to denote this convergent
subsequence identified in sections 4.1 and 4.2.

Theorem 4.6. Suppose that E0 and A0(x0) are as defined in section 3 and
that u ∈ A(x0) is the weak limit of the sequence of minimizers (uεn) of the mixed
displacement/traction problems. Then E0(u) ≤ E0(ũ) for all ũ ∈ A0(x0).

Proof. Define

λ := lim inf
n→∞

∫
Ωεn

W (x,∇uεn(x)) dx

and let N be fixed. Then, since W is nonnegative, for any n > N∫
ΩεN

W (x,∇uεn(x)) dx ≤
∫

Ωεn

W (x,∇uεn(x)) dx.(4.21)

Next, by sequential weak lower semicontinuity of EεN
(see [3, Theorem 7.1] and

[19, pp. 93–100]) and since uεn ⇀ u in W 1,p(ΩεN
;Rm) as n → ∞, we have∫

ΩεN

W (x,∇u(x)) dx ≤ lim inf
n→∞

∫
ΩεN

W (x,∇uεn(x)) dx.(4.22)

If we combine (4.21) and (4.22) we find that∫
ΩεN

W (x,∇u(x)) dx ≤ λ

and hence by the monotone convergence theorem that∫
Ω

W (x,∇u(x)) dx ≤ λ.(4.23)

Now, suppose that ũ ∈ A0(x0). Then ũ|Ωε
∈ Aε(x0) for every sufficiently small

ε, and thus ∫
Ωεn

W (x,∇uεn(x)) dx ≤
∫

Ωεn

W (x,∇ũ(x)) dx.

Then since W is nonnegative,∫
Ωεn

W (x,∇uεn(x)) dx ≤
∫

Ω

W (x,∇ũ(x)) dx,

and if we take the liminf we conclude that

λ = lim inf
n→∞

∫
Ωεn

W (x,∇uεn(x)) dx ≤
∫

Ω

W (x,∇ũ(x)) dx,

which together with (4.23) yields the desired result.
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We conclude from the results in section 4 that minimizers of Eεn on Aεn(x0)
converge to a minimizer of E0 on A0(x0) as εn → 0, i.e., that (a subsequence of)
the minimizers of the mixed displacement/traction boundary value problem converge
weakly to a minimizer of the pure displacement boundary value problem. This com-
pletes the proof of Theorem 4.1.

Remark 4.7. We cannot conclude in general that any sequence of minimizers (uεn)
of the mixed problem necessarily converges to a minimizer u of the pure displacement
problem; this follows only after passing to a subsequence, since we do not know
whether the minimizers given by Theorem 3.1 are unique.

5. Surface energy. In this section we examine the effect of regularizing our
pure displacement variational problem by adding a surface energy term which penal-
izes the formation and growth of cavities. In particular, we consider the case of a
typical surface energy term proportional to the surface area11 of the holes produced.
This modification is partly motivated by experimental observations of Gent [8], which
indicate that such surface energy effects are relevant in certain situations involving
cavitation. In this case, the original energy functional is replaced by the augmented
functional:

Ẽ(u) =

∫
Ω

W (∇u(x)) dx + κPer(im(u,Ω)) = E(u) + κPer(im(u,Ω)),(5.1)

where κ > 0 is a constant and Per(im(u,Ω)) corresponds to the perimeter or surface
area of the holes produced (see [16] for a precise definition of the perimeter of the
measure-theoretic image of Ω under u). Again we consider the displacement bound-
ary value problem in which the admissible deformations are required to satisfy the
boundary condition (1.3). If W satisfies the hypotheses of section 3 (with 1 ≤ p < 3),
then analogous arguments to those given in [21, Theorem 2] show that, for “large
A,”12 the homogeneous deformation uh(x) ≡ Ax is no longer the global minimizer of
the energy (5.1). In particular, the energy can be lowered through the introduction
of holes, or cavities, in the material. However, in contrast to the bifurcation diagram
(Figure 1) for the radial problem without surface energy, we will show that these dis-
continuous minimizers do not bifurcate13 from the trivial homogeneous deformations
(i.e., that there do not exist discontinuous minimizers producing holes of arbitrarily
small volume).

Our proof will consist of a simple energy estimate; however, for ease of presen-
tation we will restrict our attention to the following class of homogeneous energy
functions (but our arguments apply to much more general14 stored energy functions):

W (F) = c|F|p + Γ(detF),

where 2 < p < 3, c > 0, and Γ is convex and differentiable. Let u ∈ Ã,

Ã = {u ∈ W 1,1(Ω;Rm) : u|∂Ω = uh, (ue)∗ satisfies (INV) on Ωe,

det∇u > 0 a.e.},

11As argued in [16], this may be criticized on the grounds that it assigns the same energy to
creating the surface of a new cavity as it does to stretching the surface of a preexisting cavity.

12This is the case, in particular, if A = tB for large t > 0, where B ∈ M3×3
+ is any fixed matrix.

13See also [1, p. 608], which studies the addition of surface energy for radial deformations of a ball
of incompressible material.

14In particular, our arguments clearly extend to stored energy functions of the form W (F) =
W0(F) + c|F|p + Γ(det F), 2 < p < 3, where W0 is W 1,p-quasiconvex.
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and suppose that Ẽ(u) < Ẽ(uh), where uh(x) ≡ Ax and Ẽ is given by (5.1). From
the definition of Ẽ it then follows that E(u) < E(uh). Next, by the convexity of the
mapping F �→ |F|p and the boundary condition u|∂Ω = uh,

c

∫
Ω

|A|p dx ≤ c

∫
Ω

|∇u|p dx,

and hence

0 < E(uh) − E(u) =

∫
Ω

c|A|p − c|∇u|p + Γ(detA) − Γ(det∇u) dx

≤
∫

Ω

Γ(detA) − Γ(det∇u) dx(5.2)

≤
∫

Ω

Γ′(detA)(detA − det∇u) dx,

where we have used the convexity of Γ in the last step. The above estimate will allow
us to bound the decrease in the bulk energy due to the formation of a cavity by a
constant times the volume of the cavity.

Suppose for a contradiction that there exists a sequence of matrices An → A and
a corresponding sequence of deformations un ∈ Ã, with un(x) = Anx for all x ∈ ∂Ω
and

Det∇un = (det∇un)L3 + μn,(5.3)

such that Ẽ(un) < Ẽ(uh
n) for all n and μn(Ω) → 0 as n → ∞, where uh

n(x) ≡ Anx.
Then by (5.2), (5.1), and (5.3)

0 < Ẽ(uh
n) − Ẽ(un) ≤ Γ′(detAn)

∫
Ω

(detA − det∇un) dx − κPer(im(un,Ω))

= Γ′(detAn)μn(Ω) − κPer(im(un,Ω)).(5.4)

The intuitive idea now is that μn(Ω) represents the volume of the holes formed
and Per(im(un,Ω)) represents the surface areas produced. Since by assumption
μn(Ω) → 0, the above inequality yields a contradiction for large n. Mathematically,
this argument is made rigorous through the use of an isoperimetric inequality. By the
definition of Ẽ (see (5.1)) it follows that if Ẽ(u) < ∞, then Per(im(u,Ω)) < ∞, and
so by [16, Theorem 8.4]

Det∇un = (det∇un)L3 +

∞∑
i=1

α
(n)
i δxi ,(5.5)

where α
(n)
i ≥ 0 for all i and n. Moreover,

∞∑
i=1

(
α

(n)
i

)2/3

≤ c̄Per(im(un,Ω)),

where c̄ > 0 is the isoperimetric constant.
Without loss of generality we may assume that 0 ≤ Γ′(detAn) ≤ K for all n (the

first inequality follows from the main result in [23] and the second by the assumed
convergence of (An) to A). Hence, by (5.4) and the above expression,

0 < K
∞∑
i=1

α
(n)
i − κ

c̄

∞∑
i=1

(
α

(n)
i

)2/3

.(5.6)
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Now, in view of (5.5), μn(Ω) =
∑∞

i=1 α
(n)
i → 0 as n → ∞. Therefore, given l ∈ N, let

Nl ∈ N be such that α
(n)
i < 1

23l for all n > Nl and i ∈ N. Then, by (5.6),

0 <

(
K

2l
− κ

c̄

) ∞∑
i=1

(
α

(n)
i

)2/3

∀n > Nl ,

which yields a contradiction for l sufficiently large.

Remark 5.1. We note that the arguments used in section 4 can be adapted to
show that if κn → 0 and (un) is a corresponding sequence of minimizers of Ẽn (given
by (5.1) with κ = κn) on A0(x0) (given by (3.1)), then, passing to a subsequence if
necessary, (un) converges weakly in W 1,p(Ω) to a minimizer of E on A0(x0).

6. Concluding remarks. It is interesting to note that the convergence result
given in Theorem 4.1 could form the rigorous basis for a numerical method to compute
approximations to the singular minimizers whose existence is given in Proposition 3.1.
In particular, it is sufficient to compute regular minimizers on Ωε whose existence is
given by Proposition 3.1 for small ε.

Fig. 3. Leakage between holes.

We next mention the main difficulty encountered in trying to extend the conver-
gence result of Theorem 4.1 to the situation where we have, say, two (or more) flaw
points located at {x0,x1}. Most of the arguments extend to this case; however, a
map u satisfying (INV) on Ω\{x0,x1} need not satisfy (INV) on Ω. The difficulty
is related to the counterexample given in [17]: it is possible to construct a mapping
u ∈ W 1,p(Ω,Rm) with p > m − 1 which satisfies (INV) on Ωe\{x0,x1} but which
does not satisfy (INV) on Ω; consider a map which forms two adjacent cavities and
which allows leakage from one cavity into the other (see Figure 3). Such a map can be
produced, for example, as a composition of a two-hole cavitating map f1 with three
Lipschitz maps f2, f3, and f4. Explicit formulae for some of the mappings can be found
in [16].
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Appendix. We note that our results depend crucially on Theorem 9.1 in [16],
which extends condition (INV) from balls to other regions. However, the original
proof of this result contains a small error. We therefore include here a corrected
proof.

Theorem A.1 (see [16, Theorem 9.1]). Let u ∈ W 1,p(Ω;Rm) with p > m −
1. Suppose that det ∇u > 0 a.e. and that u∗ satisfies condition (INV). Assume
that U ⊂⊂ Ω is open with C1 boundary and that there exists an ε0 > 0, an open
neighborhood N of ∂U , and a (surjective) diffeomorphism w : ∂U × (−ε0, ε0) → N
that satisfies w(x, 0) = x and wε(x, 0) · n(x) > 0 for all x ∈ ∂U , where n(x) is the
outward unit normal to U and wε is the partial derivative of w with respect to its
second argument. Define

Uε := (U\N) ∪ w
(
∂U × (−ε0, ε)

)
.

Then for a.e. ε ∈ (−ε0, ε0)

(o) u∗|∂Uε ∈ W 1,p(∂Uε;R
m) ∩ C0(∂Uε;R

m);

(i) u∗(x) ∈ (imT(u∗, Uε) ∪ u∗(∂Uε)) for a.e. x ∈ Uε;

(ii) u∗(x) ∈ Rm\imT(u∗, Uε) for a.e. x ∈ Ω\Uε.

Proof. Let θ ∈ C∞
0 (Rm) satisfy θ ≥ 0 and suppose that g ∈ C∞(Rm;Rm) ∩

L∞(Rm;Rm) satisfies div g = θ. Then, as in section 8 in [16], the map μθ : C∞
0 (Ω) →

R given by

μθ(ϕ) := −
∫

Ω

∇ϕ · (adj∇u)(g ◦ u) dx

is a distribution on Ω. If we let ϕt be a standard sequence of (radial) mollifiers, then
we find that the computation that leads to equation (8.4) in [16] will now yield

(ϕt ∗ μθ)(x) = −
∫ t

0

ψ′
t(r)

∫
Rm

(div g) deg(u, S(x, r),y) dy dr,

where ϕ(x) = ψ(|x|) and we have written u for u∗. Since div g = θ ≥ 0, the reasoning
used in the proof of [16, Lemma 8.1] therefore implies that μθ is a Radon measure,
for each θ, and that

μθ(B(b, r)) =

∫
Rm

θ(y) deg(u, S(b, r),y) dy

=

∫
Rm

θχimT(u,B(b,r)) dy(A.1)

for L1 a.e. r ∈ (0, rb).
We next show that for L1 a.e. ε ∈ (−ε0, ε0)

μθ(Uε) =

∫
Rm

θ(y) deg(u, ∂Uε,y) dy.(A.2)

Let ψ ∈ C∞(R) satisfy ψ(s) = 1 for s < −ε0/2 and ψ(s) = 0 for s > ε0/2 and define
ϕ := ψ ◦ ω, where the function ω : N → (−ε0, ε0) denotes the last component of the
diffeomorphism w−1. We note that ν := ∇ω/|∇ω| is the outward unit normal to the
surfaces ∂Uε and apply the coarea formula for the C1 function ω to get

μθ(ϕ) = −
∫

Ω

(ψ′ ◦ ω)|∇ω|ν · (adj∇u)(g ◦ u) dx

=

∫ ε0

−ε0

ψ′(s)

∫
ω=s

(adj∇u)T ν · (g ◦ u) dHm−1 ds.
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An application of the area formula together with the fact that g is bounded shows
that the inner integral is an L1 function in the variable s. If we choose a suitable
increasing sequence ψk ↗ χ

(−∞,ε), then we find, with the aid of Proposition 2.1 in
[16], that (A.2) is satisfied.

We note that it follows from (A.1) and (8.3) in [16] that

μθ(B(b, r)) ≤ (sup θ)(Det∇u)(B(b, r))

for L1 a.e. r ∈ (0, rb). This implies that each of the measures μθ is absolutely
continuous with respect to Det∇u.

Next, let Θ ⊂ C∞
0 (Rm;R≥) be a countable set that is dense in L2(Rm;R≥) and

fix ε ∈ (−ε0, ε0) so that (o) is satisfied and (A.2) is satisfied for every θ ∈ Θ. Let
Nb be the L1 null set of Lemma 7.3 in [16] and let N̂b be an L1 null set such that
(A.1) is satisfied for every θ ∈ Θ and every r ∈ (0, rb)\N̂b. Writing Ñb = Nb ∪ N̂b

we consider the family of closed balls

F := {B(b, r) : b ∈ Uε, r ∈ (0, rb)\Ñb, (Det ∇u)(∂B(b, r)) = 0}.

Then, since the set of radii for which (Det ∇u)(∂B(b, r)) > 0 is at most countable,
for each b ∈ Uε

inf{r : B(b, r) ∈ F} = 0,

and hence we can apply the Besicovitch covering theorem to get a sequence of pairwise
disjoint closed balls B(bk, rk) ⊂ Uε such that

(Lm + Det∇u)

(
Uε \

∞⋃
k=1

B(bk, rk)

)
= 0.(A.3)

Therefore, since the sets B(bk, rk) are pairwise disjoint, (A.1)–(A.3) together with
the absolute continuity of each measure μθ with respect to Det∇u imply that∫

Rm

θ(y) deg(u, ∂Uε,y) dy =

∞∑
k=1

∫
Rm

θχimT(u,B(bk,rk)) dy

for every θ ∈ Θ. Since Θ is dense in L2(Rm;R≥) and since the sets imT(u, B(bk, rk))
are pairwise disjoint, the bounded convergence theorem and the last equation yield

deg(u, ∂Uε, · ) =

∞∑
k=1

χ
imT(u,B(bk,rk)) a.e.

Consequently, since the sets imT(u, B(bk, rk)) are pairwise disjoint, deg(u, ∂Uε,y)
assumes only the values 0 and 1, and hence deg(u, ∂Uε, · ) = χ

imT(u,Uε): thus,

χ
imT(u,Uε) =

∞∑
k=1

χ
imT(u,B(bk,rk)) a.e.(A.4)

We note that, by the area formula, the sets u(∂B(bk, rk)) and u(∂Uε) are each
Lebesgue null sets. Consequently, since the sets imT(u, B(bk, rk)) are pairwise dis-
joint, (A.4) implies that there exist Lebesgue null sets M1 and M2 such that

∞⋃
k=1

E(u, B(bk, rk)) ⊂ M1 ∪ E(u, Uε)(A.5)
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and

imT(u, Uε) ⊂ M2 ∪
∞⋃
k=1

imT(u, B(bk, rk)).(A.6)

Finally, since det ∇u > 0 a.e., it follows from the area formula (see, e.g., [24,
Lemma 2]) that u−1(M1) and u−1(M2) are Lebesgue null sets. Therefore (i) of this
theorem follows from (A.5) and (i) of condition (INV), while (A.6) and (ii) of condition
(INV) yield (ii) of this theorem.

Acknowledgment. J.S. would like to thank Geoffrey Burton for helpful discus-
sions in the course of this work.
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DYNAMICS OF ROTATING BOSE–EINSTEIN CONDENSATES AND
ITS EFFICIENT AND ACCURATE NUMERICAL COMPUTATION ∗

WEIZHU BAO† , QIANG DU‡ , AND YANZHI ZHANG§

Abstract. In this paper, we study the dynamics of rotating Bose–Einstein condensates (BEC)
based on the Gross–Pitaevskii equation (GPE) with an angular momentum rotation term and present
an efficient and accurate algorithm for numerical simulations. We examine the conservation of the
angular momentum expectation and the condensate width and analyze the dynamics of a stationary
state with a shift in its center. By formulating the equation in either the two-dimensional polar
coordinate system or the three-dimensional cylindrical coordinate system, the angular momentum
rotation term becomes a term with constant coefficients. This allows us to develop an efficient
time-splitting method which is time reversible, unconditionally stable, efficient, and accurate for the
problem. Moreover, it conserves the position density. We also apply the numerical method to study
issues such as the stability of central vortex states and the quantized vortex lattice dynamics in
rotating BEC.

Key words. rotating Bose–Einstein condensation, Gross–Pitaevskii equation, angular momen-
tum rotation, time-splitting, ground state, central vortex state, energy, condensate width, angular
momentum expectation

AMS subject classifications. 35Q55, 65T99, 65Z05, 65N12, 65N35, 81-08
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1. Introduction. Since its realization in dilute bosonic atomic gases [3, 20, 21],
Bose–Einstein condensation of alkali atoms and hydrogen has been produced and
studied extensively in the laboratory [45] and has permitted an intriguing glimpse
into the macroscopic quantum world. In view of potential applications [26, 43, 44],
the study of quantized vortices, which are well-known signatures of superfluidity, is
one of the key issues. Different research groups have obtained quantized vortices in
Bose–Einstein condensates (BEC) experimentally, e.g., the JILA group [39], the ENS
group [36, 37], and the MIT group [45]. Currently, there are at least two typical
ways to generate quantized vortices from the ground state of BEC: (i) impose a laser
beam rotating with an angular velocity on the magnetic trap holding the atoms to
create an harmonic anisotropic potential [17, 33, 1, 13]; (ii) add to the stationary
magnetic trap a narrow, moving Gaussian potential, representing a far-blue detuned
laser [29, 7]. The recent experimental and theoretical advances in the exploration
of quantized vortices in BEC have spurred great excitement in the atomic physics
community and renewed interest in studying superfluidity.

The properties of BEC in a rotational frame at temperature T much smaller
than the critical condensation temperature Tc are well described by the macroscopic
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wave function ψ(x, t), whose evolution is governed by a self-consistent, mean field
nonlinear Schrödinger equation (NLSE) in a rotational frame, also known as the
Gross–Pitaevskii equation (GPE) with an angular momentum rotation term [26, 17,
24, 25, 15]:

i�∂tψ(x, t) =

(
− �

2

2m
∇2 + V (x) + NU0|ψ|2 − ΩLz

)
ψ(x, t), x ∈ R3, t ≥ 0,

(1.1)

where x = (x, y, z)
T

is the Cartesian coordinate vector, m is the atomic mass, � is
the Planck constant, N is the number of atoms in the condensate, Ω is the angular
velocity of the rotating laser beam, and V (x) is an external trapping potential. When
an harmonic trap potential is considered, V (x) = m

2

(
ω2
xx

2 + ω2
yy

2 + ω2
zz

2
)

with ωx,
ωy, and ωz being the trap frequencies in the x-, y-, and z-direction, respectively. U0 =
4π�

2as

m describes the interaction between atoms in the condensate with as (positive
for repulsive interaction and negative for attractive interaction) the s-wave scattering
length, and Lz = xpy − ypx = −i� (x∂y − y∂x) is the z-component of the angular

momentum L = x×P with the momentum operator P = −i�∇ = (px, py, pz)
T
. It is

convenient to normalize the wave function by requiring that

‖ψ(·, t)‖2 :=

∫
R3

|ψ(x, t)|2dx = 1.(1.2)

Under such a normalization, we introduce the dimensionless variables as follows: t →
t/ωm with ωm = min{ωx, ωy, ωz}, Ω → ωmΩ, x → a0x with a0 =

√
�

mωm
, and

ψ → ψ/a
3/2
0 . We also let

γx =
ωx

ωm
, γy =

ωy

ωm
, γz =

ωz

ωm
, β =

U0N

a3
0�ωm

=
4πasN

a0
.

The dimensionless angular momentum rotational term then becomes

Lz = −i(x∂y − y∂x) = i(y∂x − x∂y) = −i∂θ(1.3)

with (r, θ) being the polar coordinates in two dimensions (2D) and (r, θ, z) the cylin-
drical coordinates in three dimensions (3D). In the disk-shaped condensation, i.e.,
ωy ≈ ωx and ωz � ωx (⇔ γx = 1, γy ≈ 1, and γz � 1 with choosing ωm = ωx),
the three-dimensional GPE can be reduced to a two-dimensional GPE [13]. Thus,
here we consider the dimensionless GPE with a rotational term in the d-dimensions
(d = 2, 3) [13]:

i∂tψ(x, t) = −1

2
∇2ψ + Vd(x)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ Rd, t > 0,(1.4)

ψ(x, 0) = ψ0(x), x ∈ Rd, with ‖ψ0‖2 :=

∫
Rd

|ψ0(x)|2dx = 1,(1.5)

where

βd =

{
β
√
γz/2π,

β,
Vd(x) =

{
(γ2

xx
2 + γ2

yy
2)/2, d = 2,

(γ2
xx

2 + γ2
yy

2 + γ2
zz

2)/2, d = 3,
(1.6)
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with γx > 0, γy > 0, and γz > 0 being constants. Two important invariants of (1.4)
are the normalization of the wave function

N(ψ) =

∫
Rd

|ψ(x, t)|2dx ≡
∫

Rd

|ψ(x, 0)|2dx = N(ψ0) = 1, t ≥ 0,(1.7)

and the energy

Eβ,Ω(ψ) =

∫
Rd

[
1

2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx

≡ Eβ,Ω(ψ0), t ≥ 0,(1.8)

where f∗ and Ref denote the conjugate and the real part of the function f , respec-
tively.

In order to study effectively the dynamics of BEC, especially in the strong re-
pulsive interaction regime, i.e., βd � 1 in (1.4), an efficient and accurate numer-
ical method is one of the key issues. For nonrotating BEC, i.e., Ω = 0 in (1.4),
many numerical methods were proposed in the literature. For example, Bao, Jaksch,
and Markowich [7], Bao and Jaksch [6], and Bao and Zhang [14] proposed a fourth-
order time-splitting sine or Fourier pseudospectral (TSSP) method, and Bao and
Shen [11] presented a fourth-order time-splitting Laguerre–Hermite (TSLH) pseu-
dospectral method for the GPE when the external trapping potential is radially or
cylindrically symmetric in 2D or 3D. The key ideas for the numerical methods in
[7, 4, 6, 14, 11, 9, 10] are based on (i) a time-splitting technique being applied to
decouple the nonlinearity in the GPE [7, 6, 9, 10]; (ii) proper spectral basis functions
being chosen for a linear Schrödinger equation with a potential such that the ODE
system in phase space is diagonalized and thus can be integrated exactly [14, 11].
These methods are explicit, unconditionally stable, and of spectral accuracy in space
and fourth-order accuracy in time. Thus they are very efficient and accurate for com-
puting the dynamics of nonrotating BEC in 3D [8] and for multicomponent [4]. Some
other numerical methods for nonrotating BEC include the finite difference method
[18, 41, 40], the particle-inspired scheme [19, 40], and the Runge–Kutta pseudospec-
tral method [16, 40]. Due to the appearance of the angular momentum rotation term
in the GPE (1.4), the TSSP and TSLH methods proposed in [7, 14, 11] can no longer
be used for rotating BEC. Currently, the numerical methods proposed in the litera-
ture for studying the dynamics of rotating BEC remain limited [1, 22, 33], and they
usually are low-order methods. Thus it is of great interest to develop an efficient,
accurate, and unconditionally stable numerical method for the GPE (1.4) with an
angular momentum rotation term. Such a numerical method is proposed here and
is applied to the study of the dynamics of the rotating BEC. The key features of
our numerical method are based on (i) the application of a time-splitting technique
for decoupling the nonlinearity in the GPE; (ii) the adoption of polar coordinates or
cylindrical coordinates so as to make the coefficient of the angular momentum rota-
tion term constant; (iii) the utilization of Fourier pseudospectral discretization in the
transverse direction and a second- or fourth-order finite difference or finite element
discretization in the radial direction. Our extensive numerical results demonstrate
that the method is very efficient and accurate.

The paper is organized as follows. In section 2, the conservation of the angular
momentum expectation and the dynamics of condensate widths are first established.
We then analyze the stationary state with a shift in its center and provide some study
on the decrease of the total density in the presence of dissipation. In section 3, a



DYNAMICS OF ROTATING BEC AND COMPUTATION 761

numerical method is presented for the efficient and accurate simulation of GPE (1.4)
in 2D and 3D. It is then applied to study the vortex state and the dynamics of rotating
BEC in section 4. Finally, some conclusions are drawn in section 5.

2. Dynamics of rotating BEC. In this section, we provide some analytical
results on the conservation of the angular momentum expectation in a symmetric
trap, i.e., γx = γy in (1.6), derive a second-order ODE for time evolution of the
condensate width, and present some dynamic laws of a stationary state with a shifted
center in rotating BEC.

2.1. Conservation of angular momentum expectation. As a measure of
the vortex flux, we define the angular momentum expectation:

〈Lz〉(t) :=

∫
Rd

ψ∗(x, t)Lzψ(x, t) dx = i

∫
Rd

ψ∗(x, t)(y∂x − x∂y)ψ(x, t)dx(2.1)

for any t ≥ 0. For the dynamics of angular momentum expectation in rotating BEC,
we have the following lemma.

Lemma 2.1. Suppose ψ(x, t) is the solution of the problem (1.4)–(1.5); then we
have

d〈Lz〉(t)
dt

=
(
γ2
x − γ2

y

)
δxy(t), where δxy(t) =

∫
Rd

xy|ψ(x, t)|2dx, t ≥ 0.(2.2)

Consequently, the angular momentum expectation and energy for the nonrotating part
are conserved; that is, for any given initial data ψ0(x) in (1.5),

〈Lz〉(t) ≡ 〈Lz〉(0), Eβ,0(ψ) ≡ Eβ,0(ψ0), t ≥ 0,(2.3)

at least for radially symmetric trap in 2D or cylindrically symmetric trap in 3D, i.e.,
γx = γy.

Proof. Differentiating (2.1) with respect to t, noticing (1.4), integrating by parts,
and taking into account that ψ decreases to 0 exponentially when |x| → ∞, we have

d〈Lz〉(t)
dt

= i

∫
Rd

[ψ∗
t (y∂x − x∂y)ψ + ψ∗(y∂x − x∂y)ψt] dx

=

∫
Rd

[(−iψ∗
t ) (x∂y − y∂x)ψ + (iψt) (x∂y − y∂x)ψ∗] dx

=

∫
Rd

[(
−1

2
∇2ψ∗ + Vd(x)ψ∗ + βd|ψ|2ψ∗ − iΩ(x∂y − y∂x)ψ∗

)
(x∂y − y∂x)ψ

+

(
−1

2
∇2ψ + Vd(x)ψ + βd|ψ|2ψ + iΩ(x∂y − y∂x)ψ

)
(x∂y − y∂x)ψ∗

]
dx

=

∫
Rd

[
− 1

2

[
∇2ψ∗(x∂y − y∂x)ψ + ∇2ψ(x∂y − y∂x)ψ∗]

+
(
Vd(x) + βd|ψ|2

)
[ψ∗(x∂y − y∂x)ψ + ψ(x∂y − y∂x)ψ∗]

]
dx

= −
∫

Rd

|ψ|2(x∂y − y∂x)Vd(x)dx = (γ2
x − γ2

y)

∫
Rd

xy|ψ|2dx, t ≥ 0,(2.4)
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which gives (2.2). As for the conservation properties, since γx = γy, (2.2) reduces to
the first-order ODE:

d〈Lz〉(t)
dt

= 0, t ≥ 0.(2.5)

We thus get the conservation of 〈Lz〉 immediately.
Noticing Eβ,Ω(ψ) = Eβ,0(ψ) − ΩRe〈Lz〉 and Re〈Lz〉 = 〈Lz〉, we get (2.3) from

(2.5) and (1.8).

2.2. Dynamics of condensate widths. Another quantity characterizing the
dynamics of rotating BEC is the condensate width defined as

σα(t) =
√

δα(t), where δα(t) = 〈α2〉(t) =

∫
Rd

α2|ψ(x, t)|2dx(2.6)

for t ≥ 0 and α being x, y, or z. For the dynamics of condensate widths, we have the
following lemmas.

Lemma 2.2. Suppose ψ(x, t) is the solution of problem (1.4)–(1.5); then we have

d2δα(t)

dt2
=

∫
Rd

[
(∂yα− ∂xα)

(
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

)
+ 2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α(Vd(x))

]
dx, t ≥ 0,(2.7)

δα(0) = δ(0)
α =

∫
Rd

α2|ψ0(x)|2dx, α = x, y, z,(2.8)

δ̇α(0) = δ(1)
α = 2

∫
Rd

α
[
−Ω|ψ0|2 (x∂y − y∂x)α + Im (ψ∗

0∂αψ0)
]
dx,(2.9)

where Im(f) denotes the imaginary part of f .
Proof. Differentiating (2.6) with respect to t, applying (1.4), and integrating by

parts, we obtain

dδα(t)

dt
=

d

dt

∫
Rd

α2|ψ(x, t)|2dx =

∫
Rd

α2 (ψ∂tψ
∗ + ψ∗∂tψ) dx

=

∫
Rd

[
i

2
α2

(
ψ∗∇2ψ − ψ∇2ψ∗) + Ωα2 (x∂y − y∂x) |ψ|2

]
dx

=

∫
Rd

[
iα (ψ∂αψ

∗ − ψ∗∂αψ) − 2Ωα|ψ|2 (x∂y − y∂x)α
]
dx.(2.10)

Differentiating the above equation again, applying (1.4), and integrating by parts, we
get

d2δα(t)

dt2

=

∫
Rd

[
iα (∂tψ∂αψ

∗ + ψ∂αtψ
∗ − ∂tψ

∗∂αψ − ψ∗∂αtψ)

− 2Ωα (ψ∂tψ
∗ + ψ∗∂tψ) (x∂y − y∂x)α

]
dx

=

∫
Rd

[
2iα (∂tψ∂αψ

∗ − ∂tψ
∗∂αψ) + i (ψ∗∂tψ − ψ∂tψ

∗)

− 2Ωα(x∂y − y∂x)α

(
i

2

(
ψ∗∇2ψ − ψ∇2ψ∗) + Ω(x∂y − y∂x)|ψ|2

)]
dx,(2.11)
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d2δα(t)

dt2

=

∫
Rd

[
− α

(
∂αψ

∗∇2ψ + ∂αψ∇2ψ∗) + 2α
(
Vd(x) + βd|ψ|2

)
(ψ∂αψ

∗ + ψ∗∂αψ)

− 2iΩα [∂αψ (x∂y − y∂x)ψ∗ − ∂αψ
∗ (x∂y − y∂x)ψ] − 1

2

(
ψ∗∇2ψ + ψ∇2ψ∗)

+ 2
(
Vd(x)|ψ|2 + βd|ψ|4

)
− iΩ [ψ (x∂y − y∂x)ψ∗ − ψ∗ (x∂y − y∂x)ψ]

− 2iΩψ∗ [∂xα (α∂y + y∂α)ψ − ∂yα (α∂x + x∂α)ψ]

+ 2Ω2|ψ|2
[(
y2 − αx

)
∂xα +

(
x2 − αy

)
∂yα

] ]
dx

=

∫
Rd

[
−4iΩψ∗ [∂xα (α∂y + y∂α)ψ − ∂yα (α∂x + x∂α)ψ] + 2|∂αψ|2 + βd|ψ|4

+ 2Ω2|ψ|2
[(
y2 − αx

)
∂xα +

(
x2 − αy

)
∂yα

]
− 2α|ψ|2∂α (Vd(x))

]
dx

=

∫
Rd

[
(∂yα− ∂xα)

[
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

)
|ψ|2

]
+ 2|∂αψ|2 + βd|ψ|4 − 2α|ψ|2∂α (Vd(x))

]
dx.(2.12)

Furthermore, noticing (1.5), (2.6), and (2.10) with t = 0, we get (2.8) and (2.9)
immediately.

Lemma 2.3. (i) In 2D with a radial symmetric trap, i.e., d = 2 and γx = γy := γr
in (1.4), for any initial data ψ0 = ψ0(x, y), we have, for any t ≥ 0,

δr(t) =
Eβ,Ω(ψ0) + Ω〈Lz〉(0)

γ2
r

[1 − cos(2γrt)] + δ(0)
r cos(2γrt) +

δ
(1)
r

2γr
sin(2γrt),(2.13)

where δr(t) = δx(t) + δy(t), δ
(0)
r := δx(0) + δy(0), and δ

(1)
r := δ̇x(0) + δ̇y(0). Further-

more, when the initial condition ψ0(x, y) in (1.5) satisfies

ψ0(x, y) = f(r)eimθ with m ∈ Z and f(0) = 0 when m �= 0,(2.14)

we have, for any t ≥ 0,

δx(t) = δy(t) =
1

2
δr(t)

=
Eβ,Ω(ψ0) + mΩ

2γ2
x

[1 − cos(2γxt)] + δ(0)
x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt).(2.15)

This and (2.6) imply that

σx = σy =

√
Eβ,Ω(ψ0) + mΩ

2γ2
x

[1 − cos(2γxt)] + δ
(0)
x cos(2γxt) +

δ
(1)
x

2γx
sin(2γxt).

(2.16)

Thus in this case, the condensate widths σx(t) and σy(t) are periodic functions with
frequency doubling the trapping frequency.
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(ii) For all other cases, we have, for any t ≥ 0,

δα(t) =
Eβ,Ω(ψ0)

γ2
α

+

(
δ(0)
α − Eβ,Ω(ψ0)

γ2
α

)
cos(2γαt) +

δ
(1)
α

2γα
sin(2γαt) + fα(t),(2.17)

where fα(t) is the solution of the following second-order ODE:

d2fα(t)

dt2
+ 4γ2

α fα(t) = Fα(t), fα(0) =
dfα(0)

dt
= 0,(2.18)

with

Fα(t) =

∫
Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2

αα
2 − 4Vd(x)

)
|ψ|2 + 4Ωψ∗Lzψ

+ (∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

) ]
dx.

Proof. From (2.7) with d = 2, we have

d2δx(t)

dt2
+ 2γ2

xδx(t)

=

∫
R2

[
2|∂xψ|2 + β2|ψ|4 − 4iΩψ∗ (x∂y + y∂x)ψ − 2Ω2

(
x2 − y2

)
|ψ|2

]
dx,(2.19)

d2δy(t)

dt2
+ 2γ2

yδy(t)

=

∫
R2

[
2|∂yψ|2 + β2|ψ|4 + 4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

)
|ψ|2

]
dx.(2.20)

For case (i) with γx = γy := γr in (1.4), summing up (2.19) and (2.20) together and
applying (1.8) and (2.3), we have the following ODE for δr(t):

d2δr(t)

dt2
= −2γ2

rδr(t) +

∫
R2

[
2|∇ψ|2 + 2β2|ψ|4

]
dx

= −2γ2
rδr(t) − 4

∫
R2

[
V2(x)|ψ|2 − Ωψ∗Lzψ

]
dx

+ 4

∫
R2

[
1

2
|∇ψ|2 + V2(x)|ψ|2 +

β2

2
|ψ|4 − Ωψ∗Lzψ

]
dx

= −2γ2
rδr(t) − 2γ2

rδr(t) + 4Ω〈Lz〉(t) + 4Eβ,Ω(ψ(·, t))
= −4γ2

rδr(t) + 4Eβ,Ω(ψ0) + 4Ω〈Lz〉(0), t ≥ 0,(2.21)

δr(0) = δ(0)
r , δ̇r(0) = δ(1)

r .(2.22)

Thus, (2.13) is the unique solution of the second-order ODE (2.21) with the initial
data (2.22). Furthermore, when the initial data ψ0(x) in (1.5) satisfies (2.14), due to
symmetry, the solution ψ(x, t) of (1.4)–(1.5) satisfies

ψ(x, y, t) = g(r, t)eimθ with g(r, 0) = f(r).(2.23)
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This implies

δx(t) =

∫
R2

x2|ψ(x, y, t)|2 dx =

∫ ∞

0

∫ 2π

0

r2 cos2 θ|g(r, t)|2r dθdr

= π

∫ ∞

0

r2|g(r, t)|2r dr =

∫ ∞

0

∫ 2π

0

r2 sin2 θ|g(r, t)|2r dθdr

=

∫
R2

y2|ψ(x, y, t)|2 dx = δy(t), t ≥ 0.(2.24)

Since γx = γy, by Lemma 2.1, we know in this case that

〈Lz〉(t) = 〈Lz〉(0) = −i

∫
R2

ψ∗
0(x, y)∂θψ0(x, y) dx

= 2πm

∫ ∞

0

|f(r)|2r dr = m‖ψ0‖2 = m.(2.25)

Thus, (2.15) is a combination of (2.13), (2.24), and (2.25).
(ii) From (2.7) and noticing the energy conservation (1.8), we have

d2δα(t)

dt2
=

∫
Rd

[
(∂yα− ∂xα)

[
4iΩψ∗(x∂y + y∂x)ψ + 2Ω2

(
x2 − y2

)
|ψ|2

]
+ 2|∂αψ|2 + βd|ψ|4 − 2γ2

αα
2|ψ|2

]
dx

= −4γ2
αδα(t) + 4

∫
R2

[
1

2
|∇ψ|2 + Vd(x)|ψ|2 +

βd

2
|ψ|4 − Ωψ∗Lzψ

]
dx

+

∫
Rd

[
2|∂αψ|2 − 2|∇ψ|2 − βd|ψ|4 +

(
2γ2

αα
2 − 4Vd(x)

)
|ψ|2 + 4Ωψ∗Lzψ

+ (∂yα− ∂xα)
(
4iΩψ∗ (x∂y + y∂x)ψ + 2Ω2(x2 − y2)|ψ|2

) ]
dx

= −4γ2
αδα(t) + 4Eβ,Ω(ψ(·, t)) + Fα(t)

= −4γ2
αδα(t) + 4Eβ,Ω(ψ0) + Fα(t), t ≥ 0.(2.26)

Thus (2.17) is the unique solution of the second-order ODE (2.26) with the initial
data (2.8), (2.9).

2.3. Dynamics of a stationary state with its center shifted. Let φe(x) be
a stationary state of the GPE (1.4) with a chemical potential μe [13, 12], i.e., (μe, φe)
satisfying

μeφe(x) = −1

2
∇2φe + Vd(x)φe + βd|φe|2φe − ΩLzφe, ‖φe‖2 = 1.(2.27)

If the initial data ψ0(x) in (1.5) is chosen as a stationary state with a shift in its center,
one can construct an exact solution of the GPE (1.4) with an harmonic oscillator
potential (1.6). This kind of analytical construction can be used, in particular, in the
benchmark and validation of numerical algorithms for the GPE. In [27], a similar kind
of solution was constructed for the GPE and a second order ODE system was derived
for the dynamics of the center, but the results there were valid only for nonrotating
BEC, i.e., Ω = 0. Modifications must be made for the rotating BEC, i.e., Ω �= 0.
Later, in [15], similar results were extended to the case of a general Hamiltonian but



766 WEIZHU BAO, QIANG DU, AND YANZHI ZHANG

without specifying the initial data for the ODE system. For the convenience of the
reader, here we present a simple derivation of the dynamic laws for rotating BEC.

Lemma 2.4. If the initial data ψ0(x) in (1.5) is chosen as

ψ0(x) = φe(x − x0), x ∈ Rd,(2.28)

where x0 is a given point in Rd, then the exact solution of (1.4)–(1.5) satisfies

ψ(x, t) = φe(x − x(t)) e−iμet eiw(x,t), x ∈ Rd, t ≥ 0,(2.29)

where for any time t ≥ 0, w(x, t) is linear for x, i.e.,

w(x, t) = c(t) · x + g(t), c(t) = (c1(t), . . . , cd(t))
T , x ∈ Rd, t ≥ 0,(2.30)

and x(t) satisfies the following second-order ODE system:

ẍ(t) − 2Ωẏ(t) +
(
γ2
x − Ω2

)
x(t) = 0,(2.31)

ÿ(t) + 2Ωẋ(t) +
(
γ2
y − Ω2

)
y(t) = 0, t ≥ 0,(2.32)

x(0) = x0, y(0) = y0, ẋ(0) = Ωy0, ẏ(0) = −Ωx0.(2.33)

Moreover, if in 3D, another ODE needs to be added:

z̈(t) + γ2
zz(t) = 0, z(0) = z0, ż(0) = 0.(2.34)

Proof. For d = 2, we introduce

J =

(
0 1
−1 0

)
, A =

(
γ2
x 0

0 γ2
y

)
, ∇ =

(
∂x
∂y

)
.

Differentiating (2.29) with respect to t and x, respectively, plugging into (1.4), chang-
ing variable x − x(t) → x, and noticing (2.27), we obtain for φe = φe(x) and
w = w(x + x(t), t) that

φe∂tw + iẋ(t) · ∇φe =
1

2

[
iφe∇2w − φe|∇w|2 − x(t)TA(2x + x(t))φe

]
+i∇φe · ∇w − φeΩ(x + x(t)) · (J∇w) + iΩx(t) · (J∇φe).(2.35)

Taking the real and imaginary parts in (2.35) and noticing (2.30), we have

[ẋ(t) −∇w(x + x(t), t) − ΩJx(t)] · ∇φe = 0,(2.36) [
∂tw +

1

2
|∇w|2 +

1

2
x(t)TA(2x + x(t)) − Ω(x + x(t)) · (J∇w)

]
φe = 0.(2.37)

We thus get

ẋ(t) = ∇w(x + x(t), t) + ΩJx(t),(2.38)

∂tw(x + x(t), t) = −1

2

[
|∇w|2 + x(t)TA(2x + x(t))

]
+ Ω(x + x(t)) · (J∇w).(2.39)
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Differentiating (2.38) and (2.39) with respect to t and x, respectively, and noticing
(2.30), which implies that |∇w|2 is independent of x, we obtain

0 = ẍ(t) − ∂t(∇w(x + x(t), t)) − ΩJ ẋ(t)

= ẍ(t) −∇(∂tw(x + x(t), t)) − ẋ(t) ∇2w(x + x(t), t) − ΩJ ẋ(t)

= ẍ(t) −∇(∂tw(x + x(t), t)) − ΩJ ẋ(t)

= ẍ(t) + Ax(t) − ΩJ [ẋ(t) − ΩJx(t)] − ΩJ ẋ(t)

= ẍ(t) − 2ΩJ ẋ(t) + (A + Ω2J2)x(t)

= ẍ(t) − 2ΩJ ẋ(t) + (A− Ω2I)x(t), t ≥ 0.(2.40)

From (2.29) with t = 0, we get

x(0) = x0, w(x, 0) ≡ 0, x ∈ Rd.(2.41)

Thus (2.33) is a combination of (2.41) and (2.38) with t = 0. For d = 3, the proof is
similar, and the details are omitted here.

In the literature, constructions similar to the above are often numerically verified
by directly simulating the dynamics of the GPE in nonrotating BEC [14, 27]. To our
knowledge, the above lemma gives the first rigorous derivation for rotating BEC.

Notice that if u = ẋ(t) − ΩJx(t), then (2.40) gives a coupled first-order system⎧⎨
⎩

ẋ(t) = ΩJx(t) + u,
u̇(t) = −Ax(t) + ΩJu,
x(0) = x0, u(0) = 0,

(2.42)

which is a Hamiltonian system with the Hamiltonian H(x,u) = ΩuTJx + (uTu +
xTAx)/2. The characteristic roots λ of the system are given by the equation

λ4 + (γ2
x + γ2

y + 2Ω2)λ2 + (γ2
x − Ω2)(γ2

y − Ω2) = 0.(2.43)

The exact solutions of (2.42) may thus be completely determined.
We note not only that results on the dynamics of a stationary state with its center

shifted are physically interesting this type of exact solution of the time-dependent
GPE can also serve as a good benchmark for numerical algorithms and is useful in
the mathematical studies of the dynamic stabilities of the vortex state in BEC. In
section 4.2, we will study this kind of dynamics by directly simulating the GPE in
a rotational frame and explore different motion patterns of a stationary state center
under different rotation speed Ω.

2.4. Dynamics of the total density in the presence of dissipation. Con-
sider a more general GPE of the form

(i− λ)∂tψ(x, t) = −1

2
∇2ψ + V (x, t)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ Rd, t > 0,(2.44)

ψ(x, 0) = ψ0(x), x ∈ Rd,(2.45)

where λ ≥ 0 is a real parameter that models a dissipation mechanism [2, 30, 32] and
V (x, t) = Vd(x) + W (x, t) with W (x, t) an external driven field [16, 31]. Typical
external driven fields used in physics literature include a Delta kicked potential [31]

W (x, t) = Ks cos(ksx)

∞∑
n=−∞

δ(t− nτ),(2.46)
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with Ks being the kick strength, ks the wavenumber, τ the time interval between
kicks, and δ(τ) the Dirac delta function, or a far-blue detuned Gaussian laser beam
stirrer [16]

W (x, t) = Ws(t) exp

[
−

(
|x − xs(t)|2

ws/2

)]
(2.47)

with Ws(t) being the height, ws the width, and xs(t) the position of the stirrer. In
addition, we note that to study the onset of energy dissipation in BEC stirred by a
laser field, another possibility is to view the beam as an translating obstacle [2] instead
of introducing the Gaussian potential.

While the total density remains constant with λ = 0, in the more general case,
we have the following lemma for the dynamics of the total density.

Lemma 2.5. Let ψ(x, t) be the solution of (2.44)–(2.45); then the total density
satisfies

Ṅ(ψ)(t) =
d

dt

∫
Rd

|ψ(x, t)|2 dx = − 2λ

1 + λ2
μβ,Ω(ψ), t ≥ 0,(2.48)

where

μβ,Ω(ψ) =

∫
Rd

[
1

2
|∇ψ|2 + V (x, t)|ψ|2 + βd|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx.

Consequently, the total density decreases when λ > 0 and |Ω| ≤ γxy := min{γx, γy}.
Proof. Dividing (2.44) by (i − λ), multiplying it by ψ∗ and summing with its

complex conjugate, and integrating by parts, we obtain

dN(ψ)

dt
=

∫
Rd

[
− i + λ

1 + λ2

(
−1

2
∇2ψ + V (x, t)ψ + βd|ψ|2ψ − ΩLzψ

)
ψ∗

+
i− λ

1 + λ2

(
−1

2
∇2ψ∗ + V (x, t)ψ∗ + βd|ψ|2ψ∗ − Ω(Lz)

∗ψ∗
)
ψ

]
dx

=
λ

1 + λ2

∫
Rd

[
1

2

(
ψ∗∇2ψ + ψ∇2ψ∗)− 2

(
V (x, t)|ψ|2 + βd|ψ|4

)
+ Ω (ψ∗Lzψ + ψ(Lz)

∗ψ∗)

]
dx

=
−2λ

1 + λ2

∫
Rd

[
1

2
|∇ψ|2 + V (x, t)|ψ|2 + βd|ψ|4 − ΩRe(ψ∗Lzψ)

]
dx

=
−2λ

1 + λ2
μβ,Ω(ψ).(2.49)

When γ > 0 and |Ω| < γxy, by a completion of square [1, 13], we have

1

2
|∇ψ|2 + V (x, t)|ψ|2 − ΩRe(ψ∗Lzψ) =

1

2
|(∇− iA)ψ|2 +

[
V (x, t) − |Ω|2

2
(x2 + y2)

]
|ψ|2

for a vector potential A = A(x, y) = (y,−x)Ω in 2D and A = A(x, y, z) = (y,−x, 0)Ω
in 3D. Thus, μβ,Ω(ψ) > 0. Consequently, we get

dN(ψ)

dt
< 0, t ≥ 0,(2.50)

which immediately implies the decreasing of the total density.
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3. Numerical methods. In this section, we will present an efficient and ac-
curate numerical method to solve the following GPE for the dynamics of rotating
BEC.

Due to the trapping potential Vd(x) given by (1.6), the solution ψ(x, t) of (2.44)–
(2.45) decays to zero exponentially fast when |x| → ∞. Thus in practical computation,
we truncate the problem (2.44)–(2.45) into a bounded computational domain with the
homogeneous Dirichlet boundary condition:

(i− λ)∂tψ(x, t) = −1

2
∇2ψ + V (x, t)ψ + βd|ψ|2ψ − ΩLzψ, x ∈ Ωx, t > 0,(3.1)

ψ(x, t) = 0, x ∈ Γ = ∂Ωx, t ≥ 0,(3.2)

ψ(x, 0) = ψ0(x), x ∈ Ω̄x,(3.3)

where we choose Ωx = {(x, y), r =
√
x2 + y2 < R} in 2D and, respectively, Ωx =

{(x, y, z), r =
√
x2 + y2 < R, a < z < b} in 3D with R, |a|, and b sufficiently large.

The use of more sophisticated radiation boundary conditions is an interesting topic
that remains to be examined in the future.

3.1. Time-splitting. We choose a time step size Δt > 0. For n = 0, 1, 2, . . . ,
from time t = tn = nΔt to t = tn+1 = tn+Δt, the GPE (3.1) is solved in two splitting
steps. One first solves

(i− λ) ∂tψ(x, t) = −1

2
∇2ψ − ΩLzψ(3.4)

for the time step of length Δt, followed by solving

(i− λ) ∂tψ(x, t) = V (x, t)ψ + βd|ψ|2ψ(3.5)

for the same time step. Equation (3.4) will be discretized in detail in the next two
subsections. For t ∈ [tn, tn+1], after dividing (3.5) by (i − λ), multiplying it by ψ∗,
and adding with its complex conjugate, we obtain the following ODE for ρ(x, t) =
|ψ(x, t)|2:

∂tρ(x, t) = − 2λ

1 + λ2

[
V (x, t)ρ(x, t) + βdρ

2(x, t)
]
, x ∈ Ωx, tn ≤ t ≤ tn+1.(3.6)

The ODE for the phase angle φ(x, t) (determined as ψ =
√
ρeiφ) is given by

φt = − 1

1 + λ2
[V (x, t) + βdρ(x, t)] , x ∈ Ωx, tn ≤ t ≤ tn+1.(3.7)

For λ �= 0, by (3.6), the above is equivalent to

φt =
1

2λ
∂t ln ρ, x ∈ Ωx, tn ≤ t ≤ tn+1.(3.8)

Denoting Vn(x, t) =
∫ t

tn
V (x, τ)dτ , we can solve (3.6) to get

ρ(x, t) =
ρ(x, tn) exp[−2λVn(x,t)

1+λ2 ]

1 + ρ(x, tn) 2λβd

1+λ2

∫ t

tn
exp[−2λVn(x,τ)

1+λ2 ] dτ
.(3.9)



770 WEIZHU BAO, QIANG DU, AND YANZHI ZHANG

Consequently, in the special case V (x, t) = V (x), we have some exact analytical
solutions given by

ρ(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

ρ(x, tn), λ = 0,

(1 + λ2)ρ(x, tn)

(1 + λ2) + 2λβd(t− tn)ρ(x, tn)
, V (x) = 0,

V (x)ρ(x, tn) exp[−2λV (x)(t−tn)
1+λ2 ]

V (x) +
(
1 − exp[−2λV (x)(t−tn)

1+λ2 ]
)
βdρ(x, tn)

, V (x) �= 0.

(3.10)

Plugging (3.9) into (3.5), we get, for t ∈ [tn, tn+1],

ψ(x, t) = ψ(x, tn)
√
Un(x, t) exp

[
− i

1 + λ2

(
Vn(x, t) + βd

∫ t

tn

ρ(x, τ)dτ

)]
,(3.11)

where

Un(x, t) =
exp[−2λVn(x,t)

1+λ2 ]

1 + |ψ(x, tn)|2 2λβd

1+λ2

∫ t

tn
exp[−2λVn(x,τ)

1+λ2 ] dτ
.(3.12)

Again, with V (x, t) = V (x), we can integrate exactly to get

ψ(x, t) = ψ(x, tn)

⎧⎪⎨
⎪⎩

exp
[
−i(βd|ψ(x, tn)|2 + V (x))(t− tn)

]
, λ = 0,

√
Ûn(x, t) exp[ i

2λ ln Ûn(x, t)], λ �= 0,

(3.13)

where

Ûn(x, t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1 + λ2

1 + λ2 + 2λβd(t− tn)|ψ(x, tn)|2 , V (x) = 0,

V (x) exp[− 2λ(t−tn)V (x)
1+λ2 ]

V (x) +
(
1 − exp[− 2λ(t−tn)V (x)

1+λ2 ]
)
βd|ψ(x, tn)|2

, V (x) �= 0.

Remark 3.1. If the function Vn(x, t) as well as other integrals in (3.9), (3.11),
and (3.12) cannot be evaluated analytically, numerical quadrature can be used, e.g.,

Vn(x, tn+1) =

∫ tn+1

tn

V (x, τ) dτ ≈ Δt

6
[V (x, tn) + 4V (x, tn + Δt/2) + V (x, tn+1)] .

3.2. Discretization in 2D. To solve (3.4), we try to formulate the equation
in a variable separable form. When d = 2, we use the polar coordinate (r, θ) and
discretize in the θ-direction by a Fourier pseudospectral method, in the r-direction
by a finite element method (FEM), and in time by a Crank–Nicolson (C–N) scheme.
Assume that

ψ(r, θ, t) =

L/2−1∑
l=−L/2

ψ̂l(r, t) eilθ,(3.14)
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where L is an even positive integer and ψ̂l(r, t) is the Fourier coefficient for the lth
mode. Plugging (3.14) into (3.4) and noticing the orthogonality of the Fourier func-
tions, we obtain, for −L

2 ≤ l ≤ L
2 − 1 and 0 < r < R,

(i− λ) ∂tψ̂l(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l(r, t)

∂r

)
+

(
l2

2r2
− lΩ

)
ψ̂l(r, t),(3.15)

ψ̂l(R, t) = 0 (for all l), ψ̂l(0, t) = 0 (for l �= 0).(3.16)

Let P k denote all polynomials with degree at most k, let M > 0 be a chosen integer,
and 0 = r0 < r1 < r2 < · · · < rM = R be a partition for the interval [0, R] with a
mesh size h = max0≤m<M {rm+1 − rm}. Define a FEM subspace by

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(R) = 0
}

for l = 0, and for l �= 0,

Uh =
{
uh ∈ C[0, R] | uh

∣∣
[rm,rm+1]

∈ P k, 0 ≤ m < M, uh(0) = uh(R) = 0
}

;

then we obtain the FEM approximation for (3.15)–(3.16): Find ψ̂h
l = ψ̂h

l (·, t) ∈ Uh

such that for all φh ∈ Uh and tn ≤ t ≤ tn+1,

(i− λ)
d

dt
A(ψ̂h

l (·, t), φh) = B(ψ̂h
l (·, t), φh) + l2C(ψ̂h

l , φ
h) − lΩA(ψ̂h

l , φ
h),(3.17)

where

A(uh, vh) =

∫ R

0

r uh(r) vh(r) dr, B(uh, vh) =

∫ R

0

r

2

duh(r)

dr

dvh(r)

dr
dr,

C(uh, vh) =

∫ R

0

1

2r
uh(r) vh(r) dr, uh, vh ∈ Uh.

The ODE system (3.17) is then discretized by the standard C–N scheme in time.
Although an implicit time discretization is applied for (3.17), the one-dimensional
nature of the problem makes the coefficient matrix for the linear system band-limited.
For example, if the piecewise linear polynomial is used, i.e., k = 1 in Uh, the matrix
is tridiagonal. Fast algorithms can be applied to solve the resulting linear systems.

In practice, we always use the second-order Strang splitting [49]; i.e., from time
t = tn to t = tn+1 (i) evolve (3.5) for half time step Δt/2 with initial data given at
t = tn; (ii) evolve (3.4) for one time step Δt starting with the new data; (iii) evolve
(3.5) for half time step Δt/2 with the newer data. For more general discussion on
splitting methods, we refer the reader to [28, 38] for more details.

For the discretization considered here, the total memory requirement is O(ML)
and the total computational cost per time step is O(ML lnL). Furthermore, following
the similar proofs in [6, 7, 14], the total density can be shown to be conserved in the
discretized level when λ = 0 and to be decreased in the discretized level when λ > 0.

Remark 3.2. As noticed in [35, 34], another way for discretizing (3.15)–(3.16) is
to use the finite difference in space on a mesh with a shifted grid and the C–N scheme
in time. Choose an integer M > 0, a mesh size Δr = 2R/(2M + 1), and grid points



772 WEIZHU BAO, QIANG DU, AND YANZHI ZHANG

rm = (m−1/2)Δr for 0 ≤ m ≤ M +1. Let ψ̂l,m(t) be the approximation of ψ̂l(rm, t).
A second-order finite difference discretization for (3.15)–(3.16) in space is

(i− λ)
dψ̂l,m(t)

dt
= −

rm+1/2ψ̂l,m+1(t) − 2rmψ̂l,m(t) + rm−1/2ψ̂l,m−1(t)

2(Δr)2rm

+

(
l2

2r2
m

− lΩ

)
ψ̂l,m(t), m = 1, 2, . . . ,M, tn ≤ t ≤ tn+1,(3.18)

with essential boundary conditions:

ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,M+1(t) = 0, tn ≤ t ≤ tn+1.(3.19)

The ODE system (3.18)–(3.19) may then be discretized in time by the C–N scheme so
that only a tridiagonal linear system is to be solved with O(M) arithmetic operations.
We may further obtain a fourth-order finite difference discretization [35] for (3.15)–
(3.16) on the interval t ∈ [tn, tn+1]:

(i− λ)
dψ̂l,m(t)

dt
=

(
l2

2r2
m

− lΩ

)
ψ̂l,m(t)

− −ψ̂l,m+2(t) + 16ψ̂l,m+1(t) − 30ψ̂l,m(t) + 16ψ̂l,m−1(t) − ψ̂l,m−2(t)

24(Δr)2

− −ψ̂l,m+2(t) + 8ψ̂l,m+1(t) − 8ψ̂l,m−1(t) + ψ̂l,m−2(t)

24Δr rm
, 1 ≤ m ≤ M,(3.20)

(i− λ)
dψ̂l,M+1(t)

dt
=

(
l2

2r2
M+1

− lΩ

)
ψ̂l,M+1(t)

− 11ψ̂l,M+2(t) − 20ψ̂l,M+1(t) + 6ψ̂l,M (t) + 4ψ̂l,M−1(t) − ψ̂l,M−2(t)

24(Δr)2

− 3ψ̂l,M+2(t) + 10ψ̂l,M+1(t) − 18ψ̂l,M (t) + 6ψ̂l,M−1(t) − ψ̂l,M−2(t)

24Δr rM+1
,(3.21)

ψ̂l,−1(t) = (−1)lψ̂l,2(t), ψ̂l,0(t) = (−1)lψ̂l,1(t), ψ̂l,M+1(t) = 0.(3.22)

Again the ODE system (3.20)–(3.22) may be discretized in time by the C–N scheme,
and only a pentadiagonal linear system is to be solved, which can be done very
efficiently too, i.e., via O(M) arithmetic operations.

3.3. Discretization in 3D. When d = 3 in (3.4), we use the cylindrical coordi-
nate (r, θ, z) and discretize in the θ-direction by the Fourier pseudospectral method,
in the z-direction by the sine pseudospectral method, and in the r-direction by the
finite element or finite difference method and in time by the C–N scheme. Assume
that

ψ(r, θ, z, t) =

L/2−1∑
l=−L/2

K−1∑
k=1

ψ̂l,k(r, t) eilθ sin(μk(z − a)),(3.23)

where L and K are two even positive integers, μk = πk
b−a (k = 1, . . . ,K − 1), and

ψ̂l,k(r, t) is the Fourier-sine coefficient for the (l, k)th mode. Plugging (3.23) into
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(3.4) with d = 3 and noticing the orthogonality of the Fourier-sine modes, we obtain,
for −L

2 ≤ l ≤ L
2 − 1, 1 ≤ k ≤ K − 1, and 0 < r < R, that

(i− λ) ∂tψ̂l,k(r, t) = − 1

2r

∂

∂r

(
r
∂ψ̂l,k(r, t)

∂r

)
+

(
l2

2r2
+

μ2
k

2
− lΩ

)
ψ̂l,k(r, t)(3.24)

with essential boundary conditions

ψ̂l,k(R, t) = 0 (for all l), ψ̂l,k(0, t) = 0 (for l �= 0).(3.25)

The discretization of (3.24)–(3.25) is similar as that for (3.15)–(3.16) and is omitted
here.

For the algorithm in 3D, the total memory requirement is O(MLK) and the total
computational cost per time step is O(MLK ln(LK)).

4. Numerical simulations. In this section, we first test the accuracy of our
numerical method. Then we apply it to study the dynamics of condensate width, a
central vortex state with a shift in its center, and a quantized vortex lattice. Properties
such as the conservation of energy and the angular momentum expectation and the
stability of central vortices in rotating BEC are also discussed.

4.1. Numerical accuracy. To test the accuracy of our method, we take d = 2,
λ = 0, γx = γy = 1, Ω = 0.8, and W (x, t) ≡ 0 in (2.44). The initial condition in
(2.45) is taken as

ψ0(x) =
21/4

π1/2
e−(x2+2y2)/2, x ∈ R2.

We take R = 12 for the bounded computational domain Ωx and the piecewise linear
polynomial for Uh. Let ψ be the exact solution which is obtained numerically using
our method with a very fine mesh and small time step, e.g., Δr = 1

1024 , Δθ = π
128 ,

and Δt = 0.0001, and let ψ(Δr,Δθ,Δt) be the numerical solution obtained with mesh
size (Δr,Δθ) and time step Δt.

First, we test the spectral accuracy in the θ-direction by choosing a very small
mesh size in the r-direction Δr = 1

1024 and the time step Δt = 0.0001 and by solving
the problem for each fixed β2 with different mesh size Δθ so that the discretization
errors in the r-direction and in time can be neglected comparing to that in the θ-
direction. The errors ||ψ(t) − ψ(Δr,Δθ,Δt)(t)||l2 at t = 2.0 are shown in Table 4.1 for
different values of β2 and Δθ.

Then we test the second-order accuracy in the r-direction by choosing a very fine
mesh size Δθ = π

128 and time step Δt = 0.0001 and by solving the problem with
different values of β2 and Δr. Table 4.2 shows the errors at t = 2.0 for different
values of β2 and Δr.

Table 4.1

Discretization error ‖ψ(t) − ψ(Δr,Δθ,Δt)(t)‖l2 at t = 2.0 in the θ-direction.

Mesh size Δθ π/2 π/4 π/8 π/16 π/32
β2 = 0 9.448E-2 1.203E-2 5.059E-4 4.981E-7 6.987E-13
β2 = 10 0.3351 1.868E-2 4.408E-4 3.078E-7 7.597E-13
β2 = 50 0.8577 8.609E-2 2.221E-3 1.527E-6 1.059E-12
β2 = 100 1.1345 0.1994 9.415E-3 1.008E-5 3.553E-11
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Table 4.2

Discretization error ‖ψ(t) − ψ(Δr,Δθ,Δt)(t)‖l2 at t = 2.0 in the r-direction.

Mesh size Δr 1/32 1/64 1/128 1/256 1/512
β2 = 0 2.716E-4 6.771E-5 1.673E-5 3.983E-6 7.968E-7
β2 = 10 6.349E-3 1.586E-3 3.921E-4 9.337E-5 1.868E-5
β2 = 50 0.1118 2.959E-2 7.358E-3 1.753E-3 3.507E-4
β2 = 100 0.5203 0.1840 4.734E-2 1.131E-2 2.263E-3

Table 4.3

Discretization error ‖ψ(t) − ψ(Δr,Δθ,Δt)(t)‖l2 at t = 2.0 in time.

Time step Δt 1/160 1/320 1/640 1/1280 1/2560
β2 = 0 7.812E-5 1.952E-5 4.864E-6 1.201E-6 2.856E-7
β2 = 10 2.236E-3 5.582E-4 1.391E-4 3.433E-5 8.155E-6
β2 = 50 0.1111 3.581E-2 9.394E-3 2.328E-3 5.531E-4
β2 = 100 0.5445 0.3044 0.1032 2.654E-2 6.319E-3

Next, we test the second-order accuracy in time. Table 4.3 lists the errors at
t = 2.0 for different values of β2 and time steps Δt with a very fine mesh in space,
e.g., Δr = 1

1024 and Δθ = π
128 .

From Tables 4.1–4.3, we can conclude that our method is of spectral-order accu-
racy in the θ-direction, second-order accuracy in time, and second-order accuracy in
the r-direction when the piecewise linear FEM is used. Usually, for given parameter’s
setup and initial data, the bigger the β2, the larger the errors. This implies that
more grid points and a small time step should be used when β2 is larger in order to
get high accuracy. Furthermore, additional numerical experiments have been tested
to verify the fourth-order accuracy in the r-direction when the continuous piecewise
cubic element space is used. Such cubic elements are always used for the Uh in the
following simulations.

4.2. Dynamics of a stationary state with a shifted center. To verify the
analytical solution (2.29) and to study the dynamics of a stationary state with a
shifted center through the direct simulation of the GPE for the rotating BEC, we
take d = 2, λ = 0, γx = γy = 1, β2 = 100, and W (x, t) ≡ 0 in (2.44). The initial
condition in (2.45) is taken as

ψ0(x) = φe(x − x0), φe(x) = f(r)eiθ, x ∈ R2,

where φe(x) is a central vortex state with winding number m = 1 under the same
parameter set; i.e., f(r) is found numerically by the methods proposed in [5, 13].
This setup corresponds to a shift of the trap center from the origin to −x0. We
take x0 = (1, 1)T , R = 12 for Ωx, mesh size Δr = 0.004, Δθ = π

64 , and time step
Δt = 0.0001. The trajectory and position of the central vortex center with respect
to time t are shown in Figure 1 for different rotation speed Ω. Notice that for the
parameters chosen, the characteristic roots of (2.43) are given by ±(|Ω| ± 1)i. When
Ω = 0 or Ω = ±1, we get roots with higher multiplicities; otherwise, we have four
distinct pure imaginary roots, and the periodicity of the orbits is thus implied for
rational values of the frequency Ω. For Ω = 0, (2.31)–(2.33) reduces to ẍ(t)+x(t) = 0
with ẋ(0) = 0. It is easy to see that the trajectory is a straight line. For Ω = ±1,
(2.31)–(2.33) reduces to ẍ(t) ∓ 2J ẋ(t) = 0, which leads to ẋ(t) = Q(±2t)ẋ(0) with
Q(2t) being a rotation of angle ±2t. The trajectory thus stays as a circle. In addition,
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Ω = 0 Ω = −0.5

Ω = −1 Ω = −4

Ω = 1/π
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1

1.5
Ω = π

Fig. 1. Trajectory of the central vortex center, x(t) = (x(t), y(t))T for 0 ≤ t ≤ 100, for different
rotation speed Ω.

for all other values of Ω, we can check that the equation is invariant under the rotation
transformation, due to the fact that Q(θ)J = JQ(θ) for any rotation matrix Q(θ).
Thus, if Ω �= 0,±1, and Ω is a rational number, there always exists a time t such that
e±i(Ω±1)t = −1; the trajectory thus always has the inversion symmetry (with respect
to the origin). Other symmetries may also be explored for special values of Ω.
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Fig. 1. (cont’d): Coordinates of the trajectory x(t) = (x(t), y(t))T (solid line: x(t); dashed
line: y(t)). (a): Ω = 0; (b): Ω = −0.5; (c): Ω = −1; (d): Ω = −4; (e): Ω = 1/π; (f): Ω = π. In
(a)–(d), the solid and dashed lines are obtained from solving the GPE (1.4), where “*” is obtained
from solving the ODE (2.31)–(2.33).

From Figure 1, we indeed see that when Ω = 0, the center moves like a pendulum
with period T = 2π; when Ω = −1, it moves along a circle with period T = π.
For other cases, the trajectory curve has inversion symmetry as predicted through
the theoretical analysis. The solution trajectory and the coordinates in Figure 1 are
obviously consistent with the above description of the solutions of the ODE system
(2.31)–(2.33) for any given Ω. This provides a numerical verification of the exact
solution constructed earlier for the GPE with an angular momentum rotation term
and the reliability of our numerical scheme. Furthermore, based on Figure 1 and
additional numerical experiments conducted, we find the following: (i) When Ω is a
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Fig. 2. Time evolution of condensate widths (cf. (a): γx = γy = 2; (b): γx = 1.8 and γy = 2),
energy E(ψ) := Eβ,Ω(ψ) (cf. (c)) and angular momentum expectation (cf. (d)). In (a), the solid
line is obtained from solving the GPE (1.4) and “*” is obtained from the analytical solution (2.15).

rational number, i.e., |Ω| = q/p with q and p nonnegative integers and no common
factor, then the trajectory of the vortex center moves periodically with period pπ if q
and p are odd integers, and 2pπ otherwise. (ii) When Ω is an irrational number, the
trajectory of the vortex center moves chaotically, but the envelope of the trajectory is
a circle centered at the origin with radius r = |x0| =

√
2 in our example (cf. Figure 1).

4.3. Dynamics of condensate width, energy, and angular momentum
expectation. To verify the conservation of energy and angular momentum expecta-
tion as well as dynamics of condensate width, we take d = 2, λ = 0, β2 = 100, Ω = 0.8,
and W (x, t) ≡ 0 in (2.44). The initial condition in (2.45) is taken as the central vortex
state with winding number m = 1 of the GPE with γx = γy = 1 [5, 14, 13], which is
computed numerically by the method proposed in [5, 13]. Then at t = 0, we change
the trap frequency by setting γx = γy = 2, or γx = 1.8 and γy = 2, respectively.
Figure 2 shows the time evolution of condensate widths σx(t) and σy(t), the energy
Eβ,Ω(ψ), and the angular momentum expectation.

From Figure 2, we can see that (i) the condensate widths σx(t) and σy(t) are
periodic functions of period T = π/2 when γx = γy = 2 (cf. Figure 2(a)) and periodic
functions of period T = π/2 with a perturbation when 1.8 = γx �= γy = 2 (cf. Figure
2(b)), again confirming the analytical results (2.16) and (2.17), respectively; (ii) the
energy Eβ,Ω(ψ) is conserved in the discretized level (cf. Figure 2(c)); (iii) the angular
momentum expectation is conserved when γx = γy (cf. Figure 2(d) and the analytical
result (2.3)). Furthermore, when γx �= γy and the initial condition is chosen as a
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central vortex state with winding number m = 1, the angular momentum expectation
is no longer conserved (cf. Figure 2(d)). We note that in the literature, there have been
more studies both analytically and numerically on the thermodynamic stability of the
central vortex state, though there is not much discussion available on the dynamic
stability in real time. The experimental results shown here are thus of interest.

4.4. Dynamics of a quantized vortex lattice. Now we present the simulation
results, via the algorithm discussed here, on the dynamics of a vortex lattice in rotating
BEC under an anisotropic external perturber. We take d = 2, λ = 0, β2 = 1000,
γx = γy = 1 := γr, and Ω = 0.9 in (2.44). The initial condition in (2.45) is taken as
the ground state [13, 1] of the GPE with W (x, t) ≡ 0, which is computed numerically
by the normalized gradient flow with the backward Euler finite difference discretization
proposed in [13]. For t ≥ 0, an external perturber is introduced; i.e., W (x, t) in (2.44)
is chosen as

W (x, t) =
ε

2
γ2
r

[
(x2 − y2) cos(2Ω̃t) + 2xy sin(2Ω̃t)

]
, x ∈ R2, t ≥ 0.

This implies the total potential V (x, t) in (2.44) is taken as

V (x, t) =
1

2
γ2
r

[
(1 + ε)X(t)2 + (1 − ε)Y (t)2

]
,

where X(t) = x cos(Ω̃t) + y sin(Ω̃t), Y (t) = y cos(Ω̃t) − x sin(Ω̃t).

This kind of time-dependent potential was used in [46] for studying the dynamics
of nonrotating BEC. In our computation, we take ε = 0.35, Ω̃ = 0.75, R = 30 for Ωx,
mesh size Δr = 0.0075 and Δθ = π

128 , and time step Δt = 0.0001. Figure 3 shows
contour plots of the density function |ψ(x, t)|2 at different time steps.

For Figure 3, at t = 0, there are about 45 quantized vortices in the ground state.
During the time evolution, the lattice is rotated due to the angular momentum term
with different lattice patterns being formed due to the anisotropic external stirrer
W (x, t). One may compare our numerical results with the experimental observations
in [23], where the anisotropic compression of the vortex lattices was observed due to
the dynamic distortion of the trap potentials.

4.5. Stability of central vortex states. Similarly as in [14, 16, 29, 30] for
nonrotating BEC, we hereby also study numerically the stability of central vortex
states in rotating BEC. We take d = 2, γx = γy = 1, β2 = 100, Ω = −0.8, and λ = 0
in (2.44). The initial condition in (2.45) is taken as a central vortex state [14, 5, 13]
with winding number m of the GPE with W (x, t) ≡ 0; i.e., ψ0(x) = fm(r)eimθ, where
fm(r) is computed numerically by the method proposed in [5, 14]. In order to study
the stability, when t ∈ [0, π/2], we introduce a far-blue detuned Gaussian laser beam
stirrer (2.47), and when t ≥ π/2, the perturber is removed. The parameters in (2.47)
are chosen as

(xs(t), ys(t)) ≡ (3, 0), ωs = 1, Ws(t) =

{
5 sin2(2t), t ∈ [0, π/2],
0, t ≥ π/2.

In our computation, we take R = 12 for Ωx, mesh size Δr = 0.004 and Δθ = π
64 , and

time step Δt = 0.0001.
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Fig. 3. Contour plots of the density function |ψ(x, t)|2 for dynamics of a vortex lattice at
different times.

To quantitatively analyze the numerical results, we define the hydrodynamic ve-
locity as

u = (u, v) = Im(ψ∗∇ψ)/|ψ|2.

Figure 4 shows the velocity fields during the time evolution of the central vortex states
with winding number m = 1 and m = 2, while the dynamic evolution of the energy
and that of the angular momentum expectation are shown in Figure 5.
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Fig. 4. Velocity field at different times for stability of a central vortex state. I. For winding
number m = 1.

From Figure 4 and additional numerical experiments conducted, we find that
the central vortex states with an index (or degree, winding number) m = ±1 are
dynamically stable, but they are unstable when |m| > 1 in rotating BEC. Furthermore,
Figure 5 depicts the increase in the energy and the decrease of the angular momentum
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Fig. 4. (cont’d): II. For m = 2.

expectation when t ∈ [0, π/2] due to the appearance of the perturber. After removing
the perturber at t = π/2, they are conserved with time, which again confirm the
conservation laws (1.8) and (2.3).
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Fig. 5. Time evolution of energy E(ψ) := Eβ,Ω(ψ) and angular momentum expectation 〈Lz〉
in studying the stability of central vortex states.

4.6. Dissipation effect on the GPE. In order to study the effect of the damp-
ing mechanism in the GPE (2.44), we take d = 2, γx = 1, γy = 1.1, β2 = 500, Ω = 0.9,
and W (x, t) ≡ 0 in (2.44). The initial condition in (2.45) is taken as

ψ0(x) =
(γxγy)

1/4

√
π

e−(γxx
2+γyy

2)/2, x ∈ R2.

We take R = 30 for Ωx, mesh size Δr = 0.0075 and Δθ = π
64 , and time step Δt =

0.0001. Figure 6 shows the normalized density |ψ(x,t)|2
‖ψ(·,t)‖2 at different times for λ = 0.03,

while Figure 7 illustrates the time evolution of the energy and angular momentum

expectation per particle, i.e.,
Eβ,Ω(ψ)
‖ψ(·,t)‖2 and 〈Lz〉

‖ψ(·,t)‖2 for different λ > 0.

From Figures 6 and 7, we can see that when a dissipation term is applied to
the GPE, a dent appears in the center of the density function during time evolution.
The larger the damping parameter λ, the faster the energy per particle decreases and
the slower the angular momentum expectation per particle increases. In fact, the
change in the angular momentum expectation is due to the anisotropy of the external
trapping potential, i.e., γx �= γy.

5. Conclusion. We have studied the dynamics of the Gross–Pitaevskii equation
with an angular momentum rotation term for rotating BEC both analytically and
numerically. Along the analytical front, we proved the conservation of the angular
momentum expectation when the external trapping potential is radially symmetric
in 2D and, respectively, cylindrically symmetric in 3D. A second-order ODE was also
derived to describe the time evolution of the condensate width as a periodic func-
tion with/without a perturbation, and the frequency of the periodic function doubles
the trapping frequency. We also presented an ODE system with a complete initial
data that governs the dynamics of a stationary state with a shifted center, and we
also illustrated the decrease in the total density when a damping term is applied
in the GPE. On the numerical side, we proposed an efficient, accurate, and uncon-
ditionally stable numerical method for simulating the rotating BEC with/without
a time-dependent external perturber or a damping term. We also applied the new
method to study numerically the dynamics of condensate including the condensate
widths, energy, and angular momentum expectation as well as a quantized vortex lat-
tice and a stationary state with a shifted center. We numerically found that, for the
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Fig. 6. Surface plots of the normalized density function
|ψ(x,t)|2
‖ψ(·,t)‖2 in section 4.6 for GPE with

a damping term at different times.

real time dynamics, the central vortex states are dynamically stable only for the one
with index (or winding number) m = ±1. In the future, this efficient and accurate
numerical method can be used to study the dynamics and interaction of vortex line
states in 3D for rotating BEC and to make more close comparisons with experimental
findings [42, 47, 48].
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THERMOPHORETIC MOTION OF A SLIGHTLY DEFORMED
SPHERE THROUGH A VISCOUS FLUID∗
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Abstract. This paper provides a general approach to the solution of the problem of nonisother-
mal Stokes flow relative to a heat-conducting particle having the shape of a slightly deformed sphere,
taking account of Maxwell’s [J. C. Maxwell, Philos. Trans. R. Soc. Lond., 170 (1879), pp. 231–256]
thermal creep condition at the surface of the particle. The results, which are of interest in connection
with the phenomenon of thermophoresis, have potential applications in aerosol technology, and in the
nonisothermal transport and processing of particulate matter. For the specific case of thermally non-
conducting particles, the results obtained herein accord with Morrison’s [F. A. Morrison, J. Colloid
Interface Sci., 34 (1970), pp. 210–214] proof in the comparable electrophoretic case that the phoretic
velocity of a nonconducting, force- and torque-free, nonspherical particle undergoing electrophoresis
in a fluid that is otherwise at rest is independent of the size, shape and orientation of the particle,
and is identical to that of a sphere.
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1. Introduction. The no-slip boundary condition, conventionally applied to the
velocity of a fluid at a solid surface, is known to fail when applied to a gas at its
boundary with a nonuniformly heated solid. Under such nonisothermal conditions,
the thermal slip (or thermal creep) condition first proposed by Maxwell [16] must
instead be used. This boundary condition is given for a gas of Maxwellian molecules
[7, 11] by the expression

(1) v − U =
3

4

μ

ρT
(I − n̂n̂) · ∇T

on the solid boundary, where v, U, T , μ and ρ denote, respectively, the gas velocity,
wall velocity, temperature, viscosity and density of the gas, I, the idemfactor, and
n̂ the unit normal to the surface. Because Maxwell’s derivation of the thermal slip
condition assumes the distribution function of the gas molecules in the Knudsen layer
to be the same as that in the bulk gas, the 3/4 coefficient is subject to some uncer-
tainty, as was pointed out by Maxwell himself. Note that (1) automatically satisfies
the condition n̂ · (v − U) = 0 that the solid be impermeable to mass flow through its
surface.

As discussed by Kogan [11], in order to find the correct boundary conditions to
be imposed on the gas velocity at the solid surface, the Boltzmann equation must
be solved both inside the Knudsen layer proximate to the surface as well as in the
bulk gas. The subsequent matching of these inner and outer solutions at the outer
limit of the Knudsen layer yields the tangential velocity boundary condition to be
imposed on the continuum hydrodynamic equations governing the velocity in the
bulk gas. The difference between the boundary condition on velocity thereby obtained
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and the velocity of the wall arises due to thermal slip. Various such derivations of the
thermal slip condition are summarized in [12], with the form of the resulting boundary
condition being identical to Maxwell’s slip condition, (1); however, the numerical
coefficient appearing therein, namely, 3/4 in Maxwell’s case, is found to depend on
the potential of interactions between the molecules of the gas and the solid surface.

It is evident from (1) that the characteristic velocity of gas flow induced by ther-
mal slip scales with the ratio of its kinematic viscosity ν = μ/ρ to the length scale

L ≡ ‖∇ lnT‖−1
of the externally imposed temperature variation, wherein the mod-

ulus bars denote an appropriate norm. Thus, when L is large compared with the
characteristic size, say a, of a small particle present in the gas whose surface con-
stitutes the solid boundary, the appropriate Reynolds number Re governing the gas
flow scales as a/L � 1. As a result, the inertial term ρv · ∇v of the momentum
equation proves to be negligible in comparison with the viscous term, μ∇2v. Sim-
ilarly, the Peclet number Pe = RePr, with the Prandtl number Pr being O(1) for
gases [7], scales as a/L, whence the convective term v · ∇T of the thermal energy
equation proves to be negligible in comparison with the conduction term, α∇2T . Al-
though density is a function of temperature, it is readily proved, by making use of
the resulting heat conduction equation, in conjunction with the fact that ρT = const
for ideal gases when the pressure remains (approximately) constant throughout the
gas, that the incompressible continuity equation, ∇ · v = 0, is valid. As a result, the
equations governing v are the equations of incompressible Stokes flow, subject to the
thermal creep boundary condition. The applicability of Stokes equations satisfying
this boundary condition to slow, nonisothermal gas flow is discussed in [9].

In the presence of temperature gradients, the inclusion of the Burnett thermal
stresses [7] alongside the Newtonian viscous stress tensor of the Navier–Stokes equa-
tions has also been found necessary [13]. However, as was first deduced by Maxwell,
and elaborated in [9], when the imposed temperature gradient is sufficiently small,
such that the inertial and convective terms of the respective momentum and energy
equations are negligible in comparison with the viscous and conduction terms appear-
ing therein, the contribution of such thermal stresses to the flow vanishes. In this
approximation, these stresses do not contribute to the force or torque acting on the
particle immersed in the gas [9].

The thermophoretic motion of a solid particle in a nonisothermal gas, arising
from the thermally-induced slip of the gas at the solid surface, has applications in
aerosol technology, as a method of microcontamination control in the semiconductor
industry, and in the fabrication of optical fibers. It also has potential applications in
microgravity manufacturing processes. All of the above applications are reviewed by
Zheng [26].

The thermophoretic motion of a sphere in a gas, which occurs in the direction
opposite to that of the imposed temperature gradient, was first calculated by Epstein
[8] based upon Maxwell’s thermal creep condition. Subsequent analyses of the prob-
lem are summarized by Zheng [26]. Most known solutions of the problem, however,
deal only with the motion of spherical particles, whereas many particles encountered
in practical applications are irregularly shaped. Existing theoretical studies of the
thermophoresis of nonspherical particles are currently available only for axisymmetric
flows, wherein the imposed temperature gradient lies parallel to the particle’s axis
of symmetry [24, 25]. Reference [14] provides a numerical solution for asymmetric
thermophoretic flow around a two-sphere aggregate. Given this dearth of informa-
tion on nonsymmetric thermophoretic particle motions, we were motivated to study
a “simple” example of such motion.
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The present investigation develops an asymptotic expansion of the equations of
Stokes flow satisfying the thermal slip condition at the surface of a heat-conducting,
arbitrarily deformed sphere, wherein the deviation from the spherical shape is small,
while the imposed temperature gradient is arbitrarily oriented with respect to the
particle’s geometry. In principle, the asymptotic solution may be obtained correct
to any order in the perturbation parameter, which measures the deviation from the
spherical shape, for arbitrarily deformed particles. We here provide the explicit so-
lution, correct to the first order, for the specific case of an ellipsoidal particle. For
the special case of a force- and torque-free, thermally insulated (i.e., nonconducting)
particle, it is found that the thermophoretic velocity of the particle reduces to that of
a sphere moving under the same temperature gradient in a gas otherwise at rest. This
result accords with the related findings of Morrison [18], namely that the phoretic ve-
locity of an insulated particle is independent of its shape and orientation, as well as of
its size. (Morrison’s proof, though offered in the context of electrophoresis, is equally
applicable to the thermophoretic case, provided that the particle is nonconducting,
i.e., thermally insulated in the latter case.)

While the specific problem considered here is that of flow of gas around a de-
formed, conducting sphere under nonisothermal conditions, the results are also gener-
ally applicable to other situations for which the fluid is known to slip at the surface of
the solid. Such slip conditions have been proposed in order to explain the thermally-
induced motion of particles in liquids [21, 22, 23], using an approach analogous to
the treatment of phoretic motion in liquids [1]. With the use of an appropriate slip
coefficient, the results of the present paper may thus be applied to thermophoretic
motion in liquids.

Furthermore, our results are applicable to other sources of slip occurring at solid
surfaces, such as electrokinetic slip at an insulated surface, wherein the electric po-
tential of the electrolytic liquid is governed by equations mathematically identical in
form to those governing the temperature field in the present nonisothermal situation.
In such circumstances, the liquid’s electrokinetic slip velocity at the particle surface is
proportional to the gradient of the electric potential, analogous to the corresponding
thermal slip condition, (1).

The detailed solution for the case of isothermal Stokes flow around a slightly
deformed sphere (subject to no slip at its surface) was presented by Brenner and his
collaborators [3, 4, 10, 20]. That solution is here extended to allow for slip at the
surface of the deformed sphere arising from temperature inhomogeneities in the fluid.

2. Problem formulation. Consider the incompressible Stokes flow around a
slightly deformed sphere moving without rotation at a velocity of U through a fluid
across which an otherwise uniform temperature gradient, here denoted by the space-
fixed constant vector G, has been imposed under undisturbed flow conditions, i.e.,
in the absence of the particle. It is assumed that the surface of the particle, Sp, is
described geometrically in invariant form by the equation

(2) r = a

[
1 + ε

∑
n

An n Pn(r̂) + O(ε2)

]
,

where An is an O(1) body-fixed polyadic of rank n describing the shape of the de-
formed body. The nth-rank polyadics

Pn(r̂) = (−1)n(n!)−1rn+1

n times︷ ︸︸ ︷
∇∇ . . .∇(1/r)
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are the polyadic surface harmonics of order n [4, 20], whose argument r̂ is the space-
fixed unit position vector, r̂ = r/r, while ε � 1 is a small, dimensionless quantity,
inseparable from the term

∑
n An n Pn(r̂) describing the deformation of the sur-

face. The r = |r| radial coordinate is measured from an origin situated at the center
of the undeformed sphere of radius a. Since the surface spherical harmonics con-
stitute a complete set of orthonormal polynomials in the surface coordinates (θ, φ),
any function thereof, say f(r̂), may be expanded in invariant form in terms of the
polyadics Pn(r̂), analogous to the well-known scalar spherical harmonic expansion of
an arbitrary function f(θ, φ) [15]; hence, (2) is the general equation characterizing
the surface of any arbitrarily shaped body whose deviation from a spherical shape
is small. The symbol n refers to n successive dot-product contraction operations
performed in the order prescribed by the nesting convention of [4], wherein the n
indices of the corresponding polyadics are contracted sequentially, beginning with the
innermost indices. It follows that An n Pn(r̂) = Pn(r̂) n An, whence the surface
Sp may also be equivalently described by the alternate expression

(3) r = a
[
1 + εPn(r̂) n An + O(ε2)

]
,

wherein we have here invoked the summation convention, which will be used through-
out, with the repeated index n implying a sum over that index.

The unit normal to Sp is given by the expression n̂ = ∇f/ |∇f |, with f defined
by the relation f(r) = r − a

[
1 + εPn n An + O(ε2)

]
= 0. Together with the use of

the gradient operator in invariant spherical coordinates,

(4) ∇ = r̂

(
∂

∂r

)
r̂

+
1

r

(
∂

∂r̂

)
r

,

one thus obtains

(5) n̂ = r̂ − ε∇̂Pn n An + O(ε2),

wherein ∇̂ = (∂/∂r̂)r is the surface gradient operator. In deriving the latter, we have

used the identities r̂r̂ · ∇̂ = 0 and (I − r̂r̂) · ∇̂ = ∇̂, arising from the orthonormality
of the coordinate axes.

The equations of Stokes flow, describing the flow around the deformed sphere, are

∇ · v = 0,(6)

μ∇2v = ∇p,(7)

where p denotes the pressure. The boundary conditions imposed upon the fluid’s
velocity require that the latter approach the particle-free, undisturbed fluid motion
at infinity,

(8) v → 0 as r → ∞,

and that the thermal slip condition on Sp, (1), satisfy

(9) v = U + Cs (I − n̂n̂) · ∇Ts,

where Ts denotes the temperature within the solid (with Ts = T on Sp), and Cs

is the thermal slip coefficient, which in the case of gases takes the value 3/4 (μ/ρT ),
according to Maxwell. In that case, Cs is a constant, owing to the inverse relationship
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existing between ρ and T from the ideal gas law, with the transport coefficient μ
assumed constant, at least for small temperature gradients. For liquids, Semenov [23]
has provided a formula whereby Cs can be calculated from the properties of the liquid
and the solid particle. Values of Cs for the thermophoretic motion of silica particles
in several solvents are found to be of the order of 10−8–10−7 cm2 s−1 K−1 [23]. Values
of similar order of magnitude for various particle-liquid systems have been found in
the experimental study of [19]. Thermal creep in liquids has also been proposed to
exist in [2], where Cs is given by the product of the liquid’s coefficient of thermal
expansion and its thermometric diffusivity.

Since the boundary condition on velocity, namely (9), may be expressed as the
sum of the particle velocity U and the thermal slip velocity Cs (I − n̂n̂) ·∇Ts, we will
restrict ourselves, initially, to solving for the flow caused by thermal slip alone. Later,
the flow arising from the motion U of the particle will be linearly superposed.

The temperature fields within the fluid and the solid are governed by the respec-
tive equations

∇2T = 0,

∇2Ts = 0,(10)

subject to the joint boundary conditions

T = Ts,(11)

n̂ · ∇T = γn̂ · ∇Ts,(12)

on Sp, where γ denotes the ratio ks/k of the thermal conductivity of the solid, ks, to
that of the fluid, k. In addition, we have the further conditions that the temperature
within the particle remains finite at r = 0, while that within the fluid at infinity is
given by the expression

(13) T (r → ∞) = const + G · r.

The constant appearing in (13) is physically irrelevant, whence we may set it to zero.
Perturbation solutions will now be developed for the flow and temperature fields in
terms of the perturbation parameter, ε.

3. Temperature fields. Define vector temperature fields in the fluid and the
solid, T and Ts, respectively, through the relations

T = T · G,

Ts = Ts · G.(14)

Since the scalar temperature fields satisfy Laplace’s equation, and whereas the gradi-
ent at infinity, G, is an arbitrary constant, it follows from (10)–(12) that the vector
temperature fields satisfy the respective equations

∇2T = 0,

∇2Ts = 0,(15)

subject to the boundary conditions

(16) T = Ts
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and

(17) n̂ · ∇T = γn̂ · ∇Ts,

on the surface Sp of the deformed sphere. We expand the vector temperature fields
in powers of ε,

T(r; ε) = T(0)(r) + εT(1)(r) + O(ε2),

Ts(r; ε) = T(0)
s (r) + εT(1)

s (r) + O(ε2).(18)

The temperature fields inside and outside of the particle at various perturbation
orders, subject to the boundary conditions on Sp given by (16) and (17), may be
obtained from the solution of a sequence of problems satisfying appropriate boundary
conditions on the surface of the undeformed sphere. These latter boundary conditions,
to be imposed on the sphere surface, are obtained by a Taylor series expansion of (16)
and (17) about r = a. Thus, expansion of (16) while making use of (2) furnishes the
following conditions to be imposed at r = a on the O(1) and O(ε) vector temperature
fields:

T(0)
∣∣∣
a

= T(0)
s

∣∣∣
a
,(19)

T(1)
∣∣∣
a

+ aAn n Pn
∂T(0)

∂r

∣∣∣∣
a

= T(1)
s

∣∣∣
a

+ aAn n Pn
∂T

(0)
s

∂r

∣∣∣∣∣
a

.(20)

Similarly, upon expanding ∇T|Sp
and ∇Ts|Sp

in Taylor series about r = a and

making use of (5), it follows from (17) that

(21) r̂ · ∇T(0)
∣∣∣
a

= γ r̂ · ∇T(0)
s

∣∣∣
a

and

r̂ · ∇T(1)
∣∣∣
a

+ aAn n Pn
∂

∂r
r̂ · ∇T(0)

∣∣∣∣
a

− ∇̂
(
Pn n An

)
· ∇T(0)

∣∣∣
a

= γ r̂ · ∇T(1)
s

∣∣∣
a

+ aγAn n Pn
∂

∂r
r̂ · ∇T(0)

s

∣∣∣∣
a

− γ∇̂
(
Pn n An

)
· ∇T(0)

s

∣∣∣
a
.(22)

The leading-order, undeformed sphere problem is described by the set of equations

∇2T(0) = 0,

∇2T(0)
s = 0,(23)

subject to boundary conditions (19) and (21). Accordingly, the leading-order vector
temperature fields are readily found to be

T(0) =

[
1 +

(
1 − γ

2 + γ

)(a
r

)3
]
r,

T(0)
s =

3

2 + γ
r.(24)
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Upon applying the gradient operator, given by (4), to (24), and noting that (∂r̂/∂r̂)r =
I − r̂r̂, we obtain

∇T(0) =

[
1 − 2

(
1 − γ

2 + γ

)
a3

r3

]
r̂r̂ +

[
1 +

(
1 − γ

2 + γ

)(a
r

)3
]

(I − r̂r̂) ,

∇T(0)
s =

3

2 + γ
I.(25)

Making use of (25) furnishes the following O(ε) boundary conditions from (20)
and (22):

(26) T(1)
∣∣∣
a

= T(1)
s

∣∣∣
a

+ 3

(
1 − γ

2 + γ

)
aAn n PnP1

[wherein we have substituted P1(r̂) for r̂], and

r̂ · ∇T(1)
∣∣∣
a

+ 6

(
1 − γ

2 + γ

)
An n PnP1 − 3

(
1 − γ

2 + γ

)
∇̂Pn n An

= γ r̂ · ∇T(1)
s

∣∣∣
a
.(27)

The O(ε) vector temperature fields are governed by the equations

∇2T(1) = 0,

∇2T(1)
s = 0,(28)

subject to the boundary conditions given by (26) and (27). Since it is convenient

to expand T(1) and T
(1)
s as linear combinations of solid harmonics, these boundary

conditions must be expressed as linear combinations of the polyadic surface harmonics.

4. Flow field. Next, expand the velocity and pressure fields as perturbation
expansions in ε:

v(r; ε) = v(0)(r) + εv(1)(r) + O(ε2),

p(r; ε) = p(0)(r) + εp(1)(r) + O(ε2).(29)

At each order, the perturbation fields v(i) and p(i) obey the Stokes equations,

∇ · v(i) = 0,(30)

μ∇2v(i) = ∇p(i).(31)

The thermal slip boundary condition on the surface Sp of a stationary particle is,
upon setting U = 0 in (9),

(32) v = Cs (I − n̂n̂) · ∇Ts.

In addition, the velocity fields at all orders vanish at infinity. Expansion of the velocity
at the surface Sp of the deformed sphere in a Taylor series about r = a gives

(33) v|Sp
= v(0)

∣∣∣
r=a

+ ε

(
v(1)

∣∣∣
r=a

+ aAn n Pn
∂v(0)

∂r

∣∣∣∣
r=a

)
+ O(ε2).
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A similar expansion of the temperature gradient ∇Ts on Sp about r = a yields

(34) ∇Ts|Sp
= ∇T (0)

s

∣∣∣
r=a

+ ε

(
∇T (1)

s

∣∣∣
r=a

+ aAn n Pn
∂

∂r
∇T (0)

s

∣∣∣∣
r=a

)
+ O(ε2).

Substitution of (5), (33) and (34) into (32) furnishes the following O(1) and O(ε)
boundary conditions at r = a:

(35) v(0)
∣∣∣
r=a

= Cs (I − r̂r̂) · ∇T (0)
s

∣∣∣
r=a

and

v(1)
∣∣∣
r=a

= − aAn n Pn
∂v(0)

∂r

∣∣∣∣
r=a

+ Cs

{
r̂∇̂

(
Pn n An

)
+ ∇̂

(
Pn n An

)
r̂
}
· ∇T (0)

s

∣∣∣
r=a

+ Cs (I − r̂r̂) · ∇T (1)
s

∣∣∣
r=a

+ Csa
(
An n Pn

)
(I − r̂r̂) · ∂

∂r
∇T (0)

s

∣∣∣∣
r=a

.(36)

The leading-order velocity field, which vanishes at infinity and is subject to the
thermal slip condition, given by (35) taken in conjunction with the leading-order
temperature gradient on Sp from (25), corresponds to the flow around an undeformed
sphere. It is found, using the method of [5], to be

(37) v(0) =
3Cs

2 + γ

[(
a

2r
+

a3

2r3

)
I +

(
a

2r
− 3a3

2r3

)
r̂r̂

]
· G.

Equations (25) and (37) in combination with (36) yield

v(1)
∣∣∣
r=a

=
6Cs

2 + γ

(
An n Pn

)
(I − 2r̂r̂) · G

+
3Cs

2 + γ

[
r̂∇̂

(
Pn n An

)
+ ∇̂

(
Pn n An

)
r̂
]
· G

+ Cs (I − r̂r̂) · ∇T (1)
s

∣∣∣
r=a

.(38)

We have now obtained the governing equations and concomitant boundary condi-
tions for the O(ε) temperature and velocity problems. However, the completely gen-
eral solution of these problems, requiring use of general recurrence relations relating
the various polyadic surface harmonics and their gradients, is extremely complicated
algebraically. Accordingly, in lieu of attempting a completely general calculation, we
instead provide the solution only for the specific case of a general triaxial ellipsoid by
way of illustrating the general scheme.

5. Nonisothermal flow around an ellipsoid. Consider the ellipsoid,

(39)

(
x1

a1

)2

+

(
x2

a2

)2

+

(
x3

a3

)2

= 1,

where (x1, x2, x3) are Cartesian coordinates fixed in the ellipsoid, with the coordi-
nate axes pointing along the principal axes of the ellipsoid, and with (a1, a2, a3) the
semi-lengths of these axes. Oblate and prolate spheroids, for which two of the three
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principal axes are equal, are obtained as special cases of the ellipsoid, while a circular
disk and a needle-shaped object may be approximated by an oblate and a prolate
spheroid, respectively, one of whose semi-axes shrinks to zero.

In invariant form, the equation of the ellipsoid may be expressed as [6]

(40) r · D · r = 1,

where D is the body-fixed dyadic

(41) D =
i1i1
a2

1

+
i2i2
a2

2

+
i3i3
a2

3

,

in which (i1, i2, i3) are body-fixed Cartesian unit vectors directed along the principal
axes of the ellipsoid. Consider the case where the ellipsoid is a slightly deformed
sphere, with the semi-lengths of the principal axes given by a1 = a(1 + εα1), a2 =
a(1 + εα2) and a3 = a(1 + εα3), where ε � 1. Since i1i1 + i2i2 + i3i3 = I, it follows
that

(42) D =
I

a2
− 2ε

a2
B + O(ε2),

where B is the body-fixed dyadic

(43) B = α1i1i1 + α2i2i2 + α3i3i3.

For a given ellipsoid, whose volume is V = 4πa1a2a3/3, it is convenient to choose
the radius a of the sphere such that its volume, 4πa3/3, is equal to that of the ellipsoid;
that is, a3 = a1a2a3. Since ai = a(1 + εαi), this requires that α1 + α2 + α3 = 0, i.e.,
I : B = 0, or, alternatively,

(44) Tr(B) = 0,

where, for any dyadic B, Tr(B) denotes the trace, B : I.
Upon combining (40) and (42) and making use of the symmetry of B together

with the identity r̂r̂ = 2P2(r̂)/3 + I/3, we obtain

(45) r = a

[
1 +

2

3
εB : P2(r̂) + O(ε2)

]
.

B is diagonal, and, hence, symmetric in the body-fixed coordinate system. As a result,
it is symmetric in any basis.

The detailed derivation of the O(ε) temperature fields outside and within the
ellipsoid is presented in Appendix A. The resulting solutions are

(46) T(1) = −6

5

(
1 − γ

2 + γ

)2
a3

r2
P1 · B +

6

5

(
1 − γ

2 + γ

)
a5

r4
P3 : B

and

(47) T(1)
s = −18

5

1 − γ

(2 + γ)2
r · B.

The O(ε) boundary condition on velocity, (38), thus reduces to

v(1)
∣∣∣
r=a

=
2Cs

2 + γ

[
2B : P2 (I − 2r̂r̂) + r̂∇̂P2 : B + ∇̂ (P2 : B) r̂

−9

5

(
1 − γ

2 + γ

)
(I − r̂r̂) · B

]
· G.(48)
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The force on the ellipsoid can be obtained without solving the detailed boundary
value problem by making use of the following expression for the force on a body of
arbitrary shape [4]:

(49) F = −3

2
μa

∫
S1

v|r=a dΩ,

where the integration is to be carried out over the surface of a unit sphere, S1, and
wherein dΩ = d2r̂ is a differential element of solid angle. The analogous expression
for the torque on the body about the origin is [4]:

(50) T = 3μa2ε:

∫
S1

r̂ v|r=a dΩ,

where ε = −I × I is the alternating unit triadic. Following [10], we introduce the
translational hydrodynamic resistance dyadic K via the expression

(51) F = −μK · G.

Expansion of F and K in powers of ε gives, for the leading-order terms,

(52) F(0) = −3

2
μa

∫
S1

v(0)
∣∣∣
r=a

dΩ = −μK(0) · G,

whence, from (35) [17],

(53) K(0) =
9Csa

2(2 + γ)

∫
S1

(I − r̂r̂) dΩ =
12πCsa

2 + γ
I,

in which we have used the identity
∫
S1

(I − r̂r̂) dΩ = 8πI/3. Similarly, for the first-
order terms, we find that

(54) F(1) = −3

2
μa

∫
S1

v(1)
∣∣∣
r=a

dΩ = −μK(1) · G,

where

K(1) =
3Csa

2 + γ

[
2

∫
S1

P2 (I − 2r̂r̂) : BdΩ +

∫
S1

r̂∇̂P2 : BdΩ +

∫
S1

∇̂P2 : Br̂dΩ

−9

5

(
1 − γ

2 + γ

)∫
S1

(I − r̂r̂) · BdΩ

]
.(55)

Details pertaining to the calculation of K(1) are given in Appendix B, with the result
being

(56) K(1) = −24π

5
Csa

1 − 4γ

(2 + γ)2
B.

We have now obtained the force acting on the stationary ellipsoid due to the
thermal creep-induced flow. When the ellipsoid moves through the fluid at a velocity of
U, the preceding solution is superposed on the additional Stokes flow (v′, p′) satisfying
the boundary conditions

v′ = U on Sp,

v′(r → ∞) → 0.(57)
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Analogous to (35) and (48), we require that

v′(0)
∣∣∣
r=a

= U,

v′(1)
∣∣∣
r=a

= −aAn n Pn
∂v′(0)

∂r

∣∣∣∣
r=a

.(58)

The leading-order velocity field v′(0) in invariant form is given by the expression [5, 10]

(59) v′(0) =

[
3a

4r
(I + r̂r̂) +

a3

4r3
(I − 3r̂r̂)

]
· U,

which, in combination with (58), yields

(60) v′(1)
∣∣∣
r=a

=
3

2

(
An n Pn

)
(I − r̂r̂) · U.

At leading order, the force on the ellipsoid is given by Stokes’ law, F′(0) = −6πμaU,
whereas at O(ε), we obtain

(61) F′(1) = −3μa

2

∫
S1

v′(1)
∣∣∣
r=a

dΩ = −μK′(1) · U,

where

K′(1) =
3

2
aB :

∫
S1

P2 (I − r̂r̂) dΩ

= −6π

5
aB.(62)

Equation (62) is in exact agreement with the corresponding result of [4] satisfying
(57), wherein the surface of the deformed sphere was expressed as an expansion in
scalar spherical harmonics.

The net force on the ellipsoid is obtained from the superposition of the force acting
on a stationary ellipsoid under an externally imposed temperature gradient together
with the force acting on an ellipsoid translating at a velocity of U under isothermal
conditions:

(63) Fnet = −μ (K · G + K′ · U) .

It can be seen from (35) and (48) that the torque T acting on the ellipsoid about
its center, given by (50), vanishes. Under isothermal conditions, the centroid of the
ellipsoid is a center of hydrodynamic stress. The existence of such a center for a
nonskew body such as an ellipsoid implies that no torque acts about its centroid as
the ellipsoid translates without slip [10].

Accordingly, the force- and torque-free ellipsoid will move, without rotation, under
the influence of the externally imposed temperature gradient G at a velocity U =
− (K′)

−1 · K · G, where

(64) K′ = 6πa
[
I − ε

5
B + O(ε2)

]
,

and

(65) K =
12πCsa

2 + γ

[
I − ε

2

5

(
1 − 4γ

2 + γ

)
B + O(ε2)

]
.
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In view of the identity
[
I + εC + O(ε2)

]−1
= I− εC + O(ε2), valid for any dyadic C,

this makes

(66) U = − 2Cs

2 + γ

[
I + ε

9

5

γ

2 + γ
B + O(ε2)

]
· G.

This constitutes the principal result of our ellipsoid calculation.
In the special case where the ellipsoid is nonconducting, γ = 0, whereupon the

above reduces simply to

(67) U = −CsG
[
1 + O(ε2)

]
.

As such, to at least terms of first order in the deformation, the ellipsoid’s ther-
mophoretic velocity is independent of its shape, size and orientation, and hence is
identical to that of a sphere. While we have formally demonstrated the latter re-
sult only to the first order, according to Morrison’s theory this nonconducting result
should hold to all orders in the ellipsoid deformation ε.

6. Discussion. We have developed an asymptotic solution of flow around a
heat-conducting, slightly deformed sphere under an imposed temperature gradient,
wherein the fluid slips at the surface of the deformed sphere. Although we have
provided an explicit solution only for the case wherein the deformed sphere is an
ellipsoid, to first order in the perturbation scheme, the technique may be readily
applied to arbitrarily deformed bodies whose deviation from a spherical shape is small.
In principle, the perturbation solution can be carried out to any order. For the specific
case of nonconducting particles, we confirm Morrison’s generic deduction [18] that the
phoretic velocity of a particle is independent of its size, shape and orientation.

Appendix A. We here solve in detail the O(ε) temperature problem for the
flow around the ellipsoid. From (26) and (27), the boundary conditions for the O(ε)
temperature problem appropriate to this geometry reduce to

(A1) T(1)
∣∣∣
a

= T(1)
s

∣∣∣
a

+ 2

(
1 − γ

2 + γ

)
aB : P2P1

and

(A2) r̂ · ∇T(1)
∣∣∣
a

+ 2

(
1 − γ

2 + γ

)[
2B : P2P1 − ∇̂P2 : B

]
= γ r̂ · ∇T(1)

s

∣∣∣
a
.

Since P1(r̂) = r̂ and P2(r̂) = (3r̂r̂ − I) /2, we obtain

(A3) P2P1 =
3

2
r̂r̂r̂ − 1

2
Ir̂,

which, in combination with the expression [4]

(A4) r̂r̂r̂ =
2

5
P3 +

1

5

[
(IP1) + (IP1)

†
+ (P1I)

]
,

yields

(A5) P2P1 =
3

5
P3 −

1

5
(IP1) +

3

10
(IP1)

†
+

3

10
(P1I) .
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Straightforward differentiation of P2 yields

(A6) ∇̂P2 =
3

2

[
Ir̂ + (Ir̂)† − 2r̂r̂r̂

]
,

where the transposition symbol † entails the interchange of the two indices immedi-
ately preceding or succeeding it, according as it follows or precedes the argument to
which it is affixed. Therefore, upon making use of (A4), we obtain

(A7) ∇̂P2 =
9

10

[
IP1 + (IP1)

†]− 6

5
P3 −

3

5
P1I.

Equations (A1) and (A2) now simplify to

(A8) T(1)
∣∣∣
a

= T(1)
s

∣∣∣
a

+ 2

(
1 − γ

2 + γ

)
aB :

[
3

5
P3 −

1

5
IP1 +

3

10
(IP1)

†
+

3

10
P1I

]

and

∂T(1)

∂r

∣∣∣∣
a

+ 2

(
1 − γ

2 + γ

){
2B :

[
3

5
P3 −

1

5
IP1 +

3

10
(IP1)

†
+

3

10
P1I

]

−
[

9

10
IP1 +

9

10
(IP1)

† − 6

5
P3 −

3

5
P1I

]
: B

}
= γ

∂T
(1)
s

∂r

∣∣∣∣∣
a

.(A9)

Owing to the symmetry of B, the boundary conditions, (A8) and (A9), may be
rewritten in the forms

(A10) T(1)
∣∣∣
a

= T(1)
s

∣∣∣
a

+
6

5

(
1 − γ

2 + γ

)
a (P1 · B + P3 : B)

and

(A11)
∂T(1)

∂r

∣∣∣∣
a

− 6

5

(
1 − γ

2 + γ

)
[P1 · B − 4P3 : B] = γ

∂T
(1)
s

∂r

∣∣∣∣∣
a

.

Upon expanding T(1) and T
(1)
s in solid harmonics and imposing the boundary

conditions, (A10) and (A11), in conjunction with the vanishing of T(1) at infinity and

the finiteness of T
(1)
s at r = 0, we eventually obtain the respective expressions given

in (46) and (47).

Appendix B. Here, we present the detailed computation of K(1), which is given
by (55). Since P0 = 1, and r̂r̂ = 2P2/3 + I/3, it follows that

(B1)

∫
S1

P2 (I − 2r̂r̂) dΩ = −4

3

∫
S1

P2P2dΩ,

where we have used the orthogonality of the polyadics Pn. We make use of (A7) to
write ∫

S1

r̂∇̂P2dΩ =
9

10

∫
S1

P1IP1dΩ +
9

10

∫
S1

P1(IP1)
†dΩ

−6

5

∫
S1

P1P3dΩ − 3

5

∫
S1

P1P1dΩI.(B2)
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We know that
∫
S1

P1P1dΩ = 4πI/3, and
∫
S1

P1P3dΩ = 0. Reverting to Cartesian

tensor notation in order to calculate the remaining integrals in (B1) and (B2) yields

(B3)

∫
S1

(P2P2)ijkl dΩ =
π

5
(−2δijδkl + 3δikδjl + 3δilδjk) ,

(B4)

∫
S1

(P1IP1)ijkl dΩ =
4π

3
δilδjk,

(B5)

∫
S1

[
P1(IP1)

†]
ijkl

dΩ =
4π

3
δikδjl

and, hence,

(B6)

∫
S1

(
r̂∇̂P2

)
ijkl

dΩ =
2π

5
(3δilδjk + 3δikδjl − 2δijδkl) .

Since B is a traceless, symmetric dyadic, δilδjk : B = δikδjl : B = B, and δijδkl :
B = Tr(B)I = 0.

Similarly,∫
S1

∇̂P2 : Br̂dΩ =
9

10

∫
S1

IP1 : BP1dΩ +
9

10

∫
S1

(IP1)
† : BP1dΩ

−6

5

∫
S1

P3 : BP1dΩ − 3

5

∫
S1

P1I : BP1dΩ.(B7)

Again, we evaluate (B7) in Cartesian tensor notation to obtain

(B8)

∫
S1

∇̂P2 : Br̂dΩ =
12π

5
B.

Finally,

(B9)

∫
S1

(I − r̂r̂) dΩ =
8π

3
I.

In invariant notation, we finally obtain, upon substitution of (B1), (B3), (B6), (B8)
and (B9) in (55), the result for K(1) given in (56).
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MULTIPLE FOCUS AND HOPF BIFURCATIONS IN A
PREDATOR-PREY SYSTEM WITH NONMONOTONIC

FUNCTIONAL RESPONSE∗

DONGMEI XIAO† AND HUAIPING ZHU‡

Abstract. In this paper, we develop a criterion to calculate the multiplicity of a multiple
focus for general predator-prey systems. As applications of this criterion, we calculate the largest
multiplicity of a multiple focus in a predator-prey system with nonmonotonic functional response
p(x) = x

ax2+bx+1
studied by Zhu, Campbell, and Wolkowicz [SIAM J. Appl. Math., 63 (2002),

pp. 636–682] and prove that the degenerate Hopf bifurcation is of codimension two. Furthermore, we
show that there exist parameter values for which this system has a unique positive hyperbolic stable
equilibrium and exactly two limit cycles, the inner one unstable and outer one stable. Numerical
simulations for the existence of the two limit cycles bifurcated from the multiple focus are also given
in support of the criterion.

Key words. predator-prey, Liénard system, multiple focus, Hopf bifurcation, codimension two,
limit cycles
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1. Introduction. The existence and number of limit cycles are important topics
in the study of most applied mathematical models. Such study has made possible a
better understanding of many real world oscillatory phenomena in nature [1, 11, 17].
For predator-prey systems, it is well known that the existence of limit cycles is related
to the existence, stability, and bifurcation of a positive equilibrium. In a positively
invariant region, if there exists a unique positive equilibrium which is unstable, then
there must exist at least one limit cycle according to the theory of Poincaré-Bendixson.
On the other hand, if the unique positive equilibrium of a predator-prey system is
locally stable but not hyperbolic, there might be more than one limit cycle created via
Hopf bifurcation(s). Numerical simulations of Hofbauer and So [8] indicated that this
is indeed the case: there can exist at least two limit cycles for some two-dimensional
predator-prey systems. It was proved by Zhu, Campbell, and Wolkowicz [26] that a
predator-prey system with nonmonotonic functional response can undergo a degener-
ate Hopf bifurcation which produces two limit cycles, and the system can also have
two limit cycles through a saddle node bifurcation of limit cycles. These two limit cy-
cles can disappear through either supercritical Hopf or/and homoclinic bifurcations.
Kuang [9] and Wrzosek [22] also observed that some predator-prey systems can even
have more than two limit cycles. We shall point out that in all the models studied in
[8, 9, 22] the death rate of the predator is nonlinear, but ours in [19, 26] is linear.

Hopf bifurcation theory is a powerful tool for studying the existence, number, and
properties of the limit cycles in mathematical biology. However, the largest number
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of limit cycles which can be created via a Hopf bifurcation is determined by the
multiplicity of a multiple focus [2, 14] or correspondingly the codimension of the Hopf
bifurcation. Therefore, the resolution of the multiplicity of a multiple focus plays a
key role in determining the number of limit cycles for predator-prey systems.

In this paper, we first consider a general predator-prey system, taken to have the
form {

ẋ = a(x) − b(y)p(x),

ẏ = c(y)q(x),
(1.1)

which has a positive nondegenerate equilibrium in the first quadrant and is a center-
type equilibrium. A predator-prey system in the form of (1.1) often involves the
Hopf bifurcation(s), and it is essential to identify the multiplicity of a multiple focus
in order to determine the codimension of the Hopf bifurcation. There are formulas
available for calculating the Lyapunov coefficients [2, 3, 10, 14], which can be used to
decide the multiplicity, yet such calculations usually become very challenging if the
multiple focus has multiplicity greater than or equal to two. In this paper, we shall
first transform the general predator-prey system (1.1) into a generalized Liénard-type
system. Then a criterion will be established for calculating the multiplicity of a focus
for the general predator-prey system.

As applications of this criterion, following [26] we continue our study on the
predator-prey systems with nonmonotonic functional response of the form⎧⎨

⎩
ẋ = rx

(
1 − x

K

)
− yp(x),

ẏ = y
(
− d + cp(x)

)
,

(1.2)

where x and y are functions of time representing population densities of prey and
predator, respectively; r > 0 is the maximum growth rate, and K > 0 is the carrying
capacity of the prey; d > 0 is the death rate of the predator. The functional response
is of Holling type IV, and

p(x) =
mx

ax2 + bx + 1
.(1.3)

Here we write p(x) as in [26] with b > −2
√
a such that functional response p(x)

remains nonnegative for all x ≥ 0. Note that if b = 0, p(x) is reduced to the func-
tion used in [19]. For detailed biological interpretation and motivation of the model,
interested readers may consult the work [19, 26] and the references therein.

Global qualitative and bifurcation analysis by Rothe and Shafer [18] and Zhu,
Campbell, and Wolkowicz [26] show that system (1.2) with the functional response
(1.3) has very interesting and rich dynamics. More precisely, by allowing b to be
negative but b > −2

√
a, p(x) is concave up for small values of x > 0 as it is for the

sigmoidal functional response. It was shown in [26] that there exists a Bogdanov–
Takens bifurcation point of codimension 3, which acts as an organizing center for
the bifurcation diagram described in (b, d,K) space with d,K > 0 and b > −2

√
a.

Then the bifurcation sequences were given for parameters (b,K) in each meaningful
subregion of the (b,K) plane and the death rate of the predator, d, was varied. The
bifurcation sequences involving Hopf bifurcations and homoclinic bifurcations as well
as the saddle node bifurcations of limit cycles are determined using information from
the study of the Bogdanov–Takens bifurcation of codimension 3 and an exhaustive
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utilization of the geometry of isolines of the system. In particular, the Hopf bifurcation
of codimension one was completely described in the parameter space (b, d,K) with
d,K > 0 and b > −2

√
a. Also, a curve segment, or the so-called degenerate Hopf

bifurcation curve, was defined in [26]. But there is one thing missing: when the
parameters took the value along the degenerate Hopf bifurcation curve, the order of
the Hopf bifurcation or the multiplicity of the multiple focus was left unknown, and
for the parameters (b,K) in some subset, the bifurcation sequences were not complete
(cf. Theorem 6.22 in [26]).

In this paper, we shall fill the gap of [26] and complete the study of the multiple
focus and the degenerate Hopf bifurcation. We focus on the case when system (1.2)
has a positive equilibrium. We shall prove that the equilibrium is a multiple focus
of multiplicity at most two and can be exactly two. By using the Hopf bifurcation
theorem, and combining the existing results regarding the Hopf bifurcations in [26],
we shall give a complete description of a bifurcation diagram for Hopf bifurcation of
codimension two. Furthermore, we investigate the existence of exactly two limit cycles
of system (1.2). To the best of our knowledge, there are no references in which the
existence of exactly two limit cycles in any predator-prey system has been rigorously
proved. The difficulty is that, though there are theorems on the existence of exactly
two limit cycles for certain Liénard-type systems (Zhang [24] and Zhou [25]), they are
not applicable to the predator-prey systems that may have two limit cycles.

This paper is organized as follows. In section 2 we develop a criterion of the
multiplicity of a multiple focus for the general system (1.1). System (1.2) with the
functional response (1.3) is a typical example of the general predator-prey system with
nonmontonic functional response. As applications, we will study (1.2) by focusing
on the calculation of the multiplicity of the multiple focus and the description of
the degenerate Hopf bifurcation. We shall prove that the multiplicity of the unique
multiple focus is at most two and that there exist parameter values such that system
(1.2) with the functional response (1.3) has a multiple focus whose multiplicity is
exactly two. We shall also prove that system (1.2) with the functional response (1.3)
has exactly two limit cycles for some parameter values. A Hopf bifurcation diagram
involving the Hopf bifurcation of codimension two will also be given based on the
results related to the Hopf bifurcation of codimension one from [26]. We end section
3 by giving numerical simulations of the two limit cycles. The paper ends with a brief
discussion in section 4.

2. The multiplicity of a multiple focus in a general predator-prey sys-
tem. In [21] Wolkowicz proposed a general form of the predator-prey model for study-
ing the impact of the group defense. And Kazarinoff and van den Driessche in [13]
studied a predator-prey system by incorporating a fairly general functional response.
Here, we consider a general predator-prey system of the form{

ẋ = a(x) − b(y)p(x), x(0) ≥ 0,

ẏ = c(y)q(x), y(0) ≥ 0,
(2.1)

where x and y are functions of t representing the density of prey and predator pop-
ulations, respectively, at a given time t ≥ 0. Based on the biological meaning, we
will restrict ourselves to the first quadrant, and in particular we make the following
assumptions:

(A1) the growth function of the prey a(x) is C1 for x ∈ [0, +∞) and a(0) = 0;
(A2) b(y), c(y) ∈ C1[0, +∞), b(0) = c(0) = 0 and b′(y) > 0, c′(y) > 0 for all

y ≥ 0;
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(A3) p(x) ∈ C1[0, +∞), p(0) = 0, and p(x) > 0 for all x ≥ 0;
(A4) q(x) ∈ C1[0, +∞), and there exists x0 > 0 such that

q(x0) = 0,
a(x0)

p(x0)
> 0, and q′(x0) > 0.

With the above assumptions, one can verify that both the x- and y-axes are in-
variant. Therefore, the first quadrant is positively invariant. Furthermore, a straight-
forward computation can verify that if the assumptions (A1)–(A4) hold, then sys-
tem (2.1) has a positive equilibrium (x0, y0), which is nondegenerate, where y0 =
b−1(a(x0)/p(x0)) and b−1 is the inverse function of b(y). Thus, there exists a neighbor-
hood Ω of (x0, y0) in the first quadrant such that system (2.1) has no other equilibria
except (x0, y0) in Ω. It is clear that in the generic case any predator-prey system can
have a positive equilibrium, which is a focus or a center or a node or a saddle point.
Note that by (A2) we have c(y0) > 0; hence in order for the positive equilibrium
(x0, y0) to be a center-type focus, we have to further assume the following:

(A5) a′(x0) = b(y0)p
′(x0).

Then, under assumptions (A1)–(A5), system (2.1) has an isolated positive equilibrium
(x0, y0) in Ω, which is a center-type equilibrium.

Recall that many of the classical predator-prey systems can be written in the form
of (2.1) with assumptions (A1)–(A5) satisfied. For example, the predator-prey system
with response function of Holling type falls into this category [6, 19, 13, 21, 26]. There
have been extensive studies on stability and bifurcations for predator-prey systems
(see [8, 9, 18, 19, 21, 22, 23, 26] and references therein), but it is not an easy task
to study the number of limit cycles which can be born through the bifurcation of a
center-type focus, and the question remains unanswered for the predator-prey systems
(2.1). It is well known that there are formulas available to calculate the first Lyapunov
coefficient and the higher order Lyapunov coefficients (e.g., cf. [2, 14]); however, in
general it is technically very challenging to draw conclusions from the formula directly
due to its complexities. Pilyugin and Waltman [15, 16] develop a divergence criterion
for a generic planar system, and the applications were made successfully to the study
of multiple limit cycles in the chemostat with variable yield and other planar systems.

In this paper, we are going to develop some criteria to determine the multiplicity
and stability of the multiple focus for the general predator-prey system (2.1). We
can do this thanks to the magic of the Liénard-type system, which has been playing
an increasingly important role in current research on the existence and uniqueness of
limit cycles for predator prey systems (cf. [23] and reference therein). Hence it is not
surprising that the equivalent form of (1.1), a Liénard-type system, can be simpler in
calculating the multiplicity for a focus.

Consider the general Liénard-type system⎧⎪⎨
⎪⎩

dx

dt
= φ(y) − F (x),

dy

dt
= −g(x),

(2.2)

where xg(x) > 0 for x �= 0. We first introduce a very useful lemma of [7] by Han.
Lemma 2.1. Suppose that φ(y), F (x), and g(x) are C∞ smooth functions in a

neighborhood of the origin, and that

φ(0) = g(0) = F (0) = F ′(0) = 0, φ′(0) > 0, and g′(0) > 0.
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Let G(x) =
∫ x

0
g(s)ds. If there exists a C∞ smooth function α(x), α(x) = −x+O(x2),

such that G(α(x)) ≡ G(x) and

F (α(x)) − F (x) =
∑
i≥1

Bix
i,

then the equilibrium (0, 0) of (2.2) is a multiple focus of multiplicity k if Bj = 0, j =
1, 2, . . . , 2k, and B2k+1 �= 0. Furthermore, it is locally stable (unstable) if B2k+1 < 0
(B2k+1 > 0, respectively).

The key to the proof of Lemma 2.1 is to transform (2.2) into⎧⎪⎨
⎪⎩

du

dτ
= v −K(v)F ∗(u),

dv

dτ
= −u

(2.3)

by a C∞ transformation of variables (x, y) near the origin and time t. Then let

Fe(u) =
1

2
(F ∗(u) + F ∗(−u)), Fo(u) =

1

2
(F ∗(u) − F ∗(−u)).

By the principle of symmetry, the orbits of the system⎧⎪⎨
⎪⎩

du

dτ
= v −K(v)Fe(u),

dv

dτ
= −u

(2.4)

near the origin are symmetric with respect to the v-axis. In a small neighborhood of
the origin, introducing the polar coordinates u = r cos θ and v = r sin θ to (2.3) and
(2.4), one can get two equations:

dr

dθ
=

cos θK(r sin θ)F ∗(r cos θ)

1 − sin θK(r sin θ)F ∗(r cos θ)/r
(2.5)

and

dr

dθ
=

cos θK(r sin θ)Fe(r cos θ)

1 − sin θK(r sin θ)Fe(r cos θ)/r
,(2.6)

respectively. According to the classical method of Lyapunov, we can define the dis-
placement map d(r0) of (2.5) as

d(r0) = r

(
−3π

2
, r0

)
− r

(π
2
, r0

)

for 0 < r0 � 1. From the technical analysis of d(r0), the conclusions of the lemma
can be obtained. For more details on the proof of the lemma and its applications, we
refer the reader to [7] by Han.

We next utilize the technique developed in [23] to transform the general predator-
prey system (2.1) into a Liénard-type system, and use Lemma 2.1 to establish condi-
tions to determine the multiplicity of the center-type focus. We focus our attention
on system (2.1) with assumptions (A1)–(A5) in the open set Ω.



HOPF BIFURCATIONS IN A PREDATOR-PREY SYSTEM 807

Since p(x) > 0, rescaling the time t of system (2.1) by

τ =

∫ t

0

p(x(s))ds,(2.7)

we obtain ⎧⎪⎪⎨
⎪⎪⎩

dx

dτ
=

a(x)

p(x)
− b(y),

dy

dτ
= c(y)

q(x)

p(x)
.

(2.8)

System (2.8) has an equilibrium at (x0, y0). Let

x = −u + x0, y = h(v) + y0;(2.9)

we translate the equilibrium (x0, y0) of system (2.8) to the origin, where h(v) is a
solution of the following initial problem:

dh(v)

dv
= c(h(v) + y0), h(0) = 0.(2.10)

Since c′(y) > 0, h(v), the solution to the initial value problem (2.10) exists for v > 0
and is unique. Thereby the inverse function of h(v) exists. Let us denote the inverse
function by h−1. Thus, there exists an inverse transformation of (2.9) such that
system (2.8) in Ω can be transformed to⎧⎪⎪⎨

⎪⎪⎩
du

dτ
= [b(h(v) + y0) − b(y0)] −

[
a(−u + x0)

p(−u + x0)
− b(y0)

]
,

dv

dτ
= −

[
−q(−u + x0)

p(−u + x0)

]
,

(2.11)

in the neighborhood of the origin. If we define

φ(v) = b(h(v) + y0) − b(y0),

F (u) =
a(−u + x0)

p(−u + x0)
− b(y0),

g(u) = −q(−u + x0)

p(−u + x0)
,

then system (2.11) becomes ⎧⎪⎨
⎪⎩

du

dτ
= φ(v) − F (u),

dv

dτ
= −g(u).

(2.12)

System (2.12) is a Liénard-type system in the neighborhood of the origin, and it can
be observed that

φ(0) = g(0) = F (0) = F ′(0) = 0, φ′(0) > 0, and g′(0) > 0.

Applying Lemma 2.1 to system (2.12), we obtain the following result.
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Theorem 2.2. Assume that (A1)–(A5) hold for system (2.1). Suppose that b(y)
and c(y) are C∞ functions of y in a neighborhood of y0, and that a(x)/p(x) and
q(x)/p(x) are C∞ functions of x in a neighborhood of x0. Let

G(x) =

∫ x

0

−q(−u + x0)

p(−u + x0)
du.(2.13)

If there exists a C∞ function α(x), α(x) = −x + O(x2), such that G(α(x)) ≡ G(x)
and

F (α(x)) − F (x) =
a(−α(x) + x0)

p(−α(x) + x0)
− a(−x + x0)

p(−x + x0)
=

∑
i≥1

Bix
i,(2.14)

and if Bj = 0, j = 1, 2, . . . , 2k, and B2k+1 �= 0, then the equilibrium (x0, y0) of (2.1)
is a multiple focus of multiplicity k, which is locally stable (unstable) if B2k+1 < 0
(B2k+1 > 0, respectively).

3. Multiple focus and degenerate Hopf bifurcation. Now we consider sys-
tem (1.2). From the work of [18, 4] to [19] and [26] and the references therein, there
have been extensive studies of various bifurcations for system (1.2). It follows from
[26] that system (1.2) undergoes bifurcations including saddle node bifurcation, Hopf
bifurcation(s), homoclinic bifurcation, and saddle node bifurcation of limit cycles.
Note that system (1.2) with the functional response (1.3) involves an extra parameter
b. As indicated in [26], by varying this parameter b one can connect all the bifur-
cation branches to the organizing center, which is a Bogdanov–Takens bifurcation of
codimension three. Although the bifurcation study for (1.2) in [26] is almost exhaus-
tive, the codimension of the degenerate Hopf bifurcation was left untouched, and the
multiplicity of the multiple focus is unknown.

It follows from the discussion in [26] that by rescaling the state variables and
time, one can eliminate three parameters from the system (1.2). For the purpose of
combining the results from [19] and [26] regarding the bifurcations, here we eliminate
a, m, and c by using

(t, x, y) −→
(√

a

mc
t,

1√
a
x,

c√
a
y

)
,

(r, K, b, d) −→
(
mc√
a
r,

1√
a
K,

√
ab,

1√
a
d

)
.

(3.1)

Then system (1.2) with the functional response (1.3) becomes

⎧⎨
⎩

ẋ = rx
(
1 − x

K

)
− xy

x2 + bx + 1
,

ẏ = y
(
− d +

x

x2 + bx + 1

)
.

(3.2)

System (3.2) involves four parameters b, d,K, and r, where r > 0 is not a bifurcation
parameter for the equilibria. It follows from the results in [26] that we need three
parameters to unfold the Bogdanov–Takens bifurcation of codimension three, and
hence it is natural to describe the degenerate Hopf bifurcation curve in the parameter
space (b, d,K). We start first by summarizing the results from [26] regarding the Hopf
bifurcations for system (3.2), then we apply Theorem 2.2 to determine the multiplicity
of the multiple focus and complete the diagram of Hopf bifurcation.
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In [26], the geometry of the isoclines plays an important role in understanding
both the equilibria and their bifurcations. Denote the prey isoline of (3.2) as (still
using the notation in [26] but with a hat)

F̂ (x) = r
(
1 − x

K

)
(x2 + bx + 1).(3.3)

It follows from the linear stability analysis in [26] that besides the equilibria at the
origin and (K, 0), if d < 1

b+2 , system (3.2) may have up to two possible positive

equilibria (xi, yi = F̂ (xi)) (i = 1, 2, x1 < x2) if x1 and x2 are positive and smaller
than K, where

x1 =
1 − bd−

√
(b2 − 4)d2 − 2bd + 1

2d
,

x2 =
1 − bd +

√
(b2 − 4)d2 − 2bd + 1

2d
.

(3.4)

Note that x1 and x2 are the real roots of the quadratic equation

ĝ(x) = dx2 − (1 − bd)x + d = 0,(3.5)

and we also have

x1 + x2 =
1 − bd

d
, x1x2 = 1.(3.6)

The equilibrium (x2, y2) is always a hyperbolic saddle if 0 < x1 < x2 < K. The
stability of (x1, y1) as a hyperbolic focus (or node) can be found in [26]. Here we are
interested only in the equilibrium (x1, y1) and related Hopf bifurcations. Recall from
[26] that (x1, y1) may undergo a Hopf bifurcation if F̂ ′(x1) = 0. The prey isocline can
have two humps (Hm, F̂ (Hm)) and (HM , F̂ (HM )), where

Hm =
1

3a

[
aK − b−

√
a2K2 + abK + b2 − 3a

]
,

HM =
1

3a

[
aK − b +

√
a2K2 + abK + b2 − 3a

]
.

(3.7)

As shown in Figure 1, when a Hopf bifurcation occurs, it occurs at either the left
hump (Hm, F̂ (Hm)) or the right hump (HM , F̂ (HM )). By (3.6) we know that x1 ≤ 1.
Hence for the Hopf bifurcation to occur at a hump of F̂ (x), the hump cannot be at
the right of the vertical line x = 1 (Corollary 4.2 in [26]).

If the Hopf bifurcation occurs, it occurs at one of the humps of F̂ (x) or where
F̂ ′(x) = 0. Hence the Hopf bifurcation can only occur at either x1 = Hm or x1 = HM .
Note that we can also solve F̂ ′(x1) = 0 in terms of K; then when the Hopf bifurcation
occurs at x = x1, we should also have

K =
1 + 2bx1 + 3x2

1

b + 2x1
.(3.8)

Substituting x1 into (3.8) or eliminating x from ĝ(x) = 0 and F̂ ′(x) = 0, one gets the
Hopf bifurcation surface (equation (4.2) in [26]) in the parameter space (b,K, d):

ΣH : (4 − b2)(K2 + bK + 1)d2 + 2(bK2 + 2(b2 − 2)K + b)d + 3(1 − bK) = 0.(3.9)
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y

y=F(x)

O

.(x ,y )

x=H x

11

m

(a) At the left hump, the Hopf bifurcation can be
both subcritical and supercritical

y

y=F(x)

O

.

xx=HM

(x ,y )1 1

(b) At the right hump, the Hopf bifurcation is always
supercritical

Fig. 1. Hopf bifurcation occurs at the humps of the prey isocline.

Solving for d, we obtain

d±(b,K) =
−(bK2 + 2(b2 − 2)K + b) ± (2 + bK)

√
K2 + bK + b2 − 3

(4 − b2)(K2 + bK + 1)
.(3.10)

Hence for any (b,K) such that F̂ (x) has an hump to the left of the vertical line
x = 1, if d = d− or d = d+, the Hopf bifurcation may occur. By using the formula
given by Wolkowicz [21], the first Lyapunov coefficient was calculated in [26], and

σ(x) = −p(x)F̂ ′′(x)p′′(x)

p′(x)
+ p(x)F̂ ′′′(x) + 2p′(x)F̂ ′′(x).(3.11)

It was then proved that for the Hopf bifurcation occurring at the right hump, i.e.,
x1 = HM , we have σ(HM ) < 0. Hence if the Hopf bifurcation occurs at the right
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hp

,

Hopf at the left hump
d=

d

d , subcritical

Hopf at the left hump d=

Q

P

 supercritical

2

1

−2 −1 1 b

DH.

O

.

K

.
.

Fig. 2. Hopf bifurcation occurs at the left hump when d = d−(b,K). The curve segment DH,
the projection of the curve segment CDH into the bK plane, is plotted. It separates the colored
region into two: for (b, k) in the blue (darkest) region and d = d−, the Hopf bifurcation at the left
hump is supercritical; for (b, k) in the green (lighter shaded) region and d = d−, the Hopf bifurcation

at the left hump is subcritical [26]. Here C1: K = 1
2
[
√

3(4 − b2) − b], −2 ≤ b ≤ 1; C2: K = 1
b

,

b > 0. For (b,K) below C1, F̂ (x) does not have any humps; to the right of C2, there is only the
right hump in the positive cone. Above the line K = 2, only one hump is to the left of x = 1.

hump, it is always supercritical. For the Hopf bifurcation occurring at the left hump,
when d = d−, it can be both subcritical and supercritical.

Plugging x1 from (3.4) into σ(x1) = 0, in [26] a degenerate Hopf bifurcation curve
was defined. Let

CDH =

⎧⎨
⎩(b, d,K)

∣∣∣∣∣∣
d = d−(b,K) and

16K4 + b(8 − 3b2)K3 − (144 − 15b2)K2

−8b(9 − b2)K + 16b4 − 144b2 + 300 = 0,
− 1 < b < 1

⎫⎬
⎭ .

(3.12)

Then it follows from the results in [26] that CDH is a curve segment in the Hopf
bifurcation surface ΣH , and the projection of the curve onto the (b,K) plane was
plotted in Figure 2; it is a curve segment with endpoints at P (−1, 2) and Q(1, 1). In
the next proposition, we summarize the result regarding the Hopf bifurcation(s) of
codimension one from [26].

Proposition 3.1. If the Hopf bifurcation occurs at the right hump when d = d+,
it is always supercritical. For the Hopf bifurcation occurring at the left hump when
d = d−, as shown in Figure 2, it is subcritical if (b,K) is above DH and is supercritical
if (b,K) is below DH. For (b,K) ∈ DH and d = d−, a degenerate Hopf bifurcation
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occurs.

By an easy computation from (3.8) and (3.4), when a Hopf bifurication occurs,
we have

K = K0(b, d) =
2 −

√
(1 − bd)2 − 4d2

1 −
√

(1 − bd)2 − 4d2
x1

=

(
1 +

1

1 −
√

(1 − bd)2 − 4d2

)
x1.

(3.13)

Since the equilibrium (x1, y1) is isolated in the interior of the first quadrant, there
exists a neighborhood Ω of (x1, y1) such that system (3.2) has no other equilibria in Ω
except (x1, y1). Next we investigate the multiplicity of the multiple focus (x1, y1) of
system (3.2) when (b, d,K) ∈ CDH or, equivalently, when K = K0(b, d) and d = d−.
Note that in manipulating the expressions for conclusion, the relation (3.6) of x1 and
x2 with the coefficients of the quadratic equation ĝ(x) = 0 will be repeatedly used.

Taking h(v) = y1(e
v−1), we transform system (3.2) in Ω to a Liénard-type system

by transformations (2.7) and (2.9) when K = K0(b, d) and d = d−. For simplicity, we
still denote u, v, and τ by x, y, and t, respectively. Then system (1.2) can be written
as ⎧⎪⎨

⎪⎩
dx

dt
= φ(y) − F (x),

dy

dt
= −g(x),

(3.14)

where

φ(y) = y1(e
y − 1),

F (x) = F̂ (−x + x1) − y1 = r

((
1 − b + 3x1

K0

)
x2 +

x3

K0

)
,

g(x) =
d

p(−x + x1)
− 1 =

dx(x− x1 + x2)

x1 − x
,

where (x, y) ∈ Ω1, a neighborhood of the origin which comes from Ω under the
transformation (2.9).

It is clear that φ(y), F (x), and g(x) are C∞ smooth functions in Ω1, and

• φ(0) = g(0) = F (0) = F ′(0) = 0,
• φ′(0) = y1 > 0,

• g′(0) = p′(x1)
p2(x1) = d(x2

x1
− 1) > 0 and

G(x) =

∫ x

0

[
d

p(−u + x1)
− 1

]
du = −d

(
1

2
x2 + x2x + x1x2 ln

x1 − x

x1

)
.

(3.15)

A straightforward computation can verify that there exists a C∞ smooth function

α(x) = −x + a2x
2 + a3x

3 + a4x
4 + O(x5)(3.16)
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such that G(α(x)) ≡ G(x), where

a2 = − G′′′(0)

3G′′(0)
= −2(p′(x1))

2 − p(x1)p
′′(x1)

3p(x1)p′(x1)
= − 2x2

3x1(x2 − x1)
,

a3 = −a2
2,

a4 = a2

(
2a2

2 +
3a2

2x1
+

3

5x2
1

)
.

(3.17)

Performing a Taylor expansion of function F (α(x)) − F (x) at x = 0, we obtain

F2(α(x)) − F2(x) = r
(
A3x

3 + A4x
4 + A5x

5 + O(x6)
)
,

where

A3 =
1

3
[F ′′′(x1) − 3a2F

′′(x1)] = −2a2

(
1 − b + 3x1

K0

)
− 2

K0
,

A4 =

(
1 − b + 3x1

K0

)
(a2

2 − 2a3) +
3a2

K0
,

A5 =

(
1 − b + 3x1

K0

)
(2a2a3 − 2a4) +

3a3 − 3a2
2

K0
.

(3.18)

It follows from (3.11) and (3.17) that

A3 =
1

3p(x1)

[
pF ′′′(x1) +

2(p′(x1))
2 − p(x1)p

′′(x1)

p′(x1)
F ′′(x1)

]

=
1

3p(x1)
σ(x1).

(3.19)

Hence if σ(x1) �= 0, A3 �= 0, the equilibrium (0, 0) of system (3.14) is a multiple focus
of multiplicity one.

Along the curve CDH where σ(x1) = 0, we have A3 = 0. Then the equilib-
rium (0, 0) is a multiple focus of multiplicity at least two and we have to calculate
A4, A5, . . . in order to determine the multiplicity of equilibrium (0, 0). For the pur-
pose of identifying the sign for A5, we need the fact that along DH, A3 = 0, and it is
equivalent to

x2 =
(3b + 6x1)x

2
1

12x2
1 + 9bx1 + 2(b2 − 1)

.(3.20)

Assuming that A3 = 0 and using the expressions of ai (i = 2, 3, 4) and condition
(3.20), we compute

A4 = − 1

a2K0

(
a2

2 − 2a3

)
+

3a2

K0
= 0,

A5 = − 1

a2K0
(2a2a3 − 2a4) +

3a3 − 3a2
2

K0

=
3

5K0x1

(
5a2 +

2

x1

)

= − 2(3x1 + 2x2)

5K0x2
1(x2 − x1)

< 0.

(3.21)
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Thus, equilibrium (0, 0) is a stable multiple focus of multiplicity two by Theorem 2.2.
Summarizing the above arguments, we obtain the following.

Theorem 3.2. For (b, d,K) ∈ CDH , or equivalently, if (b,K) ∈ DH with −1 <
b < 1 and d = d−, the origin of system (3.14) (i.e., equilibrium (x1, y1) of system
(3.2)) is a multiple focus of multiplicity two, which is locally asymptotically stable.

From Theorem 3.2, we immediately have the next result regarding the degenerate
Hopf bifurcation.

Theorem 3.3. For (b, d,K) ∈ CDH , system (3.2) undergoes a Hopf bifurcation
of codimension two, and the diagram for the Hopf bifurcation occurring at the left
hump, Figure 2, is complete.

Remark 3.1. It follows from the expression (3.21) that A5 goes to infinity if x1 and
x2 are getting close enough. This is consistent with the fact that the degenerate Hopf
curve CDH is connected to the Bogdanov–Takens bifurcation point of codimension
three, where x1 and x2 coincide at the infection point of the prey isocline y = F̂ (x).

Using the standard Hopf bifurcation theorem in [2] and [14], we can see that
system (3.2) undergoes a supercritical Hopf bifurcation of codimension one and a
subcritical Hopf bifurcation of codimension one in succession when d = d− and as
(b,K) moves from below to above of the curve DH. Therefore, exactly two limit
cycles may appear.

To discuss the exact number of limit cycles of system (3.2) via Hopf bifurcations,
by restricting our analysis to the case b = 0, we can prove that system (3.2) has no
limit cycles if system (3.2) has a multiple focus of multiplicity two. More precisely,
we have the following theorem.

Theorem 3.4. Consider system (3.2) with b = 0. Assume that 0 < x1 < K ≤ K0

and
√

3
18+2

√
6

≤ d <
√

3
4 ; then the equilibrium (x1, y1) of system (3.2) is globally

stable in the interior of R2
+. (Note that (x1, y1) of system (3.2) is a multiple focus of

multiplicity two when b = 0, K = K0, and d =
√

3
18+2

√
6
.)

Proof. It is clear that system (3.2) has a unique positive equilibrium (x1, y1) if

b = 0, 0 < x1 < K ≤ K0, and
√

3
18+2

√
6
≤ d <

√
3

4 . Since the solutions of (3.2) in

the interior of R2
+ are positive and eventually bounded (i.e., there exists a positive

number T such that 0 < x(t) < K for t > T ), we claim that the unique positive
equilibrium (x1, y1) of system (3.2) is globally stable in the interior of R2

+. We prove
the result by showing that system (3.2) has no closed orbits in the domain Ω2, where

Ω2 = {(x, y) : 0 < x < K, 0 < y < +∞}.

Taking h(v) = y1(e
v−1), we transform system (3.2) in Ω2 to the following Liénard-

type system by transformations (2.7) and (2.9) when b = 0, 0 < x1 < K ≤ K0, and√
3

18+2
√

6
≤ d <

√
3

4 (we still denote u, v, and τ by x, y, and t, respectively):

dx

dt
= φ1(y) − F1(x),

dy

dt
= −g1(x)

(3.22)

in the domain Ω3, where φ1(y) = y1(e
y − 1), F1(x) = rx

K (x2 + (K − 3x1)x + x1(x2 +

3x1 −K)), g1(x) = dx(x−x1+x2)
x1−x , and

Ω3 = {(x, y) : x1 −K < x < x1, −∞ < y < +∞}.
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Note that the problem of existence of closed orbits of system (3.2) in the domain
Ω2 is equivalent to that of system (3.22) in the domain Ω3.

By the Filippov transformation, we can see that system (3.22) has no closed orbits

if f1(x)
g1(x) ≤ f1(u)

g1(u) holds for any (u, x) satisfying G1(x) = G1(u) with x1 − K < u < 0

and 0 < x < x1 (cf. Theorem 2.5 in [23]), where G1(x) =
∫ x

0
g1(s)ds and

f1(x)
def
= F ′

1(x) =
r

k

(
3x2 + 2(K − 3x1)x + x1(x2 + 3x1 −K)

)
.

Next we claim that u + x < 0 if G1(u) = G1(x) with x1 − K < u < 0 and
0 < x < x1. In fact, if

G1(u) = G1(x)

as x1 −K < u < 0 and 0 < x < x1, then

1

2
(x− u)(x + u) + x2(x− u) − x1x2 ln

x1 − u

x1 − x
= 0.

Note that 2x−y
x+y ≤ ln x

y as 0 < y ≤ x, and the equality holds if and only if x = y.
Hence, we have

(x + u)

(
x1 − x2 −

1

2
(x + u)

)
> 0,

which implies that 2(x1 − x2) < u + x < 0.
As G1(u) = G1(x) with x1 −K < u < 0 and 0 < x < x1, we consider

f1(x)

g1(x)
− f1(u)

g1(u)
=

r

Kdxu(x− x1 + x2)(u− x1 + x2)

(
[3x2 + 2(K − 3x1)x

+x1(x2 + 3x1 − 2K)](x1 − x)u(u− x1 + x2) − [3u2 + 2(K − 3x1)u

+x1(x2 + 3x1 − 2K)](x1 − u)x(x− x1 + x2)
)

=
r(x− u)

Kdxu(x− x1 + x2)(u− x1 + x2)

(
− 3u2x2 − 3(x2 − x1)xu(x + u)

− (2Kx2 + 2Kx1 − 10x1x2)xu + (2K − x2 − 3x1)x
2
1(x + u)

+x2
1(2K − x2 − 3x1)(x2 − x1)

)
=

r(x− u)

Kdxu(x− x1 + x2)(u− x1 + x2)

(
− 3u2x2 − 3(x2 − x1)xu(x + u)

+ (10x1x2 − 2Kx2 − 2Kx1)xu

− (x2 + 3x1 − 2K)x2
1(x + u + x2 − x1)

)
.

Because
√

3
18+2

√
6
≤ d <

√
3

4 and 0 < x1 < K ≤ K0 = (3x1 +x2)/2, 10x1x2 −2Kx2 −
2Kx1 ≥ 0 and x2 + 3x1 − 2K > 0. On the other hand, x+ u+ x2 − x1 > x2 −K > 0.
Therefore,

f1(x)

g1(x)
− f1(u)

g1(u)
> 0.
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Table 1

Parameter values for the simulation to verify the existence of two limit cycles.

d K x1 x2

Multiple focus
√

3
18+2

√
6

K0 = 1.809766597 .4283729906 2.334414218

Perturbed
√

3
18+2

√
6

+ 0.01 K0 = 1.809766597 + .01 .4459113886 2.242598026

From above arguments and Theorem 2.5 in [23], we know that system (3.22) does
not have any closed orbits in the range Ω3, which implies that (x1, y1) is globally
stable.

In Figure 3, a numerical simulation was carried out using MAPLE [20] to verify
the existence of two limit cycles. For the simulation, we take r = 2 and b = 0; the other
parameters are given in Table 1, where the system has a unique positive equilibrium
which is a multiple focus of multiplicity two. We then perturb the parameters d and
K; the new perturbed system has two limit cycles, as illustrated in Figure 3(a) and
(b).

Remark 3.2. In [26], the saddle node bifurcation of limit cycles was studied, and
the existence of two limit cycles was proved. In fact, it follows from the results in [26]
and Theorems 3.2 and 3.4 that the bifurcation of the multiple focus of multiplicity two
produces two limit cycles, and these two cycles can either disappear through the Hopf
bifurcations or one Hopf bifurcation and one supercritical homoclinic bifurcation, or
disappear through the saddle node bifurcation of limit cycles.

Remark 3.3. In Theorem 6.22 of [26], for parameters (b,K) in certain region near
the curve segment DH, the bifurcation sequences were given but not complete. There
we could not exclude the saddle node bifurcations of limit cycles and supercritical
homoclinic bifurcations. By the above Theorem 3.4, we can now conclude that the
sequences given in Theorem 6.22 are complete for (b,K) in the neighborhood of b = 0
and near the curve segment DH.

4. Discussion. The existence of limit cycles in predator-prey systems can be
used to explain many real-world oscillatory phenomena, such as the Canadian lynx-
snowshoe hare 10-year cycles. However, the classical Lotka–Volterra predator-prey
system does not exhibit periodic fluctuations since the positive equilibrium is globally
stable. One can perturb the classical Lotka–Volterra predator-prey system to obtain
a unique nonconstant periodic orbit (see Freedman [5]). The second method for mod-
ifying the Lotka–Volterra predator-prey model so that it exhibits periodic solutions
is to introduce a functional response function. Various forms of functional response
functions have been proposed. In general, most of these functional response func-
tions are monotone and have self-saturation effect. The dynamics of the generalized
Gause-type predator-prey systems with general monotonic functional response have
been extensively studied and very well understood. Multiple limit cycles were ob-
served in predator-prey systems for cases when the predator death rate is both linear
[26] and nonlinear (Hofbauer and So [8], Kuang [9], Wrzosek [22], etc.). However, the
existence of exactly two limit cycles in predator-prey systems has not been studied
yet.

Nonmonotonic functional response has been used to model the group defense phe-
nomenon in population dynamics and inhibition in microbial dynamics (Freedman and
Wolkowicz [6], Mischaikow and Wolkowicz [12], Rosenzweig [17], and Wolkowicz [21]),
and very rich and interesting dynamics have been observed in Gause-type predator-
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1.8033

1.8034

1.8035

1.8036

1.8037

1.8038

1.8039

y(t)

0.4457 0.4458 0.4459 0.446 0.4461

x(t)

(b) The equilibrium (x1, y1) is stable, and the trajectory nearby spirals outwards, which
indicates the existence of an unstable limit cycle

Fig. 3. Two limit cycles bifurcated from the multiple focus of multiplicity two. The figures were
produced using MAPLE [20].
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prey models with nonmonotonic functional response and only linear predator death
rate ([18, 19, 26]). However, it is difficult to discuss the degenerate Hopf bifurcation
for these models since it is hard to determine the multiplicity of a multiple focus by
usual methods in [2, 14]. In this paper, we introduce a new method for solving the
problem successfully. For the Gause-type predator-prey model with nonmonotonic
functional response as in (1.2), we have shown that it has a multiple focus with mul-
tiplicity exactly two, and there exist some parameter values for which system (1.2)
with the functional response (1.3) has exactly two limit cycles. These results also
extend the bifurcation analysis of (3.2) by Ruan and Xiao [19] and Zhu, Campbell,
and Wolkowicz [26].

It is natural that the predator-prey interaction has the tendency or potential to
produce periodic oscillations. Hence one always needs to study the multiplicity of
multiple focus and Hopf bifurcations in such predator-prey systems. The machinery
developed in this paper can also be applied to the study of the multiplicity of multiple
focus of other predator-prey systems with linear death rate for the predator, even with
harvesting.

Acknowledgments. The authors are grateful to the anonymous referees and
the handling editor for their valuable comments and suggestions. The authors also
thank one referee for pointing us towards the reference [16].
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Abstract. We consider time-dependent nonlinear Schrödinger equations subject to smooth
lattice-periodic potentials plus additional confining potentials, slowly varying on the lattice scale.
After an appropriate scaling we study the homogenization limit for vanishing lattice spacing. As-
suming well-prepared initial data, the resulting effective dynamics is governed by a homogenized
nonlinear Schrödinger equation with an effective mass tensor depending on the initially chosen Bloch
eigenvalue. The given results rigorously justify the use of the effective mass formalism for the de-
scription of Bose–Einstein condensates on optical lattices.
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1. Introduction. Recent experiments on Bose–Einstein condensates (BECs)
study the influence of optical lattices (or superlattices) on the dynamics of the con-
densate; cf. [12, 14, 28, 32]. The theoretical description of such systems is usually
based on the famous Gross–Pitaevskii equation, i.e.,

ih̄∂tψ = − h̄2

2m
Δψ + V (x)ψ + U0(x)ψ + Nα0|ψ|2ψ, x ∈ R3, t ∈ R,(1.1)

where m is the atomic mass, h̄ is the Planck constant, N is the number of atoms in
the condensate, and

α0 =
4πh̄2a

m
,(1.2)

with a ∈ R being the s-wave scattering length derived from the corresponding N -
particle theory; cf. [36]. Depending on the sign of a, the condensate is said to be either
repulsive (stable) or attractive (unstable). In the nonlinear Schrödinger equation
(NLS) (1.1), the potential U0(x) models some given external confinement, whereas
V (x) represents the lattice-potential, satisfying

V (x + γ) = V (x) ∀x ∈ R3, γ ∈ Γ,(1.3)

where Γ � Z3 denotes some given regular lattice, generated through a basis {ζ
1
, ζ

2
, ζ

3
},

ζ
l
∈ R3, i.e.,

Γ =

{
γ ∈ R3 : γ =

3∑
l=1

γlζl, γl ∈ Z
}
.(1.4)

∗Received by the editors February 2, 2005; accepted for publication (in revised form) October
10, 2005; published electronically February 15, 2006. This work has been partially supported by the
APART grant of the author (funded by the Austrian Academy of Science), the Wittgenstein Award
2000 of Peter Markowich (funded by the Austrian research fund FWF), and the Warwick EPSRC
symposium on the “Mathematics of quantum systems.”

http://www.siam.org/journals/siap/66-3/62375.html
†Wolfgang Pauli Institute & Faculty of Mathematics, Vienna University, Nordbergstraße 15, A-

1090 Vienna, Austria (christof.sparber@univie.ac.at).

820



NONLINEAR EFFECTIVE MASS THEOREMS 821

Of course the nonlinear dynamics described by (1.1) can be highly involved. In the
physics literature it is therefore frequently proposed (cf. [27, 38, 41]) that one consider
the following simplifications: First it is assumed that the matter wave-field ψ(t) can
be characterized by a (fixed) central wave vector k0 ∈ R3, and second one tries to
capture the rapid oscillations in the wave function ψ(t) by performing an asymptotic
expansion in terms of Bloch waves χn(y, k0) (see (2.4) below for their precise defini-
tion). The center of mass of the wave function is then described by a slowly varying
envelope function f(t, x), the dynamics of which is formally found to be governed by
an effective-mass NLS. These types of approximations are well known in solid-state
physics [8], though mostly in a time-independent setting [35], where one considers the
motion of electrons in a crystal. It is the purpose of this work to rigorously justify the
described approach specifically within the considered nonlinear context. To this end
we shall consider a more general NLS than that originally proposed in (1.1), namely,⎧⎨

⎩ ih̄∂tψ = − h̄2

2m
Δψ + V (x)ψ + U0(t, x)ψ + α|ψ|2σψ, x ∈ Rd, t ∈ R,

ψ
∣∣
t=0

= ψI(x),

(1.5)

where α ∈ R and σ ∈ N. To motivate the choice σ ≥ 1, we note that for d < 3
higher order nonlinearities are frequently used in the description of BECs; cf. [26, 29].
Moreover, different NLS-type models of the form (1.5) also appear in nonlinear optics
and laser physics; cf. [42] (see also [24] for a rigorous derivation). We assume ψI ∈
L2(Rd) to be normalized such that∫

Rd

|ψI(x)|2dx = 1.(1.6)

This normalization condition is henceforth conserved during the time-evolution. Again
V is assumed to be periodic w.r.t. some regular lattice Γ � Zd, and U0 denotes some,
in general time-dependent, smooth external potential. Now, we rescale (1.5) in order
to precisely identify the asymptotic regime we shall be dealing with in what follows.
We have in mind a situation where the potential U0 is slowly varying on the lattice-
scale corresponding to V . Hence, there are essentially two scales in this problem.
First, the macroscopic length- and time-scales, denoted L and T , respectively, which
are introduced via U0 by rewriting it in the following dimensionless form:

U0(t, x) =
mL2

T 2
U

(
t

T
,
x

L

)
.(1.7)

In other words, the scaled potential U is such that a free particle of mass m under
the influence of U0 will travel the distance L in the time-unit T . On the other hand,
we can also introduce a couple of microscopic scales, λ and τ , via a rescaling of the
periodic potential V such that

V (x) =
mλ2

τ2
VΓ

(x
λ

)
.(1.8)

The rescaled lattice Γ is henceforth generated through a basis {ζl}3
l=1, where ζl = ζ

l
/λ,

and the microscopic time-unit τ is then given by

τ =
mλ2

h̄
.(1.9)
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We consequently define two small dimensionless parameters, ε and δ, as being the
length- and time-ratios, respectively, i.e.,

ε =
λ

L
, δ =

τ

T
.(1.10)

In the following, both of these are assumed to be small, i.e., ε � 1, δ � 1, but in
general not necessarily equal. Next we introduce new space- and time-variables x̃ and
t̃ via

x̃ =
x

L
, t̃ =

t

T
,(1.11)

and rescale the NLS (1.5) in dimensionless form. Having in mind the normalization
condition (1.6), we also need to rescale the wave function ψ by

ψ̃(t̃, x̃) = Ld/2ψ(t, x).(1.12)

After multiplying (1.5) by T 2/(mL2), we consequently arrive at the following dimen-
sionless two-parameter model (where we again omit all “˜” for simplicity):⎧⎨

⎩ ih∂tψ = − h2

2
Δψ +

h2

ε2
VΓ

(x
ε

)
ψ + U(t, x)ψ + κ |ψ|2σψ,

ψ
∣∣
t=0

= ψI(x).

(1.13)

Here we introduced two additional dimensionless parameters,

h :=
h̄T

mL2
, κ :=

αT 2

mLdσ+2
,(1.14)

the former of which can be considered to be Planck’s constant in the macroscopic
variables. Note that the following important relation holds,

ε2 = hδ,(1.15)

connecting the ratio of the length-scales ε with the corresponding time-scale ratio δ.
Finally, since we are aiming for nonlinearities of order O(1), we shall impose from
now on that

|κ| ≡ |α|T 2

mLdσ+2
= 1, or, equivalently, T =

√
mLdσ+2

|α| ,(1.16)

hence relating the macroscopic length- and time-scales in a specific way. We remark
that in the linear case a scaling analogous to (1.13) has been introduced in [37]. A brief
discussion on several aspects of this scaling procedure is now in order. First note that
if we choose h = ε, hence, in view of (1.15), ε = δ; i.e., if we choose the same ratio for
both the length- and the time-scales, then (1.13) simplifies to a one-parameter model
given by

iε∂tψ = −ε2

2
Δψ + VΓ

(x
ε

)
ψ + U(t, x)ψ + κ |ψ|2σψ.(1.17)

This is nothing but the standard semiclassical scaling for (nonlinear) Schrödinger-type
equations including an additional highly oscillatory periodic potential VΓ. Recently the



NONLINEAR EFFECTIVE MASS THEOREMS 823

rigorous study of the corresponding asymptotic regime ε → 0, known as the combined
semiclassical and adiabatic approximation, attracted lots of interest. Particularly in
the linear setting, i.e., κ = 0, different mathematical approaches are currently at
hand, e.g., WKB-type expansions [6, 21], Wigner transformation techniques [30, 18],
and the so-called space-adiabatic perturbation theory [33, 44], which gives the most
sophisticated mathematical results so far. Including nonlinear effects, the literature
is not so abundant. To the author’s knowledge the only result in this direction is a
recent paper by Carles, Markowich, and the current author [11]. The results given
there, however, are valid only for weak nonlinearities, in the sense that we need to
assume κ ∼ O(ε). Therefore a different rescaling of the original NLS (1.5) has been
introduced in [11].

Remark 1.1. Additionally there exists a related work on the semiclassical limit of
the so-called Schrödinger–Poisson system [5] in a crystal. There, however, additional
assumptions have to be imposed which are out of the realm of the present setting (like
truly mixed-state initial data).

In the following our focus is not on the semiclassical regime. Rather, we shall
study the asymptotic behavior of the scaled NLS (1.13) for ε � 1 but with a fixed
h of order O(1). Note that, by (1.15), this implies δ ∼ O(ε2), and hence we are
considering our system on a much larger macroscopic time-scale T than we do by
fixing a macroscopic length-scale L via (1.10). In particular, we are dealing with much
larger times T , as in the semiclassical studies described above. Roughly speaking, the
semiclassical regime can be seen to be an asymptotic description for ballistic scales,
whereas we shall be dealing in the following with dispersive scales (sometimes also
called diffusive scales). As we shall see, this indeed turns out to be the asymptotic
regime where one can rigorously justify the effective-mass formalism discussed at the
beginning. We note, however that, in contrast to what is noted in [3], the considered
regime is not equivalent to the one obtained after rescaling time in the semiclassical
equation (1.17) by t → εt. The reason for this is the different orders of magnitude
in the external potential U and in the nonlinearity. To have a more concrete feeling
of the involved time- and length-scales we come back to our original equation (1.1).
Thus we consider (1.13) in d = 3, with σ = 1 and therefore κ = 4πh̄2aT 2/(mL5) by
(1.14). A particular example for the periodic potentials used in physical experiments
is then given by [14, 36]

V (x) =

3∑
l=1

h̄2ξ2
l

m
sin2 (ξlxl) , ξl ∈ R,(1.18)

where ξ = (ξ1, ξ2, ξ3) denotes the wave vector of the laser field which generates the
optical lattice. Hence we readily identify λ = (λ1, λ2, λ3) as λl = 1/ξl. Moreover, the
slowly varying external potential U0 is usually modeled to be static and of harmonic
oscillator type (isotropic or anisotropic), i.e.,

U0(x) =
mω2

0

2
|x|2, ω0 ∈ R, x ∈ R3.(1.19)

In this case, a natural choice for the macroscopic length-scale is therefore given by L =
a0, where a0 denotes the length of the harmonic oscillator ground state corresponding
to U0(x), i.e.,

a0 :=

√
h̄

ω0m
.(1.20)
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The assumption ε � 1 is then of course equivalent to λ � a0. In an actual physical
experiment this requirement can be easily satisfied, as a typical ground state length
would be a0 ≈ 10−6[m], whereas the wave vectors ξl of the laser fields are usually tuned
from 106[1/m] to 109[1/m], the latter case therefore being suitable in our situation.
The corresponding relation for the time-scales, however, is more subtle. From the
condition (1.16) we see that T has to be chosen such

T 2 =
a5

0m
2

4πN |a|h̄2 � τ2, since δ � 1.

With τ given by (1.9), this finally leads to the requirement

a5
0

4πN |a| � λ4.

In particular, in the so-called moderate interaction regime, characterized by the fact
that 4πN |a| ≈ a0 [4], this is again equivalent to a0 � λ, and in this case we compute

T 2 =
a0

4πN |a|ω2
0

≈ 1

ω2
0

.

Note that this is precisely what one would get in the corresponding linear situation.
From a mathematical point of view the limit ε → 0 with δ fixed corresponds to the
so-called homogenization limit of (1.13). In view of the classical homogenization re-
sults as described in, e.g., [6, 23], the main new difficulty, apart from the appearing
nonlinearity, stems from the large factor 1/ε2 in front of the periodic potential, which
furnishes a highly singularly perturbed term. It is therefore not a surprise that, even in
the linear case, this type of homogenization problem has been rigorously studied only
very recently [2]. In particular, (linear) time-dependent Schrödinger-type equations
have been considered in [3] and in [37]. The latter result relies on the use of Wigner
measures, a technique which cannot be applied in the given nonlinear situation. The
former work is more closely related to ours, as it combines classical homogenization
techniques, most notably two-scale convergence methods [1], with Bloch wave decom-
position [13]. However, we want to stress the fact that the nonlinear case we shall
be dealing with is by no means a straightforward generalization of the linear results.
More precisely, one should note that the scaling of (1.13) in general prohibits the
derivation of suitable, i.e., uniformly in ε, a priori estimates, except for the basic L2

estimate corresponding to the conservation of mass. In the majority of cases, the
derivation of such uniform estimates is crucial to gaining sufficient control on the lim-
iting behavior of the appearing nonlinearities, a problem which cannot be handled by
using weak-convergence methods (such as Wigner measures or two-scale convergence).

Remark 1.2. Also, for the same reasons, our results do not fit into the framework
of H-measures [43] or G-convergence [34].

We note that in [2, 3] the authors propose the use of a factorization principle in
order to extend their results to the nonlinear case. However, this approach remains
unproven there and, moreover, is known to be applicable only in situations where
the initial data ψI is concentrated at the minimum of the first Bloch band (see [2, 3]
for more details on this). In comparison to that, the results given below are indeed
independent of the number of the Bloch band, and also they do not require that ψI

be concentrated at a local minimum of the considered band. On the other hand, we
do need the initial data ψI to be well prepared in a sense to be made more precise
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below; cf. Assumption 4.3. Additionally we need to assume sufficient regularity on
the potentials U, V as well as on the initial data ψI . The reasons for these assump-
tions are first the fact that we shall use a more traditional multiple-scales expansion
method, similar to those introduced in [6]. This approach will allow us to obtain, in
a rather transparent way, an asymptotic description of ψ(t) for small ε � 1, and also
to determine the corresponding effective homogenized NLS. Second, in order to prove
that the given asymptotic solution is indeed stable under the nonlinear time-evolution
governed by (1.13), we shall adapt an approach originally introduced to prove the ac-
curacy of nonlinear geometrical optics expansions (cf. [15, 20, 39]) for the results most
closely related to the present work. The given proof will then again rely heavily on
the fact that we have sufficient regularity properties and well-prepared initial data. A
similar strategy recently proved to be successful when applied to the weakly nonlinear
semiclassical situation studied in [11]. The main goal of this paper, though, is not
the introduction of new methods but rather a complete and correct treatment of the
problem at hand. Moreover, one should keep in mind that for completely arbitrary
initial data ψI ∈ L2(Rd) one cannot expect an effective mass-type dynamics to be
valid. In other words, to obtain an equation of the form (1.22) the initial data ψI

needs to be (asymptotically) of the same type as stated below, at least in leading
order, and the additional well-preparedness assumptions we shall need concern only
the higher order terms within the asymptotic expansion. We note that only in linear
cases does the superposition principle allow for more general states ψI .

At the expense of not completely well-defined assumptions (to be made precise
later on), let us now state the typical effective mass theorem we shall prove in what
follows.

Theorem 1.3. Let VΓ and U be smooth real-valued potentials such that VΓ is
Γ-periodic and U is subquadratic. Assume that for some k0 ∈ R the initial data ψI is
of the following form:

ψI(x) = fI(x)χn

(x
ε
, k0

)
eik0·x/ε + εηε(x),

where fI ∈ S(Rd;C); χn(y, k) is an eigenfunction of Bloch’s spectral cell problem,
corresponding to a simple eigenvalue En(k); and the corrector ηε ∼ O(1) is such that
ψI is well prepared, up to sufficiently large K ∈ N, in the sense of Assumption 4.3
below. Then there exists an ε0 > 0 such that for ε ≤ ε0 the following asymptotic
estimate holds:

sup
t∈[−τ0,τ0]

‖ψ(t) − vε0(t)‖L2(Rd) = O(ε), τ0 < τ,(1.21)

where τ > 0 is the maximum existence-time for a smooth solution f(t, x) for the
homogenized NLS

ih∂tf = −h2

2
div(M∗∇)f + U(x)ψ + κ∗ |f |2σf,(1.22)

with effective mass tensor M∗ = D2En(k0) and an effective coupling κ∗ ∈ R, given
by (3.21) below. Moreover, the leading order approximate solution vε0 is found to be

vε0(t, x) = f

(
t, x− ht

ε
∇kEn(k0)

)
χn

(x
ε
, k0

)
eik0·x/εe−ihEn(k0)t/ε2

.(1.23)
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We note that the estimate (1.21) implies a strong two-scale convergence statement
as defined in [1, 2, 3]. Also note that, apart from the nonlinearity, our approach
represents a refinement of the classical multiple-scales expansions given in [6], in the
sense that we can include possibly appearing large drifts (clearly visible in (1.23) in
the second argument of f) in order to resolve the underlying dispersive behavior.
The possibility of large drifts present in the asymptotic solution can be seen as the
aftermath of the ballistic regime known from the semiclassical situation, a fact which
has already been noticed in linear situations [3, 16].

The paper is now organized as follows. In section 2 we collect some preliminary
results and important notation used throughout this work. We then proceed along
the lines of [11] and next present in section 3 the multiple-scales expansion method,
whereas its nonlinear stability shall be proved in section 4.

2. Preliminaries. For simplicity we restrict ourselves in this work to static ex-
ternal potentials U = U(x), although all results could be generalized to the case of
time-dependent potentials U(t, x), which are smooth w.r.t. t ∈ R. (Indeed, we could
as well include smoothly time-dependent coupling factors κ(t) ∈ R.) Thus we study
in the following the asymptotic behavior as ε → 0 of⎧⎨

⎩ ih∂tψ = − h2

2
Δψ +

h2

ε2
VΓ

(x
ε

)
ψ + U(x)ψ + κ |ψ|2σψ,

ψ
∣∣
t=0

= ψI(x).

(2.1)

All results given below are then valid for potentials which satisfy the following basic
assumption.

Assumption 2.1. The potentials U and VΓ are such that VΓ, U ∈ C∞(Rd;R), and
moreover they satisfy the following:

(i) VΓ is Γ-periodic: VΓ(x + γ) = VΓ(x) ∀x ∈ Rd, γ ∈ Γ � Zd.
(ii) U is subquadratic: ∂αU ∈ L∞(Rd) ∀α ∈ Nd such that |α| ≥ 2.
Remark 2.2. These are the same assumptions that were used in [11]. In particular,

they include the cases of isotropic harmonic potentials U(x) = |x|2, as well as those
corresponding to anisotropic ones, like U(x) =

∑
ω2
jx

2
j . Moreover, we can take U to

be identically zero, or include a linear component such as E · x, E ∈ R, modeling
constant electric fields, for example.

We proceed by recalling Bloch’s famous eigenvalue problem [7].

2.1. Bloch’s eigenvalue problem. From now on we denote by C the elemen-
tary lattice cell, i.e., the centered fundamental domain of the lattice Γ, i.e.,

C :=

{
γ ∈ Rd : γ =

d∑
l=1

γlζl, γl ∈
[
−1

2
,

1

2

]}
,(2.2)

whereas the corresponding basic cell of the dual lattice will be denoted by C∗. In
solid-state physics C∗ is usually called the (first) Brillouin zone; hence we shall also
write B ≡ C∗. Also let us introduce the so-called Bloch Hamiltonian (or shifted
Hamiltonian) given by

HΓ(k) :=
1

2
(−i∇y + k)

2
+ VΓ (y) , k ∈ Rd.(2.3)

Then Bloch’s eigenvalue problem is given by the following spectral cell equation:{
HΓ(k)χn(y, k) = En(k)χn(y, k) n ∈ N, y ∈ C,

χn(y + γ, k) = χn(y, k) for γ ∈ Γ,
(2.4)
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and En(k) ∈ R, k ∈ B, is then called the nth Bloch eigenvalue corresponding to the
potential VΓ. We shall now briefly collect some well-known facts for this eigenvalue
problem (cf. [31, 40, 45]). Since VΓ is smooth and periodic, HΓ(k), for every fixed
k ∈ B, is self-adjoint on H2(Td), Td = R

d/Γ, with compact resolvent. Hence its
spectrum is given by

σ(HΓ(k)) = {En(k) ∈ R ; k ∈ B, n ∈ N∗}.

The eigenvalues En(k) can then be ordered according to their magnitude and multi-
plicity, i.e.,

E1(k) ≤ · · · ≤ En(k) ≤ En+1(k) ≤ · · · .

Moreover, every En(k) is periodic w.r.t. Γ∗ and En(k) = En(−k) holds. The set

{En(k) ∈ R : En(k) ≤ En+1(k), k ∈ B}

is then usually named the nth energy band (or Bloch band). The associated eigen-
function, the so-called Bloch waves, χn(y, k) form (for every fixed k ∈ B) a complete
orthonormal basis in L2(C) and are smooth w.r.t. y ∈ C. For the following we choose
the usual normalization

〈χn(·, k), χm(·, k)〉L2(C) ≡
∫

C

χn(y, k)χm(y, k)dy = δn,m, n, m ∈ N.(2.5)

Regularity of the χn w.r.t. their dependence on k ∈ B is more subtle. It has been
shown [31] that for any n ∈ N there exists a closed subset A ⊂ B such that En(k)
is analytic. Similarly the eigenfunctions χn(·, k) are found to be analytic and quasi-
periodic in k for all k ∈ O := B\A. Moreover, it holds that

En−1(k) < En(k) < En+1(k) ∀ k ∈ O.(2.6)

If this condition is satisfied for all k ∈ B, then En(k) is said to be an isolated Bloch
band [44]. Finally we remark that the set where one encounters the so-called band
crossings is indeed of measure zero, i.e.,

meas A = meas {k ∈ B | En(k) = Em(k), n �= m} = 0.

Remark 2.3. Note that in the case d = 1 all band crossings can be removed
through a proper analytic continuation of the bands; cf. [40].

From the eigenvalue equation (2.4) we obtain the following useful identities. Dif-
ferentiating (2.4) w.r.t. k (assuming for the moment that everything is sufficiently
smooth) yields

(∇kHΓ(k) −∇kEn(k))χn + (HΓ(k) − En(k))∇kχn = 0.(2.7)

Hence, taking the scalar product with χn, we obtain a formula for ∇kEn(k) by

〈χn, ∇kHΓ(k)χn〉L2(C) ≡ 〈χn, (−i∇y + k)χn〉L2(C)

=∇kEn(k),
(2.8)

since HΓ is self-adjoint. Similarly we obtain the following expression for the entries
of the Hessian matrix D2En(k):

∂2
kjkl

En(k) = δj,l + 〈χn, (−i∂yj + kj)χn〉 + 〈χn, (−i∂yl
+ kl)∂kjχn〉

− 〈χn, (∂kl
En(k))∂kjχn + (∂kjEn(k))∂kl

χn〉,
(2.9)
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where δj,l denotes the Kronecker symbol for j, l = 1, . . . , d. (Below we shall assume
En(k) to be a simple eigenvalue, which implies sufficient regularity to justify all dif-
ferentiations above.)

2.2. Existence of smooth solutions for NLS. As a final preparatory step
we state a basic existence and uniqueness result for NLS of the form (2.1). (See also
[9, 42] for a general introduction.)

Lemma 2.4. Let Assumption 2.1 be satisfied, and let ψI ∈ S(Rd), the Schwartz
space. Let s > d/2. Then there exists t = t(ε, h) > 0 and a unique solution ψ ∈
C(] − t, t[ ;Hs(Rd)) satisfying (2.1). Moreover, xαψ ∈ C(] − t, t[ ;Hs(Rd)) for any
α ∈ Nd, s ∈ N, and the following conservation law holds:

d

dt
‖ψ(t)‖L2 = 0 .(2.10)

Proof. See the proof of Lemma 4.3 in [11].
Remark 2.5. In general, one cannot expect global-in-time existence for solutions

to the NLS. For example, if κ is negative and if σ > 2/d, finite time blow-up may
occur; see, e.g., [10, 42] (see also [9] for the case σ = 2/d).

3. Multiple-scales expansion. We now establish the asymptotic behavior of
ψ(t), the solution to (2.1), for 0 < ε � 1, by means of a multiple-scales expansion.
In the following h > 0 is kept fixed, though we shall not simply set it equal to 1,
since we want to keep track of its appearance in order to compare our results with the
semiclassical situation of [11]; cf. Remark 3.9 below. As in [3], we shall first consider
the easier situation where no large drifts appear, and then include them in a second
step, using a more general asymptotic expansion method.

3.1. Homogenization without drift. In this subsection we seek an asymptotic
expansion for solutions to (1.13) in the following form:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ(t, x) = uε
(
t, x,

x

ε

)
exp

(
i

(
k0 · x
ε

+
βt

ε2

))
,

uε(t, x, y) ∼
∞∑
j=0

εjuj(t, x, y),

(3.1)

where k0 ∈ R
d is induced by the initial condition and β ∈ R is some arbitrary

constant to be determined below. The precise meaning of the symbol “∼” in terms of
an asymptotic series will be discussed in section 4 below. Moreover, we impose that
uε(t, x, y) ∈ C satisfies

uε(·, ·, y + γ) = uε(·, ·, y) ∀ y ∈ Rd, γ ∈ Γ,

in order to capture precisely those oscillations which are introduced via VΓ.
Remark 3.1. This particular form of a multiple-scale ansatz is suggested by the

linear results given in [2, 3]. Indeed, one could have started with a more general ansatz,
imposing appropriate periodicity or quasi-periodicity assumptions. It then turns out
that one ends up again with the same form as given in (3.1). Also, the ansatz (3.1)
might not be so surprising when compared to the two-scale WKB approach used in
[6, 11, 21] (see also Remark 3.9 below).

As usual in asymptotic expansion methods we have to henceforth assume that
the initial condition ψI is compatible with (3.1).
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Assumption 3.2 (well-prepared initial data I). The initial data ψI is assumed to
be of the following form:

ψI(x) = uε
I

(
x,

x

ε

)
eik0·x/ε for some given k0 ∈ R,(3.2)

where uε
I(x, y) is Γ-periodic w.r.t. y and uε

I ∈ S(R2d).1

Assuming for the moment that uε is sufficiently smooth, we (formally) plug the
ansatz (3.1) into (2.1) and compare equal powers in ε. This yields

1

ε2
L0u

ε +
1

ε
L1u

ε + L2u
ε + κ|uε|2σuε = 0,(3.3)

where the linear differential operators L0 and L1 are defined by

L0u
ε := hβ + h2HΓ(k0),

L1u
ε := −h2∇x · ∇yu

ε + ih2k0 · ∇xu
ε,

(3.4)

with HΓ(k) being the Bloch Hamiltonian as given in (2.3). We also define

L2u
ε := −ih ∂tu

ε − h2

2
Δxu

ε + U(x)uε.(3.5)

Since uε ∼
∑

εjuj we shall in the following expand (3.3) in powers of ε and derive
conditions on uj such that all resulting terms are zero up to sufficient high orders in
ε. Setting the leading order term, i.e., the term of order O(ε−2), equal to zero gives

HΓ(k0)u0 +
β

h
u0 = 0,(3.6)

from which we readily see that we need to choose

β = −hEn(k0).(3.7)

Now, if we assume that En(k0) is indeed a simple Bloch-eigenvalue, then (3.6) implies
that u0 can be decomposed as

u0(t, x, y) = f0(t, x)χn(y, k0) ∀ t ∈ R, x ∈ Rd,(3.8)

with some yet undetermined function f(t, x) ∈ C. This now leads directly to the
following important assumption.

Assumption 3.3 (well-prepared initial data II). Initially, the leading order “ampli-
tude” u0 is assumed to be concentrated in a single Bloch band En(k0) corresponding
to a simple eigenvalue of HΓ(k0), i.e.,

u0(0, x, y) ≡ f0(0, x)χn(y, k0),(3.9)

where f0(0, ·) ≡ fI(·) ∈ S(Rd;C) is some given initial data.
An important consequence of En(k0) being simple is that in this case it is known

to be infinitely differentiable in a vicinity of k0. We have seen that in leading order
ψ(t) can be written as

ψ(t, x) ∼ f0(t, x)χn

(x
ε
, k0

)
eik0·x/εe−ihEn(k0)t/ε2

+ O(ε),(3.10)

1That is, uε
I is smooth and rapidly decaying w.r.t. x and smooth w.r.t. y
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where the f0 is yet to be determined. To this end we proceed with our asymptotic
expansion by setting terms of order O(ε−1) equal to zero. This yields

(HΓ(k0) − En(k0))u1 = ∇x · ∇yu0 − ik0 · ∇xu0,(3.11)

which, by inserting (3.8), can be rewritten as

(HΓ(k0) − En(k0))u1 = − i∇xf0 · (−i∇yχn + k0χn)

= − i∇xf0 · ∇kHΓ(k0)χn,
(3.12)

where the second equality follows from the definition of HΓ(k) in (2.3). It remains to
ask whether this equation is solvable for u1. By Fredholm’s alternative the necessary
and sufficient condition for solving it is that the right-hand side be orthogonal (in
L2(C)) to χn(y, k0). Hence we have to impose that

0 = − i∇xf0 · 〈χn, ∇kHΓ(k0)χn〉L2(C)

= − i∇xf0 · ∇kEn(k0),
(3.13)

where for the second equality we used the identity (2.8). Thus we are led to the
restriction that k0 has to be a critical point of En(k), i.e.,

∇kEn(k0) = 0.(3.14)

This situation is analogous to the one discussed in the first part of [3], though the
arguments given there are different. Assuming that (3.14) indeed holds true, we get
from (3.12), together with (2.7), that the order O(ε) corrector u1 in general can be
written in the following form:

u1(t, x, y) = −i∇xf0(t, x) · ∇kχn(y, k0) + f1(t, x)χn(y, k0)(3.15)

for any given function f1. Note that we cannot choose u1(0, x, y) completely arbitrary,
once u0(0, x, y) is fixed; i.e., the initial data uε

I given in Assumption 3.2 (formally)
has to be of the form

uε
I(x, y) ∼ (f0(0, x) + εf1(0, x))χn(y, k0) − iε∇xf0(0, x) · ∇kχn(y, k0) + O(ε2)

(3.16)

in order to be consistent with our asymptotic description. In the following we shall
choose f1(0, x) ≡ 0 for simplicity. Proceeding with our ε-expansion of (3.3), we next
consider terms of order O(1) to obtain the following equation:

L0u2 + L1u1 + L2u0 + κ|u0|2σu0 = 0.(3.17)

Again, by Fredholm’s alternative, it can be solved for u2 iff∫
C

χn(y, k0)
(
L1u1 + L2u0 + κ|u0|2σu0

)
dy = 0.(3.18)

Plugging into this identity the precise forms of u0 and u1, respectively defined in (3.8)
and (3.15), and using formula (2.9), given the fact that ∇kEn(k0) = 0, we obtain after
some lengthy but straightforward calculations the following solvability condition:⎧⎨

⎩ ih∂tf0 = − h2

2
divx(M∗∇x)f0 + U(x)f0 + κ∗ |f0|2σf0,

f0

∣∣
t=0

= fI(x).

(3.19)
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This is nothing but the homogenized NLS, or the effective mass NLS, where the so-
called effective mass tensor M∗ ∈ Rd×d is defined by

M∗
j,l := ∂2

kj ,kl
En(k0), j, l = 1, . . . , d.(3.20)

Moreover, the effective coupling constant κ∗ ∈ R within the nth Bloch band is defined
by

κ∗(k0) := κ

∫
C

|χn (y, k0)|2σ+2
dy.(3.21)

The effective NLS (3.19) describes the dispersive dynamics, as ε → 0, of (2.1) for
long macroscopic time-scales. However, it should not be confused with the so-called
effective Hamiltonian, as determined in [31, 44]. Note that in general M∗ is neither
positive nor definite, and thus (3.19) in general also includes the class of so-called
nonelliptic NLS [17, 25, 42].

Remark 3.4. The formulas (3.19)–(3.21) can be shown to be exactly the same as
in the physics literature [38, 41] and moreover simplify to the ones given in [3, 37] in
the linear case. If M∗ is scalar, its inverse m∗ = 1/M∗ is called the effective mass.

In the next subsection we shall show how to get rid of the additional assumption
(3.14) that k0 is a critical point of En(k).

3.2. General situation including drifts. In order to generalize the expansion
to situations where ∇kEn(k) �= 0 we have to modify our multiple-scales ansatz. It
turns out that instead of (3.1) we need to consider

ψ(t, x) ∼ uε
(
t, x̃,

x

ε

)
exp

(
i

(
k0 · x
ε

− hEn(k0)t

ε2

))
,(3.22)

where uε ∼
∑

εjuj and the new spatial coordinate x̃ is given by

x̃ := x− h

ε
ω(k0)t, with ω(k0) := ∇kEn(k0).(3.23)

Thus x̃ comprises a macroscopically large drift with a drift-velocity proportional to
∇kEn(k0). Note that the fast scale x/ε remains unchanged; hence in situations where
∇kEn(k) = 0 we are clearly back to our old situation. As before, we plug (3.22) into
(2.1), which yields

1

ε2
L0u

ε +
1

ε
L̃1u

ε + L2u
ε + κ|uε|2σuε = 0,(3.24)

where the linear differential operators L0, L2 are defined as in (3.4), (3.5), respectively,
but with x replaced by x̃. However, instead of L1 we have

L̃1u
ε := −h2∇x̃ · ∇yu

ε + ih2(k0 + ω(k0)) · ∇x̃u
ε.(3.25)

Then, by exactly the same arguments as above, we obtain that the leading order
amplitude is given by

u0(t, x̃, y) = f0(t, x̃)χn(y, k0) ∀ t ∈ R, x ∈ Rd.(3.26)

However, setting next the O(ε−1)-term equal to zero yields, instead of (3.12),

(HΓ(k0) − En(k0))u1 = −i∇xf0 · (∇kHΓ(k0)χn − ω(k0)χn).(3.27)
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In this case, the solvability condition requires

0 = 〈χn, (∇kHΓ(k0) − ω(k0))χn〉L2(C)

=∇kEn(k0) − ω(k0),
(3.28)

where we have used the normalization 〈χn, χn〉L2(C) = 1. But (3.28), of course, is

identically fulfilled by definition of ω(k0) := ∇kEn(k0). Thus, by identity (2.7), we
formally obtain the same O(ε)-corrector u1,

u1(t, x̃, y) = −i∇xf0(t, x̃) · ∇kχn(y, k0) + f1(t, x̃)χn(y, k0),(3.29)

for any given function f1. (As above, we set f1 to be identically zero at t = 0, for
simplicity.) Thus by transforming the x-coordinate into x̃ by (3.23), we can now
proceed with our asymptotic expansion, having gained the additional freedom to
include the case ∇kEn(k0) �= 0. The equation of order O(1) now gives

L0u2 + L̃1u1 + L2u0 + κ|u0|2σu0 = 0.(3.30)

It is clear now that, as before, the corresponding solvability condition, i.e.,∫
C

χn(y, k0)
(
L̃1u1 + L2u0 + κ|u0|2σu0

)
dy = 0,(3.31)

yields a homogenized NLS equation of the same form as in (3.19), namely,

ih∂tf0 = −h2

2
div(M∗∇)f0 + U(x)f0 + κ∗ |f0|2σf0.(3.32)

One can easily check that even though ∇kEn(k0) �= 0 in this case, all additional terms
appearing in (3.31) cancel out identically; hence (3.32) remains.

Remark 3.5. In the physics literature [38, 41] the variable-transformation x →
x̃ := x−hω(k0)t/ε is sometimes reverted, leading to an additional convective term on
the left-hand side of (3.32). This, however, can be considered as only a formal state-
ment, since consequently the large factor ε−1 would appear then in the homogenized
NLS, a somewhat inconsistent formalism.

To prove the existence of smooth solutions for the homogenized NLS we shall
impose the following ellipticity assumption.

Assumption 3.6 (ellipticity). We assume that at k0 ∈ B the following holds:

ξTM∗ξ ≡
d∑

k,l=1

∂2
kjkl

En(k0)ξjξl ≥ C|ξ|2 for ξ ∈ Rd, C > 0.(3.33)

Clearly, condition (3.33) is valid if k0 ∈ B is indeed a local minimum of En(k). It
may very well be possible to relax the above assumption; cf. Remark 3.8 below. Here
we mainly introduced this condition for definiteness, since it is then straightforward
to prove that the effective NLS (3.19) (or equivalently (3.32)) has a smooth solution,
at least locally-in-time.

Lemma 3.7. Let Assumptions 2.1 and 3.6 be satisfied, and let fI ∈ S(Rd). Then
there exists τ = τ(h) > 0 and a unique solution f0 ∈ C(] − τ, τ [ ;Hs(Rd)), s > d/2,
satisfying (3.19) or equivalently (3.32). Moreover, xαf0 ∈ C(] − τ, τ [ ;Hs(Rd)) for
any α ∈ Nd, s ∈ N.
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Proof. By Assumption 3.6 we have that −div(M∗∇) is uniformly elliptic, and
since U is subquadratic, the operator −div(M∗∇) + U is therefore well known to
be essentially self-adjoint on C∞

0 (Rd); cf. [40]. The existence of a smooth solution
f0(t, ·) ∈ Hs(Rd), s > d/2, therefore follows by the same arguments as it does for the
standard NLS [9]. The higher order regularity is then also proved similarly to, e.g.,
[9, 22] (see also the proof of Lemma 4.3 in [11] for the main strategy).

Remark 3.8. Indeed, one can expect similar existence results to be true under
much weaker conditions, as given by (3.33); cf. [25]. It is beyond the scope of this
work, though, to study the weakest possible assumptions needed (also including, for
example, degenerate cases), but rather we refer the reader to [42] and the references
given therein. Here we only remark that in the case where M∗ is diagonal, the
existence of smooth local-in-time solutions is known even in the nonelliptic case [17].

Thus, at least for t ∈ ]−τ, τ [, we have that u0, and hence also u1, is smooth w.r.t.
x, y and, moreover, in Hs(Rd) w.r.t. x for any s ∈ N. It is clear that in general we
cannot expect smooth global-in-time solutions of the effective NLS (3.19). However, a
situation where one indeed has globally smooth solutions, i.e., τ = ∞, is furnished by
condition (3.33) together with Assumption 2.1 and imposing that, in addition, κ > 0.

Remark 3.9. Let us briefly compare the obtained leading order asymptotic de-
scription of ψ(t) with the one derived in [11] for the weakly nonlinear semiclassical
scaling. If we formally set h = ε in (3.10), (3.26), we obtain

ψ(t, x) ∼ f0(t, x− ω(k0)t)χl

(x
ε
, k0

)
ei(k0·x−En(k0)t)/ε + O(ε),(3.34)

which is exactly of the same form as the two-scale WKB ansatz used in [11] (see also
[6, 21] for the linear case). In this case the highly oscillatory WKB-phase is simply
given by φ(t, x) = k0 ·x−En(k0)t. Note that this φ solves the nth band semiclassical
Hamilton–Jacobi equation with vanishing external field and plane wave initial data,
i.e., {

∂tφ + En(∇xφ) = 0,

φ
∣∣
t=0

= k0 · x.
(3.35)

Moreover, with this choice of φ (and since U vanishes), one easily checks that the
transport equation for the leading order WKB-amplitude, as derived in [11], simplifies
to {

∂tf0 + ω(k0) · ∇xf0 = 0,

f0

∣∣
t=0

= fI(x).
(3.36)

Clearly, the solution of (3.36) is then simply given by

f0(t, x) = fI(t, x− ω(k0)t),(3.37)

and is hence consistent with our approach.

3.3. Higher order expansions. We henceforth proceed with our ε-expansion
of (3.3). Denote the projector onto the nth Bloch band corresponding to a simple
eigenvalue En(k) by

Pn(k) := |χn(y, k)〉〈χn(y, k)|
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(using the convenient Dirac notation), and moreover define

Qn(k) := id−Pn(k).

This operator is smooth in a vicinity of k0, and hence, by elliptic inversion, a partial
inverse for L0 ≡ L0(k0) can be defined on its range; i.e., L−1

0 Q(k0) is well defined and
smooth. Coming back to (3.30), we can decompose u2 as

u2(t, x, y) = f2(t, x)χn ((y, k0)) + u⊥
2 (t, x, y),(3.38)

where the function f2 is yet unknown and u⊥
2 is such that

Pn(k0)u
⊥
2 (t, x, ·) = 〈χn(·, k0), u

⊥
2 (t, x, ·)〉L2(C) = 0 ∀ (t, x) ∈ ] − τ, τ [×Rd.

Now, u⊥
2 is determined by (3.30) via

u⊥
2 = −L−1

0 Qn(k0)
(
L̃1u1 + L2u0 + κ|u0|2σu0)

)
,(3.39)

which implies u⊥
2 ∈ C(] − τ, τ [;Hs(Rd)), since this already holds for u0 and u1, by

Lemma 3.7. As before, (3.39) henceforth induces a particular form of the O(ε2)-
corrector in the initial amplitude uε

I ∼
∑

εjuj . The next higher order in ε leads us
to the following linear problem (after a Taylor expansion of the nonlinearity around
u0):

L0u3 + L̃1u2 + L2u1 + κ
(
(2σ + 1)|u0|2σu1 + 2σ|u0|2σ−2u2

0ū1

)
= 0.(3.40)

The corresponding solvability condition then determines f1(t, x) ∈ C, i.e., the ampli-
tude corresponding to the polarized part of the first order amplitude u1(t, x, y) given in
(3.15). This then leads to a homogenized linear Schrödinger-type equation for f1(t, x),
where we have the freedom to choose f1(0, x) = 0. By this procedure, all higher order
terms uj(t, x, y), j ≥ 1, of the asymptotic solution (3.22) can be obtained, and it is
now clear that we can always choose gj(0, x), i.e., the polarized part of uj(0, x, y),
to be identically zero. In the globally periodic case, i.e., U(x) = 0 and κ = 0, the
nonvanishing higher order terms u⊥

j (t, x, y), j ≥ 1, are found to be combinations of
higher order derivatives w.r.t. k and x, respectively, of χn and f0; cf. [6, 13]. Although
this is no longer true in our case, we still have that uj ∈ C(] − τ, τ [;Hs(Rd)) for all
j ≥ 1. At each step, though, an additional condition is imposed (recursively) for the
initial data ψI . This can be seen to be analogous to the situation encountered in
[11] and can be understood in the framework of so-called super-adiabatic subspaces as
constructed in [33].

Remark 3.10. Note that the above given construction can be extended to the
case where En(k) is an m-fold degenerate family of eigenvalues, i.e.,

En(k0) = E∗(k0) ∀n ∈ I ⊂ N, |I| = m,

under the additional assumption that there exists a smooth orthonormal basis χl(y, k0),
l = 1, . . . ,m, of ranPI(k), where PI(k0) denotes the spectral projector corresponding
to E∗(k). In this case the leading order asymptotic description would be

ψ(t, x) ∼
m∑
l=1

f0,l(t, x̃)χl

(x
ε
, k0

)
eik0·x/εe−ihEn(k0)t/ε2

+ O(ε).(3.41)
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In this case, however, we would be forced to consider a coupled system of homogenized
equations. The corresponding analysis is then analogous to the given one but requires
rather tedious computations, a situation which we wanted to avoid for simplicity. For
an extensive study of such situations in the linear case we refer to the last section
of [3].

4. Nonlinear stability of the asymptotic solution. To prove that the above
given multiple-scale expansion indeed yields a good approximation of the exact so-
lution ψ(t) for ε � 1, a nonlinear stability result is needed. Note that due to the
scaling of (2.1) we cannot hope for any uniform (w.r.t. ε) bound in, say, Hs(Rd) for
ψ(t). On the other hand, the uniform L2 estimate (2.10) is clearly not sufficient to
pass to the limit in the nonlinearity. This motivates the introduction of the following
ε-scaled spaces.

Definition 4.1. For s ∈ N let

Y s
ε :=

{
fε ∈ L2(Rd) ; sup

0<ε≤1
‖fε‖Y s

ε
< +∞

}
,

where

‖fε‖Y s
ε

:=
∑

|α|+|β|≤s

∥∥(εx)α(ε∂)βfε
∥∥
L2(Rd)

.

Remark 4.2. Similar spaces, but without the extra weight εα, have been used in
the semiclassical study given in [11]. Both variants can be seen as an extension of the
Hs

ε -spaces defined by

‖fε‖Hs
ε

:=
∑
|β|≤s

∥∥(ε∂)βfε
∥∥
L2(Rd)

,(4.1)

which in the context of geometrical optics expansion were first introduced in [20] (see
also [39] and the references given therein). In our case the additional factor (εx)α

is needed because we want to include subquadratic potentials U(x) (and due to our
scaling we cannot work in the Xs

ε -spaces introduced in [11]). If we would allow U(x)
to grow only sublinearly, we could work in Hs

ε as well.
Notation. Let (αε)0<ε≤1 and (βε)0<ε≤1 be two families of positive numbers. From

now on we shall write

αε � βε

if there exists a C > 0, independent of ε ∈ ]0, 1] (but possibly dependent on other
parameters), such that

αε ≤ Cβε ∀ε ∈ ]0, 1].

Since for the following results the value of h, appearing in (2.1), is indeed irrelevant,
we shall set h ≡ 1 throughout this section. Moreover, we shall no longer distinguish
between the usual spatial coordinate x and its shifted value x̃, since our results apply
in both situations. Next, let us precisely specify the class of well-prepared initial data
which we need to consider.

Assumption 4.3 (well-prepared initial data III). The initial data ψε
I satisfies As-

sumptions 3.2 and 3.3 such that for some K ∈ N the following holds:

uε
I(x) =

K∑
j=0

εjuj(x, y)
∣∣∣
y=x/ε

+ O
(
εK+1

)
in Y s

ε for any s ∈ N.(4.2)
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Moreover, with u0 and u1 given by (3.9) and (3.16), respectively, and with F (z) :=
|z|2σz, the functions uj , j ≥ 2, are recursively given by

uj = −L−1
0 Q(k0)

(
L̃1uj−1 + L2uj−2 + κ

dj−2

dsj−2
F

(
u0 +

j−2∑
l=1

slul

)∣∣∣∣∣
s=0

)
.

After what we have encountered in the construction of higher order asymptotic
solutions, this assumption should not come as a surprise. In the linear case the
Assumption 4.3 is needed if one aims for refined asymptotic estimates. As we shall
see, the inclusion of higher order asymptotics in our case is needed to control the
nonlinear term in the proof of the stability result. To this end we need the following
existence result for well-prepared initial data.

Lemma 4.4. There exists ψI ∈ S(Rd) such that Assumption 4.3 holds true for
any K ∈ N.

Proof. The proof follows from Borel’s theorem; cf. Theorem 4.2 in [39].
For the following, define the Nth order asymptotic solution by

vεN (t, x) :=

⎛
⎝ N∑

j=0

εjuj

(
t, x,

x

ε

)⎞⎠ eik0·x/εe−ihEn(k0)t/ε2

,(4.3)

and moreover let

Hε := −1

2
Δ +

1

ε2
VΓ

(x
ε

)
+ U(x)(4.4)

denote the linear part of the Hamiltonian operator. (Note that the scaling of (4.4)
is different from the standard semiclassical one as used in [11, 33].) In the foregoing
section we obtained the following preliminary result.

Proposition 4.5. Let ψI satisfy Assumption 4.3 for any K ∈ N and let τ > 0 be
the existence-time of smooth solutions to (3.32). Then for any N ∈ N, vεN (t) solves{

i∂tv
ε
N −HεvεN = κ|vεN |2σvεN + εNrεN ,

vεN
∣∣
t=0

= ψI + εN+1ηεN+1,
(4.5)

where rεN ∈ C(] − τ, τ [; Hs(Rd)), ηεN+1 ∈ S(Rd) are such that rεN ∈ L∞
loc(] − τ, τ [;Y s

ε )
and ‖ ηεN+1 ‖Y s

ε
= O(1) for any s ∈ N.

The main result we shall prove is then given by the following theorem.
Theorem 4.6. Let ψI satisfy Assumption 4.3 for any K ∈ N, τ > 0 be the

existence-time of smooth solutions to (3.32), and vεN be given by (4.3). Then for any
τ0 < τ there exists ε0 > 0 such that for 0 < ε ≤ ε0, the solution ψ(t) to (2.1) is
defined on the time-interval [−τ0, τ0], and moreover

sup
t∈[−τ0,τ0]

‖ψ(t) − vεN (t)‖Y s
ε

= O
(
εN+1

)
(4.6)

holds for any N ∈ N and s ∈ N.
The above given result shows that if f(t) does not blow up in finite time, then

neither does ψ(t), at least for ε sufficiently small. Further, notice that if τ = ∞,
then the above given estimate (4.6) holds for any bounded time-interval [τ0, τ0] ∈ Rt,
in contrast to the (nonlinear) semiclassical situation [11], where the appearance of
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caustics usually causes the WKB approach to break down in finite time. Note that
in this result, Assumption 4.3 on the initial data ψI has to be valid for any K ∈ N.
We shall show in Proposition 4.8 below how to relax this restriction.

Proof. The proof is similar to that given in [11]. Due to the different scaling of
our equation, we shall present it here in more detail, which should benefit the reader.
Define the difference between the exact and the asymptotic solutions as

wε
N (t, x) := ψ(t, x) − vεN (t, x).

Then, from (2.1) and (4.5), wN solves{
i∂tw

ε
N = Hεwε

N + κ
(
|ψ|2σψ − |vN |2σvN

)
− εNrεN ,

wε
N

∣∣
t=0

= εN+1ηεN+1.
(4.7)

By Lemma 3.7 and the well-known Gagliardo–Nirenberg inequality, we have that vεN
is uniformly bounded in L∞([−τ0, τ0] × Rd). We shall now prove that wε

N is also
bounded in L∞([−τ0, τ0] × Rd), by using a continuity argument which shows that
wNε is actually small in that space, for N sufficiently large. To this end we first note
that the following important relation holds:

‖fε‖Hs = ε−d/2‖fε‖Hs
ε

� ε−d/2‖fε‖Y s
ε
,(4.8)

where the scaling factor ε−d/2 can be easily seen by Fourier transformation. This then
directly leads us to an ε-scaled Gagliardo–Nirenberg-type inequality, i.e.,

‖w‖L∞(Rd) � ‖w‖Hs(Rd) � ε−d/2‖w‖Y s
ε

for s >
d

2
,(4.9)

which we shall use heavily in the following. Multiplying (4.7) by wε
N , integrating over

R
d, and taking the imaginary part yields

∂t‖wε
N (t)‖L2 �

∥∥ |ψ|2σψ − |vεN |2σvεN
∥∥
L2 + εN‖rεN (t)‖L2 ,(4.10)

since Hε is self-adjoint and |κ| = 1 by (1.16). To proceed further we recall the
following Moser-type lemma, the proof of which is a straightforward generalization of
those given in [11, 39].

Lemma 4.7. Let R > 0, s ∈ N, and F (z) = |z|2σz for σ ∈ N. Then there exists
C = C(R, s, σ, d) such that if v satisfies∥∥(εx)α(ε∂)βv

∥∥
L∞(Rd)

≤ R ∀|α| + |β| ≤ s

and w satisfies ‖w‖L∞(Rd) ≤ R, then it holds that

∑
|α|+|β|≤s

∥∥(εx)α(ε∂)β (F (v + w) − F (v))
∥∥
L2(Rd)

≤ C
∑

|α|+|β|≤s

∥∥(εx)α(ε∂)βw
∥∥
L2(Rd)

.

We shall now use this lemma to factor out wε
N in the right-hand side of (4.10) and

then take advantage of the smallness of the remainder. By construction, wε
N (0, x) =

O(εN+1) in any Y s
ε . By Lemma 3.7 we can find for fixed τ0 < τ an R > 0 such that

if N + 1 > d/2, then

‖wε
N (t)‖L∞ ≤ R(4.11)
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for ε sufficiently small. Hence, as long as (4.11) holds, (4.10) and the above given
Lemma 4.7, with s = 0, imply

∂t‖wε
N (t)‖L2 ≤ C‖wε

N (t)‖L2 + CεN‖rεN (t)‖L2 .

Thus by a Gronwall-type estimate, we get, as long as (4.11) holds, that

‖wε
N (t)‖L2 � εN(4.12)

for t ≤ τ . Next we shall show how to obtain similar estimates for the momenta
and derivatives of wε

N . Applying the operator ε∇x to (4.7) yields (where, as before,
F (z) := |z|2σz)

i∂t(ε∇xw
ε
N ) = Hε(ε∇xw

ε
N ) + κ ε∇x (F (ψ) − F (vεN ))

+ [ε∇x, H
ε]wε

N − εN+1∇xr
ε
N ,

and hence we obtain the following energy estimate:

∂t‖ε∇xw
ε
N (t)‖L2 � ‖ε∇x (F (ψ) − F (vεN ))‖L2 + ‖[ε∇x, H

ε]wε
N‖L2

+ εN‖ε∇xr
ε
N‖L2 .

(4.13)

On the other hand, we compute from (4.4) that

[ε∇x, H
ε] =

1

ε2
∇xVΓ

(x
ε

)
+ ε∇xU(x).

Since ∇VΓ is bounded and ∇U is sublinear, (4.13) consequently yields

∂t‖ε∇xw
ε
N (t)‖L2 � ‖ε∇x (F (ψ) − F (vεN ))‖L2 +

1

ε2
‖wε

N‖L2 + ‖εxwε
N‖L2

+ εN‖ε∇xr
ε
N‖L2 .

Thus, again using Lemma 4.7 (with s = 1) together with Proposition 4.5 and the
estimate (4.12), we get

∂t‖ε∇xw
ε
N (t)‖L2 � ‖ε∇xw

ε
N‖L2 + ‖εxwε

N‖L2 + εN−2.(4.14)

(Note the difference in the last term as compared to the semiclassical estimate ob-
tained in [11].) To obtain an estimate for ‖εxwε

N‖L2 , we proceed analogously to
obtain the following moment estimate:

∂t‖εxwε
N (t)‖L2 � ‖εx (F (ψ) − F (vεN ))‖L2 + ‖[εx,Hε]wε

N‖L2

+ εN‖εx rεN‖L2 .
(4.15)

But, since [εx,Hε] = −ε∇x, we get, as long as (4.11) holds,

∂t‖εxwε
N (t)‖L2 � ‖εx (F (ψ) − F (vεN ))‖L2 + ‖ε∇xw

ε
N‖L2 + εN ‖εx rεN‖L2

� ‖εxwε
N (t)‖L2 + ‖ε∇xw

ε
N‖L2 + εN .

(4.16)

Putting (4.14) and (4.16) together, we have

∂t (‖ε∇xw
ε
N‖L2 + ‖εxwε

N (t)‖L2) � ‖ε∇xw
ε
N‖L2 + ‖εxwε

N (t)‖L2 + εN−2.
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Hence a Gronwall lemma yields

‖wε
N (t)‖Y 1

ε
� εN−2(4.17)

as long as (4.11) holds, and by induction one arrives at

‖wε
N (t)‖Y s

ε
� εN−2s .(4.18)

For s > d/2, and as long as (4.11) holds, the Gagliardo–Nirenberg-type inequality
(4.9) therefore implies

‖wε
N (t)‖L∞(Rd) � ε−d/2‖wε

N (t)‖Y s
ε

� εN−2s−d/2.

Hence, if indeed N−2s−d/2 > 0 holds true, a continuity argument shows that (4.11)
is valid up to times |t| = τ , provided that ε is sufficiently small. In particular, wε

N ,
and hence ψ, is well defined up to times |t| = τ0 < τ , for 0 < ε ≤ ε(τ). It remains to
prove the estimate (4.6). Fix s,N ∈ N and let s1 ≥ s be such that s1 > d/2, as well
as N1 ≥ 2s1 + N + 1. From (4.18) we conclude that

sup
t∈[−τ0,τ0]

∥∥wε
N1

(t)
∥∥
Y

s1
ε

� εN1−2s1 � εN+1.

Since N1 > N , it is therefore straightforward that

sup
t∈[−τ0,τ0]

∥∥vεN (t) − vεN1
(t)

∥∥
Y

s1
ε

� εN+1,

and hence we deduce that (4.6) holds for any s,N ∈ N.
In the proof given above, the initial data ψI is assumed to be well prepared up to

any order K ∈ N. This rather strong assumption can be relaxed, as the next result
will show. To this end we introduce the following notation.

Notation. For every α ∈ R we denote by [α] ∈ N the ceiling of α, i.e., the smallest
integer which is larger than or equal to α.

Proposition 4.8. Let ψ̃(t) be the solution of (2.1) corresponding to an initial

data ψ̃I , which satisfies Assumption 4.3 for any K ∈ N. On the other hand, let ψ(t) be
the solution corresponding to an initial data ψI , where ψI is such that Assumption 4.3
is satisfied for K ≥ [3d/2]. Then for any τ0 ∈ ]− τ, τ [ there exists ε0 > 0 such that for
0 < ε ≤ ε0, ψ

ε(t) is defined up to times |t| ≤ τ0, and moreover the following holds:

sup
t∈[−τ0,τ0]

∥∥∥ψ(t) − ψ̃(t)
∥∥∥
Y s
ε

= O
(
εK+1−2s

)
for s ≥ 0 .

Proof. Since the proof follows the lines of that for Theorem 4.6, we shall be rather
brief. As before, we introduce

w̃(t, x) := ψ(t, x) − ψ̃(t, x).

Then w̃(t) solves ⎧⎨
⎩ i∂tw̃ = Hεw̃ + κ

(
|ψ|2σψ − |ψ̃|2σψ̃

)
,

w̃
∣∣
t=0

= O
(
εK+1

)
in Y s

ε for any s ∈ N.



840 CHRISTOF SPARBER

(Note that there is no remainder rεN in this case.) We can then argue as in the above
given proof. We have that initially the following holds:

‖w̃(0, ·)‖L∞ � ε−d/2‖w̃(0, ·)‖Y s
ε

� εK+1−d/2 , provided s >
d

2
.

With K + 1 ≥ [3d/2] + 1 > d/2, the same arguments as in the proof of Theorem 4.6
yield

‖w̃(t)‖Y s
ε

� εK+1−2s,

as long as (4.11) holds. Since K+1 > d, we can choose s > d/2 such that K+1−2s >
d/2; i.e., we can choose s such that K + 1 > [d/2 + 2s] = [3d/2]. Therefore the above
given estimate and (4.9) show that (4.11) holds up to times |t| = τ0, for ε � 1.

Theorem 4.6 and Proposition 4.8 then finally lead to the following statement,
proving also Theorem 1.3.

Corollary 4.9. If ψI satisfies Assumption 4.3 with K ≥ [3d/2], then there
exists ε0 > 0 such that for 0 < ε ≤ ε0 the solution ψ(t) to (2.1) is defined on the time
interval [−τ0, τ0] for any τ0 < τ and the following estimate holds:

sup
t∈[−τ0,τ0]

‖ψ(t) − vε0(t)‖L2(Rd) = O (ε) .(4.19)

Additionally, if K > [3d/2], then we have

sup
t∈[−τ0,τ0]

‖ψ(t) − vε0(t)‖L∞(Rd) = O (ε) .(4.20)

Proof. From Proposition 4.8 we deduce that Theorem 4.6 holds with K ≥ [3d/2].
The L2 estimate (4.19) then is nothing but (4.6) with N = s = 0. The L∞ estimate
(4.20) follows similarly from Theorem 4.6 and (4.9).

In other words we deduce that the solution of (2.1) can be, up to an error of O(ε),
approximated by the leading order asymptotic solution v0, obtained from the multiple-
scales expansion, if the initial data is well prepared, i.e., including correctors up to
K = [3d/2], which is slightly stronger than what was required for the semiclassical
result given in [11]. There the analogous condition for the correctors was K ≥ d.
On the other hand, one might guess that the leading order estimates (4.19), (4.20)
are true even if the initial data is “correct” only up to leading order. However, the
techniques used in the above proofs do not allow the conclusion that this is indeed
the case. Note, however, that the higher order correctors in the initial data tend to
zero as ε → 0 in practically every reasonable sense.

Remark 4.10. Finally, let us remark that one could also study the semiclassi-
cal asymptotic behavior of the homogenized NLS, i.e., the limit h → 0 of (3.19),
although, in view of the given scaling arguments and Remark 3.9, the word “semi-
classical” should rather be understood here in a purely mathematical sense. To this
end, the well-known WKB-type method derived in [19] can be adapted under suitable
conditions on M∗. In this case, however, one can only hope for local-in-time results,
i.e., results up to caustics. The combined limit ε/h → 0, h → 0 seems to be more
subtle, in particular due to the somewhat hidden dependence of τ on h in the above
results.
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[7] F. Bloch, Über die Quantenmechanik der Elektronen in Kristallgittern, Z. Phys., 52 (1928),
pp. 555–600 (in German).

[8] J. Callaway, Quantum Theory of the Solid State, Academic Press, New York, 1991.
[9] T. Cazenave, Semilinear Schrödinger Equations, Courant Lect. Notes Math. 10, New York

University Courant Math. Institute, New York, 2003.
[10] R. Carles, Remarks on nonlinear Schrödinger equations with harmonic potential, Ann. Henri
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THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS∗

MAIA MARTCHEVA† AND SERGEI S. PILYUGIN‡

Abstract. We investigate an epidemic model of two diseases. The primary disease is assumed
to be a slowly progressing disease, and the density of individuals infected with it is structured by
age since infection. Hosts that are already infected with the primary disease can become coinfected
with a secondary disease. We show that in addition to the disease-free equilibrium, there exists
a unique dominance equilibrium corresponding to each disease. Without coinfection there are no
coexistence equilibria; however, with coinfection the number of coexistence equilibria may vary.
For some parameter values, there exist two coexistence equilibria. We also observe competitor-
mediated oscillatory coexistence. Furthermore, weakly subthreshold (which occur when exactly
one of the reproduction numbers is below one) and strongly subthreshold (which occur when both
reproduction numbers are below one) coexistence equilibria may exist. Some of those are a result of
a two-parameter backward bifurcation. Bistability occurs in several regions of the parameter space.
Despite the presence of coinfection, coexistence of the two diseases appears possible only for relatively
small values of the reproduction numbers—for large values of the reproduction numbers the typical
outcome of competition is the dominance of one of the diseases, including bistable dominance where
the competition outcome is initial condition dependent.

Key words. coinfection, infection-age structure, subthreshold coexistence, backward bifurca-
tion, Hopf bifurcation, oscillatory dominance, oscillatory coexistence, restricted pathogenic diversity
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1. Introduction. Coinfection is a simultaneous infection of one host with multi-
ple pathogens that may be the causative agents of different diseases or variants of the
same parasite. Coinfections are common for individuals infected with the human im-
munodeficiency virus (HIV). Since HIV compromises the immune system, the carrier
becomes vulnerable to other infections commonly called opportunistic infections [10].
For instance, the case of HIV-HSV (herpes simplex virus) coinfection has been well
documented. Such coinfection typically leads to reactivation of HSV, which accel-
erates the progression of HIV disease towards AIDS. HIV-HSV infected individuals
are also more likely to unwittingly transmit HSV via an increased shedding com-
mon in HIV-infected patients. The treatment of HIV-HSV coinfected patients may
present additional challenges since the HSV is likely to be more resistant to antiviral
therapy [22]. Coinfections may also occur when a patient is already infected with a
slowly progressing disease which lasts for decades. In tuberculosis (TB), for example,
coinfection even with a minor illness can trigger a reactivation of TB.

Many mathematical studies exist on single diseases, both general theoretic and
those treating a specific disease. At the same time, few studies exist that address
the interaction of two or more diseases. On an epidemiological level, Courchamp
et al. [7] studied a model of two feline retroviruses. Two recent articles—one by Allen,
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Langlais, and Phillips [1] and another by Gumel et al. [9]—also consider two infections
in a single host. On an immunological level, the interactions between Mycobacterium
tuberculosis and HIV-1 are investigated in [11]. Statistical aspects of mapping two
diseases are the focus of [8]. Coinfection has been studied from a general perspective
in [14]. In [16], a connection between superinfection and coinfection with different
strains, and the impact of both on the coexistence and the evolution of virulence, is
discussed.

In this paper, we study an epidemic model with two diseases that can coinfect
a single host. We include infection-age structure in the primary disease to account
for slowly progressing and/or persistent diseases that affect the immune status of
individuals over time. Infection-age structure has been previously shown to cause
qualitative changes, namely oscillatory behavior, in case of a single disease dynamics
[2, 19, 15, 12, 20]. Although the model discussed here is relatively simple, we find
complex dynamic behavior: oscillatory dominance and coexistence, two-parameter
backward bifurcation, multiple and subthreshold coexistence equilibria, and bistabil-
ity. These phenomena have important epidemiological consequences for disease man-
agement. Most of them have been illustrated in the single-disease case. In particular,
backward bifurcation which leads to multiple and subthreshold equilibria has been
attracting significant attention in the literature (see [13] and the references therein).
However, to the best of our knowledge, backward bifurcations have not been studied
in the context of multiple infectious agents.

This paper is organized as follows. In the next section, we introduce the two-
disease coinfection model. In section 3, we introduce the reproduction numbers of
the primary and secondary diseases R1, R2 and discuss the equilibria of the model.
The values of the disease-free equilibrium and the two boundary equilibria are given
explicitly. We also present sufficient conditions for the existence of a coexistence
equilibrium. In section 4, we consider scenarios for extinction of either disease or
both. Section 5 focuses on the local stability of equilibria. We show that both the
primary disease equilibrium and coexistence equilibria can lose stability, leading to
sustained oscillations. Section 6 is devoted to the derivation of necessary and sufficient
conditions for the backward bifurcation in R1 and R2. In section 7, we present
several numerical simulations to illustrate the various complex dynamic phenomena.
In section 8, we discuss the epidemiological implications of our model. Section 9
contains a summary of our results and concludes the paper.

2. A model of coinfection of two diseases. Two diseases are spreading in
a population of total size N(t). They both compete for the same pool of susceptible
individuals, whose number at time t is denoted by S(t). We assume that the first
disease is a slowly progressing one, and we structure the class of infected individuals
with respect to the time since infection, a. The age-density is denoted by i(a, t).
The total number of individuals infected with the first disease is denoted by I1(t).
Population members who eventually contract both diseases are assumed to be infected
by the slowly progressing disease first. Consequently we call it the primary disease.
A susceptible becomes infected with the primary disease at a rate β1(a). The number
of individuals infected with the second disease is denoted by I2(t). The secondary
disease is transmitted by the class I2 to susceptibles at a rate β2. An individual
already infected with the primary disease can be coinfected with the secondary disease
at a rate δ(a) and thus become jointly infected with both diseases. We denote the
number of jointly infected (coinfected) individuals by J(t). The individuals infected
with both diseases can infect susceptibles with the primary disease at a rate γ1 and



THE ROLE OF COINFECTION IN MULTIDISEASE DYNAMICS 845

J

S

μI1

2[    ]

[    ] [    ][    ]
[    ] [    ]

[    ]+ 22

21

11 γγ

δ

αα
ββ +

J

susceptible

primary secondary

coinfected
J

I I

I

ν

SΛ μ

μ

μ

1 2

Fig. 2.1. The flow diagram of the model (2.1). The primary infection rate is shown as [β1]+[γ1],
where [β1] = S

N

∫∞
0 β1(a)i(a) da and [γ1] = γ1

SJ
N

. The secondary infection rate is shown as [β2] +

[γ2], where [β2] = β2
SI2
N

and [γ2] = γ2
SJ
N

. The coinfection rate is shown as [δ] = I2
N

∫∞
0 δ(a)i(a) da.

The primary and secondary recovery rates are shown as [α1] =
∫∞
0 α1(a)i(a) da and [α2] = α2I2.

The parameters Λ, μ, and ν represent the birth/recruitment rate, the background mortality rate, and
the disease-induced mortality associated with coinfection, respectively.

with the secondary disease at a rate γ2. Figure 2.1 presents a schematic flow diagram
of the mathematical model that takes the form

S′ = Λ − S

N

∫ ∞

0

β1(a)i(a, t) da− β2
SI2

N
− (γ1 + γ2)

SJ

N
− μS

+

∫ ∞

0

α1(a)i(a, t) da + α2I2,

(∂t + ∂a)i(a, t) = −α1(a)i(a, t) − δ(a)
I2

N
i(a, t) − μi(a, t),

i(0, t) =
S

N

∫ ∞

0

β1(a)i(a, t) da + γ1
SJ

N
,(2.1)

I ′2 = β2
SI2

N
+ γ2

SJ

N
− (μ + α2)I2,

J ′ =
I2

N

∫ ∞

0

δ(a)i(a, t) da− (μ + ν)J,

where μ is natural death rate. We assume that either disease by itself is not lethal
but that the two in combination can be. The biological motivation of this assumption
is the case of HIV/AIDS, where coinfections in late stages of the HIV (considered
the primary disease) can be terminal. Specifically, we assume that jointly infected
individuals do not recover and that coinfections cause disease-induced mortality at a
rate ν. Individuals infected with either primary or secondary disease alone may be
potentially treated and recover at rates α1(a), α2, respectively. The functions α1(a),
β1(a), and δ(a) are nonnegative and bounded. The parameters β2, γ1, γ2, ν, α2 are
nonnegative, whereas Λ > 0 and μ > 0. A standard argument can be used to show
that the model (2.1) is well posed.
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The total population size N(t) is the sum of all individuals in all classes:

N(t) = S(t) +

∫ ∞

0

i(a, t)da + I2(t) + J(t).(2.2)

The total population size satisfies the equation N ′(t) = Λ − μN − νJ . We introduce
the notation

π1(a) = e−
∫ a
0

α1(s)ds.

To understand the biological meaning of the quantity π1(a) we note that π1(a)e
−μa

is the probability that an individual will remain infected with the primary disease a
time units after infection. In addition, we define the quantity

Δ =

∫ ∞

0

α1(a)π1(a)e
−μada,(2.3)

which gives the probability of leaving the primary disease infectious period via recov-
ery. Since individuals can leave the primary infected class only via recovery or death,
the sum of the probabilities of recovery and death equals one; that is,∫ ∞

0

α1(a)π1(a)e
−μa da + μ

∫ ∞

0

π1(a)e
−μa da =

∫ ∞

0

(μ + α1(a))e
−

∫ a
0

(μ+α1(s))ds da = 1.

It immediately follows that Δ < 1.

3. Equilibria of the model with coinfection. We introduce the reproduction
numbers of the two diseases. The reproduction number of the primary disease is

R1 =

∫ ∞

0

β1(a)π1(a)e
−μa da,(3.1)

and the reproduction number of the secondary disease is

R2 =
β2

μ + α2
.(3.2)

We note that the coinfection rate δ(a) does not affect the reproduction numbers
since coinfection does not lead to additional infections. We will adopt the notation
s = S/N∗, i2 = I2/N

∗, j = J/N∗ and will use i(a) to denote the normalized version
of the equilibrium value of i(a, t), i∗(a). The quantity N∗ is given by the sum (2.2)
at an equilibrium. Let us define

Γ(a; i2) = e−i2
∫ a
0

δ(σ)dσ.(3.3)

Notice that Γ(a; 0) = 1. Setting the derivatives with respect to time to zero, we obtain
a system of algebraic equations and one ODE for the equilibria of (2.1). The ODE in
the system can be solved to yield

i(a) = i(0)Γ(a; i2)π1(a)e
−μa.(3.4)

Substituting for i in the integrals, one obtains∫ ∞

0

β1(a)i(a) da = i(0)

∫ ∞

0

β1(a)Γ(a; i2)π1(a)e
−μa da = i(0)B(i2)
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and ∫ ∞

0

α1(a)i(a) da = i(0)

∫ ∞

0

α1(a)Γ(a; i2)π1(a)e
−μa da = i(0)A(i2).

Finally, ∫ ∞

0

δ(a)i(a) da = i(0)

∫ ∞

0

δ(a)Γ(a; i2)π1(a)e
−μa da = i(0)D(i2).

We notice that A(i2) < 1 and i2D(i2) + A(i2) < 1 because

i2D(i2) + A(i2) =

∫ ∞

0

(α1(a) + i2δ(a))e
−

∫ a
0

(α1(σ)+i2δ(σ)) dσe−μa da

<

∫ ∞

0

(α1(a) + i2δ(a))e
−

∫ a
0

(α1(σ)+i2δ(σ)) dσ da = 1.

With this notation the system for the equilibria becomes

0 = μ− si(0)B(i2) − β2si2 − (γ1 + γ2)sj − μs + i(0)A(i2) + α2i2 + νj,
i(0) = i(0)sB(i2) + γ1sj,
0 = β2si2 + γ2sj − (μ + α2)i2,
0 = i(0)i2D(i2) − (μ + ν)j.

(3.5)

This system has three boundary equilibria, as follows:
1. The disease-free equilibrium

E0 = (1, 0, 0, 0) .

The disease-free equilibrium always exists.
2. The primary disease equilibrium exists if and only if R1 > 1. The steady

distribution of infectives in the primary disease equilibrium is given by

i(a) = i(0)π1(a)e
−μa, where i(0) =

μ
(
1 − 1

R1

)
1 − Δ

.

Thus, the equilibrium is

E1 =

(
1

R1
, i(a), 0, 0

)
.

3. The secondary disease equilibrium exists if and only if R2 > 1 and is given
by

E2 =

(
1

R2
, 0,

(
1 − 1

R2

)
, 0

)
.

Notice that the values of the two dominance equilibria do not depend on the coinfec-
tion. These exact same equilibria are present even if δ(a) = 0.

We introduce the invasion reproduction numbers for each of the diseases. The
invasion reproduction number of the first disease measures the ability of the primary
disease to invade an equilibrium of the secondary disease. We define the invasion
reproduction number of the primary disease as

R̂1 =
1

R2
B(̂i2) +

γ1

μ + ν

1

R2

(
1 − 1

R2

)
D(̂i2), where î2 =

(
1 − 1

R2

)
.(3.6)
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The invasion reproduction number of the secondary disease measures its ability to
invade an equilibrium of the primary disease, and it is defined as

R̂2 =
(R1 − 1)μγ2D(0)

R1(μ + α2)(μ + ν)(R1 −R2)(1 − Δ)
if R1 > R2.(3.7)

It is important to point out that, due to the asymmetry of the model, R̂1 is defined
if R2 > 1, and R̂2 is defined if R1 > max(1,R2). In addition, it is possible that
R̂1 > 1 even if R1 < 1; that is, the dominance equilibrium E1 of the primary disease
does not exist, and yet the primary disease can invade the dominance equilibrium of
the secondary disease. It is also possible that R̂2 > 1 even if R2 < 1; that is, the
dominance equilibrium E2 of the secondary disease does not exist, but the secondary
disease can invade the dominance equilibrium of the primary disease.

Lemma 3.1. The curves C1 = {(R1,R2)|R̂1 = 1} and C2 = {(R1,R2)|R̂2 = 1}
enclose a nontrivial region in the positive (R1,R2) quadrant. The interior of this
region always contains an unbounded component given by inequalities R̂1, R̂2 < 1.

Proof. Using the fact that B(0) = R1, the curve C1 = {(R1,R2)|R̂1 = 1} is given
by the graph

R1 =
B(0)

B(̂i2)

(
R2 −

γ1î2D(̂i2)

μ + ν

)
=: F1(R2),

where R2 ≥ 1 and î2 = 1 − 1/R2 ≥ 0. The definition of F1 implies that F1(1) = 1,
and for large values of R2 the function

F1(R2) ≈
B(0)

B(1)
R2 +

B(0)B′(1)

B2(1)
− γ1B(0)D(1)

(μ + ν)B(1)
for R2 � 1

is approximately linear in R2 with a slope B(0)/B(1) > 1. On the other hand, the
curve C2 = {(R1,R2)|R̂2 = 1} is given by the graph

R2 = R1 −
(
1 − 1

R1

) μγ2D(0)

(μ + α2)(μ + ν)(1 − Δ)
=: F2(R1),

where R1 ≥ 1. It is easy to see that F2(1) = 1, and for large values of R1 the function

F2(R1) ≈ R1 −
μγ2D(0)

(μ + α2)(μ + ν)(1 − Δ)
for R1 � 1

is approximately linear in R1 with a unit slope. Consequently, when both R1 and R2

are large, the curve C1 lies below and to the right of the curve C2. The unbounded
region enclosed by these curves is therefore given by the inequalities R2 < F2(R1)
and R1 < F1(R2), which are equivalent to the inequalities R̂1, R̂2 < 1.

In Figure 3.1, we present a simple diagram depicting the curves C1 and C2 and
identify various parts of the region enclosed by these curves. The following theorem
establishes the existence of at least one coexistence equilibrium for any point in the
(R1,R2) plane that lies between the curves C1 and C2. In what follows, we will refer
to the region between the curves C1 and C2 as the coexistence region.

Theorem 3.2. Let

D− = {R1,R2 > 0|1 < R1 ≤ R2, R̂1 > 1},
D+ = {R1,R2 > 0|1 < R2 < R1, R̂1 > 1, R̂2 > 1},
D1 = {R1,R2 > 0|R2 < 1 < R1, R̂2 > 1},
D2 = {R1,R2 > 0|R1 < 1 < R2, R̂1 > 1},
D3 = {R1,R2 > 0|1 < R2 < R1, R̂1 < 1, R̂2 < 1};
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Fig. 3.1. A schematic diagram representing the coexistence region in the (R1,R2) plane. The

boundary of the coexistence region is formed by the curves C1 : R̂1 = 1 and C2 : R̂2 = 1. The
coexistence region (as shown) consists of the following five components: D−, where 1 < R1 < R2

and R̂1 > 1; D+, where 1 < R2 < R1 and R̂1; R̂2 > 1; D1, where R2 < 1 < R1 and R̂2 > 1;
D2, where R1 < 1 < R2 and R̂1 > 1; and finally, D3, where 1 < R2 < R1 and R̂1, R̂2 < 1. D3 is
the only component of the coexistence region that is always nonempty; the other components may
or may not exist, depending on the parameter values.

then for any (R1,R2) in the coexistence region Dc = D− ∪ D+ ∪ D1 ∪ D2 ∪ D3 there
exists at least one coexistence equilibrium for the two diseases.

Proof. The fourth equation in (3.5) implies that at a coexistence equilibrium,

j =
i(0)i2D(i2)

μ + ν
.

Substituting this expression into the second equation in (3.5), we find that

s =

(
B(i2) +

γ1i2D(i2)

μ + ν

)−1

=: S(i2).(3.8)

Now we substitute (3.8) into the third equation in (3.5) and solve for j to obtain the
expressions

j =
(μ + α2)(1 −R2S(i2))i2

γ2S(i2)
, R2 =

β2

μ + α2
,

and

i(0) =
(μ + ν)j

i2D(i2)
=

(μ + ν)(μ + α2)(1 −R2S(i2))

γ2S(i2)D(i2)
.

Finally, we express j and i1 as follows:

j =
i2(μ + α2)(1 −R2S(i2))

γ2S(i2)
=: J (i2)(3.9)
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and

i1 =

∫ ∞

0

i(a) da = i(0)G(i2) =
(μ + ν)(μ + α2)G(i2)(1 −R2S(i2))

γ2S(i2)D(i2)
=: I(i2),

(3.10)

where

G(i2) =

∫ ∞

0

Γ(a; i2)π1(a)e
−μada > 0, G(0) =

1 − Δ

μ
.

Since we are working with rescaled variables, the relation s + i1 + i2 + j = 1 implies
that

M(i2) := i2 + S(i2) + I(i2) + J (i2) = 1.

We note that the function S(i2) is positive for all i2 ≥ 0, and both functions I(i2),
J (i2) are positive if i2 > 0 and R2S(i2) < 1. To prove the existence of a coexistence
equilibrium it suffices to show the existence of a positive root of the equation M(i2) =
1 that satisfies R2S(i2) < 1. We also note that the function M(i2) can be equivalently
expressed as

M(i2) := i2 + S(i2) +
(μ + α2)(1 −R2S(i2))

γ2S(i2)

(
i2 +

G(i2)(μ + ν)

D(i2)

)
.

We observe that S(0) = 1/R1, and therefore

M(0) =
1

R1
+

(μ + ν)(μ + α2)G(0)(1 −R2S(0))

γ2S(0)D(0)

=
1

R1
+

(1 − Δ)(μ + ν)(μ + α2)(R1 −R2)

μγ2D(0)
.

Suppose that (R1,R2) ∈ D−, that is, 1 < R1 ≤ R2 and R̂1 > 1. It follows that
M(0) ≤ 1/R1 < 1 because R1 ≤ R2. Using the definition of R̂1, we find that R̂1 > 1
implies that R2S (̂i2) < 1. Therefore, there exist the following three possibilities:

1. If M(̂i2) = 1, then we are done because both I (̂i2) and J (̂i2) are positive.
2. If M(̂i2) > 1, then one of the following holds:

• There exists i∗2 ∈ [0, î2) such that R2S(i∗2) = 1 and R2S(i2) < 1 for all
i2 ∈ (i∗2, î2]. In this case, we have that

M(i∗2) = i∗2 +
1

R2
= 1 + i∗2 − î2 < 1,

and since M(̂i2) > 1, there exists a number i2 ∈ (i∗2, î2) such that
M(i2) = 1, where both I(i2) and J (i2) are positive.

• R2S(i2) < 1 for all i2 ∈ (0, î2]. Then since M(0) < 1 and M(̂i2) > 1,
there exists a number i2 ∈ (0, î2) such that M(i2) = 1, where both I(i2)
and J (i2) are positive.

3. If M(̂i2) < 1, then one of the following holds:
• There exists i∗2 ∈ (̂i2, 1] such that R2S(i∗2) = 1 and R2S(i2) < 1 for all
i2 ∈ (̂i2, i

∗
2). In this case, we have that

M(i∗2) = i∗2 +
1

R2
= 1 + i∗2 − î2 > 1,

and since M(̂i2) < 1, there exists a number i2 ∈ (̂i2, i
∗
2) such that

M(i2) = 1, where both I(i2) and J (i2) are positive.
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• R2S(i2) < 1 for all i2 ∈ [̂i2, 1). Then we have that M(1) ≥ 1 + S(1) >
1, and since M(̂i2) < 1, there exists a number i2 ∈ (̂i2, 1) such that
M(i2) = 1, where both I(i2) and J (i2) are positive.

Therefore, there exists a coexistence equilibrium for all (R1,R2) ∈ D−.
Now suppose that (R1,R2) ∈ D+, that is, 1 < R2 < R1 and R̂1, R̂2 > 1. The

inequality R̂2 > 1 implies that M(0) < 1, and the inequality R̂1 > 1 implies that
R2S (̂i2) < 1. From this point forward, the proof of this case is analogous to the proof
of the case (R1,R2) ∈ D−.

Suppose that (R1,R2) ∈ D2, that is, R1 < 1 < R2 and R̂1 > 1. As before,
the inequality R̂1 > 1 implies that R2S (̂i2) < 1. On the other hand, we have
that R2S(0) = R2/R1 > 1. Now, if M(̂i2) ≤ 1, the proof is analogous to the
proof of the case (R1,R2) ∈ D−. If M(̂i2) > 1, then there exists i∗2 ∈ (0, î2) such
that R2S(i∗2) = 1 and R2S(i2) < 1 for all i2 ∈ (i∗2, î2]. In addition, we have that
M(i∗2) = i∗2 +1/R2 = 1+ i∗2 − î2 < 1. Consequently, there exists a number i2 ∈ (i∗2, î2)
such that M(i2) = 1. This concludes the proof of the case (R1,R2) ∈ D2.

Suppose that (R1,R2) ∈ D1, that is, R2 < 1 < R1 and R̂2 > 1. As before, the
inequality R̂2 > 1 implies that M(0) < 1, but the value of î2 = 1 − 1/R2 < 0 since
R2 < 1. Instead, we have that R2S(0) = R2/R1 < 1. Suppose that there exists
i∗2 ∈ (0, 1) such that R2S(i∗2) = 1 and R2S(i2) < 1 for all i2 ∈ (0, i∗2). Then we have
that M(i∗2) = i∗2 + 1/R2 > 1/R2 > 1 and there exists a number i2 ∈ (0, i∗2) such that
M(i2) = 1. If no such i∗2 exists, we have that R2S(i2) < 1 for all i2 ∈ (0, 1). Since
M(1) ≥ 1 + S(1) > 1, there exists a number i2 ∈ (0, 1) such that M(i2) = 1. This
concludes the proof of the case (R1,R2) ∈ D1.

Finally, suppose that (R1,R2) ∈ D3, that is, 1 < R2 < R1 and R̂1, R̂2 < 1.
The inequality R̂2 < 1 implies that M(0) > 1, and the inequality R̂1 < 1 implies
that R2S (̂i2) > 1. In addition, since R1 > R2, we have that R2S(0) < R1S(0) = 1.
Therefore, there exists i∗2 ∈ (0, î2) such that R2S(i∗2) = 1 and R2S(i2) < 1 for all
i2 ∈ [0, i∗2). Since M(i∗2) = 1+ i∗2 − î2 < 1, there exists a number i2 ∈ (0, i∗2) such that
M(i2) = 1. This concludes the proof of the theorem.

Remark. Each of the subregions comprising the coexistence region Dc has a clear
epidemiological interpretation. These regions are presented in Figure 3.1.

If (R1,R2) ∈ D−∪D+, then both dominance equilibria E1 and E2 exist, and each
disease can invade the equilibrium of the other disease. The difference between D−
and D+ is that R̂2 is defined only for (R1,R2) ∈ D+.

If (R1,R2) ∈ D1, then only the dominance equilibrium of the primary disease E1

exists, and the secondary disease can invade the equilibrium of the primary disease.
Although the secondary disease cannot persist in the absence of the primary disease,
the presence of the primary disease mediates the coexistence.

If (R1,R2) ∈ D2, then only the dominance equilibrium of the secondary disease
E2 exists, and the primary disease can invade the equilibrium of the secondary disease.
Although the primary disease cannot persist in the absence of the secondary disease,
the presence of the secondary disease mediates the coexistence.

If (R1,R2) ∈ D3, then both dominance equilibria E1 and E2 exist, but neither
disease can invade the equilibrium of the other disease.

4. Extinction of one or both diseases. In this section we provide the condi-
tions that guarantee that one of the diseases or both of them will be eliminated from
the population. These are global conditions in the sense that if they are satisfied,
extinction occurs for all other values of the parameters and all initial conditions. As
we show in section 6, there could be a backward bifurcation with respect to both R1
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and R2, and therefore there could exist multiple coexistence equilibria even if R1 < 1
and R2 < 1. Thus, R1 < 1 and R2 < 1 by themselves do not necessarily imply
extinction of one or both diseases. In what follows, we show that the diseases vanish
if, in addition, γ1 = 0 or γ2 = 0.

We denote the initial conditions by S(0) = S0, i(a, 0) = i0(a), I2(0) = I0
2 , and

J(0) = J0.
Theorem 4.1. Assume that i0(a) is integrable. If γ1 = 0 or γ2 = 0 and R1 <

1, R2 < 1, then both diseases become extinct in the sense that limt→∞ i(a, t) = 0
pointwise for every a, I2 → 0 as t → ∞, and J → 0 as t → ∞.

Proof. Assume γ1 = 0. Let B(t) = i(0, t). Neglecting the term dependent on I2,
we obtain a differential inequality for the primary disease. Integrating this inequality
along the characteristic lines, we have

i(a, t) ≤

⎧⎪⎨
⎪⎩
i0(a− t)

π(a)

π(a− t)
e−μt, a ≥ t,

B(t− a)π(a)e−μa, a < t.

(4.1)

Since γ1 = 0 we have

B(t) ≤
∫ t

0

β1(a)B(t− a)π1(a)e
−μada + e−μt

∫ ∞

t

β1(a)i0(a− t)da.

Consequently, taking a limsup of both sides as t → ∞, we obtain lim supt→∞ B ≤
R1 lim supt→∞ B(t). Since R1 < 1 and lim supt→∞ B < ∞, this inequality can be sat-
isfied only if lim supt→∞ B(t) = 0. This, in particular, implies that i(a, t) approaches
zero as t → ∞ for every fixed a. From the equation for J we then have the following
inequality:

J(t) ≤ e−(μ+ν)tJ0 +

∫ t

0

e−(μ+ν)s

∫ ∞

0

δ(a)i(a, t− s)dads.

Since δ(a) is bounded and the integral of i(a, t) goes to zero, I1(t) → 0 as t → ∞,
we get that lim supt→∞ J(t) = 0. Consequently, the equality for I2 in (2.1) leads to
the following differential inequality: I ′2 ≤ β2I2 + γ2J(t)− (μ+α2)I2. Integrating this
inequality, we obtain

I2(t) ≤ e−(μ+α2)tI2(0) + β2

∫ t

0

e−(μ+α2)τI2(t− τ)dτ + γ2

∫ t

0

e−(μ+α2)τJ(t− τ)dτ.

Taking a limsup as t → ∞ on both sides of this inequality, we obtain lim supt→∞ I2(t)
≤ R2 lim supt→∞ I2(t). Since R2 < 1, this inequality implies lim supt→∞ I2(t) = 0.

If γ2 = 0, then the proof is symmetrical and somewhat analogous. Thus, it will
be omitted. That concludes the proof of this theorem.

As a special case of the theorem above, we have the following results on extinction
of one of the diseases.

Corollary 4.2. Assume that i0(a) is integrable. If γ1 = 0 and R1 < 1, then
the primary disease becomes extinct in the sense that limt→∞ i(a, t) = 0 pointwise for
every a. As a consequence, J(t) → 0 as t → ∞.

A similar result for the secondary disease is also valid.
Corollary 4.3. If γ2 = 0 and R2 < 1, then the secondary disease becomes

extinct; that is, I2(t) → 0 as t → ∞. As a consequence, J(t) → 0 as t → ∞.
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A special instance which deserves consideration is the one with δ(a) = 0. In
this case there is no coinfection, and the jointly infected class J vanishes. Only
three equilibria are possible—the coexistence equilibrium does not exist. The main
question is: does the competitive exclusion principle hold for the two diseases with no
coinfection? This question can be answered positively in the case when all coefficients
are constant and the model (2.1) consists of ODEs only. Then, with δ = 0, it becomes a
particular case of a more general model considered in [4]. The results there imply that
the competitive exclusion holds and that only the disease with higher reproduction
number persists in the population; the other one becomes extinct.

We have not been able to establish whether competitive exclusion for the model
(2.1) with δ(a) = 0 is the only possible outcome in the strictly age-structured case.
Although there is no coexistence equilibrium, coexistence might still be possible in
the form of, say, a stable oscillatory solution. Such a situation has been found to
occur in model ecosystems such as the chemostat [3, 5, 18]. This option is even more
plausible here, given that the dominance equilibrium of the primary disease can lose
stability due to the age-structure, and oscillatory solutions are present (see section 5.2
for more detailed discussion). Despite the oscillatory solutions, simulations lead to
extinction of the disease with lower reproduction number. Thus, we conjecture that
competitive exclusion is still the norm. A rigorous justification, however, remains an
open problem.

5. Local stability of equilibria. In this section we investigate the local sta-
bility of the equilibria. In particular, we derive conditions for the stability of the
disease-free equilibrium and of the secondary disease dominance equilibrium. We also
show that Hopf bifurcation occurs in the coexistence equilibrium. The stability of
equilibria determines conditions under which the ultimate outcome will be elimina-
tion of both diseases, dominance of the primary disease, dominance of the secondary
disease, or endemic presence of both of them.

To investigate the stability of the equilibria, we linearize the model (2.1). In
particular, let x(t), y(a, t), z(t), and w(t) be the perturbations of, respectively, S∗,
i∗(a), I∗2 , and J∗. That is, S = S∗ + x, i = i∗ + y, I2 = I∗2 + z, J = J∗ + w.
Thus the perturbations satisfy a linear system. Further, we consider the eigenvalue
problem for the linearized system. We will denote the eigenvector again with x, y(a),
z, and w. These satisfy the following linear eigenvalue problem (here s, i, i2, and j
are the proportions in the corresponding equilibrium):

λx = −s

∫ ∞

0

β1(a)y(a)da− xi(0)B(i2) − β2sz − β2xi2 +

∫ ∞

0

α1(a)y(a)da

− (γ1 + γ2)sw − (γ1 + γ2)xj − μx + α2z,

y′(a) = −λy − α1(a)y − δ(a)i2y − δ(a)i(a)z − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + xi(0)B(i2) + γ1sw + γ1xj,

λz = β2sz + β2i2x + γ2sw + γ2jx− (μ + α2)z,

λw = i2

∫ ∞

0

δ(a)y(a)da + zi(0)D(i2) − (μ + ν)w.

(5.1)

5.1. Stability of the disease-free equilibrium. For the disease-free equilib-
rium we have i(0) = 0, i2 = 0, j = 0, and s = 1. Thus the system above simplifies to
the following system:
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λx = −
∫ ∞

0

β1(a)y(a)da− β2z − (γ1 + γ2)w − μx +

∫ ∞

0

α1(a)y(a)da + α2z,

y′(a) = −λy − α1(a)y − μy,

y(0) =

∫ ∞

0

β1(a)y(a)da + γ1w,

λz = β2z + γ2w − (μ + α2)z,

λw = −(μ + ν)w.

(5.2)

From this system we will establish the following result regarding the local stability of
the disease-free equilibrium E0.

Proposition 5.1. If R1 < 1 and R2 < 1, then the disease-free equilibrium E0 is
locally asymptotically stable. If R1 > 1 or R2 > 1, then the disease-free equilibrium
E0 is unstable.

Proof. To see this, first notice that from the last equation we have either λ =
−(μ + ν), which is the first eigenvalue, or w = 0. From the second-to-last equation
we have λz = β2z − (μ + α2)z, where either λ = β2 − (μ + α2) or z = 0. This
eigenvalue λ = β2 − (μ + α2) < 0 if and only if R2 < 1. Thus, if R2 > 1, the disease-
free equilibrium E0 is unstable because this eigenvalue is positive. Further, from the
second equation we have that the remaining eigenvalues satisfy the equation, also
referred to as the characteristic equation,

∫ ∞

0

β1(a)e
−(λ+μ)aπ1(a)da = 1.(5.3)

Denoting the left-hand side of the equation above by G(λ), where λ is in general a
complex number, assume 
λ ≥ 0. For such λ we have |G(λ)| ≤ G(
λ). Furthermore,
G(
λ) is a decreasing function of 
λ. Consequently,

|G(λ)| ≤ G(
λ) ≤ G(0) = R1 < 1.

Thus, if both R1 < 1 and R2 < 1, all eigenvalues have negative real part, and the
disease-free equilibrium E0 is locally asymptotically stable. If only R1 > 1, then if we
consider G(λ) for λ real, we see that G(λ) is a decreasing function of λ approaching zero
as λ approaches infinity. Since G(0) = R1 > 1, that implies that there is a positive
eigenvalue λ∗ > 0, and the disease-free equilibrium E0 is unstable. This concludes the
proof.

5.2. Stability of the primary disease equilibrium. In this subsection we
discuss the local stability of the equilibrium E1 and derive conditions for dominance
of the primary disease. We show that the equilibrium E1 can lose stability, and
dominance of the first disease is possible in the form of sustained oscillation. In this
case i2 = 0, j = 0, s = 1

R1
, and i(a) = i(0)π1(a)e

−μa, where

i(0) =
μ
(
1 − 1

R1

)
1 − Δ

.(5.4)
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The eigenvalue problem takes the form

λx = −s

∫ ∞

0

β1(a)y(a)da− xi(0)B(0) − β2s z

− (γ1 + γ2)sw − μx +

∫ ∞

0

α1(a)y(a)da + α2z,

y′(a) = −λy − α1(a)y − δ(a)i(a)z − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + xi(0)B(0) + γ1sw,

λz = β2sz + γ2sw − (μ + α2)z,

λw = zi(0)D(0) − (μ + ν)w.

(5.5)

From the last equation we have

w =
zi(0)D(0)

λ + μ + ν
.

Substituting in the equation for z, assuming z is nonzero, and canceling z, we arrive
at the following characteristic equation:

γ2si(0)D(0)

(λ + μ + ν)(λ + μ + α2 − β2s)
= 1.(5.6)

We are now ready to establish the first result.
Proposition 5.2. Let R1 > 1 and R1 > R2. Then the equilibrium E1 is

unstable if the secondary disease can invade the equilibrium of the primary disease,
that is, R̂2 > 1. If R̂2 < 1, then all solutions to the characteristic equation (5.6)
have negative real part.

Proof. To see these results, denote by G(λ) the left-hand side of the characteristic
equation (5.6). First, we notice that, using the values of s and i(0), we have

G(0) =
γ2si(0)D(0)

(μ + ν)(μ + α2 − β2s)
=

μγ2

(
1 − 1

R1

)
D(0)

(1 − Δ)(μ + α2)(μ + ν)(R1 −R2)
= R̂2.(5.7)

First, in the case R̂2 > 1 we have that G(0) > 1. In addition, if G(λ) is considered
as a function of a real variable, we see that G(λ) → 0 as λ → ∞. Since R1 > R2,
G(λ) is also a continuous function of λ for λ ≥ 0. Consequently, there exists λ∗ > 0
such that G(λ∗) = 1. Thus, E1 is unstable.

In the case when R̂2 < 1 we have for λ’s with 
λ ≥ 0

|G(λ)| =
γ2si(0)D(0)

|λ + μ + ν||λ + μ + α2 − β2s|

≤ γ2si(0)D(0)

(
λ + μ + ν)(
λ + μ + α2 − β2s)
≤ G(0) = R̂2 < 1.

Consequently, the equation G(λ) = 1 has no solutions with nonnegative real parts.
This concludes the proof of the proposition.

We note that the fact that all solutions to the characteristic equation (5.6) have
negative real part does not yet imply that E1 is stable, since there is a second charac-
teristic equation associated with this case. For stability both characteristic equations
must have only roots with negative real parts.
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Next, we extend the result above to the case R1 < R2. In particular, we have
the following result.

Proposition 5.3. Let R1 > 1. If R1 < R2, then the equilibrium E1 is unstable.
Proof. To see that, we rewrite the characteristic equation (5.6) in the form

γ2si(0)D(0)

λ + μ + ν
= λ + μ + α2 − β2s.(5.8)

We notice that μ + α2 − β2s = (μ + α2)(1 − R2

R1
), which is negative. Let λ∗ =

−(μ + α2 − β2s) > 0. Thus for λ ≥ λ∗ the expression λ + μ + α2 − β2s, considered
as a function of the real variable λ, is increasing from zero to infinity. On the other
hand, for λ ≥ λ∗ the expression

γ2si(0)D(0)

λ + μ + ν

is decreasing from some positive value to zero. Thus, there is a unique positive (ac-
tually larger than λ∗) solution of (5.8). Consequently, E1 is unstable. This completes
the proof.

We continue with our consideration of the system (5.5). If we assume that z = 0,
that implies w = 0. In this case the remaining two equations become

λx = −s

∫ ∞

0

β1(a)y(a)da− xi(0)B(0) − μx +

∫ ∞

0

α1(a)y(a)da,

y′(a) = −λy − α1(a)y − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + xi(0)B(0).

(5.9)

Solving the differential equation, substituting in the equation for x and the initial
condition, we obtain a system in x and y(0) which has a nontrivial solution if and
only if the following characteristic equation is satisfied:

(λ + μ)sB2(λ) = λ + μ + i(0)B(0)(1 −A2(λ)),(5.10)

where the following notation has been used:

B2(λ) =

∫ ∞

0

β1(a)π1(a)e
−(λ+μ)ada, A2(λ) =

∫ ∞

0

α1(a)π1(a)e
−(λ+μ)ada.

If we define

E2(λ) =

∫ ∞

0

π1(a)e
−(λ+μ)ada,

we can notice that integration by parts leads to the equality 1−A2(λ) = (λ+μ)E2(λ).
Consequently the characteristic equation (5.10) has one eigenvalue equal to −μ. The
remaining eigenvalues satisfy the following reduced characteristic equation:

sB2(λ) = 1 + i(0)B(0)E2(λ).(5.11)

This equation clearly does not have real nonnegative solutions since for λ real and non-
negative the left-hand side is smaller than one, while the right-hand side is larger than
one. However, the dominant eigenvalue is not necessarily real—it may be complex
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with nonnegative real part. Thus, the dominance equilibrium of the primary disease
may lose stability, and oscillations are possible. We include an example and results
of simulations later in this section. First, we show that the mechanism responsible
for the instability of the primary disease equilibrium is the presence of infection-age
structure and variable infectivity. Indeed, if β1(a) = β1 and α1(a) = α1 are con-
stants, then i(0)B(0) = β1i, where i is the proportion infected with primary disease.
In addition, B2(λ) = β1E2(λ) and E2(λ) = (λ + μ + α1)

−1. Hence, in the constant
coefficient case the characteristic equation (5.11) becomes λ+μ+α1 +β1i−β1s = 0.
Since β1s = μ+α1, the only eigenvalue is −β1i and is clearly negative. We formulate
this result in the following proposition.

Proposition 5.4. Let β1(a) = β1 and α1(a) = α1 be constants. Let R1 > 1.
Assume that R1 > R2 and that the secondary disease cannot invade the equilibrium of
the primary disease; that is, R̂2 < 1. Then the equilibrium E1 is locally asymptotically
stable. If R̂2 > 1, the equilibrium E1 is unstable.

We conclude this section with an example that the presence of infection-age struc-
ture may lead to loss of stability of the dominance equilibrium of the primary disease
and oscillations. For this specific example the characteristic equation (5.11) has a
complex root with a positive real part. Simulations show the presence of a stable
oscillatory solution with persistence of the primary disease only.

Consider the following values for the parameters: δ(a) = 0, μ = 0.05, γ1 = 0.1,
ν = 0. The recovery rate for the primary disease is

α1(a) =

{
0, 0 ≤ a < 3,

1.58259, a ≥ 3.
(5.12)

The transmission coefficient for the primary disease is

β1(a) =

{
2.33193e2a, 0 ≤ a < 1,

0, a ≥ 1.
(5.13)

The parameters related to the secondary disease are not relevant as I2 → 0 and J → 0,
but they were chosen as follows: β2 = 0.2, α2 = 0.1, γ2 = 8. The recruitment rate
Λ = 1. With these parameters the reproduction numbers are R1 = 7.207464746 and
R2 = 1.3333. The characteristic equation (5.11) has a root 0.05 + iπ2 (here i denotes

the imaginary unit, i =
√
−1). The initial conditions for the primary disease are

chosen close to the equilibrium: S0 = 2.77, I2(0) = 0, J0 = 0,

i0(a) =

{
5.2e−0.05a, 0 ≤ a < 3,

5.2e−1.58259(a−3)e−0.05a, a ≥ 3.
(5.14)

The results of the simulations are given in Figure 5.1. The step-size is 0.01, and
the integration in age is for up to 100 units. Both figures give the dynamics of the
proportion of all cases of the primary disease in the total population as a function of
time, that is I1

N , where I1 is the integral in age of i(a, t).
In the first figure all oscillations are presented. They are so dense that the space

they occupy looks like a solid. The oscillations grow in magnitude up to time unit
1000, and then they stabilize in magnitude. The solution takes a long time to stabilize
into sustained oscillations because the real part of the eigenvalue with positive real
part is relatively small: 0.05. In the second figure a zoomed-in picture is presented
for the oscillations between time units 1900 and 1950.
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Fig. 5.1. Left: the proportion of individuals infected with the primary disease I1
N

, where I1 is
the integral in age of i(a, t) for up to 2000 time units. The horizontal axis shows the time. Right:
a sample of the solution between the time units 1900 and 1950. The numerical solution exhibits
sustained oscillations.

5.3. Stability of the secondary disease equilibrium. In this subsection
we establish the local stability properties of the equilibrium E2 whenever it exists.
Thus, unlike E1, the presence of host age-structure does not lead to oscillations in the
dominance equilibrium of the secondary disease. In this case i(0) = 0, j = 0, s = 1

R2
,

and i2 = î2 = 1 − 1
R2

. The linear eigenvalue problem becomes

λx = −s

∫ ∞

0

β1(a)y(a)da− β2sz − β2xi2

− (γ1 + γ2)sw − μx +

∫ ∞

0

α1(a)y(a)da + α2z,

y′(a) = −λy − α1(a)y − δ(a)i2y − μy,

y(0) = s

∫ ∞

0

β1(a)y(a)da + γ1sw,

λz = β2sz + β2i2x + γ2sw − (μ + α2)z,

λw = i2

∫ ∞

0

δ(a)y(a)da− (μ + ν)w.

(5.15)

From the last equation we have

w =
i2

λ + μ + ν

∫ ∞

0

δ(a)y(a)da.

From the equation for y(a) we have

y(a) = y(0)Γ(a; i2)π1(a)e
−(λ+μ)a.

Substituting in the equation for the initial condition y(0) and assuming that y(0) �= 0,
we obtain the following characteristic equation:

sB1(λ) +
γ1si2

λ + μ + ν
D1(λ) = 1,(5.16)
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where we have used the notation

B1(λ) =

∫ ∞

0

β1(a)Γ(a; i2)π1(a)e
−(λ+μ)ada,

D1(λ) =

∫ ∞

0

δ(a)Γ(a; i2)π1(a)e
−(λ+μ)ada.

Clearly, B1(0) = B(i2) and D1(0) = D(i2). Now we are ready to prove the main
result in this subsection.

Theorem 5.5. Let R2 > 1. Assume that the primary disease cannot invade
the equilibrium of the secondary disease; that is, R̂1 < 1. Then the equilibrium E2 is
locally asymptotically stable, and the secondary disease dominates in the population.
If R̂1 > 1, the equilibrium E2 is unstable.

Proof. Denote by G(λ) the left-hand side of the characteristic equation (5.16).
We notice that

G(0) = R̂1.

First we assume that R̂1 > 1. We consider G(λ) as a function of a real variable. We
have G(0) = R̂1 > 1. In addition, G(λ) → 0 as λ → ∞. Consequently, there exists
λ∗ > 0 such that G(λ∗) = 1 and the equilibrium E2 is unstable.

Next, we assume R̂1 < 1. For λ’s with real part 
λ ≥ 0 we have

|G(λ)| ≤ s|B1(λ)| + γ1si2
|λ + μ + ν| |D1(λ)|

≤ sB1(
λ) +
γ1si2


λ + μ + ν
D1(
λ)

≤ sB(i2) +
γ1si2
μ + ν

D(i2) = R̂1 < 1.

Thus, the characteristic equation (5.16) has no solution with nonnegative real part.
Furthermore, for y(0) = 0 we have that y(a) = 0 and w = 0. The remaining two
equations become

λx = −β2sz − β2xi2 − μx + α2z,
λz = β2sz + β2i2x− (μ + α2)z.

(5.17)

We express x from the first equation,

x =
(−β2s + α2)z

λ + μ + β2i2
,

and substitute in the equation for z. Assuming that z is nonzero, we cancel it to
obtain the following characteristic equation:

(λ + μ)(λ + μ + α2 + β2i2 − β2s) = 0.

Noticing that β2s = μ+α2, we obtain the eigenvalues −μ and −β2i2, which are both
negative. Consequently, the equilibrium E2 is locally asymptotically stable. This
concludes the proof.
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5.4. Loss of stability of a coexistence equilibrium—Oscillatory coex-
istence. The stability of the coexistence equilibria depends on the analysis of the
perturbation equations (5.1). For the general case, however, it is difficult to derive
the corresponding characteristic equation, let alone analyze the positions of its roots.
Since the main thrust is that a characteristic equation of this complexity is likely
to have roots with positive real part, we address the more interesting and tractable
question of whether a Hopf bifurcation of a coexistence equilibrium can occur in the
absence of age structure, that is, in the case when β1(a) = β1, α1(a) = α1, and
δ(a) = δ. We established that in the constant coefficient case the two dominance
equilibria are locally stable. Some additional but simple argument shows that in the
absence of the second disease, the solutions converge to the dominance equilibrium,
provided that the reproduction number is larger than one and that no oscillations are
possible. Thus, if a Hopf bifurcation occurs, the loss of stability of the coexistence
equilibrium is due to the presence of the competitor.

It turns out that a Hopf bifurcation of the coexistence equilibrium occurs for
a limiting and much simpler form of the original system (2.1) taken with constant
coefficients corresponding to α1 = α2 = γ1 = ν = 0. Since ν = 0, the total population
size is asymptotically constant, N(t) → Λ

μ = N∗. We will restrict our analysis to this

invariant subspace [21]. We further rescale all state variables by 1/N∗ and consider
the system

i′1 = β1si1 − μi1 − δi1i2,

i′2 = β2si2 + γ2sj − μi2,(5.18)

j′ = δi1i2 − μj,

where s ≡ 1 − i1 − i2 − j. We establish the existence of Hopf bifurcation for values
of the parameters satisfying the inequalities β2 < μ < β1 < γ2. In this case, we have
that

R1 =
β1

μ
> 1 >

β2

μ
= R2,

which implies that E2 does not exist, and the secondary disease alone is always elim-
inated. Hence, the coexistence of both diseases must be mediated by the presence of
the competitor, that is, the primary disease.

It is convenient to fix the parameters μ, β1, β2, and γ2 and treat δ as a bifurcation
parameter. Solving for positive coexistence equilibria, we find

s =
μγ2 + γ2δ − β1μ

γ2(δ + β1) − β1β2
, i1 =

μ2 − β2μs

γ2δs
, i2 =

β1s− μ

δ
, j =

δi1i2
μ

.

Under the above conditions, s and i1 are automatically positive. The value of i2 is
positive if and only if δ > δ∗, where

δ∗ =
μβ1(β1 − β2)

γ2(β1 − μ)
.

Since we consider δ as a bifurcation parameter, we view the values of the positive
equilibrium as functions of delta: s = s(δ), i1 = i1(δ), i2 = i2(δ), j = j(δ). The
variational matrix of the system (5.18) at the positive equilibrium (i1, i2, j) is given
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by

A(δ) =

⎛
⎝ −β1i1 −(β1 + δ)i1 −β1i1
−β2i2 − γ2j β2s− μ− β2i2 − γ2j γ2(s− j) − β2i2

δi2 δi1 −μ

⎞
⎠ .(5.19)

Calculating the determinant of A(δ), we find that detA(δ) = δi1i2[β1μ − γ2(μ + δ)].
Hence, detA(δ) < 0 whenever δ > δ∗ (since then i2 > 0). Since s(δ∗) = μ

β1
, i1(δ

∗) =

1 − μ
β1

, and i2(δ
∗) = j(δ∗) = 0, we have that

A(δ∗) =

⎛
⎜⎝
μ− β1 (β1 + δ)μ−β1

β1
μ− β1

0
(

β2

β1
− 1

)
μ γ2μ

β1

0 δ∗ β1−μ
β1

−μ

⎞
⎟⎠ .

The eigenvalues of A(δ∗) are given by λ1 = μ− β1 < 0, λ2 = (β2

β1
− 2)μ < 0, λ3 = 0.

Using the continuity of eigenvalues with respect to δ, we conclude that A(δ) has three
negative eigenvalues when δ is slightly greater than δ∗. Hence, the positive equilibrium
is stable for “small” δ > δ∗.

Next we argue that the positive equilibrium is unstable for sufficiently large values
of δ. First we notice that limδ→∞ s(δ) = 1. Furthermore,

lim
δ→∞

δi1(δ) =
μ2 − β2μ

γ2
, lim

δ→∞
δi2(δ) = β1 − μ, lim

δ→∞
j(δ) = 0.

Thus, we have that

lim
δ→∞

A(δ) = A∞ =

⎛
⎜⎝ 0 −μ2−β2μ

γ2
0

0 β2 − μ γ2

β1 − μ μ2−β2μ
γ2

−μ

⎞
⎟⎠ .

The characteristic polynomial of A∞ has the form

p∞(λ) = λ3 + (2μ− β2)λ
2 + (β1 − μ)(μ2 − β2μ).

Since 2μ− β2 > 0 and (β1 − μ)(μ2 − β2μ) > 0, p∞(λ) has one real negative and two
complex roots with positive real parts. We conclude that the positive equilibrium
changes stability as we increase δ. Since the determinant of the variational matrix
remains negative for all δ > δ∗, the change of stability corresponds to a Hopf bi-
furcation. The rigorous analysis of this bifurcation is outside of the scope of this
paper.

A continuation argument can establish that this bifurcation must also occur when
the parameters α1, α2, γ1, and ν are small and positive. In Figure 5.2 we demonstrate
the presence of oscillatory coexistence when α1, α2, and γ1 are small and positive.
The figure shows a periodic orbit in the three-dimensional space of the variables I1(t),
I2(t), and J(t). In this example the parameter values are taken as β1 = 10, β2 = 0.2,
α1 = 1, α2 = 0.1, μ = 1, δ = 4, ν = 0, γ1 = 0.1, γ2 = 80, Λ = 1. Since Λ

μ = 1 the
values of I1, I2, and J are also the values of the proportions. The reproduction number
of the primary disease is R1 = 5, while the reproduction number of the secondary
disease is below one, R2 = 0.18182. Despite the fact that R1 � R2, the prevalence
for the secondary disease I2 is much higher than that of the primary disease I1—a
result of the very high rate at which the jointly infected individuals can infect with
the secondary disease γ2 = 80.
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Fig. 5.2. Existence of a periodic orbit for the age-independent case. Values of the parameters
are as in the text.

6. Backward bifurcation. In this section we analyze the existence of backward
bifurcations in the system (2.1). In the single disease case, a backward bifurcation
occurs when the equilibrium number (or proportion) of infectives bifurcates at the
critical value of the reproduction number R = 1 not forward but backward, and there
are nontrivial equilibria when the reproduction number is below one.

In the case of two diseases, an analogous phenomenon occurs when the equilibrium
number (or proportion) of infectives with each disease i1 and i2 bifurcates backward
in both parameters R1 and R2, and nontrivial equilibria exist for values of both
reproduction numbers below one. We will call this phenomenon a two-parameter
backward bifurcation. In what follows we derive necessary and sufficient conditions for
two-parameter backward bifurcation.

We treat β1(a) and β2 (equivalently, R1 and R2) as bifurcation parameters and
assume that all other parameters are fixed. Specifically, we define

β1(a, ε1) = β̃1(a)(1 + ε1ṽ1(a)), β2(ε2) = β̃2(1 + ε2),

so that β̃2 = α2 + μ and the functions β̃1(a) and ṽ1(a) are normalized as follows:

∫ ∞

0

β̃1(a)π1(a)e
−μa da =

∫ ∞

0

β̃1(a)ṽ1(a)π1(a)e
−μa da = 1.

In this setting, the choice ε1 = ε2 = 0 corresponds to the basic reproduction numbers
of both strains being equal to unity, that is, R1 = R2 = 1. We also introduce the
auxiliary functions

B(i2, ε1) =

∫ ∞

0

β̃1(a)(1 + ε1ṽ1(a))Γ(a; i2)π1(a)e
−μa da,(6.1)

G(i2) =

∫ ∞

0

Γ(a; i2)π1(a)e
−μa da,(6.2)

where Γ(a; i2) is given by (3.3). Previously, we have shown that the fraction of sus-
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ceptible individuals at the coexistence equilibrium must equal

s =

(
B(i2, ε1) +

γ1i2D(i2)

μ + ν

)−1

= S(i2, ε1),

where i2 is the fraction of individuals infected by secondary infection. Solving for
i(0), we find that

i(0) = (μ + ν)(μ + α2)
1 − (1 + ε2)S(i2, ε1)

γ2S(i2, ε1)D(i2)
= T (i2, ε1, ε2),

and thus the total fraction of individuals infected by primary infection is given by
i1 = G(i2)T (i2, ε1, ε2). The fraction of individuals carrying both infections can be
expressed as

j =
i2D(i2)T (i2, ε1, ε2)

μ + ν
.

The relation s + i1 + i2 + j = 1 now can be written as

M(i2, ε1, ε2) = i2 + S(i2, ε1) + G(i2)T (i2, ε1, ε2) +
i2D(i2)T (i2, ε1, ε2)

μ + ν
= 1.

Since

S(0, 0) =
1

B(0, 0)
=

(∫ ∞

0

β̃1(a)π1(a)e
−μa da

)−1

= 1,

we find that T (0, 0, 0) = 0 and M(0, 0, 0) = 1. For a given pair (ε1, ε2), we define the
equilibrium values of i2(ε1, ε2) as an implicit solution of the equation M(i2, ε1, ε2) = 1.
The corresponding equilibrium values i1(ε1, ε2) are obtained from i1 = G(i2)T (i2, ε1, ε2).
The backward bifurcation occurs whenever both functions i1(ε1, ε2) and i2(ε1, ε2) have
positive values for (perhaps some) ε1, ε2 < 0. To pose the conditions for backward
bifurcation we need all partial derivatives ∂im

∂εn
(0, 0), where m,n = 1, 2.

We compute the required partial derivatives. First, we have

∂B

∂i2
(0, 0) = −

∫ ∞

0

β̃1(a)π1(a)e
−μa

(∫ a

0

δ(s) ds

)
da = −δ̂ < 0.

Next, if we define

σ = δ̂ − γ1D(0)

μ + ν
, τ =

(μ + ν)(μ + α2)

γ2D(0)
,

then the remaining partial derivatives are given by

∂S

∂ε1
(0, 0) = −1,

∂S

∂i2
(0, 0) = σ,

∂T

∂ε1
(0, 0, 0) = τ,

∂T

∂ε2
(0, 0, 0) = −τ,

∂T

∂i2
(0, 0, 0) = −τσ.

Finally, we have that

∂M

∂i2
(0, 0, 0) = 1 + (1 −G(0)τ)σ,

∂M

∂ε1
(0, 0, 0) = −1 + G(0)τ,

∂M

∂ε2
(0, 0, 0) = −G(0)τ.

(6.3)
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Using the implicit function theorem, we find the derivatives of i2 and, as a result,
those of i1:

∂i2
∂ε1

(0, 0) =
1 −G(0)τ

1 + (1 −G(0)τ)σ
,

∂i1
∂ε1

(0, 0)=
G(0)τ

1 + (1 −G(0)τ)σ
,(6.4)

∂i2
∂ε2

(0, 0) =
G(0)τ

1 + (1 −G(0)τ)σ
,

∂i1
∂ε2

(0, 0)=
−G(0)τ(1 + σ)

1 + (1 −G(0)τ)σ
.(6.5)

Since G(0)τ > 0, all of these partial derivatives are negative if and only if

1 + (1 −G(0)τ)σ < 0 and 1 −G(0)τ > 0.(6.6)

Note that (6.6) enforces σ < −1.
Since we consider a two-parameter bifurcation, it may occur for all pairs (ε1, ε2)

or only for some pairs (ε1, ε2). We will call a backward bifurcation total if the positive
equilibrium exists for all pairs (ε1, ε2) with sufficiently small εk < 0, k = 1, 2. We will
call a backward bifurcation partial if the positive equilibrium exists for some pairs
(ε1, ε2) with sufficiently small εk < 0, k = 1, 2. In what follows, we argue that the
model (2.1) admits only total backward bifurcations.

Indeed, a partial backward bifurcation occurs if and only if there exist pairs of
positive numbers (ω1, ω2) such that

ω1
∂i1
∂ε1

(0, 0) + ω2
∂i1
∂ε2

(0, 0) < 0,

ω1
∂i2
∂ε1

(0, 0) + ω2
∂i2
∂ε2

(0, 0) < 0.

In contrast, total backward bifurcation occurs if the above inequalities are valid for
all pairs of nonnegative numbers (ω1, ω2). These inequalities are equivalent to

(1 −G(0)τ) + ωG(0)τ

1 + (1 −G(0)τ)σ
< 0,(6.7)

G(0)τ(1 − ω(1 + σ))

1 + (1 −G(0)τ)σ
< 0,(6.8)

where ω = ω2/ω1 > 0 (we assume ω1 > 0). We also note that G(0)τ > 0.
Suppose that 1 + (1 −G(0)τ)σ > 0. Then (6.7)–(6.8) imply that σ > −1 and

1

1 + σ
< ω <

G(0)τ − 1

G(0)τ
,

and thus G(0)τ < (G(0)τ − 1)(1 +σ). The last inequality clearly contradicts 1 + (1−
G(0)τ)σ > 0. No backward bifurcations occur in this case.

Now suppose that 1 + (1 −G(0)τ)σ < 0. Then (6.7)–(6.8) imply that

ω >
G(0)τ − 1

G(0)τ
, 1 − ω(1 + σ) > 0.

If 1 + σ > 0, then the second inequality implies that

G(0)τ − 1

G(0)τ
< ω <

1

1 + σ
,
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and thus G(0)τ > (G(0)τ − 1)(1 + σ), which is a contradiction. If 1 + σ < 0, then
1 − ω(1 + σ) > 0 holds for all ω > 0. On the other hand, we must have that σ < 0
and

G(0)τ <
1 + σ

σ
< 1.

Therefore, (1 −G(0)τ) + ωG(0)τ > 0 also holds for all ω ≥ 0. In this case, the
backward bifurcation is total. We conclude that only total backward bifurcations
may occur in this model, and the criterion is given by (6.6). We summarize this result
in the following proposition.

Proposition 6.1. The model (2.1) exhibits the backward bifurcation if and only
if

1 + (1 −G(0)τ)σ < 0 and 1 −G(0)τ > 0.(6.9)

If at least one of the inequalities in (6.9) does not hold, then the model (2.1) does
not admit any nontrivial equilibria with R1,R2 < 1. If both inequalities in (6.9)
hold, then the backward bifurcation is total; that is, there exists a sufficiently small
0 < ε0 < 1 such that the model (2.1) admits nontrivial equilibria for all pairs of the
reproduction numbers (R1,R2) such that 1 − ε0 < R1,R2 < 1.

7. Numerical results. In this section we consider several types of complex
behavior which stem largely from the presence of coinfection. These regimes have
important consequences for the development and eradication of one or both diseases.

We consider the following phenomena: subthreshold coexistence equilibria, mul-
tiple coexistence equilibria, and bistable dominance. Subthreshold coexistence equi-
libria may be generated by two-parameter backward bifurcation. These are multiple
coexistence equilibria (two in our case), but multiple coexistence equilibria may also
exist superthreshold. Finally, we consider the bistability of the dominance equilib-
ria, which is defined as dominance of one of the diseases depending on the initial
conditions. All these are illustrated in Figure 7.1. The figure is generated with the
following values of the parameters: α1 = 14, α2 = 25, μ = 3.9, ν = 0.1, δ = 20,

Fig. 7.1. Boundaries of coexistence and stability of dominance equilibria. Parameters as in text.
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γ1 = 20, γ2 = 20. The values of R1 and R2 are treated as operating parameters that
are directly related to the values of β1 and β2. In this section, we consider only the
case where β1(a) ≡ β1 is age-independent. The values of R1 and R2 are plotted on
the x and y axes, respectively. The upper of the two curves that originate at (1, 1)
is obtained from the equation R̂1 = 1, while the lower is obtained from the equation
R̂2 = 1. We denoted these curves by C1 and C2, respectively. The geometry of these
curves was analyzed in Lemma 3.1.

7.1. Backward bifurcation and subthreshold equilibria. The presence of
subthreshold equilibria has important implications for the control of a single disease.
It means that the disease might not be eradicated by reducing its reproduction number
slightly below one. Instead, it is necessary to reduce the reproduction number below
the minimal transition value R∗ such that there are no nontrivial equilibria for values
of the reproduction number below R∗.

When multiple diseases are present the situation is more complex. We call a
coexistence equilibrium subthreshold if it occurs when at least one of the reproduc-
tion numbers is below one. Furthermore, there are two distinct cases with different
consequences for the control of the diseases. In the first scenario, coexistence equi-
libria occur when exactly one of the reproduction number is below one. We will call
those weakly subthreshold equilibria. In Figure 7.1 weakly subthreshold coexistence
equilibria occur both in the case R1 < 1, R2 > 1 and in the case R1 > 1, R2 < 1.
Those are to be found to the right of the curve C1 but to the left of the line R1 = 1
(Figure 7.1, region D2) and above the curve C2 but below the line R2 = 1 correspond-
ingly (Figure 7.1, region D1). Given coinfection δ �= 0, a necessary condition for the
first area to be nonempty is that γ1 �= 0; similarly, the second area can be nonempty
only if γ2 �= 0. In both of these areas there is a unique coexistence equilibrium not
obtained as a result of a backward bifurcation. In terms of disease control the pres-
ence of weakly subthreshold equilibria leads to the fact that reducing only one of the
reproduction numbers below unity does not necessarily lead to the disappearance of
the corresponding disease. Thus, eradicating only one of the two diseases may be
difficult, particularly as the curves C1 and C2 pass very close to the corresponding
axes. However, if both reproduction numbers are brought slightly below unity, both
diseases will be eliminated. We note here that we may have weakly subthreshold
coexistence equilibria only with R1 < 1, R2 > 1 without having such with R1 > 1,
R2 < 1 or vice versa (not shown). In this case only the primary disease cannot be
eliminated by reducing R1 below one, while the secondary will be eliminated if R2 is
reduced below one. Weakly subthreshold equilibria also appear as a consequence of
backward bifurcation (see Figure 7.2) and are discussed more in the next subsection.

In the second scenario, coexistence equilibria occur when both of the reproduc-
tion numbers are below one. We call those strongly subthreshold coexistence equilibria.
Strongly subthreshold equilibria in our model are the result of a backward bifurca-
tion in two parameters, namely R1 and R2. We established necessary and sufficient
conditions for the two-parameter backward bifurcation in the previous section. If we
consider J∗ as the coexistence variable and we view it as a function of R1 and R2,
then the surface J∗ = f(R1,R2) bifurcates backwards along the curves C1 and C2 near
the critical point (1, 1) and then turns around and heads in the direction of increasing
values of R1 and R2. The projection of the turning curve on the plane (R1,R2) is the
curve that connects C1 and C2 (see Figure 7.2, region S = S1 ∪ S2 ∪ S3). In analogy
with the single disease case, we will call this curve the minimal transition curve. In
Figure 7.2 the area enclosed by the curves C1, C2 and the minimal transition curve,
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Fig. 7.2. This is a zoom-in of the area from Figure 7.1 near the critical point where both
reproduction numbers are near one.

S, is the projection of the overlapping branches of the surface J∗ = f(R1,R2). Thus,
in this area there are two distinct coexistence equilibria. Figure 7.2 is a zoom-in of
the part of Figure 7.1 near the critical point (1, 1).

Next, we show that backward bifurcation occurs if and only if the angle between
the tangent lines to the curves C1 and C2 (see Figure 7.1) at the point (1, 1) is suffi-
ciently small—smaller than 180◦. Let l1 be the tangent to C1 with slope m1, and l2 be
the tangent to the curve C2 with slope m2. Along the curve C1 we have i1(ε1, ε2) = 0.
Along the curve C2 we have i2(ε1, ε2) = 0. The slopes of l1 and l2 are given by dε2

dε1
,

which is obtained for each curve by differentiating implicitly. Thus, by (6.4) and (6.5),

m1 =
1

1 + σ
, m2 = −1 −G(0)τ

G(0)τ
.

The angle between the tangents is obtuse if m2 < m1 < 0. The angle between the
tangents is larger than 180◦ and backward bifurcation does not occur if m1 < m2 < 0.
Consequently, the conditions for the angle to be obtuse are

G(0)τ − 1

G(0)τ
<

1

1 + σ
< 0.

It is easy to see that these inequalities are equivalent to the inequalities (6.9).
The fact that backward bifurcation occurs only if the angle between the tan-

gent lines of the curves C1 and C2 at the point (1, 1) is obtuse implies that strongly
subthreshold coexistence equilibria are present only in conjunction with both types
of weakly subthreshold coexistence equilibria. Thus, the existence of strongly sub-
threshold coexistence equilibria through two-parameter backward bifurcation is the
analogue of the backward bifurcation in the single disease case. It has the same im-
plication for the disease control—reducing both reproduction numbers slightly below
one does not lead to the eradication of either disease. It is necessary to reduce both
reproduction numbers in the square [0, 1]× [0, 1] below the minimal transition curve.
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7.2. Multiple coexistence equilibria. Bistability. The presence of multiple
equilibria, and particularly of multiple stable equilibria, can have significant impact
on the outcome of the disease, as for a fixed set of parameters this outcome depends
on the initial status of the population. For the present model and parameter values,
as in Figure 7.1, results in previous sections and simulations suggested the presence
of multiple coexistence equilibria in two areas.

The first such area is the subthreshold area S illustrated also in Figure 7.2. As we
discussed above, the multiple equilibria there are obtained from backward bifurcation.
In this case there are two coexistence equilibria. If they are ordered in increasing
order of J∗, simulations suggest that the lower one is unstable, while the upper one
is locally stable. In the subregion S2 there is also the disease-free equilibrium which
is locally stable. Thus, in that region the two diseases might coexist, or they might
both disappear depending on the initial conditions. Looking at Figure 7.2, we see
that the area of backward bifurcation overlaps also with the regions R1 > 1, R2 < 1
forming region S1 and R1 < 1, R2 > 1 forming region S3. Consequently, we have
multiple weakly subthreshold coexistence equilibria. In those regions the disease-
free equilibrium is unstable. However, in addition to the locally stable coexistence
equilibrium, in the region S1 the equilibrium E1 is also locally stable, while in the
second region S3 the equilibrium E2 is also locally stable. Thus, the ultimate outcome
is either dominance of one of the diseases or coexistence, depending on the initial
conditions.

The second area where multiple coexistence equilibria exist is the superthreshold
area in Figure 7.1, where the curves C1 and C2 cross and a third curve touches both of
them forming a curvilinear triangle, denoted by D4. There are two coexistence equi-
libria in that area; the lower one there is stable, while the upper one is unstable. The
disease-free equilibrium is again unstable. Both dominance equilibria E1 and E2 exist;
however, E1 is unstable and E2 is locally stable. Consequently, if the combination of
the reproduction numbers forms a point in that area, there are two possible outcomes
for the long-term dynamics of the diseases: dominance of the secondary disease or
coexistence. Which of the two will materialize depends on the initial status of the
population.

A unique coexistence equilibrium exists in the area D = D− ∪ D+ ∪ D1 ∪ D2

between the curves C1 and C2, which for most parameter values is locally stable.
When it loses stability, oscillatory coexistence occurs.

7.3. Bistable dominance. One of distinctive features of this model is that the
two curves that define the boundaries of stability of the dominance equilibria E1 and
E2 always intersect (see Lemma 3.1 for details).

In the constant coefficient case, there is a unique intersection of the curves C1 and
C2 that occurs at the point (R∗

1,R∗
2), where R∗

1 > 1 and R∗
2 > 1. This intersection

creates a region between the curves C1 and C2 with R1 > R∗
1 and R2 > R∗

2 (see
Figure 7.1, area D3), where both dominance equilibria E1 and E2 are locally stable and
the outcome of the competition between the diseases depends on the initial conditions.
In other words, based only on the parameters values we cannot predict which disease
will persist in the population. Figures 7.3 and 7.4 show the possible outcomes with
two sets of initial conditions which differ only in the value of J0. In the first figure
J0 = 0.05, while in the second J0 = 0.04.

The curve C1 will not cross below the diagonal if γ1 = 0, given that there is
coinfection (δ �= 0). Thus the bistable dominance occurs as a result of the possibility
that the jointly infected individuals can infect with the primary disease γ1 �= 0.
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Fig. 7.3. Primary disease persists, secondary disease dies out. Parameters are as in Figure 7.1
with R1 = 17.5 and R2 = 12 (from region D3). Initial conditions are S0 = 0.2, I1(0) = 0.01,
I2(0) = 0.05, J0 = 0.05.
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Fig. 7.4. Primary disease dies out, secondary disease persists. Parameters as in Figure 7.1
with R1 = 17.5 and R2 = 12 (from region D3). Initial conditions are S0 = 0.2, I1(0) = 0.01,
I2(0) = 0.05, J0 = 0.04.

8. Discussion. At any given time thousands of diseases cocirculate in a popu-
lation. Many of them participate in joint infections of a single host. New diseases like
SARS appear; others fade only to re-emerge later with strains that are more difficult
to treat. The complexity of interactions of the diseases through the host population
can have a significant impact on the dynamics and management of each disease.

In this paper we introduce and investigate a simple epidemiological model with
two diseases that can coinfect a single host. We compute the reproduction numbers
and the invasion reproduction numbers of both diseases. We observe a variety of
complex dynamic phenomena with significant consequences for disease control.

1. Cooperative subthreshold coexistence. First, we establish that the dominance
equilibria E1 and E2 are present only if R1 > 1 and R2 > 1, correspondingly. That
implies that neither disease can exist by itself when its reproduction number is below
one. However, the “cooperation” of the two leads to subthreshold coexistence. Conse-
quently, both diseases can persist concurrently for values of the reproduction numbers
below one. We call this phenomenon cooperative subthreshold coexistence. We show
two types of cooperative subthreshold coexistence: weakly subthreshold coexistence
(occurs when exactly one of the reproduction numbers is below one) and strongly
subthreshold coexistence (occurs when both reproduction numbers are below one).
The strongly subthreshold coexistence is a result of backward bifurcation in both R1
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and R2. Weakly subthreshold coexistence can result from backward bifurcation or
from expansion of the coexistence region between the curves C1 and C2 to the below
threshold areas. We derive necessary and sufficient conditions for existence of back-
ward bifurcation. We show that the bifurcation is always total; that is, it occurs for
all pairs of (R1,R1) which are close to (1, 1). A sufficient condition for backward
bifurcation is that the angle between the tangents to those curves at the critical point
(1, 1) be obtuse, which occurs if both γ1 and γ2 are large. We establish that γ1 = 0
leads to extinction of the primary disease if R1 < 1, and γ2 = 0 with R2 < 1 leads to
extinction of the secondary disease. No backward bifurcation occurs in these cases.
One consequence of the observation is that public health mechanisms that lead to
reduction of spread of either disease by the jointly infected individuals—like isolating
those who are infected with both diseases—can have very dramatic effects on the
eradication of one or both diseases. Furthermore, disease-induced mortality in the
jointly infected class ν is a mechanism that impedes the backward bifurcation. This
suggests that diseases which are more lethal in a combination are easier to manage
from an epidemiological perspective.

2. Restricted pathogenic diversity. Bistable dominance. The dynamics of two
diseases is reminiscent of the dynamics of two variants of the same pathogen. In many
instances coexistence in stable form occurs in unbounded domains of the parameter
space [17]. This is not the case here. The curves C1 and C2 intersect, thus making the
region R̂1 > 1, R̂2 > 1 finite (Figure 7.1). We find coexistence in domains outside
that one—namely, the area of backward bifurcation (Figure 7.2) and the area of two
coexistence equilibria adjacent to the cross-point of C1 and C2. It appears from the
simulations that these two areas are also finite. Consequently, stable coexistence is
limited to finite regions in the (R1,R2) plane and does not occur if the reproduction
numbers are sufficiently large. We call this restricted pathogenic diversity. In other
words, if evolution maximizes the reproduction numbers, then under this scenario it
works against pathogenic diversity. It is interesting to know what mechanisms would
lead to such an effect. In our case this is the ability of the jointly infected individuals to
spread the primary diseases, γ1 �= 0. The intersection of the curves C1 and C2 also leads
to emergence of a region between them where R̂1 < 1, R̂2 < 1. Simulations suggest
that in this region there is still a unique coexistence equilibrium which is unstable.
At the same time the two boundary equilibria are both locally stable. A situation like
this has been described as occurring in a two-sex two-strain model of STD [6]. The
result is bistable dominance—which disease persists and which dies out depend on the
initial conditions, and the outcome can be very sensitive (Figures 7.3 and 7.4). In fact,
bistability is somewhat common for the model (2.1). We find bistability in several
regions of the (R1,R2) plane, particularly where multiple coexistence equilibria exist.
In all remaining cases, however, one of the possible outcomes is stable coexistence;
the other is either dominance of one of the diseases or extinction.

9. Summary. In this paper, we have analyzed an epidemic model of two dis-
eases with age-since-infection structure in the primary disease. We have obtained
expressions for the basic reproduction numbers Ri for both diseases, and showed that
the unique primary (resp., secondary) single disease equilibrium exists if and only if
R1 > 1 (resp., R2 > 1). We have also shown that the disease-free equilibrium is
locally stable if R1,R2 < 1 and unstable if Ri > 1 for some i = 1, 2 (Proposition 5.1),
and obtained sufficient conditions for the extinction of one or both diseases (section 4).

We have computed the invasion reproduction numbers R̂i for both single disease
equilibria. We presented the necessary condition for the local stability of the pri-
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mary disease equilibrium in Propositions 5.2 and 5.3. In the case of the secondary
disease equilibrium, we presented the necessary and sufficient condition for the local
stability in Proposition 5.5. In Theorem 3.2, we presented sufficient conditions for
the presence of coexistence equilibria. In Proposition 6.1, we showed that multiple
coexistence equilibria may exist via the backward bifurcation. In the absence of the
age structure, we showed that a coexistence equilibrium can lose stability via a Hopf
bifurcation (section 5.4). In general, the stability of coexistence equilibria remains an
open problem. Finally, we presented results of numerical simulations that illustrate
different dynamic outcomes of the interactions between the two diseases.
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ON THE ROUTE TO EXTINCTION IN NONADIABATIC SOLID
FLAMES∗

J. H. PARK† , A. BAYLISS† , B. J. MATKOWSKY† , AND A. A. NEPOMNYASHCHY‡

Abstract. We consider nonadiabatic gasless solid fuel combustion employing a reaction sheet
model. We derive an integrodifferential equation for the location of the interface separating the fresh
fuel from the burned products. There are two parameters in our model, the Zeldovich number Z,
related to the activation energy of the exothermic chemical reaction, and the heat loss parameter Γ.
For any value of Z there is an extinction limit Γm, so that if Γ > Γm, the combustion wave cannot
be sustained. For all values of Z and Γ < Γm the model admits a uniformly propagating combustion
wave. This solution is subject to a pulsating instability for Z sufficiently large. The effect of heat
losses is destabilizing in the sense that pulsations occur for smaller values of Z when heat loss is
considered.

We consider the dynamics of the combustion wave as Γ increases, thus, describing the dynamics
of the model on the route to extinction. We consider values of Z below the adiabatic stability limit,
so that for Γ = 0 the only stable steady state solution is the uniformly propagating combustion
wave. We find that for Z near the adiabatic stability limit, the effect of heat loss is to promote a
period doubling cascade leading to chaotic behavior prior to extinction. We also find an interval of
laminar behavior within the chaotic window, corresponding to a secondary period doubling sequence.
Specifically, we find solutions of period 12T, 24T, 48T . We show that for smaller values of Z the full
period doubled sequence does not necessarily occur. Rather, extinction follows after a finite, possibly
small, number of periodic solutions.

Key words. nonadiabatic combustion wave dynamics, solid flame, chaos, period doubling
sequence
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1. Introduction. The model of gasless solid fuel combustion describes the SHS
(Self-propagating High Temperature Synthesis) process of materials synthesis. In this
process reactants are ground into a powder, cold pressed, and ignited at one end. A
high temperature combustion wave then propagates through the sample converting
reactants into products. When gas plays no significant role in the process, the resulting
gasless combustion wave is referred to as a “solid flame” and can be modeled, as in
this paper, as gasless, solid fuel combustion. The process was pioneered in the former
Soviet Union, and has subsequently been the focus of a great deal of research, e.g., [12,
13, 15]. The SHS process enjoys a number of advantages over conventional technology,
in which the sample is placed into a furnace and “baked” until it is “well done.” The
advantages include (i) simpler equipment; (ii) significantly shorter synthesis times;
(iii) greater economy, since the internal energy of the chemical reactions is employed
rather than the costly external energy of the furnace; (iv) greater product purity; due
to volatile impurities being burned off by the very high combustion temperatures of
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the propagating combustion wave; and (v) no intrinsic limit on the size of the sample
to be synthesized, as exists in conventional technology.

It is known that in many instances the combustion wave does not propagate in a
uniform spatial and temporal manner, but rather nonuniformities can develop in the
front speed and in the temperature along the front. Since the mode of propagation
determines the microstructure of the product, i.e., the nature of the final product, a
study of different modes of propagation is important for technological applications of
the SHS process. For example, if the temperature is different at two different spatial
points during the synthesis process, the product at these points will be different.
It is known that for sufficiently large activation energies (more precisely Zeldovich
numbers, defined below) the uniformly propagating combustion wave is unstable. In
this case the only stable planar mode is the planar pulsating mode (autooscillatory
combustion), in which there is no spatial structure along the front, i.e., the combustion
wave remains planar. However, the front speed and temperature on the front oscillate
in time in a periodic, quasiperiodic or chaotic fashion, (see, e.g., [1, 2, 3, 4, 5, 8, 9, 11,
14, 16, 17]). We note that for some parameters there exist various types of nonplanar
modes, e.g., hot spots traveling on a helical path on the surface of a cylindrical sample,
and other modes exhibiting yet more complex spatiotemporal dynamics. However, in
this paper we only consider planar modes of propagation.

Most planar computations consider adiabatic combustion and study the effect
of increasing the activation energy or Zeldovich number on the nonlinear dynamics.
Computations have shown that in this case the nonlinear dynamics exhibits a period
doubling sequence [3, 4, 5]. While the period doubling route to chaos for adiabatic
solid fuel combustion as the Zeldovich number Z increases has been fairly well es-
tablished, the role of heat loss has not been considered as extensively. In this paper
we consider nonadiabatic combustion and focus on the nonlinear dynamics occurring
prior to extinction. We consider the case that Z is below the pulsating stability bound-
ary, so that pulsations arise solely due to heat loss. This problem was considered in
[6] which demonstrated that increasing heat loss promotes the pulsating instability,
and in [11] which computed period T and period 2T behavior. It should be noted
that the route to chaos does not always proceed by period doubling. For example, if
the effect of melting of the solid fuel prior to combustion is accounted for, the route to
chaos is via intermittency [3, 16]. Moreover, there are a number of successive windows
in which there is period T behavior, followed by period 2T behavior, followed by a
return to period T behavior prior to the onset of intermittency.

We consider the route to extinction for one-dimensional nonadiabatic gasless solid
fuel combustion. Specifically, we consider the reaction sheet model and derive an inte-
grodifferential equation for the motion of the interface separating the fresh fuel from
the burned products. The model, which has a basic solution describing a uniformly
propagating planar wave, depends on various parameters, including the Zeldovich
number Z (a nondimensional measure of the activation energy of the exothermic chem-
ical reaction) and the nondimensional heat loss parameter Γ. Increasing Z above a
critical value Zc or increasing Γ above a critical value Γc destabilizes the basic solution
to pulsations. We consider in particular the parameter regime below the pulsating
boundary Zc so that without heat loss the uniformly propagating combustion wave
is stable and there are no pulsations. We show that as the heat loss Γ increases
the system undergoes transitions to chaos via a period doubling sequence. We are
able to compute nT periodic solutions where n = 1, 2, 4, 8, 16 denotes the the degree
of doubling of the period, i.e., a T solution is a singly periodic solution while a 2T
solution is a solution which has undergone one period doubling. While we have not



NONADIABATIC SOLID FLAMES 875

computed period doubled solutions beyond 16T , we did compute apparently chaotic
solutions near the extinction limit. We also show that within the chaotic window,
there is a region containing a secondary period doubling sequence. Specifically, we
computed solutions with periods 12T , 24T , and 48T . We note that the adiabatic
problem (Γ = 0) was reformulated as an integral equation in [7] which investigated
T periodic relaxation oscillations and [5] which computed a period doubling route to
chaos as Z increased, thus recovering the results in [3, 4].

In section 2 we describe the mathematical model and the basic solution which
describes a uniformly propagating planar combustion wave. In section 3 we consider
the linear stability of the basic solution and identify the pulsating stability boundary,
while in section 4 we derive the integrodifferential equation which describes the motion
of the interface. In section 5 we describe the numerical method which we employ and
in section 6 we describe the results of our computations. Finally, in section 7 we
summarize our results.

2. Mathematical model and basic solution. We consider a planar combus-
tion front propagating in a solid fuel in the direction −x∗. We account for heat losses
which are assumed to be proportional to the difference between the local tempera-
ture T∗ and an ambient temperature T0. The temperature field T∗(x∗, t∗) and the
concentration field C∗(x∗, t∗) of the deficient reaction component are governed by

∂T∗
∂t∗

= κ
∂2T∗
∂x2

∗
− γ(T∗ − T0) + QW (T∗, C∗),

∂C∗
∂t∗

= −W (T∗, C∗),(1)

−∞ < x∗ < ∞, 0 < t∗ < ∞,

where κ is the thermal diffusivity of the fuel, the constant γ is the heat loss coefficient,
and the constant Q denotes the heat release of the exothermic chemical reaction, all
scaled by ρc, where ρ denotes the fuel density and c its specific heat. We have assumed
that the fuel sample is sufficiently long to permit a traveling wave to be established,
so that the domain is taken to be −∞ < x∗ < ∞. The reaction rate W (T∗, C∗) is
generally taken to be of Arrhenius form

W (T∗, C∗) = kC∗e
−E
RT∗ ,(2)

where E is the activation energy of the reaction, R is the universal gas constant and
k is the preexponential factor. The reaction zone in combustion reactions is typically
thin since the activation energy is typically large. Therefore, we employ the reaction
sheet assumption, i.e., we replace the Arrhenius reaction kinetics by delta-function
kinetics [6, 8, 9],

W = w exp

[
E

2RT 2
a

(T∗ − Ta)

]
δ(x∗ − ξ∗(t∗)),(3)

located at the interface x∗ = ξ∗(t∗) separating the fresh fuel where C∗ = C∗0 from the
burned products where C∗ = 0 corresponding to complete consumption of the fuel.
Here,

Ta = T0 + QC∗0(4)

is the adiabatic interface temperature, i.e., the burned temperature in the absence
of the heat losses, and w is a constant proportional to k. The reaction sheet as-
sumption in solid fuel combustion is motivated by analogy with the case of gaseous
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combustion, where it was systematically derived [10] for large activation energies. For
solid fuel combustion, as considered here, it was “derived” by formal truncation of an
asymptotic series for large Z [8].

The condition of complete consumption of fuel determines the dependence of the
interface velocity on the reaction rate(

−dξ∗
dt∗

)
C∗0 = w exp

[
E

2RT 2
a

(T∗(ξ∗(t∗), t∗) − Ta)

]
.(5)

Solving the system (1), (3), (5) with the boundary conditions

T∗(−∞, t) = T∗(∞, t) = T0(6)

under the assumption of steady propagation,

ξ∗(t∗) = ξ∗(0) − vf t∗,(7)

we obtain the temperature profiles,

T∗(x∗, t∗) = T0 + (T∗f − T0)e
k−(x∗−ξ∗(t∗)), x∗ − ξ∗(t∗) ≤ 0,(8)

T∗(x∗, t∗) = T0 + (T∗f − T0)e
−k+(x∗−ξ∗(t∗)), x∗ − ξ∗(t∗) ≥ 0,

where

k± =
vf
2κ

[
∓1 +

√
1 +

4κγ

v2
f

]
, T∗f = T0 +

QC0∗√
1 + 4κγ/v2

f

.(9)

Substituting (7) and (8) into (5) and employing (4), we find the following equation
for the interface velocity vf

vf =
w

C0∗
exp

⎡
⎣EQC0∗

2RT 2
a

⎛
⎝ 1√

1 + 4κγ/v2
f

− 1

⎞
⎠
⎤
⎦ .(10)

In contrast to the adiabatic case γ = 0, where vf = w/C0∗ is the sole solution of (10),
for γ > 0, (10) may have several solutions.

We define the nondimensional quantities

Z =
QEC∗0

2RT 2
a

(11)

(Zeldovich number),

H =
4κγC2

∗0

w2
, V =

vfC∗0

w
(12)

and rewrite (10) in nondimensional form as

V = exp

[
Z

(
1√

1 + H/V 2
− 1

)]
.(13)
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Fig. 1. Plot of V vs. H based on (14).
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Fig. 2. Plot of V vs. H based on (15).

Solving (13) for H, we find

H = V 2

[
1

(1 + lnV/Z)2
− 1

]
.(14)

The expression on the right-hand side of (14) is positive in the interval exp(−2Z) <
V < 1. Only for sufficiently small Z is H(V ), given by (14), monotonic, so that V (Z)
is single valued. For Z � 1, which is typical for solid combustion, under the physically
reasonable condition V � exp(−Z), formula (14) can be written to leading order as

H = −2V 2 lnV

Z
.(15)

Equation (15) has two solution branches V (H) if H < Hm = 1
eZ and no solutions if

H > Hm (see Figure 2). At the value H = Hm, which corresponds to the extinction
limit, the two solution branches merge at V = Vm = 1/

√
e, corresponding to H = Hm,

and disappear for larger H. It will be shown below that the solution with the higher
value of V is monotonically stable, while the solution with the lower value of V is
monotonically unstable, in agreement with the predictions of [6]. There is a third
solution branch of (14), with exponentially small velocity V , as well as a yet smaller
fourth solution branch (see Figure 1), and a still smaller fifth solution branch, which
are unphysical and are to be ignored. Indeed, the fourth solution branch of (14) is
not a solution of (13), since it corresponds to 1 + lnV

Z < 0, and the fifth solution
branch corresponds to H < 0 and is also not a solution of (13) (this branch, which
approaches the origin, is not plotted in Figure 1).

After finding the physically relevant value of the steadily propagating front veloc-
ity, we can further simplify the description of the problem by introducing the following
nondimensional variables: x = (x∗ − ξ∗(0))vf/κ, t = t∗v

2
f/κ, T = (T∗ − T0)/C∗0Q. In

these nondimensional variables, the problem reads

∂T

∂t
=

∂2T

∂x2
− ΓT − dξ

dt
δ(x− ξ(t)), −∞ < x < ∞, 0 < t < ∞,(16)

T (x, 0) = Ti(x), −∞ < x < ∞,(17)

T (−∞, t) = T (∞, t) = 0, 0 ≤ t < ∞,(18)
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−dξ

dt
= exp{Z(T (ξ(t), t) − Tf )},(19)

where

Γ =
γκ

v2
f

> 0(20)

can be considered as the dimensionless heat loss parameter and simultaneously as a
dimensionless inverse square interface velocity, and Tf is the dimensionless interface
temperature. Note that we have assumed that Γ > 0, since for Γ = 0 the boundary
condition for T (∞, t) would not be that given in (18). The particular solution (7), (8),
corresponding to an interface uniformly propagating with the velocity vf , is given by

ξ(t) = −t,

T (x, t) = Tfe
K−(x+t), x + t < 0; T (x, t) = Tfe

−K+(x+t), x + t > 0,(21)

where

K± = (∓1 +
√

1 + 4Γ)/2; Tf =
1√

1 + 4Γ
.(22)

We refer to this solution as the basic solution. Equation (13), which reads

f(Γ) = Γ1/2 exp

(
Z√

1 + 4Γ

)
= H1/2 expZ,(23)

determines values of Γ corresponding to given values of Z and H. Extinction occurs
at Γm = Hm/4V 2

m = 1/4Z (in the limit Z � 1). Note that the solution with V > Vm

has Γ < Γm, while the solution with V < Vm has Γ > Γm.

3. Linear stability of the basic solution. We rewrite the system (16)–(18)
in a reference frame moving with the interface as

∂T

∂t
− dξ

dt

∂T

∂X
=

∂2T

∂X2
− ΓT − dξ

dt
δ(X), −∞ < X < ∞, 0 < t < ∞,(24)

T (−∞, t) = T (∞, t) = 0, 0 ≤ t < ∞,(25)

where X = x−ξ(t). Linearizing equations (24), (25) about the basic solution (21), we
obtain the following eigenvalue problem for the infinitesimal temperature perturbation
T̃ (X) exp(σt) and the interface velocity perturbation ṽ exp(σt)

σT̃ − ṽT ′ + T̃ ′ = T̃ ′′ − ΓT̃ , X �= 0,(26)

T̃ (0−) = T̃ (0+) ≡ T̃ (0), T̃ ′(0+) − T̃ ′(0−) − ṽ = 0,(27)

T̃ (±∞) = 0.(28)

Linearization of (19) provides a relation between the velocity perturbation ṽ and the
interface temperature perturbation T̃ (0),

ṽ = −ZT̃ (0).(29)
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We are interested in two types of stability boundaries, the monotonic boundary cor-
responding to σ = 0 and the oscillatory boundary corresponding to σ = iω, with ω
real.

If σ = 0, the temperature perturbations are given by

T̃ = eK−X +
ZTfK−√

1 + 4Γ
XeK−X , X < 0,(30)

T̃ = e−K+X +
ZTfK+√

1 + 4Γ
Xe−K+X , X > 0,(31)

and the expression for the monotonic stability boundary Z = Zm(Γ), i.e., the curve
which separates stable from unstable basic solutions, is given by

Z = Zm(Γ) =
(1 + 4Γ)3/2

4Γ
.(32)

The function Zm(Γ) has a minimum, given by Zc = 33/2/8. Note that our approach
is valid only for Z sufficiently large and Γ sufficiently small, hence only the left branch
of the curve (32) has physical meaning. The curve (32), which separates stable and
unstable solutions, corresponds to the extinction limit [6]. Inverting Z = Zm(Γ)
determines the extinction line Γ = Γm(Z) discussed in the previous section. As
mentioned above, for a fixed value of Z, solutions with a value of Γ smaller than
the critical value Γm(Z), i.e., those corresponding to the larger of the two interface
velocities vf , are stable (with respect to monotonic disturbances), while solutions with
a value of Γ larger than the critical value, i.e., those corresponding to the smaller of
the two interface velocities, are unstable, in agreement with the predictions of [6].

If σ = iω, the eigenfunction of the problem (26)–(29) has the form

T̃ = ek−X − iZTfK+

ω

(
e−K+X − e−k+X

)
, X > 0,(33)

where

k± =
∓1 +

√
1 + 4Γ + 4iω

2
.(34)

The oscillatory stability boundary Zo(Γ) and the frequency ω are obtained from the
real and imaginary parts of the dispersion relation

Zo{ω + iTf [K+(K+ − k+) −K−(K− − k−)]} − (k+ + k−)ω = 0.(35)

We find that

Zo(Γ) =
2 +

√
4 + (1 + 4Γ)2

√
1 + 4Γ

,(36)

ω2(Γ) = Zo
1 + 16Γ2 − 4Γ

√
4 + (1 + 4Γ)2

(1 + 4Γ)3/2
.(37)

The expression for ω2 is positive only for Γ < Γ∗, where Γ∗ is the positive root of the
cubic equation

1 − 48Γ2
∗ − 128Γ3

∗ = 0.
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Fig. 3. Region R in parameter space in which solution behavior is computed.

The point (Γ∗, Z∗ = Zo(Γ∗) = Zm(Γ∗)) is a codimension-two point where the mono-
tonic and oscillatory boundaries merge. In the interval 0 < Γ < Γ∗, Zo(Γ) is a
monotonically decreasing function; the curve Z = Zo(Γ) is situated below and to the
left of the curve Z = Zm(Γ). We conclude that for a fixed value Z in the interval
Z∗ < Z < 2 +

√
5, as Γ grows, pulsations precede extinction. The region in (Γ, Z)

parameter space in which we compute solution behavior is shown in Figure 3.

4. Integrodifferential equation for the interfacial motion. We now turn
to the nonlinear problem (16)–(19). The term with heat losses is eliminated by the
transformation

T (x, t) = Θ(x, t)e−Γt.(38)

Substituting (38) into (16), we obtain the inhomogeneous heat equation for Θ(x, t),

∂Θ(x, t)

∂t
=

∂2Θ(x, t)

∂x2
− eΓt dξ

dt
δ(x− ξ(t)), −∞ < x < ∞, 0 < t < ∞(39)

subject to the initial condition

Θ(x, 0) = Ti(x), −∞ < x < ∞,(40)

and the boundary conditions

Θ(−∞, t) = Θ(∞, t) = 0, 0 ≤ t < ∞.(41)

The solution of the problem (39)–(41) is given by
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Θ(x, t) =

∫ ∞

−∞

1

2
√
πt

e−(x−y)2/4tTi(y)dy

+

∫ t

0

dτ

∫ ∞

−∞
dy

1

2
√
π(t− τ)

eΓτe−(x−y)2/4(t−τ)

[
−dξ

dτ
(τ)

]
δ(y − ξ(τ)).(42)

In terms of the variable T (x, t), we obtain

T (x, t) = e−Γt

∫ ∞

−∞

1

2
√
πt

e−(x−y)2/4tTi(y)dy

+

∫ t

0

dτ

∫ ∞

−∞
dy

1

2
√
π(t− τ)

e−Γ(t−τ)e−(x−y)2/4(t−τ)

[
−dξ

dτ
(τ)

]
δ(y − ξ(τ)).(43)

Evaluating the integral containing the δ-function and substituting into (19), we
find the self-consistency condition for ξ(t),

−dξ

dt
(t) = exp

{
Z

[
e−Γt

∫ ∞

−∞

1

2
√
πt

e−(ξ(t)−y)2/4tTi(y)dy

+

∫ t

0

dτ
e−Γ(t−τ)

2
√
π(t− τ)

e−(ξ(t)−ξ(τ))2/4(t−τ)

[
−dξ

dτ
(τ)

]
− Tf

]}
,(44)

where Tf is the undisturbed front temperature determined by (22). This is a closed
integrodifferential equation for the function ξ(t) defined for t > 0.

The first term on the right-hand side of (44), which depends on the initial condi-
tions, decays in time. Thus, for large t it can be disregarded. Employing the change
of variable τ = t− s, the second integral is transformed to

∫ t

0

ds
e−Γs

2
√
πs

e−(ξ(t)−ξ(t−s))2/4s

[
−dξ(t− s)

dt

]
.

Thus, we finally obtain that ξ(t) is the solution of

dξ

dt
(t) = − exp

{
−Z

[
Tf +

∫ t

0

ds
e−Γs

2
√
πs

e−(ξ(t)−ξ(t−s))2/4s

[
dξ(t− s)

dt

]]}
.(45)

This integrodifferential equation describes the location of the interface ξ(t) separating
the fresh fuel from the burned products, for large times, after transients have died
out.

5. Numerical method. We now describe the numerical method employed in
the solution to (45). We note that we solve the initial value problem for (45) and
march forward in time until steady state is achieved. As a result, all steady state
solutions that we compute are necessarily stable. For conciseness, we introduce the
symbol ξ̇ = dξ

dt to denote the front velocity. Note that we have assumed that the front

propagates in the negative x direction so that ξ̇ < 0 for all t. We first take the natural
logarithm of both sides of (45) to obtain

ln(−ξ̇(t)) = Z

{
−Tf +

∫ t

0

ds
e−Γs

2
√
πs

e−(ξ(t)−ξ(t−s))2/4s
(
−ξ̇(t− s)

)}
.(46)
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We next introduce the integration variable σ = t− s, so that (46) becomes

ln(−ξ̇(t)) = Z

{
−Tf +

∫ t

0

dσ
e−Γ(t−σ)

2
√
π(t− σ)

e−(ξ(t)−ξ(σ))2/4(t−σ)
(
−ξ̇(σ)

)}
.(47)

Equation (47) will be solved on a nonuniform grid ti with t0 = 0. The grid will
be chosen adaptively based on the size of −ξ̇(t) as described below. In order to solve
for ξ̇(tn) we split the integral in (47) into two parts,∫ tn

0

dσ
F (tn, σ)

2
√
π(tn − σ)

=

∫ tn

tn−1

dσ
F (tn, σ)

2
√
π(tn − σ)

+

∫ tn−1

0

dσ
F (tn, σ)

2
√
π(tn − σ)

(48)

= In + S,

where

F (tn, σ) = e−Γ(tn−σ)e−(ξ(tn)−ξ(σ))2/4(tn−σ)
(
−ξ̇(σ)

)
,

and

In =

∫ tn

tn−1

dσ
F (tn, σ)

2
√
π(tn − σ)

, S =

∫ tn−1

0

dσ
F (tn, σ)

2
√
π(tn − σ)

.

We approximate In by taking the average value of F (tn, σ) over the domain of
integration (tn−1 ≤ σ ≤ tn) to obtain

In ≈ 1

2
√
π

[
F (tn, tn) + F (tn, tn−1)

2

] ∫ tn

tn−1

dσ√
tn − σ

.(49)

The computation of F (tn, tn−1) presents no difficulty but F (tn, tn) must be treated
in the limit as σ → tn,

lim
σ→tn

F (tn, σ) = −ξ̇(tn)

so that

In ≈ 1

2

√
hn

π

{
−ξ̇(tn) + F (tn, tn−1)

}
,(50)

where hn = tn − tn−1. Substituting (50) into (47) yields

ln
(
−ξ̇(tn)

)
=

Z

2

√
hn

π

(
−ξ̇(tn)

)
+ Z {−Tf + Sn−1 + S} ,(51)

where

Sn−1 =
1

2

√
hn

π
F (tn, tn−1).

Equation (51) is a transcendental equation of the form

ln
(
−ξ̇(tn)

)
= m

(
−ξ̇(tn)

)
+ b,(52)

where

m =
Z

2

√
hn

π
, b = Z {−Tf + Sn−1 + S} ,
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which must be solved at each timestep. We note that m is proportional to
√
hn, the

local timestep. For clarity we rewrite (52) as

H(w) = mw − lnw + b = 0,(53)

where w = −ξ̇(tn). It is easy to see that H(w) is minimized when w = 1/m and that
the value of the minimum is 1 + b + lnm. Thus, if

lnm > −(1 + b),

there is no solution to (52) and the computation cannot continue. This typically
occurs when −ξ̇ is large and necessitates a reduction in the timestep.

Finally, we approximate S over the interval 0 ≤ σ ≤ tn−1 using the trapezoidal
rule with nonuniform grid spacing,

S =
1

2
√
π

∫ tn−1

0

dσ√
tn − σ

F (tn, σ) ≈ 1

2
√
π

n−1∑
i=1

hi
1

2

(
F (tn, ti)√
tn − ti

+
F (tn, ti−1)√
tn − ti−1

)
.(54)

We have found that the exponentially decaying tail of the integral in S can be trun-
cated with minimal loss of accuracy but significant savings in computational cost. We
compute the sum in (54) starting with i = n − 1 and continuing to lower i until the
relative change due to taking one additional term is less than 10−16.

The solution is typically highly relaxational, with long periods of nearly quiescent
behavior juxtaposed with brief periods of rapid variation, which are manifested by
spikes in the front speed over very short time intervals. In order to address the
relaxational behavior as well as to insure that the solvability condition described
above for (52) will be satisfied, it is necessary to employ a timestep which varies
in t according to the nature of the solution. Clearly, hn should decrease as |ξ̇(tn)|
increases. We employed the following empirical formula to adjust the local timestep,

hn+1 = min

(
Δt0,

(
2
√
π

Z A(−ξ̇(tn)3/2

)2
)
,(55)

where A is a constant. The values Δt0 = 0.01, as well as A = 17 for Z = 4.12
and A = 12 for Z = 4.0, were employed in the calculations presented in this paper.
Finally, after solving for ξ̇ at time tn, ξ must be updated to tn+1. This is done using
the Adams–Bashforth method with nonuniform spacing,

ξ(tn+1) = ξ(tn) + hn+1

{
ξ̇(tn) +

1

2

hn+1

hn

(
ξ̇(tn) − ξ̇(tn−1)

)}
.

The initial condition for ξ is irrelevant since only differences in ξ appear in (45).
It is characteristic of the pulsating solutions in solid fuel combustion that they

become increasingly relaxational in both space and time as parameters are pushed
further into the nonlinear regime. Thus, a typical solution will propagate slowly for
a long period of time exhibiting relatively gradual spatial and temporal variations
in temperature, followed by a short period of rapid spatial and temporal variation.
Therefore, computations require adaptive procedures in both space and time. The
present method eliminates the spatial coordinate by restricting consideration to the
motion of the interface. Thus, there is no longer a need for spatial adaptivity. Tem-
poral adaptivity is still required as described above. Indeed, the relaxational behavior
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Fig. 4. Uniformly propagating solution, Z = 4.12, Γ = 0.01.

of the solution is enhanced, presumably due to the reaction sheet model employed for
the kinetics rather than the distributed Arrhenius kinetics typically employed when
the problem is solved as a system of partial differential equations. The cost of the
present method is clearly in storage as the solution should in principle be stored for
all values of time, due to the convolution nature of the integral in (45). We have
addressed this issue to some extent by truncating the tail of the integral in S, as
described above. Thus, employing the integrodifferential equation appears to be ef-
fective for the problem considered here. We note however, that the storage problem
becomes more acute as Z is increased, since smaller timesteps are required. Finally,
we note that our computations have been validated under timestep refinement.

6. Results. We employ the integrodifferential equation (45) governing the mo-
tion of the interface separating the fresh fuel and the burned products in a nonadi-
abatic solid flame to compute solutions in the form of a period doubling cascade as
the heat loss Γ is increased toward extinction. We consider the Zeldovich number
Z = 4.12, below the adiabatic (Γ = 0) pulsating stability limit Z = 4.22. Thus, for
Γ = 0, the solution is uniformly propagating. In Figures 4–10 we plot the interface
velocity ξ̇ as a function of t for a sequence of increasing values of Γ.

Figure 4 shows a uniformly propagating solution for Γ = 0.01. Note that the
computed value of ξt differs from the exact value ξt = −1 by less than 0.5%. In
Figure 5 we show a 1T solution obtained for Γ = 0.04. In Figure 6 we show a 2T
solution for Γ = 0.053. It is known that for period doubling cascades the intervals
for each period doubling become progressively smaller. While we have not attempted
to delineate these intervals, we show 4T , 8T and 16T solutions in Figures 7–9. The
corresponding values of Γ are Γ = .05353 (4T ), Γ = .053545 (8T ), and Γ = .0535475
(16T ). We have not found 32T or higher period solutions. We assume that this is
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Fig. 5. 1T solution, Z = 4.12, Γ = 0.04.
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Fig. 6. 2T solution, Z = 4.12, Γ = 0.053.
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Fig. 7. 4T solution, Z = 4.12, Γ = 0.05353.
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Fig. 8. 8T solution, Z = 4.12, Γ = 0.053545.
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Fig. 9. 16T solution, Z = 4.12, Γ = 0.0535475.
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Fig. 10. Apparently chaotic solution, Z = 4.12, Γ = 0.05355.
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due to the small intervals of existence of these solutions. We note the similarity of
these figures to those obtained for adiabatic combustion in the pulsating regime as
Z is increased (e.g., [3]). The solutions are highly relaxational with long periods of
slow propagation interrupted by sharp spikes (in this case large negative velocities)
corresponding to rapid propagation. The relaxational nature of the solution, i.e., the
time duration of the spikes, becomes progressively smaller as Γ increases. We note
that this relaxational behavior is not related to the period doubling cascade. Similar
behavior was observed in [3] for a model with melting where the transition to chaos
was via intermittency. The different dynamical behaviors are manifested by variations
in the amplitudes of the spikes.

In Figure 10 we show an apparently chaotic solution for Γ = 0.05355 beyond the
period doubling cascade. For period doubling cascades, windows of laminar behavior
exist within the chaotic region, e.g., [18]. In Figures 11 and 12 we show the evolution
in time and the return map, respectively, for the 12T solution found for Γ = 0.0535522.
In Figure 13 we show the return map for the 24T solution found for Γ = 0.05355236.
In Figures 14 and 15 we show blowups of the upper left and lower right regions
of Figure 13. In Figure 16 we show the return map for the 48T solution, found for
Γ = 0.0535524. In Figures 17 and 18 we show blowups of the upper left and lower right
regions of Figure 16. Finally, in Figure 19 we show a chaotic solution for Γ = 0.053553,
illustrating a return to chaos after the window of periodic solutions. We note that for
this value of Z the extinction limit Γe lies in the interval 0.053555 ≤ Γe ≤ 0.053557.

For smaller values of Z, though there are larger intervals in Γ prior to extinc-
tion (since Γe = O(1/Z) is larger), the range of dynamical behavior is more limited
since smaller Z is less unstable. Thus, we do not necessarily get a full period doubling
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Fig. 11. 12T solution, Z = 4.12, Γ = 0.0535522.
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Fig. 12. Return map for 12T solution.
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Fig. 13. Return map for 24T solution, Z = 4.12, Γ = 0.05355236.
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Fig. 14. Blowup of upper left portion of return map for 24T solution.
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Fig. 15. Blowup of lower right portion of return map for 24T solution.
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Fig. 16. Return map for 48T solution, Z = 4.12, Γ = 0.0535524.
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Fig. 17. Blowup of upper left portion of return map for 48T solution.
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Fig. 18. Blowup of lower right portion of return map for 48T solution.
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Fig. 19. Apparently chaotic solution, Z = 4.12, Γ = 0.053553.
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Fig. 20. 1T solution, Z = 4.0, Γ = 0.063453.

sequence followed by chaos. Rather, the sequence may be truncated after a finite
number of periods. An extreme example of this occurs for Z = 4.0, where we find
only 1T solutions for the full range of Γ that we have investigated up to extinction.
In Figure 20 we plot the 1T solution for Γ = 0.063453, and in Figure 21 we show that
for Γ = 0.0634535, the system attempts to establish a 2T solution. However, the 2T
solution is apparently unstable, as the two spike amplitudes begin to diverge from one
another and eventually the solution becomes extinct.

7. Summary. We derived an integrodifferential equation for the position of the
interface in one dimensional nonadiabatic solid fuel combustion from the reaction
sheet model. The equation permits computation of the dynamics of the reaction front
without the necessity of spatial discretization for the temperature and mass fraction
profiles thereby affording a savings in computational resources.

We computed solution behavior describing complex dynamics when the Zeldovich
number Z is below the pulsating stability boundary. The control parameter employed
is the heat loss coefficient Γ. For values of Z near the pulsating stability boundary we
find that a cascade of period doublings occur as Γ increases, leading to chaotic behavior
prior to extinction. Specifically, we compute T , 2T , 4T , 8T and 16T solutions as Γ
increases. Beyond the 16T solution, we find a window of apparently chaotic behavior
prior to extinction. Within the chaotic window, we find a subwindow corresponding
to a period doubling sequence beginning with a 12T solution. Specifically, we compute
12T , 24T , and 48T solutions. Finally, for smaller values of Z, though there are larger
intervals in Γ prior to extinction, the range of dynamical behavior is more limited
since smaller Z is less unstable. Thus, we do not necessarily get a full period doubling
sequence followed by chaos. Rather, the sequence may be truncated after a finite
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Fig. 21. Evolution to extinction, Z = 4.0, Γ = 0.0634535.

number of periods. In an extreme example of this, we find only 1T solutions for the
full range of Γ that we have investigated up to extinction.
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A MODEL FOR THE DYNAMICS OF LARGE QUEUING
NETWORKS AND SUPPLY CHAINS∗

D. ARMBRUSTER† , P. DEGOND‡ , AND C. RINGHOFER†

Abstract. We consider a supply chain consisting of a sequence of buffer queues and processors
with certain throughput times and capacities. Based on a simple rule for releasing parts, i.e., batches
of product or individual product items, from the buffers into the processors, we derive a hyperbolic
conservation law for the part density and flux in the supply chain. The conservation law will be
asymptotically valid in regimes with a large number of parts in the supply chain. Solutions of this
conservation law will in general develop concentrations corresponding to bottlenecks in the supply
chain.

Key words. supply chains, conservation laws, asymptotics.
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1. Introduction. This paper is concerned with the development and analysis of
continuum models for supply chains. We consider a chain of M suppliers or processors
S0, . . . , SM−1. In the generic picture of a supply chain (see cf. [12] for an overview)
each supplier processes a certain good (measured in units of parts) and passes it on
to the next supplier in the chain. Labeling the parts by the index n, we denote
by τ(m,n) the time at which part number n passes from supplier number m − 1 to
supplier number m. The goal of supply chain modeling and control is to derive rules
governing the evolution of the times τ(m,n) and, in further consequence, to design
such rules to, in some predefined sense, optimally manage the supply chain. There
is a hierarchy of models available for this purpose. If the times τ(m,n) are used as
primary variables, and therefore each part is considered individually, this leads to
so-called discrete event simulation models (see [7] for an overview), which represent
the most exact, and computationally most expensive, simulation tool. On the other
end of the spectrum lie so-called fluid models, which replace the individual parts by
a continuum and use rate equations for the flow of product through a supplier (see
[1], [8] for an overview). For a large number of parts, fluid models are much less
expensive but necessarily represent an approximation to the actual situation. As a
compromise between the two extremes, so-called traffic flow models have received a
lot of attention recently. The name derives from the analogy of the parts moving
like cars on a highway and the use of a large already developed body of theory for
modeling traffic flows. This theory employs the methodology of an even older and
better developed theory, namely that of gas dynamics. So, discrete event simulation
takes the place of particle based (i.e., Monte Carlo-type) models for gases, which can
be approximated by the equations of gas dynamics (see [10] for an overview) and so
on. The analogy is of course not one to one since the basic rules governing the parts
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in a supply chain, the cars on a highway and the molecules in a gas, will be different
[2], [3], [4], [6], [11], [16].

This paper is concerned with the derivation of a type of traffic flow model, namely
a conservation law for a partial differential equation, out of very simple principles
governing the evolution of the times τ(m,n). Given the times τ(m,n) conservation of
the number of parts is expressed via the introduction of so-called N-curves (originally
defined by Newell [17]). The N-curve U(t) at supplier Sm is given by the number of
parts which have passed from processor Sm−1 to processor Sm at time t, i.e., by

U(m, t) =

∞∑
n=0

H(t− τ(m,n)),(1)

where H denotes the usual Heaviside function. The flux from processor Sm−1 into
processor Sm is given by the derivative of U(m, t), i.e.,

F (m, t) =
d

dt
U(m, t) =

∞∑
n=0

δ(t− τ(m,n)), m = 0, . . . ,M,(2)

which holds with F (0, t) and F (M, t) the total influx and outflux of the supply chain.
So N-curves are just the antiderivatives of fluxes. The work in progress (WIP) W (m, t)
of processor Sm, the total number of parts currently at the supplier Sm at time t, is
now given by the difference of two consecutive N-curves, i.e.,

W (m, t) = U(m, t) − U(m + 1, t) + K(m), m = 0, . . . ,M − 1,(3)

where the time independent constants K(m) are determined from the initial situation.
Combining (2) and (3) yields the conservation law

d

dt
W (m, t) = F (m, t) − F (m + 1, t)(4)

for the WIP W (m, t) and the flux F (m, t), both given in terms of the transition times
τ(m,n). Note that in (4) W (m, t) is a step function in time while F (m, t) is a super-
position of δ-functions. Furthermore, if each of the suppliers Sm has a given minimal
processing time T (m), τ(m+1, n) ≥ τ(m,n)+T (m) will hold, which implies, amongst
other things, that the WIP Wm(t) can never become negative. Fluid and traffic mod-
els replace the WIP W and the flux F by continuous functions and eliminate the
dependence on individual parts, either by ad hoc assumptions, constitutive relations
derived from stochastic queuing theory in a quasi-steady state (see cf. [9]), or via
asymptotic methodology borrowed from the theory of gas dynamics [4], [5], [14], [15],
[18]. In the simplest fluid models, the fluxes F (m, t) in (4) are prescribed and the
WIP’s W (m, t) are computed from F . Constraints have to be placed on the fluxes in
order to guarantee nonnegative WIPs. This is usually done in a linear programming
framework [19].

The basic concept of the approach presented in this paper is somewhat different.
Rather than artificially constraining the fluxes, we will derive a continuum model
which contains as an input parameter a service rate μ, and in which the WIP’s W (m, t)
will always be nonnegative. The model is based on very simple assumptions, namely
that each supplier functions as a single processor with a processing time T and a
buffer queue in front of it. Based on this assumption, we derive, in a continuum limit,
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a conservation law of the form

∂tρ + ∂x min

{
μ,

W

T

}
= 0,(5)

where the artificial continuous variable x indexes the suppliers and the ρ(x, t) denotes
the product density over x, i.e., W =

∫
ρ dx holds. If the number of parts considered

is very large, then solving the conservation law (5) is obviously much more effective
than to directly compute the τ(m,n).

In contrast to previously presented approaches [2], [3], [4], [5], the approach in
this paper is based on first principles. While purely fluid dynamic approaches rely on
constitutive laws (usually for the equivalent of the pressure tensor [4]), we derive the
conservation law (5) rigorously from a simple recursion of the arrival times τ(m,n).

This paper is organized as follows. In section 2 we define the basic rule governing
the transition times τ(m,n), modeling one supplier in the chain as a processor with a
given throughput time and a linear buffer queue in front of it. We heuristically derive
simplified formulas to compute the WIP density ρ and the flux from the transition
times. These formulas are simpler than (2) and (3), in the sense that they depend only
locally on the τ(m,n). This will allow us to derive simple constitutive relations for the
flux and WIP density leading to the conservation law (5). However, with this simple
constitutive relation, the conservation law (5) will be satisfied only approximately. In
section 3 we show that (5) is satisfied asymptotically in the limit for a large number
of suppliers. The main difficulty here is that, as it turns out, the conservation law
(5) will in general have only distributional solutions. ρ(x, t) will develop δ-function
concentrations, corresponding to bottlenecks in the supply chain. We will resolve this
problem by instead deriving the corresponding hyperbolic equation for the N-function
U in (1). This will also allow us to numerically compute the distributional solutions
of (5) in a reasonable way. The assumption of a large number of nodes in the supply
chain is actually unreasonable for many applications. In section 4 we remove this
assumption by replacing one individual supplier with an arbitrary number of virtual
suppliers, allowing us to pass to a continuum limit in almost every situation. Section
5 is devoted to numerical experiments. We demonstrate the asymptotic validity of
the continuum model on two examples, one with only a few nodes in the supply chain
where we utilize the concept of virtual suppliers, and one example of a long supply
chain with randomly generated processing times and capacities.

2. The basic model. In this section we first define the basic rules governing
the supply chain. We then give a more or less heuristic reasoning for a formula
which expresses the flux and the density of parts locally in time, i.e., it is dependent
only on differences of neighboring transition times τ , in what is essentially a large
time regime. With these local formulas we derive in Theorem 1 a constitutive relation
which expresses the flux in terms of the density. We first present the basic model for a
single node in the supply chain. We assume that the node consists of a processor which
processes parts at a rate μ. In front of this “machine” we assume a buffer queue, i.e.,
parts arrive at the end of the queue, wait until they reach the front, and then are fed
into the processor. We denote by an, n = 0, 1, . . . , the time part number n arrives at
the end of the queue and by bn the “release time,” i.e., the time part number n, reaches
the front of the queue and is fed into the processor. If the queue is full, the interval
between two consecutive release times bn will be given by the processing rate μ, i.e.,

bn = bn−1 +
1

μ
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will hold as long as an ≤ bn−1 + 1
μ holds, meaning that part number n has already

arrived when we want to feed it into the processor. If, on the other hand, the queue is
empty, i.e., if at the desired release time bn−1+ 1

μ part number n has not arrived yet at
the end of the queue, then we wait for its arrival and then immediately feed it into the
processor. So, an > bn−1 + 1

μ will imply bn = an. This gives altogether the relation

bn = max

{
an, bn−1 +

1

μ

}
.(6)

We assume that the processor takes a time T to finish the part and denote by
en = bn + T the time the part leaves the processor (and enters the next queue).
Inserting this relation into (6) gives

en = max

{
an + T, en−1 +

1

μ

}
(7)

as the basic law relating the arrival times an to the exit times en. We now consider
a chain of M suppliers S0, . . . , SM−1 and denote with τ(m,n) the time part number
n arrives at supplier Sm. Using the obvious change of notation an → τ(m,n) and
en → τ(m + 1, n), we obtain from (7)

τ(m + 1, n) =max

{
τ(m,n) + T (m), τ(m + 1, n− 1)(8)

+
1

μ(m,n− 1)

}
, m = 0, . . . ,M1, n ≥ 1.

Here T (m) denotes the processing time of processor Sm, and we have made the pro-
cessing rates μ time dependent, i.e., dependent on the part index n as well. The
reason for the latter is that the service rates μ are used to control the supply chain.
So, after part number n − 1 has been fed into processor Sm, we wait a time interval

1
μ(m,n−1) before feeding in the next part. We assume that the processor belonging to

the node Sm has a finite capacity C(m), so

μ(m,n) ≤ C(m), m = 0, . . . ,M − 1, n ≥ 0(9)

has to hold, but otherwise the μ’s can be chosen arbitrarily. The recursion (8) still
needs initial and boundary conditions. They are of the form

τ(0, n) = τA(n), n ≥ 0, τ(m, 0) = τ I(m), m = 0, . . . ,M.

τA(n) simply denotes the arrival time of part n in the first processor of the chain. The
interpretation of τ I(m) is somewhat more subtle. Obviously, τ I(m) denotes the time
the first part has arrived at supplier Sm. So, τ I(m + 1) − τ I(m) − T (m) denotes the
time the first part has waited in the buffer in front of the processor at Sm. Assuming
a constant service rate μ in the past, μ(m, 0)[τ I(m + 1) − τ I(m) − T (m)] would be
the number of parts in the queue at the time part number 0 arrives. This, in a sense,
records the history of what has happened in the system before the first part went
through and determines the queue length at the initial time. This somewhat awk-
ward definition is necessitated by the fact that, for an actual simulation, we have to
start somewhere. This issue will be resolved once the problem is formulated in terms
of an approximate conservation law.
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The goal of this paper is to asymptotically replace (8) by a conservation law with
a simple constitutive relation. The rest of this section is devoted to considerations of
what the appropriate form of the constitutive relation F = F (W ) in (4) should be.
In the next section we will then show that with this relation, an equivalent of (5),
holds in a weak sense. We start by redefining the flux. First, we map (4) onto a grid
in an artificial spatial variable x, called the “degree of completion” (DOC). We define
a mesh 0 = x0 < · · · < xM = X and replace F (m, t) by F (xm, t). So, parts enter the
supply chain at the DOC x = 0 and leave at the DOC x = X. Next, we observe that,
for an arbitrary test function ψ(t),

∫ ∞

τI(m)

ψ(t)F (xm, t) dt =

∞∑
n=0

ψ(τ(m,n))

holds. We rewrite this into a Riemann sum for an integral as

∫ ∞

τI(m)

ψ(t)F (xm, t) dt =

∞∑
n=0

ψ(τ(m,n))Δnτ(m,n)f(xm, τ(m,n)),(10)

where Δnτ denotes the difference of τ(m,n) in the index n and the function f(x, t)
is given at x = xm and t = τ(m,n) as the reciprocal difference, i.e.,

(a) Δnτ(m,n) := τ(m,n + 1) − τ(m,n), (b) f(xm, τ(m,n)) :=
1

Δnτ(m,n)
(11)

holds. On a time scale, where Δnτ is small, (10) becomes∫ ∞

τI(m)

ψ(t)F (xm, t) dt ≈
∫ ∞

τI(m)

ψ(t)f(xm, t) dt.

So (11)(b) will be the definition of our approximate flux f , which is given on the grid
τ(m,n) for x = xm. To find an approximate expression for the density ρ of parts
per unit DOC, we consider the case when the arrival times τ would be distributed
continuously, i.e., if they were given as a function τ(x, y). In this case (11)(b) would
become f(x, τ(x, y)) = 1

∂yτ(x,y) . The N-function U(x, t), the antiderivative of the flux,

would then satisfy the relations

(a)
d

dy
U(x, τ(x, y)) = ∂tU(x, τ)∂yτ = 1,(12)

(b)
d

dx
U(x, τ(x, y)) = ∂xU(x, τ) + ∂tU(x, τ)∂xτ.

Setting ρ(x, t) = K(x)−∂xU(x, t) for an arbitrary function K, in analogy to (3), (12)
becomes

d

dx
U(x, τ(x, y)) = K(x) − ρ(x, τ) + f(x, τ)∂xτ.

Now (12)(a) implies that d
dxU(x, τ(x, y)) is a function of the DOC variable x only,

which we set equal to the arbitrarily chosen function K(x). So, for a continuum
τ(x, y) of arrival times, we set f(x, τ) = 1

∂yτ
and ρ(x, τ) = ∂xτ

∂yτ
. Direct calculus yields

that, if so defined, ρ and f satisfy a conservation law of the form ∂tρ + ∂xf = 0.
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Motivated by this, we define the approximate density ρ and the approximate flux f
from the arrival times τ by

(a) f(xm, τ(m,n)) =
1

Δnτ(m,n)
, m = 0, . . . ,M, n = 0, 1, . . . ,

(b) ρ(xm, τ(m + 1, n)) =
Δmτ(m,n + 1)

hmΔnτ(m + 1, n)
, m = 0, . . . ,M − 1, n = 0, 1, . . . ,(13)

(c) Δmτ(m,n) := τ(m + 1, n) − τ(m,n), hm := xm+1 − xm.

The density and flux defined by (13) are approximate in the sense that they will, as will
be seen in section 3, satisfy an approximate or discretized version of the conservation
law. However, the definition (13) allows us to derive a simple constitutive relation
of the form f = f(ρ). Under what circumstances ρ and f satisfy an approximate
conservation law will be the subject of the next section. We have the following.

Theorem 1. Let the arrival times τ(m,n) satisfy the recursion (8). Let the
approximate density ρ and flux f be defined by (13). Then the approximate flux can
be written in terms of the approximate density via a constitutive relation of the form

f(xm, τ(m,n)) = φmn(ρ(xm−1, τ(m,n))), m = 1, . . . ,M, n ≥ 0,

with the flux function φm given by

φmn(ρ) = min

{
μ(m− 1, n),

hm−1ρ

T (m− 1)

}
.(14)

The proof of Theorem 1 is rather lengthy and therefore deferred to the appendix.
The advantage of the approximative constitutive law (14) over the exact law given

by (2) and (3) lies in the fact that it does not involve the transition times τ(m,n)
anymore. The subject of the next two sections will be if, and in what sense, ρ and f
will still satisfy a conservation law of the form ∂tρ + ∂xf = 0.

3. Asymptotic validity of the conservation law. In this section we show
that the approximate density ρ and flux f defined by (13) satisfy, in a certain sense,
a conservation law of the form ∂tρ+ ∂xf = 0 asymptotically. The asymptotic regime
we consider is one for a large number of nodes in the supply chain and for large time
scales. The assumption of a large number of nodes is to some extent artificial and will
be removed in section 4. As it turns out the limiting density ρ will in general not be
a classical function but a distribution. We therefore show the asymptotic validity for
the corresponding hyperbolic differential equation for the limiting N-curve U in (1).

3.1. Scaling and dimensionless formulation. We define by T0 the average
processing time, i.e.,

T0 =
1

M

M−1∑
m=0

T (m)

holds. So MT0 would be the time for a part to be processed in the empty system,
without waiting in any queue. This is chosen as the overall time scale, whereas we
scale the individual processing times T (m) and service rates μ(m,n) by T0. Denoting
scaled variables with the subindex s, this gives

τ(m,n) = MT0τs(m, , n), T (m) = T0Ts(xm), μ(m,n) =
μs(xm, τs(m + 1, n))

T0
.

(15)



902 D. ARMBRUSTER, P. DEGOND, AND C. RINGHOFER

We will consider a regime where M >> 1 holds and will set ε = 1
M << 1 from here

on. With this scaling the recursion (8) becomes

(a) τs(m + 1, n + 1) = max

{
τs(m,n + 1) + εTs(xm), τs(m + 1, n)

+
ε

μs(xm, τs(m + 1, n))

}
,m = 0, . . . ,M − 1, n = 0, 1, . . . ,

(b) τs(0, n) = τAs (n), n ≥ 0, τs(m, 0) = τ Is (m), m = 0, . . . ,M,

(16)

where we have scaled τA and τ I in the same way as τ(m,n). Also we have made
grid functions out of the throughput times and processing times. We assume that
the differences between two consecutive arrival times τ are of the same order as the
average processing time T0. This is reasonable since otherwise the total WIP would
either go to zero or infinity. So we set

Δnτ(m,n) = τ(m,n + 1) − τ(m,n) = T0Δnsτs(m,n),

Δmτ(m,n) = τ(m + 1, n) − τ(m,n) = T0Δmsτs(m,n),

giving

τs(m + 1, n) = τs(m,n) + εΔmsτs(m,n), τs(m,n + 1) = τs(m,n) + εΔnsτs(m,n).

In accordance with (13), we scale the density ρ and the flux f by

f(x, t) =
1

T0
fs

(
x,

t

MT0

)
, ρ(x, t) =

M

X
ρs

(
x,

t

MT0

)
,

where X is the length of the DOC interval. This gives

(a) fs(xm, τs(m,n)) =
1

Δnsτs(m,n)
, m = 0, . . . ,M, n = 0, 1, . . . ,(17)

(b) ρs(xm, τs(m + 1, n)) =
εXΔmsτs(m,n + 1)

hmΔnsτs(m + 1, n)
, m = 0, . . . ,M − 1, n = 0, 1, . . . ,

as a definition for the scaled flux and density with fs, ρs = O(1). The scaled version
of the constitutive relation (14) then reads

(a) fs(xm, τs(m,n)) = φs(xm−1, τs(m,n), ρs(xm−1, τs(m,n))),(18)

(b) φs(xm−1, t, ρs) = min

{
μs(xm−1, t),

hm−1ρs
εXTs(xm−1)

}
.

(18)(b) suggests a natural choice for the grid in x-direction, namely

hm = εXTs(xm) =
XT (m)∑M−1
m′=0 T (m′)

, m = 0, . . . ,M − 1,(19)

which makes the propagation velocity in (18) equal to unity, i.e., we assign an interval
in the DOC variable x to processor Sm which is proportional to its processing time.
We will use this choice of the mesh from here on. Also, from now on we will drop the
subscript s for simplicity.
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3.2. Interpolation and weak formulation. We now proceed to show the
asymptotic validity of a conservation law in the limit ε → 0. The goal is an ini-
tial boundary value problem for a conservation law of the form

∂tρ + ∂xf = 0, f = min{μ(x, t), ρ}, f(0, t) = fA(t),(20)

together with some initial condition. There are several complications in this approach.

• First, the resulting initial boundary value problem cannot be defined on a
strip in (x, t) plane but on a domain bounded by t > τ I . This is more of a
notational inconvenience, but impacts the definition of initial conditions.

• From the original definition of the problem we cannot assume any kind of
smooth relation between two consecutive processors, i.e., we cannot assume
that the throughput times T (xm) and service rates μ(xm, t), defined by (15),
will converge to a smooth function in the limit ε → 0. The limiting problem
therefore has to be defined weakly.

• The most severe problem is that the flux function f can become discontinuous.
This can be seen from the following consideration. Since we cannot assume
any smooth relation between consecutive processors, we have to allow for the
possibility of a sharp drop in the service rate μ, i.e., μ(xm, t) > μ(xm+1, t),
which does not vanish in the limit M → ∞. At this point we can easily con-
struct a situation where f(xm, t) > μ(xm+1, t) holds. Since f(xm+1, t) is cut
off by the min-function, the limiting flux f will have to be discontinuous. Be-
cause mass still has to be conserved, this discontinuity has to be compensated
by a δ-function concentration in the density ρ at this point. This corresponds
to a bottleneck situation, where we feed into a processor at a rate higher
than its capacity over a significant period of time. Consequently, the queues
will grow, which is expressed as a δ-function in the limit. This situation will
actually occur right in the beginning of the supply chain if the boundary flux
fB(t) is chosen larger than the capacity of the first processor.

We deal with the above problem by redefining our concept of a solution. Instead
of deriving a conservation law for the density ρ we derive a hyperbolic equation for
the limiting N-function U in (2). We denote its approximation by u, set ρ(x, t) =
−∂xu(x, t), and integrate (20) once with respect to x. This gives

∂tu = min{μ(x, t),−∂xu}, lim
x→0−

u(x, t) = gA(t),
d

dt
gA(t) = fA(t).(21)

Clearly, if the solution u(x, t) is continuous and has a bounded x-derivative, we obtain
a solution ρ(x, t) of (20) by differentiating u with respect to x. However, (21) allows
for shock solutions which result in δ-functions in the variable ρ. Although the x-
derivative of u in this case becomes unbounded, the flux will remain bounded because
of the min-function. (−∂xu = ρ will always be bounded from below by zero.) We will
therefore show that, in the limit ε → 0, the N-function u satisfies a hyperbolic problem
of the form (21) weakly in x and t. To do so, we first have to define the variables
given on the nonuniform and nonrectangular mesh in (x, t) for continuous arguments
by piecewise constant interpolation. For a given gridpoint xm we first interpolate the
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grid functions ρ and f defined by (17) in time direction by

(a) f1(xm, t) = f(xm, τ(m,n)), τ(m,n) ≤ t < τ(m,n + 1),

m = 0, . . . ,M − 1, n ≥ 0

(b) ρ1(xm, t) = ρ(xm, τ(m + 1, n− 1)), τ(m + 1, n− 1) ≤ t < τ(m + 1, n),

m = 0, . . . ,M − 1, n ≥ 1,(22)

(c) fA(t) =
1

ΔnτA(n)
, τA(n) ≤ t < τA(n + 1).

Next we define the N-function u(xm, t) by

u1(xm+1, t) = u1(xm, t) − hm

X
ρ1(xm, t), m = 0, . . . ,M − 1, u1(x0, t) =

∫ t

τ(0,0)

fA(s) ds.

(23)

Given the functions φ1, u1 which are now defined for continuous time and discrete
space, we define the functions

(a) f2(x, t) = f1(xm+1, t), xm ≤ x < xm+1, m = 0, . . . ,M − 1,

(b) τ I2 (x) = τ I(m + 1), xm ≤ x < xm+1, m = 0, . . . ,M − 1,(24)

(c) u2(x, t) = u1(xm+1, t), xm ≤ x < xm+1, m = 0, . . . ,M − 1,

as functions of continuous space and time.

3.3. The limit ε → 0. We can now show that the so defined interpolant u2, f2

satisfies a weak version of (21). We have the following theorem.
Theorem 2. Given the scaled density and flux at the discrete points xm, τ(m,n),

as defined in (16), let the piecewise constant interpolant u2 and f2 be defined as in
(22). Let the scaled throughput times T (xm) stay uniformly bounded, i.e., hm = O(ε)
holds uniformly in m. Assume finitely many bottlenecks for a finite amount of time,
i.e., let Δmτ(m,n) be bounded for ε → 0 except for a certain number of nodes m
and a finite number of parts n, which stays bounded as ε → 0. Then, for ε → 0 and
maxhm → 0 the interpolated N -function and flux u2, f2 satisfy the initial boundary
value problem

(a) ∂tu2 = f2, t > τ I2 (x), 0 < x < X,(25)

(b) u2(x, τ
I(x)) = 0, lim

x→0−
u2(x, t) =

∫ t

τ2(0,0)

fA(s) ds,

in the limit ε → 0, weakly in x and t.
The proof of Theorem 2 is deferred to the appendix.
Remark. Theorem 2 establishes the asymptotic validity of the integrated con-

servation law (25)(a) for any N-curve u and any flux function f , derived from an
arbitrary sequence τ via the definition (13) and the interpolation formulas (22) and
(24). The constitutive relation f2 = min{μ,−∂xu2} is a consequence of the recursion
relation satisfied by the sequence {τ(m,n)} and, consequently, of Theorem 1.

Remark. In unscaled variables Theorem 2 implies that the density ρ(x, t) can be
approximately computed as ρ = −∂xu where the unscaled N-function u(x, t) is the
solution of

∂tu = min

{
μ−,−

X

MT0
∂xu

}
, 0 < x < X, lim

x→0−
u(x, t) =

∫ t

τ(0,0)

fA(s) ds,(26)
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μ−(x, t) := lim
y→x−0

μ(y, t).

Remark. The assumptions of Theorem 2 state that the number of nodes in the
supply chain is large, that the number of bottlenecks is small compared to the num-
ber of processors, and that each of the processing times is small compared to the
overall throughput time, i.e., T (m) <<

∑M−1
m′=0 T (m′) holds. At first glance, these

assumptions might seem rather restrictive. We will remove these restrictions in the
next section by introducing the concept of virtual processors, which will allow us to
arbitrarily increase M .

3.4. An exact solution for a single bottleneck. To illustrate the dynamics
induced by the conservation law (20), we compute an exact solution for the special
case of a single bottleneck. Suppose (20) is posed on the interval x ∈ [0, 1], with a
bottleneck at x = 1

2 , and we prescribe an arrival rate fA which can be processed
by the processors in front of the bottleneck but is larger than the capacity of the
processors behind the bottleneck. So we have

μ(x) =

{
μ1 for 0 < x < 1

2 ,
μ2 for 1

2 < x < 1,
μ2 < fA(t) < μ1.

The solution ρ(x, t) will then be given by a classical part ρc(x, t), with a jump discon-
tinuity at x = 1

2 , and a δ-function of the form q(t)δ(x − 1
2 ), compensating the jump

in the fluxes. The classical part ρc will just satisfy a one way wave equation with
constant velocity. So, we have

∂tρc + ∂xρc = 0, x ∈
(

0,
1

2

)
∪
(

1

2
, 1

)
, ρc(0, t) = fA(t), ρc

(
1

2
+, t

)
= μ2,

whose solution is given via characteristics by

ρc(x, t) =

{
fA(t− x) for 0 < x < 1

2 ,
μ2 for 1

2 < x < 1.
(27)

In order for the whole solution ρ(x, t) = ρc(x, t) + q(t)δ(x− 1
2 ) to be a spatially weak

solution of the conservation law (20), we have to satisfy∫ 1

0

φ(x)∂tρ(x, t) − min{μ(x), ρ(x, t)}∂xφ(x) dx = φ(0)fA(t) − φ(1) min{μ2, ρ(1, t)}

for any arbitrarily smooth test function φ(x). Integrating by parts separately on the
intervals (0, 1

2 ) and (1
2 , 1) gives∫ 1

0

φ(x)∂tρc(x, t) dx + q′(t)φ

(
1

2

)
+

∫
φ(x)∂x min{μ(x), ρc(x, t)} dx

−min

{
μ1, ρc

(
1

2
−, t

)}
φ

(
1

2

)
+ min{μ1, ρc(0, t)}φ(0) + min

{
μ2, ρc

(
1

2
+, t

)}
φ

(
1

2

)
= φ(0)fA(t).

Since ρc(x, t) < μ(x) will hold everywhere and ρc(0, t) = fA(t) holds, this reduces to

q′(t) = fA

(
t− 1

2

)
− μ2 = 0.(28)

Thus, away from the bottleneck at x = 1
2 the solution is given by (27), and the

bottleneck produces a buildup of the queue (a δ-function in this framework) with
strength (or queue length) q, which is governed by (28).
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4. Virtual processors. As pointed out in section 3, the asymptotic validity
of the differential equation (26) is given only for the case when the number M of
processors is large and each of the individual processing times T (m) is small compared

to the total processing time MT0 =
∑M−1

m=0 T (m). So, it excludes cf. the situation
where one processor takes up half of the overall processing time. In this section we will
relax this restriction by introducing the concept of virtual processors. The basic idea
is that one processor with a processing time T and a service rate μ can be replaced by
K virtual processors with the same service rate μ and processing times T

K . Thus, we
can make the total number of processors as large as we like, and the relative processing
times as small as we like, by introducing enough virtual processors. The purpose of
this section is to make this statement precise. Since, in doing so, we will keep the
service rates μ constant but decrease the processing times T , eventual bottlenecks
will occur only in the first virtual processor, and the queues of the additional virtual
processors will always remain empty. Given the recursion formula (8), we therefore
derive a condition for queues being always empty.

Lemma 1. Given the recursion (8) for the arrival times τ(m,n), let the arrival
rate in node Sm be below the service rate μ, i.e., let

τ(m,n + 1) − τ(m,n) ≥ 1

μ(m,n)
, n = 0, . . . ,(29)

hold. Furthermore let the queue be empty at the arrival of the first part, i.e., let

τ(m, 1) + T (m) ≥ τ(m + 1, 0) +
1

μ(m, 0)
(30)

hold. Then

τ(m + 1, n) = τ(m,n) + T (m), n = 1, . . . ,

holds.
Proof of Lemma 1. Define waiting time in the queue number m as Q(m,n) =

τ(m + 1, n) − τ(m,n) − T (m). Inserting this into (8) gives

Q(m,n + 1) = max

{
0, Q(m,n) + τ(m,n) − τ(m,n + 1) +

1

μ(m,n)

}
(31)

as a recursion for the waiting times Q(m,n). In particular,

Q(m, 1) = max

{
0, τ(m + 1, 0) − T (m) − τ(m, 1) +

1

μ(m, 0)

}
= 0

holds because of (30). Because of (29), the term τ(m,n)−τ(m,n+1)+ 1
μ(m,n) is always

nonpositive and therefore the recursion (31) has the trivial solution Q(m,n) = 0 for
n ≥ 1.

Lemma 1 will provide the basic tool to split a processor into K virtual processors.
The basic building block of the underlying idea is to split one processor into two.
Without loss of generality we perform this split on the first node in the supply chain.
We have the following lemma.

Lemma 2. Let the flow of parts in processor S0 be governed by

τ(1, n + 1) = max

{
τ(0, n + 1) + T (0), τ(1, n) +

1

μ(0, n)

}
,(32)
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with τ(0, n), n ≥ 0 and τ(1, 0) given and satisfying the compatibility condition τ(1, 0) ≥
τ(0, 0) + T (0). We replace (32) by two virtual nodes with the same processing rates
and the same total throughput time, i.e.,

(a) τ̂(1, n + 1) = max

{
τ̂(0, n + 1) + T̂ (0), τ̂(1, n) +

1

μ(0, n)

}
,

(b) τ̂(2, n + 1) = max

{
τ̂(1, n + 1) + T̂ (1), τ̂(2, n) +

1

μ(0, n)

}
,

(c) τ̂(0, n) = τ(0, n), n = 0, 1 . . . , τ̂(1, 0) = τ(1, 0) − T̂ (1), τ̂(2, 0) = τ(1, 0),

(33)

holds with T̂ (0) + T̂ (1) = T (0). Then the system (33) produces the same outflux as
the system (32), i.e., τ̂(2, n) = τ(1, n) n ≥ 0 holds.

Proof of Lemma 2. We show that the second virtual processor, i.e., the times
τ̂(1, n) and τ̂(2, n), satisfy the assumptions of Lemma 1. Because of (33)(a)

τ̂(1, n + 1) ≥ τ̂(1, n) +
1

μ(0, n)
, n ≥ 0,

holds, giving (29). To show (30) we note that

τ̂(1, 1) + T̂ (1) ≥ τ̂(1, 0) + T̂ (1) +
1

μ(0, 0)
= τ(1, 0) +

1

μ(0, 0)
= τ̂(2, 0) +

1

μ(0, 0)

holds. Because of Lemma 1

τ̂(2, n) = τ̂(1, n) + T̂ (1), n = 1, . . . ,(34)

holds, and (34) trivially holds for n = 0 as well because of the initial condition (33)(c).
We now eliminate τ̂(1, n) by inserting τ̂(1, n) = τ̂(2, n)− T̂ (1) into (33)(a) and obtain

τ̂(2, n + 1) = max

{
τ̂(0, n + 1) + T, τ̂(2, n) +

1

μ(0, n)

}
,

i.e., τ̂(0, n), τ̂(2, n) satisfy the same difference equation and initial and boundary con-
ditions as τ(0, n), τ(1, n).

By repeatedly using Lemma 2, we immediately obtain the following theorem, as
a corollary.

Theorem 3. Let the first processor S0 in the chain be governed by (8). If we
replace the single processor by K virtual processors with the same processing rates and
the same total throughput time, i.e., by

τ̂(m+1, n+1) = max

{̂
τ(m,n + 1)+

T (0)

K
, τ̂(m + 1, n)+

1

μ(m,n)

}
, m = 0, . . . ,K−1,

τ̂(0, n) = τ(0, n), τ̂(m, 0) = τ(1, 0) −
(
1 − m

K

)
T (0), m = 1, . . . ,K,

then we obtain the same outflux, i.e.,

τ̂(K,n) = τ(1, n), n ≥ 0,

holds.
So, in order to create the conditions appropriate for the application of Theorem

2, we would proceed as follows:
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1. Given the processing times T (m), m = 0, . . . ,M−1, cut each of the processors
Sm, m = 0, . . . ,M − 1, into K(m) virtual processors, such that T1 = T

K is

roughly equidistributed, giving M1 =
∑M−1

m=0 K(m) virtual processors.
2. If the number of virtual processors M1 is still too small for the asymptotic

regime in Theorem 2 to be valid, cut each of the virtual processors into
additional L subprocessors to arrive at M2 = LM1 total processors.

Clearly, the number M2 of virtual processors can be made as large as we like. No
additional bottlenecks are created by this procedure since μ remains constant within
each virtual processor belonging to one real processor, and a bottleneck can occur
only if there is a drop in the processing rate μ. So, the number of bottlenecks remains
finite as M2 → ∞. There is, however, a limit to this process since we have used the
average processing time T0 also to scale the service rates μ in (15). So, sending T0 → 0
would result in the scaled service rates μ, and therefore also the fluxes, going to zero.
To obtain a reasonable limiting problem we should choose M2 and T0 in such a way
that T0C0 = O(1) holds, where C0 is some characteristic value for the capacities, the
bounds on μ in (9). So, with the introduction of virtual nodes in the supply chain, the

results of section 3 really apply to the case when C0M2T0 = C0

∑M−1
m=0 T (m) >> 1

holds. For a stochastic queuing model in a steady state, this is, according to Little’s
law (see cf. [13]), a measure of the number of parts in the system. So the hyperbolic
equation (25) in Theorem 2 is asymptotically valid for a large number of individual
parts, i.e., precisely in situations where continuum models are computationally more
efficient than discrete event simulators.

5. Numerical experiments. In this section we conduct two numerical experi-
ments to verify Theorem 2 by comparing the solution of the hyperbolic problem (26)
with the direct solution of the recursion (8) for the transition times τ . In both cases
we solve (8); compute the WIP W , the N-curve U , and the flux F according to (1),
(2), and (3); and compare it to ρ, u, and f computed from the solution of the hyper-
bolic equation (26). The hyperbolic problem for the approximate N-curve u is solved
via a standard finite difference scheme of the form

(a) u(xm, tn+1) = u(xm, tn) + Δtf(xm, tn), m = 0, . . . ,M, Δt = tn+1 − tn,

(b) f(xm, t) =

(
min{μ(xm−1, t),− X

MT0Δxm−1
[u(xm, t) − u(xm−1, t)]} m = 1, . . . ,M

fA(tn) m = 0

)
.

(35)

For simplicity, we use constant time steps satisfying a CFL condition of the form
Δt ≤ MT0

X min{Δxm}. If the spatial meshsizes Δxm of the discretization of the
conservation law are chosen equal to the hm in (19), i.e., if we assign one gridpoint

to one node in the supply chain, this would give Δxm = XT (m)
MT0

, m = 0, . . . ,M − 1,
and a CFL condition Δt ≤ min{T (m)}. While this seems a natural choice it is not a
necessary one. In particular, in regions where the service rates μ vary slowly, a larger
spatial meshsize might be appropriate. Regardless of the choice of the spatial mesh
the node Sm in the supply chain will always occupy an interval of length hm. The
influx fA is computed according (11)(b) by

fA(τA(n)) =
1

τA(n + 1) − τA(n)
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and piecewise linear interpolation. Note, that the discretization (35) is equivalent to
discretizing the conservation law directly, i.e., if we define the discretized density ρ by

ρ(xm, tn) = −u(xm+1, tn) − u(xm, tn)

Δxm
, m = 0, . . . ,M − 1,

the discrete equation (35) becomes

(a) ρ(xm, tn+1) = ρ(xm, tn) − Δt

Δxm
[f(xm+1, tn) − f(xm, tn)], m = 0, . . . ,M − 1,

(b) f(xm, t) =

(
min{μ(xm−1, t),

Xρ(xm−1,t)
MT0

} m = 1, . . . ,M

fA(tn) m = 0

)
.

(36)

So, the discretization (35) is equivalent to directly discretizing the conservation law
for the density ρ, ignoring the issue of distributional solutions. Of course u in (35)
will still be discontinuous at bottlenecks, and ρ in (36) will grow like 1

Δx at these
gridpoints. The discretization (36) represents only the simplest first order upwinding
scheme for the hyperbolic conservation law. One could of course solve the hyperbolic
problem (26) by more sophisticated high resolution methods on a correspondingly
coarser mesh. Since this paper is concerned with the model per se, we felt that
using a higher order method would somehow cloud the issue of model properties by
introducing the artifacts of the numerical method.

In the first example we consider a supply chain of 3 suppliers with throughput
times T (0) = 1, T (1) = 3, T (2) = 1 time units and capacities C(0) = 15, C(1) =
10, C(2) = 15 parts per time unit. Setting the characteristic value for the capacity
C0 = 10, this gives a value of C0MT0 = 50 >> 1 for the average number of parts in
a steady state. Thus, we can create the regime of Theorem 2 by introducing virtual
processors according to section 4. We split the nodes S0 and S2 into 10 virtual nodes
each with capacities of 15 parts per unit time and node S1 into 30 virtual nodes with
capacities of 10 parts per unit time. All of the 50 virtual nodes now have a throughput
time of 0.1 time units and, setting the length X of the DOC interval equal to unity,
the original suppliers will occupy the intervals [0, 0.2], [0.2, 0.8], [0.8, 1]. We simply set
the service rates μ equal to the capacities, giving

μ(x, t) =

⎛
⎝15 for 0 < x < 0.2

10 for 0.2 < x < 0.8
15 for 0.8 < x < 1

⎞
⎠ .

We expect 2 possible bottlenecks, namely at x = 0.2, where the capacity drops,
and possibly at x = 0 if the influx exceeds 15 parts per unit time. We first solve
the recursion (8) for the transition times τ , starting with all empty queues, i.e.,
τ I(m + 1) − τ I(m) = T (m) = 0.1 holds, and set τ I(M) = 0. We compute the arrival
times randomly according to τA(n+1)−τA(n) = 1

fA(τA(n))
, τA(0) = τ I(0). To study

the development of bottlenecks, we choose a function fA(t) as the influx rate, which
is first below the minimum capacity C(1) = 10, then between the minimum and the
maximum capacity 10 and 15, then above the maximum capacity, and finally drops
back to its original value. We add a random perturbation to a piecewise constant
function. The influx rate fA is shown in Figure 1. We compute fluxes and densities
from the recursion (8) and the discretized conservation law (36). Figure 2 shows the
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Fig. 2. Work in progress.
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Fig. 3. Outflux.

corresponding WIP and Figure 3 shows the outflux of each node in the supply chain.
The dots are computed from a time averaging of the solution of the recursion (8) for
the transition times τ , and the solid line is computed from the conservation law (36).

So, the WIP of node S0m in the chain is computed as
∫ 0.2

0
ρ(x, t) dx.

Figures 4, 5, and 6 depict the solution of the hyperbolic problem. Figure 4
shows the antiderivative of the density ρ in the DOC direction, i.e., −u(x, t)+u(0, t),
and Figure 5 shows the flux. As expected, we see bottlenecks, i.e., discontinuities,
developing and vanishing again at x = 0 and x = 0.2. As long as the nodes in the
supply chain work below capacity, i.e., as long as the governing equation is ∂tρ +
X

MT0
∂xρ = 0, we see the propagation of the fluctuations in the influx fA through the

system. As soon as the nodes go into saturation, i.e., as soon as ∂tρ + ∂xμ holds,
the solution becomes constant but develops discontinuities at the bottlenecks. Figure
6 shows the density ρ, which develops concentrations at x = 0 and x = 0.2, on a
logarithmic scale.

As a second example, we consider a “long” supply chain with unstructured through-
put times and capacities. We choose M = 80 and choose 80 random throughput
times between T = 1 and T = 5 time units. For simplicity, we set C(m) = μ(m) =

1
T (m) , m = 0, . . . ,M − 1. So each processor handles only 1 part per unit time, and

we use the maximally possible relase rates μ. Figure 7 shows the corresponding mesh
in the DOC variable 0 ≤ x ≤ X = 1 and the capacities. So the meshsizes hm are
according to (19) randomly distributed. All the assumptions of Theorem 2 are satis-
fied, except that we cannot guarantee a relatively small number of bottlenecks, since
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the service rates μ now have an arbitrary number of significant drops. We choose
Δxm = hm, i.e., we assign precisely one gridpoint per node for the numerical solution
of the partial differential equation. Again, this goes beyond standard convergence
theory since we do not resolve the rapidly varying function μ(x) in the continuous
formulation. Figure 8 shows the influx and the outflux of the last node in the supply
chain. Again, the dots denote the time averaged results computed from the recursion
formula (8). The influx is chosen at and below the minimum capacity Cmin = 0.2,
with a spike at t ≈ 1500. Figure 9 shows the corresponding total WIP of the whole
supply chain. We observe almost perfect agreement although we have not resolved the
service rate function μ(x) on the computational mesh. Figure 10 shows the density ρ
on a logarithmic scale. We see the development of six bottlenecks. So, although the
relationship between capacities of neighboring processors is completely random, the
supply chain organizes itself to produce only a few bottlenecks and the assumptions
of Theorem 2 are still satisfied.

6. Conclusions. We have derived a partial differential equation modeling a sup-
ply chain of arbitrary length with a large number of parts. Other than in similar ap-
proaches, this model is not based on some quasi-steady-state assumptions about the
stochastic behavior of the involved queues, but rather on a simple deterministic rule
for releasing parts from the buffer queues into the processors. The presented model
incorporates the concept of the capacity of a processor in a natural way in a transient
setting, while models based on queuing theory have to achieve this through a relation
between throughput time and work in progress which is somehow extrapolated from
the steady state situation. The model contains a distributed parameter (the service
rates), which is constrained by the capacities, and can be used to control the behavior
of the supply chain. It can be expected that relatively simple rules can be found
governing these service rates which guarantee a certain behavior of the supply chain,
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cf. the avoidance of bottlenecks.

7. Appendix.

Proof of Theorem 1. We first rewrite (8). Defining

Δnτ(m,n) := τ(m,n + 1) − τ(m,n), Δmτ(m,n) := τ(m + 1, n) − τ(m,n),
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(8) can be written as

0 = min

{
Δmτ(m− 1, n + 1) − T (m− 1),Δnτ(m,n) − 1

μ(m− 1, n)

}
.

Using the definition (13) of ρ and f , this is equivalent to

0 = min

{
hm−1ρ(xm−1, τ(m,n))

f(xm, τ(m,n))
− T (m− 1),

1

f(xm, τ(m,n))
− 1

μ(m− 1, n)

}
.

To simplify the notation, we will drop the indices m and n and write the above as
min{hρ

f − T, 1
f − 1

μ} = 0. Furthermore, we will write this relation in the variable

z = 1
f . So we have to invert the function α(z, ρ), given by

y = α(z, ρ) = min

{
hρz − T, z − 1

μ

}

as a function of z for any given parameter ρ, i.e., find a function β(y, ρ) satisfying

y = α(z, ρ) ⇐⇒ z = β(y, ρ).

If this is possible, then f is given in terms of ρ as f = 1
β(0,ρ) = φ(ρ). There are two

different cases to consider, namely the case 0 < hρ < 1 and the case hρ ≥ 1.
Case 1: hρ ≥ 1. In this case α is piecewise defined as

y = α(z, ρ) =

(
zhρ− T for z < z0 =

T− 1
μ

hρ−1

z − 1
μ for z > z0

)
.(37)
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(In the case hρ = 1 the second case in (37) simply never occurs.) This monotonically
increasing and piecewise linear function of z can be inverted as

z = β(y, ρ) =

(
y+T
hρ for y < y0 := z0 − 1

μ

y + 1
μ for y > y0

)
.

Evaluating β at y = 0 gives

β(0, ρ) =

(
T
hρ for 0 < y0 =

T−hρ
μ

hρ−1
1
μ for 0 > y0

)
=

(
T
hρ for 1

μ < T
hρ

1
μ for 1

μ > T
hρ

)
= max

{
1

μ
,
T

hρ

}
.

Case 2: 0 < hρ < 1. In this case, we proceed in the same way obtaining the
piecewise linear definition

y = α(z, ρ) =

(
z − 1

μ for z < z0 =
T− 1

μ

hρ−1

zhρ− T for z > z0

)

for the function α. Note, that the ranges for the linear pieces of α are now switched.
Inverting α gives

z = β(y, ρ) =

(
y + 1

μ for y < y0 := z0 − 1
μ

y+T
hρ for y > y0

)
,

and evaluating β at y = 0 gives

β(0, ρ) =

(
1
μ for 0 < y0 = T−Dhρ

hρ−1
T
hρ for 0 > y0

)
=

(
1
μ for 1

μ > T
hρ

T
hρ for 1

μ < T
hρ

)
= max

{
1

μ
,
T

hρ

}
.

So, in both cases we obtain the same value for the inverse β evaluated at y = 0.
Setting φ(ρ) = 1

β(0,ρ) gives (14).
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Proof of Theorem 2. In order to avoid dealing with the boundary conditions, we
extend the definition of the variables ρ, f, u, τ onto the whole real line x ∈ R. We
define

xm = −mh0 for m ≤ −1, xm = X + (m−M)hM−1 for m ≥ M + 1.

Next we extend the values of the arrival times τ for m < 0 and m > M . We set

τ I(m) = τ I(0) + mh0, m < 0,

τ I(m) = τ I(M) + (m−M)hM−1, m > M,

τ(m,n + 1) = τ(m,n) + εΔnτ
A(n), m ≤ 0, n ≥ 0,

τ(m,n + 1) = τ(m,n) + εΔnτ(M,n), m > M, n ≥ 0.

With this definition the values of the flux function f1 in (22) satisfy

f(xm, τ(m,n)) =
1

Δnτ(m,n)
= fA(τ(m,n)), m < 0, n ≥ 0,

and the corresponding interpolant f2 in the continuous x-variable satisfies

lim
x→0−

f2(x, t) = fA(t).(38)

Now we consider a compactly supported test function ψ(x, t) and its discrete an-
tiderivative Ψ given by

Ψ(xm, t) =

m−1∑
m′=−∞

hm′ψ(xm′ , t), Ψ(xm+1, t) − Ψ(xm, t) = hmψ(xm, t).(39)

Since ψ and Ψ are compactly supported in the time direction, we have for any fixed
index n the trivial equality

∞∑
m=−∞

[Ψ(xm+1, τ(m + 1, n)) − Ψ(xm, τ(m,n))] = 0 ∀n,

which we sum over the index n and multiply by ε, giving

0 = ε
∞∑

n=0

∞∑
m=−∞

[Ψ(xm+1, τ(m + 1, n)) − Ψ(xm, τ(m,n))] = A−B,

and A and B are defined by

(a) A = ε
∞∑

n=0

∞∑
m=−∞

[Ψ(xm+1, τ(m + 1, n)) − Ψ(xm, τ(m + 1, n))]

= ε
∞∑

n=0

∞∑
m=−∞

hmψ(xm, τ(m + 1, n)),

(b) B = ε
∞∑

n=0

∞∑
m=−∞

[Ψ(xm, τ(m,n)) − Ψ(xm, τ(m + 1, n))].(40)
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We first estimate the spatial difference A. From the definition of the interpolant f1

and the definition (17) of f , we have

∫ τ(m,n+1)

τ(m,n)

f1(xm, t) = εΔnτ(m,n)f(xm, τ(m,n)) = ε.

Inserting this into (40)(a) gives

A =

∞∑
n=0

∞∑
m=−∞

hmψ(xm, τ(m + 1, n))

∫ τ(m+1,n+1)

τ(m+1,n)

f1(xm+1, t) dt

=

∞∑
n=0

∞∑
m=−∞

hm

∫ τ(m+1,n+1)

τ(m+1,n)

ψ(xm, t)f1(xm+1, t) dt + O(ε)

=

∞∑
m=−∞

hm

∫ ∞

τI(m+1)

ψ(xm, t)f1(xm+1, t) dt + O(ε),

where we have committed an O(ε) error by taking the test function ψ inside the
integral. Because of the definition (24) of the interpolant f2 in the spatial direction,
the term hmf1(xm+1, t) can be written as an integral with respect to x giving

A =

∞∑
m=−∞

∫ ∞

−∞
ψ(xm, t)

[∫ xm+1

xm

H(t− τ I2 (x))f2(x, t) dx

]
dt + O(ε),

A =

∫ ∫
H(t− τ I2 (x))ψ(x, t)f2(x, t) dxdt + O(ε),(41)

where we have committed another O(ε) error by taking the test function ψ inside the
x-integral. Here H denotes the usual Heaviside function.

Now, we turn to the term B in (40)(b). We replace the difference in the time
direction by a partial derivative, giving

B = −ε2
∞∑

n=0

∞∑
m=−∞

∂tΨ(xm, τ(m + 1, n))Δmτ(m,n) + O(ε).

Again, we commit only an error of order O(ε) in doing so, even if, according to the
assumptions, a bounded number of the Δmτ(m,n) is of order O( 1

ε ), since the test
function Ψ will be bounded. We split the n = 0 term in the sum and write

B = −ε2
∞∑

n=1

∞∑
m=−∞

∂tΨ(xm, τ(m + 1, n))Δmτ(m,n)

−ε2
∞∑

m=−∞
∂tΨ(xm, τ I(m + 1))Δmτ I(m) + O(ε).

Clearly, the second term is of order O(ε) again and can be neglected. Using the
definition (17)(b) of ρ, we obtain

B = −ε

∞∑
n=1

∞∑
m=−∞

hm

X
∂tΨ(xm, τ(m+1, n))ρ(xm, τ(m+1, n−1))Δnτ(m+1, n−1)+O(ε).
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Now, we repeat essentially the same procedure used for the term A. From (17) and
the definition of ρ1 we obtain

∫ τ(m+1,n)

τ(m+1,n−1)

ρ1(xm, t) dt = εΔnτ(m + 1, n− 1)ρ(xm, τ(m + 1, n− 1))

B = −
∞∑

n=1

∞∑
m=−∞

hm

X
∂tΨ(xm, τ(m + 1, n))

∫ τ(m+1,n)

τ(m+1,n−1)

ρ1(xm, t) dt + O(ε)

= −
∞∑

m=−∞

hm

X

∫ ∞

τI(m+1)

∂tΨ(xm, t)ρ1(xm, t) dt + O(ε).

Using the definition of ρ1 as the spatial difference of −u1 gives

∞∑
m=−∞

∫ ∞

−∞
H(t− τ I(m + 1))∂tΨ(xm, t)[u1(xm+1, t) − u1(xm, t)] dt + O(ε).

Regrouping the terms in the above expression yields

B = −
∞∑

m=−∞

∫ ∞

−∞
H(t− τ I(m))∂t[Ψ(xm, t) − Ψ(xm−1, t)]u1(xm, t) dt + O(ε)

= −
∞∑

m=−∞

∫ ∞

−∞
H(t− τ I(m))hm−1∂tψ(xm−1, t)u1(xm, t) dt + O(ε)

= −
∞∑

m=−∞

∫ ∞

−∞
∂tψ(xm−1, t)

[∫ xm

xm−1

H(t− τ I2 (x))u2(x, t) dx

]
dt + O(ε),

giving altogether

B = −
∫ ∞

−∞

[∫ ∞

−∞
∂tψ(x, t)H(t− τ I2 (x))u2(x, t) dx

]
dt + O(ε).(42)

Combining (41) and (42) gives∫ ∞

−∞

[∫ ∞

−∞
H(t− τ I2 (x))[ψ(x, t)f2(x, t) + ∂tψ(x, t)u2(x, t)] dx

]
dt = O(ε),

which, in the limit ε → 0, is the weak formulation of

∂tu2 = f2, x ∈ R, t > τ I2 (x), u2(x, τ
I(x)) = 0.

Because of the definition of u1(x0, t) in (23) this is the solution of (25) on the interval
[0, X].
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STOCHASTIC MODELING AND SIMULATION OF TRAFFIC
FLOW: ASYMMETRIC SINGLE EXCLUSION PROCESS WITH

ARRHENIUS LOOK-AHEAD DYNAMICS∗

ALEXANDROS SOPASAKIS† AND MARKOS A. KATSOULAKIS†

Abstract. A novel traffic flow model based on stochastic microscopic dynamics is introduced
and analyzed. Vehicles advance based on the energy profile of their surrounding traffic implementing
the “look-ahead” rule and following an underlying asymmetric exclusion process with Arrhenius
spin-exchange dynamics. Monte Carlo simulations produce numerical solutions of the microscopic
traffic model. Fluctuations play an important role in profiling observationally documented but, at
the simulation level, elusive traffic phenomena. Furthermore, based on scaling and limit arguments
we obtain a macroscopic description of this microscopic dynamics formulation which up to leading
term of the expansions takes the form of integrodifferential Burgers or higher-order dispersive partial
differential equations. We outline connections and comparisons of the hierarchical models presented
here (microscopic, macroscopic) with other well-known traffic flow models.

Key words. traffic flow, look-ahead stochastic Arrhenius microscopic dynamics, Monte Carlo
simulations

AMS subject classifications. 90B20, 60K30, 65C35, 65C05
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1. Introduction and overview. Building on the idea presented in [61], a new
modeling approach of traffic flow is developed, which, based on Arrhenius microscopic
stochastic dynamics [66], is adapted to vehicular traffic. We construct an asymmetric
single exclusion process (ASEP) whose dynamics include interactions with other vehi-
cles ahead (“look-ahead” rule). The model has remarkable attributes and similarities
when compared to known observed traffic behavior and is able to predict most of the
widely accepted traffic states at the microscopic level.

Traffic states that are commonly observed by researchers at the microscopic level
are quite complex and at times even chaotic [22, 28, 29]. Some of the major traffic
states that are commonly observed at the microscopic level are free flow, congested
flow, synchronized traffic, and wide moving jams. Free flow is easily recognized by
the ability of drivers to attain their desired speeds under very little, if any, interaction
with other vehicles. Congested flow, in contrast, is characterized by heavy vehicular
interactions and usually very low flows. In general in the regime above some critical
density (≈20% jam density), we usually observe the most interesting microscopic ve-
hicular traffic phenomena. Among them, the phenomenon of synchronized traffic, as
recently observed [29], may occur when above critical density and displays complex
behavior. Synchronized traffic usually occurs at on ramps when vehicles are added
to an already crowded highway. Although the corresponding flows are widely scat-
tered, synchronized traffic is characterized by high vehicle flows and at the same time
increasing vehicle densities [22, 27]. It has been observed [23, 28] that synchronized
traffic breaks down (known as the “break-down” phenomenon) with a variety of “stop-
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and-go” traffic waves and occurrence of even more chaotic phenomena [22, 28, 15].
Meta-stability and hysteresis [65, 9] effects (as vehicle densities increase) may also
be associated with this behavior. Last, the so-called wide moving jams are localized
structures moving upstream and are characterized by long (widthwise) waves whose
“fronts are shorter than their width” [58]. Naturally vehicle speeds change sharply
through the two fronts making up the wide moving jam. As those waves travel slowly
upstream vehicles are forced to interact with a number of them. Wide moving jams
appear also at densities above critical density [27, 29]. In general vehicles first tran-
sition from free flow to synchronized flow and then later, at a different location, we
observe the transition to a wide moving jam [27, 58].

Attempts to model vehicular traffic date as far back as 1932 [19]. At first such
attempts were mainly empirical and emphasized fitting parameters to the particular
conditions at hand. However it is generally agreed that the “parameters of the model
should be intuitively easy to calibrate and the corresponding values should be realistic”
[22]. As a result, modeling approaches evolved and a variety of models and new
approaches emerged, ranging from car-following to gas-dynamic to hydrodynamic and
more recently cellular automaton to counter this problem.

Car-following (or follow-the-leader) models [17, 16, 54, 12, 69] appeared as a way
of obtaining equations which can be used in a wider context than their (empirical)
predecessors. As the name denotes, car-following models describe traffic behavior
based on the vehicle leading closely up front. In some of these models [67] vehicles
try to converge to their preferred (following) distance, relative to the vehicle in the
front, thus creating an oscillatory behavior due to imperfect perception [29]. Clearly
these models are not suitable, or designed, for large traffic streams.

The emergence of gas-dynamics-like (mesoscopic) [31, 25, 23, 64, 60, 59] and
hydrodynamic-like (macroscopic) [52, 68] traffic models starting in the 1960s pro-
duced partial differential equations which attempt to describe traffic parameters of
interest such as the density, velocity, and flow at larger time and spatial scales, thus
encompassing larger traffic streams. Among them the fundamental model of Lighthill
and Whitham [42], reflecting conservation of vehicles, is prominent. In its diffusive
version [68], assuming a linear type of equilibrium velocity-density relationship [19],
Vequil = Vmax(1 − c/cmax) it takes the form of the Burgers equation,

∂g

∂t
+ g

∂g

∂r
= D

∂2g

∂r2
,(1.1)

where D > 0 is a diffusion constant, g = Vmax (1 − 2c/cmax) , and c denotes the
density. We refer to [24] for further comments and references.

Optimal velocity models [47, 2, 64] emerged at almost the same time as car-
following models. Newell [54] was the first to propose the following formulation for
the equation of motion:

dxj(t + τ)

dt
= V (Δxj(t)),

where xj(t) is the position of vehicle j at time t and τ is a delay time. Here Δxj(t)
is the headway of vehicle j at time t while V denotes a known optimal velocity
rule. It has been shown [48] that some such optimal velocity traffic models can
also be interpreted through the well-known mass transfer problem. Optimal velocity
models have been used [47, 48, 34] to derive some of the well-known nonlinear wave
equations such as Burgers, KdV, and modified KdV. Solutions of those nonlinear
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wave equations are subsequently shown [48, 47] to describe different traffic regions:
free flow, metastable region, unstable region. For an extended review of optimal
velocity models see further comments and references in [48] and [6].

More recently, with the help of faster computers, cellular automaton (CA) mi-
croscopic traffic models have produced promising results when compared to traffic
observations of similar spatial and time scales. Von Neumann introduced CA in 1950
in his abstract theory to study the logical conditions for self-reproducing machines [7].
It was, however, first due to Conway’s game of life and later Wolfram [62, 70], which
made CA well known in the dynamical systems community. The now famous rule CA
184, which has been studied in detail as a surface growth [36] (see also [14] for more
comments), is widely implemented in CA traffic models. Since then the concept of
CA has been applied and extended to model a wide variety of systems [39, 45].

To our knowledge [6] the first CA model for vehicular traffic was introduced
by Cremer and Ludwig [8]. However, it was due to the contributions of Nagel and
Schreckenberg [50] that CA models became widely known in traffic modeling. A
number of improvements [32, 33, 49, 3] have been proposed since the original Nagel–
Schreckenberg CA model, which also introduced random effects. These effects are
deemed to better predict chaotic behavior of observed traffic at the microscopic scale.
More recently a new CA, coded CA 184a, has been proposed by Nelson for traffic
flow [53]. Similarly, development of discrete models proposed by Li [44], allows essen-
tial features of traffic to be captured and a better description of complex nonlinear
phenomena to be studied.

In this work we extend the usual lattice-gas dynamics to vehicles. Based on an
underlying stochastic model we reproduce some of the observed behavior of vehicu-
lar traffic when scrutinized under similar temporal and spatial scales. We assume a
one-dimensional periodic (single-lane loop highway) lattice while we refer to [11] for
generalizations (two-lane highway with entrances and exits). We start by obtaining
suitable interpretations of many of the usual parameters of Ising systems and in many
instances absorb as many of those parameters as possible to adapt our model to ve-
hicular traffic observations. Special attention must be exercised to the application of
the proper microscopic stochastic dynamics. Spin-exchange (diffusion) dynamics are
therefore implemented to enforce conservation of vehicles. Overall we introduce the
ASEP [13, 35, 40], guaranteeing that vehicles do not occupy the same site. An added
novelty of this model is that vehicles are forced to move toward one direction since
the dynamics, depending on spatial forward Arrhenius interactions, implement one-
sided potentials and a look-ahead feature which can be considered to represent driver
behavior. A variety of ASEP models without look-ahead Arrhenius interactions have
been studied in [18]. Numerically we implement a kinetic Monte Carlo algorithm sim-
ulating aperiodic, consecutive (not parallel) microscopic stochastic dynamics. Among
its many features the proposed stochastic model is able to predict spontaneous jam
formation, “slow to start” (retarded acceleration) [63], and timely braking [58].

We also obtain kinetic mesoscopic PDEs derived in suitable asymptotic limits from
the microscopic model which predict traffic observables for the appropriate validity
ranges of these equations. Up to leading order we obtain Burgers and/or dispersive-
type PDEs. We outline several connections between the hierarchical macroscopic
models obtained through our expansions and other well-known traffic flow models
[68, 54, 47, 34, 48, 28] and equations [26] of similar form. We examine these features
in detail.

We start with an overview and derivation of the full model and present the de-
tails of the dynamics comprising our stochastic process in section 2. We subsequently
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calibrate the free parameters of the stochastic model and produce the fundamental
diagram (an important traffic engineering flow-density relationship) and other rele-
vant solutions for our model in the numerical Monte Carlo simulations in section 3. In
section 4 we obtain deterministic limit closures of our stochastic microscopic model,
thus obtaining mesoscopic and macroscopic PDEs and systems of finite difference
equations. Numerical comparisons of those models are presented in the same section.
Final remarks and conclusions can be found in section 5. In the appendix we ana-
lyze briefly actual and theoretical data-gathering techniques which are in general of
fundamental importance for the comparisons carried out in this work and elsewhere.

2. ASEP with Arrhenius look-ahead dynamics. We propose here an ASEP
specifically equipped with conservative Arrhenius dynamics including a novel look-
ahead parameter L. As a result we obtain a microscopic traffic flow model and its
corresponding semigroup generator while introducing the notation to be used and
general underlying assumptions.

We start by defining our physical space on a one-dimensional, periodic lattice,
representing a one-lane loop highway. We partition our lattice into N cells, L =
{1, 2, . . . , N}. On each of the lattice points x ∈ L we define an order parameter σ(x)
via

σ(x) =

{
1 if a vehicle occupies site x,
0 if site at x is empty (no vehicle).

(2.1)

A spin configuration σ is an element of the configuration space Σ = {0, 1}L and we
write σ = {σ(x) : x ∈ L} denoting by σ(x) the spin at x.

Similarly to the Arrhenius dynamics for Ising systems [66] we let the interaction
potential (which here will dictate the local behavior of vehicles) have the form

U(x, σ) =
∑
y∈L
y>x

J(y − x)σ(y),(2.2)

where J denotes an anisotropic short range intervehicle interaction potential,

J(x, y) = γV (γ(y − x)) , x, y ∈ L,(2.3)

where γ = 1/(2L+1) is a parameter prescribing the range of microscopic interactions
and therefore L denotes the potential radius. Note that (2.2) in effect implements
the interactions with vehicles up to range L ahead of the vehicle at position x, thus
enforcing the look-ahead rule. Physically since a vehicle (or cell) length is taken to
be 22 feet, then the look-ahead rule which is enforced by (2.2) allows drivers to see
traffic at a physical distance which is L · 22 feet ahead of their vehicle. Specifically we
let V : R → R and set

V (r) = 0, r ∈ R− and V (r) = 0 for r ≥ 1.

Note that the interaction potential U(x) could be further enriched with the addition of
an external potential h. This potential h ≡ h(x, t) could vary in space but also time if
so desired to account for temporal and spatial traffic situations (i.e., rush hour traffic).

There are several different choices for dynamics which we can employ: Arrhenius,
Metropolis, Kawasaki, etc. We implement spin-exchange Arrhenius dynamics. Un-
der this engine the simulation is driven based on the energy barrier a particle has



STOCHASTIC TRAFFIC FLOW 925

L

Fig. 1. Simple schematic of the look-ahead rule (for L = 4 cells) pertaining to vehicle motion
in the lattice for three different traffic examples. The process automatically simulates effects such as
braking, acceleration, and simple exclusion rule through the interaction potential U(x, σ) (2.2) for
the provided range, L.

to overcome in changing from one state to another. This energy barrier is found by
calculating the potential energy of each vehicle based on (3.1) and performing a move
only if that energy is higher than a given threshold. (Note that these dynamics are dif-
ferent from the usual Metropolis dynamics, where a move is encouraged whenever the
energy difference between the current position and the new position is high enough.)

During such a spin-exchange between nearest neighbor sites x and y the system
will actually allow the order parameter σ(x) at location x to exchange value with the
one at y. This is interpreted as advancing a vehicle from the site at x to the empty
site at y. Note that based on the construction of our potential U it is not possible
to move from an occupied site to another occupied cite; see Figure 1. In general, the
rate at which a process will do this for spin-exchange Arrhenius dynamics is

c(x, y, σ) =

⎧⎨
⎩

c0 exp[−U(x, σ)] if y = x + 1, and σ(x) = 1, σ(y) = 0,
if σ(x) = 0 σ(y) = 1,

0 otherwise
(2.4)

The parameters comprising the dynamics here are

c0 = 1/τ0(2.5)

with τ0 the characteristic or relaxation time for the process and U(x, σ) as in (2.2).
Overall given (2.4) and the dynamics just described the probability of spin-

exchange between x and y during time [t, t + Δt] is

c(x, y, σ)Δt + O(Δt2).(2.6)

Clearly for one-lane traffic y corresponds to either x− 1 or x + 1 in (2.4). Note that
the exchange, due to the specific construction of the interaction potential J in (2.3),
can take effect if and only if the location at x is occupied while the location at y is
not. A simple schematic of the lattice and some simple interactions are provided in
Figure 1. At the same time, vehicles are restricted (exclusion rule) with performing
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an exchange move backward—an unrealistic move for vehicular traffic—by definition
of the dynamics (2.4). Note we do not allow backward moves at all since they are not
part of the dynamics.

In summary this model is determined by the characteristic time, interaction
strength, and look-ahead

τ0, J0 and L,

respectively, and driven by our Arrhenius dynamics stochastic process {σt}t≥0 with
rate (2.4).

The parameter c0 will allow us to set the maximum speed of vehicles (which we
do in the calibration section (3.1)) while the other parameters L and J0 will be chosen
appropriately based on known traffic behavior or other physical constraints which we
present in our numerical investigations.

More rigorously we can define the generator for this stochastic process {σt}t≥0.
Let f be an arbitrary test function defined on L∞(Σ), where Σ is the configuration
space Σ = {0, 1}L. Then the generator, M , of the process is defined,

Mf(σ) =
∑
x∈L

c0σ(x)(1 − σ(x + 1)) exp(−U(x, σ))[f(σx,x+1) − f(σ)](2.7)

with c0 from (2.5) and

σx,x+1 =

⎧⎨
⎩

σ(y), y �= x, x + 1,
σ(x + 1), y = x,
σ(x), y = x + 1,

denotes an exchange of the spins between locations x and x + 1. We refer to [40, 41]
for background on generators and exclusion processes.

3. Monte Carlo simulations and benchmarks. We now present numerical
implementations of the microscopic stochastic traffic flow model derived in section 2.
We start by physically interpreting the nondimensional model variables and subse-
quently calibrating our model for the free parameters τ0, J0 and L with respect to
well-known quantities from real traffic data. Last, as a basic benchmark, we also ob-
tain the fundamental diagram corresponding to the flow-density relationship dictated
by our model.

In the simulations we choose a simple constant potential of the form

V (r) =

{
J0 if 0 < r < 1
0 otherwise

for J0 > 0,(3.1)

where J0 is a parameter which based on its sign describes attractive repulsive or no-
interactions. In our simulations we implement J0 > 0, which implies that vehicles are
attracted by the empty space in front of them. Note that (3.1) imposes only forward
interactions and the dynamics (2.4) do not allow for backward moves. Thus vehicles
move toward the empty space in the highway with an exclusion rule since we allow
only one vehicle per site; see Figure 1. We have therefore created an ASEP [35] with
interactions in one direction. In fact, the proposed dynamics reduce to an ASEP-type
evolution if a particle/vehicle does not have any other vehicles in front of it beyond the
interaction radius L in (2.3). In our numerical simulations we implement piecewise
constant (J0 = 1), short-range local interactions. However, we can also impose a V ,
in the form of a one-sided Maxwellian, which could be more realistic.
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We let the actual physical length of each cell to be 22 feet. This allows for the
average vehicle length plus safe distance. Therefore for a vehicle which has an average
speed of 65 miles per hour we obtain a natural estimate of time to cross a cell,

Δtcell =
22 feet

65 miles/hour
≈ 1

4
sec.(3.2)

In this work we start by modeling an infinite length road (ring road) with no entrances
or exits so as to observe certain known traffic behavior and compare with other similar
works [50].

Given the (one-sided) structure of the potential (2.2) we allow vehicles (or drivers)
to be able to perceive traffic forward of their position up to a possible distance (look-
ahead) of four cells or up to 88 feet—vehicle lengths plus safe distance. This is
automatically implemented in the calculation of the interaction potential (2.2) and
therefore plays a decisive role in the decision for making a move to a new location
ahead through (2.4) and subsequently (2.6). However, we have also run simulations
(not presented here) with a look-ahead of three and two vehicle lengths for comparison
purposes. Further remarks regarding the influence of the look-ahead parameter can
be found in section 4.4 and especially Figure 9.

We implement a kinetic Monte Carlo (KMC) simulation based on [4]. We refer
to [61] for details on how the spin-exchange Arrhenius dynamics algorithm is applied.
As expected, a KMC algorithm produces no null steps and therefore every iteration
is a success. In that respect our KMC algorithm continues to choose and move
vehicles at every step by skipping the idle waiting which occurs in usual Monte Carlo
simulations and simply adjusting the simulation time by the appropriate amount, as
if it had waited for that long. This is quite useful for the cases of high densities of
vehicles or even more generally when a process reaches equilibration.

3.1. Calibration and validity. We start by calibrating our code through the
free parameters J0 and τ0 by simulating a free-flow regime where we expect all vehicles
to drive at their desired speed. We set such a speed to be 65 miles per hour. This is
accomplished by the characteristic time τ0, which allows us to calibrate the maximum
velocity at which vehicles would like to drive assuming no other vehicles up front.
Naturally, due to the stochasticity inherent in our simulation some vehicles will drive
faster while some slower than the set limit of 65 miles per hour. As pointed out
earlier the free parameter J0 indirectly influences how drivers react to conditions in
front of them and subsequently allows us to set the velocity of an upstream front
(which researchers estimate it to be approximately −10 miles per hour [22, 58]). In
Figure 2 we record all the parameters used and the average velocities of a stream of
traffic which is initially randomly distributed under free-flow conditions. Note that
for the chosen parameters τ0 = .23 and J0 = 6 we obtain the desired velocity of 65
miles per hour and velocity out of a jam of ≈−10 miles per hour. Also note that
other pairs of τ0 and J0 are possible which easily adjust the traffic model for different
standards set in other countries or regions.

3.2. Monte Carlo simulations. Using the calibrated parameters for J0 and
τ0 from section 3.1 we now obtain the fundamental diagram (see the Appendix for
details), the density—flow relationship in Figure 3, and the flow-velocity relationship
in Figure 4. In general we can implement a number of different types of initial
conditions which we make specific for each example considered. For these figures
we use a random initial vehicle distribution and observe the behavior of the traffic
stream as density increases incrementally.



928 ALEXANDROS SOPASAKIS AND MARKOS A. KATSOULAKIS

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Total time 1.9853 min. Coverage = 50%.

To
ta

l d
is

ta
nc

e 
1 

m
ile

s 
(p

er
io

di
c 

bd
ry

).

Spatial and temporal vehicle allocations. 

τ
0
=0.23, J

0
=6

Total Veh.120

65 m/h 

−10 m/h 

Fig. 2. Calibration of parameters permitting a desired vehicle speed of 65 miles per hour and
upstream front velocity of ≈−10 miles per hour. We take a look-ahead of L = 4. Initial density
corresponds to a traffic release problem (i.e., bumper-to-bumper vehicles up to 0.5 miles and no
vehicles after that).

It is of particular interest to analyze the simulated results for the well-established
behavior of actual traffic at high densities, which includes stop-and-go waves, con-
gested traffic, and other such interesting phenomena, all of which could be identified
at the microscopic level. The phenomena observed at small time scales disappear in
long averaged runs of the microscopic models. Cassidy [5] and Munoz and Daganzo
[56] suggest how to eliminate two-regime flow by appropriately filtering the data. It is
clear that these traffic states could not possibly be predicted, at their full complexity,
as solutions of deterministic systems of differential equations [10] since they almost
disappear as we aggregate observables. This is a very important point which should
be emphasized. It is in fact possible that a given PDE traffic model could be just an
extension (in the correct asymptotic limit) of a given microscopic model. In fact, we
show how this can be done for our stochastic traffic flow model in the following section.
Note, however, that caution is in order here since long-time averages may be unreliable
due to the possible presence of phase transitions. In this model, since metastability is
expected, for some concentration regimes (near ccrit), the simulations should be ana-
lyzed under small-time averages (see the appendix). Metastability, phase transitions,
and hysteresis effects in general are quite difficult to conclusively detect and as such
we propose to further study them in a forthcoming publication.

Several very interesting observations can be made from Figures 3 and 4. We com-
pare our results with those of Nagel and Schreckenberg [50] but also with observations
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Fig. 3. The flow density relationship for one-lane highway. Spatial periodic length of 1 mile,
relaxation time τ0 = .23, interaction strength J0 = 6, and look-ahead L = 4 cells. We superimpose
two plots in this figure. In the first plot each point of the fundamental diagram is averaged over the
usual 1.65 minutes aggregation time of data while in the second we display the long averaged flow
and density for an aggregation time of a total of 1 hour. The aggregation time of 1.65 minutes was
selected so that we can compare with observed data in [51].

from Wiedemann [69] and observe qualitative agreement. Specifically, the region of
free flow is clearly displayed up to approximately 50 vehicles per mile. Note here that
the value of ccrit = 50 vehicles per mile is not forced on our simulation but instead
is naturally created by the process dynamics through the calibration of the two pa-
rameters J0 and τ0. Similarly we observe a maximum vehicle flow of approximately
2000 vehicles per hour, which also agrees with observations [69], [51], and Figure 1(b)
from [22]. (The aggregation time of 1.65 minutes was selected so that we can compare
with observed data in [51].) An interesting question is whether this long averaged flux
coincides with the equivalent mesoscopic partial differential equation of the stochastic
limit. We answer this in section 4. The fluctuations in vehicle flows shown in Figures
3 and 4 are sizable for densities above ccrit and display a smeta-stable stop-and-go
region. We should point out here that we did not fit parameters to obtain ccrit or
qmax yet these parameters scale (for one-lane traffic) in agreement with observations
of ccrit ≈50 vehicles per miles and qmax ≈2000 vehicles per hour [69].

In Figure 5 we display a close-up of vehicle trajectories for a congested traffic
setup (50% jam density). In that figure we also observe that jams randomly form and
sometimes disappear in time. In fact it can be easily calculated that these jams move
backward in traffic with a speed of ≈−10 miles per hour, which closely agrees with
the reported speed of −15 ± 5 km per hour from [29, 58, 22].
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Fig. 4. Velocity versus flow relationship for one-lane highway. Spatial periodic length of 1 mile,
relaxation time τ0 = .23, interaction strength J0 = 6, and look-ahead L = 4 cells. Once again we
superimpose the 1.65-minutes aggregation time over the 1-hour aggregation time. This figure also
compares favorably with observed data in [51].

A consequence of the model versatility and ease of calibration presented is that
calculations can be performed in real time for prediction purposes. The size of the
traffic stream simulated in the numerical simulations here is small (< 3000 vehicles)
and therefore the algorithm presented can easily produce real-time predictions. How-
ever, an improvement applicable for large traffic streams (> 3000 vehicles) is under
development in [11], which uses a coarse graining idea and also produces real-time
predictions. This has obvious important consequences since, as an example, we could
possibly obtain the traffic input at a section of a highway in real time and immediately
predict whether a traffic jam for the given highway capacity is imminent downstream,
thus diverting traffic before the problem occurs.

4. Average behavior and deterministic closures. Although the emphasis
of this paper is on new stochastic models we would like to establish connections with
known CA and PDE models in various asymptotic regimes where mean field theory
applies. Therefore we formally derive here a kinetic formulation of the stochastic
model which is subsequently used to obtain an approximating finite difference (FD)
scheme from (4.2) in the case of weak long-range interactions. Further, we also derive
a PDE by a rescaling argument.

From our definition of a generator (2.7) we have

d

dt
Ef(σ) = EMf(σ)(4.1)
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Fig. 5. Vehicle stream lines in time and space. Spatial periodic length of 1 mile (corresponding
to a total of 240 cells). We allow 50% initial capacity, relaxation time τ0 = .23, interaction strength
J0 = 6, and look-ahead L = 4 cells. Note the traffic waves in the stream displaying fronts and
rarefactions.

for any test function f , where σ = {σt : t ≥ 0} is the process corresponding to (2.7)
and E denotes expected value. In particular we pick f(σ) = σ(z) for z fixed in L.
Therefore

f(σx,x+1) = σx,x+1(z) =

⎧⎨
⎩

σ(z), x �= z, x �= z − 1,
σ(z + 1), x = z,
σ(z − 1), x = z − 1,

and based on (2.7) we have

f(σx,x+1) − f(σ) =

⎧⎨
⎩

0, z �= x, x + 1,
σ(z + 1) − σ(z), x = z,
σ(z − 1) − σ(z), x = z − 1.

By (2.7) and (4.1) we have the relation

d

dt
Eσt(z) = −Ec0σ(z)(1 − σ(z + 1))e−U(z,σ) + Ec0σ(z − 1)(1 − σ(z))e−U(z−1,σ).

(4.2)

Note that relation (4.2) is exact and can be used to evaluate the closures discussed
below. However, it is not yet a closed equation for Eσt(x) = Prob(σt(x) = 1).
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4.1. Finite difference scheme. Suppose now that J (for J0 fixed) has fairly
long and weak interaction. We may assume that the stochastic process in (2.7) is a
perturbation of the simple exclusion process considered in [40]. This process has a
Bernoulli product invariant measure; thus at local equilibrium the probability measure
is expected to be approximately a product measure. As in [57] we assume “propagation
of chaos” for the microscopic system, in which case the fluctuations of the spins
{σ(x), x ∈ L} about their mean values are independent and the law of large numbers
formally applies. Thus the fluctuations of

∑
y �=x J(y − x)σ(y) about their mean will

be small such that in the long-range interaction limit we have

Ee−U(x,σ) = Ee−
P

y �=x J(y−x)σ(y) N,L→∞
≈ e−

P
y �=x J(y−x)Eσ(y) + oN (1).(4.3)

Using the product property in (4.3) we formally obtain that the right-hand side of
(4.2) becomes

−Eσ(z)E(1 − σ(z + 1))c0e
−J◦Eσ(z) + Eσ(z − 1)E(1 − σ(z))c0e

−J◦Eσ(z−1) + oN (1),

(4.4)

where for an arbitrary function v(z) we define

J ◦ v(z) :=
∑
y∈L
y>z

J(y − z)v(y).

Next we drop oN (1) in (4.4) and define the density u(z, t) = Eσt(z). (u(z, t) is the
probability that site z is occupied at time t.) Then (4.2) and (4.4) give the following
approximate semidiscrete FD scheme:

d

dt
u(z, t) = − c0u(z, t)(1 − u(z + 1, t)) exp(−J ◦ u(z, t))(4.5)

+ c0u(z − 1, t)(1 − u(z, t)) exp(−J ◦ u(z − 1, t)) for all z ∈ L.

Note that our semidiscrete FD scheme (4.5) is conservative. Simply define

F (z, t) = c0u(z − 1, t)(1 − u(z, t)) exp(−J ◦ u(z − 1, t))(4.6)

and without loss of generality, assuming a periodic lattice of N nodes, we sum the
right-hand side of (4.5) and obtain

N−1∑
z=0

c0[−F (z + 1, t) + F (z, t)] = c0[F (0, t) − F (N − 1, t)]

= c0[u(−1, t)(1 − u(0, t)) exp(−J ◦ u(−1, t))

−u(N − 1, t)(1 − u(N, t)) exp(−J ◦ u(N − 1, t))] = 0

since u(−1, t) = u(N − 1, t) and u(0, t) = u(N, t) due to spatial periodicity.

Note that based on (4.6) we can rewrite (4.5) as

du(z, t)

dt
+ F (z + 1, t) − F (z, t) = 0.
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4.2. PDE limit. We now formally obtain the resulting PDE from (4.5) and
make connections with other known traffic flow models. We start by expanding the
spatial variables in Taylor series. We set h = Δx and use

u(z ± 1, t) = u(z, t) ± huz(z, t) +
h2

2
uzz(z, t) + · · · .

Substituting into (4.5) we obtain

d

dt
u + h [u(1 − u)c0 exp(−J ◦ u)]z = O(h2).(4.7)

Rescaling time in (4.5),

t → th−1,

to absorb h and by omitting the O(h2) terms we have

d

dt
u + [u(1 − u)c0 exp(−J ◦ u)]z = 0(4.8)

for z ∈ R and J ◦ u(z) =

∫ ∞

z

J(y − z)u(y) dy.

The transport equation obtained is

ut + F (u)z = 0,(4.9)

where

F (u) = u(1 − u)c0 exp(−J ◦ u).(4.10)

It is interesting to point out here that (4.10) under the simplest case of no interactions
(J0 = 0) corresponds to the well-known [68, 42] Lighthill–Whitham flux (1.1), thus
producing a traffic stream formulation equivalent in form to the Burgers equation.

Note that in fact (4.5), when fully discretized, provides a natural finite difference
scheme for (4.9),

u(z, tn+1) = u(z, tn) +
Δt

h
[u(z − 1, tn)(1 − u(z, tn))c0 exp(−J ◦ u(z − 1, tn))

− u(z, tn)(1 − u(z + 1, tn))c0 exp(−J ◦ u(z, tn))].(4.11)

4.3. Stochastic versus semidiscrete approximation. We numerically com-
pare the solutions of the stochastic model (4.2) against the semidiscrete scheme (4.5).
In that respect we implement the same initial normalized density of vehicles (a traffic
light release type) for both schemes with the following form:

u(z, 0) =

{
1 for cells in 20 < z < 40,
0 otherwise.

(4.12)

The comparisons are performed under the assumption in (4.3) (i.e., L = 240 cells)
for the semidiscrete scheme while the stochastic is averaged over several realizations
to obtain an approximation of E(σt(z)). The solutions are shown in Figures 6 and
7 for the semidiscrete and stochastic models, respectively. The final profiles of these
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Fig. 6. Solution of the semidiscrete scheme (4.5) in time and space for a traffic light type of
initial condition (4.12). We set L = 240 based on the assumption in (4.3). Parameters: τ0 = .23
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solutions are compared in Figure 7. We clearly observe the expected rarefaction wave
on one side and shock wave on the other.

In Table 4.1 we display the l1 relative error estimates of the solutions of each
model for different sizes of the interaction potential L at a specific time. The relative l1
error is calculated from the final (in time) solutions of the semidiscrete and stochastic
densities usd and ustoch, respectively,

|usd − ustoch|l1
|ustoch|l1

=

∑
z |usd(z, tfinal) − ustoch(z, tfinal)|∑

z |ustoch(z, tfinal)|
.

We observe the smallest relative errors in Table 4.1 for the case of L = 240. This is
expected based on assumption (4.3). We compare the resulting stochastic microscopic
(4.1) and FD PDE (4.11) models against each other and give possible connections with
other well-known models in the following section.

4.4. Connections and comparisons between models and parameters.
The task in this section is twofold. First we display possible connections between
our derived models (4.1) and (4.11) with other well-known traffic flow models. Sec-
ond, to further understand how parameters influence the fundamental diagram (more
precisely the flux) of our derived mesoscopic formulations we also compare these for-
mulations (4.10, 6.1) against each other to understand their possible limitations and
range of predictions.
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Fig. 7. Solution of the stochastic model (4.2) in time and space for a traffic light type of
initial condition (4.12). We average 500 realizations to produce the averaged density presented.
Parameters: τ0 = .23, J0 = 6, and L = 240.

Table 4.1

Relative error of final solutions, similar to that presented in Figure 8, comparing the semi-
discrete FD scheme (4.5) against the stochastic model (4.2) solution for different sizes of the potential
radius L. The stochastic solution has been averaged over 500 realizations. Other parameters: τ0 =
.23 and J0 = 6.

Potential Radius
L

240 100 50 10 4 1

l1 Rel. Error .0013 .0029 .0051 .0066 .0126 .02

4.4.1. Theoretical connections. We obtain here hierarchical connections with
other well-known traffic flow models based on expansions of our underlying macro-
scopic equation (4.9) with (4.10),

ut + [u(1 − u)c0 exp(−J ◦ u)]z = 0.(4.13)

We start by expanding the convolution term J ◦ u,

J ◦ u =

∫ ∞

z

V (y − z)u(y) dy
x=y−z

=

∫ ∞

0

V (x)u(x + z) dx = J0u + J1uz + J2uzz + · · · ,

(4.14)
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Fig. 8. Density comparisons at final time t = 100 seconds. The error at that time in l1 is also
displayed. Once again, the stochastic is averaged over 500 realizations. Note the agreement between
the solutions in both quantity and form. Parameters: τ0 = .23 and J0 = 6 for L = 240.

where assuming V > 0 (recall that the positive uniform potential we use here (3.1)
implies that vehicles are attracted to the empty space in front of them) gives

J0 =

∫ ∞

0

V (x) dx > 0, J1 =

∫ ∞

0

xV (x) dx > 0 J2 =

∫ ∞

0

x2

2
V (x) dx > 0.

(4.15)

We can therefore approximate the exponential as

e−J◦u ≈ e−[J0u+J1uz+J2uzz ] = e−J0ue−J1uz−J2uzz ≈ e−J0u[1 − J1uz − J2uzz],

which based on (4.13) gives the higher-order traffic flow model

ut + c0[u(1 − u)e−J0u]z = c0[J1u(1 − u)e−J0uuz]z + c0[J2u(1 − u)e−J0uuzz]z(4.16)

with J0, J1, and J2 from (4.15). Note that (4.16) is a third-order dispersive PDE with
diffusion which is similar in form to the PDEs derived from optimal velocity models
and usually referred to as modified KdV in [47, 48, 54].

We make general remarks below about the behavior of (4.16) as well as the more
general (4.13) under different scales and/or parameters:

• Assuming first that there are no interactions J = 0 in the potential (4.10)
of (4.13) we obtain F (u) = c0u(1 − u), which gives the well-known diffusive
Lighthill–Whitham or Burgers equation flux.
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Fig. 9. Long time averages. Comparing how the flux (6.1) changes with respect to increasing
L. We set J0 = 6, τ0 = .23 and run all microscopic simulations for the same total time and
under the same initial conditions before plotting the flow per concentration. Note that for long-
range interactions we observe that the PDE flux (4.10) coincides with the long-range interaction
(L = 240) microscopic model flux (4.17) which fluctuates around it.

• In the opposite case, however, of long-range interactions between vehicles,
L = N , we obtain the following nonlocal flux from (4.10):

F (u) = c0u(1 − u) exp(−J0ū).(4.17)

As we will see below (see Figure 9), under this long-range interaction case
the flux of the stochastic model and that of the PDE (4.9, 4.10) agree.

• Note further that the hyperbolic equation obtained by including terms up to
J0 in the convolution (4.14) (disregarding J1, etc.),

ut + c0[u(1 − u) exp(−J0u)]z = 0,(4.18)

has a nonconvex flux. Indeed note in Figure 10 that if J0 ≥ 3 the flux is
neither convex nor concave.

• If on the other hand we include terms up to order J1 in (4.14), then (4.16)
takes the form of a nonlinear diffusive Lighthill–Whitham type equation [68,
54, 48].

• Returning to the higher-order dispersive PDE (4.16) we note the similarities
with other usual higher-order traffic flow models found in [34, 47, 48, 28, 38],
although the coefficients obtained here include nonlinearities. Coherent struc-
tures can emerge as solutions of (4.16) which are similar to Figures 7 and 6 and
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Fig. 10. Long time averages. Comparing the influence of potential strength J0 in the stochastic
flux (6.1). In these comparisons we keep L = 4 and run all microscopic simulations for the same
total time before plotting the flow per concentration.

especially the profile density solution presented in Figure 8. It is known that
traveling wave solutions of the Payne–Whitham model [37], [28] with non-
concave fundamental diagrams, which resemble the form of our higher-order
PDEs, are asymptotically stable under small perturbations for a subcharac-
teristic type of condition [43]. It would be interesting to further examine
traveling wave solutions of (4.13) as well as the higher-order approximation
(4.16) and compare them with observed soliton, kink-antikink, or mixtures of
other density solutions as have been noted in [34, 47, 28].

• Further, we remark that equations similar in form to (4.16) have also been
studied in [26]. Diffusive and dispersive KdV type equations are emerging
from Chapman-Enskog expansions of hyperbolic models with coexisting dif-
fusion and relaxation contributions. The structure of the wave solutions which
are shown to emerge for the dispersive, KdV type, equation presented there
consists of enhanced solitary waves.

4.4.2. Numerical comparisons of fluxes. Clearly the microscopic model con-
tains the maximum amount of information while the PDE is a rough averaging of the
same system. It is also important, in terms of applicability of each model, to identify
the range of parameters for which the PDE corresponds to our microscopic descrip-
tion. In that respect we expect certain parameters such as the interaction potential
radius, the interaction size L, and the potential strength J0 to be of significance. We
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therefore display, in Figure 9, numerical simulations of the microscopic model predic-
tions for different potential lengths L while keeping all other parameters the same.
In that same figure we also plot the flux as obtained from our PDE formulation for
a uniform potential strength value of J0 = 6 and τ0 = .23 (to match the value imple-
mented in our stochastic simulations). Note that, remarkably, the PDE flux and the
microscopic flux corresponding to L = 240 (the maximum number of potential length)
coincide (excluding the small fluctuations)! Respectively we also note that the PDE
is a reasonable approximation for any microscopic model with L > 10 look-ahead.
This is unfortunate, however, since physically we do not expect that drivers would (or
even could) have a perception of traffic up front for more than possibly five vehicles.
Notably the discrepancy between the microscopic and PDE fluxes is substantial for
L ≈ 100 cells or less. Such differences between long and short values for L have also
been recorded in [66] for catalytic surface diffusion models.

We similarly examine how the potential strength J0 influences the corresponding
flux for either formulation (4.1) and (4.9) in Figure 10. We plot the microscopic flux
for potential length of L = 4, which is more appropriate for actual traffic conditions.
The case of J0 = 6 connects Figure 9 to Figure 10 and allows for comparisons between
the two. It is interesting to note how the expected concavity of traffic flow flux changes
in Figure 10 as potential strength increases. In fact for values of J0 ≥ 3 the flux is
neither concave not convex. Observe this loss of convexity also for L ≥ 2 in Figure
9, thus producing a richer behavior than the typical Lighthill–Whitham (or Burgers)
type traffic model predicts. On the other hand, in both Figures 9 and 10 we obtain one
of the most basic traffic flow fluxes, the diffusive Lighthill–Whitham [68] (or Burgers)
flux for the trivial case of either J0 = 0 or L = 0, 1.

We also note the similarities of the simulated flux depicted in Figure 10 obtained
here for J0 = 0 and J0 = 6 with Figures 2 and 3 from [50], respectively, as well as
Figure 2 from [44]. Similar such agreement is also observed between Figure 10 (case of
J0 = 6) here and the observed data in Figure 1(b) and simulations in Figure 8 of [22].

5. Conclusions. In this work we have presented a stochastic microscopic model
for traffic flow. The modeling and subsequent Monte Carlo simulations relied on sim-
ple calibration procedures of just three parameters: the potential interaction length
of J0, the relaxation time τ0, and the look ahead L. Note that J0 indirectly influences
the desired speed of vehicles while τ0 and L set the speed as vehicles are emerging out
of a jam. Based on these settings we were able to produce realistic fundamental dia-
grams, for one-lane traffic, with qualitatively meaningful flows (qmax ≈2000 vehicles
per hour and ccrit ≈50 vehicles per mile) which display many of the observed traffic
states including phenomena such as stop-and-go traffic, spontaneous jam generation,
retarded acceleration [63], and timely braking [58]. Overall the ease of calibration
and richness of solution behavior make this stochastic model valuable in terms of
describing, even at this simple one-lane setting, complex traffic flows.

Furthermore we derived (in the weak, long-range interactions limit) the corre-
sponding macroscopic traffic model from our microscopic stochastic description. Sub-
sequently we compared the solutions of each model for a variety of parameters making
connections, for those regimes, with other well-known CA and PDE models for traffic
flow. We obtain, up to leading order terms, hierarchical macroscopic diffusive and/or
dispersive PDEs which resemble other well-known traffic flow models [68, 54, 28] of the
same order. It would be interesting to examine our hierarchical macroscopic models
(4.18), (4.16), and (4.13) for coherent structure solutions exhibiting behavior similar
to that observed in [26, 48, 47, 28] (solitons, kink-antikink, etc.).
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Last we point out that the simulations presented here can be performed in real
time for the current one-lane traffic model proposed but also for multilane traffic
which will be presented in a forthcoming work [11]. Extending the current one-
dimensional stochastic microscopic model to multilane traffic will further allow us to
directly compare our simulated results with available observational data [51, 69]. To
further improve the model we also include entrances and exits by implementing two
different, nonconservative (in contrast to the conservative spin exchange studied here)
dynamics mechanisms: adsorption/desorption and surface diffusion.

6. Appendix: Data gathering and analysis techniques. The underlying
method of recording, comparing, and analyzing traffic data for both the simulations
and the observations is of paramount importance and must be clearly explained.
Studies have been curried out by Athol [1] and more recently others [20, 46, 53]
regarding proper data collecting procedures and underlying assumptions put forth in
theory and in practice.

Observational traffic data can be obtained via a variety of methods: visual obser-
vations (video cameras), single or double loop detectors, magnetic overhead detectors,
satellites, etc. In the majority, traffic data are gathered via detector loop techniques.
In the case of double detector loops, for instance, pneumatic tubes (or, more recently,
point detectors) are placed in close proximity on the highway and each is connected to
a detector which records occurrences as vehicles pass on top of each tube. Quantities
of interest that need to be determined from the collected data are usually the flow
and velocity.

In general (regardless of detection method) the flow is measured as the number
of vehicles n(τ) passing a detector at a given time interval τ via

q =
1

τ
n(τ)(6.1)

(therefore flow cannot be found based on a single snapshot of vehicles over a length of
interval). Usually flow is reported in number of vehicles per hour although the actual
time length of recorded observation is much smaller (1/2 to 2 minutes). As a result
some concerns have been raised regarding sustainability of such high volumes when
data correspond to measurements over time intervals which are less than 15 minutes
[21].

Average velocity on the other hand requires observations over both time and
space. There are two ways to calculate velocity: time mean speed and space mean
speed. As the name suggests, we calculate the time mean speed and space mean speed
respectively through

ūτ =
1

N

N∑
i=1

ui and ūs =
s

1
N

∑N
i=1 ti

.

Here N denotes the number of time observations, s is the total distance covered in
that time, and ti is the corresponding time per observation. Note that in terms of (6.1)
the following holds: τ =

∑
i ti. It is important to note here that the two definitions

for mean speed provided above differ, as shown by Wardrop [67], by the ratio of the
variance to the mean of the space mean speed,

ūτ = ūs +
σ2
s

ūs
.
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Therefore although they are similar for free-flow conditions they actually differ, espe-
cially near the highest flow regimes [20], for the key regions of stop-and-go and traffic
breakdown. In practice double loop detectors are well suited to collect correctly space
mean speeds. In this work (for comparative and other reasons which become clear
below) we report our findings by computing space mean speed instead of time mean
speed.

Density on the other hand is a quantity which is quite hard to measure empirically
[46] and can be measured only along a length [20]. Having flow and space mean
speeds, collected as described above, it is not uncommon to estimate the density from
the well known macroscopic formula (“fundamental identity”) as originally developed
by Wardrop [67],

q = cv̄.(6.2)

A lot has been written regarding (6.2) but most importantly, as pointed out by Hall
[20, p. 10], “its use has often exceeded the underlying assumptions.” Clearly by
applying (6.2) researchers introduce an assumption in terms of scales, ranges, and
even continuity of observed variables [55] for which such an equation is valid. The
validity of (6.2) is therefore sometimes questionable and its application varies among
researchers, based on concentration, [30] (away from jam concentrations), [58]. The
underlying problem of applying (6.2) to obtain the concentration is that (6.2) holds
under “some very restrictive conditions” [20] which among other things imply that
both space and time measurement intervals approach zero.

If point measurements are taken the best way [46] to estimate density is to instead
calculate the lane occupancy, OC, of the traffic stream [20, 46]. Occupancy is the
fraction of time that vehicles are over the detector,

OC =
total time detector is occupied by vehicle

total study time
=

(L + D)/v

headway
= c(L + D),

where L denotes the average vehicle length, D the detector length, and v the speed.
(The headway is understood here as a time headway.) Therefore vehicle density c is
found as

c =
OC

L + D
.(6.3)

It is important to point out a common discrepancy: “almost all the theoretical work
done prior to 1985 either ignores occupancy . . . or else uses it . . . as a surrogate
for, density. On the other hand much of the freeway traffic management work . . .
(practical as opposed to theoretical work) relied on occupancy” [20].

In the simulations presented in our work we use virtual detectors in an effort of
reproducing real traffic data collection procedures. As a result we place our virtual
detector in a specific cell of our lattice and collect data on observables at that cell.
Flow is computed based on (6.1) while density is found through calculation of occu-
pancy as explained above and in the same fashion as done in [50] and similar other
works. The data are averaged over small intervals of time (which we make precise in
each of the presented simulations) as in real traffic data collection practices. In this
work we simulate a closed round road without entrances or exits (race track) which
we initialize with a specified total density (which naturally remains constant through
the simulation) of randomly distributed vehicles. The fundamental diagrams are con-
structed by collecting data with a given density and then increasing that density and
repeatedly restarting the complete simulation over again.
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[14] H. Fukś, Exact Results for Deterministic Cellular Automata Traffic Models, arXiv: comp-

gar/9902001.
[15] N. H. Gardner and N. H. Wilson, eds., Freeway Speed Distribution and Acceleration Noise-

Calculations from a Stochastic Continuum Theory and Comparison with Measurements,
Elsevier, New York, 1987.

[16] D. C. Gazis, R. Hermann, and R. W. Rothery, Nonlinear follow-the-leader models of traffic
flow, Oper. Res., 9 (1961), pp. 545–567.

[17] D. L. Gerlough and M. J. Huber, Traffic Flow Theory, Technical Report 165, Transportation
Research Board, Washington, DC, 1975.

[18] L. Gray and D. Griffeath, The ergodic theory of traffic jams, J. Statist. Phys., 105 (2001),
pp. 413–452.

[19] B. N. Greenshields, A study of traffic capacity, in Proceedings of the 14th Annual Meeting
of the Highway Research Board, 1934, pp. 448–474.

[20] F. L. Hall, Traffic Flow Theory, Chapter 2, Federal Highway Administration, Washington,
DC, 1996, pp. 2–34.

[21] Highway Capacity Manual, Transportation Research Board, Washington, DC, 1985.
[22] D. Helbing, A. Hennecke, V. Shvetsov, and M. Treiber, Micro- and macrosimulation of

freeway traffic, Math. Comput. Modelling, 35 (2002), pp. 517–547.
[23] D. Helbing and M. Treiber, Gas-kinetic-based traffic model explaining observed hysteretic

phase transition, Phys. Rev. Lett., 81, 1998, pp. 3042–3045.
[24] D. Helbing, Gas-kinetic derivation of Navier-Stokes-like traffic equations, Phys. Rev. E, 53

(1995), pp. 2366–2381.
[25] R. Illner, A. Klar, and T. Materne, Vlasov-Fokker-Planck models for multilane traffic

flow, Commun. Math. Sci., 1 (2003), pp. 1–12.
[26] S. Jin and J. G. Liu, Relaxation and diffusion enhanced dispersive waves, Proc. Roy. Soc.

London A, 446 (1994), pp. 555–563.
[27] B. S. Kerner, S. L. Klenov, and D. E. Wolf, Cellular automata approach to three-phase

traffic theory, J. Phys. A, 35 (2002), pp. 9971–10031.



STOCHASTIC TRAFFIC FLOW 943
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TRAVELING WAVE SOLUTIONS TO A COUPLED SYSTEM OF
SPATIALLY DISCRETE NAGUMO EQUATIONS∗

MICHAEL D. BATEMAN† AND ERIK S. VAN VLECK†

Abstract. We consider a coupled system of discrete Nagumo equations and derive traveling wave
solutions to this system using McKean’s caricature of the cubic. A certain form of this system is used
to model ephaptic coupling between pairs of nerve axons. We study the difference g(c) = a1 − a2

between the detuning parameters ai that is required to make both waves move at the same speed c.
Of particular interest is the effect of a coupling parameter α and an “alignment” parameter A on the
function g. Numerical investigation indicates that for fixed A, there exists a time delay value β that
results in g = 0, and for large enough wave speeds, multiple such β values exist. Also, numerical
results indicate that the perturbation of α away from zero will yield additional solutions with positive
wave speed when A = 1

2
. We employ both analytical and numerical results to demonstrate our claims.

Key words. discrete Nagumo equations, ephaptic coupling, traveling waves

AMS subject classifications. 35K57, 74N99
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1. Introduction. In myelinated nerve axons, transmembrane ion flow occurs
only at the spatially periodic nodes of Ranvier, and the activity at these nodes may
affect the activity at nodes of neighboring fibers. This so-called ephaptic coupling is
an electrical effect that causes neighboring fibers to interact and possibly synchronize
with each other. Accompanying the problem of ephaptic coupling is the issue of the
relative positioning of the nodes of Ranvier on the different fibers. That is, given two
parallel nerve fibers, the nodes on one fiber may or may not align perfectly with the
nodes on the other fiber.

Our contribution in this paper is to derive a solution to a system that models these
phenomena and use this model to show that coupling decreases the size of the range
of propagation failure when the nodes of Ranvier are staggered, but that coupling
increases the size of this range when the nodes are perfectly aligned. To do this, we
consider a system of two myelinated nerve axons coupled ephaptically. In particular,
our goal is to study the effect of this coupling and the effect of nonalignment on
the propagation of action potentials. Different types of coupling between fibers are
possible. In [2], Binczak, Eilbeck, and Scott model “saltatory” conduction present
in these myelinated neurons with equations used to govern the behavior of electrical
circuits and introduce the effect of ephaptic coupling between two myelinated neurons.
In [1] a different type of coupling, called “ohmetric” coupling, is considered and it is
shown that the introduction of this kind of coupling causes waves on two adjacent
myelinated axons to match speeds with each other. Earlier work of Keener [13] and
Bose and Jones [4, 5] addressed the issue of ohmetric coupling.

The strength of the ephaptic coupling α depends on the electrical resistance Rint

inside the axons (assumed to be the same for both axons) and the resistance Ro of
the medium between the axons. We must also consider the positioning of the axons
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Fig. 1. Diagram of two myelinated nerve axons.

relative to each other: here we assume that they are parallel, that the nodes on a
given fiber are evenly spaced, and that the distance between nodes is the same on
both fibers, but we allow the nodes of Ranvier to line up or not line up, as shown
in Figure 1. That is, we will introduce an alignment parameter A that will reflect
the positioning of the nodes on one fiber relative to those on the other. We will also
introduce a parameter β that will act as a time delay on one of the fibers. Specifically,
we consider a system of differential equations on two one-dimensional lattices coupled
together. Study of the uncoupled case [6, 11, 10, 14] provides an idea of the kind of
behavior to expect from the coupled system and also serves as a precedent to which
our results may be compared.

We consider the system

(1.1)

V̇
(1)
n + f1(V

(1)
n ) =

1

1 − α2
[D1(L̄V

(1))n − αD2(L̄V
(2))n − αA(N̄V (2))n

− α2A(N̄V (1))n+1],

V̇
(2)
n + f2(V

(2)
n ) =

1

1 − α2
[−αD1(L̄V

(1))n + D2(L̄V
(2))n + α2A(N̄V (2))n

+ αA(N̄V (1))n+1],

where (L̄V )n = Vn+1 − 2Vn + Vn−1, (N̄V (i))n = ( ˙V (i)
n−1 − ˙V (i)

n) + (fi(V
(i)
n−1) −

fi(V
(i)
n )), D1, D2 > 0 are diffusion coefficients, A ∈ [0, 1) is the alignment parameter,

and α ∈ [0, 1) is the coupling coefficient. When α = 0, the ephaptic coupling is
completely turned off, and increasing α increases the strength of the coupling. When
A = 0, the nodes are in perfect alignment; setting A = 1

2 , for example, staggers the
nodes so that the nth node on one fiber is equidistant from the nth and (n + 1)th
nodes on the other fiber. The nonlinearities fi : R → R are often cubics of the
form fi(u) = u(u − ai)(u − 1), where the ai ∈ (0, 1) are “detuning” parameters,

and the quantities V
(i)
n represent the ionic flow through the membrane at the nth

node of the respective fibers. However, to facilitate the construction of a solution, we
consider an idealized, piecewise linear fi known as McKean’s caricature of the cubic
(see [15, 17, 12, 22, 23, 6, 11, 8, 9]). When considering one fiber, it is only necessary
to think of the detuning parameter a ∈ (0, 1

2 ) because of symmetry in the relationship
between the detuning parameter and the wave speed. A priori, we do not know if the
same is true when considering two fibers. However, we will see in Theorem 4.4 and
Corollary 4.5 that certain symmetries do hold in the coupled problem.

In general, the wave speed c depends on all the other parameters in the problem.
Here, however, we approach the issue from a different angle: we fix all parameters
except the detuning parameters ai and assume that the wave speed c is the same for
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both fibers. This way we “solve,” in a sense, for the detuning parameters. Instead
of fixing the detuning parameters, and studying how they affect the wave speeds, we
demand that the wave speeds be the same and determine which pairs of detuning
parameters give us this effect.

Although our particular model is motivated by this neurological application, sim-
ilar models may also be used to study action potentials in cardiac cells, among other
things (see [3, 16, 20, 21]). The authors in [1] also mention the possible application
of coupled two-dimensional lattices to the study of image processing. For this reason,
we consider a more general system and allow the parameters to range over values that
may not be physically reasonable for our particular application.

This paper is organized as follows: we start by using a piecewise linear nonlinearity
f to derive candidate solutions using a Fourier transform method. To make this
process easier, we make a key assumption about the shape of our solutions—this
assumption will be verified after we have obtained the candidate solutions. The details
of the construction have been left to an appendix. After proving the existence of
traveling backs, we look at some properties held by these solutions. We investigate
the relationship between the wave speed c and the detuning parameters ai, as well
as the effects of the coupling coefficient α and the alignment parameter A on this
system. We have interspersed some numerical computations throughout the paper to
illustrate the analytical results and provide insight into the problem.

1.1. Derivation of the system. The system considered here is a version of the
model used in [18] (see pp. 177–183) and [2]. The variables used here are as follows:
In is the mesh current, a term used to analyze circuits using Kirchhoff’s equations;
Iion,n is a cubic modeling the ionic current (taking into consideration both sodium

and potassium); V
(i)
n is the voltage across a node of Ranvier, and Vb is a constant

representing the Nernst potential for sodium ions; Ri,j is the resistance inside fiber j,
Ro is the resistance outside the axons, and Rf is a constant representing the internodal
resistance, and is on the same order as Ri,j ; and C is the capacitance of a node plus
the capacitance of the adjacent internodal myelin sheath.

Using the circuit diagrams presented in [2] and [18], we sum the voltages around
the mesh and set the result to zero. Note that here we will use A to represent the
amount that fiber 1 leads fiber 2. This gives us

v(1)
n − v

(1)
n+1 = (Ri,1 + Ro)I

(1)
n + Ro(AI

(2)
n−1 + (1 −A)I(2)

n ),(1.2)

v(2)
n − v

(2)
n+1 = (Ri,2 + Ro)I

(2)
n + Ro(AI

(1)
n+1 + (1 −A)I(1)

n ).

In addition, we have the following relationship between the mesh currents and the
voltages:

I
(j)
n−1 − I(j)

n = C
dv

(j)
n

dt
+ I

(j)
ion,n, j = 1, 2.(1.3)

Now we multiply (1.2) by
Rf

Vb(Ri,j+Ro) and (1.3) by
Rf

Vb
. Using the notation

V (j)
n =

v
(j)
n

Vb
, i(j)

n =
RfI

(j)
n

Vb
, Dj =

Rf

Ri,j + Ro
, and αj =

Ro

Ri,j + Ro
,(1.4)

we arrive at

D1(V
(1)
n − V

(1)
n+1) = i(1)

n + α(Ai
(2)
n−1 + (1 −A)i(2)

n ),(1.5)

D2(V
(2)
n − V

(2)
n+1) = i(2)

n + α(Ai
(1)
n+1 + (1 −A)i(1)

n ),
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i
(1)
n−1 − i(1)

n = RfCV̇ (1)
n + f1(V

(1)
n ),(1.6)

i
(2)
n−1 − i(2)

n = RfCV̇ (2)
n + f2(V

(2)
n ).

As noted in [2], experimental results indicate that Ro � Ri,j ≈ Rf , so we take
α1 = α2 but allow D1 �= D2.

Using (1.5) and (1.6), we have

(1.7)

[
1 α
α 1

][
i
(1)
n

i
(2)
n

]
=

[
X

(1)
n

X
(2)
n

]
,

where

X(1)
n = D1(V

(1)
n − V

(1)
n+1) − αA(RfCV̇ (2)

n + f(V (2)
n )),(1.8)

X(2)
n = D2(V

(2)
n − V

(2)
n+1) + αA(RfCV̇

(1)
n+1 + f(V

(1)
n+1)),

which gives us

(1.9) i(1)
n =

1

1 − α2
(X(1)

n − αX(2)
n ), i(2)

n =
1

1 − α2
(X(2)

n − αX(1)
n ).

Substituting into (1.6), we have

RfCV̇ (1)
n + f1(V

(1)
n ) =

1

1 − α2
[(X

(1)
n−1 −X(1)

n ) − α(X
(2)
n−1 −X(2)

n )],(1.10)

RfCV̇ (2)
n + f2(V

(2)
n ) =

1

1 − α2
[(X

(2)
n−1 −X(2)

n ) − α(X
(1)
n−1 −X(1)

n )].

Computing X
(j)
n−1 − X

(j)
n for j = 1, 2 and inserting the resulting expressions into

(1.10) brings us to system (1.1). Note that we will take RfC = 1 since changing these
parameters will only amount to a rescaling of the wave speed c after we impose a
traveling wave ansatz.

2. Construction of a solution. In the construction of our solution, the speed
c is assumed to be nonzero unless otherwise noted, and the nonlinearity fi will be the
idealized cubic-like function

(2.1) fi(u) = u− h(u− ai),

where h denotes the Heaviside step function

(2.2) h(u) =

⎧⎪⎨
⎪⎩

0 if u < 0,

[0, 1] if u = 0,

1 if u > 0.

Note that h(u) is a set-valued function, evaluating to the interval [0, 1] when
u = 0 and evaluating to a singleton everywhere else. This results in the fi(u) being
set-valued functions as well. Thus, (1.1) with fi given in (2.1) and (2.2) should be

interpreted as a differential inclusion when V
(i)
n = ai.
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After imposing the traveling wave ansatz V
(i)
n (t) = ϕi(n − ct), and letting ξ =

n− ct, we have

−cϕ
′

1(ξ) + f1(ϕ1(ξ)) =
1

1 − α2
[D1(Lϕ1)(ξ) − αD2(Lϕ2)(ξ)(2.3)

− αA(Nϕ2)(ξ) − α2A(Nϕ1)(ξ + 1)
]
,

−cϕ
′

2(ξ) + f2(ϕ2(ξ)) =
1

1 − α2
[−αD1(Lϕ1)(ξ) + D2(Lϕ2)(ξ)

+ α2A(Nϕ2)(ξ) + αA(Nϕ1)(ξ + 1)
]
,

where

(Lϕ)(ξ) = ϕ(ξ + 1) − 2ϕ(ξ) + ϕ(ξ − 1),

(Nϕ)(ξ) = −c[ϕ′(ξ − 1) − ϕ′(ξ)] + [f(ϕ(ξ − 1)) − f(ϕ(ξ))].(2.4)

It is natural to require the boundary conditions

(2.5) ϕi(−∞) = 0, ϕi(+∞) = 1

for i = 1, 2. To help construct solutions to this system, we will initially assume that
each ϕi satisfies ϕi(βi) = ai for only one value, and we may assume one of these values
to be zero by simply translating the argument. That is, we assume

ϕi(ξ)

⎧⎪⎨
⎪⎩
< ai for ξ < βi,

= ai for ξ = βi,

> ai for ξ > βi,

(2.6)

where we will take β1 = 0 and β2 = β. After we construct our candidate solutions,
we will verify that they satisfy these assumptions.

With (2.6), we have that h(ϕi(ξ) − ai) = h(ξ − βi), which gives us f(ϕi(ξ)) =
ϕi(ξ) − h(ξ − βi). Now the system (2.3) becomes

−cϕ
′

1(ξ) =
1

1 − α2
[D1(Lϕ1)(ξ) − αD2(Lϕ2)(ξ)(2.7)

− αA(Nϕ2)(ξ) − α2A(Nϕ1)(ξ + 1)
]
− ϕ1(ξ) + h(ξ),

−cϕ
′

2(ξ) =
1

1 − α2
[−αD1(Lϕ1)(ξ) + D2(Lϕ2)(ξ)

+ α2A(Nϕ2)(ξ) + αA(Nϕ1)(ξ + 1)
]
− ϕ2(ξ) + h(ξ − β).

Notice the presence of several Heaviside functions in each equation of (2.7). Each
instance of the Heaviside function results in a discontinuity of the first derivative of
the functions ϕi. For example, we expect to have discontinuities in the first derivative
of ϕ1 at ξ = 0, ξ = 1, ξ = β, and ξ = β + 1. Further, an appearance of ϕ′(ξ + 1)
in the first equation leads us to expect a discontinuity in the first derivative of ϕ1 at
ξ = −1. These discontinuities will be reflected in the solution we compute.

As outlined in Appendix A, candidate solutions to this system can be expressed
as

ϕi(ξ) =
1

2
+

1

2π

∫ ∞

0

∑
j∈Mi

Fi,j(s) cos(s(ξ − j)) + Gi,j(s)
1

s
sin(s(ξ − j))ds,(2.8)
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where Mi = {βi, βi + 1, βi − 1, βi∗ , βi∗ + 1}, 1∗ = 2 and 2∗ = 1, and

(2.9)
Fi,βi(s) = [W (s)(1 + 2Q) −Ri∗(s)Y (s)], Gi,βi(s) = [X(s)(1 + 2Q) −Ri∗(s)Z(s)],

Fi,βi+1(s) =−QW (s), Gi,βi+1(s) =−QX(s),

Fi,βi−1(s) =−QW (s), Gi,βi−1(s) =−QX(s),

Fi,βi∗ (s) =−α(1 −A)Ri∗(s)Y (s), Gi,βi∗ (s) =−α(1 −A)Ri∗(s)Z(s),

Fi,βi∗+1(s) =−αARi∗(s)Y (s), Gi,βi∗+1(s) =−αARi∗(s)Z(s),

where

W (s) =
B(s)

detM(s)
− B(−s)

detM(−s)
=

2c[b2c
2s2 + b2 − b0]

|detM(s)|2 ,(2.10)

X(s) =
B(s)

detM(s)
+

B(−s)

detM(−s)
=

2[(b2 + b1)c
2s2 + b2 + b1 + b0]

|detM(s)|2 ,

Y (s) =
1

detM(s)
− 1

detM(−s)
=

2c[2b2 + b1]

|detM(s)|2 ,

Z(s) =
1

detM(s)
+

1

detM(−s)
=

2[−b2c
2s2 + b2 + b1 + b0]

|detM(s)|2 ,

and

Q = kα2A(1 −A), detM(s) = b2(s)B(s)2 + b1(s)B(s) + b0(s) = a(s) + ib(s),

(2.11)

Ri(s) = 2kDiC(s), a(s) = (1 − c2s2)b2(s) + b1(s) + b0(s),

k =
1

1 − α2
, b(s) = −cs(2b2(s) + b1(s)),

B(s) = 1 − ics, b0(s) = 4kD1D2C
2(s),

C(s) = cos(s) − 1, b1(s) = −2kC(s)(D1 + D2),

E(s) = 1 − eis, b2(s) = 1 − 2kα2A(1 −A)C(s).

Notice that the set Mi consists of all values at which the first derivative of ϕi is
discontinuous. This agrees with our prediction based on inspection of the equations
(2.7).

For convenience, we will suppress the s-dependence of the functions a, b, b0, b1,
and b2. Our next proposition establishes some basic properties of the ϕi, but to do
this, we need to bound the integrands in the solutions (2.8). This is accomplished by
the following lemma.

Lemma 2.1. Let α ∈ [0, 1), A ∈ [0, 1), β ∈ R, and c �= 0. Then

(2.12) |detM(s)|2 ≥ 1

for s ∈ R.
Proof. We leave the proof of this lemma to the second appendix.
Proposition 2.2. Use the definition of ϕi as given in (2.8), and let A ∈

[0, 1), α ∈ [0, 1), β ∈ R, ξ ∈ R, and c �= 0. Then ϕi is continuous in A, α, β, ξ,
and c.

Proof. The previous lemma gives us a lower bound on the denominator of the
integrands in (2.8), except when s = 0. However, the s appears in the denominator
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only when there is a sine in the numerator. The numerators of the integrands are also
bounded, and from the definitions (2.8), we see that the integrands are continuous in
the variables listed above. Also note from the definitions in (2.10) and (2.11) that the
integrands are O(s−2) as s → ∞, making the integral in (2.8) absolutely convergent.
The continuity claims follow from this fact.

3. Existence.

3.1. Proof of existence. Recall that the candidate solutions were derived using
the assumptions given in (2.6).

Theorem 3.1. Let A ∈ [0, 1), β ∈ R, and c �= 0, and consider our solutions
as functions of α and ξ. That is, let ϕi = ϕi(α, ξ). Also recall β1 = 0 and β2 = β.
Suppose the following conditions are met:

C1. The ϕi are continuous in α for all ξ ∈ R and for α ∈ [0, 1).
C2. There exists δ = δ(A, β,D1, D2, c) > 0 such that ϕ′

i(0, ξ) > 0 for ξ �= βi in
the interval (βi − δ, βi + δ) (where ′ indicates differentiation with respect to ξ).

Then there exists a range of α for which ϕi(α, ξ) > ai when ξ > βi and ϕi(α, ξ) <
ai when ξ < βi,

Proof. Consider the functions

(3.1) hi(α, ξ) = ϕi(α, ξ) − ϕi(α, βi).

From the work done in [6], we know that hi(0, ξ) > 0 for ξ > βi and hi(0, ξ) < 0
for ξ < βi for i = 1, 2. We also know that the hi are continuous in α since, by
Proposition 2.2, the ϕi are continuous in α. These two facts, together with the
boundary conditions, guarantee that there is an α∗ such that for α ∈ [0, α∗), hi(α, ξ) >
0 for ξ ≥ βi + δ and hi(α, ξ) < 0 for ξ ≤ βi − δ. So let α ∈ [0, α∗). To ensure that
hi(α, ξ) > 0 for ξ ∈ (βi, βi + δ) and hi(α, ξ) < 0 for ξ ∈ (βi − δ, βi), we must also
require that ϕ′

i(0, ξ) > 0 for ξ ∈ (βi − δ, βi + δ)\{βi} (where, once again, ′ denotes
differentiation with respect to ξ). So, condition C2 gives us that ϕi(0, ξ) > 0 for
ξ ∈ (βi − δ, βi + δ)\{βi}, which satisfies the requirement given above.

It remains to verify the hypotheses of Theorem 3.1. The strict monotonicity result
from the α = 0 case done in [6] is enough to satisfy condition C2 (this is true because
when α = 0, the solution is the same, up to a translation, for all β) and Proposition
2.2 satisfies condition C1. We now verify that the ϕi satisfy our boundary conditions.

Proposition 3.2. For i = 1, 2,

(3.2) lim
ξ→−∞

ϕi(ξ) = 0 and lim
ξ→+∞

ϕi(ξ) = 1.

Proof. Recall the definition of ϕi given in (2.8), and assume ξ > 0. Now use
the change of variables s → s

ξ and take the limit as ξ → +∞, using the Lebesgue
dominated convergence theorem. We have

lim
ξ→+∞

ϕi(ξ) =
1

2
+

1

2π
lim

ξ→+∞

∫ ∞

0

∑
j∈Mi

[
1

ξ
Fi,j

(
s

ξ

)
cos

(
s− sj

ξ

)

+ Gi,j

(
s

ξ

)
1

s
sin

(
s− sj

ξ

)]
ds

=
1

2
+

1

2π

∫ ∞

0

∑
j∈Mi

[
0 · Fi,j (0) cos (s) + Gi,j (0)

1

s
sin (s)

]
ds

=
1

2
+

1

2π

∫ ∞

0

sin(s)

s
X(0)ds =

1

2
+

1

π

∫ ∞

0

sin(s)

s
ds = 1.
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Proof for the limit as ξ → −∞ is the same, except we assume ξ < 0. But note
that when ξ < 0, the change of variables s → s

ξ results in the limits of integration
becoming zero to −∞, and everything else remains unchanged. The last expression
then becomes

1

2
+

1

π

∫ −∞

0

sin(s)

s
ds =

1

2
− 1

π

∫ 0

−∞

sin(s)

s
= 0,(3.3)

giving us the result.
To summarize, we know there is an α∗ > 0 such that solutions exist for all α ∈

[0, α∗). This next proposition gives a condition that implies our candidate solutions
are not solutions of (2.7).

Proposition 3.3. Fix A ∈ [0, 1), α ∈ [0, 1), β ∈ R, and c �= 0. If either
ϕi(βi) > 1 or ϕi(βi) < 0, then the candidate solutions given in (2.8) are not solutions
of (2.7).

Proof. By Proposition 3.2, ϕi(ξ) → 1 as ξ → ∞. Hence if ϕi(βi) > 1, there will
be a ξ > βi for which ϕi(ξ) < ϕi(βi), violating our original assumptions (2.6). Recall
also that ϕi(ξ) → 0 as ξ → −∞, so if ϕi(βi) < 0, we have violated the assumption
that ϕi(ξ) < ϕi(βi) for all ξ < βi.

Having proved the existence of our solutions, we turn our attention to uncovering
some basic properties of these solutions and to plots of several solution curves.

3.2. Plots of waveforms. We wish to show the form of the traveling wave
solutions, but first, a few comments about our numerical studies are in order. Because
we have an explicit formula for our candidate solutions, we are able to compute a broad
range of numerical results. That said, we must also note that the large number of
parameters in this problem makes it unfeasible to completely canvass the parameter
space. Instead, we have focused on parameter values we expect will be representative
of a larger range of values or on those that illustrate interesting phenomena. We
approximate the integrals using the adaptive Gaussian quadrature code adapt of [19]
and to find zeros we use the combined secant/bisection code zero of [19].

In Theorem 3.1, we proved the existence of solutions for some range of α. The
size of this range is unknown, and it is important to keep in mind that the existence
of our candidate solutions may not be guaranteed for all combinations of parameter
values explored in this section. We have, however, checked the necessary condition
that ai ∈ (0, 1), as mentioned in Proposition 3.3 for most of the parameter values in
this section. In some instances, we have taken the additional step of numerically veri-
fying (an admittedly finite range of) the candidate solutions themselves to verify that
they satisfy our original assumptions. In particular, we have numerically determined
waveforms with D1 = D2 = 1, A = β = 0, and c values of 10−1, 100, and 101, for α
between 0 and .95, with a step size of .05.

Our intent in providing numerical results is twofold: to illustrate some of the
results from the theoretical sections and to use numerical evidence to extend our
knowledge of the problem and to possibly provide ideas for further study. (In partic-
ular, we wish to answer, at least tentatively, the questions of the effects of ephaptic
coupling and nonalignment on the propagation of action potentials.) Figure 2 shows
plots of wave forms for a small wave speed. Notice the large jumps; these correspond
to discontinuities in the first derivative of the functions ϕi. A larger wave speed results
in waves with much less pronounced jumps. An example of wave forms with larger c
is given later in Figure 6, but we withhold these plots for now since we will use them
to illustrate a different phenomenon.
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Fig. 2. Wave profiles for c = .1, A = .5, α = .1, and D1 = D2 = 1. The steep jumps are due
to the small wave speed.

4. Some properties of the solution. Recall that, from the outset, we have
required both ϕ1 and ϕ2 to have the same wave speed c, because we are interested in
solutions that move together. Also recall that we are declaring c and then allowing
this choice of c to determine the values for ai. The idea is this: given a wave speed
c, we want to know how much the detuning parameters will have to change under
different circumstances in order for the waves to stay together. We start by writing
the ai as functions of c and then by investigating the behavior of these functions. In
particular, to find the range of propagation failure, we will compute the value of ai
as c approaches zero; this will tell us which values of ai can support a nonzero wave
speed. We also give an expression for the rate of change in the range of propagation
failure when α moves away from zero, and we evaluate this expression explicitly in a
few special cases.

4.1. Plots of ai(c) curves. Recall that from our original assumptions (2.6),
we have that

(4.1) ai(c) = ϕi(βi).

In Figures 3 and 4 we present ai(c) curves, which relate a given wave speed to
the detuning parameters ai. Take special note of the distance between ai(c) and 1

2
at c = 0: this is the range of propagation failure mentioned several times already.
Also note that smaller values of the diffusion constants Di result in larger ranges of
propagation failure. For D1 = D2, increasing the value of the Di results in a smaller
value of the detuning parameter required to achieve a certain wave speed.
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Fig. 3. ai(c) curves for A = .5, β = −.5, and α = 0.1. In this case, a1 = a2. Notice that
limc→0 ai(c) is significantly greater than 1

2
, implying a nontrivial range of propagation failure.

Also notice that, for a given c, ai(c) decreases as D1 = D2 increases. Similar plots result in the
case A = 0 = β.
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Fig. 4. ai(c) curves for A = .5, β = −.5, and α = 0.1, when D1 �= D2. The solid line represents
a1, and the dotted line represents a2. Similar plots result in the case A = 0 = β.

4.2. Analytical results related to the ai(c) relationship. We comment on
notation: some of the functions introduced in this section depend on several parame-
ters; since there are so many parameters, we consider all parameters to be fixed except
the ones listed explicitly in the argument of the function. Now consider the quantity

(4.2) Γi(c) = ai(c)−
1

2
=

1

2π

∫ ∞

0

∑
j∈Mi

Fi,j(s) cos(s(βi−j))+Gi,j(s)
1

s
sin(s(βi−j))ds.

Also define

(4.3) g(c) = a1(c) − a2(c) = Γ1(c) − Γ2(c),

and note that this quantity represents the difference in the detuning parameters ai
required to make both waves travel at speed c. This definition allows us to state
several important questions: 1. Given a noncoupled system with certain parameter
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values, what happens to the quantity g when the coupling coefficient α moves away
from zero? 2. Given a coupled, aligned system with certain parameter values, what
happens to the quantity g when the alignment coefficient A moves away from zero?
In this section we begin to answer these questions.

The following results about the oddness of the Γi illustrate the symmetry held by
these functions under certain circumstances.

Proposition 4.1. Let Γi(c) be defined as in (4.2), and let c �= 0. Then Γi is odd
in c if and only if

∫ ∞

0

∑
j∈Mi

Gi,j(s)
1

s
sin(s(βi − j))ds = 0(4.4)

for all c �= 0. Further,

(4.5) lim
c→±∞

Γi(c) =
1

2
.

Proof. Note that X(s) and Z(s), as given in (2.10), are even with respect to c,
W (s) and Y (s) are odd with respect to c, and all other terms in Γi are independent
of c. If the condition (4.4) holds, then we see from the definitions of Fi,j and Gi,j

that all appearances of X(s) and Z(s) vanish, leaving us with Γi odd. Conversely, if
the condition does not hold, then the dependence of Γi on c is not odd.

For the second statement, we use the change of variables s → s
c , interchange the

limiting process with the integration, and then evaluate the result:

lim
c→+∞

Γi(c) =
1

2π

∫ ∞

0

lim
c→∞

∑
j∈Mi

cos

(
−sj

c

)
Fi,j

(s
c

)
ds(4.6)

=
1

2π

∫ ∞

0

lim
c→∞

W
(s
c

)
ds

=
1

π

∫ ∞

0

s2 + 1

s4 + 2s2 + 1
ds =

1

2
.(4.7)

Once again, the limit as c → −∞ is evaluated in the same way, but the limits
of integration change, much like in the proof of Proposition 3.2, giving us the result
stated above.

The second claim in this last theorem implies that increasing the wave speed to
arbitrarily large values requires the detuning parameters to be very close to zero or
one.

We also have the following corollary.
Corollary 4.2. In particular, Γi is odd in the following cases:
1. α = 0,
2. A = 0 and β = 0,
3. A = 1

2 and β = − 1
2 .

Proof. Conditions 1, 2, and 3 all imply (4.4) for all c �= 0.
Note that conditions 1, 2, and 3 are enough to imply the oddness of Γi, regardless

of the values of the other parameters. It is not clear, however, whether there exist
other solutions to the equation in (4.4), much less whether there exist other solutions
that are independent of the other parameters.
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Now consider the functions

PY (c) =
1

2π

∫ ∞

0

∑
j∈M1

F1,j(s) cos(s(β1 − j)) −
∑
j∈M2

F2,j(s) cos(s(β2 − j))ds

=
k

π

∫ ∞

0

Y (s)C(s)[D1 −D2][1 + α(1 −A) cos(sβ) + αA cos(s(β + 1))]ds,(4.8)

P ∗
Z(c) =

1

2π

∫ ∞

0

∑
j∈M1

G1,j(s) sin(s(β1 − j)) −
∑
j∈M2

G2,j(s) sin(s(β2 − j))ds

=
k

π

∫ ∞

0

1

s
Z(s)C(s)[D1 + D2][(1 −A) sin(sβ) + A sin(s(β + 1))]ds.(4.9)

In fact an α factors out of P ∗
Z , so we will denote

PZ(c) =
P ∗
Z(c)

α
,(4.10)

which allows us to write

g(c) = PY (c) + αPZ(c),(4.11)

where g(c) is the difference between the detuning parameters a1 and a2, as given in
(4.3). This representation of g will be helpful in proving the following results.

Theorem 4.3. Let g be defined as above. If either α = 0 or PZ(c) = 0, then

c > 0 ⇒ g(c)

⎧⎪⎨
⎪⎩
< 0 for D1 > D2,

= 0 for D1 = D2,

> 0 for D1 < D2,

c < 0 ⇒ g(c)

⎧⎪⎨
⎪⎩
> 0 for D1 > D2,

= 0 for D1 = D2,

< 0 for D1 < D2.

Proof. Clearly, if either assumption is true, then g(c) = Py(c). The only remaining
task is to determine the sign of Py(c). To do this, note that Y (s, c) > 0 when c > 0
and Y (s, c) < 0 when c < 0 and that C(s) ≤ 0. Further, we have that

1 + α(1 −A) cos(sβ) + αA cos(s(β + 1))(4.12)

> 1 − α(1 −A) − αA = 1 − α > 0,(4.13)

and these estimates give the result above.
The previous theorem determines the sign of g for a number of cases, since if

either condition 2 or condition 3 from Corollary 4.2 is met, then PZ(c) ≡ 0. The
following results provide more examples of the symmetries of the functions Γi and g.

Theorem 4.4. Fix α ∈ [0, 1). Then for A ∈ (0, 1),

Γi(D1, D2, c, A, β) = −Γi∗(D2, D1,−c, A, β) = Γi∗(D2, D1, c, 1 −A,−β − 1),(4.14)

and for A = 0,

Γi(D1, D2, c, 0, β) = −Γi∗(D2, D1,−c, 0, β) = Γi∗(D2, D1, c, 0,−β).(4.15)

Proof. Follows from the definitions of the functions Fi,j and Gi,j given in (2.9)
and the definition of Γi given in (4.2).

Corollary 4.5. Fix α ∈ [0, 1). Then for A ∈ (0, 1),

Γi(D1, D2, c, A, β) = −Γi(D1, D2,−c, 1 −A,−β − 1) and(4.16)
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Fig. 5. Contours of g(A, β) for D1 = D2 = 1. Notice that for all A ∈ [0, 1
2
], there is a β such

that g(A, β) = 0.

g(D1, D2, c, A, β) = −g(D2, D1, c, 1 −A,−β − 1)(4.17)

= −g(D1, D2,−c, 1 −A,−β − 1) = g(D2, D1,−c, A, β),(4.18)

and for A = 0,

Γi(D1, D2, c, 0, β) = −Γi(D1, D2,−c, 0,−β) and(4.19)

g(D1, D2, c, 0, β) = −g(D2, D1, c, 0,−β)(4.20)

= −g(D1, D2,−c, 0,−β) = g(D2, D1,−c, 0, β).(4.21)

Proof. The proof follows from Theorem 4.4 and the definitions of Γi and g given
in (4.2) and (4.3).

Note that (4.14), (4.16), and (4.17) are also true for A = 0, but the statements
given in (4.15), (4.19), and (4.20) are better results. We turn our attention now to
the issue of nonalignment.

4.3. Numerical results related to nonalignment. We mentioned earlier that
it is important to note which values of the parameters cause a1 = a2. This is equiva-
lent, of course, to finding the zeros of our function g. The contour plots in Figure 5
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Fig. 6. Wave profiles for D1 = D2 = 1, α = .1, c = 1, and A = .3. The cusps in the graphs at
ai(βi) are the result of the Heaviside functions switching from 0 to 1. The solid line represents ϕ1,
and the dotted line represents ϕ2.

of g = 0 show that, given conditions with A = 0 that yield g = 0, we may move A
away from zero, and, as long as we adjust β appropriately, g will remain zero.

For example, consider the bottom middle plot, in which c = 1 and α = .1. When
A = 0 = β, we see that g(A, β) = 0. In addition, for any A ∈ [0, 1

2 ], there is a
β ∈ [− 1

2 , 0] such that g(A, β) = 0. we see that this last statement is true of all
plots in Figure 5, although we have not proved that such a β exists in [− 1

2 , 0] in all
circumstances.

Here we will fix α and examine the effects of moving the alignment parameter A
away from zero. Recall our earlier mentioning of the parameter β as a time-delay. It
is our contention that, loosely speaking, problems caused by moving A away from zero
can be remedied by moving β a corresponding (but not necessarily equal) distance
from zero. Consider, for instance, the case β = 0. Recalling our traveling wave ansatz
ξ = n− ct, we see that at time t = 0, for instance, ξ = 0 will correspond with n = 0
for both fibers. However, if A > 0, then wave 2 will be “ahead” of wave 1. To make
this notion a little more precise, we will speak of the “location” of a wave as being at
βi. Moving β below zero corrects this problem by having wave 2 reach a given node
at a time β later than wave 1 reaches the same node. The upper left plot in Figure 6
gives an example of two waves that are lined up with respect to ξ when β = 0. Since
A �= 0, however, this lining up actually corresponds to one wave leading the other. It
is only when β is moved below zero that the waves travel together, as indicated by
the other plots in Figure 6.
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Fig. 7. Left: plots of g(β) for A = 0. When c = 1.75, we see that g(β) = 0 for three different
values of β. Right: zeros of g(β) for c = 1.75. This plot shows how the three zeros shown in the left
plot for c = 1.75 change as A changes. In both plots, D1 = D2 = 1 and α = .1.

The relationship between A and β has been relatively unexplored analytically.
We want to know if A and β are independent of each other, or if fixing a value of A
determines a value of β. Consider an uncoupled system in which D1 = D2, and note
that this is equivalent to the condition a1 = a2. We want to know, given fixed values
of A and α > 0, whether there exists a critical value of β that still results in a1 = a2.
This section provides evidence that such a β does exist for a variety of combinations
of A, α and c (see Tables 4.1 and 4.2).

Further, these numerical results show that multiple such β values exist for certain
combinations of these parameters, particularly for higher wave speeds. We find evi-
dence for the existence of a pitchfork bifurcation in the parameter c with respect to
these critical β values. That is, fixing all parameters but c, there exists a c∗ (depen-
dent on the other parameters) such that for c ≤ c∗ there is only one critical β value,
but that for c > c∗, there are three critical β values. The left plot in Figure 7 shows
the cubic-like shape of g(β) and shows the transition between g(β) having one zero
to g(β) having three zeros in the range shown. The plot on the right shows implicitly
the dependence of this value c∗ on the parameter A in particular. For smaller values
of A, a wave speed of c = 1.75 results in three critical β values, whereas for large
enough values of A, there is only one critical β value for which g(β, c) = 0. The
possible implications of a pitchfork bifurcation are interesting. For instance, if the
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Table 4.1

Values of β that yield a1 = a2 for α = .1, D1 = D2 = 1, and different pairs of the wave speed
c and the alignment parameter A.

c\ A 0 .1 .2 .3 .4 .5
.25 0 −.0433 −.0792 −.1328 −.2381 −.5
.75 0 −.0938 −.1651 −.2506 −.3623 −.5
1.25 0 −.1409 −.2200 −.3035 −.3974 −.5
1.75 0 −.3183 −.3634 −.4085 −.4540 −.5

Table 4.2

Values of a1 = a2 that result from the β value listed in Table 4.1 for different pairs of the wave
speed c and the alignment parameter A.

c\ A 0 .1 .2 .3 .4 .5
.25 .7346 .7328 .7311 .7294 .7277 .7267
.75 .7891 .7878 .7864 .7852 .7844 .7840
1.25 .8521 .8510 .8500 .8492 .8487 .8485
1.75 .8975 .8959 .8955 .8952 .8950 .8949

single traveling wave before the bifurcation is stable, which is reasonable to expect for
small values of the coupling parameter α (see [7]), then we might expect an exchange
of stability at the bifurcation point.

The existence of multiple β values that result in g = 0 suggests that perhaps the
two waves can travel at the same speed even if one wave is lagging behind the other.
This allows for the possibility of two waves traveling together even if their respective
nerve fibers were not activated at exactly the same time. Other numerical results
indicate that the value of c∗ increases as A increases. This suggests that in the case of
staggered nodes, higher wave speeds are required in order to have multiple critical β
values. The implications of this would be very interesting if there is in fact an exchange
of stability at the bifurcation point. If the middle branch becomes unstable after the
bifurcation, then this would imply that the middle branch stays stable for a larger
range of the wave speed when the nodes are staggered than when they are aligned.

5. Propagation failure.

5.1. Analytical results on propagation failure. As mentioned earlier, prop-
agation failure is a well-documented phenomenon in lattice differential equations (see
[6] and [11], among others), and it is certainly important to compute the range of ai
that result in a zero wave speed. We address this issue here. This section involves
a few lengthy calculations, so we highlight the most important results of this section
with a few theorems and then proceed with the calculations that lead to the results.
To determine the range of propagation failure, we need to compute limc→0 Γi(c). In
light of the symmetries of Γi presented previously, we will focus on the computation
of limc→0+ Γi(c). Also, we will start by considering only the case where Γi(c) is odd,
and the consideration of the other case will follow. These steps are carried out in the
following proposition.

Proposition 5.1. Let α ∈ [0, 1), A ∈ [0, 1), β ∈ R, and γi = limc→0+ Γi(c).
Then

(5.1)

γi = lim
c→0+

Γi(c) =
∑
j∈Mi

1

2πp

∫ ∞

0

∫ p

0

F ∗
i,j

(
t

c
, s

)
cos(s(βi − j))dsdt

+

∫ ∞

0

[Gi,j(s)]c=0

1

s
sin(s(ξ − j))ds.
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Proof. We will compute limc→0

∫∞
0

Fi,j(s) cos(s(βi−j))ds individually for a given
(i, j) pair. First, let’s assume βi − j is rational, and then define

(5.2) pi,j := p∗i,j2π := lcm

(
2π,

2π

βi − j

)
,

the common period of the periodic functions that define Fi,j , and

(5.3) p = lcm(pi,j),

the least common multiple over all i and j of the pi,j . For notational purposes, we
consider W,X, Y , and Z as functions of two variables, e.g., W (s) = W (u, v): the first
argument will go in place of all nonperiodic instances of s, and the second argument
will go in place of all periodic instances of s. As an example, we would write the
function q(s) = as4 + bs2 + sin(s) as q(u, v) = au4 + bu2 + sin(v).

For the Fi,j and Gi,j we will use the same convention. So, for instance,

(5.4) F1,0(u, v) = [W (u, v)(1 + 2Q) −R2(v)Y (u, v)],

and Fi,j(s, s) = Fi,j(s). Then

(5.5)

1

2π

∫ ∞

0

Fi,j(s) cos(s(βi − j))ds =
1

2π

∞∑
n=0

∫ (n+1)p

np

Fi,j(s) cos(s(βi − j))ds

=
1

2π

∞∑
n=0

(∫ (n+1)p

np

Fi,j(np, s) cos(s(βi − j))ds + En

)

: = Φ +
1

2π

∞∑
n=0

En,

where

En =

∫ (n+1)p

np

Fi,j(s) cos(s(βi − ξ))ds−
∫ (n+1)p

np

Fi,j(np, s) cos(s(βi − j))ds(5.6)

and

Φ =
1

2π

∞∑
n=0

∫ (n+1)p

np

Fi,j(np, s) cos(s(βi − j))ds.(5.7)

We will show in an appendix that

(5.8)
∞∑

n=0

En → 0 as c → 0,

but for now, we will assume this is true and complete the calculation of Φ. From the
definitions of W and Y given in (2.10), notice that c factors out of the Fi,j . This
allows us to write

(5.9) Fi,j(s) = cF ∗
i,j(s),
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and we will denote

(5.10) Pi,j(t) =
1

p

∫ p

0

F ∗
i,j(

t

c
, s) cos(s(βi − j))ds.

Then

Φ =
c

2π

∞∑
n=0

∫ (n+1)p

np

F ∗
i,j(np, s) cos(s(βi − j))ds(5.11)

=
pc

2π

∞∑
n=0

1

p

∫ p

0

F ∗
i,j(np, s) cos(s(βi − j))ds

=
pc

2π

∞∑
n=0

Pi,j(npc).

Viewing this final quantity as a Riemann sum, we arrive at

(5.12) Φ =
1

2π

∫ ∞

0

Pi,j(t)dt =
1

2πp

∫ ∞

0

∫ p

0

F ∗
i,j

(
t

c
, s

)
cos(s(βi − j))dsdt.

This brings us to the expression, for Γi odd,

(5.13) γi = lim
c→0

Γi(c) =
∑
j

1

2πp

∫ ∞

0

∫ p

0

F ∗
i,j

(
t

c
, s

)
cos(s(βi − j))dsdt.

If Γi is not odd, then we need to consider the effect of the Gi,j . However, this is much
easier to compute since

(5.14) lim
c→0

∫ ∞

0

Gi,j(s)
1

s
sin(s(ξ − j))ds =

∫ ∞

0

[Gi,j(s)]c=0

1

s
sin(s(ξ − j))ds,

and so we have the general formula

(5.15)

γi = limc→0 Γi(c) =
∑
j

1

2πp

∫ ∞

0

∫ p

0

F ∗
i,j

(
t

c
, s

)
cos(s(βi − j))dsdt

+

∫ ∞

0

[Gi,j(s)]c=0

1

s
sin(s(ξ − j))ds.

One of our goals here is to investigate the changes in this quantity with respect
to a change in α and, in particular, the difference in the range of propagation failure
between when α = 0 and when α > 0. To this end, we let γi = γi(α), calculate γ′

i(α),
and evaluate this expression at α = 0. In a few special cases, we have an explicit
value for γ′

i(α) in terms of D1 and D2. The following theorem gives this result.
Theorem 5.1. Let D1 = D2 := D, and consider the function γi = γi(α).
1. If A = 0 = β, then

γ′
i(0) =

D

(4D + 1)
3
2

> 0.(5.16)

2. If A = 1
2 and β = − 1

2 , then

γ′
i(0) = 0.(5.17)
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Recall that γi = limc→0+ ai(c) − 1
2 . If γi > 0, then there is a positive range of

propagation failure. The results above quantify how the size of this range changes as
α moves away from zero. Before we proceed with the proof of this theorem, let us
interpret the results in terms of the ephaptic coupling model. This theorem states
that turning the coupling on results in an increase in the range of propagation failure
when the nodes are aligned, but that turning the coupling on results in a decrease in
the range of propagation failure when the nodes are staggered. Intuitively, it seems
reasonable that staggering the nodes would result in a decrease in this range. The
two-fiber problem with staggering seems very much like the one-fiber problem with
twice as many nodes squeezed into the same space. A shorter internodal distance is
reflected by an increase in the diffusion coefficient, which has the effect of decreasing
the range of propagation failure. As the coupling increases, the fibers interact more,
increasing the effect of the shorter internodal distance.

The result for the aligned case is more easily understood by thinking about the
system (2.7). When A = 0 = β, we are left with

−cϕ
′

1(ξ) =
1

1 − α2
[D1(Lϕ1)(ξ) − αD2(Lϕ2)(ξ)] − ϕ1(ξ) + h(ξ),(5.18)

−cϕ
′

2(ξ) =
1

1 − α2
[−αD1(Lϕ1)(ξ) + D2(Lϕ2)(ξ)] − ϕ2(ξ) + h(ξ),

and when D1 = D2, we expect to have ϕ1 = ϕ2. In this situation, the system would
become two copies of the equation

−cϕ
′
(ξ) =

1

1 − α2
[D(1 − α)(Lϕ)(ξ)] − ϕ(ξ) + h(ξ)(5.19)

=
D

1 + α
(Lϕ)(ξ) − ϕ(ξ) + h(ξ),

which is just the one-fiber problem with diffusion coefficient D
1+α . This makes it easy

to see that increasing α decreases the diffusion coefficient in this related one-fiber
problem, which has the effect of increasing the range of propagation failure. Using
the value of γ computed for the one-fiber problem in [6], and viewing γ as a function
of α, we have

γ(α) =
1

2(1 + 4D
1+α )

1
2

(5.20)

and

γ′(α) =
D

(1 + α)2(1 + 4D
1+α )

3
2

.(5.21)

In particular,

γ′(0) =
D

(1 + 4D)
3
2

,(5.22)

which is in agreement with the result obtained in the theorem. This formula also
sheds light on how the range of propagation failure might decrease for all values of
α. Unfortunately, such an argument cannot be made when A �= 0. However, the
reasoning used here works for any nonlinearity f for which the wave speed increases
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with the diffusion coefficient. In particular, we expect a similar claim holds for a cubic
nonlinearity, although we are not able to determine the size of the range quantitatively
in that case.

Note that here we have an expression for γ′(0) when A = 0 = β and when
A = 1

2 , β = − 1
2 , but not for values of A in (0, 1

2 ). We are interested in the quantity
γ′(0) primarily when a1 = a2. That is, if we consider γ = γ(α,A, β), we want to

compute ∂γ
∂α

∣∣∣
(α,A,β∗)=(0,A,β∗)

for A ∈ (0, 1
2 ), where β∗ is such that a1 = a2. The

difficulty in extending the results of Theorem 5.1 to A ∈ (0, 1
2 ) lies in determining

analytically the relationship between A and β∗.
We now turn our attention to the proof of Theorem 5.1.
Proof. Let γi = γi(α) and let W,X, Y, Z, Fi,j , and Gi,j be functions of α as well.

We would like to calculate γ′
i(0). To do this note that

(5.23) W ′(0) = X ′(0) = Y ′(0) = Z ′(0) = Q′(0) = 0,

and from this we obtain

(5.24) F ′
i,βi

(0) = F ′
i,βi+1(0) = F ′

i,βi−1(0) = G′
i,βi

(0) = G′
i,βi+1(0) = G′

i,βi−1(0) = 0

and

F ′
i,β∗(0) = −(1 −A)Ri∗Y,(5.25)

F ′
i,β∗+1(0) = −ARi∗Y,

G′
i,β∗(0) = −(1 −A)Ri∗Z,

G′
i,β∗+1(0) = −ARi∗Z.

Since D1 = D2 := D, we have R1 = R2 := R, and

γ′
i(0) =

2

πp

∫ p

0

∫ ∞

0

T (s)

(t2 + T 2(s))2
P (s)dtds− 1

π

∫ ∞

0

1

sT 2(s)
Q(s)ds,(5.26)

where

T (s) = 2DC(s) − 1,(5.27)

P (s) = R(s) [(1 −A) cos (s(βi − βi∗)) + A cos (s(βi − (βi∗ + 1)))] ,

Q(s) = R(s) [(1 −A) sin (s(βi − βi∗)) + A sin (s(βi − (βi∗ + 1)))] .

Some calculation yields that the complex equation T (z) = 0 has roots in

(5.28)

{
z = a + ib | a = 2mπ for m ∈ Z, b = cosh−1

(
1 +

1

2D

)}
.

We focus on the calculation of the inner integral in the first term of (5.26). The
complex roots of z2 + T 2(s))2 = 0 are z = ±iT (s). Note that since T (s) < 0 for real
s, P1 = −iT (s) lies in the upper half-plane. Denoting

(5.29) f(z) =
1

(z2 + T 2(s))2
=

1

(z − iT (s))2(z + iT (s))2
,

we have that

resf (P1) =
i

4T 3(s)
.(5.30)
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Then ∫ ∞

0

T (s)

(t2 + T 2(s))2
P (s)dt = πiresf (P1) =

−π

4T 3(s)
(5.31)

and

2

πp

∫ p

0

∫ ∞

0

T (s)

(t2 + T 2(s))2
P (s)dtds = − 1

2p

∫ p

0

1

T 2(s)
P (s)dt := Ψ.(5.32)

Let

(5.33) p∗ = lcm(p∗i,j), and qi,j =
p∗

p∗i,j
.

To compute the integral Ψ, we use the change of variables z = e
is
p∗ , dz = i

p∗ e
is
p∗ ds =

iz
p∗ ds, which results in a contour integral around the unit circle. Now we may write

(5.34)

T (z) = 2D

(
zp

∗
+ z−p∗

2
− 1

)
− 1,

P (z) = 2D

(
zp

∗
+ z−p∗

2
− 1

)[
(1 −A)

(
zqi,βi∗ + z−qi,βi∗

2

)
+ A

(
z
qi,βi∗+1 + z

−qi,βi∗+1

2

)]
.

Multiplying the top and bottom of the integrand by z2p∗−1 leaves the denominator
as the square of a quadratic in zp

∗
, with zeros given by

(5.35) zp
∗

± = 1 +
1

2D
±

√
4D + 1

2D
.

We have |zp
∗

− | < 1 < |zp
∗

+ |, so the integrand has p∗ distinct poles inside the unit circle,
each of order 2. Labeling these poles r1, . . . , rp∗ we have

Ψ = −q

i

1

2p
2πires

q∑
m=1

(
P (z)

T 2(z)
, ri

)
= −1

2
res

q∑
m=1

(
P (z)

T 2(z)
, ri

)
.(5.36)

This quantity can be computed explicitly in several special cases. We will start
with A = 0, β = 0. In this case, P (s) = R(s), p∗ = 1, and Q(s) = 0. Then we have

r1 = 1 +
1

2D
−

√
4D + 1

2D
(5.37)

and

(5.38) res

(
P (z)

T 2(z)
, r1

)
=

−2D

(4D + 1)
3
2

,

which gives us

(5.39) γ′
i(0) =

D

(4D + 1)
3
2

> 0.
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For A = 1
2 , β = − 1

2 , we have P (s) = R(s)cos( s2 ), p∗ = 2, and Q(s) = 0. We use
the roots

r1, r2 = ±

√
2D(2D + 1 −

√
4D + 1)

2D
(5.40)

and

(5.41) res

(
P (z)

T 2(z)
, r1

)
+ res

(
P (z)

T 2(z)
, r2

)
= 0,

implying γ′
i(0) = 0 in this case.

Unfortunately, explicit results like those given above are very difficult to find for
more general parameter values. The problem lies in the computation of the second
integral in equation (5.26). In an attempt to carry out this calculation, we see that
the integral

Ω =
1

π

∫ ∞

0

Q(z)

zT 2(z)
dz(5.42)

can be evaluated using the calculus of residues. The poles of this integrand are given
by

rm = 2mπ + icosh−1

(
1 +

1

2D

)
,(5.43)

which are of order 2. Then

Ω = πi
∞∑

m=−∞
res

(
Q(z)

zT 2(z)
, rm

)
.(5.44)

Now using ′ to denote differentiation with respect to the complex variable z, we write
(5.45)

res

(
Q(z)

zT 2(z)
, rm

)
= − Q′(rm)

rm(4D + 1)
+

Y (rm)

rmD(4D + 1)

[
1

rm
− i(2D + 1)

√
4D + 1

4D + 1

]
.

Since βi−βi∗ may take on any rational value, it is very difficult to simplify, in general,
the expressions for Q′(rm) and Y (rm).

5.2. Numerical results on propagation failure. Figures 8 and 9 illustrate
the effect of moving the coupling parameter α away from zero. Notice that when
A = 0, β = 0, an increase in the coupling parameter α results in an increase in the
range of propagation failure. However, when A = .5, β = −.5, this range decreases
when α increases, suggesting that in the case of myelinated axons, nonalignment of
the nodes of Ranvier allows for propagation in a larger range of values of the detuning
parameter.

The plots in Figure 10 show the effects of coupling for positive wave speeds away
from zero. Note that although our analytical expressions describe ai as a function of
c, these plots allow us to see what happens to the wave speed if we fix a value for
a1 = a2 and then begin coupling. The results are especially interesting for small wave
speeds: these plots indicate that coupling increases the wave speed for small wave
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Fig. 8. In the top plots, A = 0 = β; in the bottom plots, A = .5, β = −.5. The plots show the
range of propagation failure when D1 �= D2. The solid line represents a1 and the dotted line a2.
(Note: values for failure were computed at c = 10−2.)

speeds when A = .5 and β = −.5 but that the same is not true when A = 0 = β.
This also agrees with the results shown in Figure 9 when D1 = D2, and the results
obtained for γ′

i(α)|α=0 in previous sections.

6. Conclusion. We have shown that traveling back solutions to our system
exist (at least) for small values of the coupling coefficient α, although further study
is required to know the size of the range of α for which solutions exist. Using these
solutions, we find that if the nodes are perfectly lined up or evenly staggered, and
the waves travel together, then the sign of g(c) = a1 − a2 remains unchanged for all
α ∈ [0, 1).

If we limit ourselves to the case D1 = D2, we can comment on the questions we
set out to answer: namely, what are the effects of nonalignment and ephaptic coupling
on the propagation of action potentials? We find that (a) if the nodes are perfectly
lined up and the waves travel together, then the introduction of ephaptic coupling
increases the size of the range of propagation failure, and (b) if the nodes are evenly
staggered and the waves travel together, then the introduction of ephaptic coupling
decreases the the size of the range of propagation failure.

The first result, in particular, agrees in spirit with results obtained in [2] with
the cubic nonlinearity. There the authors use numerical methods to show that larger
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Fig. 9. In the top plots, A = 0 = β; in the bottom plots, A = .5, β = −.5. The plots show the
range of propagation failure when D1 = D2. In this case, a1 = a2. Note how the ranges increase
as α increases on the top but decrease as α increases on the bottom. (Note: values for failure were
computed at c = 10−2.)

values of the diffusion coefficient are required to achieve a given wave speed (in partic-
ular, small wave speeds) as the coupling increases. They give similar results when the
nodes are staggered, except that for small wave speeds, coupling appears to have little
or no effect on the value of the diffusion coefficient required to achieve a certain wave
speed. These results may not be compared directly to ours, however, since the results
in [2] relate to the effect of coupling on the diffusion coefficient, whereas our results
relate to the effect of coupling on the detuning parameters. In [20] and [21], evidence
is given that ephaptic coupling can have a significant effect on the propagation of
action potentials in a model for cardiac cells, but these results focus on the length
of time required for an action potential on one fiber to affect the action potential
on the other fiber, as opposed to the amount of time required for action potentials
to proceed along a given fiber. The work [20, 21] considers two types of coupling at
once, ephaptic and ohmetric, and that approach may provide further insight into the
dynamics of our present problem. The work in [3] is concerned with ephaptic coupling
in nonmyelinated nerve fibers that might be modeled with (1.1) with large D. In [16],
the authors focus on the effects of demyelination of nerve fibers in large bundles and
observe a reduction in the speed of action potential propagation when the nodes of
Ranvier are aligned.
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Fig. 10. Level curves of a1(α, c) when D1 = D2 = 1. Note that this implies a1 = a2 for both
plots. In the right plot, the value of ai(c) decreases with α for small c, whereas in the left plot, the
value of ai(c) increases with α for small c. This is another illustration of the claim that coupling
decreases the range of propagation failure when the nodes are staggered but increases the range when
the nodes are aligned.

In addition, we have shown that for any value of A, there is a value of β such
that a1 = a2. This means that regardless of the alignment of the nodes, we can have
a situation in which the fibers are the same (i.e., D1 = D2 and a1 = a2) and the
waves travel together. Perhaps a more surprising result is that with some parameter
configurations, there are multiple such β values. The existence of these multiple β
values gives rise to questions involving the stability of the solutions that we cannot
answer with any certainty. The results in [2], and those in [1], point to the tendency
of the two waves to match speeds (although in [1] a stronger type of coupling is
considered). Given this fact, it seems reasonable that the same-speed solutions would
be stable. However, the earlier results deal with waves that travel together at the same
speed, and our results suggest the possibility of waves that travel at the same speed,
with one wave lagging behind the other. This difference may give rise to interesting
behavior with respect to the stability of the solutions.

Experience with the uncoupled case suggests that the piecewise linear and cubic
problems may exhibit qualitatively similar behavior for small values of c and small
(D ≤ 1) values of D. It is reasonable to expect that qualitatively similar results
related to propagation failure may hold in the cubic case, provided D is not too large.
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7. Appendix A. We now present the details of the construction of our solution.
Lemma 7.1. Let (ϕ1, ϕ2) be a solution to (2.5), (2.7). Then there exists ε0 > 0

such that for i = 1, 2,

(7.1) |ϕi(ξ)| ≤ Keε0ξ for ξ < min{−1, β}

for some K > 0.
Proof. Let ψi(ξ) = ϕi(−ξ), and note that from our boundary conditions, ψi(ξ) →

0 as ξ → ∞. Then from the system (2.7), we have

cψ
′

1(ξ) + ψ1(ξ) =
1

1 − α2
[D1(Lψ1)(ξ) − αD2(Lψ2)(ξ)

−αA(N∗ψ2)(ξ) − α2A(N ∗ ψ1)(ξ + 1)],

cψ
′

2(ξ) + ψ2(ξ) =
1

1 − α2
[−αD1(Lψ1)(ξ) + D2(Lψ2)(ξ)

+α2A(N∗ψ2)(ξ) + αA(N∗ψ1)(ξ + 1)]

for all ξ > max{1,−β}, where

(N∗ψi)(ξ) = c(ψ′(ξ + 1) − ψ′(ξ)) + ψ(ξ + 1) − ψ(ξ).(7.2)

For this proof only, let ψ̂i denote the Laplace transform

(7.3) ψ̂i(s) =
1

2π

∫ ∞

0

e−sξψi(ξ)dξ.

After applying the transform, we obtain the matrix equation

(7.4) M∗(s)

[
ψ̂1(s)

ψ̂2(s)

]
= J∗(s)

[
ψ1(0)
ψ2(0)

]
+ K∗(s),

where M∗ and J∗ are 2×2 matrix functions with entries

M∗
11(s) = B∗(s) − 2kD1C

∗(s) + kα2AE(s)B(s),

M∗
12(s) = 2kαD2C

∗(s) − kαAE(−s)B(s),

M∗
21(s) = 2kαD1C

∗(s) − kαAE(s)B(s),

M∗
22(s) = B∗(s) − 2kD2C

∗(s) + kα2AE(−s)B(s),(7.5)

and

J∗
11(s) = c(1 + kα2AE∗(−s)),

J∗
12(s) = −ckαAE∗(s),

J∗
21(s) = −ckαAE∗(−s),

J∗
22(s) = c(1 + kα2AE∗(s)),(7.6)

k =
1

1 − α2
,

C∗(s) = cosh(s) − 1,

B∗(s) = 1 + cs,

E∗(s) = 1 − es,(7.7)



TRAVELING WAVES FOR COUPLED NAGUMO EQUATIONS 971

and K∗ is a vector with entries

K∗
1 (s) = k(D1Δ1 − αD2Δ2) + kαA(Ω2 + αΩ1),

K∗
2 (s) = k(D2Δ2 − αD1Δ1) − kαA(Ω1 + αΩ1),(7.8)

where

Δi = e−s

∫ 0

−1

e−sξψi(ξ)dξ − es
∫ 1

0

e−sξψi(ξ)dξ,

Ωi = ±e∓s

(∫ 0

∓1

e−sξψ′
i(ξ)dξ +

∫ 0

∓1

e−sξψi(ξ)dξ

)
.

Integrating by parts, we see that

∫ 1

0

e−sξψi(ξ) =
−e−sξψi(ξ)

s

∣∣∣∣
1

ξ=0

+
1

s

∫ 1

0

e−sξψ′
i(ξ)dξ(7.9)

and ∫ 1

0

e−sξψ′
i(ξ) =

−e−sξψ′
i(ξ)

s

∣∣∣∣
1

ξ=0

+
1

s

∫ 1

0

e−sξψ′′
i (ξ)dξ(7.10)

As long as these integrals are defined, we see that K(s) = O(|s|−1) as |Im s| → ∞,
uniformly for Re s bounded. Assuming M∗ is invertible, we obtain

(7.11)

[
ψ̂1(s)

ψ̂2(s)

]
= (M∗)−1J∗(s)

[
ψ1(0)
ψ2(0)

]
+ O(|s|−2) as |Im s| → ∞

uniformly for Re s bounded, since (M∗)−1 = O(|s|−2). This justifies the inversion
of the Laplace transform, as well as the shift of contour around singularities on the
imaginary axis. This gives us

ψi(ξ) =
1

2πi

∫ ε0+i∞

ε0−i∞
esξψ̂i(s)ds(7.12)

=
1

2πi

∫ −ε0+i∞

−ε0−i∞
esξψ̂i(s)ds +

1

2πi

∑
Re s=0

esξres(ψ̂i, s),

where the first equality results from the Laplace inversion formula, and the second is
a contour shift around any poles of ψ̂i in the imaginary axis, and where ε0 is small
enough so that there are no poles of ψ̂i for −ε0 ≤ Re s < 0. Further, if

(M∗)−1J∗(s)

[
ψ1(0)
ψ2(0)

]
= O(|s|−1)as |Im s| → ∞(7.13)

for ε < 0, then ψ̂i = O(|s|−1) as |Im s| → ∞.
We know that this condition is met, since (M∗(s))−1 = O(|s|−1) and J∗ oscillates

as |Im s| → ∞. Since we also have, from our boundary conditions, that ψi(ξ) → 0 as
ξ → ∞, it is clear that

(7.14) res(ψ̂i, s) = 0 for Im s = 0.
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This fact, together with (7.11) and (7.12), gives us that

(7.15) ψi(ξ)| ≤ Ke−ε0ξ for ξ > max{1,−β}

for K > 0, which is equivalent to the claim made in the statement of the lemma.
Now define

(7.16) ϕi,ε(ξ) = e−εξϕi(ξ),

where ε > 0 is sufficiently small. By Lemma 7.1, if (ϕ1, ϕ2) satisfies (2.5), (2.7), then
ϕi,ε(ξ) → 0 exponentially fast as ξ → +∞ and ξ → −∞.

After writing the system (2.7) in terms of the ϕi,ε(ξ), we multiply both sides
of each equation by appropriate factors, integrate over R, and solve for the Fourier
transforms of the ϕi,ε. Using the Fourier transform

(7.17) ϕ̂i,ε(s) =

∫ +∞

−∞
e−isξϕi,ε(ξ)dξ

we obtain the matrix equation

(7.18) M(s− iε)

[
ϕ̂1,ε(s)
ϕ̂2,ε(s)

]
=

1

is + ε
N(s),

where M is a 2×2 matrix function with entries

M11(s) = B(s) − 2kD1C(s) + kα2AE(s)B(s),

M12(s) = 2kαD2C(s) − kαAE(−s)B(s),

M21(s) = 2kαD1C(s) − kαAE(s)B(s),

M22(s) = B(s) − 2kD2C(s) + kα2AE(−s)B(s),(7.19)

N is a vector with entries

N1(s) = 1 − kαA[E(−s)e−isβ − αE(s)],

N2(s) = e−isβ − kαA[E(s) − αE(−s)e−isβ ],

and

k =
1

1 − α2
,(7.20)

C(s) = cos(s) − 1,

B(s) = 1 − ics,

E(s) = 1 − eis.

The result given in Lemma 2.1 allows us to invert the matrix M , and we arrive
at the solution of the matrix equation (7.18):

ϕ̂1,ε(s) =
M22(s− iε)N1(s− iε) −M12(s− iε)N2(s− iε)

(is + ε) detM(s− iε)
,(7.21)

ϕ̂2,ε(s) =
M11(s− iε)N2(s− iε) −M21(s− iε)N1(s− iε)

(is + ε) detM(s− iε)
.(7.22)
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Then using the Fourier inversion formula and the definition in (7.16), we have

(7.23)

ϕ1(ξ) =
1

2π

∫ +∞

−∞
eξ(is+ε)ϕ̂i,ε(s)ds =

1

2πi

∫ −iε+∞

−iε−∞

eisξ

s

M22(s)N1(s) −M12(s)N2(s)

det(M(s))
,

ϕ2(ξ) =
1

2π

∫ +∞

−∞
eξ(is+ε)ϕ̂i,ε(s)ds =

1

2πi

∫ −iε+∞

−iε−∞

eisξ

s

M11(s)N2(s) −M21(s)N1(s)

det(M(s))
.

Applying the Cauchy integral formula, we shift the contour of integration to the real
axis, with a semicircle around the origin. That is, we rewrite the integral in the form

(7.24) ϕ1(ξ) =
1

2πi

(∫ −ε

−∞
+

∫ ∞

ε

+

∫
Cε

)
eisξ

s

M22(s)N1(s) −M12(s)N2(s)

det(M(s))
,

where Cε is lower semicircle of radius ε around the origin. We may use a standard
residue calculation for the third of these integrals, and the first two may be combined
by using a change of variables in the first integral. After this, we use Euler’s formula
exp(ix) = cos(x) + i sin(x), and then we simplify by collecting sines and cosines
according to their arguments. This leaves us with

ϕi(ξ) =
1

2
+

1

2π

∫ ∞

0

∑
j∈Mi

Fi,j(s) cos(s(ξ − ξj)) + Gi,j(s)
1

s
sin(s(ξ − ξj))ds,(7.25)

where Fi,j and Gi,j are as in (2.9).

8. Appendix B. We now present the proof of Lemma 2.1.
Lemma 8.1. Let α ∈ [0, 1), A ∈ [0, 1), β ∈ R, and c �= 0. Then

(8.1) |detM(s)|2 ≥ 1

for s ∈ R.
Proof. Using the definitions above, we may write |detM(s)|2 as

(8.2) |detM(s)|2 = a2 +b2 = c4s4(b2
2)+c2s2(2b2

2 +b2
1 +2b2(b1−b0))+(b2 +b1 +b0)

2.

Clearly b2
2 ≥ 0 for s ∈ R. Also,

(8.3) b2 + b1 + b0 = 1 − 2kC(s)[D1 + D2 − 2D1D2C(s) + α2A(1 −A)] ≥ 1

since C(s) ≤ 0. It remains to show that the coefficient of c2s2 is nonnegative. Sorting
by powers of C(s), we have

2b2
2 + b2

1 + 2b2(b1 − b0) = C3(s)[16k2D1D2α
2A(1 −A)](8.4)

+ C2(s)4k
([
k[2α2A(1 −A)(D1 + D2 + α2A(1 −A))

+ (D1 + D2)
2] − 2D1D2

])
+ C(s)4k[−2α2A(1 − a) − (D1 + D2)]

+ 2,
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from which we see that the coefficient of C0(s) is positive and that of C1(s) is negative,
as desired. It is convenient to express the order 2 and order 3 terms as

C2(s)
(
4k2

[
2α2A(1 −A)(D1 + D2 + α2A(1 −A))

])
(8.5)

+ C2(s)
(
4k[(D1 + D2)

2k − 2kD1D2 + C(s)4kD1D2α
2A(1 −A)]

)
,

where once again the terms on the top row are nonnegative. Finally, we have the
estimate for the coefficient on the bottom

k[D2
1 + D2

2 + 4kD1D2C(s)α2A(1 −A)] + 2D1D2(k − 1)(8.6)

≥ k[D2
1 + D2

2 + 4kD1D2C(s)α2A(1 −A)]

≥ D2
1 + D2

2 − 2D1D2 ≥ 0

since −2 ≤ C(s) ≤ 0, α < 1, and 4A(1−A) ≤ 1 for A ∈ [0, 1). Hence the coefficient of
c2s2 in |detM(s)|2 is greater than or equal to two. This estimate gives us the result
stated above.

9. Appendix C. We now prove the claim (5.8) by showing that
∑∞

n=0 En → 0
as c → 0. Recall

|En| =

∣∣∣∣∣
∫ (n+1)p

np

Fi,j(s) cos(s(βi − j))ds−
∫ (n+1)p

np

Fi,j(np, s) cos(s(βi − ξj))ds

∣∣∣∣∣(9.1)

≤
∣∣∣∣∣
∫ (n+1)p

np

[Fi,j(s) − Fi,j(np, s)]ds

∣∣∣∣∣ .

Also, since |Ri(s)| ≤ 2 and all other terms in the Fi,j are constant, it will suffice to
look at

(9.2)

∣∣∣∣∣
∫ (n+1)p

np

[W (s) −W (np, s)]ds

∣∣∣∣∣ and

∣∣∣∣∣
∫ (n+1)p

np

[Y (s) − Y (np, s)]ds

∣∣∣∣∣ .

The following applies to both cases. First, make a change of variables s → s
c in both

terms of the difference. Also, the differences W (s) − W (np, s) and Y (s) − Y (np, s)
may be expressed in the form

(9.3)
γ2(s)s

2 + γ0(s)

δ4(s)s4 + δ2(s)s2 + δ0(s)
− γ2(s)(npc)

2 + γ0(s)

δ4(s)(npc)4 + δ2(s)(npc)2 + δ0(s)
,

where the γ and δ are functions of s, but we will suppress this dependence to make
the notation lighter. Then for n ≥ 1,
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(9.4)

|En| ≤
∫ (n+1)pc

npc

((npc)2 − s2)
γ2δ4(npc)

2s2 + γ0δ4((npc)
2 + s2) + γ0δ2 − γ2δ0

(δ4s4 + δ2s2 + δ0)(δ4(npc)4 + δ2(npc)2 + δ0)
ds

≤
∫ (n+1)pc

npc

(2n + 1)(pc)2 γ2δ4(npc)
2s2 + γ0δ4((npc)

2 + s2) + γ0δ2 − γ2δ0

(δ4s4 + δ2s2 + δ0)(δ4(npc)4 + δ2(npc)2 + δ0)
ds

≤
∫ (n+1)pc

npc

(2n + 1)(pc)2 γ2δ4(npc)
2s2 + γ0δ4((npc)

2 + s2) + γ0δ2 − γ2δ0

(δ4s4 + δ2s2 + δ0)(
δ4

16s
4 + δ2

4 s2 + δ0)
ds

≤ 16

∫ (n+1)pc

npc

(2n + 1)(pc)2 γ2δ4(npc)
2s2 + γ0δ4((npc)

2 + s2) + γ0δ2 − γ2δ0

(s2 + 1)4
ds

≤ 16

∫ (n+1)pc

npc

(2n + 1)(pc)2 γ2δ4s
4 + 2γ0δ4s

2 + γ0δ2 − γ2δ0

(s2 + 1)4
ds

≤ 16

∫ (n+1)pc

npc

3spc
γ2δ4s

4 + 2γ0δ4s
2 + γ0δ2 − γ2δ0

(s2 + 1)4
ds

≤ 48pc

∫ (n+1)pc

npc

Ks
s4 + 2s2 + 1

(s2 + 1)4
ds

≤ 48pcK

∫ (n+1)pc

npc

s

(s2 + 1)2
ds,

where K is a constant. Similarly,

|E0| ≤ (pc)2

∫ pc

0

γ0δ4(pc)
2 + γ0δ2 − γ2δ0

(δ4s4 + δ2s2 + δ0)δ0
ds(9.5)

≤ K ′(pc)2

∫ pc

0

1

(s1 + 1)2
ds → 0 as c → 0

where K ′ is a constant. Using these estimates, we see that

∞∑
n=0

|En| ≤ |E0| + 48pcK

∫ ∞

pc

s

(s2 + 1)2
ds → 0 as c → 0,(9.6)

which justifies our claim in (5.8).
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QUALITATIVE ASPECTS IN DUAL-PHASE-LAG
THERMOELASTICITY∗
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Abstract. We consider the system of dual-phase-lag thermoelasticity proposed by Chandrase-
kharaiah and Tzou. First, we prove that the solutions of the problem are generated by a semigroup of
quasi-contractions. Thus, the problem of the third order in time is well-posed. Then the exponential
stability is investigated. Finally the spatial behavior of solutions is analyzed in a semi-infinite cylinder
and a result on the domain of influence is obtained.

Key words. hyperbolic model in thermoelasticity, well-posedness, spatial evolution in a semi-
infinite cylinder, exponential stability
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1. Introduction. It is well known that the usual theory of heat conduction
based on Fourier’s law predicts infinite heat propagation speed. Heat transmission at
low temperature has been observed to propagate by means of waves. These aspects
have caused intense activity in the field of heat propagation. Extensive reviews on
the so-called second sound theories (hyperbolic heat conduction) are given in Chan-
drasekharaiah [3] and in the books of Müller and Ruggeri [20] and Jou, Casas-Vazquez,
and Lebon [18]. A theory of heat conduction in which the evolution equation contains
a third-order derivative with respect to time was proposed in [8]. Several instability
results have been obtained for the theory (see, e.g., [7, 23]) as well as proof of the
nonexistence of global solutions in the nonlinear theory [29].

In 1995, Tzou [34] proposed a theory of heat conduction in which the Fourier law
is replaced by an approximation of the equation

q(x, t + τq) = −k∇θ(x, t + τθ), τq > 0, τθ > 0,(1.1)

where τq is the phase-lag of the heat flux and τθ is the phase-lag of the gradient of
temperature. The relation (1.1) states that the gradient of temperature at a point
in the material at time t + τθ corresponds to the heat flux vector at the same point
at time t + τq. The delay time τθ is caused by microstructural interactions such as
phonon scattering or phonon-electron interactions. The delay τq is interpreted as the
relaxation time due to fast-transient effects of thermal inertia. The thermoelastic
model was proposed in [3],

μui,jj + (λ + μ)uj,ji −mθ,i = ρüi,(1.2)

−qi,i −mθ0u̇i,i = cθ̇,(1.3)

qi(·, t + τq) = −kθ,i(·, t + τθ),(1.4)
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where ρ, θ0, c are positive constants. μ > 0 and λ are the Lamé moduli satisfying
μ∗ > 0, where μ∗ is defined in (2.16) depending on the space dimension.

Here and in what follows we use the Einstein summation convention with indices
in the range 1 . . . n, where n = 1, 2, 3 denotes the space dimension. Instead of
Fourier’s law, being equivalent to assuming

τq = τθ = 0(1.5)

and leading to the classical hyperbolic-parabolic system of thermoelasticity together
with the physical paradoxon of infinite propagation speed through the heat conduction
part, we consider the model proposed by Chandrasekharaiah [3] and Tzou [34], where

τq > 0, τθ > 0

are positive relaxation times and where a second-order approximation for q and a
first-order approximation for θ are used, turning (1.4) into

qi + τq q̇i +
τ2
q

2
q̈i = −kθ,i − kτθ θ̇,i.(1.6)

Thus, in this paper, we consider the theory developed by taking a Taylor series
expansion on both sides of (1.1) and retaining terms up to the second order in τq, but
only to the first order in τθ. The model that we consider here involves a system of two
coupled partial differential equations. It is of hyperbolic type (section 3). One of them
is the usual second order in time equation of motion in the major part of thermoelastic
systems and the other has a third-order derivative with respect to time. This system of
equations has not received much attention in the literature (until now), but Hetnarski
and Ignaczak consider it within the nonclassical approach of thermoelasticity in their
review [10]. However, we can recall several references in the case that we do not
consider mechanical deformations [15, 25]. It is known that when τθ = 0, solutions of
heat conduction are not determined by means of a semigroup [9, p. 125]. However in
[25], it was established that whenever τθ > 0, one can obtain solutions by means of a
semigroup. Thus, the term τθ�θ̇ plays a role in the stabilization for the equation. In
this paper we extend some of the results on existence and stability obtained for the
heat conduction to the thermoelastic problem.

The case τθ > 0 but τq = 0, also leading to a hyperbolic system, the system of Lord
and Shulman, has been studied before, and, for example, the exponential stability has
been obtained for bounded reference configurations as well as the nonlinear stability
near the equilibrium; see [31, 32].

A natural question is the determination of the time parameters τq and τθ (see [10])
and our work is motivated by this question. One might expect that mathematical
analysis of existence, uniqueness, and stability issues, for example, would furnish
certain restrictions on the parameters. One condition to be satisfied by solutions
of a heat equation should be exponential stability (or at least stability). In [25],
exponential stability (for the heat conduction) was established whenever

τθ > τq/2.(1.7)

We also recall that in [10] Hetnarski and Ignaczak asked (p. 474) for a general domain
of influence theorem as well as a principle of Saint-Venant’s type for this theory. We
note that results of this kind were obtained in [15] for heat conduction. In this paper
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we also extend some of the results concerning the time asymptotic and the spatial
behavior obtained for heat conduction in order to include mechanical deformations.

Thus, under condition (1.7), one has a heat theory with a third-order derivative
in time in the equation that predicts stability. This is of interest in the light of the
results obtained in the theory proposed in [8]. By means of several exact solutions
instability of solutions was also established in [25] whenever the condition (1.7) is
violated. Thus, one may assume that the condition (1.7) must be satisfied in order to
use this model to describe heat transmission. In fact one of the objects of this paper is
to extend stability results to the thermoelastic problem. In [26] it was demonstrated
for a bounded interval (0, L) ⊂ R that for the boundary conditions

u = θx = 0(1.8)

which allows a nice series expansion of the solutions into sin(nx), cos(nx) terms, ex-
ponential stability is to be expected since the relevant spectrum of the associated
stationary operator lies strictly in the right-half complex plane.

We shall investigate here the more complicated boundary conditions

u = 0, θ = 0(1.9)

and prove the exponential stability of the associated semigroup.
In this paper we study three kinds of questions. One is to determine the suitable

frame where the third-order problem of thermoelasticity of Chandrasekharaiah and
Tzou type is well-posed and where the solutions are stable. The second is to prove
the exponential stability for bounded reference configurations, and the third is to
determine the spatial behavior of the solutions of the thermoelasticity in a semi-
infinite cylinder in R3.

This paper is organized as follows. In section 2 we set down the field equations
and the boundary and initial conditions of the problem we consider in this paper.
A uniqueness and existence result is proved in section 3. In section 4 we prove the
exponential stability for bounded reference configurations. In section 5, we obtain
some results of Saint-Venant’s type concerning the spatial behavior of solutions in a
semi-infinte cylinder and some consequences of them as obtained in section 6. The last
section is devoted to the study of the spatial behavior of solutions of a nonstandard
problem.

When we study the spatial behavior of solutions of some problems concerning
the dual-phase-lag thermoelastic system we shall denote the three-dimensional semi-
infinite cylinder R with cross section D. The finite end face of the cylinder is in the
plane x3 = 0. The boundary ∂D is supposed regular enough to allow the use of the
divergence theorem. We denote by R(z) the set of points of the cylinder R such that
x3 is greater than z and by D(z) the cross section of the points such that x3 = z.
The spatial evolution with distance from the end for solutions of elliptic equations is
relevant to the study of Saint-Venant’s principle in continuum mechanics (see, e.g.,
[6, 11, 12, 13] for reviews of this work). Such results for parabolic equations have also
been obtained (see [6, 11, 12, 13, 14]) and more recently for hyperbolic equations (see
[2] and the references cited therein).

2. Preliminaries. We consider the homogeneous isotropic case. In this pa-
per we study solutions (u, θ) = (u(x, t), θ(x, t)) of the thermoelastic system for the
Chandrasekharaiah–Tzou theory. The equations are

μui,jj + (λ + μ)uj,ji −mθ,i = ρüi,(2.1)
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kθ̂,ii −mθ0
˙̃ui,i = c

˙̃
θ.(2.2)

We have used the notation

f̂ = f + τθḟ , f̃ = f + τq ḟ +
τ2
q

2
f̈ ,(2.3)

where τθ > 0, τq > 0 are the dimensionless time lag parameters.
We study the qualitative behavior of classical solutions subject to the initial

conditions

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), θ(x, 0) = θ0(x), θ̇(x, 0) = ϑ0(x), θ̈(x, 0) = φ0(x)

(2.4)

and the boundary conditions

ui(x, t) = θ(x, t) = 0, x ∈ ∂D × [0,∞),(2.5)

ui(x1, x2 , 0, t) = fi(xα , t) θ(x1, x2 , 0, t) = g(xα , t) on D(0) × [0,∞),(2.6)

where the prescribed boundary data fi, g on the end x3 = 0 is such that fi(xα, 0)
= u0

i (xα), g(xα, 0) = θ0(xα), and fi, g are assumed to vanish on ∂D(0)× [0,∞). We
will not make any a priori assumption regarding the behavior of solutions as x3 −→
∞.

Observe that in the limit as τθ and τq → 0, we recover from (2.1) or (2.2) the
usual thermoelastic system where, in this limiting case, only the three first of (2.4)
are assumed to hold. In this limit the existence, stability and the spatial evolution
of solutions have been studied in a variety of contexts (see, e.g., [17, 24, 4] and the
references cited therein). When τq and τθ are positive, the results to be described in
what follows will be seen to be similar to those obtained previously for such equations
(see, e.g., [2] and the references cited therein).

In the course of our calculations, we will use the fact that the eigenvalues of the
real symmetric positive definite matrix(

a b
b l

)
(2.7)

are

λ± =
1

2

(
a + l ±

√
(a− l)2 + 4b2

)
,(2.8)

so that the smallest eigenvalue is

λ− =
1

2

(
a + l −

√
(a− l)2 + 4b2

)
.(2.9)

We will use (2.7) in two particular cases. When

a = τq + τθ, b =
τ2
q

2
, l =

τ2
q τθ

2
,(2.10)

it can be easily verified using (1.7) that the matrix (2.7) is indeed positive definite
and so its smallest positive eigenvalue, denoted by λ0, is given by

λ0 =
1

2

(
τq + τθ +

1

2
τ2
q τθ −

√
τ4
q + τ2

q + τ2
θ +

1

4
τ4
q τ

2
θ + 2τqτθ − τ2

θ τ
2
q − τ3

q τθ

)
.

(2.11)
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When

a =
2

γ
+ (τq + τθ), b =

1

2
τ2
q , l =

1

2
τ2
q τθ +

2

γ

(
τθτq −

1

2
τ2
q

)
, γ > 0,(2.12)

the matrix (2.9) is again positive definite with the smallest eigenvalue, denoted by μγ ,
given by

μγ =
1

2γ

⎛
⎝2 + γ(τq + τθ) +

γ

2
τ2
q τθ + 2

(
τθτq −

1

2
τ2
q

)

−

√[
2 + γ(τq + τθ) −

γ

2
τ2
q τθ − 2

(
τθτq −

1

2
τ2
q

)]2
+ γ2τ4

q

⎞
⎠ .(2.13)

To be used later, it will be worth using the following notation:

Tij = μui,j + (λ + μ)δijur,r −mδijθ.(2.14)

We have that the estimate

TjiTji ≤ (1 + ε)μ∗[μui,jui,j + (λ + μ)ur,rus,s] + 3m2(1 + ε−1)θ2(2.15)

is satisfied, for every positive ε, where

μ∗ =

⎧⎨
⎩

2μ + λ, n = 1,
max{μ, 2λ + 3μ}, n = 2,
max{μ, 3λ + 4μ}, n = 3.

(2.16)

μ∗ is the maximal positive eigenvalue of the quadratic form [4]

Q(ζ) := μζijζij + (λ + μ)ζrrζss.

When we study the qualitative aspects concerning existence, uniqueness, and
exponential stability, and without loss of generality, we assume ρ = c = 1. However,
when we study the spatial behavior of solutions we relax this condition to assume
that mass density and thermal capacity are positive because we wish to demonstrate
the dependence of the decay parameters on ρ, c explicitly.

3. Well-posedness. We shall formulate the problem for the semi-infinite cylin-
der R in three space dimensions, but the well-posedness holds for general domains;
see the remarks following Theorem 3.3.

The well-posedness result for the third order in time system can be achieved by
an appropriately sophisticated choice of variables and spaces which reflect the special
structure of the system.

We first transform the system (2.1)–(2.6) to zero boundary conditions on all of
∂R by defining

vi(xα, 0, t) := ui(xα, 0.t) − fi(xα, t), vi(xα, x3, t) := ui(xα, x3.t) for x3 > 0,
(3.1)

ψ(xα, 0, t) := θ(xα, 0, t) − g(xα, t), ψ(xα, x3, t) := θ(xα, x3, t) for x3 > 0,
(3.2)
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and using (ui, θ) instead of (vi, ψ) again, we obtain the initial boundary value problem

μui,jj + (λ + μ)uj,ji −mθ,i = üi − hi,(3.3)

kθ̂,ii −mθ0
˙̃ui,i =

˙̃
θ − p,(3.4)

ui(x, 0) = u0
i (x), u̇i(x, 0) = v0

i (x), θ(x, 0) = θ0(x), θ̇(x, 0) = ϑ0(x), θ̈(x, 0) = φ0(x),

(3.5)

ui(x, t) = θ(x, t) = 0, x ∈ ∂R × [0,∞),(3.6)

where the given external force h and heat supply p arise from the transformation
(3.1), (3.2) in terms of the boundary data f and g, respectively.

For the transformation to a first-order system that finally will be characterized by
a semigroup, we apply the differential operator˜from (2.3) to the differential equation
(3.3) and obtain

μũi,jj + (λ + μ)ũj,ji −mθ̃,i = ¨̃ui + h̃i.(3.7)

We remark that finding a solution (ũ, θ) allows to determine the desired solutions
(u, θ) of the original system.

Defining

V := (ũ, ũt, θ, θt, θtt)
′

we obtain

Vt = AV + F, V (0) = V 0(3.8)

with the (yet formal) differential operator A given by the symbol

Af :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0

μΔ + (λ + μ)∇∇′ 0 −m∇ −τqm∇ −
τ2
qm

2
∇

0 0 0 1 0
0 0 0 0 1

0 −2mθ0

τ2
q

∇′ 2k

τ2
q

Δ
2

τ2
q

(kτθΔ − 1) − 2

τq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

the right-hand side F given by

F := (0,h, 0, 0, 0, p)′,

and the initial value

V0(x) := (ũ, ũt, θ, θt, θtt)
′(x, 0)

with its components being given in terms of the originally prescribed initial data in
(3.5) by using the differential equations.

As underlying Hilbert space we choose

H := (H1
0 (R))n × (L2(R))n ×H1

0 (R) ×H1
0 (R) × L2(R)
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with inner product

〈V,W, 〉H :=
4

τ4
q

(
〈θ0V

2,W 2〉 + 〈θ0μ∇V 1,∇W 1〉 + 〈θ0(λ + μ)∇′V 1,∇′W 1〉
)

+

〈
2

τ2
q

V 4,W 4

〉
+

〈
2τθk

τ2
q

∇V 4,∇W 4

〉
+ 〈V 5,W 5〉 +

〈
2k

τ2
q

∇V 3,∇W 4

〉

+

〈
2k

τ2
q

∇V 4,∇W 3

〉
+ b0〈∇V 3,∇W 3〉,

where 〈·, ·〉 denotes the usual L2(R)-inner product and where b0 is chosen appropri-
ately large in dependence of the coefficients to ensure that the bilinear form 〈·, ·〉H is
positive definite. The operator A is now given as

A : D(A) ⊂ H �→ H, AV := AfV

with

D(A) := {V ∈ H | V 2 ∈ H1
0 (R)n, V 5 ∈ H1

0 (R), AfV ∈ H}.

The choice of the inner product is special, of course, and extends similar considerations
from [25] for the pure heat conduction problem.

Lemma 3.1. There exists a constant c1 > 0 such that for all V ∈ D(A)

|〈AV, V 〉H| ≤ c1‖V ‖2
H

holds.
Proof. We have

〈AV, V 〉H = −4mθ0

τ4
q

〈∇V 3, V 2〉 − 4mθ0

τ3
q

〈∇V 4, V 2〉 − 2

τq
〈V 5, V 5〉

+
2k

τ2
q

〈∇V 4,∇V 4〉 + b0〈∇V 4,∇V 3〉,

which implies the assertion.
As a consequence we see that for d > c1 the operator A − d is dissipative and

invertible.
Lemma 3.2. For all d > c1 we have that the range of A− d is all of H.
Proof. The solvability of (A− d)V = F is equivalent to solving

V 2 − dV 1 = F 1,(3.9)

μΔV 1 + (λ + μ)∇∇′V 1 −m∇V 3 − τqm∇V 4 −
τ2
qm

2
∇V 5 − dV 2 = F 2,(3.10)

V 4 − dV 3 = F 3,(3.11)

V 5 − dV 4 = F 4,(3.12)

−2mθ0

τ2
q

∇′V 2 +
2k

τ2
q

ΔV 3 +
2

τ2
q

(kτθΔ − 1)V 4 − 2

τq
V 5 − dV 5 = F 5.(3.13)

Eliminating V 2, V 4, and V 5 and using

E := −μΔ − (λ + μ)∇∇′
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we have to solve

−EV 1 − d2V 1 −
(
m + τqmd +

τ2
qmd2

2

)
︸ ︷︷ ︸

=:α1

∇V 3 = F 2 + dF 1 +

(
τqm +

τ2
qmd

2

)
∇F 3

+
τ2
qm

2
∇F 4,(3.14)

−
(

2k

τ2
q

+
2kτθd

τ2
q

)
︸ ︷︷ ︸

=:γ1

ΔV 3 +

(
2d

τ2
q

+
2d2

τq
+ d3

)
︸ ︷︷ ︸

=:δ1

V 3 +
2mθ0d

τ2
q︸ ︷︷ ︸

=:β1

∇′V 1

= −F 5 − 2mθ0

τ2
q

∇′F 1 − 2

τ2
q

F 3 −
(

2

τq
+ d

)
(dF 3 + F 4) +

2kτθ
τ2
q

ΔF 3.(3.15)

Hence we consider for G1 ∈ L2(R)3 and G2 ∈ H−1, the dual space to H1
0 (R), the

system

EV 1 + d2V 1 + α1∇V 3 = G1,(3.16)

−γ1ΔV 3 + δ1V
3 + β1∇′V 1 = G2,(3.17)

where α1, β1, γ1, δ1 are positive. If (V 1, V 3) ∈ (H1
0 (R))n ×H1

0 (R) solve (3.16), (3.17),
then V 2, V 4, and V 5 can be determined from the equations (3.9), (3.11), and (3.12),
respectively, and V ∈ D(A) will solve (A− d)V = F .

E + d2 can be regarded as a positive self-adjoint operator, the inverse of which
maps L2(R)3 �→ (H2(R) ∩H1

0 (R))n, and hence V 1 should satisfy

V 1 = (E + d2)−1(G1 − α1∇V 3).

Plugging this into (3.17) it remains to determine V 3 as a solution in H1
0 (R) of

−γ1ΔV 3 + δ1V
3 − α1β1∇′(E + d2)−1∇V 3 = G2 − β1∇′(E + d2)−1G1.(3.18)

But (3.18) can be solved easily because the bilinear form

B(g, h) := γ1〈∇g,∇h〉 + δ1〈g, h〉 + α1β1〈(E + d2)−1/2∇g, (E + d2)−1/2∇h〉

is positive on H1
0 (R), and hence the Lax and Milgram lemma yields the solvability of

(3.18) for any right-hand side in H−1. This proves the assertion of the lemma.

Now we conclude from the last two lemmas that A generates a C0-semigroup, and
hence the initial (boundary) value problem (3.8) is uniquely solvable.

Theorem 3.3. For any F ∈ C0([0,∞), D(A)) or F ∈ C1([0,∞),H) and any
V 0 ∈ D(A) there is a unique solution V to (3.8) with V ∈ C1([0,∞),H) ∩C0([0,∞),
D(A)).

The well-posedness consideration in this section extends naturally to other do-
mains Ω ⊂ Rn, n = 1, 2, 3, instead of the three-dimensional cylinder R, e.g., literally
to smoothly bounded domains and to convex domains (where elliptic H2-regularity
up to the boundary holds).



QUALITATIVE ASPECTS IN THERMOELASTICITY 985

The system under consideration is of hyperbolic type, as we shall demonstrate in
the one-dimensional case. Here the differential equations (3.7), (3.4) turn into

ũtt = α∗ũxx −
τ2
qm

2
θttx − τqmθtx −mθx,(3.19)

θttt = − 2

τq
θtt −

2

τ2
q

θt −
2mθ0

τ2
q

ũtx +
2τθk

τ2
q

θtxx +
2k

τ2
q

θxx,(3.20)

where α∗ := 2μ + λ and the right-hand sides are assumed to be zero.
Defining

W := (ũx, ũt, θx, θt, θtx, θtt)
′

we obtain

Wt = BWx + DW,

where

B :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 0 0 0

α∗ 0 0 0 0 −
τ2
qm

2
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 1

0 −2mθ0

τ2
q

2k

τ2
q

0
2τθk

τ2
q

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

D :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0
0 0 −m 0 −τqm 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 1
0 0 0 0 0 0

0 0 0 − 2

τ2
q

0 − 2

τq

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The eigenvalues of B are

λ1 = λ2 = 0,

λ3|4|5|6 = ± 1√
2

√√√√(m2θ0 +
2τθk

τ2
q

+ α∗

)
±

√(
m2θ0 +

2τθk

τ2
q

+ α∗

)2

− 8α∗τθk

τ2
q

,

which are all real, thus characterizing a hyperbolic system. The hyperbolicity also be-
comes apparent in the results on the domains of dependence in the following sections.

4. Exponential stability. We recall that in classical thermoelasticity as well
as in several other thermoelastic models like the Lord–Shulman theory or the model
of type III, the exponential stability of the system could be proved for bounded do-
mains in one space dimension as well as for radially symmetric situations in higher
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dimensions; see, e.g., [17, 31, 32, 28]. We shall demonstrate the exponential stability
in one space dimension. Let (u, θ) satisfy ((3.7), (3.4) or (3.19), (3.20))

ũtt − α∗ũxx + mθ̃x = 0,(4.1)

θ̃t + mθ0ũtx − kθ̂xx = 0(4.2)

with boundary conditions

u = θ = 0 for x = 0, L(4.3)

and initial conditions given in terms of the original initial conditions u(·, 0), ut(·, 0),
θ(·, 0). As in the previous section we define

V := (ũ, ũt, θ, θt, θtt)
′

and we have

‖V (t)‖H =

∫ L

0

{
4θ0

τ4
q

ũ2
t +

4θ0α∗
τ4
q

ũ2
x +

2

τ2
q

θ2
t +

2τθk

τ2
q

θ2
tx + θ2

tt +
4k

τ2
q

θxθtx + b0θ
2
x

}
dx

≡ 2EH(t)(4.4)

defining the first “energy” term EH(t). Another energy term is defined by

E(t) :=
1

2

∫ L

0

{
θ0ũ

2
t + θ0α∗ũ

2
x + θ̃2 +

τ2
q τθk

2
θ2
tx + k(τq + τθ)θ

2
x + kτ2

q θxθtx

}
dx.

(4.5)

The aim will be to find a suitable Lyapunov functional for the energy terms that
proves the exponential stability.

Multiplying the differential equation (4.1) by θ0ũt and (4.2) by θ̃, integrating and
performing partial integrations we obtain

d

dt
E(t) = −k

∫ L

0

θ2
xdx− τq

(
τθ −

τq
2

)
k

∫ L

0

θ2
txdx

≤ −c1

∫ L

0

{
θ2
x + θ2

tx

}
dx(4.6)

for some positive constant c1, if the condition (1.7) holds. Then (4.6) reflects the
dissipative character of the system. We shall assume (1.7) in the rest of this paper,
[26], where the sufficiency and necessity of (1.7) were investigated for the boundary
conditions (1.8).

Multiplying the differential equation (4.2) by θtt and integrating we get

d

dt

1

2

∫ L

0

{
θ2
tt +

2

τ2
q

θ2
t +

4k

τ2
q

θxθtx +
2kτθ
τ2
q

θ2
tx

}
dx = − 2

τq

∫ L

0

θ2
ttdx +

2k

τ2
q

∫ L

0

θ2
txdx

− 2mθ0

τ2
q

∫ L

0

ũtxθttdx.(4.7)

Moreover,

d

dt

1

2

∫ L

0

b0θ
2
xdx =

∫ L

0

b0θxθtxdx ≤ b0

2

∫ L

0

θ2
xdx +

b0

2

∫ L

0

θ2
txdx.(4.8)
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Multiplying (4.1) by 4θ0

τ4
q
ũt and integrating we obtain

d

dt

1

2

∫ L

0

{
4θ0

τ4
q

ũ2
t +

4θ0α∗
τ4
q

ũ2
x

}
dx =

2mθ0

τ2
q

∫ L

0

θttũtxdx− 4mθ0

τ3
q

∫ L

0

θtxũtdx

− 4mθ0

τ4
q

∫ L

0

θxũtdx.(4.9)

We conclude from (4.7)–(4.9)

d

dt
EH(t) ≤ − 2

τq

∫ L

0

θ2
ttdx +

2k

τ2
q

∫ L

0

θ2
txdx +

b0

2

∫ L

0

θ2
xdx +

b0

2

∫ L

0

θ2
txdx

− 4mθ0

τ3
q

∫ L

0

θtxũtdx− 4mθ0

τ4
q

∫ L

0

θxũtdx

≤ − 2

τq

∫ L

0

θ2
ttdx +

(
b0

2
+

4mθ0

τ4
q ε1

)∫ L

0

θ2
xdx +

(
2k

τ2
q

+
b0

2
+

4mθ0

τ3
q ε1

)∫ L

0

θ2
txdx

+ 2ε1

∫ L

0

ũ2
tdx,(4.10)

where ε1 > 0 will be chosen later appropriately small. Combining (4.6) and (4.10) we
get

d

dt
(EH(t) + KE(t)) ≤ − 2

τq

∫ L

0

θ2
ttdx−

[
Kk −

(
4mθ0

τ4
q ε1

+
b0

2

)]∫ L

0

θ2
xdx

−
[
Kkτq

(
τθ −

τq
2

)
−
(

4mθ0

τ3
q ε1

+
b0

2
+

2k

τ2
q

)]∫ L

0

θ2
txdx

+ 2ε1

∫ L

0

ũ2
tdx,(4.11)

where K > 0 will be chosen below appropriately large. Once ε1 will be fixed, we
shall fix K such that the coefficients in [·]-brackets in front of the two integrals of the
right-hand side in (4.11) will be strictly positive.

Now we follow an ansatz described in [17] for classical thermoelasticity but we
have to add essential modifications in order to deal with the higher-order system and
the different structure under investigation.

If we multiply the differential equation (4.1) by 1
α∗

ũxx and integrate we obtain
after partial integrations

1

α∗

d

dt

∫ L

0

ũtxũxdx ≤ −2

3

∫ L

0

ũ2
xxdx +

1

α∗

∫ L

0

ũ2
txdx + C

∫ L

0

θ̃2
xdx,(4.12)

where capital C will denote a positive constant that may change from line to line in
the sequel. Multiplying the differential equation (4.2) by 3

α∗mθ0
ũtx and integrating,

using (4.1), yields

3

α∗

∫ L

0

ũ2
txdx = − 3

α∗mθ0

∫ L

0

θ̃tũtxdx− 3k

α∗mθ0

d

dt

∫ L

0

θ̂x

(
1

α∗
ũtt +

m

α∗
θ̃x

)
dx

+
3k

α∗mθ0

∫ L

0

θ̂txũxx +
3k

α∗mθ0
[θ̂xũtx]x=L

x=0 ,
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hence

3

α2
∗mθ0

d

dt

∫ L

0

{θ̂xũtt + mθ̂xθ̃x}dx ≤ − 2

α∗

∫ L

0

ũ2
txdx +

1

6

∫ L

0

ũ2
xxdx + C

∫ L

0

{θ̂2
tx + θ̃2

t }dx

+C‖θ̂x‖L∞({0,L})‖ũtx‖L∞({0,L}),

(4.13)

where ‖f‖L∞({0,L}) := max{|f(0)|, |f(L)|} denotes the sup-norm on the boundary.
Combining (4.12) and (4.13) we obtain

d

dt

∫ L

0

{
1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x

}
dx ≤ − 1

α∗

∫ L

0

ũ2
txdx−

1

2

∫ L

0

ũ2
xxdx

+ C

∫ L

0

{θ̃2
x + θ̂2

tx + θ̃2
t }dx +

C

ε2
‖θ̂x‖2

L∞({0,L}) + ε2‖ũtx‖2
L∞({0,L}),(4.14)

where ε2 > 0 will be chosen appropriately small later. The differential equation (4.2)
yields ∫ L

0

θ̂2
xxdx ≤ C

∫ L

0

{θ̃2
t + ũ2

tx}dx.

Using this and the Sobolev imbedding W 1,1((0, L)) ↪→ L∞((0, L)) we arrive at

‖θ̂x‖2
L∞({0,L}) ≤

C

ε22

∫ L

0

{θ̂2
x + θ̃2

t }dx + Cε22

∫ L

0

ũ2
txdx.

Inserting this into (4.14) we conclude for sufficiently small ε2

d

dt

∫ L

0

{
1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x

}
dx ≤ − 1

2α∗

∫ L

0

ũ2
txdx−

1

2

∫ L

0

ũ2
xxdx

+
C

ε32

∫ L

0

{θ̃2
x + θ̂2

tx + θ̃2
t }dx + C1ε2‖ũtx‖2

L∞({0,L})(4.15)

with a constant C1 > 0. In order to estimate the boundary term, we use a well-
known technique exploiting in the multipliers a smooth extension of the normal at
the boundary which means in one dimension to use the following function Φ with

Φ(x) :=
1

2
− x

L
.(4.16)

Differentiation of (4.1) with respect to t, multiplying with Φũtx and partially inte-
grating yields

0 =
d

dt

∫ L

0

ũttΦũtxdx +
1

2

∫ L

0

Φx(ũ2
tt + α∗ũ

2
tx)dx +

α∗
4

(ũ2
tx(0) + ũ2

tx(L))

+m

∫ L

0

(
θtx + τqθttx +

τ2
q

2
θtttx

)
Φũtxdx

whence

d

dt

∫ L

0

ũttΦũtxdx ≤ −α∗
4

(ũ2
tx(0) + ũ2

tx(L)) + C

∫ L

0

{ũ2
tt + ũ2

tx + θ2
tx + θ2

ttx}dx

−
mτ2

q

2

∫ L

0

θtttxΦũtxdx(4.17)
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follows. Using the differential equation (4.2) again, we obtain

− mθ0

∫ L

0

θtttxΦũtxdx = −k
d

dt

∫ L

0

θttxΦθ̂xxdx + k

∫ L

0

θttxΦθ̂txxdx +

∫ L

0

θtttΦθtxdx

+

∫ L

0

θtttΦxθtdx + τq

∫ L

0

θtttΦθttxdx + τq

∫ L

0

θtttΦxθttdx

+
τ2
q

4

∫ L

0

Φxθ
2
tttdx

≤ −k
d

dt

∫ L

0

θttxΦθ̂xxdx +
k

τθ

∫ L

0

θ̂txΦθ̂txxdx− k

τθ

∫ L

0

θtxΦθ̂txxdx

+C

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx}dx

= −k
d

dt

∫ L

0

θttxΦθ̂xxdx− k

4τθ
[θ̂2

tx(0) + θ̂2
tx(L)]

− d

dt

k

τθ

∫ L

0

θtxΦθ̂xxdx +
k

τθ

∫ L

0

θttxΦθ̂xxdx

+C

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx}dx.

(4.18)

Inserting (4.18) into (4.17) and using (4.1) again we get

d

dt

∫ L

0

{
ũttΦũtx +

kτ2
q

2θ0
θttxΦθ̂xx +

kτ2
q

2θ0τθ
θtxΦθ̂xx

}
dx ≤ −α∗

4
(ũ2

tx(0)+ũ2
tx(L))

+ C

∫ L

0

{ũ2
tx + ũ2

xx + θ2
t + θ2

x + θ2
tt + θ2

tx + θ2
ttt + θ2

ttx + θ̂2
xx}dx.(4.19)

We still have to produce a term −
∫ L

0
θ̂2
xxdx-term on the right-hand side. This is

obtained as follows. We have from (4.2)

θ̂xx =
1

k
θ̃t +

mθ0

k
ũtx,

which, inserted into (4.19), yields

d

dt

∫ L

0

{
ũttΦũtx +

kτ2
q

2θ0
θttxΦθ̂xx +

kτ2
q

2θ0τθ
θtxΦθ̂xx

}
dx ≤ −α∗

4
(ũ2

tx(0)+ũ2
tx(L))

+ C2

∫ L

0

{ũ2
tx + ũ2

xx + θ2
t + θ2

x + θ2
tt + θ2

tx + θ2
ttt + θ2

ttx}dx(4.20)

with a constant C2 > 0. A multiplication of (4.20) by ε3 > 0 and then a combination
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with (4.15) yields

d

dt

∫ L

0

{
1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x + ε3ũttΦũtx

+ ε3
kτ2

q

2θ0
θttxΦθ̂xx + ε3

kτ2
q

2θ0τθ
θtxΦθ̂xx

}
dx

≤ − 1

2α∗

∫ L

0

ũ2
txdx− 1

2

∫ L

0

ũ2
xxdx +

C

ε32

∫ L

0

{θ̃2
t + θ̂2

tx + θ̃x
2}dx

−
[α∗ε3

4
− C1ε2

]
(ũ2

tx(0) + ũ2
tx(L))

+ C2ε3

∫ L

0

{ũ2
tx + ũ2

xx}dx + C2ε3

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx + θ̃2

x}dx.

Now choosing

ε3 := min

{
1

4α∗C2
,

1

2C2

}

and then

ε2 :=
α∗ε3
4C1

we obtain

d

dt

∫ L

0

{
1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x + ε3ũttΦũtx

+ ε3
kτ2

q

2θ0
θttxΦθ̂xx + ε3

kτ2
q

2θ0τθ
θtxΦθ̂xx

}
dx

≤ − 1

4α∗

∫ L

0

ũ2
txdx− 1

4

∫ L

0

ũ2
xxdx

+ C

∫ L

0

{θ2
t + θ2

tt + θ2
tx + θ2

ttt + θ2
ttx + θ̃2

t + θ̃2
x}dx.(4.21)

We observe that by Poincaré’s estimates and (4.1) we have∫ L

0

{ũ2
t + ũ2

x}dx ≤ C

∫ L

0

{ũ2
tx + ũ2

xx}dx,
∫ L

0

ũ2
ttdx ≤ C

∫ L

0

{ũ2
xx + θ̃2

x}dx.(4.22)

Now let E(t) and EH(t) be given as defined in (4.4) and (4.5), respectively, and define
for K > 0 (yet to be determined)

W1(t) ≡ E1(u, θ; t) := EH(t) + KE(t), W2(t) := W1(ut, θt; t),

and the final energy term

W(t) := W1(t) + W2(t),
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where we now choose ε1 small enough such that the terms 2ε1
∫ L

0
{ũ2

t + ũ2
tt}dx are

absorbed by arising corresponding negative terms (see (4.21), (4.22)). Then we choose
K large enough to make sure that the coefficients in [·] brackets in (4.11) are positive.
Defining for ε > 0 the Lyapunov functional L by

L(t) :=
1

ε
W(t) +

∫ L

0

{
1

α∗
ũtxũx +

3k

α2
∗mθ0

θ̂xũtt +
3k

α2
∗θ0

θ̂xθ̃x + ε3ũttΦũtx

+ ε3
kτ2

q

2θ0
θttxΦθ̂xx + ε3

kτ2
q

2θ0τθ
θtxΦθ̂xx

}
dx,

we now find from (4.11), (4.21), (4.22), observing

k

8mθ0α∗

∫ L

0

θ̂2
xxdx ≤ 1

8α∗

∫ L

0

ũ2
txdx +

1

8mθ0α∗

∫ L

0

θ̃2
t dx

and choosing ε small enough that

d

dt
L(t) ≤ −C3W(t)(4.23)

for some constant C3 > 0. Moreover, we have for ε small enough

∃K1,K2 > 0 ∀ t ≥ 0 : K1W(t) ≤ L(t) ≤ K2W(t).(4.24)

Combining (4.23) and (4.24) we have thus proved the exponential stability
Theorem 4.1. The system (4.1)–(4.3) is exponentially stable,

∃ d1, d2 > 0∀ t ≥ 0 : W(t) ≤ d1e
−d2tW(0).

The Dirichlet–Neumann-type boundary conditions

ux = θ = 0 for x = 0, L

or

u = θx = 0 for x = 0, L

could be treated similarly. It is even likely that one can work just with the first energy
W1(t) (instead of W1(t) + W2(t)). Moreover, the radially symmetric case in two or
three space dimensions should be accessible.

The exponential stability result is first a result for θ and ũ. But we obtain an
exponential decay result also for u itself observing that for functions w, h : [0,∞) ×
(0, L) → R satisfying

ẅ +
2

τq
ẇ +

2

τ2
q

w = h (:= ũ(t, x))

and

∃ d1, d2 > 0 ∀ t ≥ 0 :

∫ L

0

|h(x, t)|2dx ≤ d1e
−2d2tC2

0 ,
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where C0 depends on the initial data according to Theorem 4.1, we conclude for
z := (w, ẇ)′,

∃ d3, d4 > 0 ∀ t ≥ 0 :

∫ L

0

|z(x, t)|2dx ≤ d3e
−2d4t

(∫ L

0

|z(x, 0)|2dx + C2
0

)
.

Here d4 can be any positive number smaller than min{1/τq, d2} which becomes ap-
parent observing that the characteristic values for the ODE for w are

β1,2 = − 1

τq
± i

1

τq
.

5. Some spatial estimates. In this section we establish results on the spatial
evolution of solutions of (2.1)–(2.6), provided that the initial data of (2.4) are assumed
to be bounded in a certain energy norm.

We begin by considering

F (z, t) = −
∫ t

0

∫
D(z)

(
T̃i3

˙̃ui +
1

θ0
kθ̂,3θ̃

)
dAds.(5.1)

From (5.2) we find that

∂F (z, t)

∂t
= −
∫
D(z)

(
T̃i3

˙̃ui +
1

θ0
kθ̂,3θ̃

)
dA,(5.2)

and, on using (2.1), the divergence theorem on D(z) and (2.4), (2.5), we obtain

∂F (z, t)

∂z
= −1

2

∫
D(z)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s +
c

θ0
(θ̃)2(5.3)

+
k

θ0

(
(τq + τθ)|∇θ|2 +

1

2
τ2
q τθ|∇θ̇|2 + τ2

q∇θ∇θ̇
))

dA

−
∫ t

0

∫
D(z)

k

θ0

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dAds + E1(z),

where

E1(z) =
1

2

∫
D(z)

(
ρṽ0

i ṽ
0
i + μũ0

i,j ũ
0
i,j + (λ + μ)ũ0

r,rũ
0
s,s

)
dA(5.4)

+
1

2θ0

∫
D(z)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ2
q τθ|∇ϑ0|2 + τ2

q∇θ0∇ϑ0

))
dA.

Note that E1(z) depends only on the initial data (2.4) and we note that several time
derivative at time zero can be obtained assuming the continuity of the solutions at
time t = 0. Rewriting (5.3) with z replaced by the variable η, and integrating with
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respect to η from 0 to z, we get

F (z, t) − F (0, t) = −1

2

∫ z

0

∫
D(η)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s

)
dV(5.5)

− 1

2θ0

∫ z

0

∫
D(η)

(
c(θ̃)2 + k

(
(τq + τθ)|∇θ|2 +

k

2
τ2
q τθ|∇θ̇|2 + kτ2

q∇θ∇θ̇

))
dV

− k

θ0

∫ t

0

∫ z

0

∫
D(η)

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds

+
1

2

∫ z

0

∫
D(η)

(
ρṽ0

i ṽ
0
i + μũ0

i,j ũ
0
i,j + (λ + μ)ũ0

r,rũ
0
s,s

)
dV

+
1

2θ0

∫ z

0

∫
D(η)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ2
q τθ|∇ϑ0|2 + τ2

q∇θ0∇ϑ0

))
dV.

Our next step is to establish an inequality between the time and spatial derivatives
of F (z, t). By virtue of (1.7), the second integral on the right in (5.3) is nonnegative.
The last three terms in the integrand in the first integral on the right in (5.3) are a
quadratic form and may be bounded below using the smallest positive eigenvalue λ0

of (2.7), (2.10) given in (2.11). Thus we find that

∂F (z, t)

∂z
≤ −1

2

∫
D(z)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s

+
c

θ0
(θ̃)2 +

kλ0

θ0
(|∇θ|2 + |∇θ̇|2)

)
dA + E1(z).(5.6)

Applying Schwarz’s inequality in (5.3) and using (2.3), we get∣∣∣∣∂F∂t
∣∣∣∣ ≤ 1

2

∫
D(z)

[
ε1
ρ
T̃ij T̃ij +

ρ

ε1
˙̃ui

˙̃ui +
c

ε2θ0
(θ̃)2 +

ε2k
2

cθ0
θ̂,3θ̂,3

]
dA(5.7)

≤ 1

2

∫
D(z)

[
ε1
ρ

(1 + ε)μ∗[μũi,j ũi,j + (λ + μ)ũr,rũs,s

]
+

1

ε1
(ρ ˙̃ui

˙̃ui)

+

(
1

ε2
+

3m2ε1θ0

ρc
(1 + ε−1)

)
c

θ0
(θ̃)2 +

ε2k(1 + τ2
θ )

cλ0

[
kλ0

θ0
(|∇θ|2 + |∇θ̇|2)

]
dA,

where the weighted arithmetic-geometric mean inequality has been employed and
where εi are arbitrary positive constants.

Now, we equate the coefficients of the energetic terms in the last integral of the
(5.7). We get

1

ε1
=

ε1
ρ

(1 + ε)μ∗ =
1

ε2
+

3m2ε1θ0

ρc
(1 + ε−1) =

ε2k(1 + τ2
θ )

cλ0
.(5.8)

That is,

ε1 = β−1, ε2 =
cλ0β

k(1 + τ2
θ )

, β =

√
(1 + ε0)μ∗

ρ
,(5.9)



994 RAMÓN QUINTANILLA AND REINHARD RACKE

where ε0 is the positive root of the second-order equation

x2 +

(
1 − ρk(1 + τ2

0 )

μ∗λ0c
− 3m2θ0

μ∗c

)
x− 3m2θ0

μ∗c
= 0.(5.10)

In view of (5.6) we can write (5.7) as∣∣∣∣∂F∂t
∣∣∣∣+ β

∂F

∂z
≤ βE1(z),(5.11)

where β is defined at (5.9).
The inequality (5.11) implies that

∂F

∂t
+ β

∂F

∂z
≤ βE1(z)(5.12)

and

∂F

∂t
− β

∂F

∂z
≥ −βE1(z).(5.13)

Integrating (5.12) and recalling the definition of E1(z) in (5.4) we obtain

F (z, β−1(z − z∗)) ≤ 1

2

∫ z

z∗

∫
D(η)

(
ρṽ0

i ṽ
0
i + μũ0

i,j ũ
0
i,j + (λ + μ)ũ0

r,rũ
0
s,s

)
dV,(5.14)

+
1

2θ0

∫ z

z∗

∫
D(η)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ2
q τθ|∇ϑ0|2 + τ2

q∇θ0∇ϑ0

))
dV,

where z ≥ z∗. Similarly, by integrating (5.13) we obtain

F (z, β−1(z∗∗ − z)) ≥ −1

2

∫ z∗∗

z

∫
D(η)

(
ρṽ0

i ṽ
0
i + μũ0

i,j ũ
0
i,j + (λ + μ)ũ0

r,rũ
0
s,s

)
dV,

(5.15)

− 1

2θ0

∫ z∗∗

z

∫
D(η)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ2
q τθ|∇ϑ0|2 + τ2

q∇θ0∇ϑ0

))
dV,

where z∗∗ ≥ z. Let

E(z, t) :=
1

2

∫
R(z)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s

)
dV(5.16)

+
1

2θ0

∫
R(z)

(
c(θ̃)2 + k

(
(τq + τθ)|∇θ|2 +

k

2
τ2
q τθ|∇θ̇|2 + kτ2

q∇θ∇θ̇

))
dV

+
k

θ0

∫ t

0

∫
R(z)

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds.

If we now assume that the initial data (2.4) is such that

E(0, 0) =
1

2

∫
R

(
ρṽ0

i ṽ
0
i + μũ0

i,j ũ
0
i,j + (λ + μ)ũ0

r,rũ
0
s,s

)
dV(5.17)
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+
1

2θ0

∫
R

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ2
q τθ|∇ϑ0|2 + τ2

q∇θ0∇ϑ0

))
dV < ∞,

then the inequalities (5.14), (5.15) imply that for each finite time t,

lim
z→∞

F (z, t) = 0.(5.18)

Thus, we may rewrite

F (z, t) =
1

2

∫
R(z)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s

)
dV(5.19)

+
1

2θ0

∫
R(z)

(
c(θ̃)2 + k

(
(τq + τθ)|∇θ|2 +

k

2
τ2
q τθ|∇θ̇|2 + kτ2

q∇θ∇θ̇

))
dV

+
k

θ0

∫ t

0

∫
R(z)

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds

− 1

2

∫
R(z)

(
ρṽ0

i ṽ
0
i + μũ0

i,j ũ
0
i,j + (λ + μ)ũ0

r,rũ
0
s,s

)
dV.

− 1

2θ0

∫
R(z)

(
c(θ̃0)2 + k

(
(τq + τθ)|∇θ0|2 +

1

2
τ2
q τθ|∇ϑ0|2 + τ2

q∇θ0∇ϑ0

))
dV.

Now the inequality (5.12) implies that

E(z, t) ≤ E(z∗, 0),(5.20)

where z, z∗, and t are related by t = β−1(z − z∗). In a similar way we get

E(z, t) ≥ E(z∗∗, 0)(5.21)

for t = β−1(z∗∗ − z). From the inequalities (5.20) and (5.21) we conclude that

E(z, t) ≤ E(z∗, t∗)(5.22)

for |t− t∗| ≤ β−1(z − z∗). Thus, we have proved the next theorem.
Theorem 5.1. Let (u, θ) be a solution of the initial boundary value problem

(2.1)–(2.6). Then the energy function E(z, t) defined in (5.16) satisfies the inequality
(5.22) whenever |t− t∗| ≤ β−1(z − z∗), provided that the initial data satisfy (5.17).

We note that this result gives an answer to the question proposed by Hetnarski
and Ignaczak [10, p. 474] a principle of Saint-Venant’s type in this theory.

If one defines the measure

E∗(z, t) =

∫ t

0

E(z, s)ds,(5.23)

the following inequalities can be obtained as in [2]:

E∗(z, t) ≤ β−1

∫ z

z−βt

E(η, 0)dη, βt ≤ z,(5.24)

E∗(z, t) ≤ β−1

∫ z

0

E(η, 0)dη +
(
1 − z

βt

)
E∗(0, t), βt ≥ z.(5.25)
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6. Consequences of the estimates (5.22), (5.24), (5.25). In this section
we show some consequences of the estimates (5.22), (5.24), and (5.25).

First, we assume that the initial conditions (2.4) are homogeneous. In this case
we see that E(0, 0) = 0. Estimate (5.22) implies that E(z, t) = 0 whenever βt ≤ z. In
view of the definition (5.20) we obtain that

ũi = 0, θ = 0(6.1)

whenever βt ≤ z. Then for every x = (x1, x2, z) such that βt ≤ z, the functions
ui(x, t) satisfy the ordinary differential equation ũi = 0 with null initial conditions.
Thus, we also conclude that

ui = 0(6.2)

when βt ≤ z. This is a result of the kind of the domain of dependence of the solutions.
We have proved the next theorem.

Theorem 6.1. Let (u, θ) be a solution of the initial boundary value problem (2.1)–
(2.6) when the initial conditions are null. Then (u, θ) = (0, 0) whenever βt ≤ z.

We note that this result gives an answer to the question proposed by Hetnarski
and Ignaczak [10, p. 474] concerning a general domain of influence theorem in this
theory.

In this situation it is natural to look for estimates for

H(z, t) :=

∫ ∞

z

E(ξ, t)dξ,(6.3)

where z ≤ βt. We have that

H(z, t) =

∫ βt

z

E(ξ, t)dξ.(6.4)

But

E(z, t) ≤ E(0, z∗)(6.5)

when z∗ ≥ t− β−1z ≥ 0. Thus, it follows that

H(z, t) ≤ βt− z

t

∫ t

0

E(0, s)ds =
βt− z

t
E∗(0, t).(6.6)

The second natural question we are interested in is to obtain spatial estimates for
some norm of the solutions. We had obtained the estimates (5.22), (5.24), and (5.25),
but they are expressed in a combination of the solution and its time derivatives. Now,
we give explicit spatial estimates. From (5.20), (5.22), (5.24), and (5.25) we have

J (z, t) =
1

2θ0

∫
R(z)

(
k

(
(τq + τθ)|∇θ|2 +

1

2
τ2
q τθ|∇θ̇|2 + τ2

q∇θ∇θ̇

))
dV

+
k

θ0

∫ t

0

∫
R(z)

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds ≤ E(z, t)(6.7)

for |t− t∗| ≤ β−1(z − z∗). Also, we obtain that

J ∗(z, t) ≤ β−1

∫ z

z−βt

E(η, 0)dη, βt ≤ z,(6.8)
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and

J ∗(z, t) ≤ β−1

∫ z

0

E(η, 0)dη + (1 − z

βt
)E∗(0, t), βt ≥ z,(6.9)

where

J ∗(z, t) =

∫ t

0

J (z, s)ds.(6.10)

Now, we will obtain estimates for the mechanical part. To this end, we note that

∫ t

0

(f̃)2ds =

∫ t

0

(
f2 +

τ4
q

4
(f̈)2

)
ds + τq

(
f2(t) + τqf(t)ḟ(t) +

τ2
q

2
ḟ2(t)

)

− τq

(
f2(0) + τqf(0)ḟ(0) +

τ2
q

2
ḟ2(0)

)
.(6.11)

It is worth noting that the expression

τq

(
f2(t) + τqf(t)ḟ(t) +

τ2
q

2
ḟ2(t)

)

is positive in the sense that it is equivalent to the measure defined by f2(t) + ḟ2(t).
Thus, if we define

M∗(z, t) =
1

2

∫ t

0

∫
R(z)

(
ρ

(
u̇iu̇i +

τ4
q

4

...
u i

...
u i

)
+ μ

(
ui,jui,j +

τ4
q

4
üi,j üi,j

)

+ (λ + μ)

(
ur,rus,s +

τ4
q

4
ür,rüs,s

))
dV ds

+
τq
2

∫
R(z)

(
ρ

(
u̇iu̇i + τqu̇iüi +

τ2
q

2
üiüi

)
+ μ

(
ui,jui,j + τqui,j u̇i,j +

τ2
q

2
u̇i,j u̇i,j

)

+ (λ + μ)

(
ur,rus,s + τqur,ru̇s,s +

τ2
q

2
u̇r,ru̇s,s

))
dV,(6.12)

we obtain the estimates

M∗(z, t) ≤ β−1

∫ z

z−βt

E(η, 0)dη + P(z), βt ≤ z,(6.13)

and

M∗(z, t) ≤ β−1

∫ z

0

E(η, 0)dη + (1 − z

βt
)E∗(0, t) + P(z), βt ≥ z,(6.14)

where
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P(z) =
τq
2

∫
R(z)

(
ρ

(
v0
i v

0
i + τqv

0
i z

0
i +

τ2
q

2
z0
i z

0
i

)
+ μ

(
u0
i,ju

0
i,j + τqu

0
i,jv

0
i,j +

τ2
q

2
v0
i,jv

0
i,j

)(6.15)

+ (λ + μ)

(
u0
r,ru

0
s,s + τqu

0
r,rv

0
s,s +

τ2
q

2
v0
r,rv

0
s,s

))
dV

and

z0
i = (μu0

i,j + (λ + μ)u0
r,rδij + mδijθ),j .(6.16)

It is worth noting that it is also possible to obtain estimates in the L2-norm of the
temperature and its two first times derivatives in a similar way of the estimates (6.13),
(6.14).

7. A nonstandard problem for (2.1), (2.2). In this section, we briefly discuss
the behavior of solutions of (2.1), (2.2) subject to the boundary condition (2.5), (2.6)
and the nonstandard conditions

ui(x, T ) = αui(x, 0), u̇i(x, T ) = αu̇i(x, 0),

θ(x, T ) = αθ(x, 0), θ̇(x, T ) = αθ̇(x, 0), θ̈(x, T ) = αθ̈(x, 0),(7.1)

where α > 1. Such nonstandard conditions have been the subject of much recent
attention (see, e.g., [1, 16, 33] in the context of the heat equation, [21] for generalized
heat conduction and [22] for viscous flows, [19] for the isothermal elasticity, and [30],
[27] for some thermoelastic theories).

The boundary data in (2.6) are assumed compatible with (6.1), (6.2).
The analysis begins by considering the function

Fγ(z) = −
∫ T

0

∫
D(z)

exp(−γs)

(
T̃i3

˙̃ui +
1

θ0
kθ̂,3θ̃

)
dAds,(7.2)

where, guided by results established in [1, 16, 33], the positive constant γ is given by

γ =
2

T
lnα.(7.3)

We have

Fγ(z) = Fγ(0) +
γ

2

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s

(7.4)

+
c

θ0
(θ̃)2 +

k

θ0

(
(τq + τθ)|∇θ|2 +

1

2
τ2
q τθ|∇θ̇|2 + τ2

q∇θ∇θ̇

))
dA

+ γ
k

θ0

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)

(
1

γ
|∇θ|2 +

1

γ

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds.

An argument similar to the one used in the case of the standard initial conditions
leads to the estimate

|Fγ | ≤ γβγ
∂Fγ

∂z
,(7.5)
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where βγ is defined in the same form of β defined in (5.9) but with changing the
parameter λ0 by μγ defined at (2.13).

This inequality is well known in the study of spatial decay estimates. It implies
that

Fγ ≤ γβγ
∂Fγ

∂z
and − Fγ ≤ γβγ

∂Fγ

∂z
.(7.6)

From (7.6), we can obtain an alternative of Phragmen–Lindelöf type, which states (see
[5]) that either the solutions grow exponentially for z sufficiently large or solutions
decay exponentially in the form

Eγ(z) ≤ Eγ(0) exp
(
− γ−1β−1

γ z
)

(7.7)

for all z ≥ 0, where

Eγ(z) =
γ

2

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)

(
ρ ˙̃ui

˙̃ui + μũi,j ũi,j + (λ + μ)ũr,rũs,s(7.8)

+
c

θ0
(θ̃)2 +

k

θ0

(
(τq + τθ)|∇θ|2 +

1

2
τ2
q τθ|∇θ̇|2 + τ2

q∇θ∇θ̇

))
dV ds

+
k

θ0

∫ T

0

∫ z

0

∫
D(η)

exp(−γs)

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds.

The decay rate in (7.7) depends explicitly on γ given in (7.3). Thus, we have
proved the next theorem.

Theorem 7.1. Let (u, θ) be a solution of the initial boundary value problem
(2.1), (2.2), (2.5), (2.6), and (7.1). Then either the solutions grow exponentially or
the estimate (7.7) is satisfied, where Eγ is defined at (7.8).

Estimate (7.7) implies that

Jγ(z) ≤ Eγ(0) exp
(
−γ−1β−1

γ z
)
,(7.9)

where

Jγ(z) =
γ

2θ0

∫ T

0

∫
R(z)

exp(−γs)

(
k

(
(τq + τθ)|∇θ|2 +

1

2
τ2
q τθ|∇θ̇|2 + τ2

q∇θ∇θ̇

))
dV ds

(7.10)

+
k

θ0

∫ T

0

∫
R(z)

exp(−γs)

(
|∇θ|2 +

(
τθτq −

1

2
τ2
q

)
|∇θ̇|2

)
dV ds.

To obtain an estimate on the mechanical part, we first note that

∫ T

0

exp(−γs)(f̃)2ds =

∫ T

0

exp(−γs)

((
f2 +

τ4
q

4
(f̈)2

)

+ γτq

(
f2 + τqfḟ +

τ2
q

2
ḟ2

))
ds

(7.11)

+ exp(−γT )

(
τq

(
f2(T ) + τqf(T )ḟ(T ) +

τ2
q

2
ḟ2(T )

))

− τq

(
f2(0) + τqf(0)ḟ(0) +

τ2
q

2
ḟ2(0)

)
.
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If we define

Mγ(z) =
1

2

∫ T

0

∫
R(z)

exp(−γs)

(
ρ

(
u̇iu̇i +

τ4
q

4

...
u i

...
u i

)
+ μ

(
ui,jui,j +

τ4
q

4
üi,j üi,j

)

+ (λ + μ)

(
ur,rus,s +

τ4
q

4
ür,rüs,s

))
dV ds

+
γτq
2

∫ T

0

∫
R(z)

exp(−γs)

(
ρ

(
u̇iu̇i + τqu̇iüi +

τ2
q

2
üiüi

)

+ μ

(
ui,jui,j + τqui,j u̇i,j +

τ2
q

2
u̇i,j u̇i,j

)

+ (λ + μ)

(
ur,rus,s + τqur,ru̇s,s +

τ2
q

2
u̇r,ru̇s,s

))
dV ds,(7.12)

we obtain the estimate

Mγ(z) ≤ Eγ(0) exp
(
−γ−1β−1

γ z
)
,(7.13)

which is a spatial decay estimate.
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ACOUSTIC SCATTERING BY MILDLY ROUGH UNBOUNDED
SURFACES IN THREE DIMENSIONS∗

SIMON N. CHANDLER-WILDE† , ERIC HEINEMEYER‡ , AND ROLAND POTTHAST‡

Abstract. For a nonlocally perturbed half-space we consider the scattering of time-harmonic
acoustic waves. A second kind boundary integral equation formulation is proposed for the sound-soft
case, based on a standard ansatz as a combined single- and double-layer potential but replacing
the usual fundamental solution of the Helmholtz equation with an appropriate half-space Green’s
function. Due to the unboundedness of the surface, the integral operators are noncompact. In
contrast to the two-dimensional case, the integral operators are also strongly singular, due to the
slow decay at infinity of the fundamental solution of the three-dimensional Helmholtz equation. In
the case when the surface is sufficiently smooth (Lyapunov) we show that the integral operators are
nevertheless bounded as operators on L2(Γ) and on L2(Γ) ∩ BC(Γ) and that the operators depend
continuously in norm on the wave number and on Γ. We further show that for mild roughness, i.e.,
a surface Γ which does not differ too much from a plane, the boundary integral equation is uniquely
solvable in the space L2(Γ)∩BC(Γ) and the scattering problem has a unique solution which satisfies
a limiting absorption principle in the case of real wave number.

Key words. boundary integral equation method, rough surface scattering, Helmholtz equation

AMS subject classifications. 35J05, 35J25, 45E10, 45E99, 78A45
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1. Introduction. The simulation of scattering of acoustic or electromagnetic
waves is of great importance for a large number of application areas ranging from
medical imaging to seismic exploration. To carry out this simulation, boundary in-
tegral equation (BIE) methods have become very popular in recent decades. For
scattering by bounded obstacles in two or three dimensions a very complete theory of
the boundary integral equation method has been developed (e.g., [14, 20]), and the
method forms the basis of very effective numerical algorithms (e.g., [12]).

This paper is concerned with the problem of scattering by unbounded surfaces for
which the mathematical theory is much less well developed. More precisely, we are
concerned with what are termed rough surface scattering problems in the engineering
literature. We use the phrase rough surface, as is the practice in this literature,
to denote a surface which is a (usually nonlocal) perturbation of an infinite plane
surface such that the whole surface lies within a finite distance of the original plane.
In particular we have in mind what is the usual case in the engineering literature
where the scattering surface Γ is the graph of some bounded continuous function
f : R2 → R, i.e.,

Γ :=
{
x = (x1, x2, x3) ∈ R3 : x3 = f(x1, x2)

}
.(1.1)

We will focus on a typical problem of this type, namely acoustic scattering by a rough,
sound soft surface, the acoustic medium of propagation occupying the perturbed half-
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space

D := {x = (x1, x2, x3) : x3 > f(x1, x2)}(1.2)

above the scattering surface Γ. The paper is concerned, particularly, with the theory
of BIE methods for such problems, in the case when f is a sufficiently smooth function
(Γ is Lyapunov).

Rough surface scattering problems arise frequently in applications, for example
modelling acoustic and electromagnetic wave propagation over outdoor ground and
sea surfaces or, at a very different scale, optical scattering from the surface of ma-
terials in nanotechnology. The mathematical and computational modelling of these
problems has a large literature; see, e.g., the reviews and monographs by Ogilvy [22],
Voronovich [28], Saillard and Sentenac [25], Warnick and Chew [29], and DeSanto
[15]. The simulation of these scattering problems, requiring discretizations of sections
of three-dimensional (3D) surfaces of diameter large compared to the wavelength, is
a substantial scientific computing problem for which BIE methods are very popular,
with many effective, specialized numerical algorithms developed [27, 25, 29, 31].

Although BIE methods are applied widely to rough surface scattering problems,
the mathematical basis of the method is still poorly developed, especially in the 3D
case. In fact, there are a number of severe difficulties in extending the theory of BIE
methods from bounded to unbounded scatterers.

The first of these difficulties is that, due to the slow decay at infinity of the
standard fundamental solution, Φ(x, y), of the Helmholtz equation (like |x−y|−(n−1)/2

in n dimensions), the standard boundary integral operators are not bounded on any
of the standard function spaces when the surface is unbounded. We will see that this
difficulty can be overcome by modifying the usual kernels so as to obtain bounded
integral operators and corresponding novel BIE formulations.

A second difficulty is that of loss of compactness of boundary integral operators
associated with the noncompactness of the unbounded scattering surface. This is a
severe barrier to establishing existence of solution to the BIEs. We recall that, in the
case of scattering by smooth bounded obstacles, compactness arguments (the Riesz–
Fredholm theory) lead directly to proofs of well-posedness for second kind boundary
integral equation formulations (e.g., [14]). In the case of nonsmooth (Lipschitz) ob-
stacles, compactness arguments are no longer sufficient but still play an essential role
in establishing well-posedness (e.g., [26]).

For the two-dimensional (2D) rough surface scattering case much progress has
been made in terms of deriving well-posed BIEs for a variety of acoustic, electromag-
netic, and elastic wave problems [9, 8, 32, 2]. Surprisingly, none of the analysis for
the 2D case extends straightforwardly to three dimensions; indeed most of the 2D
analysis appears to be unsuitable in the 3D case.

In more detail, in the 2D case bounded integral operators have been obtained by
replacing the standard fundamental solution by the Dirichlet or impedance Green’s
function for a half-plane that contains the domain D of propagation (see, e.g., [8, 32]).
This modification leads to kernels of boundary integral operators that are weakly
singular in their asymptotic behavior at infinity so that the integral operators are
bounded on Lp(Γ) for 1 ≤ p ≤ ∞ and on BC(Γ), the space of bounded continuous
functions on Γ. In this paper we will employ the analogous modification for the 3D
case, replacing the standard fundamental solution with the Dirichlet Green’s func-
tion for a half-space that contains D. But this modification leads to kernels of the
integral operators that are strongly rather than weakly singular. As a consequence,
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Fig. 1.1. Geometrical setting of the scattering problem.

the boundary integral operators are no longer well defined as operators on BC(Γ) or
L∞(Γ). We are, however, able to show the boundedness of the operators on L2(Γ)
by more elaborate arguments, expressing each integral operator as the sum of prod-
ucts of convolution and multiplication operators plus a well-behaved remainder, each
multiplication operator a multiplication by an L∞ function. To complete the proof of
boundedness of the integral operators, one of the main results of the paper, we show,
by explicit computations, that the Fourier transform of each convolution kernel is
bounded. We note that our technique of expressing the kernel as the sum of products
of convolution and multiplication operators plus a short-range remainder has been
used previously [27, 31] but as a computational rather than a theoretical tool, as
a device for matrix compression and acceleration of matrix-vector multiplications in
iterative solvers.

To establish existence of solution and well-posedness in the 2D case, generaliza-
tions of part of the Riesz theory of compact operators have been developed [24, 11, 10]
which require only local compactness rather than compactness and enable existence
of solution in BC(Γ) to be deduced from uniqueness of solution. In fact, injectivity
of the second kind BIE in BC(Γ) implies well-posedness in BC(Γ) and in the space
Lp(Γ), 1 ≤ p ≤ ∞ [3]. But this theory does not seem relevant for 3D rough sur-
face scattering problems given that the corresponding boundary integral operators
are not well defined as operators on BC(Γ). In the absence of these tools we will
prove existence of solution to the BIE (and the corresponding scattering problem) by
perturbation arguments, used for the much simpler 2D case in [7]. The perturbation
arguments we employ will prove to be sufficient to establish existence in the case when
Γ is sufficiently close to a flat plane.

The results contained in this paper are as follows. We suppose that the rough
surface is given by (1.1) with f continuously differentiable with Hölder continuous first
derivative (f ∈ BC1,α(R2) for some α ∈ (0, 1]). As mentioned above, we investigate
the mapping properties of the single- and double-layer potentials when the kernel is
the Dirichlet Green’s function for a half-space, consisting of the standard fundamental
solution minus the same function with a point source mirrored in a plane. By Fourier
techniques on a 2D plane and appropriate decompositions of the operators into a local
and a global part we show that these layer potentials exist as bounded operators on
L2(Γ). After these results, of significant interest in their own right, we consider the
problem of acoustic scattering by the rough surface Γ in the case when the surface is
sound soft (the field vanishes on Γ) and the incident field is due to a source distribution
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with compact support in D. We reduce this scattering problem to a second kind
boundary integral equation via an ansatz for the solution as a combined single- and
double-layer potential. (The analogous ansatz was used for the 2D rough surface
scattering case in [32], based on the analogous approach for scattering by bounded
obstacles dating back to [4].) For a flat surface, unique solvability of the BIE is
shown by explicit computation of a symbol. We then prove continuous dependence of
the boundary integral operators on variations of the boundary and use these results
and perturbation arguments to show that the scattering problem has a solution for
all surfaces in a neighborhood of the plane, i.e., for mildly rough unbounded surfaces.
Moreover, we show that the solution we compute by the BIE method satisfies a limiting
absorption principle. For the convenience of the reader our main results are collected
together and precisely stated at the end of section 2.

We should point out that a rigorous mathematical theory for BIE methods for
3D rough surface scattering has been developed previously for two special cases, both
instances where the integral equation can be reduced to one on a finite domain so that
compactness arguments can be applied. The first is the case of scattering by a locally
perturbed plane, where the unbounded surface coincides with a plane in the exterior
of some ball. This case can be reduced to a BIE on a finite domain, related to the
local perturbation; we refer the reader to [30, 19, 5] and the references therein. The
second is the case when the surface is a diffraction grating (the function f in (1.1) is
biperiodic) and the incident field is a plane wave. In this case the BIE can be reduced
to one on a finite part of the surface that is a single period; see [21, 17].

Finally, we note that, since our results assume boundary data in the space L2(Γ),
they do not include the interesting and problematic case of plane wave incidence,
which is included in the analogous theory that has been developed for the 2D problem
[8, 32]. For a partial theoretical justification for BIE methods for 3D rough surface
scattering with plane wave incidence, namely a justification, with some provisos, of
Green’s representation formula, see [16].

Notation. Throughout the paper x and y will denote points in R3 with com-
ponents x = (x1, x2, x3) and y = (y1, y2, y3). The reflection of y ∈ R

3 in the
plane Γ0 :=

{
x ∈ R3 : x3 = 0

}
will be denoted by y′ := (y1, y2,−y3). By x we

will denote (x1, x2) ∈ R
2, as well as the projection (x1, x2, 0) of x onto the plane

Γ0. Similarly y denotes (y1, y2) and the projection of y onto Γ0. The standard
scalar product in R2 is denoted by x · y and | · | is the Euclidean norm in Rn. Let
H+ := {z ∈ C : Imz ≥ 0,Rez > 0}. Given an unbounded closed set S ⊂ Rn, n = 2, 3,
BC(S) will denote the set of bounded continuous real- or complex-valued functions
on S, a Banach space with the norm || · ||BC(S) defined by ||F ||BC(S) = supx∈S |F (x)|.
We will employ this notation particularly often in the cases S = Γ ⊂ R3 and S = R

2.
Similarly, for 0 < α ≤ 1, let BC1,α(R2) denote the set of those bounded continuously
differentiable functions F : R2 → R that have the property that ∇F is bounded and
uniformly Hölder continuous with index α, so that

||F ||BC1,α(R2) := sup
x∈R2

|F (x)| + sup
x∈R2

|∇F (x)| + sup
x,y∈R2, x�=y

|∇F (x) −∇F (y)|
|x − y|α < ∞.

BC1,α(R2) is a Banach space under the norm || · ||BC1,α(R2). It is convenient also to
have a shorthand for the intersection of the sets L2(Γ) and BC(Γ), so we define

X := L2(Γ) ∩BC(Γ).
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Since L2(Γ) and BC(Γ) are Banach spaces equipped with their respective norms, so
also is X, equipped with the norm || · ||X defined by

||F ||X := max(||F ||L2(Γ), ||F ||BC(Γ)).

2. Scattering by rough surfaces in R
3. Time-harmonic (e−iωt time depen-

dence) acoustic waves are modelled by the Helmholtz equation


u + κ2u = 0,(2.1)

where κ = κ0 + iκ1 denotes the wave number for which we will assume that κ ∈ H+,
i.e., κ0 > 0 and κ1 ≥ 0. We define the domain of propagation D by (1.2), where f ∈
BC1,α(R2) is a strictly positive function, so that there exist constants f+ > f− > 0
with

f− ≤ f(x) ≤ f+, x ∈ R2.

We denote the boundary of D by Γ, so that Γ is given by (1.1). (For a sketch of the
geometry see Figure 1.1.) Whenever we wish to denote explicitly the dependence of
the domain on the boundary function f we will write Df for D and Γf for Γ. This of
course includes the case of the constant function f ≡ h ∈ R+ := (0,∞).

We will consider the scattering of an incident acoustic wave ui by the surface Γ.
For the total field

u := ui + us,(2.2)

which is the sum of the incident field and the scattered field us, we assume on Γ the
Dirichlet boundary condition

u(x) = 0, x ∈ Γ.(2.3)

We require that the scattered field is bounded in D, i.e.,

|us(x)| ≤ c, x ∈ D,(2.4)

for some constant c > 0. In the case κ > 0 we also require that u satisfies the
following limiting absorption principle: denoting u temporarily by u(κ) to indicate its
dependence on κ, we suppose that for all sufficiently small ε > 0 a solution u(κ+iε)

exists and that, for all x ∈ D,

u(κ+iε)(x) → u(κ)(x), ε → 0.(2.5)

The limiting absorption principle plays the role of a radiation condition for real κ to
single out the physical solution.

Before proceeding further to define the scattering problem precisely, we want to
take a look, in the important case when the wave number is real, at the fundamental
solution

Φ(x, y) :=
1

4π

eiκ|x−y|

|x− y| , x, y ∈ R3, x �= y,(2.6)

of the Helmholtz equation in R3 and the ordinary boundary layer potentials, e.g., the
single-layer potential ∫

Γ

Φ(x, y)ϕ(y) ds(y), x ∈ R3.(2.7)
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For an unbounded surface Γ the integral (2.7) converges (for κ > 0) only if ϕ decreases
sufficiently rapidly at infinity. This is due to the slow decay of the fundamental
solution in R3 at infinity. Letting BR(x) := {y ∈ R3 : |x − y| < R} denote the open
ball of radius R centered at x, an easy calculation yields that, for x ∈ D, p > 0, and
κ > 0, ∫

Γ∩BR(x)

|Φ(x, y)|p ds(y) =

∫
Γ∩BR(x)

1

|x− y|p ds(y) → ∞, R → ∞,

for p ≤ 2. Thus we observe that the trace of Φ(x, ·) on Γ is not integrable; indeed
Φ(x, ·) �∈ Lp(Γ) for p ≤ 2. Thus, for every x ∈ D, the single-layer potential (2.7) is
not well defined for all ϕ ∈ L2(Γ).

In order to get a faster decaying kernel we will, following what has been proposed
for the analogous 2D rough surface scattering case [32], replace Φ(x, y) by an appro-
priate half-space Green’s function for the Helmholtz equation. Specifically, we will
work with the function

G(x, y) := Φ(x, y) − Φ(x, y′),(2.8)

with y′ = (y1, y2,−y3), which is the Dirichlet Green’s function for the half-space
{x : x3 > 0}. Thus we will use layer potentials with Φ(x, y) replaced by G(x, y), so
that we define the single-layer potential operator by

(Sϕ)(x) := 2

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ Γ,(2.9)

and the double-layer potential operator by

(Kϕ)(x) := 2

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ Γ,(2.10)

where the normal ν(y) is directed into D. Whenever we wish to denote explicitly the
dependence of S and K on the boundary function f we will write Sf and Kf for S
and K, respectively.

It is a straightforward calculation (cf. (3.7) below) to see that, for y ∈ Γ,

|G(x, y)| ∼ x3y3|κ|
2π

e−κ1|x−y|

|x− y|2 , |y| → ∞.(2.11)

This decay and the analogous decay at infinity (3.11) that we show for the kernel
of the double-layer potential operator are fast enough for (2.9) and (2.10) to be well
defined as improper integrals, for every x ∈ D̄ and ϕ ∈ C(Γ) ∩ L2(Γ), in particular
in the case κ1 = 0. Further, we will show, via Fourier techniques in section 5, as a
main result of the paper, that this decay is fast enough for S and K to be bounded
operators on L2(Γ).

Because, for x ∈ Γ,∫
Γ∩BR(x)\B1(x)

1

|x− y|2 ds(y) → ∞, R → ∞,

the decay of G(x, y) as y → ∞ is not fast enough when κ > 0 for S to be well defined
as an operator on the space of bounded continuous functions. Thus integral equation
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methods for the 3D rough surface scattering problem are essentially different from the
2D case studied in [7, 9, 8, 32, 3].

Returning to the scattering problem, we wish to develop an analysis that is ap-
plicable whenever the incident wave is due to sources of the acoustic field located
in some compact set M ⊂ D. Since waves with sources in a bounded set M ⊂ R

3

can be represented as superpositions of point sources located in the same set, we will
concentrate on the case when the incident field is due to a point source located at
some point z ∈ D, i.e., ui = Φ(·, z). Thus the following is the specific problem that
we will consider in this paper:

Problem 1 (point source rough surface scattering problem). Let ui = Φ(·, z)
be the incident field due to a point source at z ∈ D. Then we seek a scattered field
us ∈ C2(D) ∩ C(D̄) such that us is a solution to the Helmholtz equation (2.1) in D,
the total field satisfies the sound-soft boundary condition (2.3), and the bound (2.4)
holds. In the case κ > 0, we also require that the limiting absorption principle (2.5)
holds.

We will convert this scattering problem to a boundary value problem. To do
this we will seek the scattered field as the sum of a mirrored point source Φ′(·, z) :=
−Φ(·, z′), where z′ is the reflection of z in the flat plane Γ0, plus some unknown
remainder v, i.e., us = v + Φ′(·, z). Note that Φ′(·, z) is a solution to the scattering
problem in the special case that Γ = Γ0. Using the boundary condition us+ Φ(·, z) = 0
on Γ = ∂D, we obtain the boundary condition on v that

v(x) = −{Φ(x, z) − Φ(x, z′)} = −G(x, z) =: g(x), x ∈ Γ.(2.12)

Clearly, g ∈ BC(Γ) and it follows from (2.11) that g ∈ L2(Γ), so that g ∈ X =
L2(Γ)∩BC(Γ). Thus us satisfies the above scattering problem if and only if v satisfies
the following Dirichlet problem with g given by (2.12).

Problem 2 (BVP). Given g ∈ X, find v ∈ C2(D) ∩ C(D̄), which satisfies the
Helmholtz equation (2.1) in D, the Dirichlet boundary condition v = g on Γ, the bound
(2.4), and, for κ > 0, the limiting absorption principle (2.5).

In this paper we will look for a solution to this boundary value problem as the
combined single- and double-layer potential

v(x) := u2(x) − iη u1(x), x ∈ D,(2.13)

with some parameter η ≥ 0, where for a given function ϕ ∈ X we define the single-
layer potential

u1(x) :=

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ R3,(2.14)

and the double-layer potential

u2(x) :=

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y), x ∈ R3.(2.15)

Seeking the solution in this form we will see that the boundary condition (2.12) is
satisfied if and only if the BIE

(I + K − iηS)ϕ = 2g(2.16)

holds on Γ, where I is the identity operator.
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The following are the main results in the remainder of the paper. In the next two
sections we examine the kernels of the integral operators K and S and recall relevant
properties of convolution and more general integral operators that we need to study
K and S. The properties we discuss are exploited in section 5. In particular we show
the following result.

Theorem 2.1. The single- and double-layer potential operators S and K, defined
by (2.9) and (2.10), are bounded operators on L2(Γ) and on X.

We also establish that the single- and double-layer potential operators S and K
depend continuously on κ1 = Imκ in the norm topology on the set of bounded linear
operators on L2(Γ); this result is needed to establish the limiting absorption principle.
Moreover, we show, for S and K, continuous dependence in norm on the boundary
Γ, in a sense we make precise.

In the final section, section 6, we establish existence and uniqueness of solution
of the BIE and boundary value problem, at least in certain cases. As the first step we
justify the integral equation (2.16) as a reformulation of the boundary value problem,
showing the following result.

Theorem 2.2. Suppose that v is defined by (2.13)–(2.15) with ϕ ∈ X. Then,
in the case κ1 > 0, v satisfies the boundary value problem if and only if ϕ satisfies
the BIE (2.16). In the case κ1 = 0 (i.e., κ > 0), if v satisfies the boundary value
problem, then ϕ satisfies (2.16). Conversely, if κ > 0, ϕ(κ+iε) ∈ X satisfies the
integral equation (2.16) with κ replaced by κ + iε, for all sufficiently small ε > 0, and
||ϕ− ϕ(κ+iε)||L2(Γ) → 0 as ε → 0, then v satisfies the boundary value problem.

We further establish the following result.
Theorem 2.3. The boundary value problem has at most one solution.
Then we study the invertibility of the operator I + K − iηS, first for the case

when Γ is flat and the operator I + K − iηS is a convolution operator and then for
the case when Γ is mildly rough by perturbation arguments. Our main result is the
following.

Theorem 2.4. Suppose that h > 0 and that either η > 0 or η = 0 and Imκ =
κ1 > 0. Then, provided ‖f−h‖BC1,α(R2) is sufficiently small (so that Γf is sufficiently
close to the flat surface f ≡ h), it holds that the integral equation (2.16) has a unique
solution ϕ ∈ L2(Γ) for every g ∈ L2(Γ), so that (I+K− iηS)−1 exists and is bounded
as an operator on L2(Γ). If, further, g ∈ X, then ϕ ∈ X, so that (I + K − iηS)−1 is
also a bounded operator on X.

Combining these results we have a final corollary concerning the solvability of the
boundary value problem.

Theorem 2.5. If h > 0 and ‖f − h‖BC1,α(R2) is sufficiently small (so that Γf

is sufficiently close to the flat surface f ≡ h), then the boundary value problem has
exactly one solution. Further, for some constant c > 0, independent of g,

|v(x)| ≤ c ||g||X , x ∈ D̄.

3. Properties of the 3D fundamental solution. We start with an investi-
gation of properties of the fundamental solution Φ(x, y) and its derivatives. The key
results are the expansions (3.7) and (3.11) needed to prove mapping properties of the
boundary integral operators S and K in section 5.

For the first derivative of Φ(x, y) with respect to y3 we calculate

∂Φ(x, y)

∂y3
= − iκ

4π

(x3 − y3)

|x− y|2 eiκ|x−y| +
1

4π

(x3 − y3)

|x− y|3 eiκ|x−y|.(3.1)
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The second derivative is given by

∂2Φ(x, y)

∂y2
3

=
1

4π

{
iκ

eiκ|x−y|

|x− y|2 − κ2 (x3 − y3)
2

|x− y|3 eiκ|x−y| − 2iκ
(x3 − y3)

2

|x− y|4 eiκ|x−y|

− eiκ|x−y|

|x− y|3 − iκ
(x3 − y3)

2

|x− y|4 eiκ|x−y| + 3
(x3 − y3)

2

|x− y|5 eiκ|x−y|
}
.(3.2)

For the third derivative with respect to y3 we obtain

∂3Φ(x, y)

∂y3
3

=
3κ2

4π

(x3 − y3)

|x− y|3 eiκ|x−y| + O

(
1

|x− y|4

)
.(3.3)

This holds in the sense that, given c > 0 and a compact subset S of H+, there exists
a constant C > 0 such that∣∣∣∣∂3Φ(x, y)

∂y3
3

− 3κ2

4π

(x3 − y3)

|x− y|3 eiκ|x−y|
∣∣∣∣ ≤ C

|x− y|4

for all x, y ∈ R3, x �= y, with x3, y3 ∈ [0, c] and all κ ∈ S. The similar equations
below, in particular (3.7) and (3.11), are to be understood in an analogous fashion.

We use Taylor’s expansion for the fundamental solution Φ(x, y) with respect to
variations of x3 and y3. From Taylor’s theorem, if g ∈ C3[0,∞), then

g(s) = g(0) + g′(0)s +
1

2
g(2)(0)s2 +

1

3!

∫ s

0

(s− t)2g(3)(t) dt, s > 0.(3.4)

Applying (3.4) to g(s) := Φ(x,y+se3), where e3 is the unit vector in the x3-direction,
with y = (y1, y2, 0) ∈ Γ0 and s ∈ [0, c] with some constant c, we obtain

Φ(x,y + se3) =
1

4π

eiκ|x−y|

|x− y| − iκ

4π

x3 eiκ|x−y|

|x− y|2 s(3.5)

+
iκ

4π

eiκ|x−y|

|x− y|2
s2

2
+ O

(
1

|x− y|3

)
.

To estimate the properties of single- and double-layer potentials on L2(Γ) we need
to use Taylor’s expansion also with respect to x3. We treat all the terms of (3.5)
separately and obtain, after some calculations,

Φ(x + he3,y + se3) =
1

4π

eiκ|x−y|

|x − y|(3.6)

+
1

4π

iκ eiκ|x−y|

|x − y|2
(h− s)2

2
+ O

(
1

|x − y|3

)
.

Altogether we obtain

G(x + he3,y + se3) = − 1

4π

iκ eiκ|x−y|

|x − y|2 2hs + O

(
1

|x − y|3

)
,(3.7)

in the sense that, given c > 0 and a compact subset S of H+, there exists a constant
C > 0 such that ∣∣∣∣G(x + he3,y + se3) +

2hs

4π

iκ eiκ|x−y|

|x − y|2

∣∣∣∣ ≤ C

|x − y|3
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for all x,y ∈ R2 with x �= y, all κ ∈ S, and all h, s ∈ [0, c]. Arguing precisely as in [7]
in the case |x− y| > 1, we can also show the bound that (cf. [7, equations (3.6) and
(3.8)]), given a compact subset S ⊂ H+, there exists a constant C > 0 such that

|G(x, y)| ≤ C(1 + x3)(1 + y3)

|x− y|2(3.8)

for all x, y ∈ R3 with x, y �= 0 and x3, y3 ≥ 0 and all κ ∈ S.
For the normal derivative of G, noting that ∂Φ(x, y′)/∂ν(y) = ∂Φ(x′, y)/∂ν(y)

and introducing the notation ν(y) := (ν1(y), ν2(y)), we derive

4π
∂G(x, y)

∂ν(y)
= − iκ ν(y) · (x − y)

{
eiκ|x−y|

|x− y|2 − eiκ|x−y′|

|x− y′|2

}
(3.9)

+ ν(y) · (x − y)

{
eiκ|x−y|

|x− y|3 − eiκ|x−y′|

|x− y′|3

}

− iκ
ν3(y)(x3 − y3)

|x− y|2 eiκ|x−y| +
ν3(y)(x3 − y3)

|x− y|3 eiκ|x−y|

− iκ
ν3(y)(x3 + y3)

|x− y′|2 eiκ|x−y′| +
ν3(y)(x3 + y3)

|x− y′|3 eiκ|x−y′|.

We proceed as in (3.6) and calculate

eiκ|x−y|

|x− y|2 =
eiκ|x−y|

|x − y|2 +
iκeiκ|x−y|

|x − y|3
(x3 − y3)

2

2
+ O

(
1

|x − y|4

)
.(3.10)

We use this to transform (3.9) into

4π
∂G(x + he3,y + se3)

∂ν(y)
= −κ2ν(y) · (x − y)

|x − y|
eiκ|x−y|

|x − y|2 2hs(3.11)

− iκν3(y)
eiκ|x−y|

|x − y|2 2h + O

(
1

|x − y|3

)
,

this equation holding in the same sense as (3.7).

4. Convolution and related integral operators. To establish that S and K
are bounded operators on L2(Γ) and on X we need tools from the theory of convolution
operators and the Fourier and Hankel transforms. In this section we briefly recall the
relevant results and compute explicitly certain Fourier transforms that we will need.
The results in the first three paragraphs are contained, for example, in [23].

For 
 ∈ L1(R2) ∪ L2(R2) we define the Fourier transform of 
, F
, by

(F
)(k) =
1

2π

∫
R2

e−ik·y
(y) dy, k ∈ R2.(4.1)

In the case 
 ∈ L1(R2) the integral (4.1) exists in the ordinary Lebesgue sense, and
F
 ∈ BC(R2). If 
 ∈ L2(R2), then the integral (4.1) exists for almost all k ∈ R2 as
the limit

lim
R→∞

1

2π

∫
R2∩BR(0)

e−ik·y
(y) dy,
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and F
 ∈ L2(R2), with ||F
||L2(R2) = ||
||L2(R2). Further, the mapping F : L2(R2) →
L2(R2) is surjective and thus an isometric isomorphism. If 
 ∈ L1(R2)∩L2(R2), then
the two interpretations of (4.1) coincide and F
 ∈ X0 := L2(R2) ∩BC(R2).

For 
, ψ ∈ L2(R2) we define 
 ∗ ψ, the convolution of 
 and ψ, by

(
 ∗ ψ)(x) :=

∫
R2


(x − y)ψ(y) dy, x ∈ R2.

The integral is defined in the ordinary Lebesgue sense, and 
 ∗ ψ ∈ BC(R2). If also
F
 ∈ L∞(R2), then 
 ∗ ψ ∈ X0, with


 ∗ ψ = 2πF−1((F
)(Fψ))(4.2)

so that the convolution operator L, defined by Lψ = 
 ∗ ψ, maps L2(R2) to L2(R2)
and is bounded, with norm

||L||L2(R2)→L2(R2) ≤ 2π||F
||L∞(R2).

We shall need in our arguments to also consider integral operators with kernels of
a more general type. Suppose that l : R2 × R2 → C is such that l(x, ·) is measurable
for all x ∈ R2, and let L be the integral operator with kernel l, so that

(Lψ)(x) =

∫
R2

l(x,y)ψ(y) dy, x ∈ R2.(4.3)

One case of relevance to our later arguments is that in which

l(x,y) = m1(x)
(x − y)m2(y),(4.4)

with m1,m2 ∈ BC(R2), 
 ∈ L2(R2), F
 ∈ L∞(R2). In this case, if ψ ∈ L2(R2),
then (4.3) exists in the Lebesgue sense for all x ∈ R2, Lψ ∈ X0, and L is a bounded
operator on L2(R2) with norm

||L||L2(R2)→L2(R2) ≤ 2π||m1||BC(R2) ||F
||L∞(R2) ||m2||BC(R2).(4.5)

Clearly, L is also a bounded operator on L2(R2) if it is a sum of operators of this
form.

Another case of relevance is that in which

|l(x,y)| ≤ 
(x − y),(4.6)

with 
 ∈ Lp(R2), for some p ∈ [1,∞). In this case, if ψ is continuous and compactly
supported, then (4.3) exists in the Lebesgue sense for all x ∈ R2, Lψ ∈ Ls(R2), for
s ≥ 1, and, from Young’s inequality [23], it follows that

||Lψ||Ls(R2) ≤ ||
||Lp(R2) ||ψ||Lr(R2),(4.7)

where r−1 = 1+s−1−p−1. Since the set of continuous compactly supported functions
is dense in Lr(R2), we can extend the domain of L by density so that L is a bounded
operator from Lr(R2) to Ls(R2) with norm ≤ ||
||Lp(R2). Further, if 
 ∈ L1(R2) and
ψ ∈ L∞(R2), then, trivially, (4.3) exists in the Lebesgue sense for all x ∈ R2 and (4.7)
holds.
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We will use the bound (4.7) particularly often in the case 
 ∈ L1(R2), in which
case it implies that

||L||Lq(R2)→Lq(R2) ≤ ||
||L1(R2),(4.8)

for 1 ≤ q ≤ ∞. A further consequence of (4.7) is the following result that will be used
to prove Lemma 5.1.

Lemma 4.1. Suppose that L is the integral operator given by (4.3), and that the
bound (4.6) holds with 
 ∈ L1(R2) ∩ Lp(R2), for some p ∈ (1, 2). Then, for some
n ∈ N, Ln is a bounded operator from L2(R2) to L∞(R2).

Proof. Note first that 
 ∈ L1(R2)∩Lp(R2) implies that 
 ∈ Lp̃(R2) for 1 < p̃ < p.
Let ω := p/(p− 1) > 2. Define the finite or infinite sequence (rj) iteratively by

r0 := 2, rj+1 :=

(
1

p
+

1

rj
− 1

)−1

=
rj

1 − rj
ω

, j = 0, 1, 2, . . . ,(4.9)

continuing the definition (4.9) for as long as rj < ω. Let J ⊂ N0 := N∪{0} denote the
set of indices j for which rj is defined. We will show that the set J is finite, so that
J = {0, 1, . . . , N} with rN ≥ ω. Then, by (4.7), it follows that L is a bounded operator
from Lrj−1(R2) to Lrj (R2) for j = 1, . . . , N . Further, defining p̃ := rN/(rN − 1), we
observe that 1 < p̃ < p and 1

p̃ + 1
rN

= 1, so that, by (4.7), L is a bounded operator from

LrN (R2) to L∞(R2), and so LN+1 is a bounded operator from L2(R2) to L∞(R2).

We complete the proof by showing that J is finite. Suppose otherwise. Then
rj < ω for all j ∈ J = N0. It follows from (4.9), by induction, that the sequence (rj)
is monotonically increasing. Thus the sequence (rj) is convergent to some limit r,
with 2 ≤ r ≤ ω. Rearranging (4.9) and taking limits, we see that (1 − r/ω)r = r, so
that r = 0, a contradiction.

Examining (3.7) and (3.9) we see that large parts of the kernels of the operators
S and K have the form (4.4), where, moreover, 
 has certain symmetries that simplify
the calculation of its Fourier transform. For the remainder of this section, for y ∈ R2

let r := |y| and ŷ := y/|y|. The specific symmetries that arise are those where 
 has
the form


(y) = F (r)Y j
n (ŷ),(4.10)

with n = 0 or 1, and j = 0, . . . , n, where the functions Y j
n are spherical harmonics of

order n defined on the unit circle Ω ⊂ R2 by

Y 0
0 (ŷ) := 1, Y 0

1 (ŷ) := cos θ, Y 1
1 (ŷ) := sin θ, ŷ = (cos θ, sin θ) ∈ Ω.(4.11)

Integrating the product of the Jacobi–Anger expansion [13, equation (3.66)] (a Fourier
series of eirk·ŷ) with the spherical harmonics of order n over the unit circle we deduce
the Funk–Hecke formulae in R2,

∫
Ω

e−irk·ŷ Y j
n (ŷ) ds(ŷ) = 2π in Jn(rk) Y j

n (k̂),(4.12)

where we define k := |k| and k̂ := k/k and Jn denotes the Bessel function of order n.
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If 
 ∈ L1(R2) ∪ L2(R2) has the form (4.10), then it holds for almost all k ∈ R2 that

(F
)(k) = lim
R→∞

1

2π

∫
|y|<R

e−ik·y
(y) dy

=
1

2π
lim

R→∞

∫ R

0

(∫
Ω

e−irk·ŷ Y j
n (ŷ) ds(ŷ)

)
F (r) r dr

= inY j
n (k̂) lim

R→∞

∫ R

0

F (r)Jn(kr) r dr(4.13)

=
inY j

n (k̂)√
k

Hn

(√
· F (·)

)
(k),(4.14)

where Hn denotes the Hankel transform of order n, i.e.,

(HnF )(k) := lim
R→∞

∫ R

0

F (r) Jn(kr)
√
kr dr, k ∈ R+, n ∈ N.(4.15)

We note that (4.13) can be used to extend the domain of the Fourier transform.
Precisely, whenever 
 has the form (4.10) and the limit (4.13) exists, (4.13) can be
used to define a Fourier transform of 
, this definition coinciding with the usual one
if 
 ∈ L1(R2) ∪ L2(R2). An example is the function 
 defined, for some h > 0, by


(y) := Wh(|y|), Wh(r) :=
1

4π

eiκ
√
r2+4h2

√
r2 + 4h2

, r > 0.(4.16)

The relevance of this example is that, defining xh := (0, 0, 2h), 
 = Φ(·, xh) is the trace
of Φ(·, xh) on the plane Γ0. It is not difficult to see, from the asymptotic behavior
of the Bessel function Jn in (4.20), that, for F = Wh, the limit (4.13) is well defined
except for k = κ in the case κ > 0. Explicitly, from (4.14) with n = 0 and the Hankel
transforms in section 8.2 of [18], namely formula (24) for κ1 > 0 and formulae (41)
and (50) for κ1 = 0, we find after some elementary calculations that, for all k ∈ R2

with k = |k| �= κ,

(F
)(k) = (FΦ(·, xh))(k) =

∫ ∞

0

Wh(r)J0(kr)r dr =
1

4π

e−2h
√
k2−κ2

√
k2 − κ2

,(4.17)

where the square root is chosen so that its argument lies in [−π/2, 0].
We now use the representation (4.13) to calculate the Fourier transforms of parts

of the kernels of the operators S and K. We suppose that 
 is given by (4.10), with
n = 0 or 1 and

F (r) :=
eiκr

β + r2
, r ≥ 0,(4.18)

for some β > 0. The relevance of this example to the operators S and K is that the
explicitly written terms on the right-hand side of (3.7) and (3.9) all take the form
(4.4) if 
 is given by (4.10) and (4.18) with β = 0 and if x + he3 and y + se3 lie on Γ.

Clearly, 
 ∈ L2(R2) (for β > 0). We will show also that the Fourier transform of

 is bounded, so that the operation of convolution with 
 is bounded on L2(R2). To
this end we show that the improper integral

I(k) :=

∫ ∞

0

F (r)Jn(kr) r dr(4.19)

is bounded on [0,∞).
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With the help of the asymptotic expansion of the Bessel function (see, e.g., [1]),

Jn(z) =

√
2

πz
cos

(
z − nπ

2
− π

4

){
1 + O

(
1

z

)}
, |z| → ∞,(4.20)

we see that eizJn(z) is bounded in 0 ≤ arg z ≤ θ for every θ ∈ (0, π/2). Since
Re(i(κ−k)z) = −(κ0−k)Imz−κ1Rez and F (z) is a holomorphic function in Re z > 0,
we see that for 0 ≤ k < κ0 we may transform the integral

I(k) =

∫ ∞

0

ei(κ−k)z

β + z2
eikzJn(kz) z dz(4.21)

into

I(k) =

∫
γ

ei(κ−k)z

β + z2
eikzJn(kz) z dz(4.22)

with γ = {(1 + i)t : t ≥ 0}. This integral is bounded for 0 ≤ k ≤ κ0/2.
For k ≥ κ0/2 we can use (4.20) and that Jn(z) is continuous and thus, by (4.20),

bounded on [0,∞) to estimate that, for some constants C1 and C2,∣∣∣∣
∫ ∞

0

F (r)Jn(kr) r dr

∣∣∣∣ ≤ C1 + C2

∫ ∞

1

1

r3/2
dr.(4.23)

We conclude that I is bounded on [0,∞) for n = 0, 1, so that, by (4.13), F
 ∈ L∞(R2)
for n = 0, 1.

We will be interested in the last section of the paper, in order to establish a
limiting absorption principle, in the dependence of 
 on κ1. Denote, temporarily, 

and I by 
κ1 and Iκ1 to indicate their dependence on κ1. Then, from (4.22), since
eizJn(z) is bounded on γ = {(1 + i)t : t ≥ 0}, we see that, for some constant C > 0,

|Iκ1(k) − I0(k)| ≤ C

∫ ∞

0

e−κ0t/2(1 − e−κ1t) dt

for 0 ≤ k ≤ κ0/2, κ1 ≥ 0, so that Iκ1
(k) → I0(k) as κ1 → 0, uniformly on [0, κ0/2].

Similarly, using (4.21) and (4.20) (cf. (4.23)), we can show that Iκ1(k) → I0(k) as
κ1 → 0, uniformly on [κ0/2,∞]. Thus the following lemma holds.

Lemma 4.2. If 
 is given by (4.10) and (4.18) with β > 0 and n = j = 0, or n = 1
and j = 0, or 1, then F
 ∈ L∞(R2) so that the convolution integral operator L, with
kernel 
(x − y), is a bounded operator on L2(R2). Further, denoting 
 and L by 
κ1

and Lκ1
to indicate their dependence on κ1, we have that ||F
κ1 − F
0||L∞(R2) → 0

as κ1 → 0, so that Lκ1 tends to L0 in norm as κ1 → 0.

5. Properties of single- and double-layer potentials. In this section we
prove that the single- and double-layer operators are well defined when considered as
operators on L2(Γ). We further investigate the jump relations for unbounded regions
and show continuity properties of the boundary operators with respect to variations
of the boundary.

We first prove Theorem 2.1, stated at the end of section 2. To prove this result
we split the operators into a local and a global part with the help of an appropriate
cut-off function. To this end let χ : [0,∞) → R be a continuous function with

χ(t) :=

{
0, t < 1/2,

1, t ≥ 1,
and 0 ≤ χ(t) ≤ 1 ∀t ≥ 0.(5.1)
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Let A with kernel a denote one of the operators S or K, respectively. We define the
global part

(A1ϕ)(x) :=

∫
Γ

χ(|x− y|)a(x, y)ϕ(y) ds(y), x ∈ Γ,(5.2)

and the local part

(A2ϕ)(x) :=

∫
Γ

(
1 − χ(|x− y|)

)
a(x, y)ϕ(y) ds(y), x ∈ Γ.(5.3)

This yields the decomposition A = A1 +A2, and we can study the mapping properties
of A1 and A2 as operators on L2(Γ) and on X separately. We start by proving the
following lemma.

Lemma 5.1. A2 is a bounded operator on Lq(Γ) for 1 ≤ q ≤ ∞, is a bounded
operator from L∞(Γ) to BC(Γ), and is a bounded operator on X. Further, for some
n ∈ N, An

2 is a bounded operator from L2(Γ) to X.
Proof. The kernel a2 of A2 has compact support and is weakly singular. Precisely,

since (cf. [7, equation (4.23)])

|ν(y) · (x− y)| ≤ |x − y|1+α||f ||BC1,α(R2), x, y ∈ Γ,(5.4)

it holds in the double-layer case A = K that, for some constant C > 0,

|a2(x, y)| ≤ C
(x − y), x, y ∈ Γ, x �= y,(5.5)

where


(y) :=

{
|y|α−2, |y| ≤ 1,

0, |y| > 1.
(5.6)

The same bound holds (but is not sharp) in the single-layer case A = S.
Since 
 ∈ Lp(R2), for 1 ≤ p < 2/(2 − α), we see from (4.8) that A2 is a bounded

operator on Lq(Γ) for 1 ≤ q ≤ ∞. Since a2(x, y) is also continuous for x �= y, it
follows, moreover, that A2 maps L∞(Γ) to BC(Γ). Thus A2 is a bounded operator
on X. By Lemma 4.1, Am

2 is a bounded operator from L2(Γ) to L∞(Γ), for some
m ∈ N, so that Am+1

2 is a bounded operator from L2(Γ) to X.
We now consider the global part and prove a lemma on the mapping properties

of A1. Together, Lemmas 5.1 and 5.2 provide a proof of Theorem 2.1.
Lemma 5.2. A1 is a bounded operator on L2(Γ) and is a bounded operator from

L2(Γ) to X.
Proof. From the decompositions (3.7) and (3.11) it follows that the kernel a1 of

A1 can be written, in both the cases A = S and A = K, in the form

a1(x, y) = l∗(x,y) + l(x,y),(5.7)

where l∗ is a sum of terms each of the form (4.4), with m1,m2 ∈ BC(R2) and 
 given
by (4.10) and (4.18) with β = 1, and with n = 0 or 1. Further, l∗ can be chosen so
that l satisfies the bound, for some constant C > 0,

|l(x,y)| ≤ C
̃(x − y), x,y ∈ R2,(5.8)
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where 
̃(y) := (1 + |y|)−3, so that 
̃ ∈ L1(R2). In detail, in the case A = S we see
from (3.7) that an appropriate choice is to take

l∗(x,y) = − iκf(x)f(y)

2π

eiκ|x−y|

1 + |x − y|2 ,(5.9)

while, in the case A = K we see from (3.11) that we can take

l∗(x,y) = −κ2f(x)f(y)

2π
ν(y) · x − y

|x − y|
eiκ|x−y|

1 + |x − y|2 − iκf(x)ν3(y)

2π

eiκ|x−y|

1 + |x − y|2 .

(5.10)

It follows from (4.5) and Lemma 4.2 applied to the integral operator with kernel l∗,
and (4.8) applied to the integral operator with kernel l, that A1 is a bounded operator
on L2(Γ).

Note, from the above representation (5.7), that also

|a1(x, y)| ≤ 
∗(x − y), x, y ∈ Γ,

for some 
∗ ∈ L2(R2); this is true since 
̃ ∈ L2(R2) and since each term of (5.9) and
(5.10) can be bounded in this way. It follows from (4.7) that A1 maps L2(Γ) to L∞(Γ);
in fact, since also a1 is continuous, it holds that A1 maps L2(Γ) to BC(Γ).

Remark 5.3. For C2 > C1 > 0 let

B = B(C1, C2) :=
{
f ∈ BC1,α(R2) : C1 ≤ f(y), y ∈ R2, ‖f‖BC1,α(R2) ≤ C2

}
.

(5.11)

We note that, given C2 > C1 > 0 and κ0 > 0, we can choose C > 0 such that the
estimates (5.5) and (5.8) hold for all f ∈ B and all κ1 ≥ 0. (For (5.8) this follows
from (3.7) and (3.11).) This observation will be helpful in establishing continuous
dependence of A on f and on κ1.

Combining the above lemmas we deduce Theorem 2.1 and have also the following
corollary.

Corollary 5.4. For all sufficiently large n ∈ N it holds that An is a bounded
map from L2(Γ) to X.

As part of the proof of Theorem 2.2 we need to show that our modified single- and
double-layer potentials u1 and u2, over the unbounded surface Γ, behave in a similar
way to the corresponding standard layer potentials supported on a smooth bounded
surface. This is done in the following theorem, in which M := {x : 0 < x3 < f(x)}
denotes the region between Γ and Γ0.

Theorem 5.5. Let u1 and u2 denote the single- and double-layer potentials with
density ϕ ∈ X, defined by (2.14) and (2.15), respectively. The following hold:

(i) For n = 1, 2, un ∈ C2(D ∪M) and Δun + k2un = 0 in D ∪M .
(ii) u1 and u2 can be continuously extended from D to D̄ and from M to M̄ , with

limiting values

u1,±(x) =

∫
Γ

G(x, y)ϕ(y) ds(y), x ∈ Γ,(5.12)

and

u2,±(x) =

∫
Γ

∂G(x, y)

∂ν(y)
ϕ(y) ds(y) ± 1

2
ϕ(x), x ∈ Γ,(5.13)
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where un,±(x) := limε→0+ un(x ± εν(x)), for n = 1, 2 and x ∈ Γ, and ν(x) denotes
the unit normal at x ∈ Γ directed into D.

(iii) Given constants C2 > C1 > 0 and a compact subset S of H+, there exists a
constant C > 0 such that

|un(x)| ≤ C||ϕ||X , x ∈ D ∪M, n = 1, 2,(5.14)

for all ϕ ∈ X, κ ∈ S, and f ∈ B = B(C1, C2).
(iv) Given constants C2 > C1 > 0 and ε > 0 and a compact subset S of H+, there

exists a constant C > 0 such that

|un(x)| ≤ C||ϕ||L2(Γ), n = 1, 2,(5.15)

for all x ∈ D ∪M with |x3 − f(x1, x2)| > ε, all ϕ ∈ X, all κ ∈ S, and all f ∈ B =
B(C1, C2).

Proof. We first show that u ∈ C(D ∪M) and establish (ii) and (iii). We use the
cut-off function χ given by (5.1). Let u denote one of u1 and u2, and let a denote the
kernel of u so that a(x, y) := G(x, y) and a(x, y) := ∂G(x, y)/∂ν(y) in the respective
cases. We have, for x ∈ D ∪M , that

u(x) =

∫
Γ

χ(|x− y|)a(x, y)ϕ(y) ds(y) +

∫
Γ

[
1 − χ(|x− y|)

]
a(x, y)ϕ(y) ds(y).

The first term has a continuous kernel that is bounded at infinity by the estimate
(3.7) or (3.9) and, since ϕ ∈ L2(Γ), is continuous in {x : x3 > 0}. The second term
is clearly continuous in D ∪M ; to see that it can be continuously extended up to Γ
from above and below and to compute its limiting values we observe that, keeping x
within some ball centered at some x0 ∈ Γ, it holds that the integrand is supported in
a finite patch of the surface. We can extend this surface patch to a bounded obstacle
with boundary of class C1,α and, since ϕ ∈ C(Γ), use the jump relations for bounded
obstacles as presented in [14].

To show that the first term satisfies the bound (5.14) we recall that G satisfies the
bound (3.8) and point out that, by interior elliptic regularity estimates for solutions
of the Helmholtz equation (e.g., [9, Lemma 2.7]), it follows that ∇yG(x, y) satisfies
the same bound for all κ ∈ S (with a different constant C), provided x3, y3 > 0 and
|x− y| > 1/4; further we calculate directly that C can be chosen so that this bound
also holds for 0 < |x − y| ≤ 1/4. Thus, for some constant C ′ > 0, whether a is the
kernel of the single- or double-layer potential, it holds for all κ ∈ S that

|χ(|x− y|)a(x, y)| ≤ C ′ (1 + x3)(1 + y3)

1 + |x− y|2 , x, y ∈ R3, x3, y3 ≥ 0.(5.16)

Applying the Cauchy–Schwarz inequality we have that the first term is bounded, for
x ∈ {x : x3 > 0}, by C ′(1 + f+)I(x)‖ϕ‖L2(Γ), where

[I(x)]2 = (1 + x3)
2

∫
Γ

ds(y)

(1 + |x− y|2)2

≤ (1 + x3)
2(1 + ||∇f ||BC(Γ))

1/2

∫
R2

dy

(1 + |x − y|2 + (x3 − f(y))2)2
.

Thus, for some constant c > 0 it holds, for all x ∈ {y : y3 > 0} and all f ∈ B, that
[I(x)]2 ≤ cF (x3), where

F (x3) := (1 + x3)
2

∫ ∞

0

r dr

(1 + x2
3 + r2)2

=
(1 + x3)

2

x2
3

∫ ∞

0

s ds

(x−2
3 + 1 + s2)2

.

Clearly, F is bounded on [0,∞). Thus the first term satisfies the bound (5.14).
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To treat the second term we argue analogously to the corresponding 2D case [7].
We remark that 1−χ(|x−y|) is zero for |x−y| ≥ 1. We consider only the double-layer
case u = u1. (The argument is similar but simpler in the single-layer case.) Directly
from the definitions (see (3.9)) we see that there exists a constant C > 0 such that

|(1 − χ(|x− y|))a(x, y)| ≤ C
|ν(y) · (x− y)|

|x− y|3 , x ∈ D ∪M, y ∈ Γ,

for all κ ∈ S and all f ∈ B. Define x∗ := (x, f(x)) ∈ Γ, δ := |f(x) − x3|, and note
that, by the triangle inequality,

(
|x − y|2 + δ2

)1/2 ≤ |x− y| + |f(x) − f(y)| ≤
(
1 + ||∇f ||BC(Γ)

)
|x− y|.

Using this inequality, and (5.4) to bound |ν(y) ·(x∗−y)|, we see that, for some C ′ > 0,

|(1 − χ(|x− y|))a(x, y)| ≤ C ′ |x − y|1+α + δ

(|x − y|2 + δ2)
3/2

, x ∈ D ∪M, y ∈ Γ,

for all κ ∈ S and f ∈ B. Thus, defining C ′′ = C ′ (1 + ||∇f ||BC(Γ))
1/2, the second

term is bounded by

C ′′ ||ϕ||BC(Γ)

∫
|y|<1

|y|1+α + δ

(|y|2 + δ2)
3/2

dy ≤ 2πC ′′ ||ϕ||BC(Γ)

∫ 1

0

r1+α + δ

r2 + δ2
dr,

for all κ ∈ S and f ∈ B, so that the second term satisfies the bound (5.14).
To establish (iv) we modify the argument used to show (iii). We have remarked

above that both G(x, y) and ∇yG(x, y) satisfy the bound (3.8). Thus (cf. (5.16)), for
every ε > 0 there exists Cε > 0 such that

|a(x, y)| ≤ Cε
(1 + x3)(1 + y3)

1 + |x− y|2(5.17)

for all x, y ∈ R3 with x3, y3 ≥ 0 and |x− y| ≥ ε and all κ ∈ S. Applying the Cauchy–
Schwarz inequality, as in the proof of (5.14), we see that it holds, for some constant
C ′

ε > 0, that

|un(x)| ≤ C ′
ε(1 + f+)I(x)‖ϕ‖L2(Γ), n = 1, 2,

for all x ∈ D ∪M with |x3 − f(x1, x2)| ≥ ε and all κ ∈ S and f ∈ B. In view of the
bound on I(x) already shown above, we see that we have established (5.15).

We complete the proof by establishing (i). This is clear when ϕ is compactly
supported. The general case follows from the density in L2(Γ) of the set of those
elements of X that are compactly supported, from the bound (5.15), and from the fact
that limits of uniformly convergent sequences of solutions of the Helmholtz equation
satisfy the Helmholtz equation (e.g., [9, Remark 2.8]).

We continue this section by proving that the single- and double-layer potential
operators depend continuously on variations in the boundary Γ. In the statement
of the following theorem, B = B(C1, C2) is the set defined in Remark 5.3 for some
constants C2 > C1 > 0. We use the notation Af for either S or K defined on a surface
Γf given by some f ∈ B. With the help of the isomorphism

If : L2(Γf ) → L2(R2), (Ifϕ)(y) = ϕ((y, f(y))), y ∈ R2,(5.18)
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we associate Af with the element Ãf = IfAfI
−1
f of the set of bounded linear operators

on L2(R2) for each f ∈ B. Denoting the kernel of Ãf by af , we see that, where
x = (x, f(x)), y = (y, f(y)), and a(x, y) := G(x, y) or a(x, y) := ∂G(x, y)/∂ν(y), in
the respective cases Af = S and Af = K, it holds that

af (x,y) = a(x, y)Jf (y), Jf (y) :=
√

1 + |∇f(y)|2.

Theorem 5.6. The single- and double-layer potential operators depend continu-
ously on the boundary Γf of the unbounded domain Df in the sense that

sup
f,g∈B

‖f−g‖BC1,α(R2)≤ε

‖Ãf − Ãg‖L2(R2)→L2(R2) → 0, ε → 0.(5.19)

Proof. Similarly to how we proceeded when proving Theorem 2.1, we decompose
the operator Ãf − Ãg into a global and a local part, i.e., Ãf − Ãg = A1 + A2 with
A1, A2 defined similarly to (5.2) and (5.3). We now carry out the proof for the case
of the single-layer operator. The necessary changes for the double-layer operator are
straightforward.

The global operator. The kernel of the global operator A1 is given by

a1(x,y) := χ(|x − y|)[af (x,y) − ag(x,y)].(5.20)

We use the expansion (5.7) and (5.9), denoting l by lf , to indicate its dependence on
f . We obtain

a1(x,y) =
iκ

2π

eiκ|x−y|

1 + |x − y|2
{
f(x)[f(y) − g(y)] + [f(x) − g(x)]g(y)

}
Jf (y)

+
(
lf (x,y) − lg(x,y)

)
Jf (y)

+
( iκg(x)g(y)

2π

eiκ|x−y|

1 + |x − y|2 + lg(x,y)
)
(Jf (y) − Jg(y))(5.21)

for x,y ∈ R2, x �= y.
The integral operator whose kernel is the first term of (5.21) can be bounded

using Lemma 4.2 and (4.5). Similarly, the integral operator whose kernel is the last
term of (5.21) can be bounded using Lemma 4.2, (4.5), (5.8), and (4.8), noting that
Remark 5.3 guarantees the uniformity of (5.8) for f ∈ B. To bound the integral
operator whose kernel is the second term of (5.21), we construct, for every η ∈ (0, 1),
a function 
η ∈ L1(R2) such that∣∣∣(lf (x,y) − lg(x,y)

)
Jf (y)

∣∣∣ ≤ 
η(x − y), x,y ∈ R2,(5.22)

whenever f, g ∈ B and ‖f−g‖BC1,α(R2) is sufficiently small, and such that ||
η||L1(R2) →
0 as η → 0, and then we use the estimate (4.8). Together, the bounds on the three
parts of A1 show (5.19) for the global part of the operator.

The construction of 
η is as follows. We choose (possible by Remark 5.3) a
constant C > 0 so that (5.8) holds for all f ∈ B. We choose another constant C ′ > 0
that is a bound for ||Jf ||L∞(R2) for f ∈ B. Then, where 
̃ ∈ L1(R2) is defined as in
Lemma 5.2, we set


η(y) :=

{
η3, η < |y| < η−1,

2C C ′
̃(y) otherwise.
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Clearly, this satisfies that ||
η||L1(R2) → 0 as η → 0. Since, for every η ∈ (0, 1),
|lf (x,y) − lg(x,y)| → 0 as ‖f − g‖BC1,α(R2) → 0, uniformly in f and g for f, g ∈ B,
and uniformly in x and y for η ≤ |x−y| ≤ η−1, the bound (5.22) holds for all f, g ∈ B
with ‖f − g‖BC1,α(R2) sufficiently small.

The local operator. For the local operator we argue in a similar way as for the
global operator, in particular in a similar way as for the integral operator correspond-
ing to the second term in (5.21). In particular, where a2 is the kernel of the local
operator, it holds for every η > 0 that |a2(x,y)| → 0 as ‖f − g‖BC1,α(R2) → 0, uni-
formly in f and g for f, g ∈ B, and uniformly in x and y for |x − y| ≥ η, and (5.5)
takes the role of (5.8).

We have just established continuous dependence of the single- and double-layer
potential operators on the boundary Γf . To show later that the limiting absorption
condition (2.5) is satisfied in the case κ > 0 we need to also establish continuous
dependence on κ, which we do by similar arguments.

Lemma 5.7. Denote S and K temporarily by Sκ1 and Kκ1 to indicate their
dependence on κ1. Then, where Aκ1

denotes either Sκ1
or Kκ1

, it holds that

||Aκ1 −A0||L2(Γ)→L2(Γ) → 0(5.23)

as κ1 → 0.

Proof. As we did when proving Theorem 2.1 we split Aκ1 into global and local
parts, as Aκ1 = A1 + A2, with A1, A2 defined by (5.2) and (5.3). As in the proofs of
Lemma 5.1 and 5.2 we denote the kernel of Aj by aj .

To show (5.23) for the local part A2 we note that a2(x, y) depends continuously
on κ1, uniformly in x and y for |x − y| ≥ η and every η > 0, and that, by Remark
5.3, the bound (5.5) holds uniformly in κ1 for κ1 ∈ [0, 1]. We then argue as for the
local part in the proof of Theorem 5.6, showing that the kernel of the local part of
Aκ1 − A0 is bounded by an L1 convolution kernel 
(x − y) with ||
||L1(R2) → 0 as
κ1 → 0. Finally, we apply (4.8).

To show (5.23) for the global part A2 we use the representation (5.7) for a1(x, y),
which splits a1 into a weakly singular part l(x,y), bounded by (5.8), and a strongly
singular part l∗(x,y), given explicitly by (5.9) or (5.10). To show (5.23) for the weakly
singular part of A2 we argue exactly as we did in the proof of Theorem 5.6, noting
that, by Remark 5.3, (5.8) holds uniformly in κ1 for κ1 ∈ [0, 1], and that l(x,y)
depends continuously on κ1, uniformly in x and y for η ≤ |x − y| ≤ η−1, for every
η ∈ (0, 1). That (5.23) holds for the strongly singular part of A2 follows from Lemma
4.2 and (4.5).

6. Uniqueness and existence results. In this section we prove, for the case
when the surface is mildly rough, uniqueness and existence for our integral equation
formulation and for the boundary value problem and the scattering problem defined in
section 2. As the first step in this argument we prove Theorem 2.2 on the equivalence
of the integral equation (2.16) and the boundary value problem.

Proof of Theorem 2.2. Let v be the combined single- and double-layer potential
v, defined in (2.13), with density ϕ ∈ X. By Theorem 5.5, v ∈ C2(D) ∩ C(D̄) and
satisfies the Helmholtz equation in D. Further, due to the jump relations (5.12) and
(5.13), v = g ∈ X on Γ if and only if the density ϕ satisfies the boundary integral
equation (2.16). Applying Theorem 5.5 again, we see that v satisfies the bound (2.4).
This yields the equivalence statement for κ1 > 0.

For real κ, in addition, we need to show the limiting absorption principle (2.5).
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Let a(x, y) = ∂G(x, y)/∂ν(y) − iηG(x, y), so that

v(x) =

∫
Γ

a(x, y)ϕ(y) ds(y), x ∈ D.(6.1)

Suppose, as stated in the theorem, that ϕ(κ+iε) ∈ X satisfies the integral equation
(2.16) with κ replaced by κ + iε, for all sufficiently small ε > 0, and that ||ϕ −
ϕ(κ+iε)||L2(Γ) → 0 as ε → 0. Let a(κ+iε) denote a with κ replaced with κ + iε, and

define v(κ+iε) by (6.1) with a, ϕ replaced by a(κ+iε), ϕ(κ+iε), respectively. We have
shown in the previous paragraph that v(κ+iε) satisfies Problem 2 (with κ replaced
by κ + iε). To show the limiting absorption principle (2.5) we need to show that
v(κ+iε)(x) → v(x) as ε → 0. We have

v(κ+iε)(x) − v(x) =

∫
Γ

(
a(κ+iε)(x, y) − a(x, y)

)
ϕ(κ+iε)(y) ds(y)

+

∫
Γ

a(x, y)
(
ϕ(κ+iε)(y) − ϕ(y)

)
ds(y).

We see that the second term tends to zero as ε → 0 by the bound (5.15). Clearly,
a(κ+iε)(x, y) − a(x, y) → 0 as ε → 0 for every y ∈ Γ. Thus, applying the Cauchy–
Schwarz inequality and then the dominated convergence theorem, noting that the
bound (5.17) holds uniformly in κ, we see that the first term tends to 0 as
ε → 0.

We obtain uniqueness of solution for the boundary value problem (proving The-
orem 2.3) as follows. Due to [6, Theorem 1] (see also [24, Theorem 3.1]), a solution
u ∈ C2(G) ∩ C(G) to the Helmholtz equation (2.1) with Im(κ) > 0 on an open set
G ⊂ R

n which satisfies the growth condition |u(x)| ≤ Ceθ|x|, with some constant
θ < Im(κ), and the boundary condition u(x) = 0 for x ∈ ∂G will vanish identically on
G. This result directly implies uniqueness for the scattering problem and the bound-
ary value problem for κ1 > 0. For κ1 = 0 uniqueness is a consequence of the limiting
absorption principle we require, i.e., of the convergence (2.5).

Next we turn to establishing existence of solution in the mildly rough case. But
first we prove a preliminary lemma which shows that to establish unique solvability
of the integral equation in the space X it is enough to study solvability in L2(Γ).

Lemma 6.1. Suppose that the integral equation (2.16) has exactly one solution
ϕ ∈ L2(Γ) for every g ∈ L2(Γ). Then also (2.16) has exactly one solution ϕ ∈ X for
every g ∈ X, so that (I + K − iηS)−1 exists and is bounded as an operator on X.

Proof. If the assumptions of the lemma hold, then (2.16) has exactly one solution
ϕ ∈ L2(Γ) for every g ∈ X ⊂ L2(Γ). Further, defining A = K − iηS, it holds that
ϕ = Aϕ + 2g and, by induction, that, for every n ∈ N,

ϕ = Anϕ + 2(An−1 + · · · + A0)g.

Now, by Theorem 2.1, A is a bounded operator on X and, by Corollary 5.4, An is a
bounded operator from L2(Γ) to X for some n ∈ N. Thus ϕ ∈ X. We have shown that
(2.16) has exactly one solution ϕ ∈ X for every g ∈ X, so that (I +K− iηS)−1 exists
as an operator on X. Since X is a Banach space it follows as a standard corollary of
the open mapping theorem that (I + K − iηS)−1 is bounded.

As a corollary of Theorems 2.2 and 2.3 and Lemmas 5.7 and 6.1 we have the
following result.
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Corollary 6.2. If (I +K− iηS)−1 exists as a bounded operator on L2(Γ), then
the boundary value problem and scattering problem have exactly one solution.

Proof. In the case κ1 > 0 this result is clear from Theorems 2.2 and 2.3 and
Lemma 6.1.

In the case κ1 = 0 we note that, by Lemma 5.7 and standard operator perturba-
tion arguments (e.g., [23]), if (I +K − iηS)−1 exists as a bounded operator on L2(Γ)
for κ = κ0 > 0, then (I + K − iηS)−1 exists and is a bounded operator on L2(Γ)
for κ = κ0 + iκ1, 0 ≤ κ1 ≤ c, for some c > 0. Moreover, (I + K − iηS)−1 depends
continuously in the norm topology on κ1 for κ1 ∈ [0, c]. Thus, provided g ∈ L2(Γ)
depends continuously in norm on κ1, for κ1 ∈ [0, c], it holds that (I + K − iηS)−1g
depends continuously in norm on κ1 ∈ [0, c] in L2(Γ). If g is given by (2.12), then,
from the continuity of Φ(x, y) as a function of κ1, uniformly in x, y ∈ R3, x �= y, the
bound (3.8), and the dominated convergence theorem, it follows that g ∈ L2(Γ) de-
pends continuously in norm on κ1 for κ1 ∈ [0, c]. Thus the result follows by Theorems
2.2 and 2.3 and Lemma 6.1.

To make use of this result it remains to establish that (I +K − iηS) is invertible
as an operator on L2(Γ). We will show this first for the case of a flat surface Γh ={
y = (y, h) : y ∈ R2

}
, with h > 0. In this case the kernels of K and S depend only on

the difference x − y, and thus, identifying Γh with R2, the operators are convolution
operators on L2(R2).

In terms of the function Wh defined by (4.16), it follows from (3.9) that we can
write the kernel of the double-layer potential operator as Ph(x − y), where Ph(y) :=
ph(|y|) and

ph(r) := − iκh

π

eiκ
√
r2+4h2

(
√
r2 + 4h2 )2

+
h

π

eiκ
√
r2+4h2

(
√
r2 + 4h2 )3

= − ∂

∂h
{Wh(r)}, r > 0.

The kernel of the single-layer potential operator is Qh(x−y), where Qh(y) := qh(|y|)
and

qh(r) := 2

{
1

4π

eiκr

r
− 1

4π

eiκ
√
r2+4h2

√
r2 + 4h2

}
= 2W0(r) − 2Wh(r), r > 0.

Hence, the integral equation (2.16) is transformed into

ϕ(x) +

∫
R2

{
Ph(x − y) − iη Qh(x − y)

}
ϕ(y) dy = 2g(x), x ∈ R2.(6.2)

To prove invertibility in L2(Γh) we compute the 2D Fourier transforms of Ph and
Qh. From (4.13), for almost all k ∈ R2, where k := |k|,

(FPh)(k) = −
∫ ∞

0

∂Wh(r)

∂h
J0(kr)r dr.

To evaluate this integral we reverse the order of integration and differentiation and
use (4.17) to get that, for almost all k ∈ R2,

(FPh)(k) = − ∂

∂h

{
1

4π

e−2h
√
k2−κ2

√
k2 − κ2

}
=

1

2π
e−2h

√
k2−κ2

.(6.3)

The interchange of integration and differentiation with respect to h is certainly jus-
tified whenever k > 0 and k �= κ. For then the integral (4.17) is well defined, and,
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using (4.20), we see that for every H > 0 there exists a constant C > 0 such that

∣∣∣∣∂Wh(r)

∂h
J0(kr)r

∣∣∣∣ =

∣∣∣∣∣ ∂∂h
{

1

4π

eiκ
√
r2+4h2

√
r2 + 4h2

}
J0(kr)r

∣∣∣∣∣ ≤ C

r3/2
(6.4)

for r ≥ 1 and 0 ≤ h ≤ H.
The Fourier transform of Qh can also be evaluated using (4.17). We obtain that

(FQh)(k) =
1

2π

{
1√

k2 − κ2
− e−2h

√
k2−κ2

√
k2 − κ2

}
(6.5)

for all k ∈ R2 with k �= κ. We combine the Fourier transforms of Ph and Qh to derive
for the Fourier transform of the kernel Rh := Ph − iη Qh of K − iηS the formula
(FRh)(k) = r̂h(k), for almost all k ∈ R2, where

r̂h(k) :=
1

2π

{
e−2h

√
k2−κ2 − iη

1 − e−2h
√
k2−κ2

√
k2 − κ2

}
, k ≥ 0.(6.6)

From (4.2) we see that, for ψ ∈ L2(R2),

(I + K − iηS)ψ = F−1((1 + 2πFRh)(Fψ)).

Since F is an isomorphism on L2(R2) it follows that the inverse of I +K − iηS exists
as a bounded operator from L2(Γh) into L2(Γh) if and only if

ess. inf
k∈R2

|1 + 2π (FRh)(k)| = inf
k≥0

|1 + 2π r̂h(k)| > 0.(6.7)

We need to investigate K(k) := 1 + 2π r̂h(k) = A(h
√
k2 − κ2), for k ≥ 0, where

A(z) := 1 + e−2z − ihη

z

(
1 − e−2z

)
.(6.8)

We recall that (see (4.17)) the square root is to be taken with
√
k2 − κ2 ∈ V := {z ∈

C : Rez ≥ 0, Imz ≤ 0}. Indeed, in the case that κ1 > 0, so that Im(k2 − κ2) < 0,
it is clear that

√
k2 − κ2 lies in the interior of V . Now A is an entire function (the

singularity at 0 is removable) so that K is continuous on [0,∞). Further, K(k) → 1
as k → ∞. Thus, to show (6.7) it is enough to show that K(k) �= 0 for k ≥ 0, which
holds if A(z) �= 0 for z ∈ V ; indeed, in the case κ1 > 0, we need only show that
A(z) �= 0 for all z in the interior of V .

So suppose η ≥ 0, and consider first the case when z = z0 − iz1, with z0 > 0,
z1 ≥ 0. It holds that

A(z) = −i
(
1 + e−2z

)(hη tanh z

z
+ i

)
,

and straightforward calculations yield

Im

(
tanh z

z

)
=

z0 sin(2z1) + z1 sinh(2z0)

2[sinh2 z0 + cos2 z1](z2
0 + z2

1)
≥ 0,

since | sin t| ≤ t ≤ sinh t for t ≥ 0. Thus (6.7) holds if η ≥ 0 and κ1 > 0.
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In the case κ1 = 0 we need to show, additionally, that A(z) �= 0 when z = −iz1

with z1 ≥ 0, in order to establish that A(z) �= 0 for all z ∈ V . Now A(0) = 2 − 2iηh
and, for z1 > 0, from (6.8), A(−iz1) = 2 cos z1 − 2ihη

z1
sin z1. Thus, provided η > 0,

A(−iz1) �= 0 for z1 ≥ 0, so A(z) �= 0 for z ∈ V . Thus (6.7) holds if η > 0.
We have proven, in the case η > 0 and in the case η = 0, κ1 > 0, that (6.7)

holds, and thus we have shown the invertibility of I + K − iηS and the boundedness
of the inverse operator in L2(Γh). Thus we have established the solvability of (2.16)
in the space L2(Γ) for flat surfaces. If Γf is mildly rough, we may use a perturbation
argument to show that the integral equation remains solvable. We state our result
precisely in the following theorem.

Theorem 6.3. Suppose that h > 0 and that either η > 0 or η = 0 and κ1 > 0.
Then, provided ‖f − h‖BC1,α(R2) is sufficiently small (so that Γf is sufficiently close
to the flat surface f ≡ h), it holds that (I + K − iηS)−1 exists and is bounded as an
operator on L2(Γf ).

Proof. Let A = I + K − iηS, and then denote A by Af to denote its dependence
on f . With the help of the isomorphism If : L2(Γf ) → L2(R2) defined by (5.18) we

associate Af with the element Ãf = IfAfI
−1
f of the set of bounded linear operators

on L2(R2). Now Ãh is invertible with bounded inverse, by our analysis above for the
flat plane case. Moreover, by the continuity of Ãf with respect to f as proven in

Theorem 5.6 it follows from standard arguments that Ãf is boundedly invertible on
L2(R2) for ‖f − h‖BC1,α(R2) sufficiently small, and so Af is boundedly invertible on
L2(Γf ) .

Combining Theorem 6.3 with Lemma 6.1 we deduce Theorem 2.4. Combining
Theorem 6.3 with Corollary 6.2 we establish Theorem 2.5.
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H. T. BANKS† , K. ITO† , G. M. KEPLER† , AND J. A. TOIVANEN†

Abstract. Utilization of controllable ferromagnetic layers coating a conducting object to provide
an attenuation capability against electromagnetic interrogation is discussed. The problem is formu-
lated as a differential game and/or a robust optimization. The scattered field due to interrogation
can be attenuated with the assumption of an uncertainty in the interrogation wave numbers. The
controllable layer composed of ferromagnetic materials [H. How and C. Vittoria, Implementation of
Microwave Active Nulling, private communication; H. How and C. Vittoria, IEEE Trans. Microwave
Theory Tech., 52 (2004), pp. 2177–2182] is incorporated in a mathematical formulation based on the
time-harmonic Maxwell equation. Fresnel’s law for the reflectance index is extended to the electro-
magnetic propagation in anisotropic composite layers of ferromagnetic and electronic devices and is
used to demonstrate feasibility of control of reflections. Our methodology is also tested for a non-
planar geometry of the conducting object (an NACA airfoil) in which we report our findings in the
form of reduced radar cross sections (RCS).

Key words. electromagnetic, inverse scattering, attenuation
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DOI. 10.1137/040621430

1. Introduction. In this paper we discuss an optimal attenuation problem; i.e.,
we attempt to maximize attenuation capabilities of interrogating signals by utilizing a
controllable dielectric layer on the surface of a conducting object. The objective of the
interrogator is to detect and identify the location and shape of the conducting object
based on the scattered field from an interrogation incident field, i.e., the solution of an
inverse scattering problem [2, 7]. In the plane wave case the incident electromagnetic

(EM) field has the form ( �E(i), �H(i)) ei
�k·�x and the interrogator has control over the

wave numbers �k. The attenuation problem is to minimize or diminish the detection
capability of interrogation by either grating [14] or fabrications on the object surface.
In this paper we consider the utilization of thin controllable dielectric surface layers on
the object as a method for achieving the attenuation capability. Here “controllable”
means that we have the capability of adjusting the material properties of the surface
layers parametrically. The technical ideas developed here also have the potential to
aid in the design of medical shields employed to protect parts of an irradiated target
or to focus radiation to pinpoint specific regions of the target.

In these initial investigations, we investigate a design case in which one determines
values of the dielectric permittivity and magnetic permeability of the controllable layer
in order to attenuate reflections. From a control theoretic viewpoint this is a “passive”
or open loop control strategy. But our efforts here lay the foundations for “active” or
closed loop control strategies in which one combines controllable layer dynamics with
a sensor for incoming interrogating signals to develop real time feedback controls for
adaptive choice of the permittivity and permeability of the controllable layer.
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To investigate feasibility, we first formulate the problem as a differential game.
For example, we assume the time-harmonic incident EM plane wave is impinging on
the surface at z = 0 and we control the effective dielectric constant ε of the surface
layer on top of the conducting material. The scattered field due to the interrogation
can be evaluated based on the time-harmonic Maxwell equations [7]. In the case when
the dielectric constant is homogeneous in the horizontal directions (planar geometry),

the reflectance index R = R(�k, ε) is determined by Fresnel’s law (see [15] and section
4). Thus, the problem of nullifying the scattered field can be cast as the minimization
of the scattering EM wave in terms of |R|2, i.e.,

min
ε∈Q

max
�k∈K

|R|2,(1.1)

where Q is a set of admissible dielectric constants and K is a set of possible interro-
gation wave numbers. In order to determine the admissible set Q we must describe
controllable mechanisms of the dielectric layer. Thus, the problem of nullifying the
scattered field can be formulated as the min-max problem of minimizing the largest
reflectance by interrogations over �k ∈ K, over all possible designs (ε ∈ Q in this case).
This game theoretic formulation is used in many other design problems. It does not
assume any information on the uncertainty of interrogations and thus it may lead to
a conservative design. An alternative formulation can be given in a more robust form,
i.e.,

min
ε∈Q

∫
K

|R|2 dK(�k),(1.2)

where K is a probability distribution function on the wave numbers �k. This formu-
lation then needs information about the distribution function K of the interrogating
plane wave. As demonstrated in section 2, better knowledge of the distribution func-
tion greatly improves the performance of minimizing the scattered field.

After demonstrating attenuation capabilities, we turn to the general case of a
nonplanar conducting medium with a controllable coating layer. The far field pattern
F (θ) of the scattered field (see [7] and section 5) is then a function of the wave number
�k of the incident plane wave and the material properties (ε, μ) of the controllable layer,
i.e.,

F (θ) = U(�k, (ε, μ); θ), 0 ≤ θ ≤ 2π.(1.3)

One can select the performance index J(�k, (ε, μ)) = Φ(F ) to perform specific al-
terations of the scattered field, which of course depend on the inverse techniques
employed by the interrogator. Here Φ(F ) is some performance index for the far field
pattern F (θ). We investigate optimal radar cross sections (RCS) for one class of such
problems.

We note that the existence of solutions to a general min-max problem is guaran-
teed under the condition that given ε ∈ Q the value function V (ε) = sup�k∈K J(�k, ε)
is lower semicontinuous, which is typically satisfied under very mild conditions (e.g.,

see [13]) when Q is compact. The saddle point property of a solution pair (�k0, ε0),

J(�k, ε0) ≤ J(�k0, ε0) ≤ J(�k0, ε) for all ε ∈ Q, �k ∈ K,(1.4)

holds locally if the Hessian of J(�k, ε) is hyperbolic at (�k0, ε0). The existence of so-

lutions to the robust formulation then simply follows from the continuity of J(�k, ε0)

with respect to (�k, ε) ∈ K ×Q.
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A brief outline of our presentation here is as follows. In section 2 we consider the
exact problem for the planar geometry, present representative numerical calculations
for optimal design of the dielectric layer based on a robust formulation, and demon-
strate the feasibility of this approach and the effectiveness of the design. In section 3
we discuss a controllable layer composed of ferromagnetic and ferroelectric materials
as proposed by How and Vittoria [10, 11]. This composite model is designed so that
a control mechanism for the material properties of the layers can be achieved in both
a parametric and a dynamic manner. In section 4 we mathematically formulate the
forward problem for the controllable composite layers, including the tensor perme-
ability in the ferrite layer, by calculating the scattered field R as a function of the
interrogating wave and the near surface composition. We consider the time-harmonic
case with plane wave interrogations of the planar geometry (i.e., the composite lay-
ers are homogeneous in (x, y)). In this case we construct the plane wave solution
and an analytic expression for the reflectance index R. Another important feature
of our formulation is the possible identification of the interrogating wave in terms of
its distribution K. Since the plane wave calculation also yields surface currents as an
explicit function of the incident interrogations, the surface current measurements can,
in principle, be used to identify the distribution K of the interrogations �k. In sections
5–7 we present results for our formulation when applied to a nonplanar geometry by
considering the NACA0012 airfoil [16]. In general (and in particular in this case) we
do not have an analytic expression for the far field pattern F and thus we use a nu-
merical computation of the scattered field. In this case, our numerical computations
for the scattered field F are implemented using the finite element method (in section
6). Our numerical findings are presented for an optimal homogeneous coating layer.

2. Feasibility study. In this section we first demonstrate the feasibility of our
approach. We consider an incident parallel polarized (TEx mode) plane wave �H =

(H
(i)
x , 0, 0)ei

�k·�x impinging on the interface of the first and second layers at z = 0, as
depicted in Figure 1. The interface between the second and third layers is located at
z = −d, where the third layer is a perfect conductor. We control the effective dielectric
constant ε(2) of the second layer coating the conducting material. By Fresnel’s law
(see [4, 15] and the discussion in section 4) we have that the reflection coefficient or
reflectance index is given by

R =

ε(2)k
(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

+ e−2ik(2)
z d

1 +
ε(2)k

(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

e−2ik(2)
z d

,(2.1)

where

k
(1)
z = 2π

λ

√
1 − sin2 ϕ0,

k
(2)
z = 2π

λ

√
ε(2) − ε(1) sin2 ϕ0.

(2.2)

Here ϕ0 is the incident angle with respect to the normal to the surface (tanϕ0 =
k(1)
y

k
(1)
z

,

k
(1)
x = 0) and λ is the wavelength of the incident wave. We note from (2.1) that R

depends on the ratio ε(2)/ε(1) and hence without loss of generality we may normalize
the parameters so that ε(1) = 1. The reflectance index R is a function of (λ, ϕ0),
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Fig. 1. Schematic representation of the reflection of a plane wave incident with angle φ0 on
a planar three-layer stack. The top two layers are dielectric media. The third layer is a perfect
conductor.
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Fig. 2. The reflected intensity |R| as a function of the incident angle ϕ0. The uncertainty
interval is [36, 54] degrees.

the normalized dielectric constant ε(2), and the thickness d of the surface layer. We
assume that d is positive and fixed. We parameterize the incident wave in terms of
(λ, ϕ0).

In Figures 2 and 3 we depict the robustness of the optimal solution by plotting
the reflectance intensity |R| as a function of the incident angle and the normalized
thickness/wavelength ratio, defined as a = d

λ . In Figure 2 we assume that the un-
certainty in wave numbers is due only to uncertainty in the incident angle ϕ0, which
is uniformly distributed on the interval [36, 54] degrees and graph the intensity |R|
corresponding to the optimal dielectric constant ε(2) = 1.008 + .693i as a function of
the incident angle. The integration of |R|2 over ϕ0 is performed using Simpson’s rule.
The intensity of the reflection is well attenuated over the uncertainty interval [36, 54]
degrees.
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Next, we assume that there is uncertainty in both the incident angle ϕ0 and
the normalized thickness/wavelength ratio a, which are uniformly distributed on a
rectangle [36, 54]× [0.3, 0.7]. In Figure 3 we plot the intensity |R| corresponding to the
optimal dielectric constant ε(2) = 1.4309+1.0724i for several sampled incident points
in the frequency. A reasonable attenuation over the uncertainty box is obtained in this
example. It is clear that the performance depends on the quality of the information on
the distribution of the interrogating wave, as demonstrated by the better attenuation
results in the first case (Figure 2) than in the second case (Figure 3).

0 10 20 30 40 50 60 70 80 90
0
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0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
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|

Optimal 1.4309+1.0724i for a in [0.3 0.7] and on [36 54] degree

a=0.3

a=0.5

a=0.7

Fig. 3. The reflected intensity |R| as a function of the incident angle ϕ0 and the normalized
thickness/wavelength ratio a. The uncertainty box is [36, 54] × [0.3, 0.7].

3. Controllable sublayers composed of ferromagnetic and ferroelectric
materials. In this section we describe an experimental device that can be used to
control the dielectric permittivity (and magnetic permeability) in a coating layer
as discussed in the previous sections. In Figure 4 we present a schematic of the
configuration of an active reflecting device proposed and investigated experimentally
by How and Vittoria in [10, 11]. The reflector contains a ferrite layer and a ferroelectric
layer as constituents. The permanent magnet provides a common magnetic bias
so that the ferromagnetic resonance (FMR) condition can be readily achieved and
thereby facilitate sensitive magnetic tuning by the local Helmholtz coils. The dielectric
properties of the ferroelectric layer are controlled through the ground plane bias field.
The purpose of this reflector design is to provide phase and impedance control of
the composite layers so that nullification and alteration of the scattered wave can be
achieved in the response to an incident interrogating EM wave. The integrated circuits
are designed so that the tuning sensitivity of the device is enhanced. The key element
of the device is that the material properties μ(H) and ε(E) of the composite layers
are controllable in terms of the magnetic mean in the ferrite layer and the electric
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Fig. 4. Composite sublayers composing an active reflector device.

mean in the ferroelectric layer, and thus can support agile frequency attenuation.
The most important device characteristic of the ferrite in the investigation [10, 11]

is that the magnetic permeability μ̄ is a tensor, so that, due to the gyromagnetic ef-
fect, EM propagation in the ferrite is anisotropic in the presence of a dc-bias magnetic
field [12, 18]. For a ferrite magnetized in the y direction with damping and no de-
magnetization, the permeability tensor is given by [17]

μ̄ =

⎡
⎢⎢⎢⎢⎣

μ 0 −iκ

0 μ0 0

iκ 0 μ

⎤
⎥⎥⎥⎥⎦ , where

μ = μ0

(
1 +

ω̄0ωm

ω̄2
0 − ω2

)
, κ = μ0

ωωm

ω̄2
0 − ω2

,

ωm = 4πγMz, ω̄0 = ω0 + i/τ, ω0 = γ H0,

(3.1)

ω0 is the precession frequency, H0 is the impressed dc magnetic field, γ is the gyro-
magnetic ratio, Mz is the saturation magnetization, and τ is the relaxation time.

The ferrite device is most useful if it operates near the FMR frequency ω0 so that
the rapid change in magnetic permeability can be effectively utilized, either to obtain
frequency-tuning capability or to remove the degeneracy between modes [10, 11].

4. Plane wave solution. We next discuss a plane wave solution as it interacts
with a ferrite layer. Due to the tensor magnetic permeability μ̄, the electric and
magnetic modes are coupled in the ferrite layer. In this section we present the detailed
calculations for constructing the fundamental solution in the ferrite layer. First, the
time-harmonic Maxwell equation (4.1) is reduced to a system (4.12) of the differential
equations in the z (depth) direction and then the characteristic equation and the
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form (4.16) of the fundamental solutions are established. A similar calculation can be
carried out for the ferroelectric layer, but we shall not pursue that here.

The time-harmonic Maxwell equations are written as

∇×H = iωεE,
∇× E = −iωμ̄H,

∇ · (μ̄H) = 0,
∇ · E = 0.

(4.1)

For the ferrite layer the permeability μ̄ is the tensor defined by (3.1), and thus the
first three equations in (4.1) can be written as⎛

⎜⎜⎜⎜⎜⎜⎝

∂

∂y
Hz −

∂

∂z
Hy

∂

∂z
Hx − ∂

∂x
Hz

∂

∂x
Hy −

∂

∂y
Hx

⎞
⎟⎟⎟⎟⎟⎟⎠

= iωε

⎛
⎝ Ex

Ey

Ez

⎞
⎠ ,(4.2)

⎛
⎜⎜⎜⎜⎜⎜⎝

∂

∂y
Ez −

∂

∂z
Ey

∂

∂z
Ex − ∂

∂x
Ez

∂

∂x
Ey −

∂

∂y
Ex

⎞
⎟⎟⎟⎟⎟⎟⎠

= −iω

⎛
⎝ μHx − iκHz

μ0Hy

iκHx + μHz,

⎞
⎠ ,(4.3)

and

−μ

(
∂

∂x
Hx +

∂

∂z
Hz

)
= iκ

(
∂

∂z
Hx − ∂

∂x
Hz

)
+ μ0

∂

∂y
Hy.(4.4)

Taking the cross product of (4.2) and using (4.3), we obtain (y-component)

iωμ0 Hy =
1

iωε

(
∂2

∂x2
Hy +

∂2

∂z2
Hy −

∂

∂y

(
∂

∂x
Hx +

∂

∂z
Hz

))
.(4.5)

Using the y-component of (4.2),

iωεEy =
∂

∂z
Hx − ∂

∂x
Hz,(4.6)

in (4.4) and substituting into (4.5), we have

∂2

∂x2
Hy +

∂2

∂z2
Hy +

μ0

μ

∂2

∂y2
Hy + ω2 μ0εHy =

ωκε

μ

∂

∂y
Ey.(4.7)

The components of (4.3) can be manipulated to yield the following equations:

μ

(
∂

∂y
Ez −

∂

∂z
Ey

)
+ iκ

(
∂

∂x
Ey −

∂

∂y
Ex

)
= −iω(μ2 − κ2)Hx,

∂

∂z
Ex − ∂

∂x
Ez = −iωμ0 Hy,

−iκ

(
∂

∂y
Ez −

∂

∂z
Ey

)
+ μ

(
∂

∂x
Ey −

∂

∂y
Ex

)
= −iω(μ2 − κ2)Hz.

(4.8)
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Using the y-component of (4.2) and the first and last equations of (4.8), one can
obtain

∂

∂z

(
μ

(
∂

∂y
Ez −

∂

∂z
Ey

)
+ iκ

(
∂

∂x
Ey −

∂

∂y
Ex

))

− ∂

∂x

(
−iκ

(
∂

∂y
Ez −

∂

∂z
Ey

)
+ μ

(
∂

∂x
Ey −

∂

∂y
Ex

))
= ω2ε (μ2 − κ2)Ey.

This can be rearranged to obtain

−μ

(
∂2

∂z2
Ey +

∂2

∂x2
Ey

)

+
∂

∂y

(
μ

(
∂

∂z
Ez +

∂

∂x
Ex

)
− iκ

(
∂

∂z
Ex − ∂

∂x
Ez

))
= ω2ε (μ2 − κ2)Ey.

Using this result with the y-component of (4.8) and the fourth equation of (4.1), we
have

∂2

∂x2
Ey +

∂2

∂y2
Ey +

∂2

∂z2
Ey +

ω2ε (μ2 − κ2)

μ
Ey = −ωμ0κ

μ

∂

∂y
Hy.(4.9)

From (4.2)

iωε

⎛
⎝ Ex

Ez

⎞
⎠ =

⎛
⎜⎜⎜⎝

∂

∂y
Hz −

∂

∂z
Hy

∂

∂x
Hy −

∂

∂y
Hx

⎞
⎟⎟⎟⎠ .

If we define

E± = Ez ± i Ex, H± = Hz ± iHx,

then it follows that

iωε

⎛
⎝ E+

E−

⎞
⎠ =

⎛
⎜⎜⎜⎝

−i∇+Hy + i
∂

∂y
H+

i∇−Hy − i
∂

∂y
H−

⎞
⎟⎟⎟⎠ ,(4.10)

where

∇±φ =
∂

∂z
φ± i

∂

∂x
φ.

From (4.3)

−iω

⎛
⎝ μHx − iκHz

μHz + iκHx

⎞
⎠ =

⎛
⎜⎜⎜⎝

∂

∂y
Ez −

∂

∂z
Ey

∂

∂x
Ey −

∂

∂y
Ex

⎞
⎟⎟⎟⎠ ,
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and thus

−iω

⎛
⎝ (μ + κ)H+

(μ− κ)H−

⎞
⎠ =

⎛
⎜⎜⎜⎝

−i∇+Ey + i
∂

∂y
E+

i∇−Ey − i
∂

∂y
E−

⎞
⎟⎟⎟⎠ .(4.11)

From (4.10)–(4.11)

−ω2ε (μ± κ)H± − ∂2

∂y2
H± ± ωε∇±Ey +

∂

∂y
∇±Hy = 0,

and we have

−ω2ε (μ± κ)E± − ∂2

∂y2
E± ∓ ω(μ± κ)∇±Hy +

∂

∂y
∇±Ey = 0.

Let Ê and Ĥ be the (partial) Fourier transform (in (x, y)) of E and H, i.e.,

Ê(kx, ky, z) =
1

2π

∫ ∞

−∞

∫ ∞

−∞
E(x, y, z)e−ikx x−iky y dxdy.

Then (4.9) and (4.7) can be written, respectively, as

∂2

∂z2
Êy −

(
k2
x + k2

y − ω2ε
μ2 − κ2

μ

)
Êy = −iωμ0ky

κ

μ
Ĥy,

∂2

∂z2
Ĥy −

(
k2
x +

μ0

μ
k2
y − ω2μ0ε

)
Ĥy = iωεky

κ

μ
Êy

(4.12)

and (4.10)–(4.11) as

Ê± =
−iky ∇±Êy ± ω(μ± κ)∇±Ĥy

k2
y − ω2ε(μ± κ)

,

Ĥ± =
−iky ∇±Ĥy ∓ ωε∇±Êy

k2
y − ω2ε(μ± κ)

,

(4.13)

where

∇± =
∂

∂z
∓ kx.

Thus the electric and magnetic modes are coupled by (4.12). Next we find the
fundamental solution within the ferrite layer. Let

Ã = k2
x +

μ0

μ
k2
y − ω2μ0ε, B̃ = k2

x + k2
y − ω2ε

μ2 − κ2

μ
,

C̃ = iωεky
κ

μ
, D̃ = iωμ0ky

κ

μ
.

From the second equation of (4.12)

Êy =

∂2

∂z2
Ĥy − Ã

C̃
Ĥy,
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and substituting this into the first equation of (4.12), we obtain

∂4

∂z4
Ĥy − (Ã + B̃)

∂2

∂z2
Ĥy + (ÃB̃ − C̃D̃)Ĥy = 0.

Thus, we obtain the characteristic equation for system (4.12)

k4 + (Ã + B̃)k2 + ÃB̃ − C̃D̃ = 0

for the exponential solution

Ĥy = eik z, Êy = −k2 + Ã

C̃
Ĥy.

The characteristic equation has four roots, ±k+ and ±k−. In each case, Êy is pro-

portional to Ĥy so we proceed to consider solutions of the form

Êy = iη Ĥy.(4.14)

Then η must satisfy

k2
y − ω2ε

μ2 − κ2

μ
− ωμ0ky

κ

μη
=

μ0

μ
k2
y − ω2μ0ε− ωεky

κ

μ
η.(4.15)

Equation (4.15) has two roots, which we designate as η+ and η−. Then Ĥy must
satisfy either of the equations

∂2

∂z2
Ĥy −

(
k2
x +

μ0

μ
k2
y − ω2μ0ε− η± ωεky

κ

μ

)
Ĥy = 0.

Thus, Êy and Ĥy can be written in the general form

Êy = iη+ (A1 e
ik+z + B1 e

−ik+z) + iη− (A2 e
ik−z + B2 e

−ik−z),

Ĥy = A1 e
ik+z + B1 e

−ik+z + A2 e
ik−z + B2 e

−ik−z,

(4.16)

k± =

√
ω2μ0ε + η±ωεky

κ

μ
− k2

x − μ0

μ
k2
y .

Formulae (4.12)–(4.16) are given in [12, 18] without detailed derivations. These results
allow us to construct the plane wave solution in a ferrite layer.

In a general dielectric (including ambient) medium, since κ = 0 and μ = μ0, the
system (4.12) is decoupled. Thus the fundamental solutions (in the partial Fourier
domain formulation) are given by

�E = Aeikz + Be−ikz , �H = Ceikz + De−ikz

with (4.1) and

kz =
√
ω2εμ− k2

x − k2
y.
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For example, we have

(Ēx, 0, 0)eikzz,

(
0,− kz

ωμ
Ēx,

ky
ωμ

Ēx

)
eikzz(4.17)

for a perpendicular polarized (TMx mode) incident wave and

(
0,

kz
ωε

H̄x,−
ky
ωε

H̄x

)
eikzz, (H̄x, 0, 0)eikzz(4.18)

for a parallel polarized (TEx mode) incident wave, where Ēx and H̄x are constants,
when kx = 0 and ky are fixed.

Now we consider the case when a ferrite layer with thickness d on a perfectly
conducting medium is impinged upon by the parallel polarized incident wave (4.17)
�H(i)(x, y, z) = (H

(i)
x , 0, 0)ei

�k·�x (its partial Fourier transform is (H
(i)
x , 0, 0)eikzz) with

kx = 0 and ky fixed. The transmitted wave ( �E(t), �H(t)) defined by (4.16) in the ferrite

layer is generally not TEx mode alone and thus has a nontrivial E
(t)
x . Hence, for a

given incident wave, the reflected wave ( �E(r), �H(r))e−ikzz in the ambient layer is a
linear combination of the two fundamental solutions of the form (4.17)–(4.18) (with

kz = −kz). Given the TEx incident field, the constant weights (E
(r)
x , H

(r)
x ) for the

reflected wave can be determined by the system of equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

H
(i)
x + H

(r)
x = Ĥ

(t)
x (0),

kz
ωμ

(0 + E(r)
x ) = Ĥ(t)

y (0),

0 + E
(r)
x = Ê

(t)
x (0),

kz
ωε

(H(i)
x −H(r)

x ) = Ê(t)
y (0),

Ê
(t)
x (−d) = Ê

(t)
y (−d) = 0

(4.19)

for (A1, B1, A2, B2, E
(r)
x , H

(r)
x ) and the transmitted wave ( �E(t), �H(t)) determined by

(4.13) and (4.16). The first two equations impose the continuity of H components,
the next two equations impose the continuity of E components at z = 0 (the interface
between the ambient and the ferrite layer), and the last equation enforces the perfectly

conducting boundary conditions at z = −d. Moreover, the induced surface current �J
due to the incident wave is given by

�J = (Ĥy(−d),−Ĥx(−d), 0) = �n× �̂
H.

This construction procedure can be readily extended to the case of the composite of
sublayers.

4.1. Dielectric case (Fresnel’s law). In this section we consider the dielectric
layer (μ = μ0, κ = 0) with thickness d on the perfectly conducting medium and show
that (4.19) reduces to the usual Fresnel’s law for the parallel polarized (TEx) incident
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wave. In this case we have E
(r)
x = E

(t)
x = H

(r)
y = H

(t)
y = 0 and

k
(1)
z =

√
ω2μ0ε(1) − k2

y,

k+ = k− = k
(2)
z =

√
ω2μ0ε(2) − k2

y.

In the dielectric layer we have (in the partial Fourier domain)

Ĥ
(t)
x = H

(t)
+ eik

(2)
z z + H

(t)
− e−ik(2)

z z,

Ê
(t)
y =

k
(2)
z

ωε(2)
(H

(t)
+ eik

(2)
z z −H

(t)
− e−ik(2)

z z),

where H
(t)
± are constants. Thus, (4.19) becomes

⎧⎪⎪⎨
⎪⎪⎩

H
(i)
x + H

(r)
x = H

(t)
+ + H

(t)
−

k
(1)
z

ωε(1)
(H(i)

x −H(r)
x ) =

k
(2)
z

ωε(2)
H

(t)
+ − k

(2)
z

ωε(2)
H

(t)
− ,

e−ik(2)
z d H

(t)
+ − eik

(2)
z d H

(t)
− = 0.

Hence we obtain Fresnel’s law

H(r)
x =

ε(2)k
(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

+ e−2ik(2)
z d

1 +
ε(2)k

(1)
z − ε(1)k

(2)
z

ε(2)k
(1)
z + ε(1)k

(2)
z

e−2ik(2)
z d

H(i)
x .

4.2. Numerical tests. In this section we demonstrate the feasibility of using
the controllable property of the ferrite layer to attenuate reflections. We select ε0 = 1,
μ0 = 10, and d = .5 (normalized). The magnetic permeability μ̄ of the ferrite layer is
parameterized by

μ = μ0

(
0.3 +

β

100

)
, κ = μ0

(
−0.01 +

β

100

)
for 1 ≤ β ≤ 100,

where a parameter β plays a role of tuning the frequency ωm in (3.1). In Figure

5 we depict |(E(r)
x , H

(r)
x )| as a function of β for the three different incident angles

φ0 = 40◦, 45◦, 50◦. This figure establishes the attenuation capability of the ferrite layer
that can be achieved by tuning the permeability. To reveal the phase dependence, in

Figure 6 we graph the real and imaginary parts of H
(r)
x as a function of the frequency

for the incident angle φ = 45◦.

5. Optimization of material parameters of a coated airfoil. Having dis-
cussed the feasibility of tuning dielectric and magnetic properties of a coating on a
perfect conductor in the previous sections, we turn in the next several sections to field
calculations for a coated airfoil and demonstrate our ability to significantly affect the
RCS by appropriate manipulation of the parameters ε and μ in the coating.
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5.1. Time-harmonic Maxwell equation for the transverse magnetic
mode. We consider the scattering of a perfectly conducting airfoil coated by a layer
of constant thickness. The interrogating electromagnetic incident wave is assumed to
be a time-harmonic and transverse magnetic (more precisely, TMx) mode. Thus, the
time-harmonic electric and magnetic fields have the form

E =

⎛
⎝Ex

0
0

⎞
⎠ and H = − i

ωμ

⎛
⎜⎝

0
∂
∂zEx

− ∂
∂yEx

⎞
⎟⎠ ,(5.1)

where Ex is a function of y and z. We denote the airfoil by Ω and the coating layer
by Ω1; see Figure 7.

Ω Ω1

Π

�
�

��
E

(i)
x

α
�

�
��

Fα(α + π)

α+π

Fig. 7. The computational domain, an interrogating wave E
(i)
x with an interrogation angle α,

and a far field pattern Fα(α + π) of a scattered field E
(r)
x to the direction α + π.

We decompose the total electric field Ex into two fields E
(i)
x and E

(r)
x ; that is, Ex =

E
(r)
x +E

(i)
x . Furthermore, E

(i)
x is chosen to coincide with the free space interrogating

plane wave everywhere, i.e., in R2\Ω̄. With an interrogation angle α = (π/2−φ0), E
(i)
x

is given by E
(i)
x (y, z) = ei(kyy+kzz), where ky = k cosα, kz = k sinα, k = 2π/λ = ω/c0

is the wave number, and λ is the wavelength. Thus, E
(i)
x is the incident field outside

the coated airfoil Ω̄ ∪ Ω̄1, while in the coating layer Ω1 the field E
(i)
x is nonphysical.

From this it follows that E
(r)
x is the scattered field outside the coated airfoil, while

neither of the fields E
(i)
x and E

(r)
x by itself has a physical meaning in the coating layer.

That is, in Ω1 they are simply a convenient computational decomposition of the total
field and do not represent the individual coating-modified incident fields and reflected
fields, respectively.

By eliminating the magnetic field from the Maxwell equation and substituting the
time-harmonic electric field E of the form given in (5.1) into the resulting equation,
we obtain the following Helmholtz equation:

∇ ·
(

1

μ
∇E(r)

x

)
+ εω2E(r)

x = −∇ ·
(

1

μ
∇E(i)

x

)
− εω2E(i)

x in R2 \ Ω̄,(5.2)

Ex = E(r)
x + E(i)

x = 0 on ∂Ω,[
1

μ

∂Ex

∂n

]
= [Ex] = 0 on ∂Ω1 \ ∂Ω,
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lim
r→∞

√
r

(
∂E

(r)
x

∂r
− ikE(r)

x

)
= 0,

where [ · ] denotes the jump and n is a normal direction of the surface ∂Ω1 \ ∂Ω. The
far field behavior of the scattered field described by the Maxwell equation satisfies the
Silver–Müller radiation condition [7]. For the time-harmonic TMx mode this condition
reduces to be the Sommerfeld radiation condition given by the limit in (5.2). The
material permittivity ε and permeability μ are piecewise constant functions defined
by

ε(y, z) =

{
εrε0, (y, z) ∈ Ω̄1,

ε0 otherwise
and μ(y, z) =

{
μrμ0, (y, z) ∈ Ω̄1,

μ0 otherwise.

5.2. Far field pattern. The far field pattern F : [0, 2π] → C describes the

intensity and phase of the scattered field E
(r)
x far away from the scatterer [6, p. 340].

It can be defined as

Fα(θ) = lim
r→∞

(√
8πkr e−i(kr+π/4) E(r)

x (r cos θ, r sin θ)
)
,(5.3)

where we have added the subscript α to denote the interrogation angle.

5.3. Backscatter reduction. In this optimization problem, we want to find
constant material parameters εr and μr so that the intensity of the backscattered
wave is minimized over a given sector [α0, α1]. The objective function is the integral

J(εr, μr) =

∫ α1

α0

|Fα(α + π)|2 dα.(5.4)

The minimization problem is given by

min
(εr,μr)∈Q

J(εr, μr),(5.5)

where Q is the set of admissible material parameters. In our considerations here, the
set Q is chosen so that each material parameter belongs to a given interval of feasible
values.

This objective function corresponds to a situation where the same radar is illumi-
nating and detecting the scattered wave. The interrogation angle of the interrogating
wave varies within the interval [α0, α1] and the formulation (5.4) corresponds to an
assumption of a uniform distribution on possible angles of interrogation.

We use the NAG Fortran Library’s [19] E04UCF implementation of a sequential
quadratic programming (SQP) method. This is a gradient-based optimization method
which approximates the gradient using finite differences.

6. Approximation.

6.1. Truncation of domain and variational formulation. For the discretiza-
tion of (5.2), we restrict the problem to a rectangular domain Π and impose a second-
order absorbing boundary condition [1] on the artificial boundary ∂Π to approximate

the Sommerfeld radiation condition. Now the scattered field E
(r)
x satisfies the follow-
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ing equations:

∇ ·
(

1

μ
∇E(r)

x

)
+ εω2E(r)

x = −∇ ·
(

1

μ
∇E(i)

x

)
− εω2E(i)

x in Π \ Ω̄,

E(r)
x = −E(i)

x on ∂Ω,[
1

μ

∂Ex

∂n

]
= [Ex] = 0 on ∂Ω1 \ ∂Ω,

∂E
(r)
x

∂n
− ikE(r)

x − i

2k

∂2E
(r)
x

∂s2
= 0 on ∂Π,

∂E
(r)
x

∂s
− ik

3

2
E(r)

x = 0 at C,

(6.1)

where n and s denote the normal and tangential directions of the boundary ∂Π,
respectively, and C is the set of the corner points of Π.

The variational formulation of (6.1) is as follows:

Find E ∈ {v ∈ H1(Π \ Ω̄) | v|∂Π ∈ H1(∂Π), v = −E
(i)
x on ∂Ω} such that

∫
Π\Ω̄

(
1

μ
∇E(r)

x · ∇v − εω2E(r)
x v

)
dξ +

i

kμ0

∫
∂Π

(
1

2

∂E
(r)
x

∂s

∂v

∂s
− k2E(r)

x v

)
dσ

+
3

4μ0

∑
(y,z)∈C

E(r)
x (y, z)v(y, z) = −

∫
Π\Ω̄

(
1

μ
∇E(i)

x · ∇v − εω2E(i)
x v

)
dξ

(6.2)

for all v ∈ {v ∈ H1(Π \ Ω̄) | v|∂Π ∈ H1(∂Π), v = 0 on ∂Ω}.
6.2. Finite element approximation. A finite element approximation as de-

veloped in [8, 9] was implemented using linear elements. The techniques in [8] and
[9] are two-dimensional finite element methods for scattered electromagnetic solutions
from noncoated and coated objects, respectively. We employ the same methods here.
The mesh is constructed from two uniform triangular meshes. The finer mesh is for
the coating layer, and the coarser is for the exterior domain outside the coating. The
mesh step sizes are chosen in such a way that the number of nodes per wavelength
is approximately the same in the air and in the coating. The finer mesh is locally
fitted to the surfaces of the obstacle and the coating layer. The local fitting is done
using the algorithm [5] with slight modifications. Between the meshes, there is a layer
that fits the meshes together in a conforming way. An example of a part of a mesh is
shown in Figure 8.

After the discretization of the variational formulation (6.2), we obtain a system
of linear equations

Ax = b,(6.3)

where the matrix A is a symmetric non-Hermitian complex matrix. The vector x

contains the nodal values of the scattered field E
(r)
x , and the vector b corresponds to

the right-hand terms in (6.2). The resulting systems of linear equations are solved us-
ing an iterative method which combines fictitious domain and domain decomposition
methods [9].

The far field pattern Fα(α + π) in (5.3) is computed as a surface integral [7]

of the computed near field E
(r)
x and its flux. Our particular implementation of the
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Fig. 8. A magnified view of the mesh for a coated NACA0012 airfoil.

computations is described in [8]. We need to evaluate the far field pattern Fα(α+ π)

in (5.3) using the computed near field E
(r)
x . Our particular implementation of the

computations is described in [8]. The basic idea of this procedure is the following.

Let Ẽ
(r)
x be the harmonic extension of E

(r)
x from Π \ (Ω̄ ∪ Ω1) to R2. We obtain

this extension as a byproduct of our solution procedure. Then at the point η outside

Ω̄ ∪ Ω1 the scattered field Ẽ
(r)
x is given by

Ẽ(r)
x (η) =

∫
Π

(
ΔẼ(r)

x (ξ) + k2Ẽ(r)
x (ξ)

)
Φ(η, ξ) dξ,(6.4)

where Φ(η, ξ) is the fundamental solution of the homogeneous Helmholtz equation in

R
2 given by the Hankel function Φ(η, ξ) = i

4H
(1)
0 (k|η− ξ|). By using Green’s formula

one can show that (6.4) is equivalent to

Ẽ(r)
x (η) =

∫
∂Π

(
E(r)

x (σ)
∂Φ(η, σ)

∂n
− ∂E

(r)
x (σ)

∂n
Φ(η, σ)

)
dσ,

which is a more traditional expression for Ẽ
(r)
x (η) [7]. The far field pattern Fα is

obtained by first discretizing the Helmholtz operator and integral in (6.4) and then
taking the limit in (5.3). At the discrete level the previous procedure reduces to
the evaluation of a sum of exponential functions. This can be performed easily and
quickly.

We have compared numerical results computed using the proposed method and
implementation with test cases presented at a workshop in Oxford (see [20]). The two-
dimensional test cases did not include a coated NACA airfoil, but they did include
a similar coated ogive (the intersection of two nonconcentric disks). We computed
numerical results for 10 test cases. All of our numerical results and especially the
radar cross sections were in very good agreement with the majority of the results
presented in the workshop for each test case. Because of this, we expect our results
to be accurate also for the coated NACA airfoils.

7. Numerical experiments. In our experiments, we minimize the backscatter
by a coated NACA0012 airfoil. The length of the airfoil is one unit without coating,
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Table 1

The results of material parameter optimizations for the case λ = 1/4.

Real part Imaginary part
min opt max min opt max J(εr, μr)

εr 1 1 1 0 0 0
μr 1 1 1 0 0 0 324.340
εr 1 3.92 10 0 0 0
μr 1 1 10 0 0 0 318.738
εr 1 6.52 10 0 3.14 10
μr 1 1 1 0 0 0 2.918
εr 1 7.75 10 0 0.80 10
μr 1 5.41 10 0 2.51 10 0.083
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Fig. 9. The objective function J(εr, μr) for complex-valued εr and μr = 1 for the case λ = 1/4.

and the trailing edge of the perfectly conducting material is at the origin. We min-
imize the backscatter for the interrogation angles in the sector [α0, α1] = [0, π]. We
considered two wavelengths, λ = 1/4 and λ = 1/10. The thickness of the coating
is taken as λ/10 to provide a comparison of coating layers of different thicknesses
possessing similar material parameters.

We consider first the lower frequency experiments with a four-wavelength-long
airfoil. The computational domain is [−1.5, 0.5] × [−0.6, 0.6]. Our discretization has
20 nodes per wavelength in the ambient medium, leading to a triangulation with 22157
nodes and 43158 elements. A magnified view of the mesh at the trailing edge is shown
in Figure 8. We perform several optimizations with different box constraints for the
real and imaginary parts of εr and μr. The results of these optimizations are given
in Table 1. A surface plot of the objective function is shown in Figure 9. The radar
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Fig. 10. The RCS for optimized complex-valued material parameters (εr = 7.75 + 0.80i; μr =
5.41 + 2.51i; solid line), optimized complex-valued permittivity (εr = 6.52 + 3.14i; μr = 1; dotted
line), and for no coating (εr = 1; μr = 1; dashed line) for the case λ = 1/4.

Fig. 11. The reflected field E
(r)
x for no coating (εr = 1; μr = 1) for the case λ = 1/4 and angle

of interrogation α = π/4.

cross sections defined by

RCS(α) = 10 log10

(
1

8π
|Fα(α + π)|2

)

are shown for two optimized materials in Figure 10. Corresponding reflected field in-
tensities for comparison between the no coating layer case and the optimized complex-
valued parameters case of Figure 10 are depicted in Figures 11 and 12 for an angle of
interrogation α = π/4.

The computational domain for the higher frequency experiments with a 10-wave-
length-long airfoil is [−1.3, 0.3]× [−0.4, 0.4]. Again our discretization has 20 nodes per
wavelength in the ambient medium, leading to a triangulation with 65551 nodes and
128530 elements. The results of optimizations with different box constraints are given
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Fig. 12. The reflected field E
(r)
x for optimized complex-valued material parameters (εr = 7.75+

0.80i; μr = 5.41 + 2.51i) for the case λ = 1/4 and angle of interrogation α = π/4.

Table 2

The results of material parameter optimizations for the case λ = 1/10.

Real part Imaginary part
min opt max min opt max J(εr, μr)

εr 1 1 1 0 0 0
μr 1 1 1 0 0 0 806.036
εr 1 3.84 10 0 0 0
μr 1 1 10 0 0 0 802.695
εr 1 6.58 10 0 3.14 10
μr 1 1 1 0 0 0 2.901
εr 1 4.54 10 0 2.99 10
μr 1 4.99 10 0 2.92 10 0.234

in Table 2. Radar cross sections for two optimized materials are shown in Figure 13.
Corresponding reflected field intensities for comparison between the no coating layer
case and the optimized complex-valued parameters case of Figure 13 are depicted in
Figures 14 and 15 for an angle of interrogation α = π/4.

8. Summary and conclusions. In summary, the efforts reported on in this
paper are an important first step in developing an attenuation or anti-interrogation
technology. We first considered the question of the feasibility of reduction in reflected
electromagnetic waves from a planar layered coating on a perfect conductor. We
demonstrated that even under uncertainty of the interrogating wavelengths (frequen-
cies), one can achieve reduction of the reflection coefficient through optimizing the di-
electric permittivity in a coating layer. We then considered a Maxwell equation-based
formulation for a composite ferromagnetic-ferroelectric device built and experimen-
tally tested by How and Vittoria. We derived the pertinent reflection field equations
for time-harmonic interrogating TMx mode plane waves and showed that substantial
control of reflected waves (both magnitude and phase) can be obtained by tuning the
magnetic permeability of a ferrite layer. We next turned to a nonplanar geometry, in
this case a two-dimensional airfoil, with a coating layer wherein both the dielectric
permittivity ε and the magnetic permeability μ can be optimized. Allowing a uniform
uncertainty on the interrogating signal angles, we use computational methods from
two-dimensional scattering theory (the Helmholtz equation with Sommerfeld far field
radiation conditions) to verify that significant reduction in the far field reflection can
be obtained by an optimal choice of ε and μ.

In ongoing efforts [3], we are continuing the investigations begun in this paper in
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Fig. 13. The RCS for optimized complex-valued material parameters (εr = 4.54 + 2.99i; μr =
4.99 + 2.92; solid line), optimized complex-valued permittivity (εr = 6.58 + 3.14i; μr = 1; dotted
line), and for no coating (εr = 1; μr = 1; dashed line) for the case λ = 1/10.

Fig. 14. The reflected field E
(r)
x for no coating (εr = 1; μr = 1) for the case λ = 1/10 and

angle of interrogation α = π/4.

Fig. 15. The reflected field E
(r)
x for optimized complex-valued material parameters (εr = 4.54+

2.99i; μr = 4.99 + 2.92i) for the case λ = 1/10 and angle of interrogation α = π/4.
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several directions. One includes allowing optimal design for the coating over ranges
(distributions) of interrogating wavelengths and angles of incidence. We have also
begun consideration of countermeasures for the anti-interrogation ideas outlined in
this paper. These problems result in classical static zero-sum two-player games for
evader and interrogator where each player must consider uncertainty in knowledge of
the opposing player’s capabilities. The resulting min-max games must be played over
spaces of probability measures (see [3] for details of these interesting but challenging
problems and our efforts with them).

All of the investigations discussed in this paper were pursued under an active
design scenario and did not allow for online adaptivity of the coating layers. Future
investigations of great interest include the feasibility of combining the formulations
in this paper with real time sensing and adaptive (feedback) control of coatings such
as those described above to develop an active control attenuation capability.
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methods for the numerical solution of two-dimensional scattering problems, J. Comput.
Phys., 145 (1998), pp. 89–109.

[9] E. Heikkola, T. Rossi, and J. Toivanen, A domain decomposition technique for two-
dimensional scattering problems with coated obstacles, in Innovative Tools for Scientific
Computation in Aeronautical Engineering, J. Periaux, P. Joly, O. Pironneau, and E. Onate,
eds., CIMNE, Barcelona, Spain, 2001, pp. 183–194.

[10] H. How and C. Vittoria, Implementation of Microwave Active Nulling, private communica-
tion.

[11] H. How and C. Vittoria, Microwave impedance control over a ferroelectric boundary layer,
IEEE Trans. Microwave Theory Tech., 52 (2004), pp. 2177–2182.

[12] H. How, X. Zuo, E. Hokanson, L. Kempel, and C. Vittoria, Calculated and measured
characteristics of a microstrip fabricated on a Y-type hexaferrite substrate, IEEE Trans.
Microwave Theory Tech., 50 (2002), pp. 1280–1288.

[13] K. Ito and K. Kunisch, Sensitivity analysis of solutions to optimization problems in Hilbert
spaces with applications to optimal control and estimation, J. Differential Equations, 99
(1992), pp. 1–40.

[14] K. Ito and F. Reitich, A high-order perturbation approach to profile reconstruction. I. Per-
fectly conducting gratings, Inverse Problems, 15 (1999), pp. 1067–1085.



DESIGN TO COUNTER ELECTROMAGNETIC INTERROGATION 1049

[15] J. D. Jackson, Classical Electrodynamics, Wiley & Sons, New York, 1975.
[16] C. L. Ladson, C. W. Brooks, Jr., A. S. Hill, and D. W. Sproles, Computer Program to

Obtain Ordinates for NACA Airfoils, NASA Technical Memorandum 4741, NASA, Langley
Research Center, Hampton, VA, 1996.

[17] B. Lax and K. J. Button, Microwave Ferrites and Ferromagnetics, McGraw-Hill, New York,
1962.

[18] E. L. B. El-Sharawy and R. W. Jackson, Coplanar waveguide and slot line on magnetic
substrates: Analysis and experiment, IEEE Trans. Microwave Theory Tech., 36 (1988), pp.
1071–1079.

[19] The NAG Fortran Library Manual: Mark 20, The Numerical Algorithms Group, Oxford, UK,
2002.

[20] Technical Description of Workshop on Approximations and Numerical Methods for the Solu-
tion of the Maxwell Equations, IMA (UK), GAMNI/SMAI (France), and Oxford University
Computing Laboratory (UK), Oxford, UK, 1995.



SIAM J. APPL. MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 66, No. 3, pp. 1050–1079

PREDATOR-PREY INTERACTIONS WITH DELAYS DUE TO
JUVENILE MATURATION∗
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Abstract. This paper focuses on predator-prey models with juvenile/mature class structure for
each of the predator and prey populations in turn, further classified by whether juvenile or mature
individuals are active with respect to the predation process. These models include quite general prey
recruitment at every stage of analysis, with mass action predation, linear predator mortality as well
as delays in the dynamics due to maturation. As a base for comparison we briefly establish that
the similar model without delays cannot support sustained oscillation, but it does have predator
extinction or global approach to predator-prey coexistence depending on whether the ratio α of per
predator predation at prey carrying capacity to the predator death rate is less than or greater than
one.

Our first model shows the effect of introducing an invulnerable juvenile prey class, appropriate,
e.g., for some host-parasite interactions. In contrast our second model shows the effect of limiting
predation to a prey juvenile class. Finally, in a third model we consider an inactive juvenile predator
class, which would be appropriate for many traditional situations in which the generation time for
the predator is significantly larger than that of the prey. In all cases the introduction of a juvenile
class results in a system of three delay-differential equations from which the two equations for the
mature class and the nonstructured class can be decoupled. We obtain some global stability results
and identify a parameter α, similar to the α of the unlagged model, which determines whether or not
the predator is driven to extinction. With α > 1, and considering the maturation age of the juvenile
class as a bifurcation parameter, we obtain Hopf bifurcations in our second and third models, while
in the case of juvenile prey (in the first model) the unique coexistence equilibrium remains stable
for all positive delays. Although the delay is “physically present” in all three models, we obtain
scaled, nondimensional replacement models with that physical presence scaled out. After analyzing
the scaled equations we show that all our results hold for the original models.

We pursue the bifurcation in the inactive juvenile predator model with numerical simulations.
Strikingly similar results over a variety of birth functions are observed. Increases of the maturation
delay first produce Hopf bifurcation from steady state to periodic behavior. Even further increase in
the delay produces instabilities of the bifurcating periodic solutions with corresponding interesting
geometry in a two-dimensional plot of period vs. delay.

Key words. predator-prey, host-parasite, age structure, maturation delay, delay differential
equations, bifurcation
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1. Introduction. It is well known that some predators may preferentially attack
prey of certain ages or developmental stages. Likewise, the predators themselves
may be distinguished in some cases between inactive juveniles and active adults.
These situations may be modeled mathematically by dividing the populations into
age classes. Our models of this are closely related to those of Hastings ([16], 1983),
Murdoch et al. ([22], 1987), the very general ones of Nunney ([25],[26],[27]), and
recent work of Gourley and Kuang ([13], 2004). In a model comparable to one of ours
(5), Hastings uses a linear mature prey birth rate and a general predation functional
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response to show the possibility of switches between stability and instability of the
positive equilibrium as the time delay changes. In contrast we show that this is not
possible for our model (5) with its nondecreasing birth rate NB(N). It is known [8]
that if B(N) does not satisfy this hypothesis, more complicated dynamic behavior
may occur even in a single species population model. In order to analyze models with
nonlinear delayed recruitment, we limit our attention to a mass action (i.e., Holling
Type I) predation response.

Nunney studied prey-predator systems which are similar to ours, but without the
“physical presence” of the delay (that is, occurring outside the arguments of the time-
varying states). Assuming the existence of a unique positive equilibrium, he derives
a condition for its absolute stability (i.e., linear stability for all delays R). For our
“host-parasite” model (section 3) this condition is satisfied; however, in addition we
identify a parameter, α, which governs stability of the equilibrium with extinction
of the predator. Nunney also considers a similar general system, but in which the
delay is due to predator maturation, including our scaled system (50) as special case.
Again he assumes existence of a positive equilibrium, and derives a condition for
its absolute stability. However, in contrast, with our more specific functional forms
we derive conditions on parameters which guarantee Hopf bifurcation to periodic
solutions, building on the analysis of Cooke and van den Driessche [7].

Gourley and Kuang consider a model with inactive juvenile predators which is
similar to ours in section 5, but with logistic prey recruitment, which we generalize. As
in our case, they are faced with the physical presence of the delay in the equations,
which causes them (and others) significant difficulty. We exhibit a scaling of the
states and parameters which avoids those difficulties (e.g., (8)), yet causes no loss
of detail or generality (section 7). Although their predation functional response is
initially more general than ours, they specialize, as do we, to the mass-action response
before deriving any results. Using our scaling, we are able to analytically produce
results, while they relied on computational assistance for theirs. We also implement
three examples of birth functions (affine, concave up, and concave down) and conduct
numerical experimentation. Over parameter ranges of biological interest the numerical
results are very similar across the three function types. However, by extending the
maturation delay even further we first find interesting geometries of the bifurcated
periodic solutions and at even greater delays find an apparent relation between onset
of instabilities and a curious lack of monotonicity in a bifurcation diagram.

We intend our results to be a coherent study across a selection of models that
deserve to be considered in the context of each other. We present theoretical results
that can be compared across the variation of juvenile/adult roles, both active and
inactive, and for both predator and prey. In studying these models, we seek to obtain
as much information as we can about how the dynamics of the systems depend on
the multiple parameters in the equations, such as attack and mortality rates and
the maturation delay. In general, we are looking for conditions that ensure stable
equilibrium or bifurcation phenomena. Basic questions are the following: (1) to what
extent does the inclusion of the natural mortality parameters alter the qualitative
or quantitative behavior of the systems as the maturation delay is varied? (2) is
maturation delay more destabilizing in the prey or in the predator? (3) what kinds of
destabilizations other than Hopf bifurcations occur as the maturation delay increases?
We give partial answers to each of these questions and point the way to further
investigation in each case. In general, we find that there is a considerable difference
in dynamics depending on whether the prey or predator has a differently behaving
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juvenile class, and on whether the adults or the juveniles are active with respect to
the predation process. A moral is that any theoretical or practical study of these
situations should carefully take account of the potential for such differences.

We begin the analysis of each of our models by scaling the equations to obtain a
dimensionless system in which the delay is no longer physically present. This has the
usual advantages of reducing the number of parameters and making the mathematical
analysis somewhat simpler and more transparent. Implicit in this strategy is the
expectation that the dynamics of the original and scaled systems will be “equivalent”
or that the dynamics of one system will be “mirrored” by the dynamics of the other
system. Since some of the coefficient parameters of the original system, and some of
the transformations in the scaling, depend on the delay, and since we are probing how
stability or destabilization depends on the delay, we have included a careful discussion
of these and other aspects in section 7.

The structure of the paper is as follows. In section 2, as a point of departure for
what is to come in subsequent sections, we consider a simple predator-prey model that
does not include any age structure or resulting delay in recruitment. It consists of two
ordinary differential equations in which there is a general prey recruitment function,
mass-action predation, and linear mortality in both prey and predator. A simple
and natural condition suffices to determine global asymptotic stability of equilibrium;
there are no positive periodic solutions.

In section 3 we propose and analyze a model in which the prey has a juvenile class
(in addition to an interactive adult class) that is invulnerable to predation while the
predator is considered as a single class. For example, this might apply to the sheltered
existence of human infants while breast-feeding in a world where parasitism is wide-
spread. The results for our equivalent nondimensionalized system may be stated in
terms of a single scaled parameter, α, which has a natural interpretation similar to
that of R0 in many population (especially epidemiological) models. In this case, the
system is always dissipative, and when α > 1 there is a unique equilibrium with both
populations present, which must be locally asymptotically stable, independent of the
delay. There is no bifurcation to periodic behavior as the delay increases. Later, in
section 7, we discuss what this tells us about the original, nonscaled system.

In section 4 we present a model similar to the one in the preceding section in that
there are juvenile and adult prey along with a single class of predators. However,
we now assume that survival of juvenile prey is reduced in proportion to the mean
population size of predators. Under this hypothesis, our system is now one with
“distributed delay.” In contrast with the previous case, it turns out that the positive
equilibrium is stable for small maturation delays, but unstable with bifurcation to
periodic behavior for large ones.

In section 5 we present a model in which there is a single prey population, but a
predator with adult and juvenile classes in which the latter do not attack the prey.
We show in this case that bifurcation is possible with periodic solutions emerging
for large values of the delay under an additional condition on parameters. Here we
calculate bifurcation diagrams for examples of the original and the scaled systems,
and later in section 7, we discuss more general relationships.

In section 6 we present results of numerical studies of the bifurcations established
in section 5. Before chosing parameter values, we briefly provide interpretations for
the more important ones. Then we numerically compare a variety of birth functions
in which one is concave down, another concave up, and yet another is affine (over the
population range of interest). We arrange that all three resulting models have the same
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interior equilibrium populations and the same populations that are analogous to a
carrying capacity (in ODE models), and have the same birth rates at those population
levels. We compare the three over a common range of parameters, finding strong
similarities. In the case of the affine birth function we extend the Hopf bifurcation
branch with increasing delay until a Floquet multiplier leaves the unit disk in the
complex plane, signifying onset of instability of the bifurcating periodic solutions.
Observing this in a two-dimensional plot of the period of the bifurcating solutions
vs. the delay, we see this onset of instability simultaneously as the delay changes
from increase to decrease along a backwards S shape just after the period has begun
to decrease. At the other end of the backwards S where the delay begins increasing
again, another multiplier leaves the unit disk and the period moves toward increase.

Section 7 addresses the correspondence between the nature of the original models
and our analysis of their nondimensional replacements. This analysis is especially
motivated by the appearance of the maturation delay physically in the predation
coefficients as well as in the populations in the original models, but only within the
arguments of the scaled populations in the scaled equations. We show in a precise
sense that no bifurcation structure is lost as a result of these scalings.

2. A prototypical model. In order to provide a basis for comparison of our
primary results on models with delays due to maturation, we first establish the basic
properties exhibited by our model without age structure or corresponding delay. The
basic ODE model for a prey population N and a predator population P is

dN

dT
= NB(N) − aNP − dN,(1a)

dP

dT
= cNP − dPP(1b)

in which we assume that the per capita prey birth rate B satisfies

B (N) ≥ 0 and B′ (N) < 0 for N ≥ 0,(2a)

B (0) > d > B (∞) .(2b)

The assumptions (2a) and (2b) are satisfied, for example, in each of the forms
B(N) = p/(q + N) and B(N) = exp(−pN) where p and q are positive constants (for
appropriate d). However see section 3 where the latter form will not work. Further-
more, although (2a) is not satisfied by B(N) = p− qN , we adapt this form later to
provide a viable example.

It is obvious that (1) always has a trivial equilibrium (N,P ) = (0, 0) which is an
unstable saddle point. Another equilibrium is (N0, 0), where N0 > 0 is the unique
solution of B (N) = d, existing by (2). Some simplification of notation can be achieved
by scaling N,P, T and various coefficients. In fact, if we set

x = N/N0, t = dPT, α = cN0/dP ,
y = aP/cN0, b (x) = B (xN0) /dP , γ = d/dP ,

then the system (1) takes the (nondimensional) form

dx

dt
= xb (x) − αxy − γx,(3a)

dy

dt
= αxy − y.(3b)
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Notice that in this scaling the transfer from x to y by the scaled predation is
perfectly efficient! The properties assumed in (2) take the simpler form

b (x) ≥ 0 and b′ (x) < 0 for x ≥ 0,(4a)

b (0) > γ > b (∞) and b (1) = γ(4b)

and the equilibria are now at (0, 0) and (1, 0).
Lemma 1. The system (3) is dissipative, that is, there is a compact set Ω (in this

case of the form {(x, y) : x, y ≥ 0, x + y ≤ m} for some m) such that each solution in
the first quadrant of the (x, y) plane has a T0 such that when t ≥ T0, (x (t) , y (t)) ∈ Ω.

Proof. With V (x, y) = x + y we have

V̇
def
=

d

dt
V (x (t) , y (t)) = xb (x) − γx− y.

When x > 1 this is negative, and when x ≤ 1 it is negative for sufficiently large y.
Standard Lyapunov function considerations complete the argument.

Theorem 2. If α ≤ 1, then all positive solutions of (3) converge to the equilibrium
(1, 0) as time t → ∞.

Proof. The first quadrant of the (x, y) plane is invariant and it follows from the
first lemma that every positive solution is bounded. So Poincaré-Bendixson consid-
erations obtain. There is no positive equilibrium; (0, 0) is a saddle point and its
stable manifold lies on the y-axis; and (1, 0) is linearly stable. It follows then that
(x(t), y(t)) → (1, 0) as t → ∞.

It is easily seen that our hypotheses on the birth function B (x) imply the following
lemma.

Lemma 3. The system (3) has a positive equilibrium (x∗, y∗) if and only if α > 1,
in which case it is unique.

For the remainder of this section we study the case when α > 1. Since b′(x∗) <
0, it is easy to see that all eigenvalues of the Jacobian matrix J at (x∗, y∗) have
negative real part, and hence (x∗, y∗) is locally asymptotically stable. However, we
can establish the stronger result.

Theorem 4. If α > 1, then (x∗, y∗) is globally asymptotically stable.
Proof. We first establish that any positive nonconstant periodic solution of the

system (3) must be asymptotically stable. Suppose that (x̃(t), ỹ(t)) is a positive
periodic solution and let X ′ = A(t)X be the linearization of (3) around it. Then a
straightforward calculation gives that

A(t) =

[
b(x̃(t)) + x̃(t)b′ (x̃(t))−αỹ(t) − γ −αx̃(t)

αỹ(t) αx̃(t) − 1

]
.

Let T be a period of this periodic solution. To establish its asymptotic stability it
suffices to show that ∫ T

0

trA(t)dt < 0,

but in fact ∫ T

0

trA(t)dt =

∫ x̃(T )

x̃(0)

dx

x
+

∫ T

0

x̃(t)b′ (x̃(t)) dt +

∫ ỹ(T )

ỹ(0)

dy

y

= 0 +

∫ T

0

x̃(t)b′ (x̃(t)) dt + 0 < 0

since x̃(t)b′(x̃(t)) < 0 by (4a).
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Because of this we can now show that the system (3) has no positive periodic
solution. Indeed, suppose there were a positive periodic orbit Γ. The α-limits of each
point enclosed by Γ must be nonempty and also enclosed by Γ. Since both the positive
equilibrium (x∗, y∗) and Γ are locally asymptotically stable, neither can be contained
in an α-limit of a point enclosed by Γ. But there are no other equilibria, and any
positive periodic solution must be locally asymptotically stable, so there can be no
α-limits of points other than (x∗, y∗) (the α-limit of itself) enclosed by Γ. This is a
contradiction.

Finally, it follows from Lemma 1 that every positive solution is bounded for
t ≥ 0, and therefore must have a nonempty ω-limit. By the preceding argument
and Poincaré-Bendixson theory every such limit must contain at least one of the
equilibria. However, the two boundary equilibria (0, 0) and (1, 0) cannot be contained
in the necessarily bounded ω-limits of any other points. Hence (x∗, y∗) must be in
the ω-limit of every interior solution, and since it is locally asymptotically stable it
must be the entire limit set.

3. Invulnerable juvenile prey: A host-parasite situation. We now con-
sider the effect of taking into account a juvenile class of prey, which we assume to be
invulnerable to predation from birth until an age large enough to warrant inclusion
of the class in our model. Taking the model (1) as our starting point, we assume that
the juvenile class, consisting of those prey from ages 0 to R, is subject to a constant
mortality rate d1 and so is given by

J (T ) =

∫ T

T−R

N (s)B(N (s))e−d1(T−s) ds,

where N(t) is the population of adults of the prey species, and with elementary
calculations we find its derivative is

J ′ (T ) = N (T )B(N (T )) −N (T −R)B(N (T −R))e−d1R − d1J (T ) .(5a)

Interpreting the three terms of the last expression, we find that the first is the cur-
rent rate of juvenile births, while the second is the current rate of maturation of
surviving juveniles to adulthood, and the third is current juvenile mortality. These
considerations motivate the alteration of our original model to the form

N ′(T ) = N(T −R)B(N(T −R))e−d1R − aN(T )P (T ) − dN(T ),(5b)

P ′ (T ) = cN(T )P (T ) − dPP (T ).(5c)

We suppose that (2a) continues to hold, as well as the obvious generalization of
(2b),

B(0)e−d1R > d > B(∞)e−d1R.(6)

In this situation we define N0 by the condition

B (N0) e
−d1R = d.

In addition, for N ≥ 0 we assume that

NB′(N) + B(N) ≥ 0(7)
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or equivalently that the “per capita” recruitment rate, B(N), is kept from decreasing
too fast in the sense that B′(N) ≥ −B(N)/N. In contrast with the ODE case, by
this assumption we no longer admit the case of B (N) = exp(−pN). See Cooke et al.
[8], where it is shown in a model of a single population that dynamic behavior can
be much more complicated when B(N) has the exponential form. Since we want to
concentrate on the effects of maturation delays in prey or predator, we have chosen
to work with the simpler form. We also wish to point out that many studies in the
literature deal with models in which the term aNP is replaced by Pf(N), where f is
called the functional response. We have retained the simpler form aNP in order to
isolate the effects of delayed recruitment.

Since (5b, 5c) can be decoupled and solved independently from (5a), we can again
restrict our attention to the differential equations (now with delays) for (N,P ). We
will again find that our analysis is facilitated by a scaling of the variables. If

x = N/N0, t = dPT, α = cN0/dP ,
y = aP/cN0, r = dPR, γ = d/dP ,

b (x) = B (xN0) e
−d1R/dP ,

(8)

then the system (5) takes the (nondimensional) form

dx

dt
= x (t− r) b (x (t− r)) − αx (t) y (t) − γx (t) ,(9a)

dy

dt
= αx (t) y (t) − y (t) .(9b)

Notice that in this scaling the transfer from x to y by the scaled predation is again
perfectly efficient, and the mortality factor, with its physical presence of the delay in
e−d1R, is scaled out. We will show in section 7 that there is no loss in generality for,
e.g., bifurcation as R increases, resulting from this scaling. The properties assumed
in (2a), (6), and (7) take the simpler form

b (x) ≥ 0 and b′ (x) < 0 for x ≥ 0,(10a)

b (0) > γ > b (∞) and b (1) = γ,(10b)

b (x) + xb′ (x) ≥ 0,(10c)

and the boundary equilibria are now at (0, 0) and (1, 0).
Lemma 5. The system (9) is dissipative, that is, there is a compact set Ω (in

this case of the form {(x, y) : x, y ≥ 0, x + y ≤ m}) such that each solution in the
first quadrant of the (x, y) plane has a T0 such that when t ≥ T0, (x (t) , y (t)) ∈ Ω.
Moreover, lim supt→∞ x (t) ≤ 1.

Proof. Since b(0) > 0 it is easy to check that the first quadrant is forwardly
invariant under solutions of (9). With V (x, y) = x + y we have

V̇
def
=

d

dt
V (x (t) , y (t)) = x (t− r) b (x (t− r)) − γx (t) − y (t) .

To set up the analysis of V̇ , we first establish the boundedness of x (t) for every
positive solution.

Let x̄ = lim supt→∞ x (t) . Suppose, contrary to our claim, that x̄ > 1. Since the
case in which x̄ is infinite is similar to the finite case, but slightly less complicated,
we will consider only the finite case . Then we can find a sequence {tn} with tn → ∞
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as n → ∞ such that x (tn) → x̄, x′ (tn) → 0, and lim supn→∞ x (tn − r) ≤ x̄. Then
we have

lim
n→∞

x′ (tn) ≤ lim
n→∞

sup (x (tn − r) b (x (tn − r)) − γx (tn))

= lim sup
n→∞

(x (tn − r) b (x (tn − r))) − γx̄

≤ (b (x̄) − γ) x̄ < 0,

contradicting our choice of {tn} so that x′ (tn) → 0. Because of this every x (t) has
lim supt→∞ x (t) ≤ 1.

Finally we want to show that V (x (t) , y (t)) is decreasing whenever it has suffi-
ciently large values. To this end, let x̃ > 1 and then choose ỹ such that xb (x)− y < 0
when x ≤ x̃ and y ≥ ỹ. Now when V (x (t) , y (t)) > x̃ + ỹ for large t, we must
have x (t) , x (t− r) ≤ x̃ (by the previous paragraph) and hence y (t) > ỹ so that
V̇ < x (t− r) b (x (t− r)) − y (t) < x̃b (x̃) − ỹ < 0. Thus for any solution after suffi-
ciently long time, we have V̇ < 0 whenever V (x (t) , y (t)) > x̃+ỹ. Standard Lyapunov
function considerations complete the argument.

Corollary 6. Suppose α < 1. Then all positive solutions of (9) converge to
(1, 0) as t → ∞.

Proof. First we establish that y (t) → 0 as t → ∞. Let β > 0 such that α < β < 1,
and let (x(t), y(t)) be a positive solution of (9). By Lemma 5 there is a sufficiently
large t∗ such that αx (t) ≤ β for all t ≥ t∗. This implies that

y′(t) ≤ −(1 − β)y(t), t ≥ t∗.

Therefore for t ≥ t∗ we have

0 ≤ y(t) ≤ y(t∗)e−(1−β)(t−t∗) → 0 as t → ∞.

It follows that y(t) → 0 as t → ∞.
Next we claim that

M = lim
t→∞

inf x(t) > 0.

Suppose to the contrary that M = 0. Then since x(t) > 0 for all t ≥ 0, one is able to
choose a sequence {tn} having the properties that

x(tn − r) ≥ x(tn),(11)

x′(tn) ≤ 0

for all n ≥ 1 and

lim
n→∞

x(tn) = lim
n→∞

x′(tn) = 0.

Since limn→∞ x(tn) = 0, for which there is a J such that

x (tn) <
1

2
, n ≥ J,(12)

and since b(x) is strictly decreasing, there is an ε > 0 such that

b(x (tn)) ≥ b(1) + ε = γ + ε, n ≥ J.(13)
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Moreover since y(t) → 0 as t → ∞, there exists J1 ≥ J such that

αy(tn) < ε, n ≥ J1.(14)

Then for n ≥ J1 we have from (11), the increasing of xb (x) and (11), and (12–14)
that

0 ≥ x′(tn)

= x(tn − r)b(x(tn − r))− [αy(tn) + γ]x(tn)

≥ x (tn) b (x (tn))− [αy(tn) + γ]x(tn)

> x(tn)(γ + ε)− [αy(tn) + γ]x(tn)

> 0.

This contradiction establishes that M = limt→∞ inf x(t) > 0.
Finally we can show that M = 1. Let tn → ∞ in such a way that x(tn) → M as

n → ∞ and

lim
n→∞

x′(tn) = 0.(15)

Since {x(tn − r)} is a bounded sequence, without loss of generality (or by choosing a
subsequence) we can suppose that x (tn − r) converges,

lim
n→∞

x(tn − r) = M1.(16)

By Lemma 5 and the definition of M it is obvious that

M ≤ M1 ≤ 1.

Therefore (15, 16) yield

0 = lim
n→∞

x′(tn)

= lim
n→∞

x(tn − r)b(x(tn − r)) − γ lim
n→∞

x(tn)

= M1b(M1) − γM.

We now show that this equality forces M = M1 = 1. For if M < 1, then either
M < M1 or M = M1 < 1. If M < M1, then we have

M1b(M1) ≥ M1b(1) = M1γ > γM,

a contradiction of the established equality. On the other hand, if M = M1 < 1, then

M1b(M1) > M1b(1) = M1γ = γM,

again contradicting the equality.
Hence M = lim inft→∞ x (t) = 1, which, in conjunction with Lemma 5 gives

x (t) → 1.
Now let us suppose α > 1 (i.e., cN0 > dP ). Then the system (9) has a unique

positive equilibrium (x∗, y∗). We proceed to study the local stability of this positive
equilibrium.
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First, following a straightforward calculation one is able to verify that the lin-
earization of (9) at the positive equilibrium takes the form

u′ (t) = [x∗b′(x∗) + b(x∗)]u(t− r) − (αy∗ + γ)u(t) − αx∗v(t),(17a)

v′ (t) = αy∗u(t).(17b)

Theorem 7. The interior equilibrium (x∗, y∗) (which exists if and only if α > 1)
is locally asymptotically stable for all r ≥ 0.

Proof. Let K = [x∗b′(x∗) + b(x∗)]. The characteristic equation of (17) is given by

Δ(λ, r) = det

[
Ke−λr−λ− (αy∗ + γ) −αx∗

αy∗ −λ

]
= λ2 − λKe−λr + λ(αy∗ + γ) + α2x∗y∗.

Note that b′(x∗) < 0 and b(x∗) = αy∗ + γ. Hence from the assumption (10c) we
have

αy∗ + γ > |K|.(18)

We observe that

Δ(λ, 0) = λ2 + (αy∗ + γ −K)λ + α2x∗y∗.

It follows from (18) that all coefficients of Δ(λ, 0) are positive, and hence all zeros of
Δ(λ, 0) have the negative real parts. We claim that for each fixed r > 0, all zeros of
Δ(λ, r) are located in the left half complex plane. If this is not true, then there must
be a r > 0 and v ∈ � such that Δ(iv, r) = 0, or equivalently,

Δ(iv, r) = −v2 − ivKe−iνr + iv(αy∗ + γ) + α2x∗y∗ = 0.

That is,

−v2 + α2x∗y∗ + iv(αy∗ + γ) = ivKe−ivr.

This yields that ∣∣−v2 + α2x∗y∗ + iv(αy∗ + γ)
∣∣2 = |ivKe−ivr|2.

Hence we obtain that

(α2x∗y∗ − v2)2 + (αy∗ + γ)2v2 = K2v2.

However, since (αy∗ + γ)2 > K2, the above equality can never hold for v ∈ �. This
contradiction establishes our result.

4. Invulnerable mature prey. Next we consider a case similar to that in the
previous section in distinguishing between juvenile and adult prey, but opposite from
it in assuming that predation affects juvenile prey but not mature prey. As before,
we begin with the idea that the class of juveniles at time T consists of all those prey
surviving from birth in the time interval [T −R, T ] and write

J (T ) =

∫ T

T−R

N (s)B(N (s))e−M ds,
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where N and B respectively represent the mature prey class and its per capita birth
rate and M represents mortality effects. In addition to the “natural” mortality
given by a constant per capita rate d1 and represented in the previous section by
−d1 (T − s), we now include mortality by predation that is jointly proportional to the
length of time (T − s) such predation can occur and the average size of the predator
class (denoted by P as before) over the interval [s, T ], so that

M = d1 (T − s) + d2 (T − s)

(
1

T − s

∫ T

s

P (u) du

)
=

∫ T

s

[d1 + d2P (u)] du

and hence

J (T ) =

∫ T

T−R

N (s)B(N (s))e
−
∫ T

s
[d1+d2P (u)]du

ds.

Then from elementary calculations we find that

dJ

dT
(T ) = N (T )B (N (T )) −N (T −R)B (N (T −R)) e

−
∫ T

T−R
[d1+d2P (u)]du

(19)

− [d1 + d2P (T )]J (T ) .

The three terms comprising dJ/dT have nice interpretations: the first as current
births, the second as loss to maturation of those who survived from birth (at time
T−R) to the present, and the third as current loss due to the combination of constant
per capita mortality and “mass-action” predation.

Assuming no predation directly on mature prey we arrive at the system of equa-
tions for (J,N, P ) (with notation similar to that in the previous section)

dN

dT
(T ) = N (T −R)B (N (T −R))F

(∫ T

T−R

P (u) du

)
− dN (T ) ,

dP

dT
(T ) = kP (T )J (T ) − dPP (T ) ,

wherein we assume about F only the conditions

1 ≥ F (0) > 0, F (∞) = 0, F ′ (Z) < 0, Z > 0

as motivated by our considerations in (19) where F (Z) = e−d1R−d2Z . Notice that if
the juvenile prey J (T ) were a constant proportional part of the mature prey popu-
lation then the last two equations would decouple from the first and could be solved
independently. Thus, with the goal of facilitating comparison with our two other
models, we make the a priori assumption that J (T ) = CN (T ). Thus, we consider
the system

dN

dT
(T ) = N (T −R)B (N (T −R))F

(∫ T

T−R

P (u) du

)
− dN (T ) ,(20)

dP

dT
(T ) = cP (T )N (T ) − dPP (T ) .

In order to achieve a satisfactory scaling of the model we desire an N0 that func-
tions like a prey carrying capacity in the absence of predators. As before we suppose
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that the conditions (2a) and (7) on B continue to hold, as well as the modification of
(2b) given by

B (0)F (0) > d > B (∞)F (0) .(21)

In this situation, N0 is uniquely determined by the condition

B (N0)F (0) = d,

providing an equilibrium at (N0, 0). Under the scaling

x = N/N0, t = dPT, α = cN0/dP ,
y = P/N0, r = dPR, γ = d/dP ,

b (x) = B (xN0) /dP , f (z) = F

(
N0

dP
z

)

we find that (20) becomes the dimensionless system

dx

dt
(t) = x(t− r)b(x(t− r))f

(∫ 0

−r

y(t + s)ds

)
−γx(t),(22)

dy

dt
(t) = αx(t)y(t) − y(t).

Notice that time has again been scaled by the reciprocal of the predator death rate
and that b (·) and f (·) satisfy conditions similar to (10) in section 3:

b (x) ≥ 0 and b′ (x) < 0 for x ≥ 0,(23)

b (0) f (0) > γ > b (∞) f (0) and b (1) f (0) = γ,(24)

b (x) + xb′ (x) ≥ 0,(25)

1 ≥ f(0) > 0, f(∞) = 0,
df

dz
< 0, z > 0.(26)

Just as in the systems (3) and (9), this system has no strictly positive equilibrium
if α < 1 and has a unique positive equilibrium if α > 1.

Theorem 8. If α < 1, then all positive solutions of (22) converge to the equilib-
rium (1, 0).

Proof. Following essentially the same argument as in the second paragraph of
the proof of Lemma 5, one establishes that lim supt→∞ x (t) ≤ 1. Given a positive
solution (x (t) , y (t)) we can find a T such that for t ≥ T, αx (t) − 1 is negative and
bounded away from zero. Since

y′ (t) ≤ (αx (t) − 1) y (t) ,

we find that y (t) → 0 as claimed. The rest of the argument is similar to that given
for proof of Corollary 6.

For the rest of this section we consider the remaining case in which α > 1. In this
case an equilibrium (x∗, y∗) must satisfy x∗ = 1/α < 1 so that

b(x∗)f(z∗) − γ = 0

has a unique solution z∗ = ry∗ > 0. Thus for each fixed r > 0, (22) has the unique
positive equilibrium (x∗, y∗) = (1/α, z∗/r). We will show that an increase of the time
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delay r will destabilize the stability of this positive equilibrium and cause a Hopf
bifurcation.

First a direct computation yields that the linearization of (22) around the positive
equilibrium is given by

u′(t) = au(t− r) − γu(t)−b

∫ 0

−r

v(t + s)ds,

v′(t) = αy∗u(t),

where

a = [b(x∗) + x∗b′(x∗)] f(z∗),(27a)

b = −x∗b(x∗)
df

dz
(z∗) > 0.(27b)

Therefore the characteristic equation is given by

Δ(λ, r) = det

[
ae−λr − γ − λ −b

∫ 0

−r
eλsds

αy∗ −λ

]

= λ2 + γλ− aλe−λr +
β(1 − e−λr)

rλ
(28)

= 0,

where β = αbz∗.
To study the location of eigenvalues of the characteristic equation (28), an impor-

tant first step is to investigate the existence of eigenvalues that lie on the imaginary
axis of the complex plane and the direction in which these eigenvalues cross that axis
as the delay increases. We note that if Δ(iv, r) = 0, then Δ(−iv, r) = 0 so that we
shall only search for eigenvalues iv with v > 0. Letting

h(λ, r) = rλ3 + γrλ2 − arλ2e−λr + β(1 − e−λr),(29)

it is clear that Δ(λ, r) = 0 if and only if h(λ, r) = 0 for λ �= 0 and r > 0.
Lemma 9. There are infinitely many positive pairs of (iv, r) with r > 0 and

v = v (r) > 0 such that Δ(iv, r) = 0. However, there is an interval 0 < r < r1 such
that Δ(λ, r) has no purely imaginary zeros.

Proof. Note that with r > 0, γ = b(x∗)f(z∗), the assumptions on b and f imply
that

γ > |a| , β > 0.

Notice that in Δ (λ, r) , neither a nor β depends on r. Thus

Δ (λ, 0) = λ2+ (γ − a)λ + β(30)

and the interval (0, r1) on which there are no purely imaginary characteristic zeros
follows immediately from continuity.

Considering λ = iv, if

h(iv, r) = 0(31)
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for some v > 0 and r > 0, then we have

−irv3 + β − γrv2

(β − arv2)
= e−ivr(32)

so that

| − irv3 + β − γrv2|2 = |β − arv2|2,(33)

or

r2v6 + (β − γrv2)2 = (β − arv2)2,(34)

and finally

rv4 + r(γ2 − a2)v2 = 2β(γ − a).(35)

We can solve (35) uniquely for v2 = v2(r),

v2 =
1

2

(
−(γ2 − a2) +

√
(γ2 − a2)2 +

8β(γ − a)

r

)
.(36)

Thus we have shown that if h(iv, r) = 0, then v = v (r) with v > 0 must satisfy
(36). However, it is really the converse question that we must answer: if v (r) is
the positive branch of (36), do we have h (iv (r) , r) = 0? However, for v > 0, (36)
is equivalent to (33), so that if we let W (r) denote the left-hand side of (32) with
v = v(r), then |W (r)| = 1 for all r > 0.

Multiplying (36) by r2 we have

(rv)2 =
1

2

(
−r2(γ2 − a2) +

√
r4(γ2 − a2)2 + 8r3β(γ − a)

)
.(37)

From this, one immediately sees that

lim
r→0

[rv(r)]2 = 0.(38)

Moreover, rationalizing the numerator in (37) we have

(rv)2 =
8r3β(γ − a)

2
(
r2(γ2 − a2) +

√
r4(γ2 − a2)2 + 8r3β(γ − a)

)
which yields

lim
r→∞

[rv(r)]2 = ∞.(39)

It follows from (38) and (39) that

lim
r→0

rv(r) = 0 and lim
r→∞

rv(r) = ∞.(40)

Next from (34) we have that β − rav2(r) > 0 for all r > 0. For if this inequality
does not hold for some r > 0, then we have |β − arv2(r)| = arv2(r) − β. Since γ > a
we have γrv2(r) − β > arv2(r) − β. It would therefore follow that

r2v6(r) + (β − γrv2(r))2 > (β − arv2(r))2,

contradicting (34).
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Finally, substitute v = v(r) into (32). Letting r increase from 0 to ∞ and us-
ing (40), we find that e−irv on the right side traces out the unit circle infinitely
often, while on the left side W (r) remains in the lower half of the unit circle.
Now one easily sees that there are infinitely many positive r’s such that h(iv(r), r)
= 0.

Lemma 10. Let λ(r) be a branch of zeros of h(λ, r) defined on an interval I such
that for some 0 < r0 ∈ I, λ(r0) = iv0 with v0 > 0. Then v0 is a simple zero and

Re

(
dλ(r0)

dr

)
> 0.

Proof. Since h(λ(r), r) ≡ 0, we have

∂h(λ, r)

∂λ

dλ

dr
= −∂h(λ, r)

∂r
.

Hence [
∂h(λ, r)

∂λ

]
∂h(λ, r)

∂λ

dλ

dr
= −

[
∂h(λ, r)

∂λ

]
∂h(λ, r)

∂r
,

where z denotes the conjugate of a complex number z. It follows from this equality
that

sign

(
Re

dλ(r0)

dr

)
= sign

(
Re

{
−
[
∂h(iv0, r0)

∂λ

]
∂h(iv0, r0)

∂r

})
.

For notational simplicity from now on we use v and r instead of v0 and r0. First from
(29) we deduce that

iv3 + γv2 − av2e−ivr =
β

r
(1 − e−ivr),(41)

or equivalently, after complex conjugation

v2 + iγv − iaveivr =
iβ

rv
(1 − eivr).(42)

Following a straightforward computation and with the use of (41) and (42) we have

[
∂h(iv, r)

∂λ

]
= r

[
−3v2 − i2γv + i2aveivr + (β − arv2)eivr

]
= r

[
−3(v2 + iγv − iaveivr) + i(γ − a)v + iav(1 − eivr)

]
(43)

+r(β − arv2)eivr

= r

[
i(γ − a)v + i(av − 3β

rv
)(1 − eivr) + (β − arv2)eivr

]
,

−∂h(iv, r)

∂r
= iv3 + γv2 − av2e−ivr − iv(β − arv2)e−ivr(44)

=
β

r
(1 − e−ivr) − iv(β − arv2)e−ivr.
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Let

Φ = −
[
∂h(iv, r)

∂λ

]
∂h(iv, r)

∂r
.

It is clear that if ReΦ > 0, then ∂h(iv,r)
∂λ �= 0 which will imply that iv = iv0 is a simple

eigenvalue and Redλ(r0)
dr > 0. Hence to complete the proof of Lemma 10, it is sufficient

to show that ReΦ > 0. First by (43) and (44) we have

ReΦ = Re
{
β(1 − e−ivr)

[
i(γ − a)v + (β − arv2)eivr

]}
+Re

{
−ivr(β − arv2)e−ivr

[
−3v2 − i2γv + i2aveivr

]}
= ReΦ1 + ReΦ2

with

Φ1 = β(1 − e−ivr)
[
i(γ − a)v + (β − arv2)eivr

]
,

Φ2 = −ivr(β − arv2)e−ivr
[
−3v2 − i2γv + i2aveivr

]
.

Following a further calculation we have

ReΦ1 = −β(γ − a)v sin(vr) − β(β − arv2)[1 − cos(vr)],(45)

ReΦ2 = (β − arv2)
[
3rv3 sin(vr) − 2γrv2 cos(vr) + 2arv2

]
.

Next, by separating the real and imaginary parts of (32) we obtain

(β − arv2) cos(vr) = β − γrv2,(46)

(β − arv2) sin(vr) = rv3.

With the use of (35), (45), and (46) we finally arrive at

ReΦ = −β(γ − a)v sin(vr) − β(β − arv2) + β(β − γrv2)

+3r2v6 − 2γrv2(β − γrv2) + 2arv2(β − arv2)

= −β(γ − a)v sin(vr) − 3rβv2(γ − a) + 3r2v6 + 2r2v4(γ2 − a2)

= −β(γ − a)v sin(vr) + r2v6 + rβv2(γ − a)

+2r2v6 + 2r2v4(γ2 − a2) − 4rv2β(γ − a)

= −β(γ − a)v sin(vr) + r2v6 + rβv2(γ − a)

> β(γ − a)v [rv − sin (vr)]

≥ 0.

Now we are ready to prove the following result.
Theorem 11. Suppose that α > 1. Then there is a sequence {rn}∞n=1 with

0 < r1 < r2 < · · · < rn < · · ·

such that the following hold:
1. If 0 < r < r1, then the positive equilibrium (x∗, y∗) = (1/α, z∗/r) of (22) is

linearly stable. If r > r1 then that positive equilibrium is linearly unstable.
2. For each n ∈ N there is a vn > 0 such that λ = ±ivn are eigenvalues

associated with the equilibrium (x∗, y∗) of (22) at r = rn and there is a Hopf
bifurcation there.
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Proof. Using Lemmas 9 and 10 with the application of classical results on stability
switches (for example, see [7]) and on Hopf bifurcation (e.g., [10], p. 291), we need
only to show that all solutions of the characteristic equation

Δ(λ, r) = λ2 + γλ− aλe−λr +
β(1 − e−λr)

rλ
= 0

have negative real parts for all r ∈ [0, r1), where r1 is taken to be the smallest positive
delay at which the characteristic function has a purely imaginary zero. The existence
of r1 is guaranteed by Lemma 9.

Now for a characteristic root λ = λ (r) = u + iv with r ≥ 0 and u ≥ 0 we have∣∣1 − e−λr
∣∣ ≤ ∣∣1 − e−ur + e−ur (1 − cos (vr) + i sin (vr))

∣∣
≤

∣∣1 − e−ur| + |1 − cos (vr)| + | sin (vr)
∣∣

≤ |ur| + 2 |vr| ≤ 3 |λr| .

From this we can conclude that ∣∣∣∣∣β
(
1 − e−λr

)
rλ

∣∣∣∣∣ ≤ 3β.

It now follows from this that there is a sufficiently large constant C such that for all
λ ∈ C with Re (λ) ≥ 0 and |λ| ≥ C,

λ2 + γλ− aλe−λr +
β(1 − e−λr)

rλ
�= 0.

Since Δ(λ, r), with Δ(λ, 0) as in (30), is analytic in λ �= 0 and continuous in r ≥ 0, it
follows that its number of zeros on Reλ ≥ 0 is constant for r ∈ [0, r1). Since Δ (λ, 0)
has only zeroes with negative real part, our result holds.

5. Inactive juvenile predators. We now consider the effect of taking into
account an inactive juvenile class of predator. Thus all predation is done by the adult
predators which we still denote by P , but we change J to denote the juvenile predators
and keep N to denote the prey. Taking the model (1) again as our starting point, we
assume that the juvenile class (consisting of those predators from ages 0 to R) is the
direct beneficiary of predation and is subject to a constant mortality rate d1 and so
is given by

J (T ) =

∫ T

T−R

cN (s)P (s) e−d1(T−s) ds

with derivative

J ′ (T ) = cN (T )P (T ) − cN (T −R)P (T −R) e−d1R − d1J (T ) .(47)

Interpreting the three terms of the last expression, we find that the first is the current
rate of juvenile births, while the second is the current rate of maturation of surviving
juveniles to adulthood, and the third is current juvenile mortality. Thus

N ′(T ) = N(T )B(N(T )) − aN(T )P (T ) − dN(T )(48a)

P ′ (T ) = cN (T −R)P (T −R) e−d1R − dPP (T ).(48b)
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We suppose that the conditions (2a), (2b), and (7) on B continue to hold. As in
section 2 we define N0 by the condition

B (N0) = d.

Since (48a) and (48b) can be decoupled and solved independently from (47), we can
again restrict our attention to the differential equations (with delays) for (N,P ).

We will again find that our analysis is facilitated by a scaling of the variables. If

x = N/N0, t = dPT , α = ce−d1RN0/dP ,
y = aed1RP/cN0, r = dPR, γ = d/dP ,

b (x) = B (xN0) /dP ,
(49)

then the system (48) takes the (nondimensional) form (for scaled prey and adult
predators, respectively x and y)

dx

dt
= x (t) b (x (t)) − αx (t) y (t) − γx (t)(50a)

dy

dt
= αx (t− r) y (t− r) − y (t) .(50b)

Notice that in this scaling the transfer from x to y by the scaled predation is again
perfectly efficient, and the mortality factor, e−d1R, is scaled out. The properties of b
take the same form as in (10). The boundary equilibria are again at (0, 0) and (1, 0).
A somewhat simplified version of the proof in the second paragraph of the proof for
Lemma 7 gives us

Lemma 12. For every positive solution (x (t) , y (t)), lim supt→∞ x (t) ≤ 1.
Corollary 13. Suppose α < 1. Then all positive solutions of (50) converge to

(1, 0) as t → ∞.
Proof. Let (x (t) , y (t)) be a positive solution. First we show that y (t) → 0. If β

is chosen such that α < β < 1 then by the above lemma there is some t∗ such that
αx (t− r) ≤ β for all t ≥ t∗ and so

y′ (t) = αx (t− r) y (t− r) − y (t) ≤ βy (t− r) − y(t).(51)

Since 0 < β < 1, all solutions of

w′ (t) = βw (t− r) − w (t)(52)

tend to zero as t → ∞ ([5], section 2). Furthermore all solutions of (52) with positive
initial data remain positive for all positive t. From these considerations we can con-
clude ([20]) that if a solution w (t) of (52) shares positive initial data with y (t) then
0 < y (t) ≤ w (t) for all t ≥ 0. So

y (t) → 0(53)

as claimed.
Setting M = lim inft→∞ x (t) > 0, one shows that M > 0 in exactly the same

way as in Corollary 6. Now we show M = 1. (Recall b (1) = γ.) Suppose not.
Then by the previous lemma, M ≤ 1, so 0 < M < 1. Let M1 be such that M <
M1 < 1. Then b (M1) − γ > b (1) − γ = 0. By (53), for all t larger than some T1,
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we have 0 < αy (t) < (b (M1) − γ) /2 and x (t) ≥ M/2. Hence whenever t > T1 and
1
2M ≤ x (t) ≤ M1, we have

x′ (t) = x (t) (b (x (t)) − αy (t) − γ)

≥ M

2

(
b (M1) −

(b (M1) − γ)

2
− γ

)

=
M

2
(b (M1) − γ) /2

providing a uniform positive lower bound on x′ (t) whenever t is large and 1
2M ≤

x (t) ≤ M1 if M < 1, another contradiction. Hence M = 1 and

lim inf
t→∞

x (t) = lim sup
t→∞

x (t) = lim
t→∞

x (t) = 1,

as desired.
Finally we consider the case α > 1. (For an interpretation of α, see section 6.) In

this case b (1/α) > b (1) = γ and there is a positive equilibrium (x∗, y∗) ,

x∗ = 1/α,

y∗ = (b (1/α) − γ) /α.

To simplify notation somewhat, we let b∗ = b (x∗) and b′∗ = b′ (x∗) . Note that b∗ > γ
and b′∗ < 0 and that both b∗ and b′∗ depend on α.

Theorem 14. Consider (50) in the case α > 1, that is, in the case that there is
an interior equilibrium (x∗, y∗).

1. If α (b∗ − γ) + 2b′∗ < 0 the equilibrium (x∗, y∗) is linearly stable for all delays
r ≥ 0;

2. If α (b∗ − γ) + 2b′∗ > 0 then there is a critical delay r1 > 0 such that the
equilibrium (x∗, y∗) is linearly stable for all delays 0 ≤ r < r1 and is linearly
unstable for all delays r > r1. A Hopf bifurcation occurs as r increases through
r1.

Proof. The linearization of (50) about (x∗, y∗) is

u′ (t) = x∗b′∗u (t) − αx∗v (t)

= b′∗u (t) /α− v (t)

v′ (t) = αy∗u (t− r) + αx∗v (t− r) − v (t)

= (b∗ − γ)u (t− r) + v (t− r) − v (t) ,

yielding the linear equation for solutions of the form (u (t) , v (t)) = ezt (u0, v0) ,

zezt
[

u0

v0

]
= ezt

[
b′∗/α −1

(b∗ − γ) e−zr (e−zr − 1)

] [
u0

v0

]

and the characteristic equation

0 = det

[
b′∗/α− z −1

(b∗ − γ) e−zr e−zr − 1 − z

]

=
1

α

(
−b′∗ − (b′∗ − α) z + αz2 + e−zr (b′∗ + αb∗ − αγ − αz)

)
or

0 = αz2 − (b′∗ − α) z − b′∗ + e−zr (−αz + αb∗ + b′∗ − αγ) .(54)



PREDATOR-PREY INTERACTION WITH JUVENILE MATURATION 1069

We apply the results of Cooke and van den Driessche [7] to analyze the roots of
the characteristic equation. In their notation, we set

P (z) = αz2 − (b′∗ − α) z − b′∗,(55)

Q (z) = −αz + α (b∗ − γ) + b′∗.

According to [7], z = iy is a purely imaginary characteristic root only if F (y) = 0

where F (y) = |P (iy)|2 − |Q (iy)|2, and furthermore:
1. If F (y) = 0 has no positive roots and the equilibrium is stable when r = 0,

then it is stable for all r > 0.
2. If F (y) = 0 has a positive root and each positive root is simple, then there is

an r1 such that the equilibrium is unstable for r > r1 and the direction of a
characteristic root crossing the imaginary axis is given by the sign of F ′ (y).

To apply these results, we find

F (y) =
∣∣−αy2 − (b′∗ − α) iy − b′∗

∣∣2 − |−αiy + α (b∗ − γ) + b′∗|
2

= α2y4 + b′2∗ y
2 − α2b2

∗ + 2α2b∗γ − 2αb∗b
′
∗ − α2γ2 + 2αb′∗γ.

Let’s examine the constant term of F (y),

α
(
−αb2

∗ + 2αb∗γ − 2b∗b
′
∗ + 2b′∗γ − αγ2

)
= −α (b∗ − γ) (2b′∗ + α (b∗ − γ)) .

As mentioned just before this theorem, the assumption of α > 1 gives us b∗ > γ. Since
b′∗ < 0 the sign of the factor 2b′∗+α (b∗ − γ) can vary depending on the implementation
of b (x) .

Clearly if 2b′∗ + α (b∗ − γ) < 0, then F has no real zeros and so the characteristic
equation has no purely imaginary roots. According to [7], since the equilibrium is
stable under zero delay (Theorem 4), it is stable under all nonnegative delays.

However, if 2b′∗ + α (b∗ − γ) > 0, then F will have exactly one positive zero,
corresponding to a characteristic root with positive imaginary part. In this case the
direction of a characteristic root crossing the imaginary axis is given by the sign of
F ′ (y) [7] which is positive when y is positive. So any crossing is transverse, from
left to right. The second conclusion of the theorem now follows exactly from [7] and
standard bifurcation theory (e.g. [14], p. 332).

Since Theorem 14 concerns the dimensionless system (50) obtained by scaling
out the physical presence of the delay from (48), we should explain how this theorem
can be applied to the dimensional system (48). First note that α > 1 is equiva-
lent to dP e

d1R/c < N0, so that the latter is equivalent to the existence of a posi-
tive equilibrium. Upon a substitution of the original parameters into the inequality
of part 1 in Theorem 14, we conclude that the positive equilibrium of system (48)
exists and is linearly stable if dP e

d1R/c < N0 and ce−d1RN0

(
B(dP e

d1R/c) − d
)

+
2B′(dP e

d1R/c)N0dP < 0.
However, for the bifurcation at F = 0 one must proceed cautiously when translat-

ing the results from the nondimensional case of Theorem 14 to the dimensional case
which motivates it. We naturally inquire if a bifurcation, such as given by Theorem 14
in the nondimensional case with r increasing, is mirrored by one in the corresponding
original system (48) with R as the bifurcation parameter and all other parameters (ex-
cept r) held fixed. However, such variation of parameters is inherently contradictory!
Since

α = ce−d1RN0/dP ,(56)
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we see that if we seek bifurcation in the original system (48) with only R varying, then
we must examine Theorem 14 as α varies, instead of relying on it to be constant, with
α > 1, as assumed in the hypotheses of the theorem. In particular, if we increase
R while holding fixed all the other parameters in (48), then α = ce−d1RN0/dP must
decrease, eventually violating the theorem’s hypothesis of α > 1.

Fortunately, a bifurcation diagram for system (48) can be calculated in the (R , c)
parameter plane (while all parameters other than R, c are fixed). To proceed with
this for each given α > 0, let the curve Γα be the level curve of (56) in the (R, c)
plane, i.e., the graph of the function

c = αdP e
d1R/N0, (R ≥ 0)

with (d1, dP , N0) fixed. There is a positive equilibrium corresponding to some (R, c) on
Γα if and only if α > 1. For such α, let r1 = r1(α) be the unique positive value defined
in part 2 of Theorem 14 and let R1 = R1(α) = r1(α)/dp. Then from Theorem 14 it
immediately follows that such an equilibrium is linearly stable (respectively, unstable)
if R < R1 (respectively, R > R1). Moreover, a Hopf bifurcation occurs as the point
(R, c) passes through (R1, c1) along Γα, where c1 = c1(α) = αdP e

d1R1(α)/N0.
Let K (α) denote the critical quantity distinguishing the cases of Theorem 14:

K(α) = α(b(1/α) − γ) + 2b′(1/α) (α > 1).

It is clear that

K(α) → +∞ as α → ∞.

Let us first consider the simple case in which there is a unique α∗ > 1 such that
K(α∗) = 0 and K(α) > 0 for α > α∗. (In section 6 α∗ exists and is given for
birth function bi by α∗ = αi, i = 1, 2, 3.) Then for each α > α∗, there is a unique
bifurcation point (R1(α), c1(α)) in the curve Γα. It is obvious that the bifurcation
point (R1(α), c1(α)) is continous with respect to α (but formulas are supplied below).
Thus by varying α from α∗ to ∞ we obtain a simple bifurcation curve in the (R, c)
parameter plane that does not intersect itself. In what follows we shall show that the
function R1(α) has a nice property that

lim
α→α∗

R1(α) = +∞, lim
α→∞

R1(α) = 0.

One readily finds closed form expression for the bifurcation delay r1 in the nondi-
mensional equations (50) as it depends on α. When K (α) > 0 the function F in
the proof of Theorem 14 has a unique positive zero y0 and r1 is the least positive
solution of P + e−iy0rQ = 0. Thus, remembering that P,Q, F, y0 depend on α, r1 is
a composition of two functions:

y0 (α) =

√
1

2A

(
−B +

√
B2 − 4AC

)
,(57)

where

A = α2, B = b′ (1/α)
2
, C = −α (b (1/α) − γ) (2b′ (1/α) + α (b (1/α) − γ)) ,

(58)

followed by

r1 (α) = ρ (α) =
1

y0 (α)
arg

(
−Q (iy0 (α) , α)

P (iy0 (α) , α)

)
,(59)
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where arg denotes the argument of a complex number. Using the expressions of P,Q
one is able to verify that for all sufficiently large α,

0 < arg

(
−Q(iy0(α), α)

P (iy0(α), α)

)
< π.(60)

Furthermore, (57) and (58) yield that

lim
α→∞

y0(α) =
√

b(0) − γ, lim
α→∞

−Q(iy0(α), α)

P (iy0(α), α)
= 1(61)

and it follows from (59) and (61) that

lim
α→∞

R1(α) =
1

dP
lim r1(α) =

1

dP
√
b(0) − γ

arg(1) = 0.(62)

Finally we easily see that

lim
α→α∗

y0(α) = 0, lim
α→α∗

−Q(iy0(α), α)

P (iy0(α).α)
= −1(63)

which implies that

R1(α) → +∞ as α ↘ α∗.(64)

With the use of (62) and (64) we can describe the bifurcation diagram of the
dimensional system (48) in the (R, c) plane (see Figure 1). The positive quadrant
of the (R, c) plane is divided into three parts by the curves Γ1 : c = dP e

d1R/N0

and Γ = {(R1(α), c1(α)) : α ∈ (α∗,∞)}. The curve Γ is asymptotic to the graph
Γα∗ : c = α∗dP e

d1R/N0 as α ↘ α∗ and is asymptotic to the vertical line R = 0
as α → ∞. Region I corresponds to system (48) having no positive equilibrium;
region II corresponds to system (48) having a stable positive equilibrium; and region
III corresponds to system (48) with an unstable positive equilibrium. Γ is a hopf
bifurcation curve.

We finally remark that if there is any pair of two numbers 1 < α1 < α2 such that
K (α1) = K (α2) = 0, with K (α) > 0, α ∈ (α1, α2) then the curve {(R1 (α) , c1 (α)) :
α ∈ (α1, α2)} gives rise to a Hopf bifurcation curve that is asymptotic to the graph
Γαi as α → αi for i = 1, 2.

The parameterization of Γ, (R1 (α) , c1 (α)) can be found with R1 (α) explicitly
and c1 (α) explicitly, using (59) and c = αdP e

d1R/N0. Since

R1 = r1/dP = ρ (α) /dP = ρ
(
ce−d1R1N0/dP

)
/dP ,

we have

R1 (α) = r1 (α) /dP = ρ (α) /dP ,(65)

c1 (α) = dpe
d1R1(α)σ (dPR1 (α)) /N0(66)

if σ inverts ρ. When one has ρ numerically, σ just reverses the coordinates, so this is
easy to plot.

We consider two examples. Since the physical presence of the delay is a key feature
in (48), we simplify everything else as much as possible (but with some minimal care
to respect biological interpretation of the parameters: see below), taking

a = d1 = dP = N0 = 1,
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(a) (b)

(c) (d)

Fig. 1. (a) Scaled system, b(x) = 8(1 − x/4); (b) Dimensional system, B(X) = 8(1 − X/4);
(c) Scaled system, b(x) = 9/(1 + 0.5x); (d) Dimensional system, B(X) = 9/(1 + 0.5X).

so that in the corresponding dimensionless system

α = ce−R, t = T, x (t) = N (t) , y (t) = eRP (t) /c, b (x) = B (x) .

In the case of B (X) = 8 (1 −X/4) giving γ = b (1) = 6, we find bifurcation
diagrams as in (a) and (b) of Figure 1, and then, when B (X) = 9/ (1 + 0.5X) , again
with γ = b (1) = 6, we find bifurcation diagrams as in (c) and (d) of Figure 1.

Notice in both examples that for appropriately large, fixed c with R increasing
from 0 the dimensional system (48) goes first through a supercritical Hopf bifurcation,
and then back through a subcritical one.

6. Numerical examples.

6.1. Interpretation of parameters. In choosing parameter values for numer-
ical examples, it is helpful to think about the ideas they represent. Thus we consider:

1. t which is time scaled by 1/dP , which we may take as a measure of the
expected lifespan for predators.

2. α, which has been a focus of attention, beginning with the condition α > 1
as our condition for the existence of an interior equilibrium at (x∗, y∗) =
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(1/α, (b (1/α) − γ) /α), and the key to an additional condition for a Hopf
bifurcation at this equilibrium. We find that α is similar to R0 in some
ODE models, by first observing that in a complete absence of predators, N
is steady at N0 which functions as its carrying capacity. Then, if a very
small number of predators is introduced and holds roughly constant (near
the equilibrium), we find ce−d1R − dP to be the net per unit rate of change
of P and hence α = ce−d1RN0/dP is the number of newly matured predators
per adult predator, produced during a predator lifetime at prey carrying
capacity. Thus we may interpret it as a replacement ratio and indeed similar
to R0. Likewise, 1/α can be thought of as the fraction of an average adult
predator’s lifetime needed for self-replacement, at prey carrying capacity. All
such considerations are with respect to a common unit of measure for predator
and prey, for example, biomass.

3. γ = d/dP , which is b (1) in consequence of our scaling of x. Similarly to
interpreting 1/dP above, we find that γ is the ratio of the lifetime of a predator
to that of a prey. In scenarios such as the present in which maturation time
of predators is deemed important to include in the model, while that of prey
is not, we expect γ > 1.

4. b (x∗) /b (1) = B (x∗N0) /d is the prey lifetime recruitment (per unit) at equi-
librium.

6.2. Comparison of birth functions: Affine, concave up, and concave
down. In this section we numerically investigate three implementations of the birth
function,

b1 (x) = a
(
1 − x

b

)
,(67a)

b2 (x) =
c

1 + dx
,(67b)

b3 (x) = p

(
1 +

1

x− q

)
,(67c)

in order to better understand the behavior generally of the nondimensional models
from section 5, especially with regard to the bifurcations guaranteed by Theorem 14.
We determine the pairs of coefficients ((a, b), (c, d), (p, q)) so that the implementations
of the bi have the same interior equilibrium (x∗, y∗), the same value of bi (x

∗) and
the same model coefficients α, γ, and with values so that the conditions for Hopf
bifurcation are satisfied. Notice that over the domain of interest, b1 is affine; b2

is concave up; and b3 is concave down. Although b1 does not satisfy the condition
(xb(x))

′ ≥ 0 if x > b/2, we use it only on 0 < x < b/2 where that condition is satisfied.
The function can be redefined elsewhere to satisfy the condition if desired, with no
effect on our computations. All the numerical computations use the Matlab-based
package DDE-BIFTOOL [18].

Implementation. The interpretations above guide us in choosing values for β =
b (x∗) and γ = b (1). The parameter α determines the equilibrium (x∗, y∗) through

x∗ = 1/α

y∗ = (b (x∗) − b (1))x∗ = (b (1/α) − γ) /α.

We then solve for the two parameters in each of the birth functions bi. There are
elementary but tedious details to be checked that all the requirements on the birth
function and α are satisfied, which we omit. The resulting restrictions are listed here.
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Proposition 15. For i = 1, 2, 3, there is an αi > 1 such that the condition (2) of
Theorem 14 for bifurcation in the model based on bi is satisfied if and only if α > αi.
(Thus the αi satisfy the criteria of α∗ above.) Furthermore, whenever β > γ > 0 and
the restrictions immediately below hold, positive parameters for the birth function bi
are uniquely determined such that with x∗ = 1/α < 1/αi we have bi (x

∗) = β and
bi (1) = γ.

Table 1 summarizes the relevant relations and conditions.

Table 1

b1 (x) = a
(
1 − x

b

) a = αβ−γ
α−1

, b = αβ−γ
α(β−γ)

(xb(x))′ > 0 if γ < β < 2γ
α1 = 3

b2 (x) = c
1+dx

c = β α−1
α−β/γ

, d = α
β/γ−1
α−β/γ

Both c, d are positive iff α > β/γ > 1.

α2 =
(
3 + d +

√
9 + 10d + d2

)/
2

b3 (x) = p
(
1 + 1

x−q

) p = larger zero of (α− 1)Z2 − (β(2α− 1) − γ)Z + (α− 1)βγ
q = (β − p− pα) / (α (β − p))

(xb (x))′ > 0 if q > 3
2

+ 1
2

√
5 ≈ 2. 62

α3 = 1
2q

(
3q − 1 +

√
9q2 − 10q + 1

)

Discussion. We saw above that we must respect 0 < γ < β, while numerically
we observed that this together with β ≤ 3γ/2 was necessary and sufficient for each
bi to be implemented over an interval for α including [αi, 7] in its interior. For each
bi in combination with each of the pairs (β, γ) = (4.5, 3) , (8, 6) we computed a locus
of Hopf bifurcation points in the (α, r) plane which included 5 ≤ α ≤ 7 in all cases.
Then in each of the cases α = 5, 7, we computed bifurcation diagrams with the delay
r as bifurcation parameter, and plotted: (1) bifurcation diagrams, (2) profiles of the
bifurcating periodic solutions (traces of the solutions (x (t) , y (t))), and (3) the largest
size of a nontrivial Floquet multiplier. (See [6] for more extensive graphics.) These
computations were done for values of the delay r beginning at the bifurcation value and
ending at about r = 2. Considering that we scaled time by the measure of a predator
lifetime, 1/dP , a delay of r = 2 corresponds to a juvenile predator maturation that is
twice this magnitude, and hence is more than adequate for biological considerations.

There were remarkable similarities across these computations.
1. All the bifurcation loci in the (α, r) plane were decreasing, concave up.
2. All the bifurcation diagrams of the x-amplitude of bifurcating period solutions

vs. r were increasing, concave down, with the amplitude approaching 1 as r
increased. (Recall that the “carrying capacity” for x is normalized to 1.)

3. All the bifurcation diagrams of the period of bifurcation periodic solutions
vs. r were increasing and almost linear for a long range of r. However, this
broke down as discussed below.

4. All the profile plots of the periodic solutions (that is, projections of periodic
solutions (x (t) , y(t) into an (x, y) plane) showed initial nesting of each sur-
rounding those of lesser r, expanding with increasing r but contained within
a triangle adjacent to the origin and coordinate axes in the (x, y) plane, and
then developing an “overhang.” See Figure 2 for a typical scenario.

5. Floquet multipliers (These are eigenvalues of the linearized Poincaré map
associated with each bifurcating periodic solution and always “trivially” in-
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Fig. 2. Overhang in bifurcating family of periodic solution profiles.

clude 1 corresponding to the initial condition of the periodic solution. Only
a finite number can lie outside any disk centered at the origin in the complex
plane.): In plotting the largest magnitude of these (excepting the trivial 1) vs.
r, we found rapid decrease to small values across all our examples, followed
in some circumstances by eventual increase (but not in ranges of r that are
biologically compelling).

Prompted by the eventual increase of Floquet multipliers for r > 2 we singled out
the example case of birth function b1 with α = 5, β = 8, γ = 6 for further investigation
and extended the delay r from the bifurcation value of about 0.43 to over 8. Some
interesting aspects emerged, which although not of direct biological interest in the
current context, might easily emerge in others. They include:

1. Self-crossover of periodic orbit profiles: At r ≈ 3.8 we observe the beginnings
of self-intersection within profiles of the bifurcating periodic orbits. See the
sequence in Figure 3. Since the periods of these solutions increased approxi-
mately affinely with the delay over this regime, perhaps this extra looping of
the profile can be understood as a mechanism by which the longer period is
accommodated in a limited spatial region. There were no remarkable aspects
of the Floquet multipliers (measures of stability) apparently associated with
these behaviors.

2. The profiles of the self-intersecting orbits also approach the equilibrium at
(1, 0) (thereby slowing down) and develop folds and spikes in their upper left
corner, again with the effect of enabling longer periods. See the sequence in
Figure 3.

3. It is quite remarkable that over 0.43 < r < 8 the bifurcation diagram of period
vs. r is approximately affine with the notable exception of 7.12 < r < 7.29
where it doubles over in a backwards S. Moreover, the vertical tangencies (in
the period vs. delay bifurcation diagrams) at r = 7.12, 7.29 are accompanied
by a Floquet multiplier leaving the unit disk in the complex plane. Notice that
the self-crossovers remarked on above appear to be completely independent
of the branch of multipliers that leaves the unit disk over 4.8 < r < 6.3. See
Figure 4.
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(a) (b)

(c)

Fig. 3. Progression of self-intersecting profiles of bifurcating period orbits. (a) As r increases
to 3.8, a cusp develops (lower right) and early stages of a fold are seen (upper left). (b) Intermediate
stages of both self-intersection and fold. (c) Late stages at large r.

7. Equivalence of dimensional and nondimensional results. There are
some concerns that might arise concerning the scaling of the original models (5) in
the host-parasite case (and (48) in the predator-prey case) and how analysis of the
resulting dimension-free resulting models (respectively, (9) and (50)) applies back to
those original models. In particular, there might be some concern about the use of
the scaled delay, r, as a bifurcation parameter in (50) after a coefficient in (48) which
“physically” contained the original delay, R, has been scaled out. Furthermore, there
might arise concern about the validity of the bifurcation analysis since the dimension
of the parameter space is reduced from eight (including the delay and N0) in the
original models to three (including the scaled delay) in the corresponding dimension-
free ones. Since the relation between (48) and (50) scales out the “physical” presence
of the delay and is therefore more complicated, we will focus on that situation, leaving
the other host-parasite situation of section 3 as an easy corollary. We should note
that Beretta and Kuang [1] address these issues without passing to a scaled version
of the model. Our situation, however, can be addressed directly.

Let us refer to (48a–48c), together with the assumptions (2a), (2b), and (7), as
the dimensional model. Recall that we defined N0 by the condition B (N0) = d. Then
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Fig. 4. With the maturation delay, r, on the horizontal axis: Upper left shows periods, including
the backwards S. All other frames show absolute values of Floquet multipliers larger than 0.01: Upper
right shows values < 7.5. Lower frames have dots plotted as both r and the period increase, first
over 7.05 < r < 7.29 (corresponding to the top of the backwards S in the bifurcation diagram), and
later over 7.12 < r < 7.35 (corresponding to the bottom of the backwards S). To contrast circles are
plotted as r decreases from 7.29 to 7.12 through the middle of the backwards S. The lower right is
the same as lower left with values of 1 removed to fascilitate observation of a branch of complex
conjugate multipliers (shown only in absolute value) becoming real at r = 7.29, with one leaving the
unit disk there, and the other leaving after r decreases to 7.12.

we scaled variables and parameters according to (49), resulting in the nondimensional
model

dx

dt
= x (t) b (x (t)) − αx (t) y (t) − γx (t) ,(68a)

dy

dt
= αx (t− r) y (t− r) − y (t) ,(68b)

satisfying

b (1) = γ.(68c)

The purpose of this section is to show that bifurcation in the latter system (68) with
respect to r implies bifurcation in the former, (48), with respect to R, and conversely.

Suppose now that (α, γ, r, b (·)) are given and consider the corresponding system
(68). Also consider a system (48) in which (a, c, d, d1, dP , N0, R,B (·)) are given such
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that the parametric relations of (49) hold, namely,

ce−d1RN0/dP = α,

d/dP = γ,(69)

dPR = r,

B (xN0) /dP = b (x) .

Then, given a solution (x (t) , y (t)) of (68), if

T = t/dP ,

N (T ) = N0x (dPT ) ,(70)

P (T ) = dPαy (dPT ) /a,

it is easy to see that (N (T ) , P (T )) solves (48). In this way (while parameters are fixed
and appropriately related), solutions of the two systems are related by a bicontinuous
linear isomorphism. In this context, stability of equilibria and periodic solutions
carries over from (68) to (48), and conversely.

In examining implications for bifurcation, we have already seen that it is not
possible with our choice of scaling to vary only the delays, r and R. However, suppose
again that (α, γ, r, b (·)) are given with (α, γ, b (·)) fixed, but with r varying, and let
(c, d, d1, dP , N0, B (·)) be smooth functions of R = r/dP such that (69) and B (N0) = d
continue to hold. Again, given a solution (x (t) , y (t)) of (68), if (69) holds it is easy
to see that (N (T ) , P (T )) solves (48) for each value of r with R = r/dP . Moreover
the triples (x (·) , y (·) , r) and (N (·) , P (·) , R) are related by a bicontinuous bijection,
based on the bicontinuous linear isomorphism between (x (·) , y (·)) and (N (T ) , P (T ))
above, but with nonlinear inclusion of r. This correspondence maintains equilibrium,
periodicity, and stability properties of solutions, so that if a bifurcation occurs in (68)
with respect to r, then a corresponding one in (48) must also occur with respect to
R.

To address the converse question regarding implications of bifurcations in (48)
for bifurcations in (68), let us consider the case of R as bifurcation parameter in (48)
with (a, c, d, d1, dP , N0) held fixed. Then assuming our usual relations between that
system and (68), we again have the triples (N (·) , P (·) , R) and (x (·) , y (·) , r) related
by a bicontinuous bijection that preserves equilibrium, periodicity, and stability prop-
erties. Thus any bifurcation in (48) with respect to R is mirrored by one in (68)
with respect to r, but with α also varying (as a function of r, through (56)), perhaps
with consequences, e.g., for the existence of a coexistence equilibrium as α decreases
through unity.
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EXISTENCE AND STABILITY OF SPHERICALLY LAYERED
SOLUTIONS OF THE DIBLOCK COPOLYMER EQUATION∗

XIAOFENG REN† AND JUNCHENG WEI‡

Abstract. The relatively simple Ohta–Kawasaki density functional theory for diblock copolymer
melts allows us to construct and analyze exact solutions to the Euler–Lagrange equation by singular
perturbation techniques. First, we consider a solution of a single sphere pattern that models a cell in
the spherical morphology. We show the existence of the sphere pattern and find a stability threshold,
so that if the sphere is larger than the threshold value, the sphere pattern becomes unstable. Next we
study a spherical lamellar pattern, which may be regarded as a defective lamellar pattern. We reduce
the existence and the stability problems to some finite dimensional problems which are accurately
solved with the help of a computer. We find two thresholds. Only when the size of the sample is larger
than the first threshold value does a spherical lamellar pattern exist. This patten is stable only when
the size of the sample is less than the second threshold value. As the stability of the spherical lamellar
pattern changes at the second threshold, a bifurcating branch with a pattern of wriggled spherical
interfaces appears. The free energy of the latter pattern is lower than that of the first pattern. A
similar bifurcation phenomenon also occurs in the single sphere pattern at its stability threshold.

Key words. Ohta–Kawasaki diblock copolymer theory, sphere pattern, optimal size, spheri-
cal lamellar pattern, existence threshold, stability threshold, bifurcation, wriggled sphere pattern,
wriggled spherical lamellar pattern
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1. Introduction. A diblock copolymer melt is a soft material, characterized
by fluid-like disorder on the molecular scale and a high degree of order at a longer
length scale. A molecule in a diblock copolymer is a linear subchain of A-monomers
grafted covalently to another subchain of B-monomers. Because of the repulsion be-
tween the unlike monomers, the different types of subchains tend to segregate, but
as they are chemically bonded in chain molecules, segregation of subchains cannot
lead to a macroscopic phase separation. Only a local microphase separation occurs:
microdomains rich in A-monomers and microdomains rich in B-monomers emerge as
a result. These microdomains form morphology patterns/phases.

There are two types of phase separations in a diblock copolymer system: weak
segregation and strong segregation. The weak segregation occurs when the tempera-
ture is relatively high. The microdomains are small and there are no clear interfaces
separating them. When the temperature is lower, strong segregation is observed. The
microdomains become larger and they are separated by narrow interfaces.

The self-consistent mean field theory [11, 13, 14, 15, 17, 18] is the most successful
theory in modeling and capturing aspects of the phase separation. It consists of
five equations for five field variables: two density fields of A- and B-monomers, two
mean fields on A- and B-monomers simulating the interaction between the molecular
chains, and a Lagrange multiplier field. Two of the five equations are nonlocal, while
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the remaining three are algebraic [22]. The theory is derived from a microscopic
description of interacting polymer chains. Based on a variational principle, the Gibbs
canonical distribution is approximated by the distribution generated by the mean
fields [7]. This theory is quite complex to which only numerical studies have been
done. One of them is the spectral method of Matsen and Schick [22] that yields
predictions with striking resemblances to experiments.

A limitation of such techniques or other test field based methods is that they pro-
ceed by assuming a periodic structure, computing its free energy and then comparing
that free energy to the free energy of other candidate structures [3]. The patterns
found by such methods in general do not exactly solve the self-consistent equations.
However, finding analytic solutions to these equations is very difficult due to the
complexity of the two nonlocal equations.

The density functional theory of Ohta and Kawasaki [28] is a much simpler model.
The free energy of a diblock copolymer melt is an elegant functional of the A-monomer
density field only. Unlike an earlier density functional theory of Leibler [20] that deals
only with the weak segregation region, the Ohta–Kawasaki theory deals with both the
weak- and strong-segregation phenomena. The Euler–Lagrange equation of the Ohta–
Kawasaki free energy is an integro-differential equation (see (2.9)), which can also be
viewed as a system of two elliptic partial differential equations (see (2.11)–(2.12)).

A close examination of the derivation of the density functional theory shows
that it is a simplified version of the self-consistent mean field theory. We refer the
reader to [7] for a detailed study of the simplification procedure. Here we briefly
summarize the results of [7]. There are two approximation steps. First, we consider
the relationship between the A-monomer density field ua, the B-monomer density
field ub, and the mean fields UA, UB that act, respectively, on A- and B- monomers.
In the self-consistent mean field theory one can express ua and ub in terms of UA

and UB with the help of Feynman integrals, i.e., by solving some parabolic partial
differential equations. In the density functional theory we simplify this relationship
via linearization. This approximation is accurate if the temperature is not too low.
Then we reverse the linearized relationship between ua, ub and UA, UB to express
UA, UB in terms of ua, ub. An analysis in the Fourier space shows that this reversed
relationship is described by a pseudodifferential, nonlocal operator. In the second
approximation step we keep the long wave and the short wave parts of this operator
and discard the intermediate wave effects. This way we end up with a sum of the
Laplace operator −Δ and the inverse Laplace operator (−Δ)−1. When we finally
express the free energy as a functional of ua and ub in the density functional theory,
the Laplace operator gives rise to the local part of the functional and the inverse
Laplace operator leads to the nonlocal part of the functional (see (2.2)).

Despite the shortcomings associated with these approximations, the density func-
tional theory at least qualitatively captures the properties of diblock copolymers
[21, 10]. Ohta and Kawasaki used their theory to study the common lamellar, cylin-
drical, and spherical phases [28]. More recently Teramoto and Nishiura found the
less common double gyroid morphology by numerically simulating the theory [43].
Although Ohta and Kawasaki applied their theory only to test fields and did not con-
struct exact solutions of the Euler–Lagrange equation, we will show that the simplicity
of the theory actually makes it possible to study exact solutions analytically.

The weak segregation regime may be studied by the bifurcation theory rather
easily. One starts with a uniform state and linearizes the Euler–Lagrange equation at
the uniform state. For some parameter values the principal eigenvalue of the linearized
problem is zero. Then a nonuniform state bifurcates from the uniform state. If one
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Fig. 1. The spherical phase. The B-monomers form dark spheres and the A-monomers occupy
the background. Not reflected in this figure is the body centered cubic pattern in which the spheres
pack.

can show that this nonuniform state is stable, then it gives the profile of a weakly
segregated pattern.

In this paper we use the density functional theory to study the more complex
strong segregation phenomenon. Strongly segregated patterns are too different from
the uniform state to be treated as their bifurcating branches. The appropriate math-
ematical tool is the singular perturbation theory in calculus of variations and differ-
ential equations. We find exact solutions, or at least leading order terms of exact
solutions, to the Euler–Lagrange equation of the free energy functional [26, 30, 32,
31, 35, 39, 40, 9, 6, 16]. Often these solutions may be carefully analyzed and their
stability in space can be determined [33, 38].

The first strongly segregated pattern we study is the single sphere pattern. This
pattern arises from the spherical phase of a diblock copolymer. When the mono-
mer fraction is skewed in favor of A-monomers, the B-monomers form spherical
microdomains; see Figure 1. We find a pattern with one sphere of B-monomers as
a solution to the Euler–Lagrange equation. There is an optimal size for the sphere.
The sphere of optimal size has lower free energy than those of other spheres. Then we
linearize the Euler–Lagrange equation at the sphere solution and study the spectrum
of the linearized operator. We will show that there is an upper bound for the size of
the sphere. Beyond the upper bound, the sphere cannot be stable.

The second pattern is the spherical lamellar pattern. This pattern may be viewed
as a defective lamellar pattern. Other defective patterns are considered in [44], where
a model of a fourth-order differential equation is used. Given the number of interfaces
we look for a solution that consists of spherical layers of microdomains separated by
narrow interfaces. In this case the existence and stability problems are reduced by
singular perturbation techniques to some finite dimensional problems. The reduced
problems are easily solved with the help of a computer. Note that here we apply nu-
merical methods to the reduced finite dimensional problems only. This way we obtain
far more accurate and reliable results compared to results found from direct numerical
simulations of infinite dimensional problems. There is an existence threshold. Only
when the sample is greater than this threshold does a spherical lamellar pattern ex-
ist. There is also a stability threshold which is greater than the existence threshold.
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When the sample is larger than the stability threshold, the spherical lamellar pattern
becomes unstable.

We emphasize that all the results presented in this paper are mathematically
rigorous. The informal style adopted here when we describe perturbation expansions
can be changed to a strict mathematical framework, part of which is known as the
Γ-convergence theory [8, 24, 23, 19].

2. Free energy. We review the density functional theory of Ohta and Kawasaki
[28] in this section. We consider a diblock copolymer melt that occupies a region D
in space. The system has the following parameters.

1. The polymerization index N that is the number of all the monomers in a
chain molecule.

2. The A-monomer number NA and the B-monomer number NB in a chain.
Note that NA + NB = N .

3. The number of chain molecules in the melt n. The average total monomer
number density is ρ0 = nN

V .
4. The Kuhn statistical length l measuring the average distance between two

adjacent monomers in a chain molecule.
5. The inverse absolute temperature β.
6. The dimensionless Flory–Huggins parameter χ that measures the repulsion

between unlike monomers; it is defined by

χ = β

(
VAB − VAA + VBB

2

)
,(2.1)

where VAB (and VAA and VBB , respectively) is the energy cost to bring an A-
monomer (A-monomer and B-monomer, respectively) and a B-monomer (A-
monomer and B-monomer, respectively) close to each other. This number is
positive because the repulsion force between unlike monomers is stronger than
those between like ones. Note that χ is inversely proportional to temperature.

7. The volume V of the sample. The domain D is nondimensionalized so that
the size of D, denoted by |D|, is a convenient value. In this paper D is a ball,
so we take the radius of D to be 1 and the size of D to be |D| = 4π/3.

The main field in the Ohta–Kawasaki theory is the relative A-monomer number
density field u(x). The melt is assumed to be incompressible, so when u(x) = 1
(or u(x) = 0, respectively), the point x in D is occupied by A-monomers only (or
B-monomers only, respectively); if 0 < u(x) < 1, a mixture of A- and B-monomers
occupies x. The free energy F of the system is a functional of u(x). In a dimensionless
form we write

βF

χρ0V
=

∫
D

[
ε2

2
|∇u|2 + W (u) +

εγ

2
|(−Δ)−1/2(u− a)|2

]
dx.(2.2)

On the right side of (2.2) we have introduced three dimensionless parameters:

ε2 =
|D|2/3l2

12a(1 − a)χV 2/3
,(2.3)

γ =
18
√

3V

|D|a3/2(1 − a)3/2χ1/2N2l3
,(2.4)

a =
NA

N
.(2.5)
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Note that the parameter a = NA/N is the average A-monomer density. The field
u must satisfy the constraint

u = a,(2.6)

where u = 1
|D|

∫
D
u(x) dx is the average of u.

The exact form of W is not given in [28]. In [7] an approximation

W (u) =

{
u− u2 if u ∈ [0, 1],
∞ otherwise

(2.7)

is found. A more accurate W should be a smooth double well function of equal
depth. It must have a global minimum value 0 achieved at 0 and 1. It must have the
symmetry W (u) = W (1 − u). 0 and 1 are nondegenerate: W ′′(0) = W ′′(1) > 0.

Central in (2.2) is the third term in the integrand. It is nonlocal and models the
long range interaction between monomers due to the connectivity of the molecular
chains. The operator (−Δ)−1/2 is the square root of the inverse of −Δ with the
natural boundary condition. Alternatively in (2.2) one may write∫

D

|(−Δ)−1/2(u− a)|2 dx =

∫
D

∫
D

(u(x) − a)G(x, y)(u(y) − a) dxdy,(2.8)

where G is the Green’s function of −Δ with the natural boundary condition.
The second term in (2.2) can be regarded as the internal energy field of the system,

and the first and the third terms give the entropy of the system. As mentioned in
the introduction we have taken only the long wave and short wave effects, modeled
by the ∇ and (−Δ)−1/2 operators, into consideration in this model.

When we minimize (2.2), the first term in the integrand of (2.2) penalizes any
space nonuniformity. The second term favors u being close either to 0 or close to 1
everywhere. The best profile for the third term is to have u close to a everywhere.
However, this is not a good profile for the second term. The second best profile for
the third term is for u to have many oscillations. Local minimizers of the free energy
result from these three competing preferences.

The Euler–Lagrange equation of (2.2) is a nonlinear integro-differential equation

−ε2Δu + f(u) + εγ(−Δ)−1(u− a) = η in D(2.9)

subject to the natural boundary condition

∂νu = 0 on ∂D.(2.10)

Here f = W ′. The constant η on the right side of (2.9) is a Lagrange multiplier
coming from the constraint (2.6). Equation (2.9) may also be written as a system of
elliptic partial differential equations

−ε2Δu + f(u) + εγv = η,(2.11)

−Δv = u− a(2.12)

subject to the conditions

∂νu = ∂νv = 0 on ∂D, u− a = v = 0.(2.13)
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Note that (2.9) always has the uniform solution u(x) = a. When ε is large,
corresponding to high temperature, this solution is stable and it models the disor-
dered phase. One may decrease ε to a value so that the principal eigenvalue of the
linearized problem at u(x) = a becomes 0. Then one finds a nonuniform solution
bifurcating out of the uniform solution. This bifurcation solution explains the weak
segregation phenomenon and the corresponding ε identifies the parameter range for
weak segregation.

However, in the strong segregation regime ε is much smaller. In this case the free
energy (2.2) is most easily analyzed in the parameter range

ε � 1,(2.14)

γ ∼ 1.(2.15)

Here the uniform solution u(x) = a has much higher free energy than those of many
other states and is hence thermodynamically unfavored. Under (2.14)–(2.15), we are
in the strong segregation regime and have taken the volume of the sample to be of
order

V ∼ a3/2(1 − a)3/2χ1/2N2l3.(2.16)

We will see that in the parameter range (2.14)–(2.15) the number of microdomains is
of order 1. Therefore the right side of (2.16) also predicts the size of a microdomain.
Particularly we find the domain size V 1/3 to be proportional to N2/3, which is the
celebrated N2/3 law [28].

Having a small ε makes (2.9) a singular perturbation problem. Although in math-
ematics the singular perturbation theory is much harder and less mature than the reg-
ular perturbation theory, a great deal of quantitative properties of solutions to (2.9)
can be obtained, using the existing techniques in the theory. Many problems can be
solved exactly in the leading order, and many other problems can be reduced to much
simpler finite dimensional problems that are solved with the help of a computer.

3. Sphere pattern. When the monomer fraction a is close to 1, the diblock
polymer typically exists in the spherical phase. B-rich microdomains form spheres
and pack in a body centered cubic (BCC) pattern. Here we study a single sphere (see
Figure 2) based on the model (2.2). Mathematically this must be done before we can
analyze the BCC pattern. In a future publication we will “connect” several single
sphere patterns to construct a BBC pattern solution in a general domain.

3.1. Existence. When one takes the domain D to be a unit ball, a radially
symmetric solution u(r) of (2.9) is found where u now is a function of r = |x|; see
Figure 2. A narrow interface, whose thickness is of order ε, exists at some r1, where
u(r1) = 1/2. The leading order of r1 is determined by (2.6):

r1 = (1 − a)1/3 + O(ε).(3.1)

Inside the interface u(r) is close to 0 and outside u(r) is close to 1. The profile of
u near r1 is described by the inner expansion

u(r) = H

(
r − r1

ε

)
+ εP

(
r − r1

ε

)
+ O(ε2).(3.2)

The leading order term H is the solution of

−H ′′ + f(H) = 0(3.3)
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Fig. 2. A single sphere solution with the natural boundary condition in the unit ball.

with the conditions H(−∞) = 0, H(∞) = 1, and H(0) = 1/2. The next term P is
the solution of

−P ′′ + f ′(H)P − 2H ′

r1
+

2τ

r1
= 0, P (0) = 0.(3.4)

The definition of P involves r1. Because 1/r1 is the mean curvature of the interface,
the curvature affects the inner expansion of u in the ε order but not in the leading
order, for H is independent of r1.

In (3.4) we have a constant τ , which is the interface tension. For a general W ,

τ =

∫ 1

0

√
2W (s)dx,(3.5)

and for (2.7) we have

τ =

√
2π

8
.(3.6)

The interface tension may also be calculated in the self-consistent mean field theory
[12]. The value obtained there differs slightly from (3.6) of the density functional
theory.

The free energy of this solution may be viewed as a sum of two parts. The first
part comes from the two local terms of (2.2) and is equal to

4πr2
1τε + O(ε2).(3.7)

Note that the first term on the right side is the area of the interface times τ times ε.
The second part of the free energy comes from the nonlocal term of (2.2) and is

equal to

2πr5
1(r3

1 − 3r1 + 2)γε

15
+ O(ε2).(3.8)

Note that the free energy of the disordered phase modeled by the uniform solution
u(x) = a is W (a)|D|, a quantity of order 1, which is much larger than the free energy
of the sphere pattern solution, which is of order ε. Hence under the condition (2.14)–
(2.15) the system is in an ordered phase.
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Table 1

The values of γo for various a.

a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γo 140 130 122 115 109 104 100 97 95 93

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γo 92 92 93 95 99 106 117 137 176 290

3.2. Optimal size. There is a sphere pattern solution of (2.9) for any γ as long
as ε is sufficiently small. This means that there is a solution for a wide range of V of
the sample (the volume of the B-monomer sphere in the middle is then (1− a)V ). It
is natural to ask for which value of V the sphere pattern is most energetically favored.
Intuitively we know that V cannot be too large or too small. By (2.3)–(2.4) we write
ε = ε̃V −1/3 and γ = γ̃V so that ε̃ and γ̃ no longer depend on V . Then by (3.7)–(3.8)
we find that the leading term of the rescaled free energy of a sphere pattern is

4πr2
1τ ε̃V

−1/3 +
2πr5

1(r3
1 − 3r1 + 2)γ̃

15
ε̃V 2/3.(3.9)

With respect to V , (3.9) is minimized at

V = Vo =
15τ

r3
1(r3

1 − 3r1 + 2)γ̃
.(3.10)

The optimal size of the sample is now given by (3.10). It is more convenient to
express this in terms of the dimensionless γ. The optimal γ is denoted by γo, which
is just

γo = γ̃Vo =
15τ

r3
1(r3

1 − 3r1 + 2)
.(3.11)

Table 1 reports the values of γo for various a.

3.3. Stability. We return to a sphere pattern solution with a general γ which
is not necessarily equal to γo. Although a sphere solution of (2.9) is found for every
γ, we will see that it is stable only if γ is not too large. A stable solution of (2.9) is a
free energy local minimizer, which corresponds to a metastable state of the physical
system. An unstable solution cannot be observed in experiments.

The stability analysis requires that we solve the eigenvalue problem

−ε2Δϕ + f ′(u)ϕ− f ′(u)ϕ + εγ(−Δ)−1ϕ = λϕ.(3.12)

The left side of (3.12) comes from linearizing the Euler–Lagrange equation (2.9) at a
sphere pattern solution u. The eigenvalues λ are classified by the mode l = 0, 1, 2, . . . .
The eigenvalues whose modes are l are denoted by λl. Their corresponding eigenfunc-
tions take the form

ϕ(x) = φl(r)Ylm(θ, ω),(3.13)

where m = 0,±1, . . . ,±l, and the Ylm’s are the spherical harmonics. An eigenvalue
either approaches 0, a critical eigenvalue, or stays positively away from 0 when ε → 0.
Hence it suffices to consider the critical eigenvalues.
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For the l = 0 mode there is one critical eigenvalue of order ε. It is of multiplicity
1 and has the form

λ0 =
3f ′(0)r2

1ε

τ
+ O(ε2).(3.14)

This eigenvalue is positive, and l = 0 is a stable mode. The eigenfunction associated
with this eigenvalue is radially symmetric. We denote it by φ0(r). It has the expansion

φ0(r) = H ′
(
r − r1

ε

)
+ εP ′

(
r − r1

ε

)
−

[
H ′

(
r − r1

ε

)
+ εP ′

(
r − r1

ε

)]
+ O(ε2).

(3.15)

Here H ′ and P ′ are the derivatives of H and P , defined in (3.3)–(3.4), respectively.
For l = 1 there is one critical eigenvalue of order ε2. It has multiplicity 3 and is

of the form

λ1 =
γr4

1ε
2

τ
+ O(ε3).(3.16)

This mode is again stable. The eigenfunctions associated with this eigenvalue are
(x/r)φ1(r), (y/r)φ1(r), and (z/r)φ1(r), where φ1 has the expansion

φ1(r) = H ′
(
r − r1

ε

)
+ εP ′

(
r − r1

ε

)
+ O(ε2).(3.17)

For each l greater than 1, there is one critical eigenvalue of order ε2. This eigen-
value has multiplicity 2l + 1 and has the form

λl =

[
l(l + 1) − 2

r2
1

+
γ

τ

(
r4
1 − r1

3
+

(l + 1)r2l+2
1

l(2l + 1)
+

r1

2l + 1

)]
ε2 + O(ε3).(3.18)

The quantity in (3.18) may not always be positive. One finds a threshold γs so that
when γ < γs all the eigenvalues in (3.18) are positive, but when γ > γs at least for
one l the eigenvalue λl in (3.18) is negative. Therefore the sphere solution u is stable
if γ < γs and unstable if γ > γs. The eigenfunctions associated with λl are φl(r)Ylm

with m = 0,±1, . . . ,±l. φl has the same expansion as in (3.17).
The leading order of γs is determined from (3.18) following these steps:
1. For each l ≥ 2, set the leading term

l(l + 1) − 2

r2
1

+
γ

τ

(
r4
1 − r1

3
+

(l + 1)r2l+2
1

l(2l + 1)
+

r1

2l + 1

)
(3.19)

in (3.18) to be 0, and solve for γ. Denote the solution for γ by γ̂l. If this γ̂l is
less than or equal to 0, the mode l does not yield a zero eigenvalue. Discard
such γ̂l.

2. Minimize the remaining γ̂l’s from the last step with respect to l. The mini-
mum is achieved at a γ̂l which is the leading order of γs.

Table 2 reports the leading order of γs for various a. At γ = γs the smallest eigenvalue
is 0. The mode l of this eigenvalue is also given in Table 2.

We compare the stability threshold γs to the optimal size γo in Table 1. All the
γo’s are significantly less than the corresponding γs’s. Therefore, not surprisingly, the
sphere with optimal size is stable.
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Table 2

The (leading order) values of γs for various a and the corresponding mode l.

a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γs 463 425 372 336 312 296 276 250 234 225
l 5 5 4 4 4 4 3 3 3 3

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γs 222 225 232 216 209 215 237 283 387 714
l 3 3 3 2 2 2 2 2 2 2

Fig. 3. A perfect lamellar pattern.

4. Spherical lamellar pattern. When a is close to 1/2, the diblock copolymer
exists in the lamellar phase. The perfect lamellar pattern consists of microdomains
separated by parallel flat planes; see Figure 3. However, one often observes the
lamellar pattern with topological defects such as dislocations, disclinations, grain
boundaries, and tilt boundaries [44]. In this section we consider the spherical lamellar
pattern (see Figure 4), which we view as a defective lamellar pattern.

Because it involves many interfaces, the study in this section is more complex.
Nevertheless, we will show that by singular perturbation argument, solving the Euler–
Lagrange equation (2.9) and analyzing the stability of the solution are reduced to
studying some finite dimensional problems.

4.1. Existence. Unlike the existence problem for the sphere pattern, where no
condition on γ is needed, the existence of a spherical lamellar pattern as a solution of
(2.9) requires that γ is not too small. We now have an existence threshold γK,e. Given
the number of interfaces K ≥ 2 a K-interface spherical lamellar pattern solution
of (2.9) exists if γ > γK,e. If γ < γK,e, there is no K-interface spherical lamellar
solution.

When γ > γK,e, we define the interfaces rj , j = 1, 2, . . . ,K, to be the radii, where
u(rj) = 1/2. They have the expansion

rj = r0
j + O(ε).(4.1)
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Fig. 4. A cross section of a spherical lamellar pattern with two interfaces.

The leading order r0
j ’s are determined by solving a system of K+1 nonlinear equations

τ

r0
j

+
(−1)jγ

2
V(r0

j ; r
0
1, r

0
2, . . . , r

0
K) = (−1)jη0, j = 1, 2, . . . ,K,

K∑
j=1

(−1)j(r0
j )

3 +
1 − (−1)K

2
= a(4.2)

for r0
1, r0

2, . . . , r
0
K , and η0. Here η0 is a Lagrange multiplier. The function V in (4.2)

is the solution of

−V ′′ − 2

r
V = U − a, V ′(0) = V ′(1) = 0, V = 0,(4.3)

where

U(r) = 0, if r ∈ (0, r0
1), and U(r) = 1 if r ∈ (r0

1, r
0
2), . . . .(4.4)

Denote this solution by V(r; r0
1, . . . , r

0
K), where we emphasize in its arguments that

V depends on r0
1, . . . , r

0
K . In (4.2) this V is evaluated at r = r0

j .
The system (4.2) is the Euler–Lagrange equations of the minimizer of the function

J(q1, q2, . . . , qK) = 3τ

K∑
k=1

q2
k +

3γ

2

∫ 1

0

V ′(r; q1, . . . , qK)2r2dr(4.5)

subject to the constraint

−q2
1 + q3

2 + · · · + (−1)Kq3
K +

1 − (−1)K

2
= a.(4.6)

In the mathematics literature J is known as the Γ-limit of (4πε/3)−1I. The Γ-
limit theory thus reduces the study of the infinite dimensional problem I to the study
of the finite dimensional problem J [30, 31].

Whether J has a minimizer depends on γ. In general, J has a minimizer only if
γ is large. The border line is exactly the leading order of γK,e. For K = 2, Table 3
reports the leading order of γ2,e for various a.
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Table 3

The leading order values of γ2,e for various a.

a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γ2,e 171 175 180 186 194 204 216 230 249 271

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γ2,e 300 337 386 453 549 694 932 1379 2432 6590

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.42

1.44

1.46

1.48

1.5

1.52

1.54

1.56

1.58

Fig. 5. J as a function of y is increasing when a = 1/2 and γ = 100.

Let us consider the K = 2 case in more detail. We introduce y so that

y = q3
1 , y + a = q3

2 .(4.7)

J can be viewed as a function of y only without the constraint (4.6). Take a = 1/2.
For γ = 100, J is monotonically increasing in y; see Figure 5. Since γ < γ2,e ≈ 171
from Table 3, there is no 2-interface spherical lamellar solution of (2.9).

When γ = 180 > γ2,e, J is no longer monotone; see Figure 6. In this case, J has
a local minimum, and (2.9) has a 2-interface spherical lamellar solution.

If we further increase γ to 200, the local minimum of J becomes a global minimum;
see Figure 7. The spherical lamellar solution continues to exist.

We now return to the general solution with K interfaces. Near each interface rj
the solution u again has a profile

u(r) = H

(
r − rj

ε

)
+ εPj

(
r − rj

ε

)
+ O(ε2)(4.8)

when j is odd and

u(r) = H

(
− r − rj

ε

)
+ εPj

(
− r − rj

ε

)
+ O(ε2)(4.9)

when j is even. H is the same function defined in (3.3) and Pj is defined by (3.2)
with r1 replaced by rj .

The free energy of this solution is[
4πτ

K∑
j=1

r2
j + 2πγ

∫ 1

0

V ′(r)2r2 dr

]
ε + O(ε2).(4.10)
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0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.73

1.735

1.74

1.745

Fig. 6. J as a function of y has a local minimum when a = 1/2 and γ = 180.

0 0.005 0.01 0.015 0.02 0.025 0.03 0.035 0.04 0.045 0.05
1.785

1.79

1.795

1.8

1.805

1.81

Fig. 7. J as a function of y has a global minimum when a = 1/2 and γ = 200.

4.2. Stability. Similar to the sphere pattern solution, a K-interface spherical
lamellar solution is stable only if γ is not too large. More precisely, for any given
number of interfaces K, there is a stability threshold γK,s, which is larger than the
existence threshold γK,e, such that the K-interface spherical lamellar solution is stable
if γK,e < γ < γK,s. The solution becomes unstable if γ > γK,s.

To verify these statements and determine γK,s we again turn to the linearized
problem (3.12). But this time u is the K-interface spherical lamellar solution found
in section 4.1. The eigenvalues are again classified by the mode l = 0, 1, 2, . . . . Denote
the eigenvalues whose modes are l by λl. For each l the noncritical eigenvalues all
stay positively away from 0, so it suffices to find the critical eigenvalues to determine
whether u is stable.

When l is equal to 0, there exist K critical eigenvalues. All of them are simple.
One of them is of order ε and has the expansion

λ0 =
3f ′(0)

∑K
k=1(r

0
k)

2

τ
ε + O(ε2),(4.11)
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which is positive. The associated eigenfunction is

φ0(r) =

K∑
j=1

{
H ′

(
r − rj

ε

)
+ εP ′

j

(
r − rj

ε

)
−
[
H ′

(
r − rj

ε

)
+ εP ′

j

(
r − rj

ε

)]}

+ O(ε2).(4.12)

The remaining K − 1 eigenvalues of mode l = 0 are of order ε2. Let us expand
them as

λ0 = μ0ε
2 + O(ε3).(4.13)

The determination of μ0 is more complex.
First, we define a K by K matrix M whose kj-entry is{

(− 2τ
(r0

k
)2 + γ(−1)kV ′(r0

k)) + γG0(r
0
k, r

0
k) if k = j,

γG0(r
0
k, r

0
j ) if k �= j,

(4.14)

where G0 is a Green’s function:

G0(r, s) =

⎧⎨
⎩

s2r2

2 + s− 9s2

5 + s4

2 if r < s,

s2r2

2 + s2

r − 9s2

5 + s4

2 if r ≥ s.
(4.15)

Then we set a nonstandard inner product

〈A,B〉 =

K∑
k=1

AkBk(r
0
j )

2.(4.16)

Let e1, e2, . . . , eK be an orthonormal basis with respect to the inner product (4.16)
and

e1 =
(1, 1, . . . , 1)√

〈(1, 1, . . . , 1), (1, 1, . . . , 1)〉
.(4.17)

The μ0’s are determined from a K − 1 dimensional eigenvalue problem:

K∑
m=2

dmNmn = μ0τdn, n = 2, 3, . . . ,K.(4.18)

The K − 1 by K − 1 matrix N is obtained by projecting the K by K matrix M into
the K − 1 dimensional subspace spanned by e2, e3, . . . , eK :

Nmn = 〈Mem, en〉, m, n = 2, 3, . . . ,K.(4.19)

The inner product in (4.19) is the one defined in (4.16).
These critical eigenvalues all turn out to be positive. This follows as a consequence

of section 4.1. That N is positive definite is equivalent to the fact that r0
j minimizes

J , defined in (4.5). The latter condition is fulfilled when γ > γK,e. Hence l = 0 is a
stable mode. To each one of these k − 1 λ0’s, the corresponding eigenfunction φ0(r)
is given with the help of the eigenvector (d2, d3, . . . , dK) of (4.18):

φ0(r) =

K∑
j=1

cj

[
H ′

(
r − rj

ε

)
+ εP ′

j

(
r − rj

ε

)]
+ O(ε2),(4.20)
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Table 4

The (leading order) values of γ2,s for various a and the corresponding mode l.

a .5 .525 .55 .575 .6 .625 .65 .675 .7 .725
γ2,s 1162 1067 1002 956 931 919 924 943 951 939

l 4 3 3 3 3 3 3 3 2 2

a .75 .775 .8 .825 .85 .875 .9 .925 .95 .975
γ2,s 952 999 1077 1199 1393 1711 2241 3254 5684 15454

l 2 2 2 2 2 2 2 2 2 2

where

(c1, c2, . . . , cK) =

K∑
n=2

dnen.(4.21)

When l is greater than 0, there are K critical eigenvalues for each l. They all
have multiplicity 2l + 1. All of them are of order ε2. If we write

λl = ε2μl + O(ε3),(4.22)

then the μl’s are found by solving the K-dimensional eigenvalue problem

[
(l(l + 1) − 2)τ

(r0
k)

2
+ (−1)kγV(r0

k)

]
ck + γ

K∑
j=1

Gl(r
0
k, r

0
j )cj = μlτck,

k = 1, 2, . . . ,K,(4.23)

where Gl is another Green’s function:

Gl(r, s) =

{
( s1−l

2l+1 + (l+1)s2+l

l(2l+1) )rl if r < s,

s2+l( r
−1−l

2l+1 + (l+1)rl

l(2l+1) ) if r ≥ s.
(4.24)

These critical eigenvalues are not always positive. There exists a stability threshold
γK,s so that when γK,e < γ < γK,s all the critical eigenvalues are positive, and hence
the K-interface solution u is stable, and when γ > γK,s at least one critical eigenvalue
is negative and the K-interface solution u is unstable. To each λl the corresponding
eigenfunctions are φl(r)Ylm, m = 0,±1, . . . ,±l. φl is determined with the help of the
eigenvectors ck in (4.23):

φl(r) =

K∑
j=1

cj

[
H ′

(
r − rj

ε

)
+ εP ′

j

(
r − rj

ε

)]
+ O(ε2).(4.25)

Table 4 reports the stability threshold values for various a. Note that the γ2,s’s
are greater than the corresponding γ2,e. Hence there is a range (γ2,e, γ2,s) for γ where
the 2-interface spherical lamellar pattern is stable.

5. Discussion. The single sphere pattern studied in section 3 gives only a limited
picture of the spherical phase of a diblock copolymer, where multiple spheres coexist.
Moreover, the spheres are observed to pack in the BCC pattern. An analytic study
of such a multisphere pattern requires more refined singular perturbation techniques.
The main difficulty is that the spheres in such a phase are only approximately round.
The following argument illustrates this point.
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It is known that even in a general domain, which we call Ω, (2.9) has a singular
limit as ε → 0 [30]. The leading order outer expansion u0 of u, a solution of (2.9), has
the property that for a.e. x ∈ Ω u0(x) = 0 or u0(x) = 1 and u0 = a. Let S be the
union of the interfaces that separate the regions u0 = 0 (B-rich microdomains) from
the regions u0 = 1 (A-rich microdomains), and v0 = (−Δ)−1(u0 − a). In the singular
limit an interface is a two-dimensional surface, with no thickness. At every x ∈ S,

τκ(x) + γv0(x) = η0,(5.1)

where κ(x) is the mean curvature of S at x viewed from the u0 = 1 side, and η0 is
a Lagrange multiplier to be determined. Equation (5.1) is a generalization of (4.2).
The constraint (4.2) is replaced by u0 = a. If the free boundary problem (5.1) admits
an isolated stable solution u0, then near u0 there exists a local minimizer solution u of
(2.9). However, (5.1) is still a challenging nonlocal geometric problem. Even though
Figure 1 suggests that we look for solutions with multiple spheres, (5.1) implies that
for such a solution the curvature of the interface of a sphere is in general not constant
(there is the impact of v0), i.e., the spheres are not exactly round, unless we deal with
the one sphere or the spherically lamellar solutions in a ball as in this paper.

Nevertheless, if we consider the situation where a is close to 0 (or 1), then v0

is near constant throughout Ω, and hence κ becomes close to a constant and the
spheres are approximately round. The spherical phase in Figure 1 is thus heuristically
explained. One must realize that in the small a case, i.e., small droplet/high curvature
case, the parameter ε should be significantly less than a; otherwise we cannot have
morphologies with microdomains separated by sharp interfaces. It was shown in [40]
that the borderline range for a in one dimension is a ∼ ε1/2. It is not clear at the
moment what the borderline values for a are in two and three dimensions.

The stability threshold γs (or γK,s) is related to a strong segregation bifurcation
phenomenon (not to be confused with the bifurcation analysis in the weak segregation
regime). When γ passes γs (or γK,s) a second solution bifurcates out of the sphere (or
spherical lamellar) solution. The new solution differs from the old one by a quantity
which is roughly proportional to the eigenfunction of the 0 principal eigenvalue at
γ = γs (or γK,s). Because the eigenfunction has the form (3.13), the new solution
has a wiggling interface (or interfaces). The wiggles are determined by the spherical
harmonics Ylm in (3.13); see Figure 8. Such a wiggling interface solution can be
regarded as another defective pattern. If we consider the free energy during the
bifurcation process, the bifurcating branch lowers the nonlocal part of the free energy
by introducing more oscillation but increases the interface energy. The overall free
energy of the bifurcating branch is lower than that of the first branch.

We did not discuss the dynamics of a diblock copolymer system. The purpose
of studying the critical eigenvalues of a solution of (2.9) in this paper is to deter-
mine whether the solution is a local minimizer of (2.2). However, the same critical
eigenvalues also determine the local dynamics, near the solution, of the evolution
equation

ut = ε2Δu− f(u) − εγ(−Δ)−1(u− a) + f(u), ∂νu = 0 on ∂D.(5.2)

Note that
∫
D
u(x) dx is conserved under (5.2) because d

dt

∫
D
u(x) dx = 0 after one in-

tegrates (5.2) over D. The eigenfunctions of the critical eigenvalues give the directions
along which the dynamics of (5.2) runs slowly (the eigenfunctions of the noncritical
eigenvalues are directions of fast dynamics).
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Fig. 8. A cross section of a wiggling sphere solution and a cross section of a wriggled spherical
lamellar solution with two interfaces.

The critical eigenvalues in this context admit geometric interpretations. For the
sphere pattern the eigenfunction of the critical eigenvalue λ0 in (3.14) is radially
symmetric. So the dynamics in this direction involves only the shape change of u in
the radial direction. The eigenfunctions of the critical eigenvalue λ1 in (3.16) have
the forms (x/r)φ1(r), (y/r)φ1(r), and (z/r)φ1(r). They lead to translations of u
in x-, y-, or z-directions in the dynamics. Finally, the eigenfunctions of the critical
eigenvalues λl, l > 1, in (3.18) give rise to oscillations of the interfaces. The same
interpretations are also valid for the spherical lamellar pattern. Because all these
eigenfunctions concentrate at the interface rj by (3.15), (3.17), (4.12), (4.20), and
(4.25), the dynamics along the directions of the critical eigenvalues is seen as the
motion of the interfaces.

However, (5.2) is only one dynamical law that we can associate with (2.2). A
more realistic one is the fourth-order partial differential equation [2]

ut = Δ(−ε2Δ + f(u)) − εγ(u− a), ∂νu = ∂νΔu = 0 on ∂D.(5.3)

Equation (5.3) generalizes the well-known Cahn–Hilliard equation [5]. Based on a
spectral comparison argument [4], one shows that a steady state is stable under (5.2) if
and only if it is stable under (5.3) [27]. Hence our results on the stability of the various
steady states in this paper remain valid in the dynamics (5.3). An even more complex
dynamical law considers a diblock copolymer melt as a fluid. It adds the velocity field
and couples (5.3) with the Navier–Stokes equation of the velocity field [2].

We are mainly interested in stable solutions of (2.9). They are local minimizers
of (2.2). We do not know whether or not any of the solutions found in this paper
is a global minimizer. There also exist unstable spherical lamellar solutions even for
γ ∈ (γK,e, γK,s). In Figures 6 and 7, when γ > γ2,e, in addition to the minimum of J
there exists a local maximum of J . This maximum point corresponds to an unstable
spherical lamellar solution. This unstable solution exists for γ ≥ γ2,s as well. The
instability of this solution is caused by the m = 0 mode.

In the functional (2.2) the key ingredient is the nonlocal term. It describes a
long range interaction. Many other important physical systems that exhibit self-
organization and pattern formation share the same phenomenon [42]. Examples in-
clude charged Langmuir monolayers [1] and smectic liquid crystal films [41]. Many of
the singular perturbation techniques presented here may be applied to these problems
[29, 34, 37, 36].

The nonlocal interaction in (2.2) is of Coulomb type [25]. Some of the above-
mentioned problems have different nonlocal interactions. In the charged monolayer



SPHERICALLY LAYERED SOLUTIONS 1097

problem the nonlocal term is written as∫
D

∫
D

(u(x) − a)Gc(x, y)(u(y) − a) dxdy,(5.4)

which assumes the same form as (2.8). However, the kernel Gc is different. If D is
a square, i.e., (0, 1)2, with the periodic boundary condition, then Gc is translation
invariant so that Gc(x, y) = Gc(x− y). The Fourier series of Gc is

Ĝc(ξ) =
1

|ξ| .(5.5)

Note that for the diblock copolymer problem the corresponding G on a square is

Ĝ(ξ) =
1

|ξ|2 .(5.6)

Hence as |ξ| → ∞, (5.6) has a faster decay rate than (5.5). Many properties, such as
the optimal size discussed in section 3.2, are sensitive to these decay rates. In general
with a slower decay rate, one finds smaller microdomains [34].

In the smectic liquid crystal film problem, the nonlocal interaction comes from
a coupling effect with the director field. In this case, because of the unit length
constraint on the director field, the nonlocal interaction is no longer quadratic [36].

6. Conclusion. We used asymptotic analysis to study the Ohta–Kawasaki den-
sity functional theory for diblock copolymers. We constructed a single sphere pattern
in a unit ball. Such a pattern is a cell in the spherical morphology. We showed the
existence of the sphere pattern as a solution of the Euler–Lagrange equation of the
free energy. We identified the optimal size of such a cell with the least free energy. We
also found a stability threshold. The sphere is stable if it is less than the threshold
value and unstable if it is greater than the threshold value. The stability threshold
value is greater than the optimal size. At the stability threshold, there is another
solution, a bifurcating branch. It has an interface of a wriggled sphere. This solution
has lower free energy than that of the first solution.

Next we studied a spherical lamellar pattern, which we view as a defective lamel-
lar pattern. Singular perturbation analysis allowed us to reduce the existence and
stability problems in infinite dimensions to existence and matrix problems in finite
dimensions. We found two thresholds: an existence threshold and a larger, stability
threshold. There is a spherical lamellar pattern only when the size of the sample is
larger than the existence threshold value. This patten is stable only when the size
of the sample is between the existence threshold and the stability threshold. At the
stability threshold, there is a bifurcating branch with a pattern of wriggled spherical
interfaces. The bifurcating branch again has lower free energy.
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A STAGE-STRUCTURED PREDATOR-PREY MODEL OF
BEDDINGTON–DEANGELIS TYPE∗

SHENGQIANG LIU† AND EDOARDO BERETTA‡

Abstract. We formulate and study a robust stage structured predator-prey model of Beddington–
DeAngelis-type functional response. The time delay is the time taken from birth to maturity. The
Beddington–DeAngelis functional response is similar to the Holling type 2 functional response but
contains an extra term describing mutual interference by predators. First we show that the predator
coexists with prey permanently if and only if the predator’s recruitment rate at the peak of prey
abundance is larger than its death rate. Second, we show that if the system is permanent, then
a sufficiently large degree of the predator interference can not only stabilize the system but also
guarantee the stability of the system against the increase of the carrying capacity of prey and the
increase of birth rate of the adult predator. Third, we show both analytically and numerically that
stability switches of interior equilibrium may occur as maturation time delay increases: stability may
change from stable to unstable to finally stable, implying that a large delay can be stabilizing.

Key words. delay, predator-prey, stage structure, Beddington–DeAngelis
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1. Introduction. The goal in this paper is to study a stage structured predator-
prey model with Beddington–DeAngelis-type functional response. It is a central goal
for ecologists to understand the relationship between predator and prey, and one
significant component of the predator-prey relationship is the predator’s functional
responses or so-called predator’s rate of feeding upon prey in other references [39],
i.e., the rate of prey consumption by an average predator.

As for the mathematical predator-prey models, the description of a predator’s
instantaneous, per capita feeding rate, f , as a function of prey abundance x, is the
classic definition of a predator’s functional responses. There have been several fa-
mous functional response type: Holling types I–III [19], [20]; Hassell–Varley type [17];
Beddington–DeAngelis type by Beddington [6] and DeAngelis, Goldstein, and Neill
[13] independently; the Crowley–Martin type [12]; and the recent well-known ratio-
dependence type by Arditi and Ginzburg [3] later studied by Kuang and Beretta [27].
Of them, the Holling type I–III was labeled “prey-dependent” and the other types
that consider the interference among predators were labeled “predator-dependent” by
Arditi and Ginzburg [3]. Recently, “predator-dependent” type models have received
much support from theoretical and empirical work in biology (see [4], [5], [11], [37],
[38], [39], and the references therein). In [5], Abrams and Ginzburg even pointed out
that “precise prey dependence and ratio dependence will both be rare” while “preda-
tor dependence will be common.” In [39], by comparing the statistical evidence from
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19 predator-prey systems with three predator-dependent functional responses, Skalski
and Gilliam pointed out that the predator-dependent functional responses can provide
better descriptions of predator feeding over a range of predator-prey abundances, and
in some cases, the Beddington–DeAngelis-type functional response (hereafter the BD
model) performed even better. Although the predator-dependent models that they
considered fit those data reasonably well, no single functional response best describes
all the data sets. The Beddington–DeAngelis response can be generated by a num-
ber of natural mechanisms [6], [11], [38] and because it admits rich but biologically
reasonable dynamics [9], it is worthy for us to further study the BD model.

The per capita feeding rate of BD model takes the form [6]

(1.1) f(x, y) =
bx

1 + k1x + k2y
,

and thus the BD model takes the form

(1.2)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′(t) = rx(t)

(
1 − x(t)

K

)
− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) =
nbx(t)y(t)

1 + k1x(t) + k2y(t)
− dy(t),

where x and y represent prey and predator densities; b (units: 1/time) and k1 (units:
1/prey) are positive constants that describe the effects of capture rate and handling
time, respectively, on the feeding rate; n is the birth rate of the predator; and k2 ≥ 0
(units: 1/predator) is a constant describing the magnitude of interference among
predators [13]. The BD model is similar to the well-known Holling II type functional
response (hereafter the H2 model) but has an extra term k2y in the denominator
modeling mutual interference among predators. Hence this kind of type functional
response given in (1.1) is affected by both predator and prey, i.e., the so-called predator
dependence by Arditi and Ginzburg [3]. Dynamics for the H2 model have been much
studied ([22], [25], and references therein). Then how the mutual interference term
affects the dynamic of the whole system is an interesting problem.

Many recent works have contributed to the BD model (1.2) [9], [10], [14], [23],
[24], [33], [36]. Cantrell and Cosner [9] considered (1.2) and obtained the criteria
for permanence, extinction, global stability of the interior equilibrium, and existence
of periodic orbits. They showed that k2 does affect the location and stability of the
equilibrium for (1.2): (1) Adequate increase of k2 may change the positive equilibrium
from unstable to stable. (2) Having k2 > 0 can stabilize the system by reducing the
extent to which trajectories can exhibit “boom-bust” behavior. Therefore, the effect
of k2 in system (1.2) is to introduce a self-limiting term into the predator equation.

Hwang [23] showed that the interior equilibrium of system (1.2) is globally stable
provided it is locally asymptotically stable. In [24], Hwang obtained the sufficient
conditions for the uniqueness of limit cycles of (1.2).

Liu and Yuan [33] considered time delay τ in the response term f(x, y) of (1.1)
in the predator equation, that is,

(1.3)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

x′(t) = rx(t)

(
1 − x(t)

K

)
− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) = y(t)

[
−d +

nbx(t− τ)

1 + k1x(t− τ) + k2y(t− τ)

]
.
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In the second equation of (1.3), there is a nondelay term y(t), which is similar to
the delay models studied by Kuang [26] and Beretta and Kuang [7], where τ can be
regarded as a gestation period or reaction time of the predations (see Martin and
Ruan, [34]). By choosing the delay τ as a parameter, Liu and Yuan [33] showed
that as τ crosses some critical values, Hopf bifurcation about the stability of interior
equilibrium in (1.3) can occur.

Although much progress has been seen in the above work on BD model, such mod-
els are not well studied yet in the sense that all the known results are for models that
ignore the enormous diversity during the life histories of the predator. Unfortunately,
this is not realistic due to the following reasons:

1. Juvenile predators have a time lag from their birth to maturity.
2. Young predators are raised by their parents or are dependent on the nutri-

tion from the eggs they stay in and they are much weaker than the mature
predators, hence the juvenile predators cannot hunt the prey, nor can they
breed.

3. Young predators reach maturity after surviving the immature stage; if the ju-
venile death rate (through-stage death rate) is nonzero, then not all immature
predators can survive the juvenile stage.

Therefore, it is realistic and interesting for us to construct the stage-structured
predator-prey model and study the combined effects of stage structure and mutual in-
terference by predators. Most existing stage structure models (see [1], [28], [29], [30],
[35], [2], and the references therein) deal with single species growth that assume a
constant resource supply [15]. Recently, Gourley and Kuang [15] formulated a robust
stage-structured predator-prey model with the assumption that stage-structured con-
sumer species growth is a combined result of birth and death processes, both of which
are closely linked to the dynamical supply of resource. Enlightened by the modeling
methods in [15], we formulate the robust stage-structured BD model as follows:

(1.4)

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)

(
1 − x(t)

K

)
− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) =
nbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t),

y′j(t) =
nbx(t)y(t)

1 + k1x(t) + k2y(t)
− nbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− djyj(t),

x(θ), y(θ) ≥ 0 are continuous on − τ ≤ θ ≤ 0, and x(0), y(0), yj(0) > 0,

where x(t) and y(t) represent prey and the mature predator densities, respectively, and
yj(t) denotes the immature or juvenile predator densities. We assume that juveniles
suffer a mortality rate of dj(the through-stage death rate) and take τ units of time to
mature; thus e−djτ is the surviving rate of each immature predator to reach maturity.
And for the continuity of the solutions to system (1.4), in this paper, we require

(1.5) yj(0) = bn

∫ 0

−τ

edjsx(s)y(s)

1 + k1x(s) + k2y(s)
ds.

By the third equation of system (1.4), the initial conditions (1.5), and using the
arguments similar to Lemma 3.1 in [31, p. 672], we have

(1.6) yj(t) = bn

∫ 0

−τ

edjsx(t + s)y(t + s)

1 + k1x(t + s) + k2y(t + s)
ds,
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i.e., yj(t) is completely determined by x(t), y(t), and thus the following system can
be separated from system (1.4):

(1.7)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)

(
1 − x(t)

K

)
− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) =
nbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t),

x(θ), y(θ) ≥ 0 is continuous on − τ ≤ θ ≤ 0, and x(0), y(0) > 0.

In the present paper, our main purpose is to study the global dynamics of our sys-
tem (1.4) and to consider how the stage structure parameters djτ and the predator
interference parameter k2 affect the dynamical behaviors of system (1.4).

This paper is organized as follows. In the next section, we consider the equilibria
for system (1.4) and give the conditions for the existence of the positive equilibrium.
In section 3, we obtain the necessary and sufficient conditions for the extinction of
predator and for the permanence of system (1.4). This is followed by a section on the
global attractiveness of the positive equilibrium. The local stability of the equilibria of
(1.4) is considered in section 5. The analysis of positive equilibrium is highly nontrivial
and we provide only generic conditions for its stability switch, but we manage to give
the sufficient conditions for the asymptotic stability of the positive equilibrium which
require large k2. To complement this analytic work, we also present some carefully
designed simulation results. The paper ends with a discussion.

2. Equilibria. Because of (1.6), we only consider the equilibria (x, y) of system
(1.7), which are solutions of the system

(2.1)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

rx
(
1 − x

K

)
− bxy

1 + k1x + k2y
= 0,

nbe−djτxy

1 + k1x + k2y
− dy = 0.

It is easy to see that for all parameter values (1.7) has the equilibria E0 = (0, 0), E1 =
(K, 0). By (2.1), system (1.7) has the positive equilibrium E = (x∗, y∗) iff

(2.2)
nbe−djτK

1 + k1K
> d,

where

(2.3) x∗ =
1

2

(
−B +

√
B2 + 4C

)
, y∗ =

x∗(nbe−djτ − dk1) − d

dk2

with

B =
K

r

(
nbe−djτ − dk1

ne−djτk2
− r

)
; C =

Kd

rne−djτk2
.

Hence the positive equilibrium E exists for all predation maturation times τ in
the interval I = [0, τ∗), where

(2.4) τ∗ =
1

dj
log

Knb

d(1 + Kk1)
.
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Increase of τ in I will lower y∗ until E will coincide with E1 at the finite value τ∗,
and for higher τ there is no positive equilibrium.

On the other hand, k2 does not affect the existence of the positive equilibrium
since k2 is not involved in (2.2). However, (2.3) indicates that increase of k2 will lower
y∗ until E will coincide with E1 at the infinite value k2.

3. Permanence and extinction. Here the following results give conditions
which are both necessary and sufficient for the permanence, extinction, of system
(1.4), respectively.

Theorem 3.1. limt→∞(x(t), y(t), yj(t)) = (K, 0, 0) holds true iff nbe−djτK
1+k1K

≤ d
holds true.

Theorem 3.2. System (1.4) is permanent iff it satisfies (2.2).
Theorem 3.1 and Theorem 3.2 directly generalize Theorem 3.1 in [9] into the

stage-structured case.
Mathematically, Theorem 3.2 suggests that the permanence of (1.4) is equivalent

to its existence of positive equilibrium. Biologically, Theorem 3.2 shows that the
predator coexists with prey permanently iff the predator’s recruitment rate at the
peak of prey abundance is more than its death rate.

Let k2 = 0, i.e., f(x, y) in (1.1) becomes the H2 functional response. By Theorem
3.1 and Theorem 3.2, we directly have the following corollary.

Corollary 3.3. Given system (1.4) with k2 = 0, then limt→∞(x(t), y(t), yj(t)) =

(K, 0, 0) holds true iff nbe−djτK
1+k1K

≤ d holds true.
Corollary 3.4. Given system (1.4) with k2 = 0, then it is permanent iff it

satisfies nbe−djτK
1+k1K

> d.
Let k1 = k2 = 0, i.e., f(x, y) becomes the Holling type I functional response. By

Theorem 3.1 and Theorem 3.2, we directly have the next corollary.
Corollary 3.5. Given system (1.4) with k1 = k2 = 0, then limt→∞(x(t), y(t),

yj(t)) = (K, 0, 0) holds true iff nbe−djτK ≤ d holds true.
Corollary 3.6. Given system (1.4) with k1 = k2 = 0, then it is permanent iff

it satisfies nbe−djτK > d.
For stage-structured predator-prey system with functional response of Holling I–

II, Gourley and Kuang [15, Theorem 3.1] give the necessary and sufficient conditions
on extinction of predator, which is included in our Corollaries 3.3 and 3.5. Further,
Corollary 3.4 suggests that the stage-structured H2 and BD systems share the same
permanence and extinction conditions. Hence, mutual interference coefficient k2 does
not affect the permanence of system (1.4), which is also an extension of the corre-
sponding conclusions in [9].

To prove the above main results, we need some preliminary results. By arguments
similar to Lemma 1 in [28], we have the following.

Lemma 3.7. Suppose y(θ) ≥ 0 is continuous on − τ ≤ θ ≤ 0, and x(0), y(0),
yj(0) > 0. Then the solution of system (1.4) satisfies x(t), y(t), yj(t) > 0 for all t > 0.

Lemma 3.8. Permanence of x(t), y(t) in system (1.4) implies that of yj(t).
Proof. Since x(t), y(t) have positive ultimately upper and lower boundaries, using

(1.6) we get

0 < lim
t→∞

yj(t) ≤ lim
t→∞

yj(t) < ∞,

proving Lemma 3.8.
Lemma 3.9. System (1.4) is always dissipative in the first quadrant.
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Proof. By the first equation of system (1.4), ẋ(t) < rx(t)(1 − x(t)
K ); thus we have

(3.1) lim
t→∞

x(t) ≤ K.

Let W (t) = ne−djτx(t) + y(t + τ), then we have

Ẇ (t)|(1.4) = −dy(t + τ) + ne−djτrx(t)

(
1 − x(t)

K

)

= −dW (t) + nde−djτx(t) + ne−djτrx(t)

(
1 − x(t)

K

)

By (3.1), there exist some positive constant B, T , such that Ẇ (t)|(1.4) ≤ B − dW (t)

for all t ≥ T. Thus limt→∞W (t) ≤ B/d, and consequently x(t), y(t) are ultimately
bounded; using (1.6) we also have that yj(t) is ultimately bounded, proving Lemma
3.9.

Proof of Theorem 3.1. For the sufficiency of the theorem, we consider two
cases.

Case 1. nbe−djτK
1+k1K

< d.

By Lemma 3.9, for the sufficiently small positive constant ε with nbe−djτ (K+ε)
1+k1(K+ε) < d,

there exists a T = Tε > 0 such that x(t) < K + ε for all t > T ; substitute it into the
second equation of (1.4), we get that for all t > T + τ , there is

y′(t) <
nbe−djτ (K + ε)y(t− τ)

1 + k1(K + ε) + k2y(t− τ)
− dy(t) <

nbe−djτ (K + ε)y(t− τ)

1 + k1(K + ε)
− dy(t).

Since nbe−djτ (K+ε)
1+k1(K+ε) < d, Lemma 2 of Liu et al. [28, p. 131] implies that the solution

for the comparison equation

u′(t) =
nbe−djτ (K + ε)u(t− τ)

1 + k1(K + ε)
− du(t)

satisfies limt→∞ u(t) = 0, which with Lemma 3.7 proves limt→∞ y(t) = 0. Therefore
by the third equation of (1.4) and the arguments by Liu et al. [28, p. 128], we get
that limt→∞ y(t) = 0 implies limt→∞ yj(t) = 0, hence by the first equation of system
(1.4), we get limt→∞ x(t) = K, proving Case 1.

Case 2. nbe−djτK
1+k1K

= d.
By the first equation of system (1.4), x(t) is always decreasing when above K.

We can prove that if there exists some t0 > 0 such that x(t0) < K, then x(t) < K
for all t > t0. Otherwise there must exist some t1 > t0 such that x(t1) = K and
x′(t1) ≥ 0. This is impossible. Hence, there are two possible cases, either

(1) x(t) > K and x(t) → K as t → ∞, or
(2) there exists some t0 > 0 such that x(t0) < K.
For the first of these cases, we only need to prove that limt→∞ y(t) = 0, since this

implies limt→∞ yj(t) = 0. Integrating the equation for x(t) in (1.4), we have

x(t) − x(0) =

∫ t

0

rx(s)

(
1 − x(s)

K

)
ds−

∫ t

0

bx(s)y(s)

1 + k1x(s) + k2y(s)
ds

<

∫ t

0

rx(s)

(
1 − x(s)

K

)
︸ ︷︷ ︸

x(s)≥K

ds−
∫ t

0

bKy(s)

1 + k1K + k2y(s)
ds
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for all t ≥ t0, and then∫ t

0

bKy(s)

1 + k1K + k2y(s)
ds < x(0) − x(t) +

∫ t

0

rx(s)

(
1 − x(s)

K

)
︸ ︷︷ ︸

≤0

ds < x(0).

By the boundedness of y(t), then
∫ t

0
y(s)ds is bounded for all t ≥ t0, and this implies

limt→∞ y(t) = 0.
For the second of these cases, consider the function

V = y(t) + d

∫ t

t−τ

y(s)ds.

Then for all t ≥ t0 + τ , we have

dV

dt
|(1.4) =

nbe−djτx(t− τ)y(t− τ)

1 + k1x(t− τ) + k2y(t− τ)
− dy(t) + d(y(t) − y(t− τ))

= y(t− τ) ·
(

nbe−djτx(t− τ)

1 + k1x(t− τ) + k2y(t− τ)︸ ︷︷ ︸
x(t−τ)<K

−d

)

< y(t− τ) ·
(

nbe−djτK

1 + k1K + k2y(t− τ)
− d

)

= − dk2y
2(t− τ)

1 + k1K + k2y(t− τ)
< 0,

which with Lemma 3.7 proves limt→∞ y(t) = 0. This proves nbe−djτK
1+k1K

≤ d is the
sufficient condition for limt→∞(x(t), y(t), yj(t)) = (K, 0, 0).

Now, we prove limt→∞(x(t), y(t), yj(t)) = (K, 0, 0) =⇒ nbe−djτK
1+k1K

≤ d. Assume

the contrary, i.e., nbe−djτK
1+k1K

>d; then system (1.4) has a positive equilibrium (x∗, y∗, y∗j ),
contradicting limt→∞(x(t), y(t), yj(t)) = (K, 0, 0) for all solution (x(t), y(t), yj(t)).

Hence there must be nbe−djτK
1+k1K

≤ d, and this proves Theorem 3.1.
To prove Theorem 3.2, we engage the persistence theory by Hale and Waltmann

[16] for infinite dimensional systems; we also refer to Thieme [40]. Now, we present
the persistence theory [16] as follows.

Consider a metric space X with metric d. T is a continuous semiflow on X, i.e.,
a continuous mapping T : [0,∞) ×X → X with the following properties:

Tt ◦ Ts = Tt+s, t, s ≥ 0; T0(x) = x, x ∈ X.

Here Tt denotes the mapping from X to X given by Tt(x) = T (t, x). The distance
d(x, y) of a point x ∈ X from a subset Y of X is defined by

d(x, y) = inf
y∈Y

d(x, y).

Recall that the positive orbit γ+(x) through x is defined as γ+(x) = ∪t≥0{T (t)x},
and its ω−limit set is ω(x) = ∩τ≥0CL∪t≥τ {T (t)x}, where CL means closure. Define
W s(A) the stable set of a compact invariant set A as

W s(A) = {x : x ∈ X, ω(x) �= φ, ω(x) ⊂ A};
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define Ã∂ the particular invariant sets of interest as

Ã∂ =
⋃

x∈A∂

ω(x).

(H1). Assume X is the closure of open set X0; ∂X0 is nonempty and is the
boundary of X0. Moreover the C0−semigroup T (t) on X satisfies

T (t) : X0 → X0, T (t) : ∂X0 → ∂X0.

Lemma 3.10 (see [16, Theorem 4.1, p. 392]). Suppose T (t) satisfies (H1) and
(i) there is a t0 ≥ 0 such that T (t) is compact for t > t0;
(ii) T (t) is point dissipative in X;

(iii) Ã∂ is isolated and has an acyclic covering M .
Then T (t) is uniformly persistent iff for each Mi ∈ M , W s(Mi)

⋂
X0 = φ.

Proof of Theorem 3.2.
Claim 1. The condition (2.2) leads to the permanence of system (1.4).
We begin by showing Claim 1 holds true for system (1.7), the subsystem of system

(1.4), as the first step, we verify that the boundary planes of R2
+ = {(x, y) : x ≥

0, y ≥ 0} repel the positive solutions to system (1.7) uniformly.
Let C+([−τ, 0], R2

+) denote the space of continuous functions mapping [−τ, 0] into
R2

+. We choose

C1 = {(ϕ0, ϕ1) ∈ C+([−τ, 0], R2
+) : ϕ0(θ) ≡ 0, ϕ1(θ) > 0, θ ∈ [−τ, 0]},

C2 = {(ϕ0, ϕ1) ∈ C+([−τ, 0], R2
+) : ϕ0(θ) > 0, ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]}.

Denote C = C1

⋃
C2, X = C+([−τ, 0], R2

+), and X0 = IntC+([−τ, 0], R2
+); then

C = ∂X0. It is easy to see that system (1.7) possesses, two constant solutions in

C = ∂X0: Ẽ0 ∈ C1, Ẽ1 ∈ C2 with

Ẽ0 = {(ϕ0, ϕ1) ∈ C+([−τ, 0], R2
+) : ϕ0(θ) ≡ ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]},

Ẽ1 = {(ϕ0, ϕ1) ∈ C+([−τ, 0], R2
+) : ϕ0(θ) ≡ K, ϕ1(θ) ≡ 0, θ ∈ [−τ, 0]}.

We verify below that the conditions of Lemma 3.10 are satisfied. By the definition
of X0 and ∂X0 and system (1.7), it is easy to see that conditions (i) and (ii) of Lemma
3.10 are satisfied and that X0 and ∂X0 are invariant. Hence (H1) is also satisfied.

Consider condition (iii) of Lemma 3.10. We have

ẋ(t)|(ϕ0,ϕ1)∈C1
≡ 0,

thus x(t)|(ϕ0,ϕ1)∈C1
≡ 0 for all t ≥ 0. Hence we have

ẏ(t)|(ϕ0,ϕ1)∈C1
= −dy(t) ≤ 0,

from which follows that all points in C1 approach Ẽ0, i.e., C1 = W s(Ẽ0). Similarly we

can prove that all points in C2 approach Ẽ1, i.e., C2 = W s(Ẽ1). Hence Ã∂ = Ẽ0

⋃
Ẽ1

and clearly it is isolated. Noting that C1

⋂
C2 = φ, it follows from these structural

features that the flow in Ã∂ is acyclic, satisfying condition (iii) of Lemma 3.10.

Now we show that W s(Ẽi)
⋂
X0 = φ, i = 0, 1. By Lemma 3.7, we have x(t), y(t) >

0 for all t > 0. Assume W s(Ẽ0)
⋂
X0 �= φ, i.e., there exists a positive solution
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(x(t), y(t)) with limt→∞(x(t), y(t)) = (0, 0), then using the first equation of (1.7), we
get

d(lnx(t))

dt
= r(1 − x(t)

K
) − by(t)

1 + k1x(t) + k2y(t)
>

r

2

for all sufficiently large t. Hence we have limt→∞ x(t) = +∞, contradicting

limt→∞ x(t) = 0; this proves W s(Ẽ0)
⋂
X0 = φ.

Now we verify W s(Ẽ1)
⋂
X0 = φ; assume the contrary, i.e., W s(Ẽ1)

⋂
X0 �= φ.

Then there exists a positive solution (x(t), y(t)) to system (1.7) with limt→∞(x(t),
y(t)) = (K, 0), and for sufficiently small positive constant ε with

ε < min

{
nbe−djτK − d− dKk1

2(nbe−djτ − dk1 + dk2)
,
nbe−djτK − d− dKk1

2k2d

}
,

there exists a positive constant T = T (ε) such that

x(t) > K − ε > 0, y(t) < ε for all t ≥ T.

By the second equation of (1.7) we have

(3.2) y′(t) >
nbe−djτ (K − ε)y(t− τ)

1 + k1(K − ε) + k2y(t− τ)
− dy(t), t ≥ T + τ.

Consider the equation

(3.3)

⎧⎨
⎩ v′(t) =

nbe−djτ (K − ε)v(t− τ)

1 + k1(K − ε) + k2v(t− τ)
− dv(t), t ≥ T + τ,

v(t) = y(t), t ∈ [T, T + τ ].

By (3.2) and the comparison theorem, we have y(t) ≥ v(t) for all t > T . On the other
hand, using Theorem 4.9.1 of [26, p. 159], we have limt→∞ v(t) = v∗ for all solutions

to system (3.3), where v∗ = nbe−djτ (K−ε)−d−dk1(K−ε)
dk2

> ε is the unique positive
equilibrium of system (3.3). Hence we get limt→∞ y(t) ≥ v∗ > ε, contradicting

y(t) < ε as t ≥ T. Thus we have W s(Ẽi)
⋂
X0 = φ, i = 0, 1. Now we get that system

(1.7) satisfies all conditions of Lemma 3.10, thus (x(t), y(t)) is uniformly persistent,
i.e., there exists positive constants ε and T = T (ε) such that x(t), y(t) ≥ ε for all
t ≥ T ; noting Lemma 3.9 shows that (x, y) are ultimately bounded, and this proves
the permanence of system (1.7). By Lemma 1.6, yj(t) is permanent, and this proves
the permanence of system (1.4).

We verify below that permanence of system (1.4) indicates (2.2). Assume the

contrary, i.e., nbe−djτK
1+k1K

≤ d; then by Theorem 3.1, x(t) → K, y(t) → 0 as t → ∞,
contradicting permanence of (1.4). This proves Theorem 3.2.

4. Global attractiveness. In this section, we consider the global stability of
the interior equilibrium in system (1.7). We have the following result.

Theorem 4.1. The positive equilibrium E in system (1.7) is globally attractive
provided that system (1.7) is permanent and

(4.1) k2 > max

{
bK(nbe−djτ − k1d)

r[(nbe−djτ − dk1)K − d]
,
bK(nbe−djτ − k1d)

rd
,

b

r

}

holds true.
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Consider the following single species system with delay:

(4.2) v′(t) =
a1v(t− τ)

1 + a2v(t− τ)
− a3v(t), v(t) = φ(t) ≥ 0, v(0) > 0, t ∈ [−τ, 0],

where ai > 0, i = 1, 2, 3. Similar to Lemma 3.7, we have v(t) > 0 for all t ≥ 0. From
Theorem 4.9.1 in [26] we directly have the following lemma.

Lemma 4.2. System (4.2) has a unique positive equilibrium v∗ = a1−a3

a2a3
that is

globally asymptotically stable provided a1 > a3.
Proof of Theorem 4.1. By first condition and Theorem 3.2, we have that (2.2)

holds. By the first equation of (1.7) and the arguments to Lemma 3.9, for sufficiently
small ε > 0, there is a T1 > 0 such that x(t) < K + ε = x1 for t ≥ T1. Replacing this
inequality into the second equation of (1.7), we have

y′(t) <
nbe−djτx1y(t− τ)

1 + k1x1 + k2y(t− τ)
− dy(t), t ≥ T1 + τ.

Consider the system⎧⎪⎨
⎪⎩

v′(t) =
nbe−djτx1v(t− τ)

1 + k1x1 + k2v(t− τ)
− dv(t), t ≥ T1 + τ,

v(t) ≡ y(t), t ∈ [T1, T1 + τ ].

Noting nbe−djτx1 − d(1 + k1x1) > nbe−djτK − d(1 + k1K) > 0. Thus by Lemma 4.2,
we have

lim
t→∞

v(t) =
nbe−djτx1 − d(1 + k1x1)

k2d
> 0.

By the comparison theorem, we have y(t) ≤ v(t), t ≥ T1 + τ. Then for the sufficiently
small ε > 0, there exists T2 > T1 + τ such that

(4.3) y(t) <
nbe−djτx1 − d(1 + k1x1)

k2d
+ ε = y1, t ≥ T2.

Replacing (4.3) into the first equation of (1.7), we have

x′(t) > rx(t)(1 − x(t)

K
) − bx(t)y1

1 + k2y1
, t ≥ T2.

By (4.1), r > b
k2

> by1

1+k2y1
. Using the comparison theorem, for sufficiently small ε > 0,

there is a T3 > T2 such that

(4.4) x(t) > z∗ − ε = x1 > 0, t ≥ T3,

where z∗ = K · [1 − by1

r(1+k2y1) ] > 0 is the positive root for the equation

rx(t)(1 − x(t)

K
) − bx(t)y1

1 + k2y1
= 0.

Replacing (4.4) into the second equation of (1.7), we have

y′(t) >
nbe−djτx1y(t− τ)

1 + k1x1 + k2y(t− τ)
− dy(t), t ≥ T3 + τ.
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By (4.4), we have

nbe−djτx1 − d(1 + k1x1) = (nbe−djτ − dk1) ·
{
K[1 − by1

r(1 + k2y1)
] − ε

}
− d

> (nbe−djτ − dk1) ·
{
K[1 − b

rk2
] − ε

}
− d

=
(nbe−djτ − dk1)(K − ε) − d

k2

·
{
k2 −

bK(nbe−djτ − dk1)

r[(nbe−djτ − dk1)(K − ε) − d]

}
.

Using (4.1), we can get

(4.5) nbe−djτx1 − d(1 + k1x1) > 0 for sufficiently small ε.

By Lemma 4.2 and the similar arguments to y1, for the above selected ε > 0, there
exists T4 > T3 + τ such that

(4.6) y(t) >
nbe−djτx1 − d(1 + k1x1)

k2d
− ε = y1 > 0, t ≥ T4.

Therefore we have that

x1 < x(t) < x1, y1 < y(t) < y1, t ≥ T4,

hold for system (1.7).
Replacing (4.6) into the first equation of (1.7), we have

x′(t) < rx(t)(1 − x(t)

K
) −

bx(t)y1

1 + k2y1
, t ≥ T4.

Since r − by1

1+k2y1
> r − by1

1+k2y1
> 0, by the comparison theorem, for sufficiently small

ε > 0, there is a T5 > T4 such that

(4.7) x(t) < z∗1 + ε = x2 > 0, t ≥ T5,

with z∗1 = K · [1 − by1

r(1+k2y1) ] > 0. From the definition of x2 we get

x2 < K < x1.

Replacing (4.7) into the second equation of (1.7), we have

y′(t) <
nbe−djτx2y(t− τ)

1 + k1x2 + k2y(t− τ)
− dy(t), t ≥ T5 + τ.

Since x2 > x1 and noting (4.5), we have nbe−djτx2 −d(1+k1x2) > nbe−djτx1 −d(1+
k1x1) > 0. Thus using arguments similar to above, for the sufficiently small ε > 0,
there is a T6 > T5 + τ such that

(4.8) y(t) <
nbe−djτx2 − d(1 + k1x2)

k2d
+ ε = y2, t ≥ T6,

by (4.3), (4.8) we get y2 < y1.
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Replacing (4.8) into the first equation of (1.7), we have

x′(t) > rx(t)(1 − x(t)

K
) − bx(t)y2

1 + k2y2
, t ≥ T6.

From (4.1), r > b
k2

> by1

1+k2y1
> by2

1+k2y2
. Then by the comparison theorem, for

sufficiently small ε > 0, there is a T7 > T6 such that

(4.9) x(t) > z∗2 − ε = x2 > 0, t ≥ T7,

with z∗2 = K · [1 − by2

r(1+k2y2) ] > 0. By the definition of x2, we have x2 > x1.

Replacing (4.9) into the second equation of (1.7), then by arguments similar to
those for y2, we get that there exists a T8 > T7 + τ such that

(4.10) y(t) >
nbe−djτx2 − d(1 + k1x2)

k2d
− ε = y2 > 0, t ≥ T8,

and we get y2 > y1.
Therefore, we have

(4.11) 0 < x1 < x2 < x(t) < x2 < x1, 0 < y1 < y2 < y(t) < y2 < y1, t ≥ T8.

Repeating the above arguments, we get the four sequences {xn}∞n=1, {xn}∞n=1,
{yn}∞n=1, {yn}∞n=1 with

(4.12)
0 < x1 < x2 < · · · < xn < x(t) < xn < · · · < x2 < x1,
0 < y1 < y2 < · · · < yn < y(t) < yn < · · · < y2 < y1, t ≥ T4n.

From (4.12) follows that the limit of each sequence in {xn}∞n=1, {xn}∞n=1, {yn}∞n=1,
{yn}∞n=1 exists. Denote

x = lim
n→∞

xn, y = lim
n→∞

yn, x = lim
n→∞

xn, y = lim
n→∞

yn;

thus we get x ≥ x, y ≥ y. To complete the proof, it suffices to prove x = x, y = y.
By the definition of yn, ym we have

yn =
nbe−djτxn − d(1 + k1xn)

k2d
+ ε, ym =

nbe−djτxm − d(1 + k1xm)

k2d
− ε;

then we get

(4.13) yn − ym =
nbe−djτ − dk1

k2d
· (xn − xm) + 2ε.

By the definition of xn, xn and using (4.13), we have

(4.14)

xn − xn = K ·
[
1 −

byn−1

r(1 + k2yn−1)

]
−K ·

[
1 − byn

r(1 + k2yn)

]
+ 2ε

=
bK

r
·
[

yn − yn−1

(1 + k2yn−1)(1 + k2yn)

]
+ 2ε

=
bK

r
·
[nbe−djτ − dk1]/k2d · (xn − xn−1) + 2ε

(1 + k2yn−1)(1 + k2yn)
+ 2ε

<
bK

k2dr
· [nbe−djτ − dk1] · (xn − xn−1) + 2ε

(
1 +

bK

r

)
.
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Let n → ∞; then we have

x− x ≤ bK

k2dr
· [nbe−djτ − dk1] · (x− x) + 2ε

(
1 +

bK

r

)
,

thus {
1 − bK

k2dr
· [nbe−djτ − dk1]

}
(x− x) ≤ 2ε

(
1 +

bK

r

)
.

From (4.1), we have 1− bK
k2dr

· [nbe−djτ −dk1] > 0, and noting that ε can be arbitrarily
small, then we have x = x. By (4.13) and let n ,m → ∞, we get y = y. This proves
Theorem 4.1.

5. Stability switches. Considering the characteristic equation of (1.7), we write
(1.7) as

x′(t) = F (x(t), x(t− τ))

and denote

G =

(
∂F

∂x(t)

)
x∗

, H =

(
∂F

∂x(t− τ)

)
x∗

.

Thus characteristic equation of (1.7) at the equilibrium x∗ takes the form as follows:

(5.1) det(G + He−λτ − λI) = 0.

We have

G =

⎛
⎝ r − 2

r

K
x− ∂g

∂x
−∂g

∂y
0 −d

⎞
⎠ , H =

⎛
⎝ 0 0

ne−djτ
∂g

∂x
ne−djτ

∂g

∂y

⎞
⎠ ,

where
(5.2)

g(x, y) =
bxy

1 + k1x + k2y
,

∂g(x, y)

∂x
=

by(1 + k2y)

(1 + k1x + k2y)2
,

∂g(x, y)

∂y
=

bx(1 + k1x)

(1 + k1x + k2y)2
.

Thus the characteristic equation of system (1.7) at some equilibrium (x0, y0) is as
follows:

(5.3)

∣∣∣∣∣
r − 2 r

Kx0 − g′x(x0, y0) − λ −g′y(x
0, y0)

ne−(λ+dj)τg′x(x0, y0) ne−(λ+dj)τg′y(x
0, y0) − d− λ

∣∣∣∣∣ = 0.

At the equilibrium E0 = (0, 0) we have g′x(0, 0) = g′y(0, 0) = 0 and the characteristic

equation (5.3) reduces to
∣∣∣∣r − λ 0

0 −d − λ

∣∣∣∣ = 0, i.e., E0 is an unstable saddle point.

Theorem 5.1. The equilibrium E1 = (K, 0) is

(i) unstable if nbe−djτK
1+k1K

> d;

(ii) linearly neutrally stable if nbe−djτK
1+k1K

= d;

(iii) asymptotically stable if nbe−djτK
1+k1K

< d.
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By Theorem 5.1 and the arguments to Theorem 3.1, we directly have that equi-

librium (K, 0) of system (1.7) is globally asymptotically stable iff nbe−djτK
1+k1K

≤ d holds
true. Using (1.6), we can easily prove that the global asymptotic stability of (K, 0) in
system (1.7) is equivalent to that of (K, 0, 0) in system (1.4). Thus we have the next
corollary.

Corollary 5.2. The equilibrium (K, 0, 0) of system (1.4) is globally asymptoti-

cally stable iff nbe−djτK
1+k1K

≤ d holds true.
Proof of Theorem 5.1. By (5.3), we get that the characteristic equation of (1.7)

at the equilibrium E1 is

(5.4) (λ + r)[ne−(λ+djτ)bg′y(K, 0) − d− λ] = 0.

Hence, one characteristic root is λ = −r < 0. Since g′y(K, 0) = K
1+k1K

, then the other
are the roots of

g(λ) = λ + d− nbK

1 + k1K
· e−djτe−λτ = 0.

(i) Assume that nbe−djτK
1+k1K

> d; then g(0) = d− nbe−djτK
1+k1K

< 0, and g(+∞) = ∞.
Hence g(λ) has at least one positive root and E1 is unstable.

(ii) As nbe−djτK
1+k1K

= d, g(λ) = λ + d − de−λτ and λ = 0 is a root of g(λ) = 0.

Furthermore, since g′(λ) = 1 + τde−λτ , we have g′(0) > 0. Then, the root
λ = 0 is simple.
Then if the other roots are λ = α + iω they must satisfy

(α + d)2 + ω2 = d2e−2ατ .

Hence we must have α ≤ 0, i.e., all the other roots have real nonpositive
parts. Therefore E1 is linearly neutrally stable.

(iii) Assume now that nbe−djτK
1+k1K

< d, i.e.,

d− nbK

1 + k1K
· e−djτe−λτ > 0.

Then g(λ) = 0 implies that

λ + d =
nbK

1 + k1K
· e−djτe−λτ .

If Re(λ) ≥ 0, then

|λ + d| > d >
nbK

1 + k1K
· e−djτe−λτ .

This shows that all roots of g(λ) = 0 must have negative real parts, and
therefore E1 is asymptotically stable, proving (iii).

Now, we consider the stability switches of the interior equilibrium E = (x∗, y∗)
as maturation time delay τ increases. We will adopt the following nomenclature:

g∗ = g(x∗, y∗), g′x∗ = g′x(x∗, y∗), g′y∗ = g′y(x
∗, y∗).

By (5.3), we get that the characteristic equation at E is as follows:

(5.5) D(λ, τ) = P (λ, τ) + Q(λ, τ)e−λτ = 0,
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where

(5.6)

⎧⎨
⎩

P (λ, τ) = λ2 + P1(τ)λ + P0(τ),
P1(τ) = d−R + g′x∗ ,
P0(τ) = (−R + g′x∗)d,

(5.7)

⎧⎨
⎩

Q(λ, τ) = λQ1(τ) + Q0(τ),
Q1(τ) = −ne−djτg′y∗ ,
Q0(τ) = Rne−djτg′y∗ ,

where R = r − 2 r
Kx∗.

Of course, the characteristic equation (5.5) must be considered in the interval
I = [0, τ∗) of existence of the positive equilibrium.

First verify that λ = 0 cannot be a root of (5.5) for any τ ∈ I, i.e.,

P (0, τ) + Q(0, τ) �= 0.

Noting

P (0, τ) + Q(0, τ) = P0(τ) + Q0(τ) = (−R + g′x∗)d + Rne−djτg′y∗ ,

and

g′y =
g

y

(
1 − k2

b

g

x

)
, g′x =

g

x

(
1 − k1

b

g

y

)
,

R =
g∗

x∗ − r

K
x∗, ne−djτ

g∗

y∗
= d,

we get

P (0, τ) + Q(0, τ) = −Rd + dg′x∗ + Rne−djτ
g∗

y∗

(
1 − k2

b

g∗

x∗

)
= dg′x∗ −Rd

k2

b

g∗

x∗

= d

(
g∗

x∗

(
1 − k1

b

g∗

y∗

)
− k2

b

g∗

x∗

(
g∗

x∗ − r

K
x∗
))

= d
g∗

x∗

(
1 −
(
k1

b

g∗

y∗
+

k2

b

g∗

x∗

)
+

k2

b

r

K
g∗
)

Now remark that 1
b (

k1

y∗ + k2

x∗ )g∗ = k1x
∗+k2y

∗

1+k1x∗+k2y∗ and therefore

P (0, τ) + Q(0, τ) > 0,

for all τ ∈ I = [0, τ∗).
The characteristic equation (5.5) at τ = 0 becomes

P (λ, 0) + Q(λ, 0) = 0,

i.e.,

(5.8) λ2 + (P1(0) + Q1(0))λ + P0(0) + Q0(0) = 0,

where P0(0) + Q0(0) > 0 since P0(τ) + Q0(τ) > 0 for all τ ∈ [0, τ∗).
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Let us give an explicit structure for P1(0) + Q1(0). From (5.6), (5.7)

P1(0) + Q1(0) = d−R + g′x∗ − ng′y∗ ,

where at interior equilibrium (and at τ = 0)

R =
g∗

x∗ − r

K
x∗, n

g∗

y∗
= d.

Hence,

P1(0) + Q1(0) = d− g∗

x∗ +
r

K
x∗ +

g∗

x∗ − k1

b

(g∗)2

x∗y∗
− n

g∗

y∗

(
1 − k2

b

g∗

x∗

)

= d− g∗

x∗ +
r

K
x∗ +

g∗

x∗ − k1

b

(g∗)2

x∗y∗
− d + d

k2

b

g∗

x∗

=
r

K
x∗ +

d

b

g∗

x∗

(
k2 − k1

1

d

g∗

y∗

)

=
r

K
x∗ +

d

b

g∗

x∗

(
k2 −

k1

n

)
.

Then, the roots of (5.8) determine the stability properties of the interior equilibrium
at τ = 0. Stability switches for increasing τ in I = [0, τ∗) may occur only with a pair
of roots λ = ±iω(τ), ω(τ) real positive, that cross the imaginary axis.

To determine the stability switch delay values we proceed as follows (see
[8, section 4]).

Assume λ = ±iω(τ), ω(τ) > 0 in (5.5); we have

(5.9)

{
P (iω, τ) = −ω2 + iωP1(τ) + P0(τ),
PR(iω, τ) = P0(τ) − ω2, PI(iω, τ) = ωP1(τ),

(5.10)

{
Q(iω, τ) = iωQ1(τ) + Q0(τ),
QR(iω, τ) = Q0(τ), QI(iω, τ) = ωQ1(τ).

The first step is that of looking for the positive roots ω(τ) > 0 of

(5.11) F (ω, τ) = |P (iω, τ)|2 − |Q(iω, τ)|2 = 0

in I = [0, τ∗). Since

F (ω, τ) = (P0(τ) − ω2)2 + ω2P1(τ)2 − [Q2
0(τ) + ω2Q2

1(τ)],
= P 2

0 (τ) + ω4 − 2P0(τ)ω2 + ω2P 2
1 (τ) −Q2

0(τ) − ω2Q2
1(τ),

= ω4 + ω2(−2P0(τ) + P 2
1 (τ) −Q2

1(τ)) + P 2
0 (τ) −Q2

0(τ),

hence we have

(5.12)

⎧⎨
⎩

F (ω, τ) = ω4 + b(τ)ω2 + c(τ) = 0,
b(τ) = −2P0(τ) + P 2

1 (τ) −Q2
1(τ),

c(τ) = P 2
0 (τ) −Q2

0(τ).

Depending on the sign of b(τ) and c(τ) the system (5.12) may have no positive real
roots, or the root

ω+(τ) =

[
1

2
{−b(τ) +

√
b(τ)2 − 4c(τ)}

]1/2

, τ ∈ I+ ⊆ I,



PREDATOR-PREY MODEL OF BEDDINGTON–DEANGELIS TYPE 1117

or otherwise the root

ω−(τ) =

[
1

2
{−b(τ) −

√
b(τ)2 − 4c(τ)}

]1/2

, τ ∈ I− ⊆ I,

or, as a last case, both the roots ω+(τ) and ω−(τ). Note that if system (5.12) has no
positive roots ω(τ) in I, then no stability switches can occur.

According to characteristic equation (5.5), we can say that at τ = 0, i.e., without
stage structure, a necessary and sufficient condition for the asymptotic stability of
positive equilibrium E is that

P1(0) + Q1(0) > 0,

whereas if P1(0) + Q1(0) < 0 the positive equilibrium is unstable.
Of course, from the structure of P1(0)+Q1(0), a sufficient condition for asymptotic

stability of E at τ = 0 is that k2 is sufficiently large to ensure that

k2 −
k1

n
> 0.

Stability switches for increasing τ in I = [0, τ∗) may occur only with a pair of roots
λ = ±iω(τ), ω(τ) real positive, that cross the imaginary axis.

Now, we prove that E is asymptotically stable provided that k2 is sufficiently
large. We have the next theorem.

Theorem 5.3. The positive equilibrium E of (1.7) is asymptotically stable pro-
vided that system (1.7) is permanent and

(5.13) k2 > max

{
k1

n
, 2 · bK(nbe−djτ − dk1)

r [bnKe−djτ − d(1 + k1K)]

}
.

Define MK
k2
,Mn

k2
with

MK
k2

= sup
K>0

{
nbe−djτK

1 + k1K
> d + δ0

∣∣∣∣ k1

n
, 2 · bK(nbe−djτ − dk1)

r [bnKe−djτ − d(1 + k1K)]

}
,

Mn
k2

= sup
n>0

{
nbe−djτK

1 + k1K
> d + δ0

∣∣∣∣ k1

n
, 2 · bK(nbe−djτ − dk1)

r [bnKe−djτ − d(1 + k1K)]

}
,

where δ0 is some positive constant, thus 0 < MK
k2
,Mn

k2
< ∞. Using Theorem 3.2 and

Theorem 5.3, we directly have the next corollary.

Corollary 5.4. Assume k2 > MK
k2
, nbe−djτK

1+k1K
> d + δ0; then the positive

equilibrium E of (1.7) is asymptotically stable for all K > 0.

Corollary 5.5. Assume k2 > Mn
k2
, nbe−djτK

1+k1K
> d + δ0; then the positive

equilibrium E of (1.7) is asymptotically stable for all n > 0.
Proof of Theorem 5.3. To complete the proof, it suffices to prove that E has no

stability switches as τ increases and that E is stable at τ = 0. Hence we only need to
consider the roots of (5.5) with τ = 0, i.e., (5.8). Noting P0(0) + Q0(0) > 0 and

P1(0) + Q1(0) =
r

K
x∗ +

d

b

g∗

x∗

(
k2 −

k1

n

)
>

r

K
x∗ > 0,

the roots of (5.8) must have negative real parts, proving E is stable at τ = 0. Now we
show E has no stability switches as τ increases in I = [0, τ∗). Thus we only need to
prove that (5.12) has no positive roots ω(τ) in I.
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By (2.3), (5.6), (5.7), and (5.12) we have

(5.14)

b(τ) = −2(−R + g′x∗)d + (d−R + g′x∗)2 − (−ne−djτg′y∗)2,

c(τ) = (−R + g′x∗)2d2 − (Rne−djτg′y∗)2,

R = r − 2 r
Kx∗ = g∗

x∗ − r
Kx∗.

By Theorem 3.2, permanence of system (1.7) implies (2.2). Thus from (5.13) follows

(5.15) k2 > 2 · nbe
−djτ − dk1

nre−djτ
.

Using (2.3), (5.2) and noting that x∗ < K and that B in (2.3) is negative under
(5.15), then we have

(5.16) x∗ >
1

2
(−B + |B|) = −B = K ·

(
1 − nbe−djτ − dk1

nrk2e−djτ

)
> K/2 > 0;

(5.17) 0 < y∗ <
K(nbe−djτ − dk1) − d

dk2
;

(5.18) 0 < g∗ =
dy∗

ne−djτ
<

K(nbe−djτ − dk1) − d

nk2e−djτ
;

(5.19)

0 < g′y∗ =
bx∗(1 + k1x

∗)

(1 + k1x∗ + k2y∗)2
=

d2(1 + k1x
∗)

bn2e−2djτx∗ <
d2(1 + k1K)

bn2e−2djτ
· 1

x∗

<
d2(1 + k1K)

bn2Ke−2djτ

/(
1 − nbe−djτ − dk1

nrk2e−djτ

)
;

(5.20) R = r − 2
r

K
x∗ < −r +

2(nbe−djτ − dk1)

nk2e−djτ
< 0.

Thus by (5.14), we get

(5.21)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

b(τ) = d2 + R2 + (g′x∗)2 − 2Rg′x∗ − (ne−djτg′y∗)2

> R2 + d2 − (ne−djτg′y∗)2

= R2 + (d− ne−djτg′y∗)(d + ne−djτg′y∗),

c(τ) = [d(−R + g′x∗) + Rne−djτg′y∗ ] · [d(−R + g′x∗) −Rne−djτg′y∗ ]
= [dg′x∗ −R(d− ne−djτg′y∗)] · [d(−R + g′x∗) −Rne−djτg′y∗ ].

By (5.19),

d− ne−djτg′y∗ > d− d2(1 + k1K)

bnKe−djτ

/(
1 − nbe−djτ − dk1

nrk2e−djτ

)

= d ·
[
1 − nbe−djτ − dk1

nrk2e−djτ
− d(1 + k1K)

bnKe−djτ

]/(
1 − nbe−djτ − dk1

nrk2e−djτ

)

= d ·
[
bnKe−djτ − d(1 + k1K)

bnKe−djτ
− nbe−djτ− dk1

nrk2e−djτ

]/(
1 − nbe−djτ− dk1

nrk2e−djτ

)

= d ·

bnKe−djτ − d(1 + k1K)

bnk2Ke−djτ

1 − nbe−djτ − dk1

nrk2e
−djτ

·
(
k2 −

bK(nbe−djτ − dk1)

r [bnKe−djτ − d(1 + k1K)]

)
> 0.
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Then we have b(τ), c(τ) > 0. Thus F (ω, τ) �= 0 for all τ ∈ I = [0, τ∗), i.e., there are
no stability switches for τ ∈ I = [0, τ∗). This proves Theorem 5.3.

The second step to find the τ values of the stability switches requires that for
each positive root ω(τ) of (5.12) we define the angle θ(τ) ∈ (0, 2π) as a solution of

(5.22)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

sin θ(τ) =
−(P0(τ) − ω2(τ))ω(τ)Q1(τ) + ω(τ)P1(τ)Q0(τ)

ω2(τ)Q2
1(τ) + Q2

0(τ)
,

cos θ(τ) = − (P0(τ) − ω2(τ))Q0(τ) + ω2(τ)P1(τ)Q1(τ)

ω2(τ)Q2
1(τ) + Q2

0(τ)

for every τ ∈ Iω, Iω ⊆ I, where Iω is the subset of I in which the positive root ω(τ)
of (5.12) is defined (i.e., Iω is I+ or I−).

The third step requires the definition for each ω(τ) solution of (5.12) of the func-
tions Iω �→ R

(5.23) Sn(τ) := τ − θ(τ) + n2π

ω(τ)
, n ∈ N0,

that are continuous and differentiable in Iω.
Still according to Beretta and Kuang [8, section 4], the following theorem holds

true.
Theorem 5.6. The characteristic equation (5.5) has a pair of simple and conju-

gate pure imaginary roots λ = ±iω(τ∗), ω(τ∗) real positive, at τ∗ ∈ Iω if Sn(τ∗) = 0
for some n ∈ N0.

If ω(τ∗) = ω+(τ∗), this pair of simple conjugate pure imaginary roots crosses the
imaginary axis from left to right (as τ increases) if δ+(τ∗) > 0 and from right to left
if δ+(τ∗) < 0, where

(5.24) δ+(τ∗) = sign

{
d Reλ

dτ

∣∣
λ=iω+(τ∗)

}
= sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.

If ω(τ∗) = ω−(τ∗), this pair of simple conjugate pure imaginary roots crosses the
imaginary axis from left to right if δ−(τ∗) > 0, and from right to left if δ−(τ∗) < 0,
where

(5.25) δ−(τ∗) = sign

{
d Reλ

dτ

∣∣
λ=iω−(τ∗)

}
= −sign

{
dSn(τ)

dτ

∣∣∣∣
τ=τ∗

}
.

Now, we show some numeric results. Figure 5.1 shows the solutions of model (1.4)
with different predator maturation times τ . It seems that the interior equilibrium E is
stable at τ = 0.8 and x(t), y(t) are unstable and periodically oscillated as τ = 6; when
τ = 10, though still periodically oscillated, the oscillation amplitudes of x(t), y(t) are
smaller than those for τ = 6, suggesting that E at τ = 10 is less unstable than that at
τ = 6; when τ reaches 14, E becomes stable again. This behavior is expected as result
of Theorem 5.7, which, for the same set of parameters as in Figure 5.1, states that
interior equilibrium E remains asymptotically stable for τ from 0 up to τ+

01
= 1.28,

is unstable with sustained oscillations for τ in the interval (τ+
01

= 1.28, τ+
02

= 11.83),

and returns asymptotically stable for τ > τ+
02

= 11.83.
We try to have Figure 5.2 reflect the above changes of stability of positive equi-

librium E as τ increases from 0.8 to 15. For Figure 5.2, each vertical black strip cor-
responds to the component of x(t) and y(t) in that t ∈ [200 ∗ τ, 500 ∗ τ ], respectively.
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Fig. 5.1. Solutions to system (1.4) with r = n = k1 = 1, K = 1.6, b = 1.5, d = 0.5, k2 = 0.1,
dj = 0.01, x(θ) ≡ 0.7, y(θ) ≡ 0.2, θ ∈ [−τ, 0].

Fig. 5.2. The ultimate oscillation interval of the solution to system (1.4) according to increase
of predator maturation τ , where r = n = k1 = 1, K = 1.6, b = 1.5, k2 = 0.1, d = 0.5, dj = 0.01,
x(θ) ≡ 0.7, y(θ) ≡ 0.2, θ ∈ [−τ, 0].

From Figure 5.2, we see that if τ ∈ (0.2, 1) or τ > 12, approximately, the vertical
amplitudes of x(t), y(t) are as small as a point, suggesting that E is asymptotically
stable; if τ increases in the interval (0.8, 6), approximately, the vertical amplitudes
of x(t), y(t) will becomes larger and larger, showing that E becomes more and more
“unstable”; however, when τ smoothly increases in the interval (6, 13), the points will
become more concentrated and thus their amplitudes will become increasingly smaller
until finally they gather into a point as τ > 11.83, approximately. This shows that E
becomes more stable as τ increases.
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Fig. 5.3. For the parameters choice (5.26) are depicted the curves S+
0 , S+

1 , S+
2 in the

interval of existence of ω+(τ), i.e., τ ∈ I+ = [0, 12.58]. Only S+
0 has two zeros τ01 = 1.28 and

τ+
02

= 11.83.

Considering the case related to Figures 5.1 and 5.2, we have the following theorem.
Theorem 5.7. In system (1.7), let us choose the following parameters:

(5.26) r = n = k1 = 1, K = 1.6, b = 1.5, d = 0.5, k2 = 0.1, dj = 0.01.

Then system (1.7) is asymptotically stable at τ = 0 and remains asymptotically stable
increasing τ up to the value τ+

01
= 1.28, which is a Hopf bifurcation value toward sus-

tained oscillations around the positive equilibrium. The positive equilibrium remains
unstable with sustained oscillations for τ up to the value τ+

02
= 11.83, at which there

is a backward Hopf bifurcation value toward asymptotic stability. Whenever it exists
the positive equilibrium remains asymptotically stable for τ > τ+

02
= 11.83.

Proof. For the proof, we have followed the algorithm presented previously in this
section.

At τ = 0 the roots of (5.8) are λ = −0.0676 ± i0.4581 and therefore the positive
equilibrium E is asymptotically stable. The equation (5.12) has only the positive root
ω+(τ) in the interval I+ = [0, 12.58). According to the algorithm we have only the
sequence S+

n (τ), τ ∈ I+, n ∈ N0 of functions given by (5.23) (for which Sn(τ) >
Sn+1(τ) in I+ for any n ∈ N0). By the algorithm presented for the characteristic
equation (5.5), in Figure 5.3, we draw the curves S+

0 , S+
1 , S+

2 in the interval of
existence of ω+(τ). The S+

0 (τ) curve shows that for the parameter values (5.26),
the function S+

0 (τ) has two zeros in I+ the first at τ01 = 1.28 and the second at
τ+
02

= 11.83.

Thanks to Theorem 5.6, since in τ01 the slope of S+
0 is positive, two pure imaginary

roots λ = ±i ω+(τ01) of (5.5) cross the imaginary axis entering in the right half
complex plane and giving rise to two complex and conjugate roots with positive real
part for τ > τ01 .
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Hence the characteristic equation (5.5) has
(a) all roots with negative real parts if τ ∈ [0, τ01);
(b) a pair of conjugate pure imaginary roots ±iω+(τ01), ω+(τ01) > 0, crossing

the imaginary axis, and all other roots with negative real part if τ = τ01 ;
(c) two roots with strictly positive real part if τ > τ01 (τ < τ02);
(d) and because of (b), all the roots λ (�= ±i ω+(τ1)) satisfy the condition λ �=

i mω+(τ1, where m is any integer, if τ = τ01
.

Hence, at τ = τ01 a Hopf bifurcation occurs (see [18, Chapter 11]).
Up to τ > τ02 we have two complex and conjugate roots with positive real part

giving rise to sustained oscillations. Since in τ02 the slope of S+
0 is negative, two pure

imaginary roots λ = ±iω+(τ02) of (5.5) cross the imaginary axis toward the left half
complex plane and the total multiplicity of roots with positive real part returns to
be zero for τ > τ02 . Similar to τ01 in τ02 we have another Hopf bifurcation toward
asymptotic stability.

In conclusion, in [0, τ01) we have asymptotic stability of positive equilibrium E,
in (τ01 , τ02) sustained oscillations and in (τ02

, τ∗) asymptotic stability again. In τ01

there is a Hopf bifurcation toward sustained oscillations and in τ02 a Hopf bifurcation
toward asymptotic stability.

We observe that the outcomes of Theorem 5.7 are in agreement with the numeric
simulations shown in Figure 5.1, where the solution of (1.7) is shown for the set of
parameter values in (5.26). The agreement is the same for Figure 5.2.

For further analysis on the characteristic equation (5.5) it is worth noting that
in the sequence Sn, n ∈ N0 (5.23), since Sn(τ) > Sn+1(τ) for all n ∈ N and τ ∈ Iω,
the stability switches (Hopf bifurcations) occur only with the zeros of S0. It is now
interesting to study the role of predator interference coefficient k2 on the stability of
positive equilibrium E.

Theorem 5.8. In system (1.7) let us choose the following parameters:

(5.27) r = n = k1 = 1, K = 2.6, b = 1.5, d = 0.5, dj = 0.01

with varying k2 at the values k2 = 0.2, 0.4, 0.6, 0.8. The positive equilibrium E under-
goes stability switches from asymptotic stability to instability to asymptotic stability
for increasing delay τ when k2 = 0.2, 0.4, 0.6 and remains asymptotically stable
for any τ when k2 = 0.8. The delay instability interval has a decreasing width for
increasing k2.

Proof. We have checked that parameter values (5.27), for each k2 value, at τ = 0
give rise to asymptotic stability of positive equilibrium E. By the algorithm presented
for the characteristic equation (5.5), in Figure 5.4, we draw the curves S+

0 versus τ for
each k2 value up to k2 = 0.7. These curves S+

0 correspond to the positive root ω+(τ)
of (5.12) since for all k2 values considered the root ω−(τ) of (5.12) is not feasible. For
k2 > 0.7 even the root ω+(τ) is not feasible, i.e., (5.12) does not have roots. Hence,
no stability switches can occur for k2 > 0.7, i.e., at k2 > 0.7 the positive equilibrium
E remains asymptotically stable for all τ ≥ 0 in its existence interval.

If we look at the curves S+
0 in Figure 5.4, according to Theorem 5.6, we see

that for each value k2 = 0.2, 0.4, and 0.6 we have two stability switches, the first
toward instability (since according to (5.24) at the first zero of S0∗+ the slope of
S+

0 is positive) and the second toward asymptotic stability (since according to (5.24)
at the second zero of S+

0 the slope of S+
0 is negative) with an unstable region in

which sustained oscillations occur between the two stability switch delay values (Hopf
bifurcations). Figure 5.4 shows that these delay instability regions have a decreasing
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Fig. 5.4. In the figure the curves S+
0 are shown for the parameter values (5.27) and for the

k2 values k2 = 0.2, 0.4, 0.6, 0.7.

width for increasing values of k2. At k2 = 0.7 the curve S+
0 has no zeros for τ ≥ 0

and therefore no stability switches can occur, i.e., the positive equilibrium E remains
asymptotically stable for all τ in its existence interval.

Figure 5.5, for the same parameters (5.27) of Theorem 5.8 and maturation time
fixed at τ = 6 show the behavior of x(t), y(t) versus time at increasing values of k2.
At k2 = 0.2, 0.6 we have sustained oscillations according to the fact that τ = 6 falls
within the instability intervals of S+

0 , whereas at k2 = 0.8 S+
0 is negative implying

asymptotic stability of E.
For the parameter values (5.27) in Figure 5.6 we investigate the stabilizing role

of predator interference coefficient k2 on the positive equilibrium E by studying the
zeros of the curves S+

0 (τ) for increasing values of k2. The value of k2, say, k∗2 , at which
S+

0 (τ) has two coincident zeros (i.e., the delay instability region vanishes) is such that
for k2 ≥ k∗2 the positive equilibrium E does not undergo to stability switches and
therefore E remains asymptotically stable in its existence interval I = [0, τ∗).

Figure 5.6 shows that k∗2 = 0.6225 when other parameters are fixed at values
(5.27).

For the parameter values (5.27) and fixed maturation time delay τ = 6 we try to
have Figure 5.7 reflecting the above changes of stability of positive equilibrium E as
k2 increases from 0 to 0.9. For Figure 5.7, we see that if k2 ∈ (0, 0.64) the vertical
amplitudes of x(t), y(t) are oscillating showing that E is unstable. However, as k2

smoothly increases in this interval, the points will become more concentrated and
thus their amplitudes become smaller until finally, as that k2 > 0.64 approximately,
the vertical amplitudes of x(t), y(t) will be small as a point, suggesting that E is
asymptotically stable. This result is in good agreement with Figure 5.6.

The last case that we consider concerns Figure 5.8, which shows the interesting
result that given enough large k2 the predator and prey in system (1.4) will always
coexist stably regardless how large K is.
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Fig. 5.5. Solutions to system (1.4) with different predator interference coefficients k2, here
r = n = k1 = 1, K = 2.6, b = 1.5, d = 0.5, τ = 6, dj = 0.01, x(θ) ≡ 0.7, y(θ) ≡ 0.2, θ ∈ [−τ, 0].

0 2 4 6 8 10 12 14
–20

–15

–10

–5

0

5

K
2
=0.7 

K
2
=0.6225 

K
2
=0.6 
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that k∗2 = 0.6225 is the value of k2 such that for k2 ≥ k∗2 the positive equilibrium E remains
asymptotically stable for τ in the interval [0, τ∗). The other parameter values are as in the set
(5.27).
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b = 1.5, d = 0.5, k2 = 2, τ = 6, dj = 0.01, x(θ) ≡ 0.7, y(θ) ≡ 0.2, θ ∈ [−τ, 0].

The parameters are

(5.28) r = n = k1 = 1, b = 1.5, d = 0.5, k2 = 2, dj = 0.01

with varying carrying capacity K at values K = 5, 20, 40, 100.
For each K we have checked that at τ = 0 the roots of (5.8) have negative real

part, i.e., at τ = 0 the positive equilibrium is asymptotically stable.
Furthermore, (5.12) has no solutions in the existence interval I = [0, τ∗) of the

positive equilibrium for each value of the considered carrying capacity. Hence, no sta-
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bility switches can occur and the positive equilibrium E remains asymptotically stable
in its existence interval for each considered value of carrying capacity, in agreement
with the behavior shown by the solutions in Figure 5.8.

Figure 5.8 shows some interesting results: given enough large k2, the predator and
prey in system (1.4) will always coexist stably regardless how large K is. We have
checked that the k2 in Figure 5.8 does not satisfy (5.13); this shows that Theorem 5.3
has space to improve.

6. Discussion. In this paper, we study the stage-structured predator-prey model
(1.4) of Beddington–DeAngelis-type functional response, which is an extension of both
the ODE models studied by Cantrell and Cosner [9] and Hwang [23], [24] and the
stage-structured predator-prey model of Holling II type functional response studied
by Gourley and Kuang [15].

We give the conditions which are both necessary and sufficient for the permanence
and extinction of system (1.4). Our results suggest that the predator coexists with
prey permanently iff (2.2) holds true, i.e., predator’s recruitment rate at the peak of
prey abundance is larger than its death rate; and that the predator goes extinct iff
nbe−djτK

1+k1K
≤ d holds true, i.e., the predator’s possible highest recruitment rate is less

than or equal to its death rate. These results generalize the corresponding results in
[9] and improve those in [15]. Comparing to the corresponding Theorem 3.1 in [9] for
the ODE system (1.2), we find that there is an extra term e−djτ in our permanence
and extinction criteria, i.e., the surviving probability of each immature predator to
become mature, which exists because of the stage structure. We can get that djτ has
a negative effect on the persistence of the predator in that a proper increase of djτ
(which is defined as the “degree of stage structure” by Liu et al. [28]) can directly
destroy (2.2) and thus drive the predator into extinction, regardless how large nbK

1+k1K
was.

On the other hand, even if (2.2) holds true, the proper increase of djτ may
still cause the extinction of predators provided that demographic stochasticity were
present: since y∗ becomes smaller and smaller as djτ increases until y∗ = 0 at
nbe−djτK

1+k1K
= d, then the predators will be at risk of stochastic extinction as the djτ

holds the predator population to a sufficiently low level.
Therefore, the high death rate dj or the long maturation of the juvenile predator τ

may be responsible for the extinction of predators. These conclusions are analogous to
those obtained for stage-structured predator-prey models of Holling I [35] and Holling
II [15] type and similar to those for the stage-structured competitive system [28], [30],
[31], [32], [2], [41].

We also find the stability switches of the interior equilibrium E due to the increase
of τ : as τ increases, we see that oscillatory dynamics may appear and further increase
of τ will return the oscillatory dynamics to the steady state form, implying that a
large delay can be stabilizing.

Interesting results from this paper are the effects by the degree of predator in-
terference k2. First, we get that the permanence and extinction criteria for the stage
structured BD model are independent of k2. This shows that k2 does not affect either
the extinction or the permanence of the community, provided that the demographic
stochasticity were ignored. Otherwise, as Cantrell and Cosner [9] argued for the non-
stage-structured system (1.2), since y∗ → 0 as k2 → ∞, an increase of k2 can lower y∗

and may drive the predators into the risk of stochastic extinction when the predator
population is at a sufficiently low level.



PREDATOR-PREY MODEL OF BEDDINGTON–DEANGELIS TYPE 1127

Second, k2 can stabilize system (1.4):
(i) When E is unstable, having k2 increasing from zero can reduce the oscillation

amplitudes of solutions. This indicates that the interior equilibrium for the
BD model is usually more stable than that for the corresponding H2 model.

(ii) Having a sufficiently large k2 can directly drive E into the global attractive-
ness and the asymptotic stability.

Third, sufficiently large k2 guarantees the robustness of the system against the
increase of the carrying capacity K and the birth rate n of the adult predators. For the
H2 model, Hsu, Hubbell, and Waltman [22, Lemma 4.5] showed that both the large
carrying capacity K and the birth rate n of the predator can destabilize the positive
equilibrium E and lead to the existence of periodic oscillation. Similar results can
also be found in [25]. Hsu, Hubbell, and Waltman [21] even showed that an increase
of K can cause E to be increasingly “unstable” by enlarging the amplitude of the
limit cycle. However, we get completely different results for the BD model: Corollary
5.4 (or Corollary 5.5) shows that a sufficiently large k2 can drive E stable regardless
how large K (or n) is.

System (1.3) in [33] considers a gestation delay but not maturation delay of the
BD model, while our model (1.4) accounts for maturation but not for gestation. Thus
both (1.3) and (1.4) are the special cases of the following general model with both
maturation and gestation effects:
(6.1)⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

x′(t) = rx(t)

(
1 − x(t)

K

)
− bx(t)y(t)

1 + k1x(t) + k2y(t)
,

y′(t) =
nbe−djτx(t− τ − τ1)y(t− τ)

1 + k1x(t− τ − τ1) + k2y(t− τ − τ1)
−dy(t),

y′j(t) =
nbx(t− τ1)y(t)

1+k1x(t− τ1)+k2y(t− τ1)
− nbe−djτx(t− τ − τ1)y(t− τ)

1+k1x(t− τ − τ1)+k2y(t− τ − τ1)
−djyj(t),

x(θ), y(θ) ≥ 0 are continuous on − τ ≤ θ ≤ 0, and x(0), y(0), yj(0) > 0,

where τ , τ1 are the maturation and the gestation delay, respectively. Then we have
when τ = 0, (6.1) becomes (1.3), and when τ1 = 0, (6.1) becomes (1.4). Thus system
(6.1) unifies (1.3) and (1.4). It will be interesting for us to consider system (6.1); we
leave this as our future work.
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Abstract. A matched asymptotic analysis is used to exhibit the connection between supplemen-
tal balance equations arising in sharp-interface and phase-field theories for transformations between
two rigid phases distinguished only by their constant free-energy densities. The analysis exposes the
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1. Introduction. The purpose of this paper is to examine the question of whether
the configurational force balance can always be viewed merely as a rephrasing of the
standard force balance. We address this question in the setting of a transformation
between two rigid phases distinguished only by their constant free-energy densities.
Because the phases are rigid, standard forces are extraneous and their balance is sat-
isfied trivially. Nevertheless, configurational forces are essential and their balance is
not implied by the standard force balance.

Standard forces are associated with the motion of material particles. Configu-
rational forces first arose in the works of Peach and Koehler [29] and Eshelby [8, 9]
on lattice defects and of Herring [25] on the sintering of powders. Beginning with
appropriate energy functionals, those works derive configurational forces variation-
ally by considering rearrangements of the relevant defects. The distinction between
configurational forces and standard forces is evident from the derivations: whereas
standard forces arise from variations in the placement of material particles, configura-
tional forces arise from variations in the arrangement, relative to material particles, of
nonmaterial defects. These derivations also show that, when deformation is taken into
account, the necessary conditions for equilibrium in a defective medium include not
only the Euler–Lagrange equations imposing the balance of standard forces at and
away from defects but also an additional Euler–Lagrange equation valid at defects
and involving configurational forces. Although the variations leading to these condi-
tions are performed independently, the ensuing equilibrium conditions are generally
coupled.

Aside from giving conditions for the description of equilibrium, the variational
approach provides guidance on how configurational forces should enter the descrip-
tion of dissipative processes involving defect generation and evolution. Indeed, the
conventional generalization of a variationally based theory for a defective medium in-
volves replacing the relevant Euler–Lagrange equation with a gradient-flow equation
requiring that the time-rate of the kinematical entity describing the configuration of
the defect be proportional to the associated configurational force, with the sign of
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the constant of proportionality assigned to rule out spurious growth of the underlying
energy functional. In that setting, the rate term can be viewed as a configurational
drag force that accounts for energy dissipation associated with the motion of defects
relative to the underlying material.

The structure of classical theories of continua allows for a clear distinction to be
drawn between basic laws and constitutive equations. Whereas the basic laws hold for
large classes of materials, constitutive equations distinguish between different types of
materials. However, because Euler–Lagrange and gradient-flow arguments rest on the
provision of constitutive equations, the physical status of any supplemental equations
they engender is unclear. Do such equations represent additional balances, above
and beyond that involving standard forces, or do they simply represent additional
constitutive information?

Commencing with a series of papers (Gurtin [18]; Angenent and Gurtin [2]; Gurtin
and Struthers [23]) concerning phase transformations, Gurtin advocates the first of
the alternative interpretations stated above. Those papers take a Gibbsian approach:
phase interfaces are modeled as sharp nonmaterial surfaces across which the properties
of the bulk phases may suffer discontinuities; to account for localized interactions
between the phases, those surfaces are endowed with excess fields. Briefly, Gurtin’s
innovation centers on his treatment of configurational forces as primitive objects that
expend power in conjunction with the motion of defects (relative to the underlying
material) and are subject to a configurational balance distinct from and supplemental
to that involving standard forces. The question of whether configurational forces
are necessary for the description of three-dimensional bodies containing lower-dimen-
sional defects has been addressed by Podio-Guidugli [31], who shows that when only
standard forces are taken into account, the reasonable requirement that the power
expended on a migrating referential control volume be invariant under changes of the
tangential, and thus extrinsic, component of the velocity that describes the motion
of the volume has a consequence that is generally untenable: the standard stress
must be a pressure. To avoid that, it is necessary and sufficient to account for power
expenditures above and beyond those associated with standard forces. That can be
accomplished with the introduction of configurational forces. Gurtin’s approach has
been applied to the description of defect structures other than interfaces, including
cracks (Gurtin and Podio-Guidugli [21, 22]; Gurtin and Shvartsman [24]; Kalpakides
and Dascalu [26]), edges and junctions (Simha and Bhattacharya [32]), dislocations
(Cermelli and Gurtin [7]), plasticity (Cermelli, Fried, and Sellers [4]), liquid-crystalline
disclinations (Cermelli and Fried [5]), epitaxy (Gurtin and Jabbour [17]; Fried and
Gurtin [15, 16], nematic-isotropic transformations in liquid crystals (Cermelli, Fried,
and Gurtin [6]), and fluid-fluid phase transformations (Anderson, Cermelli, Fried,
Gurtin and McFadden [1]). A comprehensive treatment of configurational forces and
their applications is given in Gurtin’s book [20].

Within Gurtin’s framework, the distinction between the balances for configura-
tional and standard forces is not merely an efficiency in capturing singularities. To
illustrate this point, consider a setting involving a sharp interface S separating two
phases, say α and β. For simplicity, neglect deformation, heat transport, and mass
transport. Suppose that the free-energy density of phase γ = α, β is a constant, say
Ψγ . Consider the problem of developing a theory that accounts for dependence of
the interfacial free-energy density on the interfacial orientation and for dissipation
associated with the growth of one phase at the expense of another. As shown by
Gurtin [19, 20], such a theory involves a single equation governing the evolution of S.
Writing n for the unit orientation of S, directed from the region occupied by phase-α
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into the region occupied by phase-β, and VS for the (scalar) normal velocity of S in
the direction of n, that equation is

b̂S(n, VS)VS =

{
ψ̂S(n)P +

∂2ψ̂S(n)

∂n2

}
· L + [[Ψ]],(1.1)

where P = 1−n⊗n is the interfacial projector, L = −∇Sn is the interfacial curvature
tensor, ψ̂S is the free-energy per unit interfacial area, b̂S is the nonnegative kinetic
modulus, and [[Ψ]] = Ψβ − Ψα. Generally, the dependence of ψ̂S on n renders cer-
tain interfacial orientations more energetically favorable than others. Similarly, the
dependence of b̂S on n allows for growth at different rates along different orientations.
Further, the dependence of b̂ on VS allows for nonlinear growth kinetics. The nonneg-
ativity of b̂S ensures satisfaction of the second law. If ψ̂S(n) = ψS and b̂S(n, VS) = bS
with ψS and bS constant, the evolution equation (1.1) then reduces to

bSVS = ψSKS + [[Ψ]],(1.2)

with KS = trL = −divSn (twice) the mean curvature. When Ψα = Ψβ , which would
be the case for an interface separating two grains of a crystal, (1.2) reduces to bSVS =
ψSKS , the two-dimensional specialization of which was first proposed by Mullins
[28] as a model for grain-boundary evolution. The two-dimensional version of (1.1),
with bS independent of VS , was proposed by Uhuwa [34]. The general equation (1.1)
was first given by Gurtin [18]. A formulation of (1.1) using a variational definition
of the curvature term is given by Taylor, Cahn, and Handwerker [33], who provide
background and extensive references.

Within Gurtin’s theory, the evolution equation (1.1) arises from the normal com-
ponent of the interfacial configurational force balance

divSC + f + [[C]]n = 0,(1.3)

in conjunction with the representations

Cγ = Ψγ1 and C = ψSP − n⊗ c(1.4)

for the bulk and interfacial configurational stresses and constitutive relations

ψS = ψ̂S(n), c = −∂ψ̂S(n)

∂n
, and f · n = −b̂S(n, VS)VS ,(1.5)

with b̂S ≥ 0, that determine the interfacial free-energy density ψS , the interfacial
configurational shear c, and the normal component f · n of the internal interfacial
configurational body force density f.

Since the theory described above neglects deformation, the phases are rigid. Stan-
dard stresses are therefore indeterminate both in bulk and on the interface. The stan-
dard force balance is therefore extraneous. It is therefore difficult to conceive of how
the interfacial configurational force balance (1.3) or (its consequence) the interfacial
evolution equation (1.1) could be an expression of standard force balance. Neverthe-
less, because there do exist circumstances in which the configurational force balance
is a derived consequence of the standard force balance, some researchers contend that
the configurational force balance can always be viewed as a rephrasing of the standard
force balance.



THEORIES FOR PURE INTERFACE MOTION 1133

To eliminate that confusion, we use an alternative method to derive the interfa-
cial evolution equation (1.1). Our approach involves considering a theory in which the
phases are described by a phase field ϕ. In that theory, an interface is not a surface
but is, rather, a transition layer across which ϕ varies smoothly. The thickness of
layers is constitutively determined. We consider a version of the phase-field theory
that, due to a special choice of constitutive equations and a special scaling, permits us
to control the thickness of transition layers. We then investigate the ramifications of
shrinking that thickness. The phase-field theory allows for two approaches to deriving
sharp-interface equations. We refer to those approaches as “direct” and “indirect.”
While the direct and indirect approaches yield the same analytical results, they afford
different insights. We illustrate the indirect approach in the simple case where the
desired interfacial evolution equation is (1.2). In the indirect approach, which follows
the work of Caginalp [3], that equation arises as a solvability condition imposed by
the Fredholm alternative on the inner expansion of ϕ. This result renders problematic
any attempt to interpret (1.2) as an expression of standard force balance, but oth-
erwise leaves open the question of just what physical law underlies (1.2). The direct
approach, which involves the configurational force balance of the phase-field theory,
sheds light on that question. The smoothness of the phase field makes consideration
of configurational forces or their balance unnecessary. Nevertheless, a configurational
force balance can be derived within the phase-field theory, and considerations based
on that balance prove to be useful. Specifically, we work with the component of the
configurational force balance normal to time-dependent level sets of ϕ. In the direct
approach, (1.1) arises by expanding and integrating that equation over a layer while
simultaneously shrinking the thickness of that layer to zero. This shows clearly that
the interfacial evolution equation (1.1) of the sharp-interface theory is an expression
of configurational force balance and, bearing in mind that deformation is neglected,
verifies that (1.1) is unrelated to the standard force balance.

The paper is organized as follows. We begin, in section 2, with a brief overview of
the phase-field theory. In so doing, we present both the standard variational deriva-
tion, which yields the governing equation for ϕ as a gradient-flow equation, and the
less conventional continuum-mechanical derivation due to Fried and Gurtin [12]. Next,
in section 3, we derive the configurational force balance germane to the phase-field
theory. Here, again, we consider two approaches. In the first approach, we mimick
Maugin’s [27] approach to the study of configurational forces associated with material
inhomogeneities in elastic solids. Specifically, we multiply the evolution equation for
ϕ by ∇ϕ and arrive at the desired result in a few simple steps. The second approach
employs Gurtin’s [19, 20] general framework for configurational forces. In section 4,
we consider time-dependent level sets of ϕ and obtain the component of the evolution
equation for ϕ normal to those sets. In section 5, we discuss the role of standard
forces. In section 6, we specialize the constitutive equations of the phase-field theory
to yield an unscaled version of the theory that leads to the simple sharp-interface
equation (1.2). Section 7 is concerned with scaling. In section 8, we discuss expan-
sions. In section 9, we obtain asymptotic results for the regions occupied by the bulk
phases. In section 10, we obtain asymptotic results for a generic transition layer. In
so doing, we first take the indirect approach and then take the direct approach. In
section 11, we generalize the constitutive assumptions imposed in section 4 and derive
(1.1) using only the direct approach. Finally, in section 12, we conclude with a brief
discussion.
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2. Phase-field theory. We present a simple theory for transformations between
two phases as described by a dimensionless scalar-valued phase field ϕ. Intuitively,
at an instant when both phases are present, we expect ϕ to vary smoothly between
distinct values associated with each of the phases. Further, letting L denote a suit-
able characteristic length, the product L|∇ϕ| should exhibit large values in any zone
connecting the two phases. Otherwise, at an instant when only one phase is present,
ϕ should be essentially uniform. Thus, ϕ can be thought of as a regularized charac-
teristic function for one of the phases, and phase transformations are embodied in the
evolution of the phase distribution, as described by ϕ.

2.1. Variational approach. The conventional approach to developing an equa-
tion governing the evolution of ϕ is variational. Assuming that the free-energy density,
say ψ, is determined constitutively as a function ψ̂ depending on ϕ and, to account for
energetic contributions from the zones connecting the two phases, on ∇ϕ, the total
free energy of the body B is then given by the functional

F(ϕ) =

∫
B
ψ̂(ϕ,∇ϕ) dv.(2.1)

The evolution equation for ϕ then has the form of a gradient-flow equation,

β(ϕ,∇ϕ, ϕ̇)ϕ̇ = −δF(ϕ)

δϕ
,(2.2)

with β ≥ 0 a constitutively determined kinetic coefficient and δF(ϕ)/δϕ defined via
the first variation of F , viz.,

δF(ϕ)

δϕ
=

∂ψ̂(ϕ,∇ϕ)

∂ϕ
− div

{
∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)

}
.(2.3)

Tacit to the foregoing discussion is an understanding that, to encompass the existence
of two energetically viable phases, the restriction ψ̂(·,0) of ψ̂ to homogeneous values
of ϕ should be a double-well potential.

2.2. Alternative approach. An alternative to the variational approach shown
is provided by Fried and Gurtin [12]. That alternative hinges on distinguishing be-
tween kinematical ingredients, laws of balance and imbalance, and constitutive equa-
tions. The phase field ϕ is the sole kinematical variable of the theory. Under the
recognition that power expenditures should accompany temporal variations of any
kinematical descriptor and that such expenditures must involve conjugate forces, a
vector-valued microstress ξ and a scalar-valued internal microforce density π are in-
troduced. The basic laws of the theory then consist of the balance of microforces and
the imbalance of free energy, which require that for each body part P, with boundary
∂P and outward unit normal ν,∫

∂P
ξ · ν da +

∫
P
π dv = 0(2.4)

and

˙∫
P
ψ dv ≤

∫
∂P

(ξ · ν)ϕ̇ da.(2.5)
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The local equivalents of the global laws are the field equation

divξ + π = 0(2.6)

and the free-energy inequality

ψ̇ + πϕ̇− ξ · ∇ϕ̇ ≤ 0.(2.7)

Assuming that ψ, ξ, and π are determined constitutively by smooth functions of ϕ,
∇ϕ, and ϕ̇, and requiring those functions to be consistent with (2.7) in all processes,
then gives

ψ = ψ̂(ϕ,∇ϕ), ξ =
∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)
, and π = −∂ψ̂(ϕ,ϕ

∂ϕ
− β(ϕ,∇ϕ, ϕ̇)ϕ̇(2.8)

with β ≥ 0. Finally, using (2.8) in the local microforce balance (2.6) yields

β(ϕ,∇ϕ, ϕ̇)ϕ̇ = div

{
∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)

}
− ∂ψ̂(ϕ,∇ϕ)

∂ϕ
,(2.9)

which is identical to the evolution equation arising from (2.2) and (2.3).
In view of (2.8), the free-energy inequality (2.7) yields an expression

δ = −β(ϕ,∇ϕ, ϕ̇)ϕ̇2(2.10)

for the rate at which energy is dissipated per unit volume.

3. Configurational forces and their balance.

3.1. Formal approach. Consider the evolution equation (2.9). Multiplying
each term of that equation by ∇ϕ and performing a few simple manipulations, one is
led to the identity

div

{
ψ̂(ϕ,∇ϕ)1 −∇ϕ⊗ ∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)

}
+ β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ = 0.(3.1)

The tensor

ψ̂(ϕ,∇ϕ)1 −∇ϕ⊗ ∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)
(3.2)

appearing in (3.1) is immediately recognizable as the configurational stress tensor
relevant to the present context (Eshelby [10]). Further, the vector

β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ(3.3)

represents a configurational body force density. Thus, the derived identity (3.1) can
be viewed as a configurational force balance associated with the evolution equation
(2.9). In the absence of defects, which would be associated with irregularities of ϕ,
(3.1) is equivalent to (2.9) whenever ∇ϕ is nontrivial and, thus, superfluous.

Within the context of the phase-field theory, the configurational force balance
(3.1) is a consequence of microforce balance (2.6) and the thermodynamically derived
constitutive equations (2.8). In particular, neither standard forces nor their balance
enter the derivation. Hence, (3.1) is unrelated to standard force balance.
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3.2. Alternative approach. Like the variational derivation of (2.9), the above
derivation of (3.1) is predicated on the provision of constitutive equations. An alter-
native derivation that is free from that restriction is due to Gurtin [19, 20]. That
approach treats configurational forces as basic entities that are associated with the
integrity of the material structure of a body and expend power in connection with the
transfer of material and the evolution of defects. Specifically, a configurational stress
tensor C and a configurational body force density f are introduced. These fields are
required to satisfy the configurational force balance

∫
∂P

Cν da +

∫
P

f dv = 0(3.4)

for each part P of B, which is equivalent to the local configurational force balance

divC + f = 0.(3.5)

To characterize the manner in which configurational forces expend power, a means of
capturing the kinematics associated with the transfer of material is needed. Gurtin
[19, 20] accomplishes this with the aid of migrating control volumes. The evolution of
a migrating control volume R can be generically described by a time-dependent field
q defined over ∂R, and the configurational traction Cν∂R is assumed to be power
conjugate to q. Further, to properly reckon the power expended by the microtraction
ξ · ν∂R on R, it is necessary to consider the convected time-rate ϕ̇ + ∇ϕ · q of ϕ
following the motion of ∂R. The net power expended on R by external agencies can
then be expressed as

∫
∂R

{(C + ∇ϕ⊗ ξ)ν∂R · q + (ξ · ν∂R)ϕ̇} da.(3.6)

Since the intrinsic motion of ∂R involves only the normal component q ·ν∂R of q, the
net power should be invariant with respect to the choice of the tangential component
of q. This invariance implies that C + ∇ϕ⊗ ξ = α1 and, thus, that

∫
∂R

{(C + ∇ϕ⊗ ξ)ν∂R · q + (ξ · ν∂R)ϕ̇} da =

∫
∂R

(αq · ν∂R + (ξ · ν∂R)ϕ̇) da.(3.7)

In view of the foregoing discussion, the free-energy imbalance for a migrating control
volume R can then be expressed in the form

˙∫
R
ψ dv ≤

∫
∂R

(αq · ν∂R + (ξ · ν∂R)ϕ̇) da,(3.8)

from which it follows that∫
R
ψ̇ dv ≤

∫
∂R

(ξ · ν∂R)ϕ̇ da +

∫
∂R

(α− ψ)q · ν∂R da.(3.9)

Since it is always possible to find another control volume, say R′, which coincides
with R at a given instant but with normal velocity q′ · ν∂R different from q · ν∂R, it
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therefore follows that α = ψ and that the configurational stress tensor must be of the
form

C = ψ1 −∇ϕ⊗ ξ.(3.10)

Finally, using (3.10) in the local configurational force balance (3.5) yields

div(ψ1 −∇ϕ⊗ ξ) + f = 0.(3.11)

In the absence of lower-dimensional defect structures, this equation determines the
configurational body force density f = −div(ψ1 − ∇ϕ ⊗ ξ). The balance (3.11) is
independent of any particular constitutive assumptions. Only when one invokes (2.8)
does it reduce to (3.1), in which case f = β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ.

4. Uniformity surfaces. Normal configurational force balance. In the
phase-field theory, an interface is a diffuse transition layer, and each value that ϕ
takes within such a layer can be thought of as representing a particular state of the
material. For this reason the time-dependent level sets

{x : ϕ(x, t) = constant}(4.1)

are important. We refer to such sets as uniformity surfaces.
Within transition layers, ∇ϕ should be nontrivial; this being the case, we see that

n =
∇ϕ

|∇ϕ|(4.2)

and

V = − ϕ̇

|∇ϕ|(4.3)

represent a unit normal field and a corresponding (scalar) normal velocity field for
uniformity surfaces, that

P = 1 − n ⊗ n(4.4)

projects vector fields onto their components tangent to uniformity surfaces, and that

L = −(∇n)P and K = trL = −divn(4.5)

are the curvature tensor and (twice) the mean curvature of uniformity surfaces.
From (4.2), |∇ϕ|∇n = P∇∇ϕ, and it follows that

L = − 1

|∇ϕ|P(∇∇ϕ)P(4.6)

and

K = − 1

|∇ϕ| (Δϕ− n · (∇∇ϕ)n).(4.7)

Assuming that ∇ϕ �= 0, we may calculate the component of the configurational
force balance (3.11) in the direction n normal to uniformity surfaces. Bearing in mind
(4.2) and (4.6), that calculation yields an identity

div(ψn − |∇ϕ|ξ) + ψK + f · n = 0(4.8)
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that we refer to as the normal configurational force balance for uniformity surfaces.
In combination with the constitutive equations (2.8), the auxiliary consequence f =
β(ϕ,∇ϕ, ϕ̇)ϕ̇∇ϕ of (2.8), and (4.3), the balance (4.8) provides an evolution equation,

|∇ϕ|2β(ϕ,∇ϕ, ϕ̇)V = ψ̂(ϕ,∇ϕ)K + div

{
ψ̂(ϕ,∇ϕ)n − |∇ϕ|∂ψ̂(ϕ,∇ϕ)

∂(∇ϕ)

}
,(4.9)

for ϕ. The evolution equation (4.9) is valid and equivalent to the evolution equation
(2.9), provided that ∇ϕ �= 0. Otherwise, if ∇ϕ = 0, we cannot impose (4.9), which
was derived based on the assumption that ∇ϕ �= 0.

5. The role of standard forces. In the preceding discussion, we have ignored
all mention of standard forces. If we allow for a standard stress tensor S and a
standard body force density b, the balances for forces and moments require that∫

∂P
Sν da +

∫
P

b dv = 0(5.1)

and ∫
∂P

(x − 0) × Sν da +

∫
P

(x − 0) × b dv = 0(5.2)

for each part P of B, or, equivalently, that

divS + b = 0 and S = S�.(5.3)

Since the material is rigid, S is constitutively indeterminate and the field equation
(5.3)1 is satisfied trivially—that is, given an externally supplied body force density b,
S is any symmetric tensor field consistent with (5.3)1.

With standard forces taken into account, it is reasonable to expect some mod-
ification of the configurational force system. We therefore write C̃ and f̃ for the
configurational stress tensor and body force density and assume that these obey the
configurational force balance ∫

∂P
C̃ν da +

∫
P

f̃ dv = 0(5.4)

for each part P of B, or, equivalently,

divC̃ + f̃ = 0.(5.5)

Since the body is rigid, the standard force balance (5.1) ensures that the external
power expended on any part P vanishes. However, for a control volume R whose
boundary ∂R migrates with velocity q, the power expenditure of the traction Sν∂R

distributed over ∂R is not generally trivial. Thus, when the body is rigid, standard
stress is taken into account, the net power expended on a migrating control volume
R is given by ∫

∂R
{(C̃ + ∇ϕ⊗ ξ + S)ν∂R · q + (ξ · ν∂R)ϕ̇} da,(5.6)

and the requirement that (5.6) be invariant with respect to the choice of the tangential
component of the velocity q yields C̃ + ∇ϕ ⊗ ξ + S = α1. Thus, the free-energy
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imbalance is unchanged from (3.8) and we find that, when the body is rigid and
standard stress is taken into account, the configurational stress tensor admits the
representation

C̃ = ψ1 −∇ϕ⊗ ξ − S.(5.7)

Comparing (5.7) with (3.10), we see that C̃ = C−S. Further, in view of the standard
force balance (5.3)1 and the configurational force balance (5.5), it follows that f̃ =
f −b. On the other hand, granted that C̃ = C−S and f̃ = f −b, (5.3)1 implies that

divC̃ + f̃ = divC + f = 0,(5.8)

and we may conclude that, for a rigid body, standard forces have no impact on the
configurational force balance and may be neglected without loss of generality.

6. Specialization. For simplicity, we suppose that the constitutive relation de-
termining the free-energy density has the simple form

ψ = f(ϕ) + Ψα(1 − g(ϕ)) + Ψβg(ϕ) +
1

2
λ|∇ϕ|2,(6.1)

where f is a double-well potential with equal minima at ϕ = ϕα and ϕ = ϕβ , with
ϕα < ϕβ , viz.,

0 = f(ϕα) = f(ϕβ) < f(ϕ) for all ϕ �= ϕα, ϕβ ;(6.2)

g vanishes for ϕ ≤ ϕα, is equal to unity for ϕ ≥ ϕβ , and increases monotonically
between ϕ = ϕα and ϕ = ϕβ , viz.,

g(ϕ) =

{
0 0 ≤ ϕα,

1 ϕ ≥ ϕβ

(6.3)

and

g′(ϕ) > 0 for all ϕ ∈ (ϕα, ϕβ);(6.4)

λ is constant and strictly positive, viz.,

λ > 0;(6.5)

and Ψα and Ψβ are the constant energy densities of the bulk phases α and β. For a
body B, where the average of ϕ lies between ϕα and ϕβ , the double-well structure of f
lends energetic preference to distributions of ϕ consisting of regions with ϕ = ϕα and
regions with ϕ = ϕβ . On the other hand, the gradient term 1

2λ|∇ϕ|2 penalizes sharp
transitions between such regions and in so doing facilitates the existence of equilibria
in which ϕ is smooth and B contains interfacial layers separating regions with ϕ close
to ϕα from regions with ϕ close to ϕβ . Because the gradient term depends only on
the magnitude |∇ϕ| of ∇ϕ, interfacial layers of all orientations are of equal energetic
cost.

As a further simplification, we assume that the kinetic modulus β is constant and
strictly positive, viz.,

β(ϕ,∇ϕ, ϕ̇) = B > 0.(6.6)
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With the choice of (6.6), (2.10) specializes to δ = −Bϕ̇2; thus, the rate at which energy
is dissipated by the growth of either phase at the expense of another is quadratic in
ϕ̇ and is insensitive to layer orientation.

In view of the specializations (6.1) and (6.6), the evolution equation (2.9) becomes

Bϕ̇ = λΔϕ− f ′(ϕ) − [[Ψ]]g′(ϕ),(6.7)

with [[Ψ]] = Ψβ−Ψα, and the normal configurational force balance (4.9) for uniformity
surfaces becomes

|∇ϕ|2BV =

{
f(ϕ) + Ψα(1 − g(ϕ)) + Ψβg(ϕ) +

1

2
λ|∇ϕ|2

}
K(6.8)

+ div

{
(f(ϕ) + Ψα(1 − g(ϕ)) + Ψβg(ϕ) − 1

2
λ|∇ϕ|2)n

}
.

Since

{
Ψα(1 − g(ϕ)) + Ψβg(ϕ)

}
K + div

{
Ψα(1 − g(ϕ)) + Ψβg(ϕ)

}
= [[Ψ]]n · ∇g(ϕ),

(6.9)

(6.8) can be rewritten somewhat more concisely as

|∇ϕ|2BV =

{
f(ϕ) +

1

2
λ|∇ϕ|2

}
K + div

{
(f(ϕ) − 1

2
λ|∇ϕ|2)n

}
+ [[Ψ]]n · ∇g(ϕ),

(6.10)

and we will use this in lieu of (6.8). We emphasize that (6.8) (and, thus, (6.10)) is
meaningful only if ∇ϕ �= 0 and that, if (6.10) is meaningful, it is equivalent to (6.7).

7. Scaling. We introduce characteristic measures

μ =
1

2
(Ψα + Ψβ) and ν = max

ϕ∈(ϕα,ϕβ)
f(ϕ)(7.1)

for the free energies, per unit volume, of the bulk phases and interfacial transition
layers, and assume that these yield a small dimensionless parameter

0 < ε =
μ

ν
� 1.(7.2)

Then, letting L denote a characteristic length and T a characteristic time, and label-
ing the dimensional (unscaled) fields with asterisks, we introduce the dimensionless
independent and dependent variables

x =
x∗

L
, t =

t∗

T
, ϕε(x, t) = ϕ∗(x∗, t∗),(7.3)

and constitutive quantities

f(ϕε) =
f∗(ϕ∗)

ν
, Ψα =

Ψ∗
α

μ
, Ψβ =

Ψ∗
β

μ
, ελ =

λ∗

μL2
, εB =

B∗

μT
,(7.4)

where the dependence of the fields on the parameter ε has been made explicit and the
quantities without asterisks in (7.4) are assumed to be of O(1) in ε.



THEORIES FOR PURE INTERFACE MOTION 1141

With this scaling, the dimensionless free-energy density is given by

ψε =
ψ

μ
= ε−1f(ϕε) + Ψα(1 − g(ϕε)) + Ψβg(ϕε) +

1

2
ελ|∇ϕε|2,(7.5)

and the governing evolution equation for ϕε becomes

εBϕ̇ε = ελΔϕε − ε−1f ′(ϕε) − [[Ψ]]g′(ϕε).(7.6)

Further, the normal configurational force balance (6.10) reads

ε|∇ϕε|2BVε =

{
ε−1f(ϕε) +

1

2
ελ|∇ϕε|2

}
Kε(7.7)

+ div

{{
ε−1f(ϕε) −

1

2
ελ|∇ϕε|2

}
nε

}
+ [[Ψ]]nε · ∇g(ϕε),

with (cf. (4.2), (4.3), and (4.7))

nε =
∇ϕε

|∇ϕε|
, Vε = − ϕ̇ε

|∇ϕε|
, and Kε = − 1

|∇ϕε|
(Δϕε − nε · (∇∇ϕε)nε).(7.8)

8. Expansions. Hereafter, we focus on a fixed part P of B that, over some time
interval, consists of three evolving subregions Pα

ε , Sε, and Pβ
ε . At each time t, Sε(t)

is a transition layer consisting of points x in B with ϕα < ϕε(x, t) < ϕβ , while Pα
ε (t)

and Pβ
ε (t) consist of points x with ϕε(x, t) ≈ ϕα and ϕε(x, t) ≈ ϕβ , respectively. We

assume that the limit

S = lim
ε→0+

Sε(8.1)

exists, with S(t) a smoothly evolving surface and with

P = Pα(t) ∪ S(t) ∪ Pβ(t),(8.2)

with Pγ(t) = limε→0 Pγ
ε (t) for γ = α, β.

We write (x, t) for the signed distance between a point x in P and the surface
S(t), with (x, t) < 0 in Pα

ε (t) and (x, t) > 0 in Pβ
ε (t). Then

n(x, t) = ∇(x, t) and VS(x, t) = −̇(x, t)(8.3)

represent a unit normal field and corresponding scalar normal velocity field for S(t).
We also assume that (x, t) is smooth within Sε(t) and that given any x on Sε(t), there
is a unique z on S(t) with z = x− (x, t)n(x, t). The mapping x �→

(
(x, t), z(x, t)

)
is

then one-to-one on Sε(t); further, n(x, t) and VS(x, t) are well defined and independent
of (x, t) at each x in Sε(t): n(x, t) = n(z, t), VS(x, t) = VS(z, t). Thus, writing ∇S
and divS for the surface gradient and surface divergence on S, the curvature tensor
L and the total curvature KS for S,

L = −∇Sn and KS = trL = −divSn(8.4)

are also independent of : L(x, t) = L(z, t), KS(x, t) = KS(z, t).
Within Sε(t), we stretch the coordinate normal to S(t) by letting

r(x, t) = ε−1(x, t)(8.5)



1142 ELIOT FRIED

and, in accord with this, we assume that the thickness hε(t) of Sε(t) tends to zero
with ε, but at a slightly slower rate, viz.,

lim
ε→0

hε = 0, lim
ε→0

(ε−1hε) = +∞, lim
ε→0

(ε−1h2
ε) = 0.(8.6)

For the phase field ϕε, we introduce an outer expansion

ϕε(x, t) = ϕout
0 (x, t) + εϕout

1 (x, t) + O(ε2),(8.7)

assumed valid within the regions Pα
ε and Pβ

ε , and an inner expansion

ϕε(x, t) = ϕin
0

(
r(x, t), z(x, t), t

)
+ εϕin

1

(
r(x, t), z(x, t), t

)
+ O(ε2),(8.8)

assumed valid within the layer; here, ϕout
0 (x, t), ϕout

1 (x, t) and ϕin
0 (r, z, t), ϕin

1 (r, z, t)
are smooth, bounded functions of their arguments. We further assume that these
expansions are twice formally differentiable in their arguments in the sense that ∇ϕε =
∇ϕout

0 + ε∇ϕout
1 +O(ε2) for the outer expansion and, on letting ϕ́ε denote the partial

derivative of ϕε with respect to r, ϕ́ε = ϕ́in
0 + εϕ́in

1 + O(ε2) for the inner expansion,
and so forth.

Hence, we do not presume that Sε(t) is disjoint from Pα
ε (t) and Pβ

ε (t): the regions
Sε(t)∩

(
Pα
ε (t)∪Pβ

ε (t)
)

of overlap represent sets where the outer and inner expansions
agree. In particular, we have the matching condition

(ϕout
0 )±(x, t) = lim

�(x,t)→0±
ϕout

0 (x, t) = lim
r→±∞

ϕin
0 (r, z, t) = (ϕin

0 )±(r, z, t)(8.9)

relating the O(1) terms of the inner and outer expansions for ϕε within the overlap
region.

In terms of the variables (r, z), the derivative with respect to z holding r fixed
may be identified with the gradient ∇S on S. Let

P = 1 − n ⊗ n.(8.10)

Then, since z(x, t) = x − (x, t)n(x, t), it follows that

∇z = P + Mε,(8.11)

with

Mε = −∇n.(8.12)

To determine the dependence of Mε on ε, note that, since || ≤ hε = o(1) and ́ = ε,
differentiating both sides of the relation n(x, t) = n(z(x, t), t) with respect to x yields

Mε = (1 − L)−1L = L + o(1).(8.13)

Thus, for Φ and v scalar- and vector-valued fields, we find that⎧⎨
⎩
∇Φ = ε−1Φ́n + (P + Mε)∇SΦ = ε−1Φ́n +

(
1 + o(1)

)
∇SΦ,

∇v = ε−1v́ ⊗ n + (∇Sv)(P + Mε) = ε−1v́ ⊗ n +
(
1 + o(1)

)
∇Sv,

(8.14)

so that

∇∇Φ = ε−2Φ́́n⊗ n + ε−1
(
1 + o(1)

)(
∇SΦ́ ⊗ n + n ⊗∇SΦ́ − Φ́L)(8.15)

+ (∇S∇SΦ)O(1) + O(1)∇SΦ,
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with the O(1) and o(1) estimates in (8.14) and (8.15) of appropriate tensorial order
and independent of Φ and v.

As a further consequence of the relation z(x, t) = x− (x, t)n(x, t), it follows that

ż = VSn + vε,(8.16)

with

vε = −ṅ.(8.17)

To determine the dependence of vε on ε, note that ṅ = ∇̇ = −∇VS . Thus, since
∇VS = (P + Mε)∇SVS and

◦
n = −∇SVS , with

◦
n the time-rate of n following the

normal trajectories of S,

vε = (P + Mε)∇SVS = ∇SVS + o(1).(8.18)

Thus, for Φ a scalar field,

Φ̇ = −ε−1VSΦ́ + ∇SΦ · (P + L)
◦
n + Φt = −ε−1VSΦ́ + Φt + o(1),(8.19)

where Φt denotes the partial time-rate of Φ holding r and z fixed.

9. Bulk regions. Using the outer expansion (8.7) of ϕε in the scaled evolution
equation (7.6) and neglecting terms of O(1) and smaller in ε, we find that f ′(ϕout

0 ) = 0
so that, since f is a double-well potential with equal minima at ϕα and ϕβ ,

ϕout
0 =

{
ϕα on Pα

ε ,

ϕβ on Pβ
ε .

(9.1)

Further

f(ϕε) = o(ε) and f ′(ϕε) = o(1) on Pα
ε ∪ Pβ

ε ,(9.2)

and

ϕ̇ε,∇ϕε,∇ϕ̇ε = O(ε) on Pα
ε ∪ Pβ

ε .(9.3)

Thus, it follows that

ψε =

{
Ψα + O(ε) on Pα

ε ,

Ψβ + O(ε) on Pβ
ε .

(9.4)

10. Transition layer.

10.1. Basic estimates. Applying (8.14)1, (8.14)2, and (8.19) to the inner ex-
pansion (8.8) of ϕε, we find that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∇ϕε = ε−1ϕ́in
0 n + ∇Sϕ

in
0 + ϕ́in

1 n + O(ε),

|∇ϕε| = ε−1ϕ́in
0 + ϕ́in

1 + O(ε),

∇∇ϕε = ε−2ϕ́́ in
0 n ⊗ n

+ ε−1(∇S ϕ́
in
1 ⊗ n + n ⊗∇S ϕ́

in
1 − ϕ́in

0 L + ϕ́́ in
1 n ⊗ n) + O(1),

Δϕε = ε−2ϕ́́ in
0 − ε−1(KS ϕ́

in
0 − ϕ́́ in

1 ) + O(1),

ϕ̇ε = −ε−1VS ϕ́
in
0 + O(1),

(10.1)

and, applying these estimates to (7.8), that

nε = n + O(ε), Vε = VS + O(ε), and Kε = KS + o(1).(10.2)
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10.2. Equipartition of free-energy density and its consequences. Using
the inner expansion of ϕε and the estimates (10.1) in the scaled evolution equation
(7.6) and neglecting terms of O(1) and smaller, we find that ϕin

0 must satisfy the
ordinary differential equation

λϕ́́ in
0 = f ′(ϕin

0 ).(10.3)

Further, in view of the matching condition (8.9) and the result (9.1) concerning ϕout
0 ,

ϕin
0 must satisfy

ϕin
0 →

{
ϕα as r → −∞,

ϕβ as r → +∞,
(10.4)

along with

ϕ́in
0 → 0 and ϕ́́ in

0 → 0 as r → ±∞.(10.5)

Since f is a double-well potential with equal minima at ϕα and ϕβ , the boundary-value
problem formed by (10.3) and (10.4) possesses a unique solution ϕin

0 that increases
monotonically from the value ϕα at r = −∞ to the value ϕβ at r = +∞. Further,
ϕin

0 must be independent of z.
Granted that the boundary conditions (10.4)2,3 hold, the differential equation

(10.3)1 possesses a first integral

1

2
λ|ϕ́in

0 |2 = f(ϕin
0 ),(10.6)

which we interpret as an expression of the equipartition of the free-energy density
within the layer (upto the most significant order in ε), between the double-well po-
tential f and the gradient energy density 1

2λ|∇ϕε|2. Since f and f ′ vanish at ϕ = ϕα

and ϕ = ϕβ , ϕin
0 must decay according to ϕ́in

0 (r, ·) = O(e−c|r|) as |r| → ∞, with c > 0
independent of r. Hence, ϕ́in

0 is, as a function of r, square-integrable on (−∞,+∞).
Thus, by (10.6), (10.3), and (10.4),∫ +∞

−∞

√
λ|ϕ́in

0 (r, ·)|2 dr =

∫ ϕβ

ϕα

√
2f(ϕ) dϕ.(10.7)

For convenience, we introduce

ψS =
√
λ

∫ ϕβ

ϕα

√
2f(ϕ) dϕ(10.8)

and note that, if rewritten in terms of dimensional quantities, ψS would carry dimen-
sions of free-energy per unit area. Granted that (10.8) holds, it follows from (10.7)
that ∫ +∞

−∞
λ|ϕ́in

0 (r)|2 dr = ψS .(10.9)

10.3. Interfacial evolution equation. Indirect approach. At O(1), the
scaled evolution equation (7.6) yields the linear but inhomogeneous equation

λϕ́́ in
1 − f ′′(ϕin

0 )ϕin
1 = −ρ,(10.10)
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with

ρ = BVS ϕ́
in
0 − λKS ϕ́́

in
0 − [[Ψ]]g′(ϕin

0 ).(10.11)

On differentiating (10.3) with respect to r, it follows that ϕ́in
0 must satisfy the homo-

geneous equation λϕ́́́ in
0 − f ′′(ϕin

0 )ϕ́in
0 = 0. Thus, by the Fredholm alternative, ρ and

ϕ́in
0 must be orthogonal:

∫ +∞

−∞
ρϕ́in

0 dr = 0.(10.12)

Evaluating the integral on the left side of (10.12), using (10.9) and the boundary
conditions (10.4), and recalling from (6.3) that g vanishes at ϕ = ϕα and is equal to
unity at ϕ = ϕβ , we find that

bSVS = ψSKS + [[Ψ]],(10.13)

where we have introduced

bS =
B√
λ

∫ ϕβ

ϕα

√
2f(ϕ) dϕ =

BψS
λ

.(10.14)

We note that, if rewritten in terms of dimensional quantities, bS would carry dimen-
sions of mass per unit time per unit area and would, therefore, represent interfacial
reciprocal mobility.

On performing a suitable redimensionalization, we find that (10.13) is precisely
the interfacial evolution equation (1.2) governing the evolution of a sharp phase inter-
face endowed with a constant interfacial free energy per unit area ψS and reciprocal
mobility bS that separates bulk phases α and β with constant free-energy densities
Ψα and Ψβ .

10.4. Interfacial evolution equation. Direct approach. Within the layer,
∇ϕε is generally nontrivial. Thus, it is permissible to work with the scaled normal
configurational force balance (7.7) for uniformity surfaces instead of the scaled evo-
lution equation (7.6). Using the inner expansion of ϕε and the estimates (10.1) and
(10.2) in (7.7), and neglecting terms of O(ε−1) and smaller, we arrive once again at
(10.3) and, bearing in mind (8.9), (9.1), and the properties of f , all the conclusions of
section 9 follow. Next, at O(ε−1), (7.7) yields, in view of the result (10.6) concerning
the partition of free-energy density,

BVS |ϕ́in
0 |2 = λKS |ϕ́in

0 |2 +

′{
f ′(ϕin

0 )ϕin
1 − λϕ́in

0 ϕ́in
1

}
+[[Ψ]]

′

g(ϕin
0 ) .(10.15)

By integrating (10.15) over r from r = −∞ to r = +∞ and utilizing the definitions
(10.9) and (10.14), the boundary and far-field conditions (10.4) and (10.5), and prop-
erties of f and g, once again we obtain the evolution equation (10.13) obtained in the
previous section by the Fredholm alternative. In this sense, (10.13) can be viewed
as a consequence of the normal component of the configurational force balance for
uniformity surfaces, obtained in passing to the limit ε → 0 a limit that corresponds
to collapsing the transition layer into a surface.
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We remarked earlier that, when ϕε is regular, the configurational force balance
contains no information beyond that already contained in the evolution equation for
ϕε. However, passing to the limit ε → 0 generates surfaces across which ϕε is discon-
tinuous and ∇ϕε and ϕ̇ε (as well as other associated derivatives) are undefined. The
asymptotic analysis performed here shows that, at such a defect, the normal config-
urational force balance for uniformity surfaces yields directly information that arises
only indirectly—as a solvability condition imposed by the Fredholm alternative—from
the evolution equation for ϕε. In this sense, we view the asymptotically derived inter-
facial evolution equation as a statement of normal configurational force balance for
the interface.

Our asymptotic derivations of the evolution equation (1.2) are predicated on
(10.8) and (10.14). We interpret (10.8) and (10.14) as constitutive connections be-
tween the theories at hand, connections that guarantee that the phase-field theory
corresponds asymptotically to the sharp-interface theory.

11. Generalization. To obtain the general evolution equation (1.1) from the
phase-field theory, we first modify the constitutive equations (6.1) and (6.6), deter-
mining the free-energy density and the kinetic modulus to be

ψ = f(ϕ) + Ψα(1 − g(ϕ)) + Ψβg(ϕ) +
1

2
λ(n)|∇ϕ|2(11.1)

and

β(ϕ,∇ϕ, ϕ̇) = B(n, V ) > 0,(11.2)

with n and V as defined in (4.2) and (4.3).
Scaling as in section 7, we arrive at the evolution equation

εB(nε, Vε)ϕ̇ε = εdiv

{
|∇ϕε|

(
λ(nε)nε +

1

2

∂λ(nε)

∂nε

)}
− ε−1f ′(ϕε) − [[Ψ]]g′(ϕε)

(11.3)

and the normal configurational force balance for uniformity surfaces

ε|∇ϕε|2B(nε, Vε)Vε =

{
ε−1f(ϕε) +

1

2
ελ(nε)|∇ϕε|2

}
Kε

+ div

{{
ε−1f(ϕε) −

1

2
ελ(nε)|∇ϕε|2

}
nε −

1

2
ε|∇ϕε|2

∂λ(nε)

∂nε

}
+ [[Ψ]]n · ∇g(ϕε),

(11.4)

which generalize (7.6) and (7.7).
The results for the bulk regions are unchanged from those presented in section 9.

To study the layer, we follow the approach taken in section 10.4. Specifically, at
O(ε−2), (11.4) yields

´{
1
2λ(n)|ϕ́in

0 |2 − f(ϕin
0 )

}
= 0.(11.5)

Further, the matching conditions (8.9) and the bulk results (9.1) yield, as before, the
far-field conditions (10.4) and (10.5). Combining (11.5), (10.4), and (10.5), we arrive
at the first integral

1

2
λ(n)|ϕ́in

0 |2 = f(ϕin
0 )(11.6)
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and find, in view of the properties of f , that once again, as a function of r, ϕ́in
0 must

be square-integrable on (−∞,+∞). This leads to a generalization∫ +∞

−∞

√
λ(n)|ϕ́in

0 (r, ·, ·)|2 dr =

∫ ϕβ

ϕα

√
2f(ϕ) dϕ(11.7)

of (10.7).
We next introduce analogues

ψ̂S(n) =
√

λ(n)

∫ ϕβ

ϕα

√
2f(ϕ) dϕ(11.8)

and

bS(n, VS) =
B(n, VS)√

λ(n)

∫ ϕβ

ϕα

√
2f(ϕ) dϕ =

B(n, VS)ψ̂S(n)

λ(n)
(11.9)

of the constitutive connections (10.8) and (10.14). Direct consequences of (11.7) and
(11.8) are the identities⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∫ +∞

−∞
λ(n)|ϕ́in

0 (r, ·, ·)|2 dr = ψ̂S(n),

∫ +∞

−∞

∂λ(n)

∂n
|ϕ́in

0 (r, ·, ·)|2 dr = 2
∂ψ̂S(n)

∂n
.

(11.10)

Finally, proceeding as in section 10.4, (11.4) yields at O(ε−1)

|ϕ́in
0 |2B(n, VS)VS = |ϕ́in

0 |2λ(n)KS − divS

{
1

2
|ϕ́in

0 |2 ∂λ(n)

∂n

}
´

+

{
f ′(ϕin

0 )ϕin
1 − ϕ́in

0 ϕ́in
1 λ(n) − 1

2
ϕ́in

0 ∇ϕin
0 · ∂λ(n)

∂n

}
+ [[Ψ]]

´
g(ϕin

0 );

(11.11)

by integrating (11.11) over r from r = −∞ to r = +∞ and utilizing the constitutive
connections (11.8) and (11.9), the boundary and far-field conditions (10.4) and (10.5),
and properties of f and g, we obtain

b̂S(n, VS)VS =

{
ψ̂S(n)P +

∂2ψ̂S(n)

∂n2

}
· L + [[Ψ]],(11.12)

which, on performing a suitable redimensionalization, is precisely the general interfa-
cial evolution equation (1.1) of the sharp-interface theory.

12. Discussion. Our results are predicated on the provision of constitutive
equations within the phase-field theory and, moreover, upon stipulated connections
(11.8) and (11.9) between those constitutive equations and the constitutive equations
of the sharp-interface theory. However, because the framework of the phase-field the-
ory is a dynamical one that allows for dissipation, the results of our analysis are more
broadly applicable than any alternative based on variational methods.

By restricting our attention to a setting where the standard force balance is
irrelevant, we leave open the possibility that, once the constraint of rigidity is relaxed
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and the standard stress is no longer indeterminate, the standard force balance might
somehow give rise to the interfacial configurational force balance and, thus, to a law
governing the evolution of the interface. However, such an outcome would be at
odds with the implications of variationally based descriptions. Indeed, in considering
phase interfaces within the context of the theory of finite elastostatics, Podio-Guidugli
[30] shows that, while both the bulk configurational force balance and the tangential
component of the interfacial configurational force balance are implied consequences of
standard force balance, the normal component of the interfacial configurational force
balance is independent. Moreover, asymptotic analyses of phase-field theories that
account for deformation (Fried and Grach [11]; Fried and Gurtin [14]) demonstrate
that the supplemental evolution equation of the sharp-interface theory arises not from
the deformational force balance but, as in the simple theory considered here, either
“indirectly” from the evolution equation for the phase field or “directly” from the
associated configurational force balance.
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Abstract. We present a new fluid-dynamical model of traffic flow. This model generalizes
the model of Aw and Rascle [SIAM J. Appl. Math., 60 (2000), pp. 916–938] and Greenberg [SIAM
J. Appl. Math., 62 (2001), pp. 729–745] by prescribing a more general source term to the velocity
equation. This source term can be physically motivated by experimental data, when taking into
account relaxation and reaction time. In particular, the new model has a (linearly) unstable regime
as observed in traffic dynamics. We develop a numerical code that solves the corresponding system
of balance laws. Applying our code to a wide variety of initial data, we find the observed inverse-λ
shape of the fundamental diagram of traffic flow.
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1. Introduction. After two-equation models of traffic flow were seriously crit-
icized by Daganzo [5], the main focus of the traffic community shifted toward mi-
croscopic models of traffic flow. However, the criticism has been overcome; see, e.g.,
[26, 11]. By replacing the space derivate in old two-equation models by the convective
derivative, Aw and Rascle [2] and Greenberg [8] deduced a two-equation model which
solves all inconsistencies of the earlier models, as they showed with a detailed math-
ematical analysis and numerical simulations. In particular, in their model (which we
call the ARG model), no information travels faster than the vehicle velocity; i.e., in
general drivers do not react to the traffic situation behind them. Moreover, the veloc-
ity is always nonnegative. In the ARG model, traffic flow is described by the following
system of balance laws determining the density ρ = ρ(t, x) and velocity v = v(t, x) of
cars:

∂ρ

∂t
+

∂(ρv)

∂x
= 0,(1.1)

∂(ρ(v − u(ρ)))

∂t
+

∂(ρv(v − u(ρ)))

∂x
=

ρ(u(ρ) − v)

T
.(1.2)

As usual, (t, x) denote the time and space variables. u(ρ) denotes the equilibrium
velocity, which fulfills the following conditions:

u′(ρ) < 0 for 0 ≤ ρ ≤ ρm,(1.3)

d2(ρu(ρ))

dρ2
< 0 for 0 ≤ ρ ≤ ρm,(1.4)

with the maximum vehicle density ρm. T > 0 is an additional parameter, the relax-
ation time. In the formal limit T → 0 the ARG model reduces to the classic Lighthill–
Whitham–Richards model [16, 19, 25]. For smooth solutions, the ARG model can be
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rewritten as

∂ρ

∂t
+ v

∂ρ

∂x
+ ρ

∂v

∂x
= 0,(1.5)

∂v

∂t
+ (v + ρu′(ρ))

∂v

∂x
=

u(ρ) − v

T
.(1.6)

In our opinion the ARG model still has a drawback; i.e., it cannot explain the
growth of structures and the general behavior for congested traffic, as observed in
traffic dynamics (see, e.g., [20, 10, 12]). To see this, we consider a linear stability
analysis around the equilibrium solution ρ(t, x) = ρ0, v(t, x) = u(ρ0), i.e.,

ρ(t, x) = ρ0 + ρ̃ exp(ikx + ω(k)t),(1.7)

v(t, x) = u(ρ0) + ṽ exp(ikx + ω(k)t).(1.8)

Substituting this ansatz into system (1.5)–(1.6) we obtain(
ω + iku ikρ0

−u′

T ω + 1
T + ik(u + ρ0u

′)

)(
ρ̃
ṽ

)
=

(
0
0

)
.(1.9)

Nontrivial solutions of this linear system exist if and only if

(ω + iku)
(
ω +

1

T
+ ik(u + ρ0u

′)
)

+ ik
ρ0u

′

T
= 0(1.10)

or, equivalently, for

ω1 = −ik(u + ρ0u
′),(1.11)

ω2 = − 1

T
− iku.(1.12)

For the stability properties, the real parts of the above solutions are important; i.e.,

Re(ω1) = 0,(1.13)

Re(ω2) = − 1

T
.(1.14)

For T > 0 both real parts are nonpositive, which means that the ARG model is
linearly stable, and the velocity v relaxes to the equilibrium velocity u in the entire
region 0 ≤ ρ ≤ ρm. This is clearly in contrast to observations, where a wide range of
states in the fundamental diagram, the relation between vehicle flux and the density,
are observed for congested traffic flow. To correct this defect, Greenberg, Klar, and
Rascle developed an extended model with two equilibrium velocities [9]. In the present
paper, we propose an alternative model, which takes into account the reaction times
of drivers (as well as mechanical restrictions).

We give a physical argument for our new model and define it in section 2. Sec-
tion 3 presents the methods used for numerically solving the model equations. Sec-
tion 4 describes tests to validate our numerical algorithm, before we finally discuss the
numerical results on the fundamental diagram obtained with our model in section 5.

2. A heuristic derivation of the new model. Before we turn to the new
model, let us first give a simple derivation of the ARG model. Note that the model
was mathematically derived from a car-following theory in [1]. Suppose that in the
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reference frame of individual drivers, drivers adjust their speed v in such a way that
they asymptotically approach the equilibrium velocity u; i.e.,

d(v − u)

dt
=

u− v

T
.(2.1)

Here, T = const > 0 is the relaxation time. In comparison to optimal velocity
models (see, e.g., [3]) the equilibrium velocity term on the left has been added which
vanishes for u = const. It is easy to verify that the analytical solution of the ordinary
differential equation (2.1) reads

v(t) = u(t) + (v(0) − u(0)) exp

(
− t

T

)
.(2.2)

In the coordinate system of the road, (2.1) translates to

∂(v − u)

∂t
+ v

∂(v − u)

∂x
=

u− v

T
.(2.3)

Moreover, since

−
(
∂u

∂t
+ v

∂u

∂x

)
= −u′

(
∂ρ

∂t
+ v

∂ρ

∂x

)
= ρu′ ∂v

∂x
,(2.4)

where we have used the continuity equation (1.5) for the last equality, we recover the
velocity equation of the ARG model (1.6). From this derivation, it is obvious that
drivers instantaneously react to the current traffic situation.

We therefore tried to generalize (2.1) and took the reaction time of drivers τ > 0
into account:

dv

dt
(t, x) − du

dt
(ρ(t− τ, x− vτ)) =

u(ρ(t− τ, x− vτ)) − v(t− τ, x− vτ)

T
.(2.5)

Using a Taylor series expansion in τ and keeping only terms up to order 0 in τ and
T , i.e.,

du

dt
(ρ(t− τ, x− vτ)) =

∂u(ρ(t, x))

∂t
+ v

∂u(ρ(t, x))

∂x
+ O1(τ, T ),(2.6)

u(ρ(t− τ, x− vτ)) = u(ρ(t, x)) − τu′(ρ(t, x))

(
∂ρ

∂t
+ v

∂ρ

∂x

)
+ O2(τ, T )

= u + ρu′ ∂v

∂x
τ + O2(τ, T ),(2.7)

v(t− τ, x− vτ) = v(t, x) − τ

(
∂v

∂t
+ v

∂v

∂x

)
+ O2(τ, T ),(2.8)

we find

∂v

∂t
+ (v + ρu′(ρ))

∂v

∂x
=

u(ρ) − v

T − τ
.(2.9)

This equation is identical to the velocity equation of the ARG model (1.6), except
that the relaxation time T has been replaced by T − τ . In particular it follows from
the stability analysis of the ARG model that for τ > T the new system is (linearly)
unstable.
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Fig. 1. Dependence of the relaxation time T̃ on the vehicle density per lane. Reprinted with
permission from [14].

Before we look at the experimental data on the relaxation and reaction times, we
remark that it is tempting to include an anticipation length in the model, as, e.g., in
[23, 17]. This approach has not been followed here for two reasons: First, the ARG
model already includes anticipatory elements, as noted by [8]. Second, including the
anticipation length in the above derivation yields a system that does not guarantee
that the maximum speed at which information travels is bounded from above by the
velocity of cars, and is therefore unrealistic.

For the reaction time τ , which includes the human perception time as well as the
time it takes to realize the reaction (hence τ is also called perception-reaction time),
typical values [13] are of the order

τ ≈ 0.5 .. 2 s.(2.10)

Figure 1 shows experimental results for the relaxation time T̃ taken from [14]. However,
these values have to be interpreted with care and cannot be translated directly to our
model context. To see this, we note that the relaxation time T̃ is determined for the
ansatz v(t+T̃ , x) = u(ρ(t, x+Δx)). In this expression, x+Δx denotes the anticipated
location, where according to [14], Δx = −T̃ c2

0(ρ)u
′(ρ)−1ρ−1, with an anticipation co-

efficient c2
0(ρ) corresponding to the standard deviation of the vehicular speed distribu-

tion, which for simplicity is often set to a constant value. In this approach, the drivers
have fully adjusted their velocities to the equilibrium velocity u after the relaxation
time T̃ . Here, according to (2.1) and (2.2), the equilibrium velocity in general will
never be reached exactly. Instead, if we require that |v(t)−u(t)| < |v(0)−u(0)|/1000,
we find that t > 6.908 T ≈ T̃ . Hence it seems reasonable to set

T̃ ≈ 5 .. 10 T.(2.11)

With typical values τ = 1 s and T̃ = 7.5 T , we indeed find that T − τ < 0 for
about ρ > 40 [1/km/lane]. It was also pointed out in [14] that for large densities the
relaxation time T̃ increases, which we interpret as T − τ ≥ 0 for ρ ≈ ρm. We remark
that the precise form in which the reaction time and anticipation effects are included
in the traffic equations differs for different traffic models; see, e.g., [17, 6, 18].
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One could try to repeat the derivation leading to (2.9) for a general relaxation
time T = T (ρ, v). Note that the above derivation is valid only for a constant relaxation
time. Moreover, it involves only the leading term of a Taylor series expansion. We
therefore decided to generalize the velocity equation of the ARG model in the following
way:

∂v

∂t
+ (v + ρu′(ρ))

∂v

∂x
= β(ρ, v)(u(ρ) − v).(2.12)

Note that we do not require v ≤ u as in Greenberg [8]. From the experimental data
and the argument put forward before (note that the sign of β determines whether the
traffic flow is linearly stable or not), we require

β(ρ, v) < 0 for 0 < ρ1 < ρ < ρ2 ≤ ρm, v = u(ρ),(2.13)

lim
ρ→0,ρm

β(ρ, v) ≥ 0,(2.14)

lim
v→0,um=u(0)

β(ρ, v) ≥ 0.(2.15)

The last condition is necessary, as the system would otherwise be driven to negative
or arbitrarily large vehicle velocities, which is clearly unrealistic. Throughout this
paper we use a functional form

β(ρ, v) =

⎧⎪⎪⎨
⎪⎪⎩

ac

u−v if β̃(ρ, v)(u− v) − ac ≥ 0,

dc

u−v if β̃(ρ, v)(u− v) − dc ≤ 0,

β̃(ρ, v) else,

(2.16)

where the function β̃(ρ, v) is defined as

β̃ =
1

T̂

(
1 + α

|u− v|
um

+
1

ρ1ρ2
(−(ρ1 + ρ2)ρ + ρ2)

)
.(2.17)

For v = u(ρ), the function β̃ reduces to a parabola with zeros ρ1 and ρ2 in accordance
with conditions (2.13) and (2.14). The term involving the velocity is added in order to
fulfill condition (2.15). In the following we specify the free functions and parameters
for a two-lane highway. For the choice of the velocity-density relation of Cremer [4],

u(ρ) = um

(
1 −

(
ρ

ρm

)n1
)n2

,(2.18)

and the parameters ρm = 300 [1/km], um = 140 km/h, n1 = 0.35, n2 = 1 (note that
with these parameters, the equilibrium velocity of Cremer (2.18) fulfills the condi-
tions (1.3) and (1.4)), T̂ = 1 s, α = 12, ρ1 = 70 [1/km], and ρ2 = 270 [1/km], the
function β̃(ρ, v) already fulfills all requirements (2.13)–(2.15). However, due to me-
chanical restrictions, the maximum acceleration ac and deceleration dc give stronger
limitations, i.e.,

dv

dt
≤ ac and

dv

dt
≥ dc(2.19)

with typical values ac = 2 m/s2 and dc = −5 m/s2. Since the resulting system is
not strictly hyperbolic for equality in (2.19), which is problematic for a numerical
solution, we prescribe the limitations on

d(v − u)

dt
≤ ac and

d(v − u)

dt
≥ dc,(2.20)
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Fig. 2. Functions β̃(ρ, v) (left panel) and β(ρ, v) (right panel) defined in (2.17) and (2.16). We
used units [ρ] = 1/km, [v] = km/h, and [β̃] = [β] = 1/h. The function β̃(ρ, v) reaches very large
values leading to unrealistic accelerations and decelerations according to (2.12). For the function
β(ρ, v) mechanical restrictions were taken into account, which change the functional shape but not
the sign.

which then leads to the functional form (2.16). We plot the functions β̃(ρ, v) and
β(ρ, v) for the mentioned parameter values in Figure 2. We stress that the above
functions describe reality only qualitatively. For realistic simulations of traffic flow,
experimental data are required to determine β(ρ, v).

In the new model, traffic flow is described by the system of balance laws

∂ρ

∂t
+

∂(ρv)

∂x
= 0,(2.21)

∂(ρ(v − u(ρ)))

∂t
+

∂(ρv(v − u(ρ)))

∂x
= βρ(u− v)(2.22)

or, equivalently, for smooth solutions by (1.5) and (2.12). As the corresponding system
of the ARG model, the new system is strictly hyperbolic for 0 < ρ ≤ ρm.

3. The numerical implementation. Writing traffic flow as a system of balance
laws in (2.21) and (2.22) is very adequate for numerical purposes, as it allows the
application of well-established hydrodynamic methods for the numerical solution. We
use a high-resolution shock-capturing scheme with an approximate Riemann solver
for the numerical solution (see, e.g., [15]).

We rewrite (2.21) and (2.22) in the form

∂U

∂t
+

∂F (U)

∂x
= S(U),(3.1)

where

U =

(
ρ

ρ(v − u)

)
=

(
U1

U2

)
,(3.2)

F (U) =

(
ρv

ρv(v − u)

)
=

(
U2 + U1u(U1)
U2

2

U1
+ U2u(U1)

)
,(3.3)

S(U) =

(
0

βρ(u− v)

)
.(3.4)
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We use the second-order reconstruction scheme of van Leer [24] to reconstruct quan-
tities at cell interfaces. At cell i with cell center at the location xi = x0 + iΔx the
update in time from tn to tn+1 is performed according to a conservative algorithm

Un+1
i = Un

i − Δt

Δx
(F̂i+ 1

2
− F̂i− 1

2
) + ΔtSi,(3.5)

where Un
i = U(tn, xi) and Δt = tn+1 − tn. To obtain a higher order of convergence,

we use the third-order scheme of Shu and Osher [21]. The numerical fluxes F̂ are
determined according to the flux formula of Marquina [7], which reads

F̂ =
1

2
(FR + FL − Δq).(3.6)

Here, the superscripts R and L denote the reconstructed values on the right and left
of a cell interface. The numerical viscosity term takes the form

Δq = RR|Λ|maxL
RUR − RL|Λ|maxL

LUL.(3.7)

The matrix |Λ|max involves the characteristic speeds

|Λ|max =

(
max(|λR

1 |, |λL
1 |) 0

0 max(|λR
2 |, |λL

2 |)

)
,(3.8)

where the characteristic speeds read explicitly as

λ1 = v + ρu′,(3.9)

λ2 = v.(3.10)

R and L are the matrices of the right and left eigenvectors of the matrix

∂F

∂U
=

(
u + ρu′ 1

−(v − u)2 + ρ(v − u)u′ 2v − u

)
.(3.11)

Explicitly,

R =

(
1 1

v − u v − u− ρu′

)
,(3.12)

L =
1

ρu′

(
u− v + ρu′ 1

v − u −1

)
.(3.13)

4. Code tests. We checked that our numerical algorithm is convergent. More-
over, the density equation (2.21) is a strict conservation law. Prescribing periodic
boundary conditions as in section 5, the total number of cars included in the numer-
ical domain Ω should therefore be constant; i.e.,∫

Ω

ρ dx = const.(4.1)

We checked that our numerical code fulfills (4.1) up to machine precision (see also
the corresponding results for a network simulation based on the Lighthill–Whitham
theory in [22]).
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Fig. 3. Numerical solution for a Riemann problem of Aw and Rascle [2]. The numerical solution
at time t = 0.03 h (solid line) for the initial data (dashed line) reproduces the exact solution (dotted
line).

Finally, Aw and Rascle presented in their paper the exact solution of a Riemann
problem, for which old two-equation models fail to describe the correct behavior
(see [2, Figure 5.4]). This Riemann problem consists of the following initial data:

ρ =

{
0 if x < 1 km,
ρ+ if x ≥ 1 km,

(4.2)

v =

{
0 if x < 1 km,
v+ if x ≥ 1 km.

(4.3)

The exact solution to the homogeneous system consists of the constant state on the
right (ρ+, v+) moving to the right with velocity v+, leaving behind a vacuum. If
we choose v+ = u(ρ+), this exact solution will carry over to our inhomogeneous
system. Figure 3 displays our numerical solution for a choice ρ+ = 50 [1/km]. For
numerical reasons, we prescribe a density ρ = 10−6 [1/km] for x < 1 km. Note that
our numerical algorithm resolves the steep gradient within only a few grid cells, at the
same time reproducing the correct velocity at which the constant state moves to the
right. Moreover, the velocity relaxes to the equilibrium velocity behind the constant
state (ρ+, v+).

5. Results on the fundamental diagram. For the results presented in this
section we restrict the calculation to a 7 km long section of a (two-lane) highway with
periodic boundary conditions. On this section of the highway, we start our simulations
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Fig. 4. Time evolution of the density for stable and unstable initial data. We prescribe an
equilibrium density ρ0 = 65 [1/km] and ρ0 = 80 [1/km], respectively, and in addition a sinusoidal
density perturbation. For the unstable data, the initial perturbation located at x = 2.5 [km] is
amplified and finally two clusters form.

with constant equilibrium data ρ = ρ0, v = u(ρ0) and, in addition, between kilometers
2 and 3 a sinusoidal density perturbation

Δρ = sin(πx) for 2 < x < 3 km.(5.1)

For all numerical results presented we used a resolution of 50 m. Figure 4 shows the
evolution of these data for parameters ρ0 = 65[1/km] and ρ0 = 80[1/km]. Whereas
the amplitude of the perturbation is gradually damped with time for the stable initial
data ρ0 = 65[1/km], the amplitude of the perturbation increases for the unstable
initial data ρ0 = 80 [1/km]. Moreover, the perturbation travels with a larger velocity
downstream in the first case. For the unstable situation, two clusters are forming.
We plot the corresponding time evolutions of the velocity in Figure 5.

To obtain a more general picture we varied the initial density in the entire density
regime and analyzed the resulting flow-density relation as a function of time. More
precisely, we used initial values for the equilibrium data ρ0 = 2, 4, . . . , 298 and read
off the resulting values for the density ρ and the flux function ρv at five equidistantly
distributed cross sections of the highway. Figure 6 shows the results for evolution
times t = 0.00 h (initial data), t = 0.05 h, t = 0.10 h, t = 0.15 h, t = 0.20 h, and
t = 0.25 h. For the initial data, the flow-density curve closely corresponds to the
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Fig. 5. Time evolution of the velocity for stable (ρ0 = 65 [1/km]) and unstable initial data
(ρ0 = 80 [1/km]) with initial density perturbation.

equilibrium flow density, the initial perturbation (5.1) being negligible for the visual
output. After an evolution time t = 0.05 h, the equilibrium flow-density curve is
still visible, but in the unstable regime for densities 70 < ρ < 270 [1/km] two new
flow-density curves start to appear. In the evolution further in time, the equilibrium
density curve vanishes. Instead the two new branches produce an inverse-λ shape.

6. Conclusion and outlook. We generalized the traffic model of Aw, Rascle,
and Greenberg by prescribing a more general source term to the velocity equation
and developed a new numerical code to solve the resulting system of balance laws. In
total, our (numerical) results show the following:

• The new model can explain the large variance of the measured values of the
fundamental diagram in the congested regime, which corresponds to fluctua-
tions between two branches in the unstable density regime. Moreover, due to
the stability properties, the model predicts oscillations in the relative velocity
of cars in the congested regime, as they are found in experimental data. At
the same time, it reproduces the small variance of velocities for free traffic
flow and can explain the appearance of wide traffic jams.

• Macroscopic traffic models have often used an equilibrium velocity u(ρ), for

which d(ρu(ρ))
dρ2 > 0 in the congested regime, in order to account for the values

of traffic flow at the maximum (the tip of the inverted λ). According to



1160 FLORIAN SIEBEL AND WOLFRAM MAUSER

0 50 100 150 200 250 300
vehicle density [1/km]

0

1000

2000

3000

4000

5000

6000

ve
hi

cl
e 

fl
ow

 [
1/

h]

0 50 100 150 200 250 300
vehicle density [1/km]

0

1000

2000

3000

4000

5000

6000

ve
hi

cl
e 

fl
ow

 [
1/

h]

0 50 100 150 200 250 300
vehicle density [1/km]

0

1000

2000

3000

4000

5000

6000

ve
hi

cl
e 

fl
ow

 [
1/

h]

0 50 100 150 200 250 300
vehicle density [1/km]

0

1000

2000

3000

4000

5000

6000
ve

hi
cl

e 
fl

ow
 [

1/
h]

0 50 100 150 200 250 300
vehicle density [1/km]

0

1000

2000

3000

4000

5000

6000

ve
hi

cl
e 

fl
ow

 [
1/

h]

0 50 100 150 200 250 300
vehicle density [1/km]

0

1000

2000

3000

4000

5000

6000

ve
hi

cl
e 

fl
ow

 [
1/

h]

Fig. 6. Fundamental diagram for the initial data (t = 0.00 h) (top left), for t = 0.05 h (top
right), for t = 0.10 h (middle left), for t = 0.15 h (middle right), for t = 0.20 h (bottom left), and
for t = 0.25 h (bottom right). At intermediate densities, our traffic model is linearly unstable; the
representative points in the fundamental diagram are shifted toward two branches, which gives the
visual impression of an inverted λ.
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our study, this is not necessary, as the high values for the fluxes can be
explained with overcritical solutions and an equilibrium velocity function with
d(ρu(ρ))

dρ2 < 0 everywhere.

The new model, which is a deterministic and effective one-lane model, has the capac-
ity to reproduce many features observed in traffic dynamics. In the present work, the
form of the function β in Figure 2 was motivated by a physical argument, but the
quantitative details were determined rather ad hoc. However, we found that the fun-
damental diagram in the unstable region (e.g., the tip of the inverted λ) depends on
the particular form of β. Hence one should try to determine the function β from ex-
perimental data of the fundamental diagram. In our opinion, the presented algorithm
is adequate for use in network simulations of traffic flow.
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THE EFFECT OF CONTACT LINES ON THE RAYLEIGH
INSTABILITY WITH ANISOTROPIC SURFACE ENERGY∗
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Abstract. We determine the linear stability of a rod or wire on a substrate subject to capillary
forces arising from an anisotropic surface energy for a range of contact angles between −π/2 and
π/2. The unperturbed rod is assumed to have infinite length with a uniform cross-section given by a
portion of the two-dimensional equilibrium shape. We examine the effect of surface perturbations on
the total energy. The stability of the equilibrium interface is reduced to determining the eigenvalues
of a coupled system of ordinary differential equations. This system is solved both asymptotically and
numerically for several types of anisotropic surface energies. We find that, in general, the presence
of the substrate tends to stabilize the rod.

Key words. Rayleigh instability, contact lines, anisotropic surface energy, quantum wires,
nanowires, Plateau
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1. Introduction. While stability studies of cylindrical rods have a long history,
they are still a subject of current interest. For example, nanowires (alternatively called
nanorods or quantum wires) are nanoscale crystal structures that are formed by de-
position on a substrate, typically with a high lattice-mismatch that tends to produce
aligned crystals on the substrate. The processing parameters that govern the growth
and stability of the wires are of intense interest. Here we focus on two important is-
sues surrounding nanowire stability: anisotropic surface tension and the contact angle
between the rod and substrate.

The analysis of capillary driven instabilities spurring cylindrical rods to break up
into droplets was initiated in 1873 by Plateau [27], who showed that breakup will occur
when the rod, with isotropic surface energy, is subject to axisymmetric perturbations
whose wavelength exceeds the circumference of the cylinder. Lord Rayleigh [28] deter-
mined that the length scale of the instability is controlled by the perturbations having
the fastest temporal growth rate. The tendency for preferential beading has subse-
quently become known as the Rayleigh instability. A nice review by Michael may be
found in [22]. Molares et al. [23] recently performed an experimental demonstration
using the Rayleigh instability of a nanowire to produce long chains of nanospheres.

The surface energy of a liquid-solid or vapor-solid interface is generally anisotropic
due to the underlying crystal lattice and depends on the orientation of the local normal
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vector at each point of the interface [12, 25, 30]. As a first step in applying the analysis
of Plateau to a nanowire, the effects of the substrate may be ignored, and the stability
of the isolated rod determined strictly by the consideration of anisotropic surface
energy. The experimental studies of Kondo and Takayanagi [18] show an apparent
stability of elongated nanowires that are grown in a bridge configuration, in contrast
to the expected nanoislands or quantum dots predicted by the Rayleigh instability for
the isotropic case.

Cahn [2] studied the effect of anisotropic surface energy on the Rayleigh insta-
bility for isolated rods with circular cross-sections that are subject to axisymmetric
perturbations; the underlying surface free energy was assumed to have transverse
isotropy, resulting in closed-form solutions to the stability problem. Glaeser and
Stölken [9, 32] extended Cahn’s analysis and evaluated the effect of the axisymmetric
surface energy anisotropy on evolution kinetics. Gurski and McFadden [10] considered
general anisotropic surface energies by computing the second variation of the surface
free energy of a freestanding rod whose cross-section is smooth and given by a two-
dimensional equilibrium shape. The analysis was applied to examples with uniaxial or
cubic anisotropy, which illustrated that anisotropic surface energy plays a significant
role in establishing the stability of the rod. It was found that both the magnitude and
sign of the anisotropy determine whether the contribution stabilizes or destabilizes
the system relative to the case of isotropic surface energy.

Previous theoretical studies of the relationship between the morphological insta-
bility of a cylinder that is in contact with a substrate have concentrated on cylinders
with isotropic surface energy. McCallum et al. [19] investigated the linear instability
of a line of film on a substrate. The unperturbed film state was a cylinder of infinite
length with a cross-sectional shape of a segment of a circle. Mass was allowed to flow
by diffusion along the film surface. The results of the study found that the substrate
presence was a stabilizing influence. Roy and Schwartz [31] studied the stability of
liquid ridges on a substrate in the absence of gravity. In this problem the liquid re-
gion had a boundary composed of a free surface with a circular arc for a cross-section
and a solid cylindrical substrate of arbitrary shape. Their results show that when a
particular relationship between the curvatures of the liquid and solid interfaces and
the contact angle is satisfied, the infinite liquid ridge is stable with respect to sinuous
transverse modes, unlike an infinite cylindrical jet.

For an isotropic surface energy, the base state of the system is relatively simple
to describe: the cross-section of the ridge is a circular arc that is determined by the
equilibrium contact angles with the substrate. With surface tension anisotropy, the
situation is more complicated in several respects. The axis of the nanowire relative
to its underlying crystalline axes is a variable to be considered. Once the preferred
orientation of the wire axis is established and the wire is assumed to be in contact
with the substrate, there remains a geometrical degree of freedom represented by a
rotation of the wire about its axis. This rotation exposes different sets of orientations
on the crystal-vapor interface, which in turn affects the total energy of the system.
Therefore, before the stability to axial perturbations of a nanowire on a substrate is
addressed, the selection of the orientation of the wire relative to the substrate must
be considered.

During the deposition process, various wire orientations are observed experimen-
tally, depending on the processing conditions and the composition of the deposited
crystal and substrate [6, 7, 8, 24, 26, 29]. In particular, for a given set of mate-
rial parameters, it is argued that the observed orientations depend on kinetics of
the (nonequilibrium) deposition process as well as on the effects of surface energy and
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surface stress of the crystal-substrate interface [4, 5, 6, 11, 15]. In our simplified model,
we consider an inert (nondeforming) substrate with an isotropic crystal-substrate sur-
face energy and ignore kinetic effects by focusing on equilibrium states.

Even with these simplifying assumptions, the identification of the lowest energy
orientation of a nanowire on a substrate is more complicated than the simpler prob-
lem of determining the lowest energy crystalline orientation of a planar epitaxial
layer deposited on a substrate [5, 15, 29], since a nonfacetted nanowire contains a
range of crystal-vapor surface orientations instead of the single orientation of a planar
film. Within our model, we are able to investigate the low energy orientations of
the nanowire on a substrate and perform a stability analysis to axial perturbations
(Rayleigh instability).

Our results depend in detail on the anisotropy of the crystal-vapor surface energy.
Experimental measurements of this anisotropy for metallic systems are uncommon,
although there has been considerable progress recently in atomic-scale simulations of
the surface energy anisotropy, specifically for crystal-melt interfaces [1, 14]. Here we
adopt a simple one-parameter model for the surface energy anisotropy of the cubic
material with a form that is often used to fit the simulation results [1, 14].

In this paper we examine how both the anisotropy of the surface energy of the wire
and the interaction of the rod with a substrate affect the stability of the rod. As in the
work of Roy and Schwartz [31] on the stability of liquid ridges, we use a variational
approach using an energy functional and constant volume condition. Using general
anisotropic surface energies, we derive an associated eigenproblem. The eigenproblem
is described by a pair of coupled second-order ordinary differential equations with
periodic boundary conditions along the axis of the rod and boundary conditions arising
from the contact angles between the rod and substrate. We consider the effects of
the overall orientation of the crystal relative to the substrate and examine a range of
contact angles. The substrate is assumed to be rigid with an isotropic surface energy.
We apply the analysis to a number of examples, including the case of a cubic material,
and compute the stability of the rod to perturbations when the axis of the rod is
aligned parallel to the high symmetry orientations [001], [011], and [111]. When the
anisotropy is sufficiently small, the stability of the rod can be computed approximately
with asymptotics. For larger levels of anisotropy, the solution is computed numerically.

2. The model. We consider the stability of an infinite rod deposited on a pla-
nar substrate below a vapor phase. The rod extends uniformly in the z direction of
a Cartesian coordinate system (x, y, z) with the y direction normal to the plane of
the substrate. The cross-section of the rod is uniform in z and defined by a two-
dimensional equilibrium shape which is determined by surface energy considerations
and the angle of contact between crystal and substrate. The vapor-substrate sur-
face energy is denoted by γV and the crystal-substrate surface energy is denoted by
γS . In this model we assume that both γV and γS are isotropic (constants that are
independent of orientation).

Since we will be considering the stability of the rod under an arbitrary shape
perturbation, we need to consider the three-dimensional crystal-vapor surface energy
for general orientations. The crystal-vapor surface energy will be expressed in terms
of the local normal vector to the crystal-vapor interface written in terms of spherical
coordinates (ρ, θ, φ) in which z is the polar axis, ρ =

√
x2 + y2 + z2 is the radius,

θ the polar angle, and φ the azimuthal angle as shown in Figure 2.1. The crystal-
vapor surface energy is assumed to be anisotropic (orientation-dependent) and is
denoted by γ = γ(φ, θ). The unit normal to the unperturbed rod lies in the plane
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Fig. 2.1. Schematic diagram of the spherical coordinate system (ρ, θ, φ) used for the definition
of the surface energy γ(φ, θ).

θ = π/2 and is given by ρ̂(φ, θ = π/2) = r̂(φ) = (cosφ, sinφ, 0), with θ̂ = −ẑ and

φ̂(φ, θ = π/2) = (− sinφ, cosφ, 0). The axis of the unperturbed rod is parallel to
the plane of constant y which represents the substrate. Variables with hats are unit
vectors in their corresponding directions.

We restrict our consideration to differentiable surface energies with anisotropies
that are mild enough that the surface of the rod is smooth and does not exhibit any
missing orientations.

2.1. Three-dimensional surface energy: General formulation. In order
to examine the stability of the rod using a variational approach, we will need the
general energy functional. This formula and the constant volume condition will be
perturbed about the equilibrium rod. The higher order terms in this perturbation
expansion will produce a condition for stability. Simply put, for constant volume, if
the perturbation increases the energy, the equilibrium state is stable; otherwise it is
unstable. This approach parallels the method used by Gurski and McFadden [10], who
study the stability of a free rod, but here it is necessary to account for the presence
of the substrate.

We will consider the stability of the rod to small amplitude disturbances in the
z direction of wavelength λ = 2π/k, where k is the axial wave number. Hence, only
the energy and the volume of a portion of the rod of length λ need to be determined.
The effect of the substrate on the stability of the rod is local, so only a finite section
of the substrate large enough to contain the perturbed rod needs to be examined. In
particular, we will consider a rectangular section of the substrate of length λ in the z
direction and width 2LR in the x direction.

The total energy of our rod-substrate system, E, can be written as

E = ECV + EV S + ECS ,(2.1)

where ECV is the energy of the crystal-vapor interface, EV S is the energy of the vapor-
substrate system, and ECS is the energy of the crystal-substrate system. Letting ACS

be the surface area of the crystal-substrate interface, we have that ECS = γSACS and
EV S = γV (2λLR −ACS).
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The energy of the crystal-vapor interface, ECV , is equal to the surface integral
of γ along this interface. If γ is constant, the energy equals γ times the surface
area of the crystal-vapor interface. We wish to consider the anisotropic case, so
the integral will depend on the orientation of the unit normal to the interface. To
compute the associated surface integral, it is helpful to introduce some notation. Let
�X = �X(u, v) be the position vector of a point along the surface of the rod, where u
and v denote surface coordinates. The normal vector field to the rod interface is given
by �P = �Xu × �Xv.

Following Gurski and McFadden [10], it is convenient to introduce a generalized
surface energy function defined by

Γ(�P ) = |�P |γ(Φ,Θ),(2.2)

where

Θ = tan−1
(√

P 2
x + P 2

y /Pz

)
, Φ = tan−1 (Py/Px)(2.3)

are the corresponding spherical angles based on the normal vector �P .
A formula for the surface energy can now be obtained by noting that γ(Φ,Θ)dA =

Γ(�P )du dv. The surface energy ECV can therefore be written as

ECV =

∫ ∫
Γ(�P )du dv.(2.4)

The total energy E is then obtained by substituting (2.4) into (2.1).
It should be noted that the generalized surface energy Γ is closely related to the

three-dimensional Cahn–Hoffmann vector [3, 13], ξ = ∇ [ργ(φ, θ)]; in fact,

ξj(�P ) =
∂Γ(�P )

∂Pj
.(2.5)

The dimensionless three-dimensional equilibrium shape of a solid particle in a vapor
is given by �ξ(φ, θ) for 0 ≤ φ ≤ 2π and 0 ≤ θ ≤ π, and its normal is ρ̂(φ, θ). In the
plane θ = π/2, this relation reduces to

�ξ(φ, π/2) = γ(φ, π/2) r̂(φ) + γφ(φ, π/2) φ̂(φ) − γθ(φ, π/2) ẑ,(2.6)

where we have used r̂(φ) = (cosφ, sinφ, 0), φ̂(φ) = (− sinφ, cosφ, 0), and θ̂ = −ẑ in
the plane θ = π/2. Note that here partial derivatives are denoted by subscripts, e.g.,
γφ = ∂γ/∂φ. If γθ(φ, π/2) = 0, then the two-dimensional equilibrium shape defined
by (2.6) is characterized by a constant weighted mean curvature [γ + γφφ]K [33].
Missing orientations can occur if γ+γφφ < 0 [35]; here we will assume γ+γφφ > 0. If

γθ(φ, π/2) �= 0, then the curve �ξ(φ, π/2) is out of the plane z = 0, but its projection
onto the plane represents the two-dimensional equilibrium shape corresponding to
γ = γ(φ). These two-dimensional shapes define the cross-sections of our rod. We will
choose the surface coordinates (u, v) = (φ, z), which is a natural choice for studying
the stability of the equilibrium rod along a substrate to small perturbations.

2.2. The equilibrium rod. The cross-section of the unperturbed rod is a por-
tion of a two-dimensional equilibrium shape parameterized by the vector �X(0)(φ) =
(X(0)(φ), Y (0)(φ)), where

X(0)(φ) =
�

γ0

[
γ

(
φ,

π

2

)
cosφ− γφ

(
φ,

π

2

)
sinφ

]
(2.7)
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Fig. 2.2. Ellipse rotated an angle of φ′ about the original axes. Contact angles between the
ellipse and substrate are ψR and ψL.

and

Y (0)(φ) =
�

γ0

[
γ

(
φ,

π

2

)
sinφ + γφ

(
φ,

π

2

)
cosφ

]
(2.8)

for ψR ≤ φ ≤ ψL, where γ(φ, θ) is the surface energy, � is a characteristic length
scale, and γ0 is a characteristic surface energy (see, e.g., [35]). Anticipating the
subsequent perturbation expansion, we associate variables having a superscript (0)
with the equilibrium rod. The rod is in contact with the substrate over the range
X(0)(ψL) ≤ x ≤ X(0)(ψR), and the surface of the substrate in this coordinate system
is y = W0 = Y (0)(ψR) = Y (0)(ψL). The contact angle that the rod makes with the
substrate thus is described by ψR and ψL, as illustrated in Figure 2.2. Winterbottom
[36] (see also [3]) shows that the conditions for equilibrium at the contact line are
satisfied for the choice W0 = (�/γ0)[γV − γS ]; we also derive this result below in the
course of the energy minimization. Unless otherwise noted, we will henceforth assume
that all variables are dimensionless, based on the units of length � and energy γ0.

3. Stability under perturbations. We determine the stability of the rod by
computing the total energy of a volume-preserving perturbation to the rod. The
unperturbed interface can be written in the form �X(0)(φ) + z ẑ. As in our previous
development (see [10]), we then consider a perturbed interface of the form

�X(φ, z) = �X(0)(φ) + z ẑ + εh(φ, z)r̂(φ) +
ε2

2
h2r̂(φ) + · · · ,(3.1)

where ε is a small parameter, h(φ, z) is the height of the perturbation along the normal
r̂ to the unperturbed shape, and the constant h2 is a second-order shape correction
introduced to satisfy the volume constraint at O(ε2). The domain of φ is given by
ψR(z) ≤ φ ≤ ψL(z). Note that the contact angles depend on both z and ε since the
contact angles are determined by the boundary conditions at the contact point. In
particular, we will assume that ψi has a regular expansion in ε of the form

ψi(z) = ψ
(0)
i + εψ

(1)
i (z) +

ε2

2
ψ

(2)
i (z) + · · ·(3.2)
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for i = L,R. At the substrate we have

Y (ψi, z) = W0,(3.3)

so that at leading order we have

W0 = Y (0)(ψ
(0)
i ) = γ(ψ

(0)
i , π/2) sinψ

(0)
i + γφ(ψ

(0)
i , π/2) cosψ

(0)
i(3.4)

for i = L,R. The case W0 = 0, ψ
(0)
R = 0, ψ

(0)
L = π represents a contact line at

the orientation of an equatorial plane of symmetry of the equilibrium shape and also
corresponds to the upper half of a freely suspended rod [10].

At the contact line the variables X, Y , h, and ψ are related through (3.1)–(3.3).
Expanding (3.3) to first order yields

Y
(0)
φ (ψ

(0)
i )ψ

(1)
i + Y (1)(ψ

(0)
i , z) = 0,(3.5)

where from (3.1) the first-order shape change is given by

X(1)(φ, z) = h(φ, z) cosφ, Y (1)(φ, z) = h(φ, z) sinφ.(3.6)

Since X
(0)
φ (ψ

(0)
i ) = −(γ+γφφ) sinψ

(0)
i and Y

(0)
φ (ψ

(0)
i ) = (γ+γφφ) cosψ

(0)
i , (3.5) yields

ψ
(1)
i (z) =

−h(ψ
(0)
i , z) sinψ

(0)
i

(γ + γφφ) cosψ
(0)
i

,(3.7)

which relates h and ψ(1) at the contact line.
The geometry of the perturbed rod is determined by the two tangent vectors �Xφ

and �Xz, and their cross product, �P = �Xφ × �Xz, which is normal to the interface.

The area element on the interface is given by dA = |�P | dφ dz. Evaluating the tangent
vectors by using (3.1) and taking their cross product, we find that the interface normal
has the expansion

�P (φ, z) = �P (0)(φ) + ε �P (1)(φ, z) +
ε2

2
�P (2)(φ, z) + O(ε3),(3.8)

where

�P (0) = (γ + γφφ) r̂,(3.9)

�P (1) = h r̂ − hφ φ̂− (γ + γφφ)hz ẑ,(3.10)

�P (2) = h2 r̂ − 2hhz ẑ.(3.11)

3.1. Volume. The shape perturbation (3.1) is required to preserve the volume
of the rod over a given length with a period of the perturbation equal to λ = 2π/k.
As in Gurski and McFadden [10], we can write the volume as a surface integral by
using the divergence theorem. Then using the expansion (3.1), we find that to O(ε2)
the volume is given by

(3.12)

V =
1

2

∫ ∫ ∫
∇ · (x, y, 0) dV

=
1

2

∫ 2π/k

0

∫ ψL(z)

ψR(z)

�P (φ, z) · [ �X(φ, z) − z ẑ] dφ dz
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−1

2

∫ 2π/k

0

W0 [X(ψR(z), z) −X(ψL(z), z)] dz

=
1

2

∫ 2π/k

0

∫ ψL(z)

ψR(z)

{[
γ + εh +

ε2

2
h2

][
(γ + γφφ) + εh +

ε2

2
h2

]
− εγφhφ

}
dφ dz

−1

2

∫ 2π/k

0

W0 [X(ψR(z), z) −X(ψL(z), z)] dz.

Expanding in ε then gives

V = V (0) + εV (1) +
ε2

2
V (2) + O(ε3) + · · · ,(3.13)

where

V (0) =
λ

2

∫ ψ
(0)
L

ψ
(0)
R

γ (γ + γφφ) dφ− λ

2
W0[X

(0)(ψ
(0)
R ) −X(0)(ψ

(0)
L )],(3.14)

V (1) =

∫ 2π/k

0

∫ ψ
(0)
L

ψ
(0)
R

h (γ + γφφ) dφ dz,(3.15)

V (2) =

∫ 2π/k

0

∫ ψ
(0)
L

ψ
(0)
R

{h2 + h2 (γ + γφφ)} dφ dz −
∫ 2π/k

0

h2 tanφ
∣∣∣ψ(0)

L

ψ
(0)
R

dz.(3.16)

A perturbation h(φ, z) that is periodic in z with mean zero makes V (1) = 0, and
the condition V (2) = 0 then determines the appropriate value of the constant h2.
A perturbation h(φ) that is independent of z does not automatically make V (1) =
0. This represents a special case for the stability calculation that is treated in the
appendix.

3.2. Energy. The stability of the rod is determined by expanding the total
energy through O(ε2) for |ε| � 1, and, for a given volume, examining whether the
shape perturbation, constrained to maintain constant volume of the rod, raises or
lowers the energy of the rod. Since the rod is assumed to be infinite in the z direction,
an analysis in terms of Fourier components allows us to consider shape perturbations
that are periodic in z. The contact angle is now a function of z as well, ψi = ψi(z)
for both i = L,R, and the energy E in the region −L < x < L and 0 < z < 2π/k
from (2.1) is given by

E =

∫ 2π/k

0

dz

∫ ψL(z)

ψR(z)

Γ(�P (φ, z)) dφ +
4πγV LR

k
(3.17)

− (γV − γS)

∫ 2π/k

0

[X(ψR(z), z) −X(ψL(z), z)] dz.

Expanding in powers of ε, we find

E = E(0) + εE(1) +
ε2

2
E(2) + O(ε3),(3.18)
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where

E(0) =

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

γ (γ + γφφ) dφ +
4πγV L

k
(3.19)

+ (γV − γS)

∫ 2π/k

0

(γ cosφ− γφ sinφ)

∣∣∣∣
ψ

(0)
L

ψ
(0)
R

dz.

The first variation of the energy is

E(1)

2
=

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

{(γ + γφφ)h + γθ (γ + γφφ)hz} dφ

−
∫ 2π/k

0

dz

(
h(φ, z)

cosφ
{[γS − γV ] + [γ sinφ + γφ cosφ]}

) ∣∣∣∣
ψ

(0)
L

ψ
(0)
R

,(3.20)

where we used (3.7) to simplify the second integral.
The second variational term is

E(2)

2
=

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

[
h2
φ + (γ + γφφ)(γ + γθθ)h

2
z − 2γφθhφhz + γh2 + 2γθhhz

]
dφ

+

∫ 2π/k

0

{[
h2γφ(ψ

(0)
L ) − 2γθ(ψ

(0)
L )h(ψ

(0)
L , z)hz(ψ

(0)
L , z) tanψ

(0)
L

]
−
[
h2γφ(ψ

(0)
R ) − 2γθ(ψ

(0)
R )h(ψ

(0)
R , z)hz(ψ

(0)
R , z) tanψ

(0)
R

]}
dz.(3.21)

3.3. Three-dimensional eigenvalue problem. Our choice of h(φ, z) makes
the integral of the sum of the second and fourth terms in (3.21) identically zero.
Eliminating h2 from (3.21) by using the volume condition, V (2) = 0 in (3.16), and
integrating by parts, we find that

E(2)

2
= −

∫ 2π/k

0

dz

∫ ψ
(0)
L

ψ
(0)
R

hLhdφ

+

∫ 2π/k

0

{[
h(ψ

(0)
L , z) tanψ

(0)
L + hφ(ψ

(0)
L , z) − γθφ(ψ

(0)
L )hz(ψ

(0)
L , z)

]
h(ψ

(0)
L , z)

−
[
h(ψ

(0)
R , z) tanψ

(0)
R + hφ(ψ

(0)
R , z) − γθφ(ψ

(0)
R )hz(ψ

(0)
R , z)

]
h(ψ

(0)
R , z)

}
dz,(3.22)

where

Lh = hφφ + (γ + γφφ)(γ + γθθ)hzz − γφθhφz − (γθφhz)φ + h.(3.23)

Recall that the aim of this calculation is to determine perturbations h such that
E(2) > 0. This condition can be satisfied if the eigenvalue problem

Lh = μh(3.24)

with boundary conditions

h(ψ
(0)
i , z) sinψ

(0)
i + hφ(ψ

(0)
i , z) cosψ

(0)
i − γθφ(ψ

(0)
i )hz(ψ

(0)
i , z) cosψ

(0)
i = 0(3.25)
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for i = L,R has only negative eigenvalues μ. The differential operator L is identical
to that for the isolated rod as given in [10], but instead of periodicity in φ we now

have boundary conditions that apply at ψ
(0)
R and ψ

(0)
L .

Assuming a discrete set of eigenvalues μn and eigenfunctions hn, for n = 0, 1, 2, . . . ,
we can rewrite the eigenvalue problem (3.24)–(3.25) as

∂φφhn + (γ + γφφ)(γ + γθθ)∂zzhn − γφθ∂φzhn − (γθφ∂zhn)φ + hn = μnhn,(3.26)

where the eigenfunctions hn satisfy the boundary conditions given by (3.25) for i =
L,R. Note that (3.26) must also satisfy periodicity in the z direction, which can be
satisfied by assuming the solution has the form hn(φ, z) = Hn(φ) sin kz+Gn(φ) cos kz.
Substituting this into (3.26) implies

d2Hn

dφ2
+ (1 − k2(γ + γφφ)(γ + γθθ))Hn + kγφθ

dGn

dφ
+ k (γθφGn)φ = μnHn,(3.27)

d2Gn

dφ2
+ (1 − k2(γ + γφφ)(γ + γθθ))Gn − kγφθ

dHn

dφ
− k (γθφHn)φ = μnGn(3.28)

with the boundary conditions

Hn sinψ
(0)
i +

dHn

dφ
cosψ

(0)
i + kγθφ(ψ

(0)
i )Gn cosψ

(0)
i = 0,(3.29)

Gn sinψ
(0)
i +

dGn

dφ
cosψ

(0)
i − kγθφ(ψ

(0)
i )Hn cosψ

(0)
i = 0(3.30)

for i = L,R. This coupled system of equations must be solved to determine the
eigenfunctions and eigenvalues. Note that if γ is independent of θ, the equations
decouple.

4. Rotation and contact angles. In the next two sections we consider two
related aspects of the stability of a two-dimensional rod on a substrate. We first
consider the preferred, low energy orientations of the two-dimensional rod neglecting
axial perturbations. For this evaluation, we fix the rod axis that lies parallel to the
substrate and compute the energy of the system as the rod is rotated about this axis.
Given the specification of the axis of the rod, we assume that preferred orientations
correspond to minima of the energy as a function of the rotation angle. Once the low
energy orientations are determined, we go on to consider the further effect of axial
perturbations on the stability of rods aligned in the preferred orientation.

4.1. Ellipse. Consider the special case of a rod whose cross-section is given by
a two-dimensional ellipse,

x2

a2
x

+
y2

a2
y

= 1.(4.1)

The major and minor axes of the ellipse are then rotated with respect to the x-axis
by an angle φ′, as shown in Figure 2.2. The corresponding surface free energy γ is
given by

γ(φ) =
√

a2
x cos2 (φ + φ′) + a2

y sin2 (φ + φ′).(4.2)
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3

4

φ′

E
S

Fig. 4.1. Scaled energy versus rotation angle for the ellipse. From the top at φ′ = 0 the curves
correspond to W̃0 = −1.0,−0.5, 0, 0.5, 0.75.

The surface of the substrate is the plane y = W0 = (γV − γS), and the ellipse makes
contact with the substrate with two angles ψR and ψL, which are roots of the equation

0 = W0 − [γ(φ) sinφ + γφ(φ) cosφ].(4.3)

If φ′ is zero or π/2, then ψL = π − ψR.
First, let us consider how the energy depends on the angle of rotation φ′ and the

parameter W0. Since the volume of a rod with an elliptical cross-section will vary as
W0 varies, we must find a normalization for the energy

E = λ

∫ ψL

ψR

γ (γ + γφφ) dφ− λW0 (X(ψR) −X(ψL)) + 2λLγV .(4.4)

The corresponding formula for the volume of the rod is

V =
λ

2

∫ 3π/2

−π/2

γ (γ + γφφ) dφ− λ

∫ ψR+2π

ψL

(W0 − Y )
∂X(φ)

∂φ
dφ.(4.5)

Using these definitions, we can define a normalized energy ES as

ES =
E − 2LγV√

2V λ
=

∫ ψL

ψR
γ (γ + γφφ) dφ−W0 (X(ψR) −X(ψL))√∫ 3π/2

−π/2
γ (γ + γφφ) dφ− 2

∫ ψR+2π

ψL
(W0 − Y ) ∂X(φ)

∂φ dφ
.(4.6)

For our numerical calculations we set ax = 1, ay = 2. Figure 4.1 shows that when
W0 > 0, the lowest scaled energy ES is attained when φ′ = 90 (i.e., the major axis
is horizontal) and the highest scaled energy is reached when φ′ = 0 degrees (i.e., the
major axis is vertical). Since W0 = γV − γS > 0, the lowest energy state of the ellipse
will be where contact between the crystal and the substrate is maximized and where
contact between the substrate and vapor is minimized, i.e., when the semimajor axis
is horizontal. The scaled energy is independent of φ′ when W0 is zero, showing that
when γV = γS , there is no preferred rod orientation. When W0 is negative, the scaled
energy is higher at φ′ = 90 degrees and lower at φ′ = 0 degrees as the crystal orients
itself to minimize the crystal-substrate interface.
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4.2. Cubic materials. A simple model of the surface energy anisotropy for a
cubic material is given by the dimensionless expression [20]

γ(n′
x, n

′
y, n

′
z) =

{
1 + 4ε4([n

′
x]4 + [n′

y]
4 + [n′

z]
4)
}
,(4.7)

where we employ a primed coordinate system that is attached to the crystal axes.
We will consider rod directions z that coincide with the high symmetry orientations
[001], a fourfold axis; [011], a twofold axis; and [111], a threefold axis. We will
use appropriate preliminary rotations of the crystal axes in each case to bring these
axes into alignment with the z-axis of the rod, which will be fixed in the unprimed
coordinate system.

The shapes are smooth for −1/18 < ε4 < 1/12 (see [20]). For ε4 < 0 the shapes
resemble rounded cubes, with [110] edges first forming at ε4 = −1/18 ≈ −0.0556. As
ε4 decreases below −1/18, the edges extend toward the [111] directions, merging to
form a corner for ε4 = −5/68 ≈ −0.07735. For ε4 > 0 the shapes are octahedral, with
[100] corners first forming at ε4 = 1/12 ≈ 0.0833.

4.2.1. Rod axis parallel to [001] orientation. If the axis of the rod is aligned
with the [001] orientation of the crystal, the dimensionless surface energy resulting
from (4.7) is given by [16, 17, 21]

γ(φ, θ) = 1 + ε4
[
4 cos4 θ + sin4 θ (3 + cos 4φ)

]
.(4.8)

In the plane θ = π/2,

γ = (1 + 3ε4) + ε4 cos 4φ.(4.9)

If we allow the crystal to rotate on the substrate, we must include the effect of
the rotation angle φ′,

γ = (1 + 3ε4) + ε4 cos 4 (φ + φ′).(4.10)

We can determine the scaled energies using (4.6). Results are shown in Figure 4.2 for
several values of ε4 in the range of −0.0556 to 0.0833. The two extreme heights of
W0 = ±WM , where

WM = min
(
0.95

√
X(0)2 + Y (0)2, 0.95

√
X(π/2)2 + Y (π/2)2

)
,(4.11)

are shown. When W0 is near −WM , i.e., the origin of the coordinate system is nearly
at a maximum height above the substrate surface, the effects of rotation are very
slight, with maxima at φ′ = 0, 90, 180, 270, and 360 degrees for negative ε4. When ε4
is positive, these maxima switch to minima. The plot of the scaled energy versus angle
of rotation for ε4 = −0.0556 has the largest oscillations with an amplitude of 0.001.
The fourfold symmetry of the [001] oriented crystal is responsible for the 90 degree
spacing. When W0 is near WM , the location of the maxima and minima reverse with
respect to their locations at W0 = −WM , and the effect of the rotation becomes more
pronounced.

4.2.2. Rod axis parallel to [011] orientation. If the axis of the rod is aligned
with the [011] orientation of the crystal, then an appropriate rotation of the crystal
axes relative to the rod axis is given by [20]⎛

⎝n′
x

n′
y

n′
z

⎞
⎠ =

⎛
⎝ 1 0 0

0 1/
√

2 1/
√

2

0 −1/
√

2 1/
√

2

⎞
⎠

⎛
⎝nx

ny

nz

⎞
⎠.(4.12)
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Fig. 4.2. Scaled energy versus φ′ for the [001] cubic orientation. (a) From the bottom,
the curves are ε4 = −0.0556, −0.02778, 0.0, 0.02778, 0.0556, 0.0833. W0 = −WM . (b) From
the top, the two dashed curves are ε4 = −0.0556 and −0.02778, and the solid curves are ε4 =
0.0, 0.02778, 0.0556, 0.0833. W0 = WM .

This rotation gives

γ = 1 + 4ε4

(
n4
x +

n4
y

2
+

n4
z

2
+ 3n2

yn
2
z

)
,(4.13)

which reduces to

γ = 1 + 2ε4
(
cos4 θ + 6 cos2 θ sin2 θ sin2 φ + 2 sin4 θ cos4 φ + sin4 θ sin4 φ

)
.(4.14)

When θ = π/2 and rotation of the crystal about the substrate is included, then

γ = 1 + ε4

[
9

4
+ cos 2 (φ + φ′) +

3

4
cos 4 (φ + φ′)

]
.(4.15)

The rod is smooth for −5/68 ≤ ε4 ≤ 1/12, which is a larger range than the [001] case.
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Fig. 4.3. Scaled energy versus θ′ for the [011] cubic orientation. (a) From the bottom, the
curves are ε4 = −0.0556, −0.02778, 0.0, 0.02778, 0.0556, 0.0833. W̃0 = −WM′ . (b) At θ′ = 0 from
the bottom, the two dashed curves correspond to ε4 = −0.0556 and −0.02778, and the solid curves
correspond to ε4 = 0.0, 0.02778, 0.0556, 0.0833. W̃0 = WM .

We can determine the scaled energies using (4.6). Results are shown in Figure
4.3 for several values of ε4 in the range of −0.0556 to 0.0833 for the two extreme
heights of W0 = ±WM . The twofold symmetry of the [011] crystal is apparent in
the spacing of maxima and minima shown in Figure 4.3. When ε4 is negative, the
minima (maxima) are located at 0, 180, and 360 degrees for W0 = −WM (+WM ).
When ε4 is positive, the minima are located at 90 and 270 degrees for W0 = −WM .
At W0 = WM , maxima are maintained at 90 and 270 degrees for positive ε4. We see
that secondary local maxima form at φ′ = 0, 180, 360 for positive ε4 at W0 = WM .

4.2.3. Rod axis parallel to [111] orientation. If the axis of the rod is aligned
with the [111] orientation of the crystal, then an appropriate rotation of the crystal
axes relative to the rod axis is given by [20]⎛

⎝n′
x

n′
y

n′
z

⎞
⎠ =

⎛
⎝

√
2/
√

3 0 1/
√

3

−1/
√

6 1/
√

2 1/
√

3

−1/
√

6 −1/
√

2 1/
√

3

⎞
⎠

⎛
⎝nx

ny

nz

⎞
⎠.(4.16)
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This leads to the form

γ = 1 + 4ε4

(
n4
x

2
+

n4
y

2
+

n4
z

3
+ n2

xn
2
y + 2n2

xn
2
z + 2n2

yn
2
z(4.17)

+
2
√

2

3
n3
xnz − 2

√
2nxn

2
ynz

)
,

which reduces to

γ = 1 + 4ε4

(
1

3
cos4 θ + 2 cos2 θ sin2 θ +

1

2
sin4 θ +

2
√

2

3
cos θ sin3 θ cos 3φ

)
.(4.18)

Although the [111] orientation is not isotropic, in the θ = π/2 plane,

γ = 1 + 2ε4.(4.19)

Therefore, the effect of the φ dependence is lost and the surface energy for the [111]
orientation is unchanged by a rotation of φ′ about the substrate.

5. Linear stability calculations. Next we investigate the linear stability of
the system by examining the eigenvalue problem associated with diagonalizing the
second variation of the energy for a fixed orientation of the rod on the substrate.
We consider a number of examples, including an ellipsoidal surface energy anisotropy
and several variants of cubic anisotropy. The three-dimensional study includes both
numerical and asymptotic results. A discussion on the effect of rotation on stability
is covered in the appendix.

5.1. Ellipsoidal anisotropy. We first discuss an anisotropic surface energy that
leads to an ellipsoidal equilibrium shape described by

x2

a2
x

+
y2

a2
y

+
z2

a2
z

= 1.(5.1)

We consider an axisymmetric shape with ax = ay = 1. The corresponding surface

free energy is given by γ(φ, θ) =
√

sin2 θ + a2
z cos2 θ, and in the plane θ = π/2 we

have γ = 1, γφφ = 0, γθφ = 0, and γθθ = a2
z−1. The eigenvalue problem (3.27)–(3.28)

decouples, leading to the single equation

∂2Hn

∂φ2
+ (1 −K2)Hn = μnHn,(5.2)

where K = azk. The boundary conditions for i = L,R are

Hn(ψ
(0)
i ) sinψ

(0)
i + Hnφ(ψ

(0)
i ) cosψ

(0)
i = 0.(5.3)

We solve this problem numerically using a pseudospectral Chebyshev method for
a range of contact angles determined by solutions to (4.3), where −1 ≤ W0 ≤ 1. To
eliminate the change in length scale with the contact angle, we define κ = KRe as the
dimensionless axial wave number based on the effective radius of the cross-section.

In Figure 5.1(a) we show the most unstable mode μ0 for a range of contact angles
ψR as a function of κ. The results indicate that the ellipsoid is stabilized with respect
to long wavelengths for large ψR. In Figure 5.1(b) we plot the square of the critical
wavenumber κC , which corresponds to the transition between stable and unstable
behavior, as a function of the contact angle ψR.
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Fig. 5.1. (a) Eigenvalues for n = 0 versus κ = ReK for the ellipsoid case. From the lower

curve at κ = 0: ψ
(0)
R = −89, 0, 30, 60, 75 degrees. (b) The square of the rescaled wave number, κ2

C ,
versus ψR for the ellipsoid.

5.2. Cubic materials. For numerical determination of the eigenvalues we used
a pseudospectral Chebyshev discretization of the (3.27), (3.28) with boundary condi-
tions from (3.25) for contact angles, where −π ≤ ψR ≤ π. For this problem we may
choose a value ψR, thereby fixing the value of W0. If we restrict ψR between −π/2
and π/2, then ψL is the solution to

W0 − (γ(φ) sinφ + γφ(φ) cosφ) = 0(5.4)

for a value of φ between π/2 and 3π/2. Therefore, fixing the value of ψR determines
the value of ψL.

Since γ varies with respect to ε4 for each of the three high symmetry cubic orienta-
tions [001], [011], and [111], we must determine the effective radius of the cross-section
Re. To eliminate the change in length scale with ε4, we set κ = kRe, which is the
dimensionless axial wave number based on the effective radius of the cross-section.

In addition, we performed an asymptotic expansion of the problem with a plane
of symmetry at φ = π/2, i.e., when ψL = π − ψR. The results for the numerical cal-
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culation will be compared to the results for the asymptotic expansion in the following
sections.

5.2.1. Rod axis parallel to [001] orientation. The dimensionless surface
energy is given by (4.8) for the [001] orientation. In the plane θ = π/2, we then have
γθφ = 0, and

γ = (1 + 3ε4) + ε4 cos 4φ,(5.5)

(γ + γφφ) (γ + γθθ) =

(
1 − 6ε4 −

9

2
ε24

)
− (18ε4 − 126ε24) cos 4φ +

45

2
ε24 cos 8φ.(5.6)

The rod is smooth for −1/18 ≤ ε4 ≤ 1/12.
For this orientation, γθφ(φ, π/2) vanishes, leading to a decoupling of (3.27), (3.28)

that leaves a single equation,

∂Hn

∂φφ
+
(
1 − k2

[
1 + ε4A1(φ) + ε24A2(φ)

])
Hn = μnHn,(5.7)

where

A1 = −6[1 + 3 cos 4φ], A2 = −9

2
[1 − 28 cos 4φ− 5 cos 8φ].(5.8)

For the asymptotics, we assume a symmetry condition about φ = π/2. If −π/2 ≤
ψR ≤ π/2, then ψL = π − ψR. Then the boundary conditions become

Hn(ψR) sinψR + Hnφ(ψR) cosψR = 0,(5.9)

Hnφ(π/2) = 0.(5.10)

We take the simple expansions of Hn and μn in terms of small ε4:

Hn(φ) = H(0)
n (φ) + ε4H

(1)
n (φ) + O

(
ε24
)
,(5.11)

μn = μ(0)
n + ε4μ

(1)
n + O(ε24).(5.12)

The formal asymptotic expansion gives

Hn(φ) = C1 cosβn (π/2 − φ) + O(ε4),(5.13)

μn = 1 − k2 − β2
n + ε4

{
6k2 − 9k2βn

(ηn + sin ηn)

[
sin 4ψ

(0)
R +

sin(4ψ
(0)
R − ηn)

(βn + 2)
(5.14)

− sin(4ψ
(0)
R + ηn)

(βn − 2)

]}
+ O(ε24),

where ηn = 2βn(π/2 − ψ
(0)
R ) and the value of βn must satisfy

cosβn(π/2 − ψR) sinψR + βn sinβn(π/2 − ψR) cos(ψR) = 0.

In Figure 5.2, the first two terms of the asymptotic expansion for the most unsta-
ble mode, μ0, are compared against the numerical value for several choices of contact

angle, ψ
(0)
R , for ε4 = 0.20. The asymptotic results, shown by the dashed curves, are
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Fig. 5.2. Eigenvalues for n = 0 versus the rescaled wave number κ = Rek for the [001] orienta-
tion. Reading from the solid lower curve to the solid upper curve at κ = 0, the corresponding values
of ψR are −90, 0, 45, 63 degrees as indicated. The solid curve represents the numerical solution, and
the dashed curve represents the asymptotic solution for ε4 = 0.020.

close to the numerical results represented by the solid curves. These results show
that the larger contact angles are more stable with respect to large dimensionless
axial wave numbers. In addition, the [001] orientation is more stable with respect to
the isotropic case for negative ε4 and destabilized for positive ε4. The ψR = 0 case
corresponds to the free rod discussed in [10].

The corresponding critical wave number κC , defined where μ0 is zero, as a function

of ε4 has the form κC = Rek. If we define σ
(1)
n = k2τ , then the critical dimensionless

wave number is as follows:

κ2
C = R2

e(1 − β2
n)(1 + ε4τ) + O(ε24).(5.15)

Figure 5.3 shows the results for the square of the rescaled critical wave number versus
the contact angle ψR. The isotropic case, where ε4 is zero, matches the results found
in McCallum et al. [19] for the isotropic rod in contact with a substrate. It is clear
from Figure 5.3 that the negative values of ε4 stabilize the rod for all contact angles
with respect to the isotropic rod, while the positive values of ε4 destabilize the rod.
This behavior also was observed for the freestanding rod [10].

5.2.2. Rod axis parallel to [011] orientation. The dimensionless surface
energy, γ, for the [011] orientation is given by (4.15). In the plane θ = π/2, we then
have γθφ = 0, and

γ =

(
1 +

9

4
ε4

)
+ ε4 cos 2φ +

3

4
ε4 cos 4φ,(5.16)

(5.17)

(γ + γφφ) (γ + γθθ) =

(
1 +

3

2
ε4[5 − 12 cos 2φ− 9 cos 4φ]

+
9

32
ε24[167 + 136 cos 2φ− 148 cos 4φ+ 312 cos 6φ+ 45 cos 8φ]

)
.
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Fig. 5.3. The square of the critical rescaled wavenumber, κ2
C , versus ψR for the [001] orientation

for ε4 = −0.0556,−0.02, 0, 0.02, 0.05, 0.0833. The solid curves represent the numerical solutions
and the dashed curves the asymptotic solutions. The asymptotic solutions are given only for ε4 =
−0.02, 0.0.02.

The asymptotic expansion for the [011] orientation is similar to the [001] orienta-
tion. Therefore, we merely state the results for the first two terms of the eigenvalue
expansion:

μ(0)
n = 1 − k2 − β2

n,(5.18)

μ(1)
n = −15

2
k2 − 9k2βn

(ηn + sin ηn)

[
2 sin 2ψ

(0)
R +

3

4
sin 4ψ

(0)
R

−
(

2 sin 2ψ
(0)
R

β2
n − 1

+
3 sin 4ψ

(0)
R

β2
n − 4

)
cos ηn

−
(

2βn cos 2ψ
(0)
R

β2
n − 1

+
3βn cos 4ψ

(0)
R

2(β2
n − 4)

)
sin ηn

]
,(5.19)

where ηn and βn are as defined for the [001] orientation. Figure 5.4(a) shows nu-
merical results for the range −0.05 ≤ ε4 ≤ 0.08 and the asymptotic results for
ε4 = −0.02, 0, 0.02. The extreme ends of the smooth ε4 range present some nu-
merical difficulties and are therefore not shown. Likewise the extreme case, where
ψR is approaching 90 degrees and the cross-sectional area of the rod is approaching
zero, prevents us from calculating over the entire range of ψR. The curve ε4 = 0
corresponds to the isotropic case. The substrate acts as a stabilizing influence on the
rod; even the negative ε4 case, while less stable than the positive ε4 case, is less un-
stable than it is for a freestanding rod. The large wave number instability associated
with negative values of (γ + γθθ) seen in the freestanding rod [10] when ε4 is in the
range −5/68 ≤ ε4 ≤ −1/18 is possibly related to the growing κ2

C values observed for
ε4 = −0.05 over a positive range of ψR.

5.2.3. Rod axis parallel to [111] orientation. If the axis of the rod is aligned
with the [111] orientation of the crystal axes relative to the rod axis, then γ is given
by the following in the plane θ = π/2:

γ = 1 + 2ε4,(5.20)

(γ + γφφ)(γ + γθθ) = 1 + 12ε4 + 20ε24.(5.21)
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Fig. 5.4. The square of the critical rescaled wave number, κ2
C , versus ψR for ε4 =

−0.05,−0.02, 0, 0.02, 0.08 for (a) the [011] orientation and (b) the [111] orientation. The solid curves
represent the numerical solutions, and the dashed curves represent the asymptotic solutions. The
asymptotic solutions are given only for ε4 = −0.02, 0.0.02.

The asymptotic expansion for this orientation differs from the expansions for the
[001] and [011] orientations since in the [111] orientation (3.27) and (3.28) are coupled
through the nonzero term

γθφ = 8
√

2ε4 sin 3φ.(5.22)

The zeroth-order conditions and results are the same as those for the [001] and [011]
orientations, as expected, so only the details for the first-order terms are shown here.

We begin with the equations that must be solved to determine μ
(1)
n :

−H
(1)
nφ (ψ0)u(ψ0) + H(1)

n (ψ0)uφ(ψ0)(5.23)

−
∫ π/2

ψ
(0)
R

[(μ(1)
n + 12k2)H(0)

n − kγθφ(φ)G
(0)
nφ − k(γθφ(φ)G(0)

n )φ]u dφ = 0
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and

−G
(1)
nφ(ψ

(0)
R )u(ψ

(0)
R ) + G(1)

n (ψ
(0)
R )uφ(ψ

(0)
R )(5.24)

−
∫ π/2

ψ
(0)
R

[(μ(1)
n + 12k2)G(0)

n + kγθφ(φ)H
(0)
nφ + k(γθφ(φ)H(0)

n )φ]u dφ = 0

with the boundary conditions

H
(1)
nφ (π/2) = 0,(5.25)

G
(1)
nφ(π/2) = 0,(5.26)

H(1)
n (ψ

(0)
R ) sinψ

(0)
R + H

(1)
nφ (ψ

(0)
R ) cosψ

(0)
R + kγθφ(ψ

(0)
R )G(0)

n cosψ
(0)
R = 0,(5.27)

G(1)
n (ψ

(0)
R ) sinψ

(0)
R + G

(1)
nφ(ψ

(0)
R ) cosψ

(0)
R − kγθφ(ψ

(0)
R )H(0)

n cosψ
(0)
R = 0.(5.28)

Concentrating on (5.23), one sees that the equation can be rewritten as

−
(
H

(1)
nφ (ψ

(0)
R ) + kγθφ(ψ

(0)
R )G(0)

n (ψ
(0)
R )

)
u(ψ

(0)
R ) + H(1)

n (ψ
(0)
R )uφ(ψ

(0)
R )(5.29)

−(μ(1)
n + 12k2)

∫ π/2

ψ
(0)
R

H(0)
n u dφ + k

∫ π/2

ψ
(0)
R

[γθφ(φ)G
(0)
nφu(φ) − γθφ(φ)G(0)

n uφ(φ)] dφ = 0.

The boundary terms vanish since the operator is self-adjoint. In addition, since

G
(0)
n (φ) and u(φ) differ only by a constant, the second integral vanishes as well. Thus

one finds that

μ(1)
n = −12k2.(5.30)

Applying similar logic to (5.24), one finds the same result.
The numerical results for the [111] orientation for −0.05 ≤ ε4 ≤ 0.08 and the

asymptotic results for ε4 = −0.02, 0, 0.02 are shown in Figure 5.4(b). The extreme
ends of the smooth ε4 range present some numerical difficulties and are therefore
not shown. Figure 5.4(b) shows that for nonnegative ε4, the substrate is a stabilizing
presence, but even this added stability is unable to overcome the instability associated
with positive values of ε4.

6. Conclusion. We have examined rotation effects and the linear stability of
a rod on a substrate, in which the rod has a uniform cross-section given by a two-
dimensional equilibrium shape. This work extends our previous treatment of a free-
standing rod, where the stability analysis produces an associated eigenvalue problem
with periodic boundary conditions. The effect of the rod making contact with the
substrate involves instead mixed boundary conditions for the eigenvalue problem. The
eigenvalues are determined numerically with asymptotic solutions given for the limit-
ing case of small anisotropy. The eigenproblem is a coupled pair of second-order ordi-
nary differential equations with coefficients that are periodic along the axis of the rod
and depend on the second derivatives with respect to the orientation variables. We as-
sumed a weak anisotropic surface energy to eliminate missing orientations on the rod.

As was found in our previous exploration of the freestanding anisotropic rod, the
magnitude and the sign of the anisotropy determine the relative stability in com-
parison to the isotropic case. The overall effect of the substrate is stabilizing to
the anisotropic rod. In general, as the contact angle ψR tends to 90 degrees, the
rod on the substrate becomes more stable, which is analogous to the stability of a
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three-dimensional planar film, where the anisotropy is not strong enough to make the
problem ill-posed. In particular, the rod on a substrate with any of the high sym-
metry cubic orientations maintains the same relationship as the freestanding rods as
to whether or not a positive or negative anisotropy enhances or diminishes stability.
When the contact angle ψR between the rod and the substrate approaches −90 de-
grees, the stability does not revert to that of the freestanding rod. In this limiting
case, the rods are pinned to the surface at one point, and this single point of contact
increases the stability of the rod with respect to the unpinned case. This effect was
also seen by McCallum et al. [19] for the isotropic rod.

We have considered the effect of rotation on the stability of a two-dimensional rod
whose cross-section is either elliptical or a shape determined by one of the three high
symmetry cubic orientations. In order to describe these cross-sections, the coordinate
system is fixed to the center of the rod, thereby defining a substrate height above
this center. When the major axis of the ellipse is horizontal, the ellipse is most stable
with a positive substrate height (see Figure 2.2) and is least stable with a negative
substrate height. For this elliptical case, the observation is consistent with the remark
above that contact angles near 90 degrees are more stable than contact angles near
−90 degrees. But the observation concerning substrate height applies to more general
cases. In particular, the stability of rods whose cross-sections are determined by high
symmetry cubic orientations mimic this reversal of stability when the substrate height
is at a maximum over the coordinate axes in comparison to a minimum. Similar to
the linear stability results, the stability under rotation of these rods with the [001] and
[011] cubic orientations depends greatly on the sign and magnitude of the anisotropy.
Negative anisotropy corresponds to a rod with a cross-section of a rounded cube;
positive anisotropy corresponds to a rod with a smoothed octahedral cross-section.
In general we observe that for the [001] cubic orientation, the more negative the
anisotropy, the more unstable the rod. The situation is reversed for the [011] and
[111] cubic orientations.

The two- or fourfold symmetry of the orientations is reflected in the effect of
rotation of the rods on the stability. The stability of the rod with the [111] cubic
orientation is found to be unchanged by rotation.

These results may be potentially useful in the manufacture of stable long rods
or wires with an axis oriented along the high symmetry orientations [001], [011], and
[111].

Appendix. The effect of rotations on perturbation stability. In this
section we discuss the effect of rotating a crystal on the second variational energy
of the contact line problem. We start with a study of the two-dimensional shapes
from sections 4.1 and 4.2: an ellipse and three two-dimensional cubic crystals in high
symmetry orientations. For the ellipse, the major and minor axes are rotated with
respect to the x-axis at an angle of φ′. Additionally, the substrate may be moved
upwards from the original x-axis at a distance of W0. In this particular case the effect
of W0 will be seen indirectly, as it does not appear explicitly in the relevant equations.
However, W0 determines the contact angles ψR and ψL that the crystal makes with
the substrate.

In two dimensions the stability problem (i.e., the second variation of the energy)
reduces to the following:

E(2)

2
= −

∫ ψ
(0)
L

ψ
(0)
R

[hφφ(φ) + h(φ)]h(φ) dφ(A.1)
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with the boundary conditions

h(ψ
(0)
i ) sinψ

(0)
i + hφ(ψ

(0)
i ) cosψ

(0)
i = 0(A.2)

for i = L,R, subject to the constraints where

∫ ψ
(0)
L

ψ
(0)
R

h(φ) [γ(φ + φ′) + γφφ(φ + φ′)] dφ = 0,(A.3)

and where

∫ ψ
(0)
L

ψ
(0)
R

h2(φ) dφ(A.4)

is minimized.
Therefore we can formulate the problem as

hφφ(φ) + h(φ) = μh(φ) + τ [γ(φ + φ′) + γφφ(φ + φ′)](A.5)

with the boundary conditions given as above in (A.2). We solve this problem using two
different numerical techniques. The first uses a pseudospectral Chebyshev calculation
[34] to determine a basis of eigenvectors for the problem

hφφ(φ) + h(φ) = μh(φ),(A.6)

subject to the boundary conditions, that are orthogonal to the vector

γ(φ + φ′) + γφφ(φ + φ′).(A.7)

In addition, we can solve (A.2), (A.5) with a double shooting method.
The unstable eigenmodes are those where μn > 0. We find that the largest

eigenvalue, μ0, is zero to numerical accuracy for all cases, indicating that none of the
modes are unstable. Analytically we can obtain some insight by noting that (A.6)
admits solutions of the form

−n2 + 1 = μn,(A.8)

hn(φ) = An sin(nφ) + Bn cos(nφ).(A.9)

Note that μn is negative for n ≥ 2, resulting in stable shape perturbations. The
boundary conditions show that if n = 0, then h0 = 0. The next allowed n is n = 1,
which gives μ1 = 0 and h1 = B1 cosφ, an allowable solution. This is an eigenmode as
long as it satisfies the orthogonality constraint given in (A.3).
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THE EXIT PROBLEM IN A NONLINEAR SYSTEM DRIVEN BY 1/f
NOISE: THE DELAY LOCKED LOOP∗
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Abstract. The frequency generated by high frequency oscillators contains a small but signifi-
cant noise component known as phase noise, also known as oscillator noise or phase jitter. The phase
noise belongs to the family of stochastic processes with spectra 1/fα, which exhibits scale invariance
(or self-similarity) and a long-term correlation structure that decays polynomially in time. Both the
phase and thermal noises cause errors in receivers that contain the oscillators. In particular, they
cause losses of lock in phase tracking systems such as the phase locked loop in coherent systems,
which include cellular phones, global positioning systems (GPS), and radar (e.g., synthetic aperture
radar (SAR)), and in the delay locked loop (DLL), which is an important component of code divi-
sion multiple access receivers and interface to modern memory modules, such as double data rate
synchronous dynamic random access memory. The mean time to lose lock (MTLL) is well known to
be an important design objective for various tracking loops. The evaluation of the MTLL is known
in the mathematical literature as the exit problem for a dynamical system driven by noise, which
is the problem of calculating the mean time for the noisy trajectories to reach the boundary of the
domain of attraction of a stable point of the noiseless dynamics. In this paper we develop an analytic
approach to the evaluation of the leading order term for MTLL of a second order DLL, due to both
the non-Markovian 1/fα noise and to thermal white noise. The method is applicable to more general
systems driven by a wide class of phase noises. The keys to the solution of this exit problem are
the construction of a series of higher order Markovian processes that converge to the non-Markovian
1/fα noise and the asymptotic solution to a multidimensional elliptic boundary value problem that
the mean first passage time (MFPT) satisfies.

Key words. exit problem, phase noise, fractional Brownian motion, loss of lock, delay locked
loop, mean time to lose lock, phase locked loop, 1/f noise
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1. Introduction. In communication theory random signals are often described
as the output of a dynamical system driven by noise [1]. Various types of noise are
used to model different signals, including white noise, colored noise, shot noise, and so
on. When the signal is carried by the phase of the wave, such as in phase modulation
(PM), frequency modulation (FM), and various keying modulations [1], [2], as well
as in global positioning systems (GPS) and other signal tracking systems, the main
component that generates the signal is an oscillator [3]. The frequency generated
by high frequency oscillators is not very stable; it drifts randomly and contains a
small but significant noise component known as phase noise. Both the random drift
and thermal noise cause errors in the receivers of these signals. In particular, they
cause losses of lock in phase tracking systems such as the phase locked loop (PLL) in
coherent systems [1], [2], [4], which include cellular phones [3], GPS [5], and radar (e.g.,
synthetic aperture radar (SAR)) [6], and in the delay locked loop (DLL) [7], [8], which
is an important component of code division multiple access (CDMA) receivers [3],
GPS, and interface to modern memory modules such as double data rate synchronous
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dynamic random access memory (DDR SDRAM) [9]. The mean time to lose lock
(MTLL) is well known to be an important design objective for various tracking loops
[2], [4].

Phase noise, also known as oscillator noise or phase jitter, is a well-known problem
that does not yet have a full physical model (a recent example of a physical model is
found in [10]) or extensive tools for mathematical manipulation. The phase drift and
noise may be due to impurities, imperfections, thermal fluctuations, and other factors
in the oscillator’s crystal. The phase noise is usually described as having four parts [3]:
the first is “frequency flicker” with power spectrum 1/f3; the second is “flat frequency”
with power spectrum 1/f2; the third is “phase flicker” with power spectrum of the
form 1/f ; and finally, the fourth is a “flat spectrum” phase. Often a white noise
term is added to represent thermal noise. This thermal noise should not be confused
with the “flat spectrum” part of the phase noise. The family of stochastic processes
with spectra 1/fα is of growing interest in many fields of research due to the wide
variety of data for which they are inherently suited [11], [12]. This family of processes
exhibits scale invariance (or self-similarity) and a long-term correlation structure that
decays polynomially in time rather than exponentially, as is the case for the well-
studied family of autoregressive moving average (ARMA) processes [13]. The long-
term correlation structure of 1/f noise is due to the absence of a low frequency cutoff
in the spectrum, which results in nonstationarity. This means that an approximation
that has a low frequency cutoff (flattening of the spectrum below a certain frequency)
has a finite correlation structure. Furthermore, “ideal” 1/f Gaussian noise cannot
exist since the single-time variance of the process is not finite. A model that has a
low frequency cutoff, as in our case, can be Gaussian. A considerable body of work
has been devoted to 1/fα processes (see [12], [13], [14], [15], [16], [17], [18], [19],
[20], [21], [22], and references therein). An approximation to 1/f noise by an output
of a linear system of first order stochastic differential equations, driven by a vector
of white noises, is given in [23]. The structure of this model is similar to that of
the present one but is derived from different considerations. The model in [23] is
based on a physical description of diffusion and transport that leads to 1/f spectrum.
In contrast, our model is based on a purely mathematical construction and can be
generated for any 1/fα spectrum and, in general, for a wide class of spectra. Further,
our model is constructed as the output of a system driven by a single noise source,
whereas Milotti’s model is driven by many noise sources. Our construction may be
more appropriate for linear estimation problems driven by 1/f noise because in the
absence of observation noise, completely accurate reconstruction of the state of the
system is possible only if the rank of the observed variable is not lower than the rank
of the noise driving the system [24]. Both models can be used for the calculation of
the mean first passage time (MFPT) because they are based on a system of first order
stochastic differential equations driven by white noise.

The MTLL of coherent and noncoherent pseudonoise code tracking loops, due to
white (e.g., thermal) noise, has been studied extensively in the literature [7], [8]. A
more analytic approach to the second order DLL was given in [25], where an asymp-
totic expansion of the solution for the MTLL was derived using singular perturbation
theory. The MTLL in systems driven by 1/f noise, or more specifically, the effects
of phase noise on a DLL, has not been solved analytically in the literature to date,
although its existence and significance are well known [3]. Our aim in the specific
application considered in this paper is to develop an analytic approach to the eval-
uation of the leading order term for the MTLL of a second order DLL due to both
phase and thermal white noise. It should be noted that in this article we calculate
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the asymptotic rate at which the MTLL grows exponentially when the dimensionless
noise strength tends to zero. The result is a single leading order term in an asymptotic
expansion.

The evaluation of the MTLL is known in the mathematical literature as the
exit problem for a dynamical system driven by noise [26], which is the problem of
calculating the mean time for the noisy trajectories to reach the boundary of the
domain of attraction of a stable point of the noiseless dynamics. The problem has
been extensively studied for the case of Itô dynamics driven by small white noise
(see the comprehensive review [27]). The key to the calculation of the MFPT to the
boundary is the construction of an asymptotic solution to a boundary value problem
for the elliptic partial differential equation that the MFPT satisfies.

When the noise is non-Markovian or cannot be imbedded in a higher order Marko-
vian process, the calculation of the MFPT is complicated by the absence of differential
or integral equations that the MFPT satisfies. To circumvent this difficulty, methods
have been developed to approximate the noise by a Markov process, e.g., by an output
of a finite-dimensional Itô system. The MFPT is then calculated for the approximat-
ing Itô system, and convergence is shown as the order of approximation increases [28].
This procedure requires the development of an asymptotic method for the calculation
of the MFPT in Itô systems of high dimension.

Our approach is based on constructing a convergent sequence of rational approx-
imations to 1/f (see [28] and references therein). The approximate 1/f noise is a
component of a higher dimensional (Markovian) diffusion process. We construct a se-
quence of approximations to the noise by multidimensional diffusion processes, whose
power spectral densities are obtained by truncating the continued fraction expansion
of the Laplace transform of the function 1/

√
s about s = 1. The resulting approxi-

mation to the 1/f noise is represented by a set of first order linear Itô equations. The
resulting rational spectra approximate 1/f in finite intervals without ripples. The
width of these intervals can be increased arbitrarily by increasing the degree of the
truncation. Our model is amenable to asymptotic analysis of the exit problem for
high-dimensional diffusion processes. We develop a multidimensional singular per-
turbation theory for the solution of the exit problem for multidimensional diffusion
processes and apply it to the calculation of the leading order term of MTLL in a DLL
with an approximate 1/f3 phase noise. The dynamics of the delay estimator error is
driven by the derivative of the phase noise, which for 1/f3 is 1/f noise. It is shown
that truncation of the model for the phase noise results in a convergent sequence of ap-
proximations for the first approximation of the MTLL (the exponential growth rate).

Our main result is the calculation of the leading order term for the MTLL in a
specific second order DLL loop under the combined influence of 1/f3 phase noise and
additive thermal white noise. Specifically, we find explicit asymptotic expressions for
the MTLL for Markovian approximations to the phase noise. The calculations indicate
that as the degree of approximation increases, the MTLL converges to a finite limit.
Actually, no significant change in the MTLL is observed after truncation of the phase
noise model at order 10. From a practical point of view it is most important to
optimize the system at a low carrier-to-noise ratio (CNR), because this is where the
system will stop operating. It turns out that as CNR decreases, the needed order
of truncation decreases. We also show that the filter can be optimized for maximal
MTLL when both composite phase and thermal white noise drive the system.

2. The leading order term for the MTLL problem for a second order
DLL with approximated 1/f3 phase noise. The baseband equivalent model for
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the second order nonlinear early-late DLL shown in Figure 1 [29] has normalized
channel propagation delay T (t)/Tc, total power of received signal P , gains K and a
that define the loop’s filter, and phase noise φ̃n with power spectrum

Sφ̃nφ̃n
(f) =

Nph

2 |2πf |3
.(2.1)

The loop filter used is of proportional integration type [30] with a zero at s = −a.
The parameter K[

√
Hz] determines the loop’s gain, and the dimensionless parameter

a �= 0 stabilizes the loop. This type of loop can handle relative velocity Ṫ without a
steady state error, and relative acceleration T̈ with a steady state error. The piecewise
linear S-curve for the early-late DLL used in spread spectrum synchronization of long
PN (pseudonoise) sequences is given by [29] (see Figure 2)

S(e) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

2e, |e| ≤ 1
2 ,

1.5 − e, 1
2 < |e| < 3

2 ,

−1.5 − e, − 3
2 < |e| < − 1

2 ,

0 otherwise.

The resulting equations describing the system are

e =
T

Tc
+ φ̃n − T̂

Tc
,(2.2)

ż = aK
√

2PS(e) + K

√
Nth

2
ẇ(t),
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˙̂
T

Tc
= z + K

√
2PS(e) + K

√
Nth

2
ẇ(t),

where e is the delay estimation error, ż is the output of the loop filter, and the last
equation is the output of the integrator. Here w(t) is the standard Wiener process
(Brownian motion), whose “derivative” ẇ(t) is standard δ-correlated Gaussian white
noise [26], independent of ν(t).

Differentiating e and setting z̃ = z − Ṫ
Tc

, equations (2.2) become

ė = −z̃ −K
√

2PS(e) +
˙̃
φn −K

√
Nth

2
ẇ(t),

(2.3)

˙̃z = aK
√

2PS(e) − T̈

TC
+ K

√
Nth

2
ẇ(t).

The spectral power density (2.1) indicates that the new noise process φn =
˙̃
φn is well

defined and that its power spectral density function is given by Sφnφn
(f) =

Nph

2|2πf | .

Next, we construct an approximate 1/f Gaussian noise by passing white Gaussian
noise through a filter, whose response in the Laplace domain is [20]

H(s) =
1√
s
.(2.4)

This filter cannot be realized as a Markovian process in a straightforward fashion,
and therefore the standard tools of Markov processes are not available for the study
of the effects of the 1/f noise in dynamical systems. We construct a sequence of
rational approximations to (2.4) by truncating its continued fraction representation
in a fashion similar to that used in [28] and references therein. Although (2.4) is not
an analytic function near the origin, it is analytic at any nonzero s such as s = ω0 > 0,
so it has the continued fraction representation

1√
s̃ + ω0

=
1

1 +
1

2ω0

s̃
+

1

2 +
1

2ω0

s̃
+

1

2 +
.. .

,(2.5)

where s̃ = ω0(s− 1). Thus (2.4) is

H(s) =
1

1 +
1

2

s− 1
+

1

2 +
1

2

s− 1
+

1

2 +
.. .

,(2.6)

which converges for |s−ω0| < ω0. Next, we define an approximate 1/f noise through
the Laplace transform relation

Φn(s) = H(s)V (s),(2.7)
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where the power spectral density of a white Gaussian process is given by

Svv(f) = Nph.(2.8)

Truncating the continued fraction and using (2.6), (2.7), we obtain the system of 2N
equations

V (s) = Φn(s) + Y1(s), Φn(s) =
2

s− 1
Y1(s) + Y2(s),(2.9)

Y1(s) = 2Y2(s) + Y3(s), Y2(s) =
2

s− 1
Y3(s) + Y4(s),

Y3(s) = 2Y4(s) + Y5(s), Y4(s) =
2

s− 1
Y5(s) + Y6(s),

...
...

Y2N−3(s) = 2Y2N−2(s) + Y2N−1(s), Y2N−2(s) =
2

s− 1
Y2N−1(s) + Y2N (s),

2Y2N−1(s) = 4Y2N (s) + (s− 1)Y2N ,

where N denotes the order of approximation to the 1/f noise.
We note that all the state variables Y2j+1(s) in (2.9) can be eliminated by a linear

transformation. To transform the system (2.9) into the time domain, we denote by
ν(t) a standard Gaussian white noise and denote the state variables in the time domain
by lowercase letters. Then (2.9) is transformed into the Itô system

ẏ2N (t) = y2N (t) − y2N (0) + 2

[
ν(t) − φn(t) − 2

N∑
k=1

y2k(t)

]
,

ẏ2N−2(t) = y2N−2(t) − y2N−2(0) − 4y2N (t) + 4

[
ν(t) − φn(t) − 2

N−1∑
k=1

y2k(t)

]
,

ẏ2N−4(t) = y2N−4(t) − y2N−4(0) − 4y2N (t) − 8y2N−2(t)

+ 6

[
ν(t) − φn(t) − 2

N−2∑
k=1

y2k(t)

]
,(2.10)

...

ẏ2(t) = y2(t) − y2(0) − 4

N−1∑
m=1

my2(N−m+1)(t) + 2N [ν(t) − φn(t) − 2y2(t)] ,

φ̇n(t) = −(2N + 1)φn(t) − φn(0) − 4

N∑
m=1

my2(N−m+1)(t) + 2(N + 1)ν(t).

Thus the Nth approximation to the 1/f noise process is an output of a Markovian
system of N + 1 linear stochastic differential equations of Itô type [26]. Finally, since
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the expected value of the 1/f noise process is zero, we find the initial conditions by
taking the expectation of (2.10)

φn (0) = y2 (0) = y4 (0) = · · · = y2N (0) = 0.(2.11)

An interesting feature of our model is that for N = 0, (2.10) becomes an Ornstein–
Uhlenbeck process. This type of process is commonly used for colored Gaussian noise
models. In Figure 3 the frequency response [31] of the truncated transfer function
H(s) (2.6) is given for the approximation of 1/ω, where ω = 2πf , with N = 5, N = 10,
and N = 20, to show how the range of validity of the approximation expands with
increasing N , and that the approximation is without ripples.

Thus, using (2.3), (2.10), we obtain the system

ė(t) = −z̃(t) −K
√

2PS(e(t)) + φn(t) −K

√
Nth

2
ẇ(t),(2.12)

˙̃z(t) = aK
√

2PS(e(t)) − T̈

TC
+ K

√
Nth

2
ẇ(t),

ẏ2N (t) = y2N (t) + 2

[√
Nph

2
ν(t) − φn(t) − 2

N∑
k=1

y2k(t)

]
,

ẏ2N−2(t) = y2N−2(t) − 4y2N (t) + 4

[√
Nph

2
ν(t) − φn(t) − 2

N−1∑
k=1

y2k(t)

]
,

ẏ2N−4(t) = y2N−4(t) − 4y2N (t) − 8y2N−2 + 6

[√
Nph

2
ν(t) − φn(t) − 2

N−2∑
k=1

y2k(t)

]
,

...

ẏ2(t) = y2(t) − 4

N−1∑
m=1

my2(N−m+1) + 2N

[√
Nph

2
ν(t) − φn(t) − 2y2(t)

]
,
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φ̇n(t) = −(2N + 1)φn(t) − 4

N∑
m=1

my2(N−m+1)(t) + 2(N + 1)

√
Nph

2
ν(t).

Next, we normalize the equations so that the noise term converges to zero as the
CNR term P/Nph increases to infinity. The CNR, measured in Hz, is a well-accepted
engineering quantity [5]. We introduce dimensionless time and define the auxiliary
variables

t̃ =
√

2PKt, β =
z̃

a
, T ′′ =

T̈

a
√

2PKTc

(2.13)

to convert to the nondimensional system

ė
(
t̃
)

= − a√
2PK

β
(
t̃
)
− S

(
e
(
t̃
))

+
φn

(
t̃
)

√
2PK

−
√

KNth

2
√

2P
ẇ(t̃),

β̇
(
t̃
)

= S
(
e
(
t̃
))

− T ′′ +

√
KNth

2
√

2P
ẇ(t̃),

ẏ2N

(
t̃
)

=
1

K
√

2P

{
y2N

(
t̃
)

+ 2

[
−φn

(
t̃
)
− 2

N∑
k=1

y2k

(
t̃
)]}

+ 2
√
ρ ν

(
t̃
)
,

ẏ2N−2

(
t̃
)

=
1

K
√

2P

{
y2N−2

(
t̃
)
− 4y2N

(
t̃
)

+ 4

[
−φn

(
t̃
)
− 2

N−1∑
k=1

y2k

(
t̃
)]}

+ 4
√
ρ ν

(
t̃
)
,

ẏ2N−4

(
t̃
)

=
1

K
√

2P

{
y2N−4

(
t̃
)
− 4y2N

(
t̃
)
− 8y2N−2

(
t̃
)

+ 6

[
−φn

(
t̃
)
− 2

N−2∑
k=1

y2k

(
t̃
)]}

+ 6
√
ρ ν

(
t̃
)
,

...(2.14)

ẏ2

(
t̃
)

=
1

K
√

2P

{
y2

(
t̃
)
− 4

N−1∑
m=1

my2(N−m+1)

(
t̃
)

+ 2N
[
−φn

(
t̃
)
− 2y2

(
t̃
)]}

+ 2N
√
ρ ν

(
t̃
)
,

φ̇n

(
t̃
)

=
1

K
√

2P

{
−(2N + 1)φn

(
t̃
)
− 4

N∑
m=1

my2(N−m+1)

(
t̃
)}

+ 2(N + 1)
√
ρ ν

(
t̃
)
,

where the dimensionless noise level is given by ρ =
Nph

2K
√

2P
. For small values of ρ

the system (2.14) can be viewed as a small stochastic perturbation of a nonlinear
dynamical system that has a stable equilibrium at the point

ea =
T ′′

2
, βa = − T̈

Tca2
, φn,a = 0, y2i,a = 0, 1 ≤ i ≤ N,(2.15)

and an unstable equilibrium point at

eb =
3

2
− |T ′′| , βb = − T̈

Tca2
, φn,b = 0, y2i,b = 0, 1 ≤ i ≤ N,(2.16)
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which we refer to as the saddle point.

The stable equilibrium point (2.15) of the system (2.14) has a domain of attraction
D. This means that any noiseless trajectory of (2.14) starting in D converges to the
stable equilibrium point (2.15). The boundary of the region D is denoted ∂D. As
long as a trajectory of the stochastic system (2.14) remains in D, the DLL is said to
be in a locked state. Upon exiting the region D through the boundary ∂D, the DLL
is said to have lost lock. The exact description of the boundary ∂D is complex and
is omitted here; however, in the limit of weak noise, the exit from D occurs in the
immediate neighborhood of the saddle point. Thus the calculation of the MTLL is
the classical exit problem of a dynamical system from the domain of attraction of a
stable point under the influence of small noise [26].

We denote a trajectory of (2.14) by

xT (t) = [e(t), β(t), y2N (t), y2N−2(t), . . . , y2(t), φn(t)] .

For each trajectory of (2.14) that starts in D, we denote by τD the first time it reaches
the boundary ∂D (the first passage time to the boundary),

τD = inf {t ≥ 0 |x(t) ∈ ∂D, x(0) ∈ D} ,(2.17)

and its conditional expectation

τ̄D(x) = E[τD |x(0) = x].

The MTLL is defined as

t̄L(x) = 2τ̄D(x)(2.18)

because once on ∂D, a trajectory is equally likely to return to D immediately or to
leave D for a long time [32]. In the case of small ρ an analytic approximation to the
MTLL can be obtained, as described below.

3. Review of the multidimensional exit problem for diffusions. The ap-
proximation scheme used in the previous section reduces the loss of lock problem for
a DLL with 1/f3 phase noise to the classical problem of escape of a multidimensional
diffusion process from the domain of attraction of an attractor [26], [32], [33], [34],
[35]. In the following, we outline a singular perturbation method for constructing an
asymptotic approximation to the solution of the Fokker–Planck equation (FPE) and
to the escape problem in high dimensions.

Consider the autonomous multidimensional system

dx

dt
= a(x) +

√
2ε b(x)ν(t),(3.1)

x(0) = x(3.2)

in a domain D in Rn for piecewise smooth flows (vector fields) a(x) and an n × m
noise matrix b(x). Here ν(t) is a vector of m independent standard Gaussian white
noises [26]. We assume that the noiseless dynamics

ẋ = a(x)(3.3)
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has a unique critical point x0 in D and that it is a global attractor in D. This means
that

a(x0) = 0,

and we assume that the eigenvalues of the matrix

A =

{
∂ai(x0)

∂xj

}n

i,j=1

(3.4)

of the linearized system

ż = Az(3.5)

have negative real parts. Thus the trajectories of the system (3.3) that start in D
cannot reach the boundary ∂D.

The FPE for the stationary probability density function pε(y |x) of the solution
x(t, ε) of (3.1), (3.2), with a source at x and absorption in ∂D, is [34]

−
n∑

i=1

∂

∂yi
[
ai(y)pε(y |x)

]
+

n∑
i,j=1

ε
∂2

∂yi∂yj
[
σi,j(y)pε(y |x)

]
= −δ(y − x)(3.6)

with the boundary condition

pε(y |x) | x∈D,y∈∂D = 0,

where

σ(y) = b(y)bT (y).

The function pε(y |x) develops singularities in the domain and on its boundary
as ε → 0. We resolve these singularities by constructing an approximate solution that
contains all the singularities of pε(y |x) at ε = 0. First, we transform the FPE (3.6)
by seeking a solution in the WKB form

pε(y |x) = Kε(y |x) exp

{
−Ψ(y)

ε

}
,(3.7)

where Kε(y |x) has an asymptotic series expansion in powers of ε for x in the domain
and Ψ(y) is a regular function. The asymptotic approximation to the MFPT for small
ε is given by

τ̄(x) = C(ε) exp

{
Ψ̂

ε

}
(1 + o(1)),(3.8)

where C(ε) has an asymptotic series expansion in powers of ε and Ψ̂ is the minimum
of the eikonal function Ψ(x) on the boundary of the domain of attraction of the
stable equilibrium point x0. Equation (3.8) indicates that to leading order τ̄(x) is
independent of x.

The essential singularity of pε(y |x) inside D is captured by the exponential term
in (3.7) and that on ∂D by the preexponential factor Kε(y |x). Substituting (3.7)
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in (3.6) and collecting like powers of ε, we obtain at the leading order the first order
eikonal equation

n∑
i,j=1

σi,j(y)
∂Ψ(y)

∂yi
∂Ψ(y)

∂yj
+

n∑
i=1

ai(y)
∂Ψ(y)

∂yi
= 0.(3.9)

The eikonal equation has the form of a Hamilton–Jacobi equation [37] and is solved
by the method of characteristics [38], [39]. Setting p = ∇Ψ(x), (3.9) becomes

n∑
i,j=1

σi,j(x)pipj +

n∑
i=1

ai(x)pi = 0,

and the characteristic equations (or rays [33]) are the solutions of

dx

ds
= 2σ(x)p + a(x),(3.10)

dp

ds
= −∇xpTσ(x)p −∇xaT (x)p,(3.11)

dΨ

ds
= pTσ(x)p.(3.12)

Since the rays that begin near the attractor (x0,0) diverge, we can cover the
domain of attraction of (x0,0) with rays emanating from a small neighborhood of
(x0,0). To integrate the characteristic equations (3.10), (3.11), initial conditions can
be imposed near the attractor (x0,0) by constructing Ψ(x) in the form of a power se-
ries. The truncation of the power series near the attractor provides an approximation
to Ψ(x) and to p = ∇Ψ(x), whose error can be made arbitrarily small. Expanding
the functions Ψ(x), a(x), and σ(x) in powers of z = x−x0, we find from the eikonal
equation (3.9) that ∇Ψ(x0) = 0, so that the power series expansion of Ψ(x) begins
as a quadratic form

Ψ(x) =
1

2
xTQx + o

(
|x|2

)
(3.13)

and Q is the solution of the Riccati equation [36]

2Qσ(x0)Q + QA + ATQ = 0.(3.14)

Obviously, the first term in the power series expansion of p is given by

p = Qx + O
(
|x|2

)
.(3.15)

Taking the contour

1

2
xTQx = δ,(3.16)

for some small positive δ, as the initial surface for the system (3.10)–(3.12) and using
the approximate initial values Ψ(x) = δ and (3.15) at each point of the surface, we
can integrate the system (3.10)–(3.12) analytically or numerically. Once the domain
D is covered with characteristics, the approximate value of Ψ(x) can be determined
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at each point x ∈ D as the value of the solution Ψ(s) of (3.12) at s, such that the
solution of (3.10) satisfies

x(s) = x.(3.17)

The initial condition on the surface (3.16) determines the unique trajectory of the
system (3.10)–(3.12) that satisfies (3.17) for some s. It can be found numerically by
the method of shooting.

4. The exit problem for the DLL. The eikonal equation (3.9) corresponding
to the stochastic system (2.14) is given by

(4.1)

H =

(
− a√

2PK
β − S(e) +

φn√
2PK

)
∂Ψ

∂e
+

(
S(e) − T ′′

2

)
∂Ψ

∂β

+
1√

2PK

N∑
i=1

(
y2i − 4

N−i∑
l=1

ly2(N−l+1) + 2 (N − i + 1)

(
−φn − 2

i∑
l=1

y2l

))
∂Ψ

∂y2i

+
1√

2PK

(
−(2N + 1)φn − 4

N∑
l=1

ly2(N−l+1)

)
∂Ψ

∂φn

+

(
N∑
l=1

2 (N − l + 1)
∂Ψ

∂y2l
+ 2 (N + 1)

∂Ψ

∂φn

)2

+

(
−K

√
Nth

Nph

∂Ψ

∂e
+ K

√
Nth

Nph

∂Ψ

∂β

)2

= 0.

The solution in the slab −1/2 ≤ e ≤ 1/2, corresponding to the linear part of the S-
curve (see Figure 2), is the quadratic form (3.13), determined by the solution to Lya-
punov’s (Riccati’s) equation (3.14). The system in the linear region can be written as

ẋ(t) = Ax(t) + Bν(t),(4.2)

where ν(t) is a standard Gaussian white noise vector composed of the uncorrelated
white noises w(t) and ν(t) in (2.14) and the matrices A and B are given by

A =
1√

2PK

×

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−2
√

2PK −a 0 0 0 0 · · · 0 −1

2
√

2PK 0 0 0 0 0 · · · 0 0

0 0 −3 −4 −4 −4 · · · −4 −2

0 0 −4 −7 −8 −8 · · · −8 −4

0 0 −4 −8 −11 −12 · · · −12 −6

...
0 0 −4 −8 −12 · · · −4(N − 1) −4N − 1 −2N

0 0 −4 −8 −12 −16 · · · −4N −2N − 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and

BT =

√
Nph

2K
√

2P

⎡
⎢⎢⎢⎣

−K

√
Nth

Nph
K

√
Nth

Nph
0 0 · · · 0 0

0 0 2 4 · · · 2N 2 (N + 1)

⎤
⎥⎥⎥⎦ ,

respectively. The explicit solution of (3.14) can be obtained by using standard sym-
bolic mathematical packages such as Maple or Mathematica.

To solve (4.1) outside the strip |e| < 1/2, we use the method of characteristics,
as described in section 3 above. We define the components of the vector p by the
equations

p =
∂Ψ

∂e
, q =

∂Ψ

∂β
, α1 =

∂Ψ

∂y2
, α2 =

∂Ψ

∂y4
, . . . , αN =

∂Ψ

∂y2N
, r =

∂Ψ

∂φn
.

Now, taking the total derivative of H with respect to time, we get

dH

dt
= 0 =

∂H

∂e

de

dt
+

∂H

∂β

dβ

dt
+

∂H

∂φn

dφn

dt
(4.3)

+
N∑
i=1

∂H

∂y2i

dy2i

dt
+

∂H

∂p

dp

dt
+

∂H

∂q

dq

dt
+

∂H

∂r

dr

dt
+

N∑
i=1

∂H

∂αi

dαi

dt
.

The characteristic equations (3.10)–(3.12) are given by

de

dt
=

∂H

∂p
,

dp

dt
= −∂H

∂e
,

dβ

dt
=

∂H

∂q
,

dq

dt
= −∂H

∂β
,(4.4)

dy2

dt
=

∂H

∂α1
,

dα1

dt
= −∂H

∂y2
,

dy4

dt
=

∂H

∂α2
,

dα2

dt
= −∂H

∂y4
,

...

dy2N

dt
=

∂H

∂αN
,

dαN

dt
= − ∂H

∂y2N
,

dφn

dt
=

∂H

∂r
,

dr

dt
= − ∂H

∂φn
.

Inserting (4.1) and (4.3) into (4.4), we get

de

dt
= − a

K
√

2P
β − S(e) +

φn

K
√

2P
− 2K2 Nth

Nph
(−p + q),(4.5)

dβ

dt
= S(e) − T ′′ + 2K2 Nth

Nph
(−p + q),

dy2i

dt
=

1

K
√

2P

{
y2i − 4

N−i∑
l=1

ly2(N−l+1) − 2 (N − i + 1)

(
φn + 2

i∑
l=1

y2l

)}

+ 4 (N − i + 1)

(
N∑
l=1

2 (N − l + 1)αl + 2 (N + 1) r

)
for all 1 ≤ i ≤ N,
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dφn

dt
=

1

K
√

2P

{
− (2N + 1)φn −

N∑
l=1

4ly2(N−l+1)

}

+ 4 (N + 1)

(
N∑
l=1

2 (N − l + 1)αl + 2 (N + 1) r

)
,

dp

dt
= (p− q)S′(e),

dq

dt
=

a

K
√

2P
p

and

dαi

dt
= − 1

K
√

2P

{
αi − 4

N∑
l=i+1

(N − l + 1)αl − 4 (N − i + 1)

i∑
l=1

αi

}

+
r

K
√

2P
4 (N − i + 1) for all 1 ≤ i ≤ N,

dr

dt
= − p

K
√

2P
+

1

K
√

2P

N∑
i=1

2 (N − i + 1)αi +
r

K
√

2P
(2N + 1) .

To complete the solution of (4.1), we must show that H = 0 for at least one point.
Taking the total derivative dΨ

dt along a characteristic, and using (4.1) and (4.5), we
get

dΨ

dt
=

∂Ψ

∂e

de

dt
+

∂Ψ

∂β

dβ

dt
+

∂Ψ

∂φn

dφn

dt
+

N∑
i=1

∂Ψ

∂y2i

dy2i

dt
(4.6)

= H +
N∑
i=1

2 (N − i + 1)αi

(
N∑
l=1

2 (N − l + 1)αl + 2 (N + 1) r

)

+ 2 (N + 1)

(
N∑
l=1

2 (N − l + 1)αl + 2 (N + 1) r

)
r

= H +

(
N∑
l=1

2 (N − l + 1)αl + 2 (N + 1) r

)2

.

Thus, H = 0 if

dΨ

dt
=

(
N∑
l=1

2 (N − l + 1)αl + 2 (N + 1) r

)2

+ K2 Nth

Nph
(−p + q)2.(4.7)

Equations (4.5) and (4.7) represent the solution of (4.1) on each characteristic curve.
The boundary ∂D is spanned by characteristic curves that converge to the saddle
point, and Ψ decreases on each characteristic to its value Ψ̂ at the saddle point [26].

5. The MTLL in a second order DLL with 1/f3 phase noise. The S-curve
S(e) for a DLL is given in Figure 2. The stable equilibrium point of the system, in the
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absence of relative motion between the transmitter and the receiver, is the point where
the S-curve vanishes with positive slope, and the two unstable equilibrium points (the
saddle points) are the points where it vanishes with negative slopes. In case there
is relative motion with constant acceleration T̈ (see (2.13)), the equilibrium points
of the dynamics (2.14) are the points where the S-curve intersects the line S = T ′′

(see Figure 2). For T̈ �= 0 there are one stable equilibrium point and one unstable
equilibrium point, given by (2.15) and (2.16), respectively.

The minimum value Ψ̂ determines the leading order term (or small ρ exponential
growth rate) of the MTLL (see (3.8)), so we have to determine it by finding the
characteristic that hits the saddle point and the limiting value of Ψ there. To this
end, we start the characteristic on the hyperplane e = 1/2, where Ψ is given explicitly
by (3.13). Since the characteristic equations are linear in the half-space to the right
of the hyperplane e = 1/2, all characteristics diverge exponentially fast, except one
that corresponds to the only negative eigenvalue of the system matrix (see below).
Thus, the starting point of the desired characteristic is the column corresponding to
this eigenvalue in the matrix that reduces the system matrix into its Jordan canonical
form.

Specifically, we observe in (4.5) and (4.7) that the quasi-potential Ψ is dependent
only on the variables {p, q,α, r}. We define the state vector

v = {p, q,α, r}T .(5.1)

In the strip |e| < 1/2 the S-curve is linear so that the system (4.5) is linear, and with
the notation (5.1) it can be written as

v̇ = Mv.(5.2)

Since we are looking for the minimum Ψ̂ = Ψ(xb), and xb is the saddle point of the
system (2.14), we need only find the starting point of the characteristic that hits the
saddle point (2.16). In the linear strip |e| < 1/2 we can use (3.13) and start shooting
characteristic trajectories (4.4) from the hyperplane e = 1/2. For clarity, we explain
the method for finding Ψ̂ by considering the simplest case of a noise approximation
of order N = 1, loop parameters P = 1/2, K = a = 1, and without thermal noise
(Nth = 0). For these parameters the value of Ψ(x) in the linear domain |e| < 1/2 is
given by

Ψ(x) =
1

64

⎧⎨
⎩−424φne + 1408y2β + 832y2e− 704y2φn + 900β

T̈

Tc

+ 388e
T̈

Tc
+ 784eβ − 436φn

T̈

Tc
− 648φnβ + 992y2

T̈

Tc
+ 646β2 + 792y2

2

+ 170φ2
n + 396e2 + 353

(
T̈

Tc

)2
⎫⎬
⎭ .(5.3)

The coordinate of the point on the hyperplane e = 1/2, where the shooting begins,
is denoted by v0. It is chosen as the coordinate (β0,y0, φn,0) of a point on the unique
stable characteristic trajectory of (5.2). We write (5.2) in the linear domain e ≥ 1/2
as the linear system

u̇ = Λu,(5.4)
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where Λ is diagonal with the eigenvalues of M on its diagonal. We can write

v = Pu, Λ = P−1MP .(5.5)

The columns of P are the eigenvectors of the matrix M with respect to the eigenvalues
on the diagonal Λ. The matrix M has only one negative eigenvalue,

λ1 = −1

2
−

√
5

2
,(5.6)

and thus only the eigenvector corresponding to that eigenvalue leads to a stable so-
lution of (5.4). Assuming that the negative eigenvalue is the first element in Λ, we
need only take the first element in u, replacing the others by zeros.

The initial values are defined by

p0 =
∂Ψ(1/2, β0,y0, φn,0)

∂e
, q0 =

∂Ψ(1/2, β0,y0, φn,0)

∂z
,(5.7)

r0 =
∂Ψ(1/2, β0,y0, φn,0)

∂r
, αi,0 =

∂Ψ(1/2, β0,y0, φn,0)

∂y2i
for all 1 ≤ i ≤ N.

Using (5.3), (5.6), and (5.7), we get

p0 = −
(

11

8
+

7

8

√
5

)
u1,0, q0 =

(
3

2
+

√
5

4

)
u1,0,

r0 = −
(

7

8
+

√
5

8

)
u1,0, α1,0 = u1,0.(5.8)

It follows from (5.4) that u1 = u1,0 exp
{
λ1t̃

}
. Now, we can solve for the initial

conditions (β0, y0, φn,0) from equations (5.3), (5.7), and (5.8). Having found the

initial conditions, we can proceed to integrate (4.7) to find the minimal value Ψ̂ on
∂D,

Ψ̂ = Ψ(1/2, β0,y0, φn,0) + 4

∫ ∞

0

{
N∑
l=1

(N − l + 1)αl(t) + (N + 1)r(t)

}2

dt,(5.9)

where αl(t) and r(t) are calculated on the characteristic that starts at (1/2, β0, y0,
φn,0). For the case of zero acceleration between transmitter and receiver, i.e., T̈ /Tc =

0, we get Ψ̂ = 0.9120. The analogous computation for Nth order approximations
can be done by solving the Lyapunov equation numerically or symbolically (e.g., with
Maple or Mathematica), finding the negative eigenvalue, and determining the matrix
P . This was done with the results in Table 1. As can be seen in Table 1, the minimum
value Ψ̂ changes very slightly for N ≥ 5. Thus, approximation of order N = 5 for the
noise is sufficient for the calculation of the MTLL of 100–1000 seconds. This range
of values of the MTLL is chosen because for MTLL less than 100 seconds the leading
order approximation is insufficient. The problem of optimizing the MTLL is most
critical at low CNR, where the majority of losses of lock occur and the MTLL is still
below 1000 seconds. The MTLL increases exponentially with the CNR, so higher
accuracy of Ψ̂ is needed. Long MTLLs are of less interest in the optimization process.
The range of validity of the leading order approximation is for values of the CNR
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Table 1

Ψ̂ and MTLL for different N .

N Ψ̂ MTLL MTLL MTLL
cnr = 1, ρ = 0.25 cnr = 1.5, ρ = 0.1667 cnr = 2.5, ρ = 0.1

1 0.91204 77 476 18280
2 0.90916 76 468 17761
3 0.91027 76 471 17959
4 0.91077 76 472 18049
5 0.91094 76 473 18080
6 0.91102 76 473 18094
8 0.91108 77 473 18105
10 0.91110 77 473 18109
20 0.91111 77 473 18111
30 0.91111 77 473 18111

that result in ρ 	 Ψ̂. We have disregarded the preexponential factor in (3.8) because
the main contribution to the MTLL comes from the exponential term. Furthermore,
since we assume a constant prefactor, the results of the simulations might be slightly
displaced from the theoretical line. The prefactor can be resolved by simulations for
small MTLL and then applied to large MTLL, where simulations are impractical. Our
derivation results in a single quantity in an asymptotic expansion. This result is the
exponential growth rate of MTLL as the dimensionless noise strength ρ tends to zero.

This can be understood as follows. The loop’s noise equivalent bandwidth is
1/2Hz, which is much smaller than the region of validity of the truncated continued
fraction approximation to 1/f . Furthermore, for MTLL of the order of 100–1000
seconds, the corresponding frequency range is 10−3Hz ≤ f ≤ 10−2Hz. Since the
region of validity of the approximation for N = 5 is in the range 10−3Hz ≤ f ≤ 10Hz
(Figure 3), it is understandable that using the approximation for the 1/f noise with
N = 5 results in an accurate value of Ψ̂, which in turn accurately approximates the
exponential growth rate of the MTLL.

In general one would expect that as more phase noise enters the DLL, the MTLL
will become smaller. In Figure 3 we see that as the approximation order becomes
larger, more energy enters at very low and very high frequencies. However, we see in
Table 1 that Ψ̂ actually increases monotonically for N ≥ 2. The answer to this paradox
can be solved by taking a closer look at the transfer function of our 1/f approximation.
Before flattening out below a certain low frequency, the transfer function displays a
“knee” that is above the 1/f curve. Further, for a specific MTLL only frequencies
larger than 1/MTLL need be considered and only frequencies smaller than the loop’s
bandwidth should be accounted for. In this frequency band the noise entering the
loop actually decreases as the phase noise approximation order is increased, since the
“knee” moves to lower frequencies that are irrelevant to the problem at hand. For
example, let us consider an MTLL of 100 seconds. The frequency band in question
is 0.01 ≤ f ≤ 0.5. In Table 2 the energy in the 0.01 ≤ f ≤ 0.5 frequency band is
given for different approximation orders N . Since for N < 6 the “knee” is above
f = 0.01Hz, the decrease in energy for increasing N explains the increasing Ψ̂. From
Table 1 we learn that for N ≥ 6 the changes in Ψ̂ result in an insignificant rise
in MTLL. In fact, the difference between MTLL for CNR that gives MTLL of 100
seconds for approximation order N = 6 and MTLL given for approximation order
N = 30 with the same CNR is less than 0.1%.

Next we present Monte-Carlo results of the MTLL for approximation of order N =
5 compared to the analytic MTLL calculated above for that order of approximation
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Table 2

Energy in 0.01Hz ≤ f ≤ 0.5Hz frequency band for approximation orders N .

N Energy
1 4.7995
2 4.3968
3 4.1909
4 4.0139
5 3.9280
6 3.9050
7 3.9048
8 3.9086
9 3.9112
10 3.9121

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2
10

1

10
2

10
3

10
4

cnr [Hz]

M
T

LL
 [s

]

Fig. 4. The MTLL of a second order DLL under the influence of 1/f3 noise approximation of
order N = 5. The loop parameters were taken as P = 1/2, a = K = 1. The solid line is the derived
analytic leading order of the MTLL, and the asterisks denote the Monte-Carlo results (each asterisk
represents the mean result of 50 trials).

(see Figure 4). Furthermore, Monte-Carlo results of the MTLL under the influence
of exact 1/f discrete noise generated according to [20] are presented along with the
results of the MTLL under the influence of 1/f noise approximation with N = 20 in
Figure 5.

Figures 4 and 5 show that the analytic calculation of the leading order term of
the MTLL results in a model that fits well the Monte-Carlo results. Furthermore, the
similarity of the analytic calculation of the leading order term of the MTLL to those
calculated via Monte-Carlo trials under the influence of exact discrete 1/f proves that
the truncation of our model with the appropriate N provides very accurate results
for the calculation of the MTLL for the second order DLL. The dependence of the
loop’s parameters on the power P can be eliminated by a proper AGC (automatic
gain control) loop.

6. Discussion and conclusions. First, we apply the results to the optimization
of the loop’s parameters by finding the values of a and K that yield the maximum Ψ̂.
In our case it turns out that the best result is obtained in the limit K → ∞. This can
be easily derived analytically and is quite predictable from (2.14). In a real system
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1 1.2 1.4 1.6 1.8 2 2.2
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LL
 [s

]

analytic
N=20
exact noise

Fig. 5. The MTLL of a second order DLL under the influence of 1/f3 noise approximation
of order N = 20 (denoted by asterisks—mean of 50 trials each) along with the MTLL under the
influence of exact discrete noise (denoted by pluses—mean of 50 trials each). The loop parameters
were taken as P = 1/2, a = K = 1. The solid line is the derived analytic leading order of the MTLL.
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Fig. 6. Optimizing for loop filter parameter K for a = 100.

with additive channel thermal noise, increasing K will increase the thermal noise
entering the loop, thus limiting the profitability of increasing K. We also analyzed
the case with additive thermal noise by choosing Nth =

Nph

10 , P = 1
2 , and T̈ = 0.5. It

is clear from (2.14) that for the system to remain stable the condition aK ≥ T̈√
2PTc

has to be satisfied, which simplifies in our case to aK ≥ 1
2 . It turns out that for every

a there is a Kopt(a) that maximizes Ψ̂. We found that Ψ̂ increases monotonically as
a increases, but only to a very slight extent, e.g., beyond a = 100. In a real system
the loop filter coefficients cannot be chosen arbitrarily large, and thus a has to be
chosen as large as possible for any given realizable K. Finally, a graph showing Ψ̂ for
a = 100 is given in Figure 6.

In summary, we give here the first analytic approach to the determination of the
effects of 1/f3 noise on the leading order term for the MTLL of a second order DLL.
The analytic derivation of the leading term in a small noise expansion of the MTLL
makes it possible to find the loop parameters that maximize the leading order term
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of the MTLL. The concept outlined in this paper can be further applied to other
tracking loops, such as the commonly used PLL. It sets the foundation for a more
complete analysis, to be explored in a future investigation of a comprehensive model
that includes additional elements of phase noise (1/f2, 1/f , and flat segment).
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BOLTZMANN EQUATION: THEORY AND APPLICATIONS∗

S. C. BRUGGER† , A. SCHENK† , AND W. FICHTNER†

Abstract. In this paper useful physical objects called moments of the inverse scattering operator
(MISO) of the Boltzmann equation (BE) are studied. The existence and uniqueness of the MISO is
proven and a simple, generally valid, iterative scheme to actually compute those objects is given. The
applications of the MISO extend from the computation of the solution for the space-homogeneous BE
for small electric and magnetic fields to the exact computation of any transport parameter. This can
be done for all moments of the space-inhomogeneous BE and for arbitrary electric and magnetic field
intensities. The concept of MISO offers an elegant way to avoid the relaxation time approximation
(RTA) every time it comes into play, not only theoretically but also in practical computations.
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1. Introduction. In contemporary semiconductor device simulation two ap-
proaches are common: For industrial application the so-called transport models (TMs)
are widely used to compute terminal currents and to perform small signal and noise
analysis. On the research side, one prefers, when possible, to directly solve the space-
inhomogeneous Boltzmann equation (BE) either using Monte Carlo (MC) methods or
directly. The two methods often lead to different results. When trying to understand
the origin of these discrepancies, one is immediately confronted with the relaxation
time approximation (RTA). The RTA has been used to derive the TMs from the BE
as a standard method mainly due to the lack of alternative ways to treat the problem.
In the case of device simulation, it is impossible to validate the correctness of the RTA
because there is no general method for directly comparing it with exact solutions.

The aim of this paper is to develop a method that avoids the RTA. It will allow,
among others, the exact computation of transport parameters and noise sources for
any moment of the BE using the MC method. The key feature in this formalism is the
derivation and computation of moments of the inverse scattering operator (MISO).
Although the formalism was primarily developed to be applied to semiconductors, it
can also be used to analyze any open system described by a BE (linear or not).

The paper is organized in four sections. First, we recall the approximations in
deriving a TM and point out how the knowledge of the MISO enables us to locally
compare term by term the TM with the outcome of an MC simulation, i.e., with the
solution of the BE. In section 3, we will outline the sufficient mathematical conditions
under which the MISO exist, and we will present a natural way to compute them. In
section 4, five useful applications are presented. First, the MISO are used to compute
the solution of the space-homogeneous BE for small electric and magnetic fields.
Then, transport parameters, Hall factors, and relaxation times (RTs) are computed
in a very general way. At the end of the section, an exact expression is derived for
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the correlation functions of the Langevin noise sources for arbitrary moments of the
space-homogeneous nondegenerate BE. Finally, section 5 gives conclusions and a brief
outlook on future work.

2. Direct comparison of TMs with the BE.

2.1. Derivation of TMs from the BE. The first step in the derivation of any
TM from the BE

∂tf + �v · ∇rf − q

�

�E · ∇kf = Sf(2.1)

is to introduce some kind of RT τ , which ideally should contain all information about
the scattering operator (SO) S:

∂tf + �v · ∇rf − q

�

�E · ∇kf =
f − n

neq
feq

τ(f, �r, t,�k, �E)
.(2.2)

The function τ may depend on moments of the distribution function f , the position
in real space �r, the momentum �k, the time t, and the electric field �E. Multiplying
both sides of (2.2) by τ results in

τ(f, �r, t,�k, �E)∂tf + τ(f, �r, t,�k, �E)�v · ∇rf

−τ(f, �r, t,�k, �E)
q

�

�E · ∇kf = f − n

neq
feq.

(2.3)

In (2.1)–(2.3), feq denotes the Boltzmann distribution function normalized to one

(
∫
Bz

f2
eq(

�k)d3k = 1) and n :=
∫
Bz

f(�k)d3k, neq :=
∫
Bz

feq(�k)d3k, with Bz the Bril-
louin zone. The symbol neq is used here for convenience, although the actual equilib-
rium density differs from neq by a constant due to the normalization condition.

To be able to compare (2.2) and (2.3) with the exact BE (2.1), one has to invert
the SO (2.4):

(2.4)

∫
S−1(�k,�k′)∂tf(�k′)d3k′ +

∫
S−1(�k,�k′)�v(�k′) · ∇rf(�k′)d3k′

−
∫

S−1(�k,�k′)
q

�

�E · ∇k′f(�k′)d3k′ = f(�k) − n

neq
feq(�k).

Note that S−1 ◦S �= 1l! This crucial statement will be explained in detail in section 3.
RTs are introduced because the original BE (2.1) causes a major problem when

one wants to derive a transport equation: The distribution function f does not appear
isolated in the equation. The only term in which f is isolated is ∂tf , which is the
partial derivative of f by the time, which is not an equation for f . By introducing
an RT τ , f appears isolated on the rhs of the equation. This is the main reason why
RTs are introduced. To do the same in an exact way, the simplest possibility is to
reverse the SO. This is the only possibility for expressing in an exact mathematical
way what the RTA tries to achieve on a heuristic basis. In (2.2), the term − n

neq
feq was

introduced phenomenologically to express the fact that at thermodynamic equilibrium
the collision term disappears. The mathematical reason is, however, that the SO S has
an eigenvector with eigenvalue 0, which is the equilibrium distribution feq in the case
of Boltzmann statistics. Therefore, (2.4) is the rigorous mathematical formulation of
what was done approximately and heuristically by introducing an RT.
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The second step is to build a moment of interest of (2.3) by multiplying (2.3) by

a function g(�k) and integrating over the momentum space,

(2.5)

∫
Bz

[
g(�k)τ(f(�k, �r))∂tf(�k, �r)

]
d3k +

∫
Bz

[
g(�k)τ(f(�k, �r))�v(�k) · ∇rf(�k, �r)

]
d3k

−
∫
Bz

[
g(�k)τ(f(�k, �r))

q

�

�E · ∇kf(�k, �r)
]
d3k =

∫
Bz

g(�k)

[
f(�k, �r) − n

neq
feq(�k, �r)

]
d3k,

where g(�k) is a function in which we are interested. g(�k) could be, e.g., a power of
the velocity.

Building moments in a similar fashion with (2.4) leads to

(2.6)

∫
Bz

∫
Bz

[
g(�k)S−1(�k,�k1, �r)∂tf(�k1, �r)

]
d3k1d

3k

+

∫
Bz

∫
Bz

[
g(�k)S−1(�k,�k1, �r)�v(�k1) · ∇rf(�k1, �r)

]
d3k1d

3k

−
∫
Bz

∫
Bz

[
g(�k)S−1(�k,�k1, �r)

q

�

�E · ∇k1f(�k1, �r)
]
d3k1d

3k

:=

∫
Bz

S−1
g (�k1, �r)∂tf(�k1, �r)d

3k1 +

∫
Bz

S−1
g (�k1, �r)�v(�k1) · ∇rf(�k1, �r)d

3k1

−
∫
Bz

S−1
g (�k1, �r)

q

�

�E · ∇k1f(�k1, �r)d
3k1 =

∫
Bz

g(�k)

[
f(�k, �r) − n

neq
feq(�k, �r)

]
d3k,

where

S−1
g (�k1, �r) =

∫
Bz

g(�k)S−1(�k,�k1, �r)d
3k(2.7)

is a moment of the inverse scattering operator (ISO) in (2.5).
The third step is to perform a partial integration of the k-gradient term in (2.5)

and to neglect the boundary term

∫
Bz

g(�k)τ(f(�k, �r))
q

�

�E · ∇kf(�k, �r)d3k � − q

�

�E ·
∫
Bz

∇k(g(�k)τ(f(�k, �r)))f(�k, �r)d3k.

(2.8)

Because the function S−1
g (�k1, �r) can be discontinuous in some points (for some silicon

MC models, this happens on the boundary surfaces between two valleys), we cannot
exactly transform the k-gradient term of (2.6) as in (2.8). Instead we have to decom-

pose the domain Bz into subdomains, where the function S−1
g (�k1, �r) is continuous,

and keep all the boundary terms, which in general will not disappear, as follows:

(2.9)
∑
i

∫
Bzi

S−1
g (�k, �r)

q

�

�E · ∇kf(�k, �r)d3k

= − q

�

�E ·
∑
i

∫
Bzi

∇k(S−1
g (�k, �r))f(�k, �r)d3k +

q

�

�E ·
∑
i

∮
∂Bzi

S−1
g (�k, �r)f(�k, �r)�nda,

where
⋃

i Bzi = Bz.

The boundary term
∑

i

∮
∂Bzi

S−1
g (�k, �r)f(�k, �r)�nda does not vanish. To our knowl-

edge it has never been investigated numerically whether this term is negligible for all



1212 S. C. BRUGGER, A. SCHENK, AND W. FICHTNER

moments and for all field strengths of practical interest, e.g., for bulk silicon. We will
therefore keep this term in our numerical analysis.

To derive common TMs, only a small number of functions g is relevant. For the
drift-diffusion (DD) model, only the moment corresponding to g1 = �v is needed. The
hydrodynamic model is obtained by considering the moments g1 = �v, g2 = ε (where

ε(�k) is the energy) or ||v||2 and g3 = τg2�v. Finally, for the so-called six moments
method (see [6]), the additional moments g4 = ε2 and g5 = τg4�v are considered. These
moments equations, together with the Poisson equation and the current continuity
equation (the contraction of the BE with the constant function 1), constitute a TM
that should approximate the solution to the BE coupled with the Poisson equation.
These equations are usually parametrized using the electrostatic potential, the particle
density(ies), and the mean value of g2 and g4. To close this system, further steps are
needed: The g3 (resp., g5) moment is inserted into the ∇r term of the g2 (resp., g4)
moment and approximations are done, such as the use of the Einstein relation, the
replacement of tensorial transport coefficients by scalars, and the use of a closure
relation for the last moment (see, e.g., [13], [3], [1], [12]). Finally, all expressions still
unknown are called transport coefficients and computed using a model (analytical
and/or bulk MC simulation) and parametrized by the functions listed above.

2.2. Transport parameters. In order to illustrate potential applications of the
outlined concept, we directly compare the moments of well-known macroscopic TMs,
such as the DD model and the energy-balance (EB) model (see, e.g., [12, Chap. 1.1.3]),
with the corresponding terms from the BE containing the exact ISO. The equation
for the current in the DD model reads

τp∂t(〈�v〉) − μn�E −D∇rn = 〈�v〉=: −
�J

q
,(2.10)

where τp is the momentum RT, μ the mobility tensor, D the diffusivity tensor, n the
density, and 〈�v〉 :=

∫
Bz

�vfd3k (〈�v〉 /n is the mean velocity).
If we compare term by term the lhs of (2.10) with the lhs of (2.6), we find the

following conditions for the DD model to be exact:

τp∂t(〈vi〉)
!
=

∫
Bz

S−1
vi

(�k1, �r)∂tf(�k1, �r)d
3k1, i = 1, . . . , 3,(2.11)

(2.12)(
μn�E

)
i

!
=− q

�

�E ·
∫
Bz

∇k(S−1
vi

(�k, �r))f(�k, �r)d3k +
q

�

�E ·
∑
j

∮
∂Bzj

S−1
vi

(�k, �r)f(�k, �r)�nda,

i = 1, . . . , 3,

(−D∇rn)i
!
=

∫
Bz

S−1
vi

(�k1, �r)�v(�k1) · ∇rf(�k1, �r)d
3k1, i = 1, . . . , 3, 〈vi〉eq = 0.(2.13)

Note that (2.13) gives a natural definition of the mobility tensor

(2.14)

(μ)ij : = − q

n�

∫
Bz

∂kj (S
−1
vi

(�k, �r))f(�k, �r)d3k +
q

n�

∑
l

∮
∂Bzl

S−1
vi

(�k, �r)f(�k, �r)(�nda)j ,

i = 1, . . . , 3.
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The corresponding equations for the EB model are

τp∂t(〈�v〉) − μn�E − μn∇r

(
kB
q

〈T 〉
n

)
−D′∇rn = 〈�v〉 ,(2.15)

3

2
kB

⎛
⎜⎜⎜⎝〈T 〉 − n

〈T 〉 eq
neq︸ ︷︷ ︸

:=Teq

⎞
⎟⎟⎟⎠ = −τEq 〈�v〉 · �E − τE∇r

[
−κn∇r

(
〈T 〉
n

)
+

5kB
2

〈T 〉 〈�v〉
n

]
,

(2.16)

where τE is the energy RT, κn the heat conduction coefficient, 〈T 〉eq /neq the tempera-

ture in thermodynamic equilibrium, D′ := kB

q
〈T 〉
n μ, and 〈T 〉 := m

3kB
·Tr(

∫
Bz

(�v ⊗ �v)fd3k).

If we compare (2.15) and (2.16) with (2.6), we find the following conditions for the
EB model to be exact:

−μ

(
∇r

(
kB 〈T 〉

q

))
i

!
=

∫
Bz

S−1
vi

(�k1, �r)�v(�k1) · ∇rf(�k1, �r)d
3k1, i = 1, . . . , 3,(2.17)

(2.18) τEq 〈�v〉 · �E
!
=−1

2
m

3∑
i=1

q

�

�E ·
∫
Bz

∇k(S−1
vivi

(�k, �r))f(�k, �r)d3k

+
1

2
m

3∑
i=1

q

�

�E ·
∑
j

∮
∂Bzj

S−1
vivi

(�k, �r)f(�k, �r)�nda,

−τE∇r

[
−κn∇r

(
〈T 〉
n

)
+

5kB
2

〈T 〉 〈�v〉
n

]
!
=

1

2
m

3∑
i=1

∫
Bz

S−1
vivi

(�k1, �r)�v(�k1) · ∇rf(�k1, �r)d
3k1.

(2.19)

Although the terms in the rhs of (2.11)–(2.13) and (2.17)–(2.19) look rather cum-

bersome, this is not the case. As soon as we know S−1
g (�k, �r) for all required g, we

can easily compute such terms for a given device with an MC simulation and then
locally compare with the terms of the TM. It should be noted that by construction the
following holds: If the transport coefficients computed by the MC method are rein-
serted into the TMs as a function of position only (not as a function of the density
or the mean energy), then the TMs will exactly reproduce the MC density and the
MC current density in the case of the DD and EB models, as well as the MC energy
current density in the case of the EB model. Another way to verify this statement is
to reinsert electric field, density, and mean energy from the MC solution of the BE
into the TMs that contain the exact transport coefficients, and to observe that they
indeed solve these equations. Therefore, the restrictions imposed on these TMs to
be valid (restrictions arising from the models for the transport coefficients) become
obsolete as soon as the exact expressions (2.11)–(2.13) and (2.17)–(2.19) are used.

Based on this motivation for the computation of MISO, we show how to actually
compute them in a general way.
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3. Existence and computation of the MISO.

3.1. Derivation of an equation for the MISO. We start with the general
form of the BE,

(3.1) ∂tf(�r, t,�k, b) + �̇r · ∇rf(�r, t,�k, b) + �̇k · ∇kf(�r, t,�k, b)

=
∑
b0

∫
Vb0

f(�r, t,�k0, b0)w(�r, t)(�k0, b0|�k, b)d3k0−
∑
b0

∫
Vb0

f(�r, t,�k, b)w(�r, t)(�k, b|�k0, b0)d
3k0,

where �r is the position in space, �k the position in k-space, b a band-valley index, Vb

the k-space of band-valley b, and w(�r, t)(�k, b|�k0, b0) is the scattering rate from point

(�k, b) to (�k0, b0) (at time t and space position �r, respectively). Note that the Pauli
blocking factors (1 − f) are included in the scattering rates w. Since 0 < 1 − f ≤ 1,
they will never increase the magnitude of w. This will be of some importance below.
In the following we will work under the assumption that the Vb are compact pairwise
disjoint subsets of R3, and w(�r, t)(�k, b|�k0, b0) : Vb × Vb0 → R is a continuous function

of �k and �k0. We define K :=
⋃N

i=0 Vbi .
The scattering operator S is defined as

S(�r, t)(�k, b|�k0, b0) := w(�r, t)(�k0, b0|�k, b) − δ3(�k − �k0)δb,b0
Wtot(�r, t)(�k, b),(3.2)

with Wtot(�r, t)(�k, b) :=
∑

b′

∫
Vb′

w(�r, t)(�k, b|�k′, b′) d3k′ > 0.

By definition, w(�r, t)(�k0, b0|�k, b) is a bound continuous compact operator on the
Banach space C0(K) with ||·||∞ (see, e.g., [14, p. 70]).

In the remainder, the argument (�r, t) will be omitted, and the Dirac notation
sometimes will be used for better readability (e.g., |f〉 := f). We will also sometimes
use the “◦” notation

(A ◦B)(�k, b|�k1, b1) :=
∑
b0

∫
Vb0

A(�k, b|�k0, b0)B(�k0, b0|�k1, b1)d
3k0(3.3)

to avoid confusion. Using the Dirac notation, the lhs of (3.1) can be written as

(3.4) S|f〉 :=
∑
b0

∫
Vb0

S(�k, b|�k0, b0)f(�k0, b0)d
3k0

=
∑
b0

∫
Vb0

(
f(�k0, b0)w(�k0, b0|�k, b) − f(�k, b)w(�k, b|�k0, b0)

)
d3k0.

Now we want to define an inverse operator H for the SO, i.e., an ISO. First of
all, one cannot define the ISO naively as H ◦S|f〉 = |f〉 for all f ∈ C0(K), because S
has an eigenvector with eigenvalue 0 (indeed only one, as we will show later), namely,
the Boltzmann function feq.

1 Therefore, we have to invert the SO on the space Ker⊥

perpendicular to its kernel Ker := {λ|feq〉 | λ ∈ R}. To do so, we define explicitly

Ker⊥ := {Pfeq |g〉 | g ∈ C0(K)},(3.5)

1Also in the case of degenerate systems and/or systems with two-particle scattering (e.g., e-e
collisions) the eigenvector with eigenvalue 0 exists and is unique, but it will depend on the solution
f of the BE, because the scattering operator S depends on f . This will not impact the validity of
our approach.
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where

Pfeq := 1l − |feq〉〈feq|,(3.6)

feq is chosen such that

〈feq|feq〉 = 1,(3.7)

and the scalar product is given by

〈f |g〉 :=
∑
b

∫
Vb

f(�k, b)g(�k, b)d3k.(3.8)

A trivial but important property of S is

S|g〉 = S ◦ Pfeq |g〉.(3.9)

Now, the ISO H, if it exists on Ker⊥, can be unequivocally defined on C0(K) based
on the properties it must fulfill:

1. H ◦ S|g〉 !
= |g〉 for all g ∈ Ker⊥,

2. H|f1〉 = 0,

with f1(�k, b) := 1√∑
b′ |Vb′ |

= const, where |Vb′ | is the volume of Vb′ . Using (3.9),

condition 1 can be rewritten as

H ◦ S|g〉 = H ◦ S ◦ Pfeq |g〉
!
=Pfeq |g〉 ∀g ∈ C0(K).(3.10)

The appropriateness of condition 2 will now be explained in detail. First, note that
ST |f1〉 = 0 (〈f1|S = 0) by definition of Wtot. Without condition 2 we could define an
infinite number of ISOs, because if H satisfies condition 1, then H + |v〉〈f1| fulfills the
same condition for any |v〉. Let H∗ be an ISO fulfilling condition 1, and |h∗〉 := H∗|f1〉.
We can always rewrite H∗ as H∗ = H⊥ + |h∗〉〈f1|, where H⊥ := H∗−|h∗〉〈f1|. (Note
here that because H⊥ fulfills conditions 1 and 2, it is unambiguously defined and,
therefore, independent of H∗.) By multiplying (3.1) by 〈f1| we obtain ∂tn+∇r

〈
�̇r
〉

= 0,
which is nothing but the current continuity equation. (In the case of semiconductors,

the boundary term
∮
∂Vb0

f�̇k ·�nda always disappears due to the inversion symmetry of

the Vb0 .) Thus, by multiplying (3.1) by H∗ and using (3.10), we obtain

(3.11) H∗∂t|f〉 + H∗�̇r · ∇r|f〉 + H∗�̇k · ∇k|f〉 = |f〉 − 〈f |feq〉 |feq〉

= H⊥∂t|f〉 + H⊥�̇r · ∇r|f〉 + H⊥�̇k · ∇k|f〉.

The last equation shows that H⊥ already contains the full physical information, and
that it is reasonable to define H := H⊥, i.e., H|f1〉 = 0.

We can now write an equation for the ISO:

H ◦ S|g〉 !
= |g〉 − |feq〉 〈feq|g〉 ∀g,(3.12)

and finally write the operator equations for H:

H ◦ S !
= δ3(�k − �k0)δb,b0

− feq(�k, b)feq(�k0, b0) = 1l − |feq〉〈feq|,(3.13)
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H|f1〉
!
= 0.(3.14)

Next we have to solve for (3.13), (3.14). From (3.2) and (3.13) we obtain

(3.15)

H ◦ S =
∑
b2

∫
Vb2

H(�k, b|�k2, b2)w(�k0, b0|�k2, b2)d
3k2 −Wtot(�k0, b0)H(�k, b|�k0, b0)

!
= δ3(�k − �k0)δb,b0

− feq(�k, b)feq(�k0, b0).

By rearranging the terms, this equation can be written as

(3.16) H(�k, b|�k0, b0)

=
∑
b2

∫
Vb2

H(�k, b|�k2, b2)
w(�k0, b0|�k2, b2)

Wtot(�k0, b0)
d3k2−

δ3(�k − �k0)δb,b0

Wtot(�k0, b0)
+feq(�k, b)

feq(�k0, b0)

Wtot(�k0, b0)
.

Now remember that we are interested only in MISO,

Hg(�k0, b0) :=
∑
b

∫
Vb

g(�k, b)H(�k, b|�k0, b0)d
3k = 〈g|H,(3.17)

for which we can rewrite (3.16) as

(3.18) |Hg〉 := Hg(�k0, b0)

=
∑
b2

∫
Vb2

Hg(�k2, b2)
w(�k0, b0|�k2, b2)

Wtot(�k0, b0)
d3k2 −

(
g(�k0, b0) − 〈g〉eq feq(�k0, b0)

Wtot(�k0, b0)

)
,

where 〈g〉eq := 〈feq|g〉.
If we define

A(�k0, b0|�k2, b2) :=
w(�k0, b0|�k2, b2)

Wtot(�k0, b0)
,

AT (�k0, b0|�k2, b2) :=
w(�k2, b2|�k0, b0)

Wtot(�k2, b2)
,

|lg〉 := lg(�k0, b0) :=

(
g(�k0, b0) − 〈g〉eq feq(�k0, b0)

Wtot(�k0, b0)

)
,(3.19)

we can express (3.18) as

|Hg〉 = A|Hg〉 − |lg〉(3.20)

and (3.14) as

〈Hg|f1〉 = 0.(3.21)

Note that

S(�k|�k0) = (AT (�k|�k0) − 1l)Wtot(�k0).(3.22)

So far we found that if, for a given g, there exists one and only one solution to
(3.20) and (3.21), then this solution will have the properties we are looking for.
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3.2. Computation of the solution. One could think that by iteratively in-
serting the lhs of (3.20) into the rhs, we could solve the problem, i.e.,

|Hg〉 = An|Hg〉 −
n−1∑
k=0

Ak|lg〉.(3.23)

However, the way to solve (3.20) is somewhat more involved.
Before we go to the solution we discuss an additional condition we have to impose

on A. The term A(k, b|k0, b0) is nothing but the probability for a particle to end in
(k0, b0) after one scattering event, having started in (k, b). Am(k, b|k0, b0) is then the
probability of going to (k0, b0) after m scattering events. In the following we will
work under the assumption that there exists an M ∈ N such that AM (k, b|k0, b0) >
0 for all (k, b), (k0, b0). It means that it is possible, starting from any (k, b), to reach
any (k0, b0) after M scattering events. Under this assumption, AM is a strong positive
compact operator.

Proposition 3.1. The first Krein–Rutman theorem [9] ensures the existence
and uniqueness of a stationary solution in thermodynamic equilibrium (∃!f ∈ C0(K) |
S|f〉 = 0).

Proof. We first prove r(AM ) = 1. By construction, ||A|| := supx∈C0(K)\{0}
||Ax||∞
||x||∞ � 1, and A|f1〉 = |f1〉. Therefore, r(A) � 1, and because by definition

r(A) � ||A||, we find M
√
r(AM ) = r(A) = ||A|| = 1. The first Krein–Rutman theorem

ensures that there is only one strict positive function u ∈ C0(K) such that AMu =
r(AM )u = u. Of course this function is nothing but f1. Now we are interested

in (AT )
M

. By construction, (AT )
M

is a strong positive compact operator. Using
again the Krein–Rutman theorem we find a unique v with 0 < v ∈ C0(K) such that

(AT )
M
v = r((AT )

M
)v. Because u > 0 and v > 0, we find 0 < 〈u|v〉 = 〈AMu|v〉 =

〈u|(AT )
M
v〉 = r((AT )

M
)〈u|v〉. Thus, r((AT )

M
) = 1 and (AT )

M
v = v. Then, because

(AT )
M+1

v = AT v ⇐⇒ AT v = c ∗ v with c real and cM = 1, AT v = v. Using (3.22)
gives Sfeq = 0 with feq := v

Wtot
. The function feq is the only solution.

To solve (3.20), we construct a sub-Banach space Q ⊂ C0(K), where the solution
is unique. Using two important properties of A,

1. A|f1〉 = |f1〉 by definition of Wtot,
2. AT |Wtotfeq〉 = |Wtotfeq〉 because S|feq〉 = 0,

we can define

PL := 1l − |f1〉〈feqWtot|
〈f1|feqWtot〉

,(3.24)

which has the following important properties:

P 2
L = PL,(3.25)

PL ◦A = A ◦ PL = PL ◦A ◦ PL.(3.26)

Using PL, we define the space Q := {PLx|x ∈ C0(K)}. Because Wtotfeq and f1 are
continuous functions, Q is a Banach space.

Proposition 3.2. A is a linear compact operator on Q.
Proof. Let x ∈ Q. By definition of Q and property (3.25), PLx = x. Therefore,

using property (3.26), Ax = A ◦ PLx = PL ◦Ax ∈ Q.
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Note that |lg〉 ∈ Q because

〈feqWtot|lg〉 = 0.(3.27)

By multiplying (3.20) by PL we reformulate the problem on Q:

PL|Hg〉 = PL ◦A ◦ PL|Hg〉 − |lg〉.(3.28)

Defining |H⊥
g 〉 := PL|Hg〉 we obtain

(1l −A)|H⊥
g 〉 = −|lg〉.(3.29)

Proposition 3.3. (1l − AM ) is invertible on Q, and, therefore, (1l − A) is also
invertible on Q.

Proof. We first prove ||AM ||∞ < 1 on Q. Let x be in Q. x is a continuous
function and 〈feqWtot|x〉 = 0 because 〈feqWtot|PL = 0. By definition, feqWtot is a
strict positive function, and therefore x must have a positive part and a negative part.
We define x+(k) := x(k) if x(k) � 0, x+(k) = 0 else, and x−(k) := x(k) if x(k) < 0,
x−(k) = 0 else. By definition, x(k) = x+(k) + x−(k) for all k ∈ K. Without loss
of generality, ||x||∞ = ||x+||∞. Then, remembering that AM is strictly positive, we
have |AMx| = | |AMx+| − |AMx−| | < |AMx+| � ||x+||∞. Therefore, ||AM ||∞ < 1. It
means that (1l − AM ) has an inverse on Q that can be written as a Neumann series:

(1l−AM )−1 =
∑∞

i=0 A
Mi

. Rewriting (1l−AM ) as (1l−A)◦
∑M−1

j=0 Aj and multiplying

by (1l−AM )−1, we find 1l =
∑∞

i=0 A
Mi ◦ (1l−A) ◦

∑M−1
j=0 Aj = (1l−A) ◦

∑∞
i=0 A

Mi ◦∑M−1
j=0 Aj . Thus, clearly (1l −A)−1 =

∑∞
i=0 A

Mi ◦
∑M−1

j=0 Aj =
∑∞

i=0 A
i.

Multiplying (3.29) by (1l −A)−1 gives the solution we were looking for:

|H⊥
g 〉 = −

∞∑
i=0

Ai|lg〉.(3.30)

Thus, problem (3.20) has a unique solution on Q, but infinitely many of the form
Hλ

g := H⊥
g +λ|f1〉, λ ∈ R, on C0(K). In (3.21) we imposed the condition 〈Hg|f1〉 = 0

to obtain a unique solution. The only Hλ
g fulfilling this condition is H

λg
g with

λg := −〈f1|H⊥
g 〉,(3.31)

which is the unique solution we are looking for.
Equation (3.30) represents an iterative method for computing H⊥

g , i.e., for finding
an exact solution of (3.13), (3.14) for any g ∈ C0(K).

As 〈Hg| = 〈g|H exists for all g ∈ C0(K), H also exists and is unique. Thus,
(3.13) together with (3.14) also has a unique solution.

3.3. Connection between H and S−1. We show the connection between H
and S−1, as well as between Hg and S−1

g . If we let the operator H act on both sides
of (3.1), we find with (3.13)

H∂t|f〉 + H�̇r · ∇r|f〉 + H�̇k · ∇k|f〉 = |f〉 − 〈f |feq〉 |feq〉.(3.32)

We want to dispose of the term 〈f |feq〉 and replace it with a term containing the
density. By computing the 0th moment of (3.32), we obtain

(3.33) 〈H1|∂t|f〉 + 〈H1|�̇r · ∇r|f〉 + 〈H1|�̇k · ∇k|f〉 = n− 〈f |feq〉neq

⇔ 〈f |feq〉 =
n

neq
− 1

neq
〈H1|∂t|f〉 −

1

neq
〈H1|�̇r · ∇r|f〉 −

1

neq
〈H1|�̇k · ∇k|f〉,
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where H1(�k0, b0) :=
∑

b

∫
Vb

H(�k, b|�k0, b0)d
3k and neq :=

∑
b

∫
Vb

feq(�k, b)d
3k. Inserting

(3.33) into (3.32) results in

(3.34)(
H − |feq〉〈H1|

neq

)
∂t|f〉+

(
H − |feq〉〈H1|

neq

)
�̇r · ∇r|f〉+

(
H − |feq〉〈H1|

neq

)
�̇k · ∇k|f〉

= |f〉 − |feq〉
n

neq
.

With the definition S−1(�k, b|�k0, b0) := H(�k, b|�k0, b0) − feq(�k, b)H1(�k0, b0)/neq we find
(2.4). Finally, one obtains for the g-moment

S−1
g (�k0, b0) := Hg(�k0, b0) −

〈g〉eq H1(�k0, b0)

neq
.(3.35)

Note that S−1
g (�k0, b0) fulfills by definition the equations

AS−1
g = S−1

g (�k, b) +

⎛
⎝g(�k, b) − 〈g〉eq

neq

Wtot(�k, b)

⎞
⎠ ⇔ |S−1

g 〉 = A|S−1
g 〉 − |hg〉,(3.36)

〈S−1
g |f1〉 = 0,(3.37)

where hg(�k, b) := (g(�k, b) − 〈g〉eq
neq

)/Wtot(�k, b) (compare with (3.20) and (3.21)).

The proof of the existence and of the uniqueness of S−1
g up to a constant is

herewith completed.
Putting (3.30) and (3.35) together leads to

∣∣S−1
g

〉
= − (1l − |f1〉〈f1|) ◦

∞∑
i=0

(PL ◦A ◦ PL)
i|hg〉 = − (1l − |f1〉〈f1|) ◦

∞∑
i=0

Ai|hg〉,

(3.38)

which is an iterative method for computing S−1
g for any given operator S and function

g.

3.4. The Dirac delta distribution. Before going to the applications we would
like to discuss the hypothesis on w(�k, b|�k′, b′). At the beginning of this section we

chose w(�k, b|�k′, b′) to be a continuous function of its arguments �k and �k′. In many

“physical” models, however, the function w(�k, b|�k′, b′) is replaced with a distribution

(usually a sum of Dirac’s delta “functions” of a continuous function of �k and �k′). In
the following we argue against delta distributions (functions) based on the concept of
regularization of the delta distribution. A function belonging to a family of continuous
functions δγ(ε) depending on a continuous parameter γ is called a regularization of
the delta function iff limγ→∞

∫ ∞
−∞ δγ(ε)f(ε)dε = f(0) for all continuous functions

of the energy f(ε), and
∫ ∞
−∞ δγ(ε)dε = 1 for all γ. Now, remember that the delta

distributions contained in the usual scattering rates arise from Fermi’s golden rule, i.e.,

from the regularization δ
(F )
γ (ε) := (sin(εγ)2)/(γπε2). Replacing in the scattering rate

w the delta distributions with δ
(F )
γ (ε) for any γ < ∞, the hypotheses on w are again

fulfilled. This fact can be interpreted physically, mathematically, and numerically.



1220 S. C. BRUGGER, A. SCHENK, AND W. FICHTNER

Physically, a simple argument can be found for why γ should be smaller than ∞:
From the Heisenberg uncertainty principle there is no exact energy conservation in
a finite amount of time. Thus, the delta distribution is just a useful approximation.
Mathematically, the situation is quite different if one considers the limit γ → ∞
before or after computing the MISO. Taking the limit before the computation of
the MISO leads to an operator A, which is not compact and, even worse, leads to
infinitely many solutions to the BE at thermodynamic equilibrium (see [11]). Taking
the limit after the computation of the MISO trivially leads to a single well-defined
solution for each g ∈ C0(K). Numerically, a computer using double arithmetic cannot

digitize the difference between a delta distribution and, e.g., the regularization δ
(a)
γ (ε)

such that supp(δ
(a)
γ ) = [−γ−1, γ−1] and γ > 10307. This means that when solving

the BE on a computer, one is actually working with a delta distribution. For these
reasons we conclude that a delta distribution contained in the scattering rates can
and should be replaced with a well-chosen regularization. Metaphorically speaking,
delta distributions give birth to operators which are a bit like monsters (due to their
noncompactness) and, although they are interesting objects from a mathematical
point of view (see, e.g., [2] and [11]), they create artificial problems from a physical
point of view.

4. Applications.

4.1. Introduction. The knowledge of the MISO and of the solution f of the
BE is necessary and sufficient to compute all transport parameters next to and far
from thermodynamic equilibrium. In this section, five important applications are
presented.

4.2. Low-field solution to the BE. The space-homogeneous, stationary BE

− q

�

�E · ∇k|f〉 − q(�v ∧ �B) · ∇k|f〉 = S|f〉(4.1)

can be solved for small electric and magnetic fields using the ansatz (see, e.g., [10])

f(�k) = feq(ε(�k)) + q
∂feq
∂ε

(ε(�k)) �E · �Λa(�k) + q
∂feq
∂ε

(ε(�k))(�v ∧ �B) · �Λb(�k).(4.2)

Inserting (4.2) into (4.1) and taking into account only the first order terms in the
magnetic and electric fields leads to

(�v ∧ �B) · �Λb = 0,(4.3)

because (�v ∧ �B) · �v = 0, and

〈(1 − feq)(�v)i| = −〈(�Λa)i)|S.(4.4)

It is important that (4.4) be derived only by using the principle of detailed balance.
The solution to (4.4) is trivially

(�Λa)i(�k) = −S−1
(1−feq)vi

(�k).(4.5)

Therefore, the solution to the low-field BE is

f(�k) = feq

(
1 +

q

kBT
(1 − feq) �E · S−1

(1−feq)�v

)
(4.6)
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in the case of Fermi–Dirac statistics, and

f(�k) = feq

(
1 +

q

kBT
�E · S−1

�v

)
(4.7)

in the case of Boltzmann statistics.
In the low-field case the solution of the BE is therefore determined only by the

equilibrium distribution feq and by S−1
(1−feq)�v (resp., S−1

�v ).

4.3. Transport parameters. As already mentioned in section 2, tensorial trans-
port parameters can be exactly computed using MISO. For example, the mobility is
given by

μij :=
q

n�

∫
K

S−1
vi

∂kjfd
3k(4.8)

and the diffusivity tensor by

Dij := − 1

n

∫
K

S−1
vi

vjfd
3k.(4.9)

Note that in the case of Boltzmann statistics, setting f = feq in (4.8) and (4.9) yields
the well-known Einstein relation for all components of the tensors

kBT

q
μij = Dij .(4.10)

These transport coefficients are exact and unique. Their definition does not re-
quire any restrictions except those already contained in the BE. If they are used in the
associated TM, its solution will reproduce the corresponding moment(s) of the BE. In
two and three dimensions this is, to the authors’ knowledge, the first generally valid
scheme ever described which can be used to compute tensorial transport coefficients
for all possible geometries and configurations.

A straightforward application is the customization of the model for the transport
coefficients for a given device. Using (4.8) and (4.9), transport coefficients can be
computed in a device for different bias points (using, e.g., the MC method), especially
in the parts of the device where the usual bulk models for the transport coefficients
are no longer valid. Then, a customized model for the device can be extracted by
choosing a proper local parametrization. In the case of the DD model the transport
coefficients can be parametrized using, e.g., the local electric field or the local current
density. This custom model will be, of course, valid only for the considered device,
but nevertheless, it will enable us to compute the direct current (DC), alternating
current (AC), and noise characteristics of the device in a much simpler way than by
directly working with the BE.

4.4. Hall factor. When a constant voltage is applied between A and B (see
Figure 4.1), and a constant magnetic field Bz′ is present in the z′ direction, then two
Hall factors can be defined,

RH :=
V21

d1Jx′Bz′
,(4.11)

R∗
H :=

V43

d2Jx′Bz′
,(4.12)
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Fig. 4.1. Piece of bulk material.

where V21 is the voltage between the points 1 and 2, V43 is the voltage between the
points 3 and 4, and Jx′ is the current density in x′-direction. Under the assumption
that the electric fields Ey′ in the y′-direction and Ez′ in the z′-direction are constant,
the definitions can be rewritten as

RH :=
Ey′

Jx′Bz′
,(4.13)

R∗
H :=

Ez′

Jx′Bz′
.(4.14)

To obtain expressions for RH and R∗
H , the current density equation in the space-

homogeneous case can be written as

�J

nq
= μ�E + α�B,(4.15)

where μ is defined in (4.8), and α is defined as

αij :=
1

n

∫
K

S−1
vi

(�v ∧∇kf)j d
3k.(4.16)

For better readability, only the case of Boltzmann statistics will be considered.
In the low-field case, f can be replaced with (4.7), leading to

αij =
1

n

q

kBT

∫
K

S−1
vi

(
�v ∧∇k(feq �ES−1

�v )
)
j
d3k,(4.17)

where the field-independent term disappeared because �v ∧ �v = 0. Taking advantage
of the linearity of (4.17) in �E, (4.15) can be rewritten as

�J

nq
= μ�E + Bxγx �E + Byγy �E + Bzγz �E,(4.18)

with

(γl)ij :=
1

n

q

kBT

∫
K

S−1
vi

(
�v ∧∇k(feqS

−1
vj

)
)
l
d3k.(4.19)

Therefore,

�E = (μ + Bxγx + Byγy + Bzγz)
−1

�J

nq
.(4.20)
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If R is the matrix that transforms the (x, y, z)-coordinate system into the (x′, y′, z′)-
coordinate system, then the Hall factors can be written as

RH =
(R (μ + Bxγx + Byγy + Bzγz)

−1
R−1)yx

qnBz′
,(4.21)

R∗
H =

(R (μ + Bxγx + Byγy + Bzγz)
−1

R−1)zx
qnBz′

.(4.22)

Equation (4.21) is more general than the formula given in [7] and reduces to the
formula given in [10] in special cases. In the case of unstrained bulk silicon, e.g.,
because of the symmetries of the crystal, (4.18) takes the form

�J

neqq
= μeq

�E − γeq �B ∧ �E,(4.23)

where

μeq :=
q

neq�

∫
K

S−1
vx

∂kx
feqd

3k,(4.24)

γeq :=
1

neq

q

kBT

∫
K

S−1
vx

(
�v ∧∇k(feqS

−1
vy

)
)
z
d3k.(4.25)

The Hall factors are then

RH =
1

qneq

γeq
μ2
eq + γ2

eqB
2
z′
,(4.26)

R∗
H = 0,(4.27)

where RH and R∗
H are independent of the transformation matrix R, i.e., of the crystal

orientation.

4.5. RTs. The RT for the g-moments of the space-homogeneous BE is usually
computed using the formula (see [8, p. 136])

τg = −〈g|f − feq〉
〈g|S|f〉 .(4.28)

At least in all semiconductors (strained and unstrained), (4.28) is fully inappropriate,
because in the low-field limit (4.28) reduces to the singular expression 0

0 in the case of
even functions g, such as, e.g., ε, ε2, v2, and v4. To solve this problem, the alternative
expression

τg = −
�n ·

∫
(∇kf)S−1

g d3k

�n ·
∫

(∇kf)gd3k
(4.29)

can be used, where �n is the vector pointing in the direction of the electric field.
Equation (4.29) never becomes singular in the limit of vanishingly small electric fields.

An extensive application of this theory to silicon can be found in [4].
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4.6. Langevin noise sources. We are interested in the BE with an additional
Langevin term, the so-called “Boltzmann–Langevin” equation (BLE)

∂tf(�r, t,�k, b) + �̇r · ∇rf(�r, t,�k, b) + �̇k · ∇kf(�r, t,�k, b) = Sf + δs(�r, t,�k, b).(4.30)

The BE describes the average state of an infinite number of systems with identical
initial conditions, whereas the BLE describes the evolution of one of these systems.
The Langevin source term is responsible for the deviation from the average state.

By multiplying (4.30) by S−1
g , we obtain

〈S−1
g |∂tf〉 + 〈S−1

g |�̇r · ∇rf〉 + 〈S−1
g |�̇k · ∇kf〉 = 〈g〉 − 〈g〉eq

n

neq
+ 〈S−1

g |δs〉.(4.31)

We want to derive an expression for the Fourier transform of correlation functions of
〈S−1

g |δs〉 around a stationary state for the homogeneous BLE with constant density
n; i.e., we want to compute

Cgg′(ω) :=

∫ ∞

−∞
limT→∞

1

2T

∫ T

−T

(〈S−1
g |δs〉)(t)(〈S−1

g′ |δs〉)(t + s)dte−iωsds for constantn.

(4.32)

We define the correlation function

C(ω)(�k, b|�k0, b0) :=

∫ ∞

−∞
limT→∞

1

2T

∫ T

−T

δs(t)(�k, b)δs(t + s)(�k0, b0)dte
−iωsds.

(4.33)

Note that

Cgg′(ω) =
∑
b,b0

∫
Vb

∫
Vb0

S−1
g (�k, b)S−1

g′ (�k0, b0)C(ω)(�k, b|�k0, b0)d
3kd3k0.(4.34)

We know from [5, eq. (1.55a), p. 21], that for a homogeneous nondegenerate system
with given density, we obtain

(4.35) C(ω)(�k, b|�k0, b0)

= δ3(�k − �k0)δb,b0

∑
b1

∫
Vb1

w(�k, b|�k1, b1)f(�k, b)d3k1

+ δ3(�k − �k0)δb,b0

∑
b1

∫
Vb1

w(�k1, b1|�k, b)f(�k1, b1)d
3k1

− w(�k0, b0|�k, b)f(�k0, b0) − w(�k, b|�k0, b0)f(�k, b),

where f(�k, b) is the stationary homogeneous solution to (3.1).2

By plugging (4.35) into (4.34) and rearranging terms, we obtain

Cgg′(ω) =
∑
b

∫
Vb

Kgg′(�k, b)f(�k, b)d3k = 〈Kgg′〉 ,(4.36)

2In the case of particle-particle scattering the corresponding additional contribution to the cor-
relation function has to be added (see [5, eq. (1.55b), p. 21]).
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where

Kgg′(�k, b) :=
∑
b0

∫
Vb0

w(�k, b|�k0, b0)

⎡
⎢⎢⎢⎣

S−1
g (�k, b)S−1

g′ (�k, b)

−S−1
g (�k, b)S−1

g′ (�k0, b0)

−S−1
g (�k0, b0)S

−1
g′ (�k, b)

+S−1
g (�k0, b0)S

−1
g′ (�k0, b0)

⎤
⎥⎥⎥⎦ d3k0.(4.37)

Note that (4.37) is invariant under the transformation S−1
g (�k, b) → S−1

g (�k, b) +
αgf1. Therefore, Cgg′(ω) is independent of condition (3.14), as it should be.

Thus, the function Cgg′(ω) is nothing but the expectancy of Kgg′ . Since we
can compute Kgg′ , we can also compute 〈Kgg′〉 in a very efficient way with an MC
simulation. We call Cgg′(ω) the Langevin noise source of the functions g, g′. It
describes white noise because it does not depend on ω.

5. Conclusion. The formalism developed in section 3 cannot only be used for
studying interesting systems like strained semiconductors, where the SO is fully de-
pendent on the band-valley index, but also for studying electron-hole systems. To do
so we have only to formally replace the distribution function fh of the holes in the
valence bands by fe := 1 − fh, i.e., the distribution function for the electrons in the
valence bands.

We have described a method based on exact S−1
g moments of the inverse scattering

operator (MISO) of the Boltzmann equation (BE). This formalism is therefore free
of any relaxation time approximation (RTA). We have shown under what sufficient
conditions the S−1

g exist, and we gave an explicit algorithm to compute them.
We have demonstrated that the knowledge of the S−1

g enables the exact com-
putation of transport parameters, correlation functions, and Langevin noise sources.
Moreover, the important assumptions underlying the transport models (TMs) and
method such as, e.g., the impedance field method (IFM) can be critically examined
by our approach.

In forthcoming papers, we will give a general discretization scheme to numerically
compute any MISO and extend the method to time-dependent scattering operators
(SOs).

Acknowledgments. The authors would like to thank Dr. F. Geelhaar, Dr. B.
Schmithüsen, Priv.-Doz. Dr. F. M. Bufler, and T. Bühler of the ETH Zurich for helpful
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ON WEAK PLANE COUETTE AND POISEUILLE FLOWS OF RIGID
ROD AND PLATELET ENSEMBLES∗
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Abstract. Films and molds of nematic polymer materials are notorious for heterogeneity in the
orientational distribution of the rigid rod or platelet macromolecules. Predictive tools for structure
length scales generated by shear-dominated processing are vitally important: both during processing
because of flow feedback phenomena such as shear thinning or thickening, and postprocessing since
gradients in the rod or platelet ensemble translate to nonuniform composite properties and to residual
stresses in the material. These issues motivate our analysis of two prototypes for planar shear
processing: drag-driven Couette and pressure-driven Poiseuille flows. Hydrodynamic theories for high
aspect ratio rod and platelet macromolecules in viscous solvents are well developed, which we apply
in this paper to model the coupling between short-range excluded volume interactions, anisotropic
distortional elasticity (unequal elasticity constants), wall anchoring conditions, and hydrodynamics.
The goal of this paper is to generalize scaling properties of steady flow molecular structures in slow
Couette flows with equal elasticity constants [M. G. Forest et al., J. Rheol., 48 (2004), pp. 175–192]
in several ways: to contrast isotropic and anisotropic elasticity; to compare Couette versus Poiseuille
flow; and to consider dynamics and stability of these steady states within the asymptotic model
equations.

Key words. liquid crystals, nematic polymers, asymptotic expansions, partial differential equa-
tions, instability
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1. Introduction. Shear dominated flows of nematic liquid crystal polymers
(NLCPs) generate anisotropy and spatial heterogeneity in the orientational distri-
bution of the rigid rod or platelet ensemble. These phenomena are well documented
in light scattering textures [9, 1, 24, 25, 31]. A characterization of the lengthscales in
the molecular distribution responsible for the scattering patterns, and whether they
are due to changes in the direction of peak orientation (nematic elasticity) or due to
focusing and defocusing of the orientational distribution (molecular elasticity), are
the subject of numerous modeling and computational studies (cf. [32, 30, 21, 29]).
Molecular orientation features in different flow regimes are of extreme importance
for materials design, as they impart anisotropic and nonuniform material properties
[34, 18, 19]. Another issue typical of non-Newtonian fluids is flow feedback, where
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elastic stresses alter apparent viscosity. This paper is a continuation of our systematic
studies of mesostructures, both from free space elasticity patterns absent of external
fields and boundary anchoring conditions [11, 12], and from planar Couette cells mov-
ing at prescribed slow speeds [13, 14]. We defer to these articles, where a detailed
account of analytical results on continuum Leslie–Ericksen–Frank (LEF) models is
given, notably by [26, 4, 5, 7, 27, 23, 28].

In [14], the authors considered a Doi–Marrucci–Greco (DMG) mesoscopic orienta-
tion tensor model, allowing a full coupling between flow structure, director (nematic)
and order parameter (molecular) distortions, and with imposed plate motion and
molecular anchoring conditions. The model has been benchmarked in the longwave,
monodomain regime with resolved simulations of the Doi kinetic theory [15, 16]. In-
deed, the motivation for an analytical study of structure properties is to provide guid-
ance for structure simulations of mesoscopic [17] and kinetic [15, 16] models, where
the parameter space is too large to assimilate any kind of collapse of the numerical
data through scaling laws.

In this paper, we extend our previous asymptotic scaling analysis in several ways.
First, we consider a more general physical model to admit anisotropic distortional
elasticity (unequal bend, splay, twist elasticity constants). The second-moment orien-
tation model is derived from a recent generalization of the Doi–Hess–Marrucci–Greco
kinetic theory [33] and guides our numerical studies [15, 16], for which there are
no preceding numerical or analytical results. Second, the asymptotic analysis is ex-
tended from plate-driven Couette cell properties to pressure-driven Poiseuille flows.
The boundary conditions consist of molecular orientational anchoring conditions at
solid walls, where the degree of order is set by the concentration of the nematic liquid
and the principal orientation axis is a free parameter, together with no-slip conditions
for the velocity field. We further assume an in-plane orientation tensor (restricting
the principal orientation axes of the molecular distribution to the flow-flow gradient
plane), and posit that the velocity field varies only transverse to the primary flow di-
rection. These assumptions are not easily lifted, in that the fortuitous diagonalization
of the flow-nematic steady balance equations is apparently lost for higher dimensional
orientational and spatial degrees of freedom. Finally, we extend the asymptotic anal-
ysis to time-dependent model equations.

From this formulation, we develop a formal asymptotic analysis in the slow-plate
(so-called small Deborah number) and weak pressure gradient limits, which yield
exactly solvable, steady flow-nematic model equations. From the explicit solutions,
lengthscale selection criteria and scaling properties become explicit, parameterized
in terms of molecular parameters (nematic concentration N , molecule aspect ratio r,
persistence length L of distortional elasticity, persistence length L of the anisotropic
distortional elasticity) [33], and experimental conditions (gap width (2h), plate speeds
±v0 for plane Couette flows and pressure gradient ∂p

∂x for the plane Poiseuille flow,
and plate anchoring conditions on the molecular field). From the time-dependence in
the asymptotic equations, we explore transient solutions at the first and second order
in the asymptotic scheme to infer stability of the steady states within the asymptotic
balance equations. We first consider plane Couette flow, followed in the next section
by plane Poiseuille flow.

2. Spatial structures and their stability in plane Couette flows. We
consider plane Couette flow between two parallel plates located at y = ±h and moving
with velocity v = (±v0, 0, 0), respectively, in Cartesian coordinates (x, y, z). Figure 1
depicts the cross section of the flow geometry on the (x, y) plane.

Here we consider flow-orientation interactions in weak plane Couette flow, char-
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x

y

v=-v 0 ,  Q=Q 0

v=v0 ,   Q=Q0

Fig. 1. Geometry of plane Couette flow. The gap width in the shear cell is 2h. The LCP in
the cell is sheared by moving the upper plate with a constant speed v0 and the lower one with the
same speed in the opposite direction. At the bounding surfaces, the orientation tensor is equal to its
equilibrium value.

acterized by a small effective or averaged shear rate. We nondimensionalize using
the gap half-width (h) between the shearing plates and the nematic polymer mean
relaxation time t0 = 1

D0
r
, where D0

r is the rotary diffusivity for the rigid rod or platelet

[33]. We denote the position vector by x, the velocity by v, the extra stress tensor
by τ , and the pressure by p, respectively. The dimensionless flow and stress variables
are defined by:

ṽ =
t0
h

v, x̃ =
1

h
x, t̃ =

t

t0
, τ̃ =

h2

f0
τ, p̃ =

h2

f0
p,(1)

where f0 = ρh4/t20 is a mesophase bulk force and ρ is the nematic polymer (NLCP)
density. Let c be the NLCP number density, k the Boltzmann constant, T absolute
temperature, N a dimensionless concentration, ηs the solvent viscosity, and ζi, i =
1, 2, 3 three friction coefficients related to NLCP-solvent interactions. L measures
the range of isotropic elastic interaction while L does so for the anisotropic elastic
interaction [33]. The following eight dimensionless parameters arise:

Re = ρh2

t0ηs
, α =

3ckTt20
h2ρ , Er = 8h2

NL2 , μi = 3ckTζit0
h2ρ , i = 1, 2, 3, θ = L2

L2 .(2)

α measures the strength of elastic energy relative to kinetic energy; Re is the solvent
Reynolds number; Er is the Ericksen number which measures the relative strength of
the short-range nematic potential and the isotropic distortional elasticity potential; θ
measures the degree of anisotropy in the distortional elasticity, with values limited to
[−1,∞); 1/μi, i = 1, 2, 3 are three nematic Reynolds numbers. We drop the tilde˜ on
all variables from now on so that all equations and figures in the following correspond
to normalized variables, length, and time scales.

The dimensionless forms of the balance of linear momentum, stress constitutive
equation, and the continuity equation (dimensional forms are in [33]) take the follow-
ing form.

Linear momentum balance:

d
dtv = ∇ · (−pI + τ),(3)

where external forces are neglected.
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Continuity equation:

∇ · v = 0.(4)

Constitutive equation for the extra stress:

τ = 2ηD + aα[M − I
3 − N

2 ((I + 1
3NErΔ)M · M + M · (I + 1

3NErΔ)M

−2(I + 1
3NErΔ)M : M4)] − α

6Er (ΔM · M − M · ΔM) − α
12Er [∇M : ∇M

−(∇∇M) : M] + aαθ
12Er [4M6 :: ∇∇M + 2M4∇∇ :: M4 −∇∇M

...M4 − (∇∇M
...M4)

T

−M4

...∇∇M − (M4

...∇∇M)T − (M∇∇
...M4)

T − M∇∇
...M4] − αθ

12Er [∇∇M
...M4

−(∇∇M
...M4)

T − M4

...∇∇M + (M4

...∇∇M)T − M∇∇
...M4 + (M∇∇

...M4)
T ]

+[μ1(a)(DM + MD) + μ2(a)D : M4],

(5)

where M is the second moment of the orientational probability density function of
the kinetic theory (called the structure tensor), M4 and M6 are the fourth and sixth
moment of the probability density function, respectively, η = 1/Re + 1

2μ3(a) and

a = r2+1
r2−1 parameterizes the aspect ratio r of the spheroidal molecules, where 0 < a ≤ 1

corresponds to a rod-like molecule and −1 ≤ a < 0 for platelets [33].
The boundary conditions on velocity v are scaled to

v|y=±1 = (±De, 0, 0),(6)

where

De =
t0v0

h
,(7)

the Deborah number, is the ratio of the relaxation time relative to the time scale set
by the moving plates in the shear experiment. Weak shear is defined by a small value
of De indicating the time scale set by the shear experiment is much larger than the
molecular relaxation time scale. Following previous studies [8, 11, 12], we assume
strong molecular anchoring at the plates given by the quiescent nematic equilibrium
of the orientation tensor (the deviatoric part of the structure tensor) Q0 = M0 − I

3 =

s0(nn − I
3 ). The rest state equilibrium of Q at sufficiently high concentrations is a

uniaxial nematic phase, with unique order parameter,

s0 =
1

4

[
1 + 3

√
1 − 8

3N

]
.(8)

The uniaxial director n is arbitrary for quiescent phases; this degeneracy is bro-
ken experimentally by mechanical or chemical plate preparations. We model a uni-
form plate anchoring condition, either parallel to the flow direction, called tangential
anchoring, or perpendicular to the shearing plates, called normal (or homeotropic)
anchoring.
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The time evolution equation of M (in dimensionless form) is given by [33]:⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

d
dtM − Ω · M + M · Ω − a[D · M + M · D] = −2aD : M4

−6[Q −N(M · M − M : M4)] + 1
Er [ΔM · M + M · ΔM − 2ΔM : M4]

+ θ
2Er [(∇∇M)

...M4 + ((∇∇M)
...M4)

T + M4

...∇∇M + (M4

...∇∇M)T

+M∇∇
...M4 + (M∇∇

...M4)
T − 4M6 :: ∇∇M − 2M4∇∇ :: M4].

(9)

In order to arrive at a closed system of governing equations at the level of second
order tensors, we approximate fourth (M4)and sixth (M6) order tensors in the above
governing system of equations using the following simple closure rules:

M4 ≈ MM, M6 ≈ MMM.(10)

These simple closure approximations respect the traceless property of the orientational
dynamic equation, and have been shown to yield a good approximation of kinetic
theory in the dynamics of monodomains at the nematic concentrations of interest
here [10, 15, 16]. These closures are exact when the molecules are aligned perfectly.

We remark that the distortional elastic free energy reduces to the Oseen–Frank
energy after the closure approximation, in which the three Frank elastic constants are
given by

k1 = k2 = 2kT
Er s2(1 + θ

3 (1 − s)), k3 = 2kT
Er s2(1 + θ

6 (1 + 4s)).(11)

For rod-like NLCPs,

0 < k1 = k2 < k3;(12)

whereas for discotic NLCPs (platelets),

0 < k3 < k1 = k2.(13)

2.1. Asymptotic solutions in weak plane Couette flows. We seek asymp-
totic solutions of the governing system of equations with the boundary conditions
given by (6) and (8). We employ a biaxial representation of the orientation tensor
[11]

Q = s

(
nn − 1

3
I

)
+ β

(
n⊥n⊥ − 1

3
I

)
,(14)

where (s, β) are two order parameters measuring the birefringence relative to the
optical axes (also called directors) n and n⊥ confined to the shearing plane (x, y) and
parameterized by a director angle ψ,

n = (cosψ, sinψ, 0), n⊥ = (− sinψ, cosψ, 0),(15)

and I is the 3 × 3 identity matrix. We propose the solution ansatz

vx =

∞∑
k=1

Dekv(k)
x , (•) =

∞∑
k=0

(•)kDek, ψ = ψ0 +

∞∑
k=1

ψ(k)Dek,(16)

where (•) represents the order parameters s, β, respectively. The solution is sensitive
to the choice of boundary conditions, so we present tangential (ψ0 = 0) and normal
(ψ0 = π

2 ) anchoring conditions separately.
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2.2. Tangential anchoring (ψ0 = 0). First, we note that

v(2k)
x = ψ(2k) = s2k−1 = β2k−1 = 0, k = 1, . . . ,∞,(17)

demanded by the boundary conditions and the governing equations at the respective
orders. This also applies to the case of normal anchoring, but not to tilted anchoring
(ψ0 �= 0, π

2 ) [14]. The governing equations at order O(1) give the equilibrium solution
of Q consistent with the boundary anchoring condition; the equations at order O(De)

are obtained by solving the following equations for ψ(1) and v
(1)
x :

∂ψ(1)

∂t
= A

∂2ψ(1)

∂y2
+ B

∂v
(1)
x

∂y
,

∂v
(1)
x

∂t
=

∂τxy
∂y

,

τxy = C
∂2ψ(1)

∂y2
+ D

∂v
(1)
x

∂y
,

(18)

where

A = 1
9Er (s0 + 2)(3 + θ(1 − s0)), B = 1

2 (λL − 1),

C = − αs2
0

18Er [θ(1 − s0)λL + 3(λL − 1)], D = 1
3 (μ1s0 + 3η),

(19)

where the “tumbling parameter” λL is defined by

λL =
a(2 + s0)

3s0
;(20)

|λL| > 1 corresponds to flow aligning and |λL| < 1 yields director tumbling in mono-
domain shear flows (Er → ∞) [14].

2.2.1. Steady state features of the major director ψ(1) and primary flow
v(1)

x . The nonzero leading order steady solution for the velocity, order parameters s
and β, and the director angle ψ can be solved explicitly:

v
(1)
x (y) = y, s0 = s0, β0 = 0, ψ(1)(y) = MEr(y2 − 1),(21)

M = 9
4(s0+2)(3+(1−s0)θ) (1 − λL).(22)

Note that, as in the isotropic elasticity limit [14], these solvability conditions imply
simple shear flow at leading order in De, and yield that the orientational distribution
is dominated by nematic (director) distortions. The prefactor (22) yields that the
winding number of the major director between the plates is proportional to the Er-
icksen number, as with the isotropic elasticity limit [14]. The formula (22) yields the
scaling law for elastic distortions which are nonuniform across the gap with length-
scale proportional to M−1, which in turn is proscribed by three material parameters:
(a,N, θ). For fixed (a,N), |M | decreases as θ increases (θ ∈ [−1,∞)). We summarize
the dependence of M on θ for given material parameters (a,N) as follows:

• The sign of M governs the “chirality” of nematic distortion, or direction of
director rotation from the plates. M is negative for flow-aligning rods (a >
0, λL > 1) and positive for tumbling rods (a > 0, 0 < λL < 1) and discs or
platelets (a < 0). |M | decreases with respect to all θ ∈ [−1,∞).
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Fig. 2. M as a function of N and θ with tangentially anchored boundary conditions in weak
Couette flow: The top left panel is for rods, with a = 0.8, whereas the top right panel is for platelets,
with a = −0.8. The bottom panels show M for two distinct concentrations of rods (left) and platelets
(right).

• Physically, the director angle winds counterclockwise for rods in the flow-
aligning regime λL > 1 from the lower plate to the midplane, then unwinds
from the midplane to the upper plane; the orientation reverses for rods in the
tumbling regime and for platelets in all regimes.

• At fixed Ericksen number, anisotropic elasticity tends to reduce the magnitude
of the director winding for rods while enhancing director distortion for platelets.

Figure 2 depicts M as a function of (N, θ) two values of a corresponding to rods
(a = 0.8) and platelets (a = −0.8). Next, we consider a limited notion of stability of
this steady-state structure, by studying transients of the first order governing system
of equations in the presence of superimposed spatial disturbances.

2.2.2. Transient behavior of (v(1)
x , ψ(1)) near steady states. The transient

solution for v
(1)
x and ψ(1) (the difference between the time-dependent solution and the

steady state) obeys the same homogeneous linear partial differential equations but
satisfies a zero boundary condition. Its behavior dictates the stability of the steady
state within the asymptotic balance model: the steady state is asymptotically stable
if the transient solution vanishes as t → ∞.

Proposition 1. The steady solution (21, 22) of system (18) is stable for AD −
BC > 0 and unstable for AD − BC < 0 with respect to zero boundary conditions on

v
(1)
x and φ(1).
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Proof. We first consider the case of BC �= 0 and prove the steady solution is
stable provided AD−BC > 0. In the following proof, we drop the superscripts on ψ
and vx. Extending (18)1 to the boundary and accounting for the boundary condition
ψ(−1, t) = ψ(1, t) = 0, we have

(A∂2ψ
∂y2 + B ∂vx

∂y )|y=±1 = 0.(23)

We introduce a nonnegative functional

I(t) =

∫ 1

−1

[δ1ψ
2
y + δ2v

2
x]dy(24)

with δ1 > 0 and δ2 > 0. We note that A > 0 and D > 0 from (19).
Case 1. BC < 0. Choosing δ1 = |C| and δ2 = |B| and integrating by parts, the

time derivative of the nonnegative functional can be estimated:

dI(t)

dt
= −2

∫ 1

−1

[δ1Aψ2
yy + (δ1B + δ2C)ψyyvx,y + δ2Dv2

x,y]dy

= −2

∫ 1

−1

[|C|Aψ2
yy + |B|Dv2

x,y]dy < 0.

(25)

This shows that the steady solution of the system is stable.

Case 2. Choose δ1 = max( C2

AD , 1) ≥ 1, δ2 = max( B2

AD , 1) ≥ 1. We have

dI(t)

dt
= 2

∫ 1

−1

[δ1ψyψty + δ2vxvxt]dy

= −2

∫ 1

−1

[δ1Aψ2
yy + (δ1B + δ2C)ψyyvx,y + δ2Dv2

x,y]dy.

(26)

The integrand is quadratic and the discriminant is

(δ1B + δ2C)2 − 4δ1Aδ2D

= δ1AD

(
B2

AD
δ1 − δ2

)
+ δ2AD

(
C2

AD
δ2 − δ1

)
− 2δ1δ2(AD −BC)

= δ1AD

[
B2

AD
max

(
C2

AD
, 1

)
− max

(
B2

AD
, 1

)]

+δ2AD

[
C2

AD
max

(
B2

AD
, 1

)
− max

(
C2

AD
, 1

)]

−2δ1δ2(AD −BC) < −2δ1δ2(AD −BC) < 0.

(27)

The first inequality is based on B2C2

(AD)2 < 1 because of AD − BC > 0 and BC > 0.

Since δ1A > 0, the integrand is always positive; thus dI(t)
dt < 0. Hence the steady

solution of the system is stable.
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The proof for BC = 0 is far simpler and omitted. To prove instability when
AD − BC < 0, we only need to find one unstable mode. Let φ(y, t) = ψy(y, t); the
system (18) with the boundary condition becomes

φt = Aφyy + Bvx,yy,

vx,t = Cφyy + Dvx,yy,

(Aφy + Bvx,y)|y=±1 = 0, vx(1, t) = 1, vx(−1, t) = −1.

(28)

To find an unstable mode, we seek normal modes of the form

(
φ
vx

)
= eγt

(
φ̃(y)
ṽx(y)

)
(29)

and consider the resultant eigenvalue problem

P

(
φ̃
ṽx

)
yy

= γ

(
φ̃
ṽx

)
, P =

(
A B
C D

)
,(30)

where γ is the growth rate. The steady solution is unstable if γ > 0.
The matrix P has two distinct eigenvalues given by

r1 =
A+D−

√
(A+D)2−4(AD−BC)

2 < 0, r2 =
A+D+

√
(A+D)2−4(AD−BC)

2 > 0.(31)

Let ξ = arctan A−r1

B , then

(
φ̃
ṽx

)
=

(
cos ξ sin ξ
− sin ξ cos ξ

)⎛
⎜⎜⎝

cos ξ
sin

√
γ

−r1
y

sin
√

γ
−r1

sin ξ
sinh

√
γ
r2

y

sinh
√

γ
r2

⎞
⎟⎟⎠(32)

is a solution of (28) satisfying vx(1, t) = vx(−1, t) = 0 and γ is determined by (Aφy +
Bvx,y)|y=±1 = 0, which yields

(A− r1)(1 + A(A−r1)
B2 ) coth

√
γ
r2

−
√
−r1r2 cot

√
γ

−r1
= 0.(33)

As γ → +∞ , the first term goes to a finite value while the second one is periodic
and varies between −∞ and +∞ within one period. Consequently, the equation has
infinitely many positive solutions for γ, which completes the proof, and indicates that
the diagnostic AD −BC signals catastrophic instability when it is negative.

We note that for discs (a < 0) and flow-aligning rods (a > 0, λL > 1),

AD −BC = 1
27Er [3(2 + s0)(μ1s0 + 3η) + α

4 ((λL − 1)3s0)
2

+θ(1 − s0)(2 + s0)(
α
12a((λL − 1)3s0) + μ1s0 + 3η)] > 0.

(34)

Hence, the steady state is always stable for discotic LCPs and flow-aligning rods, and
may be unstable only for tumbling rods (0 < a, 0 < λL < 1).
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Fig. 3. The neutral stability curves defined by A1B2 − A2B1 = 0 and AD − BC = 0 with
tangentially anchored boundary conditions in weak shear. The arrows point to the positive directions

of the discriminant. The systems for (s2, β2) and (ψ(1), v
(1)
x ) are stable when the discriminant is

positive, respectively, unstable otherwise. The parameter values are Er = 100, α = 1, μ1 = 0.001
and η = 0.002.

The neutral stability curve (AD−BC = 0) depends on the values of the param-
eters (θ, a,N, α, μ1, η). From (34), AD−BC > 0 can be translated into two separate
constraints on the energy parameter α and θ,

α ≤ αc = 4(μ1s0+3η)
a(1−λL)s0

; or

α > αc and θ < θc =
3(2+s0)(μ1s0+3η)+ α

4 ((λL−1)3s0)2

(1−s0)(2+s0)( α
12a((1−λL)3s0)−μ1s0+3η) .

(35)

Figure 3 depicts the stability transition curve in the parameter space (N, θ) at a
few selected values of other parameters. We observe that the values of N, θ that
yield instability tend to be large and out of the practical range for nematic polymer
materials. We also note that the flow-aligning region and the stable region versus
(N, θ) both grow significantly as the shape parameter a increases, i.e., as the aspect
ratio becomes more extreme. The instability region vanishes as a → 3s0

2+s0
. The stable

region also grows as μ1/α, η/α increase.
We summarize this more precise statement of Proposition 1 in the following corol-

lary.
Corollary 1. The steady asymptotic solution (21, 22) is asymptotically stable

within the leading order balance equations if either of conditions (35) is satisfied. If
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α > αc and θ > θc, where αc, θc are defined in (35), the steady solution is unstable
and the leading order system of equations is ill-posed.

2.2.3. Steady state features of the order parameters s2 and β2 at O(De2).
The order parameters (s, β) vanish at leading order in De, with order O(De2) behavior
governed by the equations

∂s2

∂t = −1
9Er (A1

∂2s2

∂y2 + B1
∂2β2

∂y2 + C1s2 + D1β2 + E1(
∂ψ(1)

∂y )2+

F1ψ1
∂2ψ(1)

∂y2 + G1ψ
(1) ∂v

(1)
x

∂y ) + 2s0ψ
(1) ∂ψ

(1)

∂t ,

∂β2

∂t = −1
9Er (A2

∂2s2

∂y2 + B2
∂2β2

∂y2 + C2s2 + D2β2 + E2(
∂ψ(1)

∂y )2+

F2ψ
(1) ∂

2ψ(1)

∂y2 + G2ψ
(1) ∂v

(1)
x

∂y ) − 2s0ψ
(1) ∂ψ

(1)

∂t ,

(36)

where the coefficients are lengthy and provided in Appendix A. This system of equa-

tions is linear in (s2, β2) but driven by nonlinear functions of v
(1)
x and ψ(1).

The steady solution, with Λ and Γ defined in the appendix, is

β2(y) = K1(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K2(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R1Er(y2 − 1),

s2(y) = K3(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K4(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + S1Er(y2 − 1),

(37)

where the coefficients are given in Appendix B.
We denote λ2 = 1/(ErΛ) and μ2 = 1/(ErΓ); λ2 is always positive and concave up

as a function of θ, whereas μ2 is monotonically decreasing and may change sign as θ
varies. For example, μ2 goes through zero at a critical degree of anisotropy θc = 2.93
for N = 6. For θ > θc, the steady state becomes highly oscillatory; we show in the
study of transient solutions that this behavior coincides with the onset of ill-posedness
in the governing system of equations. The behavior of θc versus concentration N can
be gleaned from Figure 3.

Since the dominating terms in the order parameters near y = ±1 are

e
√
ErΛy

e
√
ErΛ

,
e
√
ErΓy

e
√
ErΓ

,(38)

the order parameters have a boundary layer near the wall, whose width is proportional
to

1√
ErΛ

,
1√
ErΓ

,(39)

respectively. These are the penetration depths of the wall layer for tangential anchor-
ing, which agrees with the asymptotic analysis of the DMG model [14] in the single
elastic constant limit. One finds the order parameters are coupled with anisotropic
elasticity, i.e., the orientational distribution is strongly biaxial (birefringent in any
plane). For both rods and discs, by comparing the two exponential terms in β2 and
s2, we notice that the boundary layer in s2 is governed by 1√

ErΛ
, whereas in β2 by

1√
ErΓ

, so that their scaling behavior is incommensurate with the leading order wall

layer scaling.
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Table 1

Steady state features of the order parameter morphology for Couette flow with tangential an-
choring (BL denotes boundary layer).

FA/rods FA/discs T/rods T/discs
s− s0 Concave down Concave up Concave up Concave down

& Concave up in BL
β Concave up Concave up Concave down Concave down

& Concave down in BL

Fig. 4. The steady-state asymptotic solutions β (left column) and s − s0 (right column) in
the tumbling regime as functions of (θ, y) with tangentially anchored boundary conditions in weak
Couette flows. (a) and (b) depict the solution for rods with parameter values a = 0.8, N = 6, De =
0.01, Er = 100. (c) and (d) depict the solution for discs with parameter values a = −0.8, N =
6, De = 0.01, Er = 100.

Table 1 tabulates the general behavior of the steady states in the regime of flow-
aligning and tumbling for both rods and discs, in which FA stands for flow-aligning,
T denotes tumbling, and BL denotes a boundary layer. The concavity switching
phenomenon between tumbling and flow-aligning materials, noted in [14], is observed
in both rods and discs. The steady states are in general insensitive to changes in θ. In
addition, the order parameter correction s2 goes through a similar transition for rods
versus discs, whereas β has the same concavity; this is another indication of strong
biaxiality for anisotropic elasticity. Figure 4 depicts a typical steady state asymptotic
solution of (s2, β2) for tumbling rods (a = 0.8) and tumbling discs (a = −0.8).



COUETTE AND POISEUILLE FLOWS OF RODS AND PLATELETS 1239

2.2.4. Transient behavior of (s2, β2) near steady states. The transient
behavior of the order parameters s2 and β2 obey:

∂s̃2

∂t
=

−1

9Er

(
A1

∂2s̃2

∂y2
+ B1

∂2β̃2

∂y2
+ C1s̃2 + D1β̃2

)
,

∂β̃2

∂t
=

−1

9Er

(
A2

∂2s̃2

∂y2
+ B2

∂2β̃2

∂y2
+ C2s̃2 + D2β̃2

)
,

(40)

with zero boundary conditions.
After tedious but straightforward Fourier analysis, the growth (σ′ > 0) or decay

(σ′ < 0) of solutions s̃2(y, t) and β̃2(y, t), due to the time-dependent factor eσ
′t, is

determined by sgn(σ′)

σ′
± = − 1

2 [C1 + D2 −A1k
2 −B2k

2±
√

(C1 + D2 −A1k2 −B2k2)2 − 4((A2k2 − C2)(D1 −B1k2) + (C1 −A1k2)(D2 −B2k2))].
(41)

We now analyze sgn(σ′
±) to deduce stability. For long waves (|k| << 1), asymp-

totic formulae can be derived:

σ′
± ∼ −1

2
[C1 + D2 ±

√
(C1 + D2)2 + 4(C2D1 − C1D2)].(42)

Using the formulae in Appendix B, C1, D2 > 0, C2 = 0, which implies σ′
± < 0. On

the other hand, the growth rate for short waves (|k| >> 1) is dominated by

σ′
± ∼ 1

2
[A1 + B2 ±

√
(A1 + B2)2 + 4(A2B1 −A1B2)]k

2.(43)

We find σ′
± < 0 only for sufficiently small |θ|. Otherwise, A1B2 − A2B1 may be

negative, leading to a positive growth rate proportional to k2, an ill-posed behavior.
The transition to ill-posedness, A1B2 − A2B1 = 0, simplifies dramatically to the
condition θ = 6

5s0−2 , where s0 is given in (8). This neutral stability curve is plotted
in Figure 3.

Proposition 2. The steady state solution (s2, β2) of (36) is catastrophically
unstable if and only if the degree of anisotropic elasticity satisfies

θ >
6

5s0 − 2
.(44)

2.2.5. Rheological features of steady structures. The shear viscosity (shear
stress divided by local shear rate) at the plates is identical to the averaged shear
viscosity over the shear cell; it is a nonzero constant at O(De), given by

ηwall =
τxy

dv
(1)
x

dy

=
αa2(1− 1

λL
)[θ(1−s0)+3(1− 1

λL
)]

36(3+θ(1−s0)) + 1
3 (μ1s0 + 3η).(45)

It can be readily shown that ηwall is a slowly varying, decreasing function of the
degree of anisotropic elasticity θ for tumbling rods and all platelet nematic liquids;
however, ηwall increases versus θ for flow-aligning rods. Nonzero first normal stress
difference N1 and second normal stress difference N2 show up at order O(De2) and
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are given in Appendix C. These non-Newtonian effects are measurable physically,
e.g., N1 > 0 corresponds to pushing the parallel plates apart and N1 < 0 corresponds
to pulling the plates together. N1 is a linear combination of α and μ2 and N2 is a
linear combination of α and μ1 + μ2. At walls, the terms containing μ1,2 drop out so
that N1 and N2 are proportional to α:

N1 = [ G
54Er (K3λ

2 + K4μ
2 + 2S)

+
(−4aθ+3s0+16aθs3

0−12a+12as2
0−12aθs0)

108Er

(
K1λ

2 + K2μ
2 + 2R

)
+ 4K2s0

27Er (−4aθs0
2 − 4aθ + 24aθs0

3 − 6as0 + 9s0 + 18as0
2 − 12a− 16aθs0)]α,

N2 = [− G
54Er (K3λ

2 + K4μ
2 + 2S)

+
(8aθ+12a−3+8as0−16as2

0−12s0)s0

108Er

(
K1λ

2 + K2μ
2 + 2R

)
+ 4K2as0

27Er (8θs0
2 + 2θ − 24θs0

3 + 12s0 − 9s0 − 18as0
2 + 6 + 14θs0)]α,

(46)

where G,K,R, S, λ, μ and Ki(i = 1, 2, 3, 4) are given in Appendix C.
Figure 5 depicts N1 and N2 for tumbling rods as well as discs as functions of y at

some parameter values; Figure 6 shows N1 and N2 for flow-aligning rods and discs.
Table 3 lists the averaged normal stress differences calculated in four representative
cases. We summarize the noticeable features in the stress differences below.

• For flow-aligning rods, N1 < 0 and N2 > 0 across the gap; their signs change
in plate boundary layers for small degree θ of elastic anisotropy.

• These properties reverse for flow-aligning or tumbling discs, which may ex-
perience sign changes in N1 and N2 in the middle of the plate gap for small
|θ|.

• For tumbling rods and all discotic NLCPs, N1 > 0 and N2 < 0, with sign
changes for rods in the wall boundary layer for large θ, and sign changes for
platelets in the midgap at small |θ|.

• The averages across the gap yield N1 > 0 and N2 < 0 for flow-aligning rods,
and N1 < 0 and N2 > 0 in all other cases.

2.3. Homeotropic anchoring (ψ0 = π
2
). The boundary anchoring condition

affects only the coefficients of the governing system of partial differential equations at

each order. The structure of the equations at O(De) for (v
(1)
x , ψ(1)) are identical to

(18) with the following new coefficients:

A = 1
9Er (s0 + 2)(3 + θ(2s0 + 1)), B = − 1

2 (1 + λL),

C = αs0

18Er [θ(2s0 + 1)λL + 3(λL + 1)], D = 1
3 (μ1s0 + 3η).

(47)

The nonzero leading order solution for the order parameters, primary velocity
component, and major director angle are

s0 = s0, β0 = 0, v(1)
x (y) = y, ψ(1)(y) = MEr(y2 − 1),(48)

M =
9

2(s0 + 2)(3 + θ(2s0 + 1))
(1 + λL).(49)
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Fig. 5. The normal stress differences N1 and N2 in tumbling regimes as functions of y at
selected values of θ with tangentially anchored boundary conditions in weak shear. (a) Rods: a =
0.8, N = 6, De = 0.01, Er = 100, α = 10, μ1 = 0.01, η = 0.02. (b) Discs: a = −0.8, N = 6, De =
0.01, Er = 100, α = 10, μ1 = −0.01, η = 0.02.

It is easy to see that |M | decreases with respect to θ; M is negative for flow-aligning
discs (a < 0, λL < −1) and positive for all other cases. Thus, directors wind coun-
terclockwise from the lower shearing plate to the midplane, and unwind from the
midplane to the upper plate for flow-aligning discs. The winding reverses direction in
the other cases.

Analogous to tangential anchoring, steady states may be catastrophically unstable
for discs in the flow-aligning regime a < 0, λL < −1 if AD − BC < 0, yet are stable
in the other cases, where

AD −BC = 1
27Er [(s + 2)(μ1s0 + 3η)(θ(2s0 + 1) + 3)

+αs0

4 (1 + λL)(aθ(2s0 + 1)(s0 + 2) + 9s0(1 + λL))].
(50)

Proposition 3. The steady-state solution is stable so long as

θ > θc = − 12(s0 + 2)(μ1s0 + 3η) + 9αs2
0(1 + λL)2

4(s0 + 2)(2s0 + 1)(μ1s0 + 3η) + aαs0(1 + λL)(1 + 2s0)(2 + s0)
.(51)

The governing system of equations for the order parameters (s, β) at order O(De2)
is of the same form as tangential anchoring, with different coefficients given in Ap-
pendix C.
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Fig. 6. The normal stress differences N1 and N2 in flowing-aligning regimes as functions of
y at selected values of θ with tangentially anchored boundary conditions in weak shear. (a) Rods:
a = 0.9, N = 6, De = 0.01, Er = 100, α = 10, μ1 = 0.01, η = 0.02. (b) Discs: a = −0.9, N = 6, De =
0.01, Er = 100, α = 10, μ1 = −0.01, η = 0.02.

The steady solutions are

β2(y) = K11(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + R2Er(y2 − 1),

s2(y) = K21(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K22(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + S2Er(y2 − 1).

(52)

In this solution, μ2 (defined earlier) changes sign only as θ varies below a threshold
value θd for platelets. Again, the change of sign in μ2 coincides with ill-posedness in
the governing system of equations.

Notice that in s2, there are two cosh terms, whereas there is only one in β2. For
rods, the second term in s2 dominates in the boundary layer while the first term
dominates for discs. Table 2 tabulates features of the steady states. Compared with
results above for tangential anchoring, the steady states with normal anchoring are
more sensitive to the degree θ of elastic anisotropy. The order parameter variation
versus θ decreases for rods and increases for platelets. The solution profiles switch
concavity in the boundary layer for flow-aligning versus tumbling discotics, whereas
the concavity remains the same for rods. Figure 7 depicts typical steady solutions for
tumbling rods and discs.
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Table 2

Steady-state features of the order parameter morphology for Couette flow with normal anchoring.

FA/rods FA/discs T/rods T/discs
s− s0 Concave down Concave down Concave down Concave up

& Concave up in BL & Concave up in BL & Concave down in BL
β Concave up Concave up Concave up Concave down

& Concave down in BL

Fig. 7. The steady-state asymptotic solution as functions of (θ, y) in tumbling regime with
normally anchored boundary condition in weak shear. (a) and (b) depict the solution for rods with
parameter values a = 0.8, N = 6, De = 0.01, Er = 100. (c) and (d) depict the solution for discs with
parameter values a = −0.8, N = 6, De = 0.01, Er = 100.

Again the governing system can become ill-posed. The growth rate formulae for
the steady states are identical to (41), but with new coefficients. Notice that the
discriminant A1B2 − A2B1 = 4(1 − s0)

2(1 + 2s0)[3 + θ(1 + 2s0)][3 + θ(1 + 4s0)]. For
rods, θ > 0 and A1B2 −A2B1 > 0 indicating stability. For discs and θ < − 3

1+4s0
, the

discriminant is negative so that the steady state is unstable.
Proposition 4. The system for the two order parameters (s2, β2) is locally ill-

posed if and only if θ < θd, where

θd = − 3

1 + 4s0
.(53)

The shear viscosity at the walls in this case is given by

ηwall =
τxy

dv
(1)
x

dy

=
αa2(1+ 1

λL
)(2θ(2s0+1)+3(1+ 1

λL
))

36(θ(2s0+1)+3) + 1
3 (μ1s0 + 3η).(54)
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Fig. 8. The normal stress differences N1 and N2 as functions of y in tumbling regime at
selected values of θ with normally anchored boundary conditions in weak shear. The parameter
values are a = ±0.8, N = 6, De = 0.01, Er = 100, α = 10, μ1 = ±0.01, μ2 = 0.02 for rods and discs,
respectively.

Similar to the case of tangential anchoring, the viscosity decreases with respect to θ
for rods and flow-aligning discs, but increases with respect to θ for tumbling discs.
The leading order normal stress differences again show up at O(De2) and are given
in Appendix D.

Figures 8 and 9 depict representative plots of the first and second normal stress
differences in tumbling and flow-aligning regimes, respectively, and demonstrate the
following properties:

• Rods are more sensitive to the variation in degree θ of elastic anisotropy than
discs.

• For tumbling rods, N1 > 0 and N2 < 0 except there may be a sign change in
a boundary layer near the wall at large θ. For tumbling discs, N1 and N2 are
both negative except that N1 is positive in a boundary layer near the wall.

• The behavior of the normal stress differences does not change much for flow-
aligning rods compared with tumbling rods. For flow-aligning discs, N1 > 0
and N2 > 0 except that N2 is negative in boundary layer near the wall.

• The average values across the gap obey N1 > 0 and N2 < 0 for rods, but they
may change signs for discs.

The averaged normal stress differences are tabulated in Table 3.
In summary, the salient predictions from this analysis are:
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Fig. 9. The normal stress differences N1 and N2 as functions of y in flowing-aligning regime
at selected values of θ with normally anchored boundary conditions in weak shear. The parameter
values are a = ±0.9, N = 6, De = 0.01, Er = 100, α = 10, μ1 = ±0.01, μ2 = 0.02 for rods and discs,
respectively.

Table 3

The averaged normal stress differences (Couette).

FA/rods FA/discs T/rods T/discs
Tangential N1 < 0, N2 > 0 N1 > 0, N2 < 0 N1 > 0, N2 < 0 N1 > 0, N2 < 0

Normal N1 > 0, N2 < 0 N1 > 0 N1 > 0, N2 < 0 N1 < 0, N2 < 0

• The major director winds counterclockwise from the bottom to top plates,
for both flow-aligning rods in tangential anchoring and flow-aligning discs in
homeotropic anchoring. Remarkably, the principal orientation axis rotates
clockwise if the nematic polymer tumbles in weak shear rather than flow
aligns. The magnitude of winding of the orientation axis, which sets the
number of bands of nematic distortion, reduces with the degree of elastic
anisotropy θ.

• The order parameters are relatively insensitive to the degree of elastic anis-
otropy in tangential anchoring, and more sensitive in normal anchoring.

• Ill-posedness may occur within each order of asymptotic equations depending
on the values of the parameters, although the full equations are well posed.
This transition implies a breakdown in the asymptotic ordering which allows
explicit solution and scaling properties, and suggests a physical transition
away from these asymptotic structures.
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x

y

v=0, Q=Q0

v=0, Q=Q0

Fig. 10. The geometry of the plane Poiseuille flow. A pressure gradient ∂p
∂x

= −De2 is
imposed across the channel. At the bounding surfaces, the orientation tensor is assumed to equal to
its equilibrium value.

• The averaged shear viscosity varies weakly with respect to the strength of
anisotropic elasticity.

• The averaged normal stress differences may take on all possible signs depend-
ing on the parameter regime.

3. Spatial structures in weak Poiseuille flows. In this section, we study
steady structures in the direction of the velocity gradient under an imposed, small
pressure gradient ∂p

∂x in plane Poiseuille flow. Figure 10 depicts the cross section of the
plane Poiseuille flow on the (x, y) plane. The boundary condition for the orientation
tensor is identical to that used for shear flows while the velocity boundary condition is
no-slip v(±1) = 0. As before, we use h and t0 = tn = 1

Dr
as the characteristic length

and time scale, respectively. We adopt the same dimensionless symbols used in weak
plane Couette and assume ∂p

∂x = −ε = −De2 in the dimensionless form, where the
Deborah number is defined by

De =

√
−∂p

∂x

t20
ρh

, ε = De2.(55)

We seek asymptotic solutions in powers of ε. The momentum equation yields at order
O(ε):

∂v(1)
x

∂t = −1 +
∂τ(1)

xy

∂y .(56)

The other governing equations are identical to those derived for plane Couette flows.
Hence, the transient solution and the stability of steady states are identical to the
corresponding problems in plane Couette flows. We will not repeat them here; in-
stead, we only present the asymptotic steady states with respect to the two anchoring
conditions.

3.1. Tangential anchoring (ψ0 = 0). The steady solutions up to order O(ε)
are

s0 = s0, β0 = 0, v(1)
x (y) = H1(1 − y2), ψ(1)(y) = H2Ery(1 − y2),(57)



COUETTE AND POISEUILLE FLOWS OF RODS AND PLATELETS 1247

where H1 and H2 are given in Appendix E. The positivity of H1 coincides with the
stability of the steady state, giving rise to a parabolic velocity profile. H2 is positive
for flow aligning rods and negative otherwise in stable steady states. H2 behaves more
or less like the diagnostic M in the plane Couette flow. Notice that ψ(1) is an odd
function of y leading to an asymmetric major director pattern, known as a chevron
pattern, with respect to the midplane [6, 2, 3].

For flow-aligning rods in stable steady states, H1 (H2) decreases (increases) with
respect to θ, and increases (decreases) with respect to θ in all other cases. The
rotational pattern of the major director (a function of ψ(1)) is dictated by λL. For
flow-aligning rods, λL > 1, the major director rotates counterclockwise from the lower

plate to the
√

3
6 of the shear cell and then reverses its rotation to the midplane. The

orientation pattern in the top half of the cell is the mirror image of that in the lower
half. The rotation reverses for the other cases where λL < 1.

The steady solutions of the order parameters at order O(ε2) are given by

β2(y) = K11(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K12(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R11(y
4 − 1) + R12(y

2 − 1),

s2(y) = K21(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + K22(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R21(y
4 − 1) + R22(y

2 − 1),

(58)

where the coefficients are given in Appendix E. The order parameters behave like a
quartic polynomial with respect to y in most part of the cell except at the boundary

layers near the plates. The velocity v
(1)
x , angle variable ψ(1) and the order parameter

β2 are insensitive to the variation of θ. The sensitivity of the order parameter cor-
rection s2 is the most pronounced at θ = 0, i.e., in the one-constant approximation.
Figure 11 depicts typical steady solutions for tumbling rods. Table 4 tabulates all the
steady state behavior:

• The thickness of the boundary layers in this flow are narrower than those
in the weak plane Couette flows, suggesting a mollifying effect of stronger
velocity gradients near the walls.

• The two order parameter corrections (at small |θ|) and the angle variable
change their signs and concavity in the tumbling versus flow-aligning regime,
but only for rods; this predicts a profile concavity flip in the focusing and
defocusing of the orientation distribution occurs as rods pass through the
flow-aligning to tumbling transition; the profile of β2 is either W-shaped or
M-shaped.

• The velocity profile is concave down.
• The parameter s− s0 is very sensitive around θ = 0 for both rods and discs.
• The angle profile is a rotated-S shape.

Figure 11 depicts typical steady solutions for tumbling discs as functions of (θ, y).
The shear viscosity is given by

ηapp =
τxy

dv
(1)
x

dy

= −αH2s0

18H1
[a(s0 + 2)(θ(1 − s0) + 3(1 − 1

λL
))] + 1

3 (μ1s0 + 3η),(59)

a decreasing function with respect to θ for discs and tumbling rods but an increasing
function for flow-aligning rods.

The normal stress differences in this case are given in Appendix E. Unlike
weak Couette flows, they are rational functions of μ1, μ2 and α. Figures 12 and 13
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Fig. 11. Steady solutions of β, s−s0, v and ψ−ψ0 as functions of (θ, y) in the regime of tumbling
rods with tangentially anchored boundary conditions in plane Poiseuille flow. The parameter values
are N = 6, a = 0.8, De = 0.01, Er = 100, μ1 = 0.1, η = 0.2, α = 10.

depict some representative plots of the normal stress differences for tumbling and
flow-aligning nematics, respectively. In summary, they have the following properties:

• For flow-aligning rods, N1 is positive and N2 is negative. The signs are
reversed for flow-aligning discs.

• For tumbling rods and discs, N1 is negative, but N2 is positive.
• In both stable tumbling and flow-aligning regimes, for rods and discs, the ab-

solute values of N1 and N2 increase and decrease, respectively, as α increases.
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Table 4

Steady states (Poiseuille) in tangential anchoring.

FA/rods FA/discs T/rods T/discs
s− s0 Concave up Concave up Concave down at small θ Concave up

& Concave up at large θ
β W-shape M-shape M-shape M-shape

ψ − ψ0 S Rotated-S Rotated-S Rotated-S
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Fig. 12. The normal stress differences N1 and N2 as functions of y in tumbling regime at
selected values of θ with tangentially anchored boundary conditions in plane Poiseuille flows. The
other parameter values are N = 6, De = 0.01, Er = 100, α = 10, μ2 = 0.02, for rods a = 0.8, μ1 =
0.01, and for discs, a = −0.8, μ1 = −0.01.

• The gap averages satisfy N1 > 0 and N2 < 0 for flow-aligning rods while
N1 < 0, N2 > 0 in all other regimes.

The behavior of the averaged normal stress differences is tabulated in Table 6.

3.2. Homeotropic anchoring (ψ = π
2
). The steady solutions up to order O(ε)

are given by (57) with new H1 and H2 given in Appendix F. As in the tangential
anchoring case, H1 is positive in all stable steady states. H2 is negative for flow-
aligning discs and positive otherwise for other stable steady states. For flow-aligning
discs in stable steady states, H1 (H2) decreases (increases) with respect to θ for flow-
aligning discs, yet increases (decreases) with respect to θ for all other stable steady
states.
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Fig. 13. The normal stress differences N1 and N2 as functions of y in flow-aligning regime at
some values of θ with tangentially anchored boundary conditions in plane Poiseuille flows. The other
parameter values are N = 6, De = 0.01, Er = 100, α = 10, μ2 = 0.02, for rods a = 0.9, μ1 = 0.01,
and for discs, a = −0.9, μ1 = −0.01.

Table 5

Steady states (Poiseuille) in homeotropic anchoring.

FA/rods FA/discs T/rods T/discs
s− s0 W-shape M-shape W-shape W-shape

β W-shape M-shape W-shape W-shape
ψ − ψ0 Rotated-S S Rotated-S Rotated-S

The steady solutions of the order parameters at O(ε2) are

β2(y) = K11(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1) + R1(y
4 − 1) + S1(y

2 − 1),

s2(y) = K21(
cosh(

√
ErΛy)

cosh(
√
ErΛ)

− 1)

+K22(
cosh(

√
ErΓy)

cosh(
√
ErΓ)

− 1) + R2(y
4 − 1) + S2(y

2 − 1).

(60)

We summarize the features of stable steady states in Table 5:
• The two order parameters and the angle parameter change their signs and

shapes in tumbling and flow-aligning regime for discs but not for rods, indi-
cating the solutions are more sensitive for platelet molecules than for rods.
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Fig. 14. Steady solutions β, s − s0, v and ψ − ψ0 for tumbling rods as functions of (θ, y)
with normally anchored boundary conditions in plane Poiseuille flows. The parameter values are
a = 0.8, N = 6, De = 0.01, Er = 100, μ1 = 0.01, η = 0.02, α = 1.

• As the anisotropic elasticity enhances, the order parameter variations and the
angle variation reduces for rods yet amplifies for discs.

• The velocity profile has fixed concavity in all regimes. As the anisotropic
elasticity increases, the velocity increases for rods.

• The orientational variables decrease with respect to θ while the flow variable
v increases.

• Again, the thickness of the boundary layers are smaller compared to weak
plane Couette flows.

Figure 14 depicts a typical steady solution for tumbling discs as functions of (θ, y).
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Fig. 15. The normal stress differences N1 and N2 as functions of y in tumbling regime at
selected values of θ with normal anchoring boundary conditions in plane Poiseuille flows. The
parameter values are N = 6, De = 0.01, Er = 100, α = 10,, a = 0.8, μ1 = 0.01, μ2 = 0.02 for rods,
and a = −0.8, μ1 = −0.01, μ2 = 0.02 for discs.

The wall shear viscosity is given by

ηwall =
τxy

dv
(1)
x

dy

= αH2

18ErH1
(a(2 + s0)(θ(2s0 + 1) + 3(1 + 1

λL
))) + 1

3 (μ1s0 + 3η),(61)

which decays with respect to θ for all rods and flow-aligning discs, but increases for
tumbling discs. The first and second normal stress differences in this case are given in
Appendix F. Figures 15 and 16 depict the normal stress differences for flow-aligning
and tumbling nematics, respectively. In summary, they exhibit the following features:

• For flow-aligning rods and disks, N1 and N2 are negative except for a small
region at the midplane, where some of the first normal stress difference may
be positive.

• For tumbling rods, N1 and N2 are negative. For tumbling discs (−1 < λL <
0), N1 and N2 are negative except for a tiny region at the midplane at small
θ. For tumbling discs, the behavior reverses completely, i.e., the normal stress
differences are positive except for a small region at the midplane.

• In both stable tumbling and flow-aligning regimes, for rods and discs, the
absolute values of N1 and N2 will decrease and increase as α increases, re-
spectively.

• The gap averages obey N1 > 0 and N2 > 0 for tumbling rods and both
become negative in all other regimes.

The behavior of averaged normal stress differences is tabulated in Table 6.
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Fig. 16. The normal stress differences N1 and N2 as functions of y in flow-aligning regime
at selected values of θ with normal anchoring boundary conditions in plane Poiseuille flows. The
parameter values are N = 6, De = 0.01, Er = 100, α = 10, a = 0.9, μ1 = 0.01, μ2 = 0.02 for rods,
and N = 6, De = 0.01, Er = 100, α = 1, a = −0.9, μ1 = −0.01, μ2 = 0.02 for discs.

Table 6

The normal stress differences (Poiseuille).

FA/rods FA/discs T/rods T/discs
Tangential N1 > 0, N2 > 0 N1 < 0, N2 > 0 N1 < 0, N2 > 0 N1 < 0, N2 > 0

Normal N1 < 0, N2 < 0 N1 < 0, N2 < 0 N1 < 0, N2 < 0 N1 > 0, N2 > 0

4. Conclusion. We have derived explicit asymptotic structures for weakly
sheared nematic polymers in both plate-driven and pressure-driven experimental con-
ditions. The goal of this analysis is to predict scaling properties in the orienta-
tional distribution of the rigid rod ensemble from the strong elasticity, weak flow
regime, which then guide numerical continuation studies of heterogeneous films and
molds across a multi-parameter space of material properties and processing conditions.
We have explored the effect of anisotropic elasticity for both flow conditions, using
a second-moment model for the orientational distribution derived from Doi–Hess–
Marrucci–Greco kinetic theory. These results extend previous work of the authors for
steady structures with equal elasticity constants in plate-driven flow in several ways:
anisotropic elasticity, pressure-driven flows, and transient asymptotic equations fol-
lowed by stability predictions within the asymptotic ordering of the flow-nematic sys-
tem. The leading order flow structure is simple linear shear versus Poiseuille profiles
for the respective driving conditions, with elastic hydrodynamic feedback contribu-
tions characterized at next order. These results confirm the consistency of imposing
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the kinematics (and thereby suppressing flow feedback) in special asymptotic parame-
ter regimes, yet also predict breakdown of this decoupling of the momentum equation
when either of several conditions is relaxed: weak flow, strong elasticity, or sufficiently
isotropic elasticity.

The orientational structures for both flow conditions convey scaling properties of
nematic (director dominated) elastic distortions as well as molecular elasticity (domi-
nated by focusing or defocusing of the orientational distribution). The structure scal-
ing laws are similar for plane Couette and Poiseuille flows, with plate boundary layer
thicknesses proportional to 1/

√
Er and nonuniform structures spanning the plates

with mean lengthscale proportional to 1/Er. The prefactors of the structures capture
the roles of material properties: flow-aligning versus tumbling nematics, degree of
anisotropy in the elasticity potential, strength of the short-range nematic potential,
and molecular aspect ratio. These subtleties are detailed in the body of the paper,
where the amplitude of structure variations, convexity of profiles, and stability of the
steady structures all depend strongly on these molecular parameters as well as plate
anchoring conditions.

The particular results are less important than the overall insight into the sen-
sitivity, flow-nematic feedback and processing-generated structures on material and
device properties. The instability within the asymptotic equations is catastrophic,
similar to backward heat flow instabilities, so there is no mistaking the breakdown of
these steady profiles in the weak flow model system. The role of anisotropic elastic-
ity is shown to be greater for normal versus tangential plate anchoring, and greater
in pressure-driven than plate-driven flows. In Poiseuille flow, the transition to catas-
trophic instability coincides with a rapidly growing midplane axial velocity, confirming
a breakdown in the asymptotic analysis. Finally, anisotropic elasticity is shown to
contribute to either shear thinning or shear thickening behavior as other parameters
are modified, and signs of normal stress differences (which determine whether the
plates are pushed or pulled by the stresses generated between) are likewise sensitive
to various material parameters.

Appendix A. The coefficients in the second-order equations in tangen-
tial anchoring.

A1 = (1 − s0)[−6(1 + 2s0) + (8s2
0 − s0 − 2)θ], B1 = (1 − s0)s0(6 − 7s0θ),

C1 = 18ErNs0(−1 + 4s0), D1 = 36ErNs0(1 − s0),
E1 = 2s0(1 − s0)(1 + 3s0)[6 + (2 − 5s0)θ],
F1 = 2s0[3(2 + s0) + 2(3s2

0 + s0 − 1)θ], G1 = 9Ers0(−1 − a + 2as0),
A2 = −2s0θ(1 − s0), B2 = (1 − s0)[−6 + (3s0 − 2)θ], C2 = 0,
D2 = 54ErNs0, E2 = 2s0(s0 − 1)[6 + (2 − 5θ)],
F2 = 2s0[3(2 − s0) + (s0 + 2)(s0 − 1)θ], G2 = 9Ers0(1 − a).

(62)

Appendix B. The coefficients in the second-order equations in normal
anchoring.

A1 = −2(1 − s0)(2s0 + 1)[3 + (4s0 + 1)θ],
B1 = 2s0(1 − s0)[3 + 2(2s0 + 1)θ],
C1 = 18ErNs0(−1 + 4s0), D1 = 36ErNs0(1 − s0),
E1 = 4s0(1 − s0)[3(1 + 3s0) − (2s0 + 1)(6s0 + 1)θ)],
F1 = 2s0[3(2 + s0) − (6s3

0 − 5s2
0 − 8s0 − 2)θ], G1 = 9Ers0(−1 + a− 2as0),

A2 = 0, B2 = 2(s0 − 1)[3 + (2s0 + 1)θ], C2 = 0, D2 = 54ErNs0,
E2 = 4s0[3(−1 + s0) + (2s2

0 + 3s0 − 1)θ],
F2 = 2s0[−3(2 + s0) + (2s0 + 1)(s0 − 2)θ], G2 = 9Ers0(1 + a).

(63)
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Appendix C. The coefficients of the steady solutions for tangential
anchoring in weak plane Couette flows.

λ, μ =
√
Er{18[Ns0(s0 − 1)((16s0

2 − 5s0 − 2)θ − 6(5s0 + 1))∓
√

2((68s0
4 + 49s0

3 − 24s0
2 − 20s0 + 8)θ2 − 6(8s0

3 + 21s0
2 + 6s0 − 8)θ+

18(s0 + 2)2)1/2s0(1 − s0)N ]/[(s0 − 1)2(2s0 + 1)(5θs0 − 2θ − 6)(θs0 − 2θ − 6)]} 1
2 ,

R1 =
(as0−3s0+2a)(s0−1)[(−5s2

0+2as2
0+3as0+2s0−2a)θ−3(as0−2s0+2a)]

4Ns2
0(s0+2)2(θs0−θ−3)2 ,

S1 = (1 − s0)[(−88s3
0 + 34as0 + 77as2

0 − 31s2
0 + 8as0 + 20s0 − 20a)θ − 6(7as2

0 − 14s2
0

−10s0 + 19as0 + 10a)](as0 − 3s0 + 2a)/[8s2
0N(−1 + 4s0)(s0 + 2)2(θs0 − θ − 3)2],

Λ = λ√
Er

,Γ = μ√
Er

, R = R1Er, S = S1Er,K = 3(as0−3s0+2a)Er
4s0(s0+2)[(s0−1)θ−3] ,

A = −(s0 − 1)2(2s0 + 1)(5θs0 − 2θ − 6)(θs0 − 2θ − 6),

B = 36ErNs0(s0 − 1)[(16s2
0 − 5s0 − 2)θ − 6(5s0 + 1)], C = 972(ErNs0)

2(1 − 4s0),

T = 2A1(4K2E2+2K2F2+KG2)−2A2(4K2E1+2K2F1+KG1)−C1(2K2F2+KG2)−2BR
C ,

K1 = 1
λ2−μ2 [ 4K2A1E2−4K2A2E1

A + μ2(R + T ) − 2R], K3 = −B2λ
2+D2

A2λ2 K1,

K2 = 1
−λ2+μ2 [ 4K2A1E2−4K2A24E1

A + λ2(R + T ) − 2R], K4 = −B2μ
2+D2

A2μ2 K2,

N1 = Gα
54Er

(
K3λ

2 cosh(λ y)
cosh(λ) + K4μ

2 cosh(μ y)
coshμ + 2S

)
+aNs0(1−4 s0)α

3

[
K3

(
cosh(λ y)
cosh(λ) − 1

)
+ K4

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(−4aθ+3s0+16aθs3
0−12a+12as2

0−12aθs0)α
108Er

(
K1λ

2 cosh(λ y)
cosh(λ) + K2μ

2 cosh(μ y)
cosh(μ) + 2R

)
+Ns0(1+2 s0) aα

3

[
K1

(
cosh(λ y)
cosh(λ) − 1

)
+ K2

(
cosh(μ y)
cosh(μ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ − 3(2as0 − 3s0 − 6as0
2 + 4a]y2

+ 2as0K
2α

27Er [(2s0 + 1)(3s0
2 − 5s0 − 4))θ − 6(s0 + 2)](y2 − 1) + 2μ2 Ks0

2
(
y2 − 1

)
,

N2 = − Gα
54Er

(
K3λ

2 cosh(λ y)
cosh(λ) + K4μ

2 cosh(μ y)
coshμ + 2S

)
+aNs0(−1+4 s0)α

3

[
K3

(
cosh(λ y)
cosh(λ) − 1

)
+ K4

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(8aθ+12a−3+8as0−16as2
0−12s0)s0α

108Er

(
K1λ

2 cosh(λ y)
cosh(λ) + K2μ

2 cosh(μ y)
cosh(μ) + 2R

)
+ 2Ns0(1−s0)aα

3

[
K1

(
cosh(λ y)
cosh(λ) − 1

)
+ K2

(
cosh(μ y)
cosh(μ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [−2a(s0 − 1)(2s0 + 1)(6s0 + 1)θ + 3(4as0 − 3s0 − 6as0
2 + 2a)]y2

+ 2as0K
2α

27Er [−(2s0 + 1)(3s0
2 − 4s0 − 2))θ + 3(s0 + 2)](y2 − 1)

−2 (μ1 + μ2)Ks0
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.

(64)
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Appendix D. The coefficients of the steady solutions in normal anchor-
ing in weak plane Couette flows.

λ =
√
Er[ 3Ns0

(1−s0)(2θs0+3+θ) ]
1/2, μ =

√
Er[ 9Ns0(−1+4s0)

(1−s0)(2s0+1)(4θs0+3+θ) ]
1/2,Λ = λ√

Er
,Γ = μ√

Er
,

R = 9(1−s0)(2s0+as0+2a)(as0+3s0+2a)
4N(s0+2)2(2θs0+3+θ)s2

0
Er, R2 = R

Er , K = 3(as0+3s0+2a)
4s0(s0+2)(2θs0+θ+3)Er,

T = 3(−1 + s0)[2(2s0 + 1)(s0 − 1)(as0 + 2s0 + 2a)θ + ErNs0a(s0 + 2)

+6(−1 + s0)(2s0 + as0 + 2a))](as0 + 3s0 + 2a)/[4N2(s0 + 2)2(2θs0 + 3 + θ)s3
0],

S = {3(as0 + 3s0 + 2a)(1 − s0)[(2s0 + 1)(−3s2
0 + as2

0 − 4as0 − 12s0 − 12a)θ

+18(s0 − 1)(as0 + 2s0 + 2a)]/[8Ns2
0(s0 + 2)2(2θs0 + 3 + θ)2(−1 + 4s0)]}Er,

S2 = S
Er , T1 = −A1S+2B1R+D1T+(−2K2F1−G1K)

C1
,

K11 = −R− T, K21 = B1λ
2+D1

A1λ2+C1
K11, K22 = −K21 − S − T1,

N1 = Gα
54Er

(
K21λ

2 cosh(λ y)
cosh(λ) + K22μ

2 cosh(μ y)
coshμ + 2S

)
+aNs0(1−4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(−4aθ+3s0+16aθs3
0−12a+12as2

0−12aθs0)α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 2R

)
+Ns0(1+2 s0) aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ + 3(−2as0 + 3s0 + 6as0
2 − 4a)]y2

+ 2as0K
2α

27Er [(2s0 + 1)(3s2
0 − 5s0 − 4)θ − 6(s0 + 2)](y2 − 1) + 2μ2 Ks0

2
(
y2 − 1

)
,

N2 = − Gα
54Er (K21λ

2 coshλ y
cosh(λ) + K22μ

2 coshμ y
coshμ + 2S)

+aNs0(−1+4 s0)α
3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+ S

(
y2 − 1

)]
+

(8aθ+12a−3+8as0−16as2
0−12s0)s0α

108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 2R

)
+ 2Ns0(1−s0)aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R

(
y2 − 1

)]
+ 4K2s0α

27Er [2a(1 − s0)(2s0 + 1)2)θ + 3(4as0 − 9s0 − 6as0
2 + 2a)y2

+ 2as0K
2α

27Er [−(2s0 + 1)(3s2
0 − 4s0 − 2)θ + 3(s0 + 2)](y2 − 1)

−2 (μ1 + μ2)Ks0
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.

(65)
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Appendix E. The coefficients of the steady solutions for tangential an-
choring in Poiseuille flows.

H1 = 6(s0+2)(3+θ(1−s0))
4(μ1s0+3η)(s0+2)(3+θ(1−s0))+αs0(1−λL)(−aθ(1−s0)(s0+2)+9s0(1−λL)) ,

H2 = 9(λL−1)
4(μ1s0+3η)(s0+2)(3+θ(1−s0))+αs0(1−λL)(−aθ(1−s0)(s0+2)+9s0(1−λL)) ,

D = −C1(9H
2
2E2 + 6H2

2F2 + 2G2H1H2),

E = −12A1(9H
2
2E2 + 6H2

2F2 + 2G2H1H2) + C1(6H
2
2E2 + 6H2

2F2 + 2G2H1H2)

+12A2(9H
2
2E1 + 6H2

2F1 + 2G2H1H2),

F = 2A1(6H
2
2E2 + 6H2

2F2 + 2G2H1H2) − C1H
2
2E2 + 6H2

2E2

−2A2(6H
2
2E1 + 6H2

2F1 + 2G2H1H2),

R11 = −D
C , R12 = − 12BR11+E

C , R13 = − 24AR11+2BR12+F
C ,

K11 = 1
(λ2−μ2) [

4H2
2 (E2A1−E1A2)

A − 12.R11 − 2R12 + (R11 + R12 + R13)μ
2],

K12 = 1
(−λ2+μ2) [

4H2
2 (E2A1−E1A2)

A − 12.R11 − 2R12 + (R11 + R12 + R13)λ
2],

K21 = −K11(B2λ
2+D2)

A2λ2 , K22 = −K12(B2μ
2+D2)

A2μ2 ,

R21 = −D2R12−6H2
2E2−6H2

2F2−2G2H1H2

12A2
, R22 = − 2.B2R12+D2R13+E2H

2
2

2.A2
,

N1 = Gα
54Er

(
K21λ

2 cosh(λ y)
cosh(λ) + K22μ

2 cosh(μ y)
coshμ + 12R21y

2 + 2S22

)
+aNs0(1−4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+ R21

(
y4 − 1

)
+ S22

(
y2 − 1

)]
+

(−4aθ+3s0+16aθs3
0−12a+12as2

0−12aθs0)α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + K12μ

2 cosh(μ y)
cosh(μ)

+12R11y
2 + 2R12

)
+Ns0(1+2 s0) aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+K12

(
cosh(μ y)
cosh(μ) − 1

)
+R11

(
y4 − 1

)
+R12

(
y2 − 1

)]
+H2

2s0α
27 [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ + 3(−2as0 + 3s0 + 6as0

2 − 4a)](3y2 − 1)2

− 2as0α
9 H2

2[(2s0 +1)(3s2
0 − 5s0 − 4)θ− 6(s0 +2)]y2(y2 − 1)+ 4μ2 H1H2s0

2y2
(
y2 − 1

)
,

N2 = − Gα
54Er

(
K21λ

2 coshλ y
cosh(λ) + K22μ

2 coshμ y
coshμ + 12R21y

2 + 2S22

)
+aNs0(−1+4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+R21

(
y4 − 1

)
+ S22

(
y2 − 1

) ]
+

(8aθ+12a−3+8as0−16as2
0−12s0)s0α

108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + K12μ

2 cosh(μ y)
cosh(μ) + 12R11y

2 + 2R11

)
+ 2Ns0(1−s0)aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ K12

(
cosh(μ y)
cosh(μ) − 1

)
+ R11

(
y4 − 1

)
+ R11

(
y2 − 1

)]
+

H2
2s0α

27Er [−2a(s0 − 1)(2s0 + 1)(6s0 + 1)θ + 3(4as0 − 3s0 − 6as0
2 + 2a)](3y2 − 1)2

− 2as0H2
2α

9Er [−(2s0 + 1)(3s2
0 − 4s0 − 2)θ + 3(s0 + 2)]y2(y2 − 1)

+4 (μ1 + μ2)H1s0y
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.
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Appendix F. The coefficients of the steady solutions in normal anchor-
ing in Poiseuille flows.

H1 = 6(s0+2)(θ(2s0+1)+3)
4(μ1s0+3η)(s0+2)(θ(2s0+1)+3)+αs0(1+λL)(aθ(s0+2)(2s0+1)+9s0(1+λL)) ,

H2 = 9(1+λL)
4(μ1s0+3η)(s0+2)(θ(2s0+1)+3)+αs0(1+λL)(aθ(s0+2)(2s0+1)+9s0(1+λL)) ,

R1 = − 2(9H2
2E1+6H2

2F1+2G1H1H2)+(9H2
2E2+6H2

2F2+2G2H1H2)
2D1+D2

,

S1 =
2(6H2

2E1+6H2
2F1+2G1H1H2)+(6H2

2E2+6H2
2F2+2G2H1H2)−12(2B1+B2)R1

2D1+D2
,

T1 = − 2H2
2E1+2H2

2E2+2(2B1+B2)S1

2D1+D2
, K11 = −(R1 + S1 + T1),

K21 = −B1λ
2+D1

A1λ2+C1
K11, R2 = −D1R1+(9H2

2E1+6H2
2F1+2G1H1H2)

C1
,

S2 =
(6H2

2E1+6H2
2F1+2G1H1H2)−12A1R2−12R1B1−D1S1

C1
,

T2 =
H2

2E1+2A1S2+2S1B1+D1T1

C1
, K22 = −(K21 + R2 + S2 + T2),

N1 = Gα
54Er

(
K21λ

2 cosh(λ y)
cosh(λ) + K22μ

2 cosh(μ y)
coshμ + 12R2y

2 + 2S2

)
+aNs0(1−4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+R2

(
y4 − 1

)
+ S2

(
y2 − 1

) ]
+

(−4aθ+3s0+16aθs3
0−12a+12as2

0−12aθs0)α
108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 12R1y

2 + 2S1

)
+Ns0(1+2 s0) aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R1

(
y4 − 1

)
+ S1

(
y2 − 1

)]
+H2

2s0α
27 [4a(s0 − 1)(2s0 + 1)(3s0 + 1)θ + 3(−2as0 + 3s0 + 6as0

2 − 4a)](3y2 − 1)2

− 2as0α
9 H2

2[(2s0 + 1)(3s2
0 − 5s0 − 4)θ − 6(s0 + 2)]y2(y2−1)+4μ2 H1H2s0

2y2
(
y2−1

)
,

N2 = − Gα
54Er

(
K21λ

2 coshλ y
cosh(λ) + K22μ

2 coshμ y
coshμ + 12R2y

2 + 2S2

)
+aNs0(−1+4 s0)α

3

[
K21

(
cosh(λ y)
cosh(λ) − 1

)
+ K22

(
cosh(μ y)
cosh(μ) − 1

)
+R2

(
y4 − 1

)
+ S2

(
y2 − 1

) ]
+

(8aθ+12a−3+8as0−16as2
0−12s0)s0α

108Er

(
K11λ

2 cosh(λ y)
cosh(λ) + 12R1y

2 + 2S1

)
+ 2Ns0(1−s0)aα

3

[
K11

(
cosh(λ y)
cosh(λ) − 1

)
+ R1

(
y4 − 1

)
+ S1

(
y2 − 1

)]
+

H2
2as0α
27Er [−2a(s0 − 1)(2s0 + 1)(6s0 + 1)θ + 3(4as0 − 3s0 − 6as0

2 + 2a)](3y2 − 1)2

− 2as0H2
2α

9Er [−(2s0 + 1)(3s2
0 − 4s0 − 2)θ + 3(s0 + 2)]y2(y2 − 1)

+4 (μ1 + μ2)H1s0y
2
(
y2 − 1

)
,

G = 2aθ + 4aθs2
0 + 6as0 − 3s0 − 12as2

0 − 16aθs3
0 + 10aθs0 + 6a.
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DRAW RESONANCE REVISITED∗

MICHAEL RENARDY†

Abstract. We consider the problem of isothermal fiber spinning in a Newtonian fluid with no
inertia. In particular, we focus on the effect of the downstream boundary condition. For prescribed
velocity, it is well known that an instability known as draw resonance occurs at draw ratios in excess
of about 20.2. We shall revisit this problem. Using the closed form solution of the differential
equation, we shall show that an infinite family of eigenvalues exists and discuss its asymptotics. We
also discuss other boundary conditions. If the force in the filament is prescribed, no eigenvalues exist,
and the problem is stable at all draw ratios. If the area of the cross section is prescribed downstream,
on the other hand, the problem is unstable at any draw ratio. Finally, we discuss the stability when
the drawing speed is controlled in response to changes in cross section or force.

Key words. extensional flow, fiber spinning, draw resonance
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1. Formulation of the problem. Fiber spinning is a manufacturing process
used in making textile or glass fibers. A highly viscous fluid is extruded vertically
from a nozzle. It is then cooled by the ambient air and solidifies. The solidified fiber
is then wound on a spool at the end of the spinline.

Many physical effects are potentially significant in the study of this problem:
viscosity, inertia, gravity, surface tension, cooling, elasticity, and air drag may all be
relevant. In this paper, we focus on the simplest model and study the influence of
varying boundary conditions. We assume that the force in the fiber is purely due to
viscous effects, and we ignore temperature dependence. We use a one-dimensional
model based on slender geometry and cross-sectional averaging. Let u(x, t) denote
the axial speed and A(x, t) the area of the cross section. The spinneret is located at
x = 0 and the spool is at x = L. The conservation of mass implies that

At + (uA)x = 0.(1)

If only viscous forces contribute, the tension in the fiber is given by 3ηAux, where η
is the viscosity. The requirement of constant tension in the fiber leads to

(Aux)x = 0.(2)

Boundary conditions in industrial processes are notoriously ill defined. It is cus-
tomary to assume that A and u are given at the spinneret: A(0, t) = A0, u(0, t) = u0.
This of course, is an idealization; in reality there is a transition to an upstream flow,
which cannot be described by the one-dimensional model. At the spool, it is sensible
to prescribe either the speed or the force with which the fiber is wound. One might
also consider control strategies where the flow is monitored and the speed of the spool
adjusted to achieve a given objective. Since the goal of the manufacturing process is
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a fiber of uniform cross section, a control strategy might aim to keep the cross section
constant. We shall consider what happens in the case of perfect success of such a
control, i.e., when constant area is imposed as a boundary condition. We shall thus
focus on the following three boundary conditions:

1. Prescribed speed: u(L, t) = u1.
2. Prescribed force: A(L, t)ux(L, t) = F , where F denotes the force divided by

the elongational viscosity 3η.
3. Prescribed cross section: A(L, t) = A1.

It is easy to see that the problem admits the steady solution

us(x) = u0e
kx, As(x) = A0e

−kx,(3)

where, respectively,

ekL = u1/u0, k = F/(A0u0), ekL = A0/A1(4)

for the three choices of boundary conditions. The dimensionless quantity q = ekL is
called the draw ratio.

2. Linear stability. The stability of the steady solution was first analyzed by
Kase, Matsuo, and Yoshimoto [5] and Pearson and Matovich [6]. For subsequent
reviews and textbook chapters, see also [2, 7, 9, 10]. We note that much of the litera-
ture on draw resonance is concerned with the effect of additional physical mechanism,
which are not included in our analysis. Inertia, elasticity, and cooling generally have
a stabilizing effect, while surface tension and shear thinning are destabilizing. This
paper, on the other hand, will focus purely on the case of Stokes flow and investigate
the effect of varying the downstream boundary condition. In the case of prescribed
speed, an instability known as draw resonance is found for draw ratios in excess of
about 20.2, while no such instability is found for prescribed force. In [8], the case of
a linear combination of speed and force is also investigated; as expected, the stability
threshold increases from 20.2 to infinity as the relevant coefficient is varied. The case
of prescribed cross section does not seem to have been analyzed in the literature. We
shall see that this boundary condition leads to instability at all draw ratios.

We linearize at the steady solution and consider exponentially varying perturba-
tions:

u(x, t) = us(x) + ũ(x)eλt, A(x, t) = As(x) + ã(x)eλt.(5)

The linearized equations are

λã + (usã + Asũ)x = 0, (Asũx + ã(us)x)x = 0.(6)

It is advantageous to make the transformation z = ekx. The steady solution
then takes the form us(z) = u0z, As(z) = A0/z. The linearized equations (6) are
transformed to

λã + kz(zu0ã + A0ũ/z)z = 0, (A0ũz + zu0ã)z = 0.(7)

We can rewrite these equations in the form

λ

ku0

ã

A0
+ z

ã

A0
+ z2 ãz

A0
− ũ

u0z
+

ũz

u0
= 0,

ũz

u0
+ z

ã

A0
= C1.(8)
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We simplify by setting λ/(ku0) = μ, ã/A0 = a, ũ/u0 = u. This is equivalent to
nondimensionalizing the equations by scaling the velocity and area with their steady
state values at the spinneret, length along the filament with 1/k, and time with
1/(ku0). The resulting dimensionless equations are

μa + za + z2az −
u

z
+ uz = 0,

uz + za = C1.(9)

We can now solve the second equation for a:

a =
C1 − uz

z
.(10)

After inserting this into the first equation, we obtain

−u + (−μ + z)uz + μC1 − z2uzz = 0.(11)

Clearly, u = μC1 is a particular solution, and u = z−μ is a particular solution of the
homogeneous equation. We can then obtain the full solution using the reduction of
order method:

u(z) = μC1 + (z − μ)C2 + C3(−zeμ/z + (μ− z)Ei(μ/z));(12)

see also [8]. Here Ei is the exponential integral defined for z > 0 by

Ei(x) =

∫ z

−∞

et

t
dt,(13)

where the integral is understood in the principal value sense (see Ch. 5 of [1]).
We have the boundary conditions u(1) = a(1) = 0 at the spinneret and one of

the following three at the take-up point:
1. Fixed speed: u(q) = 0.
2. Fixed force: uz(q) + qa(q) = 0.
3. Fixed cross section: a(q) = 0.

The requirement of a nontrivial solution leads to the following characteristic equa-
tions. For fixed speed,

(eμ − eμ/q)q + (q − μ)(Ei(μ) − Ei(μ/q)) = 0.(14)

For fixed force,

eμ = 0.(15)

For fixed cross section,

Ei(μ) − Ei(μ/q) = 0.(16)

3. Remarks on well-posedness. For the case of fixed force, no eigenvalues
exist, and indeed it can be shown for this case that any initial disturbance will decay
to zero in finite time. To see this, we note that the linearized equations (9) (without
the assumption of exponential time dependence) are

at + z2az −
u

z
= 0,

uz + za = 0.(17)
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We can integrate the second of these equations to find

u = −
∫ z

1

ya dy.(18)

For any given initial data a(z, 0) = a0(z), we can now solve the equation using the
iterative procedure

u1 = 0,

ant + z2anz − un

z
= 0, an(1, t) = 0, an(z, 0) = a0(z),

un+1 = −
∫ x

0

yan dy.(19)

It follows by induction that

a(z, t) = 0(20)

for 1 < z < Z(t), where

Z ′(t) = Z(t)2, Z(0) = 1.(21)

The solution will thus become identically zero as soon as Z(t) reaches the value q.
For the case of prescribed speed, a rigorous proof of well-posedness and spectrally

determined growth can be given along similar lines as [4]. The case of prescribed
cross section is somewhat different and will be discussed now. In this case, the linear
problem, again without the assumption of exponential time dependence, is

at + za + z2az −
u

z
+ uz = 0,

uz + za = φ(t),(22)

where φ(t) is a function to be determined after the boundary conditions are imposed.
We can integrate the second equation to find

u(z, t) = −
∫ z

1

ya(y, t) dy + (z − 1)φ(t)(23)

and insert this result into the first equation. This yields

at + z2az +
1

z

∫ z

1

ya dy +
φ(t)

z
= 0.(24)

We next set a = b + γ/z, where γ is independent of z, and b satisfies∫ q

1

b(z, t)χ(z) dz,(25)

with χ to be determined. We shall denote the projections of a onto b and γ/z by P
and Q.

We want χ to be such that we also have∫ q

1

z2bzχ(z) dz = 0.(26)
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We note that the boundary condition a(1, t) = a(q, t) = 0 leads to b(1, t) = qb(q, t).
We now integrate by parts to find∫ q

1

z2bzχdz = −
∫ q

1

b(z2χ)′ dz + q2b(q, t)χ(q) − b(1, t)χ(1).(27)

We achieve our objective if

d

dz
(z2χ) = Kχ, χ(1) = qχ(q)(28)

for some constant K. This leads to

χ(z) =
1

z2
e−K/z, e−K =

1

q
e−K/q.(29)

With χ thus determined, (24) can be decomposed as follows:

γt − γ + zQ

(
1

z

∫ z

1

yb dy

)
+ φ(t) = 0,

bt + z2bz + P

(
1

z

∫ z

1

yb dy

)
= 0.(30)

The solution procedure is now obvious. We solve the second equation for b with the
boundary condition b(1, t) = qb(q, t), and after b is determined, the first equation, and
the condition γ(t) = −b(1, t), determine φ(t). Well-posedness and spectral growth are
obvious from this reformulation of the equations. We note that the boundary condition
for b is a two-point condition rather than an upstream condition. This is reflected in
the nature of the eigenspectrum below; the limit of the real part of large eigenvalues
will be a finite number rather than −∞.

We note that a general discussion of boundary conditions for the hyperbolic sys-
tems arising in viscoelastic flows is given in [3]; in the context of that discussion the
Newtonian case is degenerate, even if inertia is included.

4. Asymptotics of large eigenvalues. In this section, we focus on the asymp-
totic behavior of large eigenvalues. It is instructive to look at this case for a number
of reasons. As we shall see, some instabilities can be predicted from the analysis of
this limit. The asymptotic formula also gives insights into the qualitative nature of
the eigenspectrum; it shows that there are infinitely many eigenvalues and that they
line up along a curve and shows what the approximate spacing is.

We begin with the simpler case of fixed cross section.
We use the asymptotic expansion of the exponential integral for large argument

[1]:

Ei(μ) = πi sgn(Imμ) +
eμ

μ

(
1 + O

(
1

μ

))
.(31)

Using this, we can approximate the characteristic equation by

eμ = qeμ/q,(32)

which leads to

μ =
q

q − 1
(2nπi + ln q).(33)
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Since ln q/(q − 1) is positive, we find an infinite family of unstable eigenvalues for
any value of q. For q = 2 the following table compares the eigenvalues found from
the asymptotic formula (33) with exact roots of the characteristic equation found by
Newton’s method:

n Result from (33) Exact eigenvalue
1 1.38629 + 12.5664i 1.35405 + 12.42i
2 1.38629 + 25.1327i 1.37705 + 25.0552i
3 1.38629 + 37.6991i 1.38204 + 37.6467i
4 1.38629 + 50.2655i 1.38387 + 50.226i
5 1.38629 + 62.8319i 1.38473 + 62.8002i

For the case of fixed speed, we need to carry the approximation of the exponential
integral a little further:

Ei(μ) = πi sgn(Imμ) +
eμ

μ

(
1 +

1

μ
+

2

μ2
+ O

(
1

μ3

))
.(34)

Using this, we obtain the approximate characteristic equation

eμ−μ/q = − q3

(q − 1)μ2
.(35)

For large |μ|, we obtain the following asymptotic formula for the eigenvalues

μn =
q

q − 1

(
2nπi + ln

(
q3

q − 1

)
− 2 ln

(
2nπ

q

q − 1

))
.(36)

Here n is any integer. For n → ∞, the real parts of these eigenvalues tend to −∞
logarithmically, i.e., they are stable.

Since the asymptotic approximation depends on |μ/q| being large in addition to
|μ|, the first few eigenvalues are predicted poorly if q is large. The following table
illustrates this behavior for q = 20.218, the value at which onset of draw resonance
occurs:

n μn given by (36) Exact eigenvalue
1 2.40565 + 6.61013i 4.66015i
2 0.947223 + 13.2203i −0.738622 + 11.4532i
3 0.094096 + 19.8304i −1.20379 + 18.2453i
4 −0.511207 + 26.4405i −1.55854 + 25.0014i
5 −0.980716 + 33.0506i −1.85118 + 31.7307i
10 −2.43915 + 66.1013i −2.8734 + 65.1607i
20 −3.89758 + 132.203i −4.0729 + 131.605i
50 −5.82551 + 330.506i −5.86414 + 330.225i

Another limit which can be approached by asymptotics is that of large draw ratio. If
we consider the case μ → ∞, q → ∞ in (14) with the expectation that μ/q → 0, the
balance of leading order terms yields

eμ + ln q = 0,(37)

i.e.,

μn = (2n− 1)iπ + ln ln q.(38)

Since q must be really large for ln ln q to be considered “large,” this approximation is
not useful in practice. For q = 5 ∗ 108, a totally unrealistic value of course, we have

iπ + ln ln q = 2.99724 + 3.14159i, 3iπ + ln ln q = 2.99724 + 9.42478i,(39)

compared to exact eigenvalues of 2.72203+3.471i and 2.76567+9.63623i, respectively.
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5. Control strategies. In this section, we consider how the onset of draw res-
onance is affected if we add a control which adjusts the drawing speed in response to
observed fluctuations. Since the goal of the manufacturing process is a uniform thread,
it seems natural to change the speed in response to fluctuations in the cross-sectional
area. This leads to a downstream boundary condition

u(q) − εa(q)(40)

to be imposed on (9). Intuitively, we would be tempted to increase the drawing speed
when the cross section becomes larger, i.e., ε > 0.

The resulting characteristic equation is

(eμ − eμ/q)q +

(
q +

ε

q
− μ

)
(Ei(μ) − Ei(μ/q)) = 0.(41)

The asymptotic behavior of the eigenvalues can be discussed by the same methods as
above. We obtain

μn ∼ q

q − 1

(
2πni + ln

(
ε

2nπq

)
− sgn(ε)

iπ

2

)
.(42)

For large n, these eigenvalues become stable.
Next, we consider the onset value for draw resonance as a function of ε. The

results are summarized in the following table:

ε Critical draw ratio
0 20.218
10 18.872
20 17.224
30 14.904

Contrary to intuition, the effect of the control is destabililizing, and the critical draw
ratio decreases. For negative ε, if we just track the eigenvalue that is responsible for
draw resonance at ε = 0, the critical draw ratio seems to increase:

ε Critical draw ratio
−20000 200.00
−10000 147.10
−5000 109.13
−1000 57.324
−500 44.843
−100 28.536
−50 25.056
−20 22.420
−10 21.3817

It would be wrong to think, however, that we can achieve stability at any draw ratio
by choosing ε large and negative. In fact, there are new instabilities at low draw ratios
when |ε| is large. We can see this by looking at the asymptotic behavior of eigenvalues
assuming that both |μ| and |ε| are large. The result is

μn ∼ q

q − 1

(
2πin + ln

(
εq

ε + 2πinq(q − 1)

))
.(43)

For q = 4, ε = −100, for instance, this formula yields μ1 = 1.54832 + 9.23897i,
while the actual eigenvalue is 1.21466 + 9.25047i. The instability resulting from this
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eigenvalue persists for q < 8.01516. We thus have two separate instabilities, one
for low draw ratio and another for high draw ratio. The next table shows the first
eigenvalue for ε = −100 as a function of the draw ratio q (the higher eigenvalues are
more stable):

q First eigenvalue
2 1.33788 + 12.9402i
3 1.40897 + 10.04i
4 1.21466 + 9.25047i
6 0.579954 + 8.55471i
8 0.004134 + 8.08557i
10 −0.533251 + 7.66538i
15 −1.59346 + 5.79611i
20 −0.601555 + 4.77314i
25 −0.173004 + 4.58841i
30 0.0558642 + 4.49297i
40 0.31093 + 4.37887i

Another control strategy is to monitor the force in the thread and change the drawing
speed in response. This leads to the boundary condition

u(q) + ε(u′(q) + qa(q)) = 0.(44)

This boundary condition was also considered in [8]. The resulting characteristic equa-
tion is

(eμ − eμ/q)q + (q − μ)(Ei(μ) − Ei(μ/q)) + εeμ = 0.(45)

The behavior of large eigenvalues becomes

μn ∼ q

q − 1

(
2nπi + ln

(
q3

q + ε− 1

)
− 2 ln

(
2nπ

q

q − 1

))
.(46)

We see from this asymptotic formula that a positive ε is stabilizing, as would heuris-
tically be expected. The effect on draw resonance follows the same trend, and the
results show no surprises.

ε Critical draw ratio
−5 5.387
−2 16.786
0 20.218
5 26.561
10 31.632
20 40.137
50 60.37
100 87.468

6. Conclusions. We have investigated the simplest model of fiber spinning in a
viscous fluid, which includes only viscous forces, neglecting all other effects. In this
simple case, the linear stability problem has a closed form solution in terms of an
exponential integral, which can be exploited to gain substantial qualitative insight
into the behavior of the eigenvalues. The stability of the flow depends crucially on
the choice of downstream boundary conditions. If the speed is prescribed, then, as
is well known, the flow becomes unstable beyond a critical draw ratio. On the other
hand, prescribed force leads to no instabilities, while prescribed cross section leads to
instability at all draw ratios. In terms of strategies to control instability, adjustment
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of the speed in reaction to changes in cross section has an effect opposite of what
is intuitively expected. In addition to changing the threshold for high draw ratio
instabilities, such a control also produces new instabilities at low draw ratios.
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Abstract. Hilbert formulas for an r-analytic function, defined by a generalized Cauchy–Riemann
system in the domain exterior to the contour of a spindle in the meridional cross-section plane, have
been derived. The derivation is based on the theory of Riemann boundary-value problems for analytic
functions. For numerical calculations, Fourier integrals with Hilbert formulas representing the real
and imaginary parts of the r-analytic function have been reduced to the form of regular integrals.
The problem of the axially symmetric steady motion of a rigid spindle-shaped body in a Stokes fluid
has been solved, and the pressure in the fluid has been expressed analytically based on a Hilbert
formula. As an illustration, streamlines about the body, vortex and pressure functions at the contour
of the body, and the drag force, exerted on the body by the fluid, have been calculated.

Key words. Hilbert formula, r-analytic function, Riemann boundary-value problem, analytic
function, spindle, bipolar coordinates, Fourier integral transform, Lame equation, Stokes equations,
pressure, vorticity, drag force
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1. Introduction. This paper derives Hilbert formulas for an r-analytic function
in the domain exterior to the contour of a spindle in the meridional cross-section plane
and applies these formulas in a hydrodynamic problem of axially symmetric Stokes
flow about a rigid spindle-shaped body. So-called r-analytic functions are a spe-
cial case of pseudoanalytic functions [2, 22] or so-called p-analytic and (p, q)-analytic
functions introduced by Polozhii [17]. For a given positive continuously differentiable
function p = p(x, y), a p-analytic function F (x, y) = u(x, y) + i v(x, y) is defined by
the generalized Cauchy–Riemann system

(1)
∂u

∂x
=

1
p

∂v

∂y
,

∂u

∂y
= −1

p

∂v

∂x
,

where i =
√
−1. This system is encountered in different areas of mathematical physics,

in particular, the theory of elasticity [6, 17, 21], hydrodynamics [21, 28, 30], and
quantum mechanics [12].

We consider a special case of system (1) from the linear theory of elasticity and
hydrodynamics of Stokes flows. Let u be the displacement vector of an isotropic
elastic medium, characterized by Poisson number m ∈ [2,+∞). In the framework
of the linear theory of elasticity, equilibrium of the medium is governed by Lame
equation

(2) 2 m−1
m−2 grad divu− curl curlu = 0.
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For the vector field, u, divergence, θ, and vorticity, ω, are two fundamental charac-
teristics that we introduce by

θ = −2 m−1
m−2 divu,(3)

ω = curlu.(4)

In the case of m = 2 and divu = 0, the function θ is defined as a finite limit of
expression −2m−1

m−2 divu under m→ 2 and divu→ 0, and Lame equation (2) becomes
mathematically identical to the Stokes model for a viscous incompressible fluid under
low Reynolds numbers (so-called Stokes fluid). In this case, the displacement vector,
u, corresponds to the vector of velocity of fluid particles, and θ corresponds to the
pressure P, i.e., θ = P/ρ, where ρ is the shear viscosity. The Stokes model is given
by

(5)

{
curl (curlu) = − grad θ,

divu = 0.

This model can also be obtained by linearizing Navier equations with the zero Reynolds
number [8].

In terms of θ and ω, Lame equation (2) and the first equation in Stokes model
(5) take the form

(6) grad θ = − curl ω.

Relations (3), (4), and (6) imply that θ and ω are harmonic functions. Indeed, ∆ θ =
div grad θ = −div curl ω ≡ 0, and curl curl ω = − curl grad θ ≡ 0, where ∆ = ∇2 is
the harmonic operator. Since div ω ≡ 0, we have ∆ ω = grad div ω − curl curl ω = 0.
These relations are used for constructing exact solutions to Lame equation (2) and
Stokes model (5); see [21].

In planar problems, the vorticity vector has only one nonzero component. Suppose
a problem is considered in the plane xy in the system of cartesian coordinates (x, y, z);
then ω = (0, 0, ωz). In this case, (6) reduces to the Cauchy–Riemann system for
an analytic function F = θ + i ωz, and the vector u is expressed by the Kolosov–
Muskhelishvili formulas; see, for example, [21]. In axially symmetric three-dimensional
(3-D) problems, the vorticity vector can be represented by a scalar vortex function ω,
and (6) reduces to the generalized Cauchy–Riemann system. Let (r, ϕ, z) be a system
of cylindric coordinates with basis (er, eϕ,k), and let axis z determine the axis of
symmetry. The axially symmetric case means that the vector u is independent of
angular coordinate ϕ, and the vorticity vector can be represented by ω = ω eϕ, where
ω is the vortex function. Here, θ and ω depend only upon r and z. Equation (6)
reduces to a special case of the generalized Cauchy–Riemann system with p(r, z) = r,
i.e.,

(7)
∂θ

∂r
=

1
r

∂

∂z
(rω) ,

∂θ

∂z
= −1

r

∂

∂r
(rω) .

Function F (r, z) = θ(r, z) + i r ω(r, z) is called r-analytic if it satisfies system (7).
Functions θ and r ω are considered to be real and imaginary parts of the r-analytic
function, respectively. Let ∆k define so-called k-harmonic operator

(8) ∆k =
∂2

∂r2
+

1
r

∂

∂r
+

∂2

∂z2
− k2

r2
,
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where ∆ ≡ ∆0. System (7) implies that θ(r, z) and ω(r, z) are harmonic and 1-
harmonic functions, respectively, i.e.,

(9) ∆ θ = 0, ∆1ω = 0.

Suppose D is a bounded domain in the meridional cross-section plane rz with smooth
boundary ∂D, and suppose boundary values of functions θ and ω at ∂D are given. Es-
tablishing existence and uniqueness of solutions to (9) is a Dirichlet problem, which is
discussed in 3-D potential theory [23]. For the domain exterior to D, a harmonic
function vanishing at infinity in 3-D space is uniquely determined by its bound-
ary value at ∂D. For domains determined by the surface of bodies of revolution
in the meridional cross-section plane, Polozhii [17] obtained integral representations
for p-analytic functions via analytic functions of complex variable and generalized
Kolosov–Muskhelishvili formulas for axially symmetric problems of the linear theory
of elasticity.

Of special interest is the problem of finding the boundary value of the imaginary
part of an r-analytic function via the boundary value of its real part, and vice versa.
If harmonic functions θ and ω are represented by integrals with densities that are an-
alytic functions, then the problem reduces to finding corresponding relations between
those analytic functions. These relations are called Hilbert formulas. Integral repre-
sentations for r-analytic functions in domains exterior to the contour of lens, spindle,
torus, and two spheres in the meridional cross-section plane are discussed in [21]. In
our previous work [28], we obtained Hilbert formulas for the domain exterior to the
contour of a spindle by integrating the generalized Cauchy–Riemann system (7) in
bipolar coordinates. In this paper we derive Hilbert formulas for the same domain
based on the theory of Riemann boundary-value problems for analytic functions. For
details of this theory, see [4]. We represent functions θ and ω by Fourier integrals in
bipolar coordinates and reduce system (7) to a problem for a meromorphic function
on three parallel contours in the infinite strip |Reµ| ≤ 1. Further, using conformal
mapping, we reformulate this problem as the Riemann boundary-value problem for
finding a meromorphic function in the plane with the branch cut along the segment
[−1, 1]. A solution to this problem is represented by a Cauchy integral, and boundary
values of this solution at the upper and lower banks of the branch cut are expressed by
the Sokhotski formulas [4]. For numerical calculations, representations of r-analytic
functions in the form of Fourier integrals with Hilbert formulas reduce to the form
of regular integrals. In our previous work [29], we found a nonhomogeneous solu-
tion to the problem on three parallel contours using complex Fourier transform. In
this paper, we apply the approach of Riemann boundary-value problems to obtaining
the nonhomogeneous solution from the class of meromorphic functions with only two
simple poles at µ = ± 1

2 in the strip |Reµ| ≤ 1 and to analyzing the existence of
corresponding nontrivial homogeneous solutions.

Hilbert formulas are applied for finding the pressure function in axially symmetric
problems of Stokes flows. As discussed, Lame equation (2) with m = 2 corresponds to
the model for a Stokes fluid, and θ corresponds to the pressure in the fluid. However,
there is a crucial difference in solving Lame equation (2) with m ∈ (2,+∞) and Stokes
model (5). Namely, if m ∈ (2,+∞), and u is already known, then θ can readily be
determined by (3). But relation (3) cannot be used for determining θ in the case of
m = 2, since divu = 0. Thus, in axially symmetric problems of Stokes flows, we use
Hilbert formulas for r-analytic functions to express θ via ω. As an illustration, we
consider the problem of axially symmetric steady motion of a rigid spindle-shaped
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body in a Stokes fluid. Stokes [19] was the first to study steady motion of a rigid
sphere in a viscous incompressible fluid under low Reynolds numbers. Constructing
analytical solutions to similar problems with rigid bodies of axially symmetric shape
is mainly based on a stream function approach [8, 13, 14]. There are extensive studies
of axially symmetric Stokes flows about spherical cap [3, 21], two spheres [18, 27],
torus [5, 7, 11, 16, 20, 21, 26], lens-shaped body [3, 21, 24], and spindle-shaped body
[15, 28, 30]. However, analytic formulas for the pressure function in these studies were
obtained only for torus [21] and spindle-shaped body [28]. For detailed discussion of
these issues, see [21]. In this paper we solve the problem of steady axially symmetric
motion of a rigid spindle-shaped body in a Stokes fluid using the stream function that
we proposed in [30]. Based on Hilbert formulas, we obtain an analytic expression
for the pressure in the fluid, which coincides with that derived in our work [28].
To illustrate obtained results, we calculate streamlines about the body, vortex and
pressure functions at the contour of the body, and the drag force exerted on the body
by the fluid.

The paper is organized as follows. Section 2 represents an r-analytic function in
the domain exterior to the contour of a spindle in the meridional cross-section plane.
Section 3 derives Hilbert formulas for r-analytic functions in the framework of the
theory of Riemann boundary-value problems for analytic functions. Section 4 reduces
Fourier integral representations of r-analytic functions with Hilbert formulas to the
form of regular integrals. Section 5 solves the problem of steady axially symmetric
motion of a rigid spindle-shaped body in a Stokes fluid. Section 6 obtains analytic
expressions for the pressure and drag force exerted on the body. Section 7 concludes
the paper. The appendix derives some auxiliary formulas.

2. An r-analytic function in the domain exterior to spindle. Let (r, ϕ, z)
be a system of cylindric coordinates with basis (er, eϕ,k), and let the z-axis be the
axis of symmetry. In the meridional cross-section plane rz, bipolar coordinates (ξ, η)
are defined by

(10) r = c
sin η

cosh ξ − cos η
, z = c

sinh ξ

cosh ξ − cos η
,

where −∞ < ξ < +∞, 0 ≤ η ≤ π, and c is a metric parameter of bipolar coordinates.
Spindle is an axially symmetric body, whose contour in the plane rz is determined by
fixing coordinate η, i.e., η = η0 (see Figure 1). For example, the surface of the spindle
for η0 = π

2 is sphere.
In the system of bipolar coordinates, derivatives ∂

∂r , ∂
∂z and the k-harmonic op-

erator ∆k, defined by (8), take the form

∂

∂r
= −1

c

(
sinh ξ sin η

∂

∂ξ
− (cosh ξ cos η − 1)

∂

∂η

)
,

∂

∂z
= −1

c

(
(cosh ξ cos η − 1)

∂

∂ξ
+ sinh ξ sin η

∂

∂η

)
,

(11)

∆k =
(cosh ξ − cos η)2

c2

×
(

∂2

∂ξ2
+

∂2

∂η2
− sinh ξ

cosh ξ − cos η
∂

∂ξ
+
(

cot η − sin η

cosh ξ − cos η

)
∂

∂η
− k2

sin2 η

)
.

Let F (r, z) = θ(r, z) + i r ω(r, z) be an r-analytic function satisfying system (7).
In this case, θ and ω are harmonic and 1-harmonic functions defined by (9). In the
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Fig. 1. Bipolar coordinates and spindle-shaped body.

domain exterior to the contour of spindle in the plane rz, an arbitrary k-harmonic
function is represented by a Fourier integral with respect to variable ξ. Thus, in
bipolar coordinates, functions θ(ξ, η) and ω(ξ, η) take the form (see [10])

(12) θ(ξ, η) =
1

2πi

√
cosh ξ − cos η

+i∞ˆ

−i∞

X(µ) P− 1
2 +µ(cos η) e−ξµdµ, 0 ≤ η ≤ η0,

(13) ω(ξ, η) =
1

2πi

√
cosh ξ − cos η

+i∞ˆ

−i∞

Y (µ) P(1)

− 1
2 +µ

(cos η) e−ξµdµ, 0 ≤ η ≤ η0,

where P(k)

− 1
2 +µ

(cos η) is the associated Legendre function of the first kind of complex
index µ; see [1]. For k = 0, the upper index (k) is omitted. Since P− 1

2 +iτ (cos η) ∼
1√

2π sin η
eη|τ | and P(1)

− 1
2 +iτ

(cos η) ∼ |τ |√
2π sin η

eη|τ | at τ → ±∞, we require functions
X(iτ) and Y (iτ) in Fourier integrals (12) and (13) to have exponentially fast conver-
gence Ce−γ|τ | at τ → ±∞, where C is a constant, and γ > η0.

Note that the harmonic functions θ and ω represented by (12) and (13), respec-
tively, vanish at infinity

√
r2 + z2 →∞, that is, at ξ → 0 and η → 0. This guarantees

uniqueness of solutions to a Dirichlet problem for (9) in the domain of consideration.

3. Problem for an analytic function on three parallel contours. Let
M[a,b] be the space of functions that are meromorphic in the strip a ≤ Reµ ≤ b

and have exponentially fast convergence at |µ| → ∞, i.e., vanish as Ce−γ|τ |, where C
is a constant, and γ > η0. Functions from the space M[a,b] may have simple poles at
µ = ± 1

2 only.
Suppose X(µ), Y (µ) ∈ M[−1,1], and η ∈ [0, η0]. Under these assumptions, the

following relations hold [29]:
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(14)

∂θ

∂r
=

1
4πic

√
cosh ξ − cos η

+i∞ˆ

−i∞

(X(µ + 1)− 2X(µ) + X(µ− 1)) P(1)

− 1
2 +µ

(cos η)e−ξµdµ,

(15)

∂ω

∂z
=

1
4πic

√
cosh ξ − cos η

+i∞ˆ

−i∞

((
µ + 3

2

)
Y (µ + 1)− 2µY (µ) +

(
µ− 3

2

)
Y (µ− 1)

)
× P(1)

− 1
2 +µ

(cos η)e−ξµdµ.

The derivation of formulas (14) and (15) is presented in the appendix.
Note that because function P(1)

− 1
2 +µ

(cos η) has simple zeroes at µ = ± 1
2 , functions

X(µ) and Y (µ) are allowed to have simple poles at µ = ± 1
2 . Substituting (14) and

(15) into the first equation of system (7), we obtain an equation for X(µ) and Y (µ):
(16)
X(µ + 1)− 2X(µ) + X(µ− 1) =

(
µ + 3

2

)
Y (µ + 1)− 2µY (µ) +

(
µ− 3

2

)
Y (µ− 1),

where µ = iτ , τ ∈ R.
Equation (16) is the problem on three parallel contours for finding either X(µ)

given Y (µ) at the contour Reµ = 0 or Y (µ) given X(µ) at Reµ = 0. The uniqueness
of a solution to (16) with respect to either X(µ) or Y (µ) reduces to proving that a
corresponding homogeneous equation has only trivial solution. We will also show that
if X(µ), Y (µ) ∈M[−1,1] solve (16), then the function X(µ) should necessarily satisfy

an additional condition
ˆ +i∞

−i∞
X(µ) dµ = 0.

3.1. Hilbert formula for the real part of r-analytic function. In this
section, we solve (16) with respect to X(µ) ∈M[−1,1] assuming that Y (µ) ∈M[−1,1]

is given. If X(µ) ∈ M[−1,1] solves (16), then X(µ) is unique. Indeed, suppose that
X1(µ) ∈ M[−1,1] and X2(µ) ∈ M[−1,1] both solve (16), and X1(µ) �= X2(µ). This
means that X0(µ) = X1(µ)−X2(µ) ∈M[−1,1] is a solution to homogeneous equation
(16) such that X0(µ) �≡ 0. We prove the following proposition.

Proposition 1 (homogeneous solution X0(µ)). The only X0(µ) ∈ M[−1,1] that
solves homogeneous equation (16)

(17) X0(µ + 1)− 2X0(µ) + X0(µ− 1) = 0, Reµ = 0,

is zero function, i.e., X0(µ) ≡ 0.
Proof. Let a function Z(µ) be defined by

Z(µ) = X0(µ)−X0(µ− 1) and Z(µ + 1) = X0(µ + 1)−X0(µ);

then Z(µ) ∈M[0,1], and (17) reduces to

(18) Z(µ + 1)− Z(µ) = 0, Reµ = 0.

The function

(19) z = i tan(πµ)

maps the complex plane µ with the strip 0 ≤ Reµ ≤ 1 to the complex plane z with
the branch cut along the segment [−1, 1] (see Figure 2). The line µ = iτ , τ ∈ R,
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τ µ

0 1
2
1

z

0 1 t–1

π µtaniz = 

+

–

τµ i= 1 +τµ i=

Fig. 2. Function z = i tan(πµ) maps the complex plane µ with the strip 0 ≤ Reµ ≤ 1 to the
complex plane z with the branch cut along the segment [−1, 1].

corresponds to the upper bank of the branch cut, and the line µ = 1 + iτ , τ ∈ R,
corresponds to the lower bank of the branch cut with the counterclockwise orientation
as shown in Figure 2. The pole at µ = 1

2 in the complex plane µ corresponds to the
pole at infinity in the complex plane z.

Using conformal mapping (19), we introduce a function Z̃(z) in the complex plane
z such that

Z̃+(t) = Z(iτ), Z̃−(t) = Z(iτ + 1), τ ∈ R,
where Z̃+(t) and Z̃−(t) are boundary values of Z̃(z) at the upper and lower banks
of the branch cut. Problem (18) becomes a Riemann boundary-value problem for
finding the function Z̃(z), analytic in the plane z with the branch cut along the
segment [−1, 1], such that

Z̃+(t) = Z̃−(t), −1 ≤ t ≤ 1.

This means that the function Z̃(z) is analytic in the whole plane z and has the simple
pole at infinity. A solution to this problem is given by

Z̃(z) = c̃1z + c̃0,

where c̃0 and c̃1 are constants. However, since Z(µ) ∈ M[0,1], i.e., it vanishes at
|µ| → ∞, the function Z̃(z) should satisfy Z̃(±1) = 0. Consequently, c̃0 = 0 and
c̃1 = 0, and we obtain

X0(µ + 1)−X0(µ) = 0, Reµ = 0,

for X0(µ) ∈M[0,1]. This is the same problem as (18). Its only solution is X0(µ) ≡ 0.
Thus, sinceM[−1,1] ⊂M[0,1], the only solution to (17) in the space ofM[−1,1] is zero
function.

Consequently, if X(µ) ∈M[−1,1] solves (16), then it is unique.
Theorem 1 (Hilbert formula for the real part). Let the real and imaginary parts

of an r-analytic function be represented in bipolar coordinates by Fourier integrals (12)
and (13), respectively. If X(µ) ∈ M[−1,1] and Y (µ) ∈ M[−1,1], then at the contour
Reµ = 0, the function X(µ) is represented by the Hilbert formula for the real part of
the r-analytic function

(20) X(µ) = µY (µ)− i

2 cos(πµ)

+i∞ 

−i∞

Y (ν)
cos(πν)

sin[π(ν − µ)]
dν, Reµ = 0,
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where
 
means the Cauchy principal value or v.p. (i.e., valeur principale) of a singular

integral.
Proof. For Reµ = 0, equation (16) may be rewritten as

[X(µ + 1)−X(µ)] − [X(µ)−X(µ− 1)]

=
[(
µ + 3

2

)
Y (µ + 1)−

(
µ− 1

2

)
Y (µ)

]
−
[(
µ + 1

2

)
Y (µ)−

(
µ− 3

2

)
Y (µ− 1)

]
.

Introducing a new function Z(µ) by

Z(µ + 1) = [X(µ + 1)−X(µ)]−
[(
µ + 3

2

)
Y (µ + 1)−

(
µ− 1

2

)
Y (µ)

]
,

Z(µ) = [X(µ)−X(µ− 1)]−
[(
µ + 1

2

)
Y (µ)−

(
µ− 3

2

)
Y (µ− 1)

]
,

we reduce (16) to

Z(µ + 1)− Z(µ) = 0, Reµ = 0,

for Z(µ) ∈ M[0,1]. This is the same problem as (18). Its only solution is Z(µ) ≡ 0.
Consequently,

X(µ + 1)−X(µ) =
(
µ + 3

2

)
Y (µ + 1)−

(
µ− 1

2

)
Y (µ), Reµ = 0,(21)

X(µ)−X(µ− 1) =
(
µ + 1

2

)
Y (µ)−

(
µ− 3

2

)
Y (µ− 1), Reµ = 0.(22)

It is sufficient to solve only (21) for X(µ) ∈ M[0,1] given Y (µ) ∈ M[0,1]. It can be
shown that solutions to (21) and (22) provide the same X(µ) at Reµ = 0.

Representing X(µ) by

(23) X(µ) =
(
µ + 1

2

)
Y (µ) + X̂(µ),

where X̂(µ) ∈M[0,1] is a new function, we reformulate (21) for X̂(µ):

(24) X̂(µ + 1)− X̂(µ) = Y (µ), Reµ = 0.

Since X̂(µ) and Y (µ) have exponentially fast convergence at |µ| → ∞, we integrate
equation (24) at the contour Reµ = 0 and obtain

(25) Res
µ= 1

2

X̂(µ) =
1

2πi

+i∞ˆ

−i∞

Y (µ) dµ.

Using conformal mapping (19), we introduce functions X̃(z) and Ỹ (z), meromor-
phic in the complex plane z, such that

X̃+(t) = X̂(iτ), Ỹ +(t) = Y (iτ),
X̃−(t) = X̂(iτ + 1), Ỹ −(t) = Y (iτ + 1),

τ ∈ R,

where pairs X̃+(t), X̃−(t) and Ỹ +(t), Ỹ −(t) are boundary values of X̃(z) and Ỹ (z)
at the upper and lower banks of the branch cut, respectively. Note that the pole
µ = 1

2 in the complex plane µ became the pole at infinity in the complex plane z.
Problem (24) reduces to a Riemann boundary-value problem for finding the function
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X̃(z) analytic in the plane z with the branch cut along the segment [−1, 1] and having
the simple pole at infinity:

(26) X̃+(t)− X̃−(t) = −Ỹ +(t), −1 ≤ t ≤ 1.

The function X̃(z) is represented by a Cauchy integral

X̃(z) = − 1
2πi

1 

−1

Ỹ +(s)
s− z

ds + c̃1z + c̃0,

where c̃0 and c̃1 are unknown constants. The function Ỹ +(s) must satisfy Hölder
condition, i.e., |Ỹ +(t2)− Ỹ +(t1)| ≤ c′ |t2− t1|λ for all t1, t2 ∈ [−1, 1], some λ ∈ (0, 1],
and nonnegative constant c′. At points t = ±1, it converges to zero not slower than
(1− t2)

η0
2π .

Using the Sokhotski formulas, we obtain

(27) X̃+(t) = −1
2
Ỹ +(t)− 1

2πi

1 

−1

Ỹ +(s)
s− t

ds + c̃1t + c̃0.

Constants c̃0 and c̃1 are found based on the requirement X̃+(±1) = 0 and condition
Ỹ +(t)|t→±1 ∼ (1− t2)

η0
2π :

c̃0 = − 1
2πi

1 

−1

s

1− s2
Ỹ +(s) ds, c̃1 = − 1

2πi

1 

−1

1
1− s2

Ỹ +(s) ds.

Note that c̃1 satisfies c̃1 Resµ= 1
2
[i tan(πµ)] = Resµ= 1

2
X̂(µ), where Resµ= 1

2
X̂(µ) is

determined by (25). Thus, expression (27) takes the form

(28) X̃+(t) = −1
2
Ỹ +(t)− 1

2πi
(1− t2)

1 

−1

Ỹ +(s)
1− s2

ds

s− t
.

Finally, making change of variables t = i tan(πµ), Reµ = 0, and s = i tan(πν),
Re ν = 0, in (28), and substituting (28) into (23), we obtain Hilbert formula (20).
The change of variables in singular integral (28) is valid because t′(µ) = π/ cos2(πµ)
is a continuous strictly positive function at Reµ = 0 (for details see [4]).

3.2. Hilbert formula for the imaginary part of r-analytic function. Now
we solve (16) with respect to Y (µ) ∈M[−1,1] assuming that X(µ) ∈M[−1,1] is given.
As in the previous case, uniqueness of a solution Y (µ) to (16) is guaranteed by the
fact that the homogeneous equation corresponding to (16) has only trivial solution.

Proposition 2 (homogeneous solution Y0(µ)). The only Y0(µ) ∈ M[−1,1] that
solves homogeneous equation

(29)
(
µ + 3

2

)
Y0(µ + 1)− 2µY0(µ) +

(
µ− 3

2

)
Y0(µ− 1) = 0, Reµ = 0,

is zero function, i.e., Y0(µ) ≡ 0.
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Proof. Let a function Z(µ) be defined by

Z(µ + 1) =
(
µ + 3

2

)
Y0(µ + 1)−

(
µ− 1

2

)
Y0(µ),

Z(µ) =
(
µ + 1

2

)
Y0(µ)−

(
µ− 3

2

)
Y0(µ− 1);

then Z(µ) ∈ M[0,1], and (29) reduces to Z(µ + 1) − Z(µ) = 0, Reµ = 0. This
problem, being the same as (18), has only zero solution, i.e., Z(µ) ≡ 0. Consequently,
for Y0(µ) ∈M[0,1] we obtain

(30)
(
µ + 3

2

)
Y0(µ + 1)−

(
µ− 1

2

)
Y0(µ) = 0, Reµ = 0.

Multiplying (30) by
(
µ + 1

2

)
and representing Y0(µ) = 1

µ2− 1
4

Y1(µ), where Y1(µ) is
a function analytic in 0 ≤ Reµ ≤ 1 and vanishing at |µ| → ∞, we reduce equation
(30) to the problem for function Y1(µ): Y1(µ + 1)− Y1(µ) = 0, Reµ = 0. By similar
reasoning, we conclude that the only possible solution to this problem is zero function.
Thus, since M[−1,1] ⊂ M[0,1], the only solution to (29) in the space of M[−1,1] is
Y0(µ) ≡ 0.

This proposition implies that Y (µ) ∈M[−1,1] solving (16) is unique.
Theorem 2 (Hilbert formula for the imaginary part). Let the real and imagi-

nary parts of an r-analytic function be represented in bipolar coordinates by Fourier
integrals (12) and (13), respectively. If X(µ) ∈ M[−1,1], Y (µ) ∈ M[−1,1], andˆ +i∞

−i∞
X(µ) dµ = 0, then at the contour Reµ = 0, the function Y (µ) is represented

by the Hilbert formula for the imaginary part of the r-analytic function

(31)

Y (µ) =
1

µ2 − 1
4


µX(µ) +

i

2 cos(πµ)

+i∞ 

−i∞

X(ν)
cos(πν)

sin[π(ν − µ)]
dν


 , Reµ = 0.

Proof. Repeating the same arguments as in the proof of Theorem 1, we obtain
(21) and (22), which we now solve with respect to Y (µ). It can be shown that solutions
to (21) and (22) provide the same Y (µ) at Reµ = 0. Multiplying (21) by

(
µ + 1

2

)
and representing function Y (µ) by

(32) Y (µ) =
1

µ2 − 1
4

(
Ŷ (µ) +

(
µ− 1

2

)
X(µ)

)
,

where Ŷ (µ) is analytic in 0 ≤ Reµ ≤ 1 and has exponentially fast convergence at
|µ| → ∞, we reduce (21) to

(33) Ŷ (µ + 1)− Ŷ (µ) = −X(µ), Reµ = 0.

This problem is similar to (24). However, while the function X̂(µ) in (24) has the
simple pole at µ = 1

2 , the function Ŷ (µ) in (33) does not. Consequently, integrating

(33) at the contour Reµ = 0, we obtain 1
2πi

ˆ +i∞

−i∞
X(µ) dµ = 0. This means that the

function X(µ) should necessarily satisfy this condition.
Using conformal mapping (19), we introduce analytic function X̃(z) and mero-

morphic function Ỹ (z) in the complex plane z such that

Ỹ +(t) = Ŷ (iτ), X̃+(t) = X(iτ),
Ỹ −(t) = Ŷ (iτ + 1), X̃−(t) = X(iτ + 1),

τ ∈ R,
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where pairs Ỹ +(t), X̃+(t) and Ỹ −(t), X̃−(t) are boundary values of functions Ỹ (z)
and X̃(z) at the upper and lower banks of the branch cut, respectively. Problem (33)
reduces to a Riemann boundary-value problem for finding the function Ỹ (z) analytic
in the plane z with the branch cut along the segment [−1, 1] and bounded at infinity:

(34) Ỹ +(t)− Ỹ −(t) = X̃+(t), −1 ≤ t ≤ 1.

Problem (34) is similar to (26). Thus, a solution to (34) takes the form

(35) Ỹ +(t) =
1
2
X̃+(t) +

1
2πi

1 

−1

X̃+(s)
s− t

ds + c̃0,

where c̃0 is a constant. The function X̃+(s) must satisfy Hölder condition |X̃+(t2)−
X̃+(t1)| ≤ c′ |t2 − t1|λ for some λ ∈ (0, 1], nonnegative constant c′, and all t1, t2 ∈
[−1, 1]. At points t = ±1, it converges to zero not slower than (1− t2)

η0
2π . Since there

is only one constant to satisfy two conditions Ỹ +(1) = 0 and Ỹ +(−1) = 0, we have

c̃0 =
1

2πi

1 

−1

s

1− s2
X̃+(s) ds,

1
2πi

1 

−1

1
1− s2

X̃+(s) ds = 0,

where the second relation is equivalent to
ˆ +i∞

−i∞
X(µ) dµ = 0. Thus, expression (35)

takes the form

(36) Ỹ +(t) =
1
2
X̃+(t) +

1
2πi

(1− t2)

1 

−1

X̃+(s)
1− s2

ds

s− t
.

Finally, making change of variables t = i tan(πµ), Reµ = 0, and s = i tan(πν),
Re ν = 0, in (36), and substituting (36) into (32), we obtain Hilbert formula (31).
The change of variables in singular integral (36) is valid because t′(µ) = π/ cos2(πµ)
is a continuous strictly positive function at Reµ = 0 (for details see [4]).

Corollary. Hilbert formula (20) reduces the necessary condition

+i∞ˆ

−i∞

X(µ) dµ = 0

to identity, i.e.,

+i∞ˆ

−i∞


µY (µ)− i

2 cos(πµ)

+i∞ 

−i∞

Y (ν)
cos(πν)

sin[π(ν − µ)]
dν


 dµ ≡ 0.

Proof. The result follows from the fact that

+i∞ 

−i∞

dµ

cos(πµ) sin[π(ν − µ)]
= −2i

ν

cos(πν)
, Re ν = 0.

Conditions for changing the order of integration for singular integrals are discussed
in [4].
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Example. The following two pairs reduce (16) to identity:

X(µ) =
µ

cos(πµ)
, Y (µ) =

1
cos(πµ)

and X(µ) =
µ2 + 1

4

cos(πµ)
, Y (µ) =

µ

cos(πµ)
.

In each pair, X(µ) and Y (µ) are related by Hilbert formulas (20) and (31).
Proof. Verification of Hilbert formulas reduces to the following calculations:

+i∞ 

−i∞

dν

sin[π(ν − µ)]
= 0,

+i∞ 

−i∞

ν dν

sin[π(ν − µ)]
=

i

2
,

+i∞ 

−i∞

ν2 dν

sin[π(ν − µ)]
= iµ.

Obviously, the condition
ˆ +i∞

−i∞
X(µ)dµ=0 holds:

ˆ +i∞

−i∞
µ

cos(πµ) dµ=0 and
ˆ +i∞

−i∞

(µ2+ 1
4)

cos(πµ) dµ=0,
respectively.

4. Implementation of Fourier integrals with Hilbert formulas. Hilbert
formulas (20) and (31) are expressed by singular integrals; consequently, they require
special treatment in numerical implementation. In this section, we derive formulas
for efficient calculating double integrals in (12) with (20) and (13) with (31).

Proposition 3 (function ω(ξ, η)). If function Y (µ) is represented at Reµ = 0
by Hilbert formula (31), then the function ω(ξ, η) takes the form

(37)

ω(ξ, η) =
1

2πi

√
cosh ξ − cos η

×
+∞ˆ

−∞

X(iτ)
(

τ

τ2 + 1
4

P(1)

− 1
2 +iτ

(cos η) e−iξτ + G1(ξ, η, τ)
)
dτ,

where

(38)

G1(ξ, η, τ) =




i
√

2
π sin η


eiξτ

η̂

0

g(ξ, τ, t)
√

cos t− cos η dt− 2h1(ξ, η) sinh
ξ

2


 , ξ �= 0,

√
2

π sin η

η̂

0

cot t
2 sinh(τt)

√
cos t− cos η dt, ξ = 0,

(39) g(ξ, τ, t) =
sinh ξ cosh(τt)− i sin t sinh(τt)

cosh ξ − cos t
,

(40) h1(ξ, η) =
π√
2



√√√√1 +

(
sin η

2

sinh ξ
2

)2

− 1


 , ξ �= 0.

Both integrals in (38) are regular and can be efficiently calculated by a Gaussian
quadrature.

Proof. Substituting formula (31) into (13), we obtain

(41)

ω(ξ, η) =
1

2πi

√
cosh ξ − cos η

+∞ˆ

−∞


τX(iτ) +

1
2

+∞ 

−∞

X(iτ1)
cosh(πτ1)
cosh(πτ)

dτ1

sinh[π(τ1 − τ)]




×
P(1)

− 1
2 +iτ

(cos η)

τ2 + 1
4

e−iξτdτ.
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The inner integral in (41) is singular, but the external integral is regular. Conse-
quently, we do not need the Poincaré–Bertrand formula for changing the order of
integration in (41) (see [4]):

IY (ξ, η) =
1
2

+∞ˆ

−∞


 +∞ 

−∞

X(iτ1)
cosh(πτ1) dτ1

sinh[π(τ1 − τ)]


 P(1)

− 1
2 +iτ

(cos η)(
τ2 + 1

4

)
cosh(πτ)

e−iξτdτ

=
1
2

+∞ˆ

−∞

X(iτ1) cosh(πτ1)


 +∞ 

−∞

P(1)

− 1
2 +iτ

(cos η)(
τ2 + 1

4

)
cosh(πτ)

e−iξτ dτ

sinh[π(τ1 − τ)]




︸ ︷︷ ︸
I1(ξ,η,τ1)

dτ1.

The inner integral I1(ξ, η, τ1) in IY (ξ, η) is calculated based on the following repre-
sentation [1]:

P(1)

− 1
2 +iτ

(cos η) =
2
√

2
π

(
τ2 + 1

4

)
sin η

η̂

0

cosh(τt)
√

cos t− cos η dt.

We obtain

I1(ξ, η, τ1) =
2
√

2
π sin η

η̂

0

J1(ξ, τ1, t)
√

cos t− cos η dt

=
2
√

2
π sin η

i

cosh(πτ1)

×


e−iξτ1

η̂

0

g(ξ, τ1, t)
√

cos t− cos η dt− 2h1(ξ, η) sinh ξ
2


 , ξ �= 0,

where

(42)

J1(ξ, τ1, t) =

+∞ 

−∞

cosh(τt)
cosh(πτ)

e−iξτ dτ

sinh[π(τ1 − τ)]

=
i

cosh(πτ1)

(
g(ξ, τ1, t) e−iξτ1 −

2 sinh ξ
2 cos t

2

cosh ξ − cos t

)
,

h1(ξ, η) =

η̂

0

√
cos t− cos η

cosh ξ − cos t
cos t

2 dt =
π√
2



√√√√1 +

(
sin η

2

sinh ξ
2

)2

− 1


 , ξ �= 0,

and function g(ξ, τ1, t) is determined by (39). For ξ = 0, expression (42) takes on
finite values for all t ∈ [0, η]:

(43) J1(0, τ1, t) =
sinh(τ1t)
cosh(πτ1)

cot t
2 .

Thus,

I1(0, η, τ1) =
2
√

2
π sin η

η̂

0

J1(0, τ1, t)
√

cos t− cos η dt,

and G1(ξ, η, τ1) = 1
2 I1(ξ, η, τ1) cosh(πτ1).
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Proposition 4 (function θ(ξ, η)). If function X(µ) is represented at Reµ = 0
by Hilbert formula (20), then the function θ(ξ, η) takes the form

(44)

θ(ξ, η) = − 1
2πi

√
cosh ξ − cos η

+∞ˆ

−∞

Y (iτ)
(
τ P− 1

2 +iτ (cos η) e−iξτ + G2(ξ, η, τ)
)
dτ,

where

(45)

G2(ξ, η, τ) =




− 2
√

2 i
π sin2 η

η̂

0

[
g(ξ, τ, t)

(
3
4

cos t +
1
4

cos η
)√

cos t− cos η e−iξτ

−1
3
∂2

∂ξ2

(
g(ξ, τ, t) e−iξτ

)
(cos t− cos η)

3
2

]
dt

+
i√
2

sign ξ√
cosh ξ − cos η

, ξ �= 0,

− 2
√

2
π sin2 η

η̂

0

[
cot

t

2
sinh(τt)

(
3
4

cos t +
1
4

cos η − 1
2

)

+τ cos2

(
t

2

)
cosh(τt)

]√
cos t− cos η dt, ξ = 0,

and g(ξ, τ, t) is defined by (39). Both integrals in (45) are regular and can be efficiently
calculated by a Gaussian quadrature.

Proof. Substituting formula (20) into (12), we obtain

(46)

θ(ξ, η) =− 1
2πi

√
cosh ξ − cos η

+∞ˆ

−∞


τY (iτ)− 1

2

+∞ 

−∞

Y (iτ1)
cosh(πτ1)
cosh(πτ)

dτ1

sinh[π(τ1 − τ)]




× P− 1
2 +iτ (cos η) e−iξτdτ.

Although the inner integral in (46) is singular, the external integral is regular. Con-
sequently, we do not need the Poincaré–Bertrand formula for changing the order of
integration in (46) (see [4]):

IX(ξ, η) =

+∞ˆ

−∞


 +∞ 

−∞

Y (iτ1)
cosh(πτ1) dτ1

sinh[π(τ1 − τ)]


 P− 1

2 +iτ (cos η)

cosh(πτ)
e−iξτdτ

=

+∞ˆ

−∞

Y (iτ1) cosh(πτ1)


 +∞ 

−∞

P− 1
2 +iτ (cos η)

cosh(πτ)
e−iξτ dτ

sinh[π(τ1 − τ)]




︸ ︷︷ ︸
I2(ξ,η,τ1)

dτ1.

The inner integral I2(ξ, η, τ1) in IX(ξ, η) is calculated based on the following repre-
sentation [1]:

P− 1
2 +iτ (cos η) =

4
√

2
π sin2 η

η̂

0

cosh(τt)
(
cos η + 1

3

(
τ2 + 9

4

)
(cos t− cos η)

)
×
√

cos t− cos η dt.
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We have

I2(ξ, η, τ1) =
4
√

2
π sin2 η

×
η̂

0

(
J1(ξ, τ1, t) cos η

√
cos t− cos η + 1

3J2(ξ, τ1, t)(cos t− cos η)
3
2

)
dt,

where the function J1(ξ, τ1, t) is defined by (42), and

J2(ξ, τ1, t) =

+∞ 

−∞

cosh(τt)
cosh(πτ)

(
τ2 + 9

4

)
e−iξτ dτ

sinh[π(τ1 − τ)]
=

9
4
J1(ξ, τ1, t)−

∂2

∂ξ2
J1(ξ, τ1, t).

Using intermediate calculations

h2(ξ, η) =

η̂

0

(cos t− cos η)
3
2

cosh ξ − cos t
cos t

2 dt

= (cosh ξ − cos η)h1(ξ, η)− π√
2

sin2(η2 ), ξ �= 0,

(
2h1(ξ, η) cos η + 3

2h2(ξ, η)
)

sinh ξ
2
− 2

3
∂2

∂ξ2

(
h2(ξ, η) sinh ξ

2

)
=

π

4
sinh ξ

| sinh ξ|
sin2 η√

cosh ξ − cos η
, ξ �= 0,

where the function h1(ξ, η) is defined by (40), we reduce the integral I2(ξ, η, τ1) to
the form

I2(ξ, η, τ1) =
1

cosh(πτ1)

(
R(ξ, η, τ1, t) e−iξτ1 −

√
2 i sign ξ√

cosh ξ − cos η

)
, ξ �= 0,

where

R(ξ, η, τ1, t) e−iξτ1 =
4
√

2 i
π sin2 η

η̂

0

[
g(ξ, τ1, t)

(
3
4 cos t + 1

4 cos η
)√

cos t− cos η e−iξτ1

− 1
3
∂2

∂ξ2

(
g(ξ, τ1, t) e−iξτ1

)
(cos t− cos η)

3
2

]
dt,

and function g(ξ, τ1, t) is defined by (39). In the case of ξ = 0, we use (43) to derive
expression for I2(0, η, τ1):

I2(0, η, τ1) =
1

cosh(πτ1)
4
√

2
π sin2 η

η̂

0

[
cot t

2 sinh(τ1t)
(

3
4 cos t + 1

4 cos η − 1
2

)
+ τ1 cos2( t2 ) cosh(τ1t)

]√
cos t− cos η dt.

Note that the integrand in I2(0, η, τ1) takes on finite values for all t ∈ [0, η]. Fi-
nally, defining G2(ξ, η, τ1) = − 1

2 I2(ξ, η, τ1) cosh(πτ1), we finish the proof of the prop-
osition.
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Remark (function θ(ξ, η)). If we represent P− 1
2 +iτ (cos η) by

P− 1
2 +iτ (cos η) =

1
π
√

2
cosh(πτ)

+∞ˆ

−∞

eiτt√
cosh t + cos η

dt

(see [1]), then function (45) takes the form
(47)

G2(ξ, η, τ1) = − 1
2π
√

2
cosh(πτ1)

+∞ˆ

−∞

1√
cosh t + cos η


 +∞ 

−∞

eiτ(t−ξ) dτ

sinh[π(τ1 − τ)]


 dt

=
i

2π
√

2
cosh(πτ1)

+∞ˆ

−∞

tanh
(
t−ξ

2

)
√

cosh t + cos η
eiτ1(t−ξ)dt.

Expression (47) is simpler than (45). However, although (47) is a regular integral, it
is a Fourier integral on an infinite interval. Consequently, from a computational point
of view, representation (45) is preferable.

5. Axially symmetric Stokes flow about a spindle-shaped body. Let us
consider axially symmetric steady motion of a rigid spindle-shaped body in a Stokes
fluid. In this case, the vector of velocity of fluid particles, u, satisfies Stokes model
(5). Suppose that the body moves in the fluid with constant velocity V0 along its axis
of symmetry. Let (r, ϕ, z) be a system of cylindrical coordinates with basis (er, eϕ,k)
such that axis z determines a body’s axis of symmetry. Then boundary conditions
for u are determined on the surface S of the body by

(48) u|S = V0 k.

We assume that the velocity u and the pressure function θ vanish at infinity,

(49) u|∞ = 0, θ|∞ = 0.

The boundary-value problem (5), (48), and (49) is a classical problem in hydrodynam-
ics of Stokes flows [8]. Since we consider only axially symmetric motion, boundary
conditions (48) are reformulated for components of the vector u in cylindrical coor-
dinates as

(50) ur(r, z)|η=η0
= 0, uϕ(r, z) ≡ 0, uz(r, z)|η=η0

= V0,

where η = η0 determines the contour of the spindle-shaped body in bipolar coordinates
(ξ, η) in the meridional cross-section plane rz (see Figure 1).

The problem of the steady motion of a rigid body in a Stokes fluid is closely
related to the problem of the Stokes flow about the body immersed in the viscous
fluid [8]. The only difference is that in the latest problem, the body is immersed in
the uniform flow, and the velocity of the flow is assumed to be constant at infinity. In
this case, the boundary conditions take the form ũ|S = 0 and ũ|∞ = −V0 k, where ũ
is the velocity of the Stokes flow in this problem. Obviously, the velocities u and ũ
are related by ũ = u− V0 k.
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5.1. Stream function. A standard approach to solving axially symmetric prob-
lems of Stokes flows is to represent the vector u by a stream function Ψ(r, z) in
cylindrical coordinates:

(51) u = − curl (Ψeϕ) .

In component form, (51) is rewritten as

(52) ur(r, z) =
1
r

∂

∂z
(rΨ) , uϕ(r, z) ≡ 0, uz(r, z) = −1

r

∂

∂r
(rΨ) .

The stream function Ψ is different from the stream function, ΨP , introduced by Payne
and Pell [14] as ur = − 1

r
∂ΨP
∂z , uz = 1

r
∂ΨP
∂r in the problem of the Stokes flow about

a body immersed in a viscous fluid. If the velocity of the Stokes flow at infinity in
Payne and Pell’s problem is −V0 k, then the stream functions Ψ and ΨP are related
by ΨP = −

(
rΨ + 1

2V0 r
2
)
.

Stokes model (5) and equation (51) imply that the stream function Ψ satisfies

(curl)4 (Ψeϕ) = 0.

This relation reduces to a so-called bi-1-harmonic equation

(53) ∆2
1Ψ(r, z) = 0,

where 1-harmonic operator ∆1 is defined by (8) for k = 1. Based on (52), boundary
conditions (50) are reformulated as

(54)
(

∂

∂z
(rΨ)

)∣∣∣∣
η=η0

= 0,
(

∂

∂r
(rΨ)

)∣∣∣∣
η=η0

= −V0 r|η=η0
.

Substituting derivatives (11) into (54) and solving system (54) with respect to
( ∂∂ξ (rΨ))|η=η0

and ( ∂
∂η (rΨ))|η=η0

, we obtain(
∂

∂ξ
(rΨ)

)∣∣∣∣
η=η0

= V0c
2 sinh ξ sin2 η0

(cosh ξ − cos η0)3
,(

∂

∂η
(rΨ)

)∣∣∣∣
η=η0

= −V0c
2 sin η0

(cosh ξ cos η0 − 1)
(cosh ξ − cos η0)3

,

(55)

where c is a metric parameter of bipolar coordinates. Integrating the first equation
of (55) with respect to ξ, we have

Ψ |η=η0
= −V0c

2
sin η0

cosh ξ − cos η0
+ c̃

(cosh ξ − cos η0)
sin η0

,

where c̃ is a constant of integration. Assuming that Ψ is bounded at ξ →∞, we put
c̃ = 0, and consequently,

(56) Ψ |η=η0
= −V0c

2
sin η0

cosh ξ − cos η0
.

Note that for spatial doubly connected bodies, e.g., torus [21], c̃ �= 0. Substituting
(56) into the second equation of (55), we obtain

(57)
(
∂Ψ
∂η

)∣∣∣∣
η=η0

= −V0c

2
(cosh ξ cos η0 − 1)
(cosh ξ − cos η0)2

.
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Thus, the boundary-value problem (5), (48), and (49) reduces to finding the stream
function Ψ that satisfies bi-1-harmonic equation (53) and boundary conditions (56)
and (57).

In our paper [30], we showed that a solution to (53) may be represented by one
harmonic function Φ0(r, z) and one 1-harmonic function Φ1(r, z) in the form

(58) Ψ(r, z) =
1
2
(
r2 + z2 − c2

)
Φ1(r, z) + rΦ0(r, z),

where

∆1Φ1(r, z) = 0, ∆Φ0(r, z) = 0.

In bipolar coordinates (ξ, η), functions Φ0 and Φ1 are represented by Fourier integrals:

(59) Φ1(ξ, η) =
1

2πic2

√
cosh ξ − cos η

+i∞ˆ

−i∞

A(µ) P(1)

− 1
2 +µ

(cos η) e−ξµdµ, η ≤ η0,

(60) Φ0(ξ, η) =
1

2πic

√
cosh ξ − cos η

+i∞ˆ

−i∞

B(µ) P− 1
2 +µ(cos η) e−ξµdµ, η ≤ η0,

where A(µ) and B(µ) are meromorphic functions in the strip −1 ≤ Reµ ≤ 1. Repre-
sentations (58), (60), and (59) reduce the function Ψ to the form

(61)

Ψ(ξ, η) =
1

2πi
√

cosh ξ − cos η


cos η

+i∞ˆ

−i∞

A(µ) P(1)

− 1
2 +µ

(cos η) e−ξµdµ

+ sin η

+i∞ˆ

−i∞

B(µ) P− 1
2 +µ(cos η) e−ξµdµ


 , η ≤ η0.

To express right-hand sides of (56) and (57) by Fourier integrals, we use the relation

(2k − 1)!!
2k

sink η

(cosh ξ + cos η)k+ 1
2

=
1

i
√

2

b+i∞ˆ

b−i∞

1
cos(πµ)

P(k)

− 1
2 +µ

(cos η) e−ξµdµ,

where k ≥ 0, (2k − 1)!! =
∏k
j=1(2j − 1), and b ∈

(
−k − 1

2 , k + 1
2

)
; see [1]. For k = 0,

we define (−1)!! = 1.
Thus, boundary conditions (56) and (57) reduce to a system of linear equations

with respect to functions A(µ) and B(µ):


 cos η0 P(1)

− 1
2 +µ

(cos η0) sin η0 P− 1
2 +µ(cos η0)

cos η0 P(2)

− 1
2 +µ

(cos η0)− sin η0 P(1)

− 1
2 +µ

(cos η0) sin η0 P(1)

− 1
2 +µ

(cos η0)


(

A(µ)
B(µ)

)

=
πcV0√

2
sin η0

cos(πµ)

(
−P− 1

2 +µ(− cos η0)

P(1)

− 1
2 +µ

(− cos η0)

)
.

(62)
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Let D(µ) denote the determinant of system (62):

(63)

D(µ) = (1 + cos2 η0)P− 1
2 +µ(cos η0)P(1)

− 1
2 +µ

(cos η0)

+ sin η0 cos η0

((
P(1)

− 1
2 +µ

(cos η0)
)2

+
(
µ2 − 1

4

) (
P− 1

2 +µ(cos η0)
)2
)

;

then using a relation for the associated Legendre functions

(64) P− 1
2 +µ(− cos η0) P(1)

− 1
2 +µ

(cos η0)+P− 1
2 +µ(cos η0) P(1)

− 1
2 +µ

(− cos η0) =
2
π

cos(πµ)
sin η0

(see [1]), we obtain a solution to system (62):

A(µ) = −V0c
√

2
sin η0

D(µ)
,

B(µ) =
V0c√

2


2 cos η0

D(µ)

P(1)

− 1
2 +µ

(cos η0)

P− 1
2 +µ(cos η0)

− π

cos(πµ)

P− 1
2 +µ(− cos η0)

P− 1
2 +µ(cos η0)


 .

(65)

Consequently, the velocity vector, u, that solves problem (5), (48), and (49) is ex-
pressed analytically by (52), (61), and (65). As an illustration, we calculated stream-
lines about a rigid spindle-shaped body by solving the equation

(66) rΨ(r, z) +
1
2
V0 r

2 = C

with respect to pairs (r, z) for different values of constant C. It should be noted
that (66), in fact, determines streamlines about the body immersed in the uniform
Stokes flow with the constant velocity, −V0 k, at infinity, while the stream func-
tion Ψ corresponds to the motion of the body with the constant velocity V0 k. We
obtain (66) based on the fact that in terms of Payne and Pell’s stream function,
ΨP , streamlines are defined by ΨP = constant, and that Ψ and ΨP are related
by ΨP = −

(
rΨ + 1

2V0 r
2
)
. We used Mathematica 5 to solve (66). Figure 3 shows

streamlines about a rigid spindle-shaped body for η0 = 2π
3 and η0 = π

3 , respectively.
Streamlines may also be calculated based on the relation dr

dz = ur/ (uz − V0); see [8].
For the case of sphere, η0 = π

2 , the stream function Ψ in cylindrical coordinates
takes the form

Ψ =
cV0

4
r√

r2 + z2

(
c2

r2 + z2
− 3

)
.

5.2. Analysis of the determinant D(µ) and functions A(µ) and B(µ).
Asymptotic behavior of functions (59) and (60) at ξ → ∞ is determined by zeros of
determinant (63). The function D(µ) is even, i.e., D(−µ) = D(µ), and equals zero at
µ = ± 1

2 and µ = ± 3
2 for all η0 ∈ (0, π):

D(µ)|µ→± 1
2
→ − (1−cos η0)2

sin η0

(
|µ| − 1

2

)
,

D(µ)|µ→± 3
2
→ − (1−cos η0)2

sin η0
(1 + 2 cos η0)

(
|µ| − 3

2

)
.
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Fig. 3. Streamlines about a rigid spindle-shaped body for η0 = 2π
3

and η0 = π
3
, respectively.

Table 1

First individual root for D(µ).

η0 µ0 η0 µ0
2π/12 8.564 + i 2.614 7π/12 1.897
3π/12 5.740 + i 1.569 8π/12 1.5‡

4π/12 4.341 + i 0.960 9π/12 1.211
5π/12 3.517 + i 0.437 2.6037§ 1.000
9π/20† 3.345 + i 0.000 10π/12 0.989
6π/12 2.5 11π/12 0.807

† For η0 ≥ 9π/20, the first individual root is real.
‡ Since the root 3

2
is generic, it becomes the root

of multiplicity 2 for 8π/12.
§ For η0 ≥ 2.6037, the first individual root lies
within the strip −1 ≤ Reµ ≤ 1.

We call values µ = ± 1
2 and µ = ± 3

2 generic roots of D(µ). Consequently, functions
A(µ) and B(µ) have simple poles at µ = ± 1

2 and µ = ± 3
2 with corresponding residues

determined by

Res
µ=± 1

2

A(µ) = ±V0c
√

2
(

1+cos η0

1−cos η0

)
, Res

µ=± 3
2

A(µ) = ∓V0c
√

2
(

1+cos η0

1−cos η0

)
1

1+2 cos η0
,

Res
µ=± 1

2

B(µ) = ±V0c√
2
, Res

µ=± 3
2

B(µ) = ∓V0c√
2

(1+cos η0+2 cos2 η0)
(1−cos η0)(1+2 cos η0) .

Except for generic roots, the determinant D(µ) has individual roots for any η0 ∈ (0, π).
Table 1 presents the first individual root, µ0, for different η0.
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Using asymptotic formulas for functions P− 1
2 +iτ (cos η0) and P(1)

− 1
2 +iτ

(cos η0) at
τ →∞

P− 1
2 +iτ (cos η0)

∣∣∣
τ→∞

=
eη0|τ |

√
2π sin η0

(
1 +

cot η0

8τ
+ O

(
1
τ2

))
,

P(1)

− 1
2 +iτ

(cos η0)
∣∣∣
τ→∞

=
|τ | eη0|τ |
√

2π sin η0

(
1− 3 cot η0

8τ
+ O

(
1
τ2

))

(see [1]), we determine asymptotic behavior of D(iτ), A(iτ), and B(iτ):

D(iτ)|τ→∞ =
e2η0|τ |

2π sin η0

(
1 + O

(
1
τ

))
,

A(iτ)|τ→∞ = V0c 2π
√

2 (sin2 η0) e−2η0|τ |
(

1 + O

(
1
τ

))
,

B(iτ)|τ→∞ = V0c π
√

2 sin(2η0) |τ | e−2η0|τ |
(

1 + O

(
1
τ

))
.

For the case of sphere, η0 = π
2 , functions D(µ), A(µ), and B(µ) take the form

D(µ) =
1
π

cos(πµ), A(µ) = −V0c π
√

2
cos(πµ)

, B(µ) = −V0c π√
2

1
cos(πµ)

.

6. Hilbert formulas in hydrodynamics of Stokes flows. In this section, we
analyze basic hydrodynamic characteristics: vorticity, pressure, and drag force. We
use Hilbert formula (20) for analytic representation of the pressure function θ via a
vortex function.

6.1. Vorticity and scalar vortex function. The vorticity, ω, is defined by (4).
In the case of axially symmetric boundary-value conditions, it may be represented as

ω = − curl (curl (Ψeϕ)) = ω(r, z) eϕ,

where ω(r, z) is a scalar vortex function given by

ω(r, z) = ∆1Ψ(r, z).

Since the stream function Ψ is bi-1-harmonic, the vortex function ω(r, z) satisfies
1-harmonic equation (9), and in terms of functions Φ0 and Φ1, it takes the form

(67) ω(r, z) = 2
(
r
∂

∂r
+ z

∂

∂z
+

3
2

)
Φ1 + 2

∂Φ0

∂r
.

Consequently, representation of ω by A(µ) and B(µ) is straightforward. At the con-
tour η = η0, the function ω is determined by

ω(ξ, η)|η=η0
=

V0

√
2

πic
(cosh ξ − cos η0)

3
2

+i∞ˆ

−i∞

1
D(µ)

P(2)

− 1
2 +µ

(cos η0) e−ξµdµ.
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Fig. 4. Epures for the vortex function, c
2V0

ω(ξ, η)|η=η0
, at the surface of a rigid spindle-shaped

body for η0 = 2π
3

and η0 = π
3
, respectively. At a particular point on the contour, the value of the

function is depicted by the length of the outward normal line if the value is positive and by the length
of the inward normal line if the value is negative.

Figure 4 illustrates behavior of c
2V0

ω(ξ, η)|η=η0
for η0 = 2π

3 and η0 = π
3 . Since in the

case of η0 > 2π
3 , the determinant D(µ) has first individual root µ0 < 3

2 , the vortex
function ω(ξ, η)|η=η0

diverges at ξ → ∞. For η0 = 2π
3 , it takes on a nonzero finite

value at ξ →∞:

lim
ξ→∞

ω(ξ, η)|η=η0= 2π
3

= 1.275
V0

c
.

For the case of sphere, η0 = π
2 , the vortex function takes the form

ω(r, z) =
3
2
c V0

r

(r2 + z2)
3
2

.

In this case, if the function ω is represented by Fourier integral (13), then Y (µ) =
3π√

2
V0

c
1

cos(πµ) .

6.2. Pressure. We associate the function θ in Stokes model (5) with the pressure
in a Stokes fluid. In an axially symmetric case, the pressure θ and the vortex function ω
are independent of angular coordinate ϕ and may be considered as real and imaginary
parts of an r-analytic function F (r, z) = θ(r, z)+i r ω(r, z) that satisfies the generalized
Cauchy–Riemann system (7). Consequently, we may use Hilbert formula (20) to
express θ via ω.

Proposition 5 (pressure). Let the vortex function ω be determined by (67).
Then for η0 < 2.6037, the pressure θ is a real-valued function represented by
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(68)

θ(ξ, η) =
1

πic2

√
cosh ξ − cos η


cosh ξ sin η

+∞ˆ

−∞

τ A(iτ) P(1)

− 1
2 +iτ

(cos η) e−iξτdτ

− (cosh ξ cos η − 1)

+∞ˆ

−∞

τ B(iτ) P− 1
2

+iτ
(cos η) e−iξτdτ

− i sinh ξ sin η

+∞ˆ

−∞

(
1
2A(iτ) + B(iτ)

)
P(1)

− 1
2 +iτ

(cos η) e−iξτdτ

− i sinh ξ cos η

+∞ˆ

−∞

((
τ2 + 1

4

)
A(iτ) + 1

2B(iτ)
)

P− 1
2 +iτ (cos η) e−iξτdτ

+
3
2

+∞ˆ

−∞


−τ A(iτ) +

1
2 cosh(πτ)

+∞ 

−∞

A(iτ1)
cosh(πτ1) dτ1

sinh[π(τ1 − τ)]




× P− 1
2 +iτ (cos η) e−iξτdµ


 .

The double integral in (68) can be efficiently calculated by (45).
Proof. Using representation (67) and the fact that ∆Φ0 = 0 and ∆1Φ1 = 0, we

obtain identities

∂ω

∂z
≡ 2

∂

∂z

[(
r
∂

∂r
+ z

∂

∂z
+

3
2

)
Φ1 +

∂Φ0

∂r

]

= 2
∂

∂r

[
−z

r

∂

∂r
(rΦ1) + r

∂Φ1

∂z
+

∂Φ0

∂z

]
+ 3

∂Φ1

∂z
,

−1
r

∂

∂r
(rω) ≡ −2

r

∂

∂r

(
r

[(
r
∂

∂r
+ z

∂

∂z
+

3
2

)
Φ1 +

∂Φ0

∂r

])

= 2
∂

∂z

[
−z

r

∂

∂r
(rΦ1) + r

∂Φ1

∂z
+

∂Φ0

∂z

]
− 3

1
r

∂

∂r
(rΦ1) .

If we represent the pressure function θ by

(69) θ = −2
z

r

∂

∂r
(rΦ1) + 2 r

∂Φ1

∂z
+ 2

∂Φ0

∂z
+ 3 θ̃ + c̃,

where θ̃ = θ̃(r, z) is a new function, and c̃ is a constant, then system (7) for functions
θ and ω reduces to (7) for functions θ̃ and Φ1, i.e., F̃ (r, z) = θ̃(r, z) + i rΦ1(r, z) is an
r-analytic function. In an axially symmetric case, θ(−ξ, η) = −θ(ξ, η), Φ0(−ξ, η) =
Φ0(ξ, η), Φ1(−ξ, η) = Φ1(ξ, η), and θ̃(−ξ, η) = −θ̃(ξ, η). Consequently, the left-hand
side in (69) is an odd function with respect to ξ, only if c̃ = 0.

Recall that the function Φ1 is represented by Fourier integral (59) with the density
A(µ) determined by (65). For η0 < 2.6037, A(µ) is meromorphic within the strip
−1 ≤ Reµ ≤ 1 with only two simple poles at µ = ± 1

2 , i.e., it belongs to the space
M[−1,1]. Let θ̃ be represented by Fourier integral (12) with density X(µ) ∈ M[−1,1].
Consequently, functions A(µ) and X(µ) satisfy conditions of Theorem 1. We use
Hilbert formula (20) to represent X(iτ) by A(iτ) and then express (69) in terms of
A(iτ) and B(iτ), where τ ∈ R.
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Fig. 5. Epures for the pressure function, c
2V0

θ(ξ, η0), at the surface of a rigid spindle-shaped

body for η0 = 2π
3

and η0 = π
3
, respectively. At a particular point on the contour, the value of the

function is depicted by the length of the outward normal line if the value is positive and by the length
of the inward normal line if the value is negative.

Table 2

Function c
V0

θ(ξ, η)|η=η0
at ξ → +∞ for different η0.

η0
c
V0

θ(+∞, η0) η0
c
V0

θ(+∞, η0)
π/12 0.164 5π/12 1.034
2π/12 0.338 6π/12 1.5
3π/12 0.526 7π/12 2.692
4π/12 0.746 8π/12 +∞

As an illustration to (68), epures of the pressure, c
V0

θ(ξ, η)|η=η0
, are calculated

at the contour of a spindle-shaped body for η0 = 2π
3 and η0 = 2π

3 ; see Figure 5. For
0 < η0 < 2π

3 , the function θ(ξ, η)|η=η0
takes on finite nonzero values at ξ → +∞:

lim
ξ→+∞

θ(ξ, η)|η=η0
=

6V0

c


−cot2

(
η0

2

)
cos η0

1 + 2 cos η0
+

1
2π

sin η0

+∞ˆ

0

dτ

D(iτ)


 .

Table 2 presents values of c
V0

θ(ξ, η)|η=η0
at the tip point, i.e., ξ → +∞, for different

η0.
Figure 6 shows isobars about a spindle-shaped body for η0 = 2π

3 and η0 = 2π
3 .

Isobars are determined by equation θ(ξ, η) = C for different values of constant C. To
solve this equation numerically, we represented θ(ξ, η) by (68) and used Mathematica
5. An alternative approach for computing isobars is based on the fact that at an isobar
the relation dθ = ∂θ

∂rdr + ∂θ
∂zdz = 0 holds. Consequently, using system (7), we obtain

the explicit first-order differential equation dz
dr = − ∂θ

∂r

/
∂θ
∂z = ∂ω

∂z

/
1
r
∂
∂r (rω), which can

be solved by the Runge–Kutta method. We compared both approaches with respect
to running time and accuracy. In comparison to the alternative approach, solving
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Fig. 6. Isobars about a rigid spindle-shaped body for η0 = 2π
3

and η0 = π
3
, respectively.

θ(ξ, η) = C is faster and more accurate. This proves superiority of the analytical
solution based on the Hilbert formula.

For the case of sphere, η0 = π
2 , the pressure function takes the form

θ(r, z) =
3
2
c V0

z

(r2 + z2)
3
2

.

In this case, if the function θ is represented by Fourier integral (12), then X(µ) =
3π√

2
V0

c
µ

cos(πµ) .

6.3. Drag force. Drag force is the characteristics that attracts most of the
attention devoted to problems of motion of rigid bodies in a viscous fluid [8]. Ap-
proximate calculation of drag force by means of variational principles is discussed in
[9]. We derive an analytical formula for the drag force exerted on a rigid spindle-
shaped body using expressions for pressure and vortex functions obtained in previous
sections.

Proposition 6 (drag force). The magnitude of the force exerted by a Stokes
fluid on the spindle-shaped body is determined by

(70) F0 = −4
√

2 ρ

+∞ˆ

0

((
τ2 + 1

4

)
A(iτ) + 2B(iτ)

)
dτ,

where ρ is the shear viscosity, and functions A(µ) and B(µ) are given by (65).
Proof. Let n = nrer + nzk be the outer normal to the surface of the body, S,

where (er, eϕ,k) is the basis of the system of cylindric coordinates. By definition,
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nr = ∂r
∂n and nz = ∂z

∂n . The force, exerted by the fluid at a particular point and acting
in the direction n, is given by

1
2ρ

Pn = (n · grad)u +
1
2

[n× curlu]− 1
2
θ n;

see [21]. Since the body moves along its axis of symmetry, the resultant force has only
the component in the direction k. Thus, the magnitude of the total drag force is the
integral of the projection Pn onto (−k) over the surface S:

1
2ρ

F0 = − 1
2ρ

¨

S

Pn · k dS = −
¨

S

((
nr

∂

∂r
+ nz

∂

∂z

)
uz +

1
2
ω nr −

1
2
θ nz

)
dS.

To simplify this expression, we use representation (52), formula dS = r dϕ ds, and
relations

nr =
∂z

∂s
, nz = −∂r

∂s
,

∂

∂s
=

1
h

∂

∂ξ
,

∂

∂n
= − 1

h

∂

∂η
,

where ds = h dξ is the element of the contour of the surface S in the meridional cross-
section plane rz, and h = c

cosh ξ−cos η0
is the Lame coefficient. Directional derivative

∂
∂s corresponds to the vector s, which is orthogonal to n and oriented towards an
increase of coordinate ξ. We have(

nr
∂

∂r
+ nz

∂

∂z

)
uz = −ω nr +

1
r

∂

∂s

(
r
∂Ψ
∂z

)
and

¨

S

1
r

∂

∂s

(
r
∂Ψ
∂z

)
dS = 2π

+∞ˆ

−∞

∂

∂ξ

(
r
∂Ψ
∂z

)∣∣∣∣
η=η0

dξ = 2π
(
r
∂Ψ
∂z

)∣∣∣∣(ξ,η)=(+∞,η0)

(ξ,η)=(−∞,η0)

= 0.

Thus, the expression for the total drag force reduces to

(71)
1
2ρ

F0 =
1
2

¨

S

(ω nr + θ nz) dS.

Using representations (67) and (69) for functions ω and θ, respectively, we obtain

ω nr + θ nz = 2 r
∂Φ1

∂n
+ 2

∂Φ0

∂n
+

2
r

∂

∂s
(rzΦ1) + Φ1nr + 3 θ̃ nz.

Note that the integral contribution of the term 1
r
∂
∂s (rzΦ1) to (71) is zero. Indeed,

¨

S

1
r

∂

∂s
(rzΦ1) dS = 2π

+∞ˆ

−∞

∂

∂ξ
(rzΦ1)

∣∣∣∣
η=η0

dξ = 2π (rzΦ1)|(ξ,η)=(+∞,η0)
(ξ,η)=(−∞,η0) = 0.

We may avoid the use of Hilbert formulas for expressing θ̃. Indeed, representing the
generalized Cauchy–Riemann system (7) in terms of ∂

∂s and ∂
∂n :

∂θ̃

∂n
=

1
r

∂

∂s
(rΦ1) ,

∂θ̃

∂s
= −1

r

∂

∂n
(rΦ1) ,
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Fig. 7. Normalized drag force, F0
6πρV0c

, as a function of η0.

we obtain

θ̃ nz = − 1
2r

∂

∂s

(
r2θ̃

)
− 1

2
∂

∂n
(rΦ1) ,

where the integral contribution of the term 1
r
∂
∂s

(
r2θ̃

)
to (71) is zero:

¨

S

1
r

∂

∂s

(
r2θ̃

)
dS = 2π

+∞ˆ

−∞

∂

∂ξ

(
r2θ̃

)∣∣∣∣
η=η0

dξ = 2π
(
r2θ̃

)∣∣∣(ξ,η)=(+∞,η0)

(ξ,η)=(−∞,η0)
= 0.

Thus, expression (71) reduces to

1
2ρ

F0 = −π

2

+∞ˆ

−∞

(
r2 ∂Φ1

∂η
− Φ1 r

∂r

∂η
+ 4r

∂Φ0

∂η

)∣∣∣∣
η=η0

dξ.

Finally, substituting representations (59) and (60) into the last expression and using
relation (64), we obtain (70).

Note that since the derivation of (70) does not use Hilbert formulas, formula (70)
holds for all values of η0 ∈ (0, π). Figure 7 illustrates behavior of the normalized
drag force F0

6πρV0c
as a function of η0. Table 3 presents values of F0

6πρV0c
for η0 = πk

12 ,
1 ≤ k ≤ 12. In the case of η0 → 0, we have F0 →∞.

The drag force may also be calculated as the limit of the stream function at z = 0
and r →∞

F0 = −8πρ lim
r→∞

Ψ |z=0 ;

see [8]. For the stream function given by (61), this expression reduces to (70).

7. Concluding remarks. This paper addresses the problem of obtaining the
Hilbert formulas for so-called r-analytic functions in the domain exterior to the con-
tour of a spindle. In the meridional cross-section plane of the spindle, the real and
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Table 3

Normalized drag force, F0
6πρV0c

, as a function of η0.

η0
F0

6πρV0c
η0

F0
6πρV0c

π/12 7.113 7π/12 0.797
2π/12 3.510 8π/12 0.635
3π/12 2.287 9π/12 0.501
4π/12 1.660 10π/12 0.383
5π/12 1.271 11π/12 0.272
6π/12 1 12π/12 0

imaginary parts of the r-analytic function are represented by Fourier integrals with
densities X(µ) and Y (µ), respectively, and the problem reduces to solving equation
(16). To our knowledge, three approaches are available for obtaining the Hilbert
formulas:

(1) Integrating system (7) in bipolar coordinates analytically [28],
(2) Solving (16) by complex Fourier transform [28, 29],
(3) Solving (16) in the framework of Riemann boundary-value problems for ana-

lytic functions.
In our previous work [28], we obtained Hilbert formulas by integrating the gen-

eralized Cauchy–Riemann system (7) under the condition that functions θ(ξ, η) and
ω(ξ, η) had the same asymptotic behavior at ξ → ∞. The disadvantage of this ap-
proach is that it is relatively complex in the sense of analytical computations and is
based on special relations for Legendre functions. In our paper [29], we derived Hilbert
formulas using modified Green’s functions in the representations of θ and ω. The ap-
proach reduced the original problem to the equation similar to (16) and obtained the
Hilbert formulas for the modified Green’s functions by complex Fourier transform. Al-
though we took into account the fact that the modified Green’s functions might have
simple poles µ = ± 1

2 in the strip |Reµ| ≤ 1, this issue was not linked to specifying
the class of functions for X(µ) and Y (µ), and as a result, the Hilbert formulas were
stated with the accuracy of an additional term associated with homogeneous solutions
to (16). In contrast to [29], this paper develops a new approach based on Riemann
boundary-value problems to solving (16) for the class of meromorphic functions with
two simple poles µ = ± 1

2 in the strip |Reµ| ≤ 1 and having exponentially fast con-
vergence at τ → ∞. The chosen class of meromorphic functions X(µ) and Y (µ)
is determined by the hydrodynamic problem of the steady motion of a rigid-spindle
shaped body in a viscous fluid: the function A(µ) in (65) has at least two simple poles
at µ = ±1

2 for all values of the parameter η0. In particular, in the framework of this
approach, we show that the homogeneous equations X(µ+1)−2X(µ)+X(µ−1) = 0
and

(
µ + 3

2

)
Y (µ + 1) − 2µY (µ) +

(
µ− 3

2

)
Y (µ − 1) = 0 have only trivial solutions

from the specified class of meromorphic functions. However, this may not be the
case if we consider another class of meromorphic functions. Also, in this work, we
derive formulas for efficient calculating Fourier integrals with the Hilbert formulas,
i.e., double integrals one of which is singular.

The problem of axially symmetric Stokes flow about a rigid spindle-shaped body
was originally considered by Pell and Payne [15]. However, they did not address
the issue of determining and analyzing the pressure function. In our paper [30], we
solved this hydrodynamic problem using the stream function in the form of (58) and
presented the Hilbert formula for θ, obtained by integrating system (7) analytically.
However, at the surface of the body, the pressure was calculated by integrating system
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(7) numerically. Moreover, the Hilbert formula for the vortex function ω was not
presented. This paper closes the gap: it presents both Hilbert formulas for θ and ω,
respectively, and calculates isobars and the pressure at the surface using the special
representations for the Fourier integrals with Hilbert formulas.

We should note that the class of meromorphic functions with only two simple
poles at µ = ± 1

2 in the strip Re |µ| ≤ 1 precludes applying the Hilbert formulas for
determining the pressure when η0 ≥ 2.6037, since in this case, the function A(µ)
has other poles in the strip Re |µ| ≤ 1; see Table 1. We may show that under
some conditions, the Hilbert formulas (20) and (31) will be the same for a class of
meromorphic functions X(µ) and Y (µ) with more than two simple poles in the strip
Re |µ| ≤ 1. Consequently, formulas (20) and (31) can be used for all η0 ∈ [0, π).
However, addressing this issue calls for a separate publication.

Appendix A. The derivation of formulas (14) and (15). Formula (14) is
derived as follows. Using the expression for the derivative ∂

∂r in (11) and the relation
∂
∂r

√
cosh ξ − cos η = − 1

2c cosh ξ sin η
√

cosh ξ − cos η, we have

∂θ

∂r
=

1
2πic

√
cosh ξ − cos η


−1

2
cosh ξ sin η

+i∞ˆ

−i∞

X(µ) P− 1
2 +µ(cos η)e−ξµdµ

+ sinh ξ sin η

+i∞ˆ

−i∞

µX(µ) P− 1
2 +µ(cos η)e−ξµdµ

+ (cosh ξ cos η − 1)

+i∞ˆ

−i∞

X(µ)P(1)

− 1
2 +µ

(cos η)e−ξµdµ


 .

Next, using the formulas

sin η P− 1
2 +µ(cos η) =

1
2µ

(
P(1)

− 3
2 +µ

(cos η)− P(1)
1
2 +µ

(cos η)
)
,

cos η P(1)

− 1
2 +µ

(cos η) =
1

2µ

((
µ + 1

2

)
P(1)

− 3
2 +µ

(cos η) +
(
µ− 1

2

)
P(1)

1
2 +µ

(cos η)
)
,

we obtain

∂θ

∂r
=

1
4πic

√
cosh ξ − cos η


cosh ξ

+i∞ˆ

−i∞

X(µ)
(

P(1)

− 3
2 +µ

(cos η) + P(1)
1
2 +µ

(cos η)
)

e−ξµdµ

+ sinh ξ

+i∞ˆ

−i∞

X(µ)
(

P(1)

− 3
2 +µ

(cos η)− P(1)
1
2 +µ

(cos η)
)

e−ξµdµ

− 2

+i∞ˆ

−i∞

X(µ)P(1)

− 1
2 +µ

(cos η)e−ξµdµ


 ,
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which reduces to

(72)

∂θ

∂r
=

1
4πic

√
cosh ξ − cos η


 +i∞ˆ

−i∞

X(µ) P(1)

− 3
2 +µ

(cos η) e−ξ(µ−1)dµ

+

+i∞ˆ

−i∞

X(µ) P(1)
1
2 +µ

(cos η) e−ξ(µ+1)dµ

− 2

+i∞ˆ

−i∞

X(µ)P(1)

− 1
2 +µ

(cos η)e−ξµdµ


 .

Assuming X(µ) to be a meromorphic function with only two simple poles at µ = ± 1
2

in the strip |Reµ| ≤ 1, and noticing that functions P(1)

− 3
2 +µ

(cos η) and P(1)
1
2 +µ

(cos η)

have nulls at µ = 1
2 and µ = − 1

2 , respectively, we can write

+i∞ˆ

−i∞

X(µ) P(1)

− 3
2 +µ

(cos η) e−ξ(µ−1)dµ =

1+i∞ˆ

1−i∞

X(µ) P(1)

− 3
2 +µ

(cos η) e−ξ(µ−1)dµ

=

+i∞ˆ

−i∞

X(µ + 1) P(1)

− 1
2 +µ

(cos η) e−ξµdµ,

+i∞ˆ

−i∞

X(µ) P(1)
1
2 +µ

(cos η) e−ξ(µ+1)dµ =

−1+i∞ˆ

−1−i∞

X(µ) P(1)
1
2 +µ

(cos η) e−ξ(µ+1)dµ

=

+i∞ˆ

−i∞

X(µ− 1) P(1)

− 1
2 +µ

(cos η) e−ξµdµ.

It should be noted that the two equalities above do not hold if the function X(µ) has
other poles in the strip |Reµ| ≤ 1. Finally, substituting the last two equalities into
expression (72), we obtain formula (14). Formula (15) is derived similarly.
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MULTISTABILITY IN RECURRENT NEURAL NETWORKS∗
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Abstract. Stable stationary solutions correspond to memory capacity in the application of
associative memory for neural networks. In this presentation, existence of multiple stable stationary
solutions for Hopfield-type neural networks with delay and without delay is investigated. Basins of
attraction for these stationary solutions are also estimated. Such a scenario of dynamics is established
through formulating parameter conditions based on a geometrical setting. The present theory is
demonstrated by two numerical simulations on the Hopfield neural networks with delays.
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1. Introduction. The studies of neural networks have attracted considerable
multidisciplinary research interest in recent years. The developments for neural net-
work models and the theory for the models are, on the one hand, driven by application
motif or inspired by biological neuronal behaviors. On the other hand, the neural net-
work theory has motivated and elicited further progress in dynamical system theory.
For example, theory for existence of many stable patterns or chaotic dynamics for
systems in phase space of large dimension is in strong demand for neural network
applications. The progress in this direction of research has also enriched dynamical
system theory [6, 17, 27].

The applications of neural networks range from classifications, associative mem-
ory, image processing, and pattern recognition to parallel computation and its ability
to solve optimization problems. The theory on the dynamics of the networks has been
developed according to the purposes of the applications. In the application to parallel
computation and signal processing involving finding the solution of an optimization
problem, the existence of a computable solution for all possible initial states is the
best situation. Mathematically, this means that the network needs to have a unique
equilibrium which is globally attractive. Such a convergent behavior is referred to
as “monostability” of a network. On the other hand, when a neural network is em-
ployed as an associative memory storage or for pattern recognition, the existence of
many equilibria is a necessary feature [7, 11, 16, 21]. The notion of “multistability”
of a neural network is used to describe coexistence of multiple stable patterns such as
equilibria or periodic orbits. In general, if the dynamics for a system are bounded, the
existence of multiple stable patterns is accompanied with coexistence of stable and
unstable equilibria or periodic orbits. The existence of unstable equilibria is essential
in certain applications of neural network. For example, unstable equilibria are related
to digital constraints on selection in winner-take-all problems [32, 33].
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Classical recurrent neural networks are usually systems of ordinary differential
equations. Recently, neural network systems with delays have also been studied ex-
tensively, thanks to the need from practical applications and mathematical interests.
In this presentation, we propose an approach to investigate existence of multiple sta-
tionary solutions and their stability for recurrent neural networks with delay and
without delay. We shall illustrate our approach through the Hopfield-type model.

Hopfield-type neural networks and their various generalizations have been widely
studied and applied in various scientific areas. A typical form for such a network is
given by

Ci
dxi(t)

dt
= −xi(t)

Ri
+

n∑
j=1

Tijgj(xj(t− τij)) + Ii, i = 1, 2, . . . , n,(1.1)

where Ci > 0 and Ri > 0 are, respectively, the input capacitance and resistance
associated with neuron i; Ii is the constant input; Tij are the connection strengths
between neurons; τij > 0 are the transmission delays; and gi, i = 1, 2, . . . , n, are
neuron activation functions.

The classical Hopfield-type neural network [16] is system (1.1) without delay, that
is, τij = 0 for all i, j. For the Hopfield-type neural networks, the theory of unique
equilibrium and global convergence to the equilibrium has been extensively studied;
cf. [9, 10] for the networks without delays and [5, 13, 19, 23, 24, 29, 30, 31, 34, 35] for
the delay cases.

In contrast to these studies, we propose a treatment to explore the existence
of multiple stationary solutions for (1.1) through a geometrical formulation on the
parameter conditions. Stability of these equilibria for (1.1) with and without delay
shall also be investigated. In addition, estimations of basins of attraction for these
stable stationary solutions are derived. The stationary equations are identical for
system (1.1) with delay and without delay. Thus, confirmation for the existence of
equilibrium points is valid for both cases. However, stability of the equilibrium points
and dynamical behaviors can be very different for the systems with delay and without
delay. It is very interesting to explore such a difference as well as a possible coincidence
of behaviors.

The theory for existence of multiple stable patterns has been developed for cellular
neural networks [8, 17, 26, 27]. The neurons in such a system are locally connected
and no time lags were considered therein. Our approach can be adopted to such a
network with delays, as remarked in the later section. There are other interesting
studies on delayed neural networks in [1, 2, 12, 22, 25].

This presentation is organized as follows. In section 2, we establish conditions for
existence of 3n equilibria for the Hopfield network. 2n equilibria among them will be
shown to be asymptotically stable for the system without delays, through a lineariza-
tion analysis. In section 3, we shall verify that under the same conditions, there are
2n regions in Rn, each containing an equilibrium, which are positively invariant under
the flow generated by the system with delays and without delays. Subsequently, it
is argued that these 2n equilibria are asymptotically stable, even in the presence of
delays. We also formulate more sufficient conditions for stability of these 2n equilib-
ria. We extend our theory to more general activation functions, including those with
saturations, in section 4. Two numerical simulations on the dynamics of two-neuron
networks, which illustrate the present theory, are given in section 5. We summarize
our results with a discussion (section 6).
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2. Existence of multiple equilibria and their stability. In this section, we
shall formulate sufficient conditions for the existence of multiple stationary solutions
for Hopfield neural networks with and without delays. Our approach is based on a
geometrical observation. The derived parameter conditions are concrete and can be
examined easily. We also establish stability criteria of these equilibria for the sys-
tem without delays, through estimations on the eigenvalues of the linearized system.
Stability for the system with delays will be discussed in the next section. After re-
arranging the parameters, we consider system (1.1) in the following forms: for the
network without delay,

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t)) + Ji, i = 1, 2, . . . , n,(2.1)

and for the network with delays,

dxi(t)

dt
= −bixi(t) +

n∑
j=1

ωijgj(xj(t− τij)) + Ji, i = 1, 2, . . . , n.(2.2)

Herein, bi > 0, 0 < τij ≤ τ := max1≤i,j≤n τij . While (2.1) is a system of ordinary
differential equations, (2.2) is a system of functional differential equations. The initial
condition for (2.2) is

xi(θ) = φi(θ), −τ ≤ θ ≤ 0, i = 1, 2, . . . , n,

and it is usually assumed that φi ∈ C([−τ, 0],R). Let � > 0. For x ∈ C([−τ, �],Rn)
and t ∈ [0, �], we define

xt(θ) = x(t + θ), θ ∈ [−τ, 0].(2.3)

Let us denote F̃ = (F̃1, . . . , F̃n), where F̃i is the right-hand side of (2.2),

F̃i(xt) := −bixi(t) +

n∑
j=1

ωijgj(xj(t− τij)) + Ji,

where x = (x1, . . . , xn). A function x = x(t) is called a solution of (2.2) on [−τ, �) if
x ∈ C([−τ, �),Rn) and xt defined as (2.3) lies in the domain of F̃ and satisfies (2.2)
for t ∈ [0, �). For a given φ ∈ C([−τ, 0],Rn), let us denote by x(t;φ) the solution of
(2.2) with x0(θ;φ) := x(0 + θ;φ) = φ(θ) for θ ∈ [−τ, 0].

The activation functions gj usually have sigmoidal configuration or are non-
decreasing with saturations. Herein, we consider the typical logistic or Fermi function:
for all j = 1, 2, . . . , n,

gj(ξ) = g(ξ) :=
1

1 + e−ξ/ε
, ε > 0.(2.4)

One may also adopt gj(ξ) = 1/(1 + e−ξ/εj ), εj > 0, or other output functions, as
discussed in section 4. Note that the stationary equations for systems (2.1) and (2.2)
are identical; namely,

Fi(x) := −bixi +

n∑
j=1

ωijgj(xj) + Ji = 0, i = 1, 2, . . . , n,(2.5)
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1/4

10 1/2

Fig. 1. The graph for function u(y) = y − y2 and y1 = g(pi), y2 = g(qi).

where x = (x1, . . . , xn). For our formulation in the following discussions, we introduce
a single neuron analogue (no interaction among neurons),

dξ

dt
= fi(ξ) := −biξ + ωiig(ξ) + Ji, ξ ∈ R.

Let us propose the first parameter condition:

(H1): 0 <
biε

ωii
<

1

4
, i = 1, 2, . . . , n.

Lemma 2.1. Under condition (H1), there exist two points pi and qi with pi <
0 < qi such that f ′

i(pi) = 0, f ′
i(qi) = 0 for i = 1, 2, . . . , n.

Proof. We compute that

g′(ξ) =
1

ε
(1 + e−ξ/ε)−2e−ξ/ε.(2.6)

Note that g is strictly increasing and that the graph of function g′(ξ) is concave down
and has its maximal value at ξ = 0. We let y = g(ξ), ξ ∈ R. Then y ∈ (0, 1) and
g(0) = 1/2. It follows from (2.6) that

g′(ξ) =
1

ε
y2

(
1

y
− 1

)
=

1

ε
(y − y2).

On the other hand, for each i, since f ′
i(ξ) = −bi + ωiig

′(ξ), we have f ′
i(ξ) = 0 if and

only if bi = ωiig
′(ξ); equivalently,

biε

ωii
= y − y2.

From the configuration in Figure 1, it follows that, for each i, there exist two points
pi, qi, pi < 0 < qi, such that f ′

i(pi) = f ′
i(qi) = 0 if the parameter condition 0 <

biε/ωii < 1/4 holds. This completes the proof.
Note that condition (H1) implies ωii > 0 for all i = 1, 2, . . . , n, since each bi is

already assumed to be a positive constant. We define, for i = 1, 2, . . . , n,

f̂i(ξ) = −biξ + ωiig(ξ) + k+
i ,

f̌i(ξ) = −biξ + ωiig(ξ) + k−i ,
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Fig. 2. (a) The graph of g with ε = 0.5; (b) Configurations for f̂i and f̌i.

where

k+
i :=

n∑
j=1,j �=i

|ωij | + Ji, k−i := −
n∑

j=1,j �=i

|ωij | + Ji.

It follows that

f̌i(xi) ≤ Fi(x) ≤ f̂i(xi)(2.7)

for all x = (x1, . . . , xn) and i = 1, 2, . . . , n, since 0 ≤ gj ≤ 1 for all j.
We consider the second parameter condition which is concerned with the existence

of multiple equilibria for (2.1) and (2.2):

(H2): f̂i(pi) < 0, f̌i(qi) > 0, i = 1, 2, . . . , n.

The configuration that motivates (H2) is depicted in Figure 2. Such a configuration is
due to the characteristics of the output function g. Under assumptions (H1) and (H2),

there exist points âi, b̂i, ĉi with âi < b̂i < ĉi such that f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 as
well as points ǎi, b̌i, či with ǎi < b̌i < či such that f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.

Theorem 2.2. Under (H1) and (H2), there exist 3n equilibria for systems (2.1)
and (2.2).

Proof. The equilibria of systems (2.1) and (2.2) are zeros of (2.5). Under condi-

tions (H1) and (H2), the graphs of f̂i and f̌i defined above are as depicted in Figure
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2. According to the configurations, there are 3n disjoint closed regions in Rn. Set
Ωα = {(x1, x2, . . . , xn) ∈ Rn | xi ∈ Ωαi

i } with α = (α1, α2, . . . , αn), and αi = “l,”
“m,” or “r,” where

Ωl
i := {x ∈ R| ǎi ≤ x ≤ âi}, Ωm

i := {x ∈ R| b̂i ≤ x ≤ b̌i},
Ωr

i := {x ∈ R| či ≤ x ≤ ĉi}.(2.8)

Herein, “l,” “m,” and “r” mean, respectively, “left,” “middle,” and “right.” Consider
any fixed one of these regions Ωα. For a given x̃ = (x̃1, x̃2, . . . , x̃n) ∈ Ωα, we solve

hi(xi) := −bixi + ωiig(xi) +

n∑
j=1,j �=i

ωijg(x̃j) + Ji = 0

for xi, i = 1, 2, . . . , n. According to an estimate similar to (2.7), the graph of hi lies

between the graphs of f̂i and f̌i. In fact, the graph of hi is a vertical shift of the
graph of f̂i or f̌i. Thus, one can always find three solutions, and each of them lies in
one of the regions in (2.8) for each i. Let us pick the one lying in Ωαi

i and set it as
xi for each i. We define a mapping Hα : Ωα → Ωα by Hα(x̃) = x = (x1, x2, . . . , xn).
Restated, we set

xi = (hi|Ωl
i
)−1(0) if αi = “l,”

xi = (hi|Ωm
i
)−1(0) if αi = “m,”

xi = (hi|Ωr
i
)−1(0) if αi = “r.”

Since g is continuous and hi is a vertical shift of function ξ �→ −biξ + ωiig(ξ) by the
quantity

∑n
j=1,j �=i ωijg(x̃j)+Ji, the map Hα is continuous. It follows from Brouwer’s

fixed point theorem that there exists one fixed point x̄ = (x̄1, x̄2, . . . , x̄n) of Hα in
Ωα which is also a zero of the function F , where F = (F1, F2, . . . , Fn). Consequently,
there exist 3n zeros of F , hence 3n equilibria for systems (2.1) and (2.2), and each of
them lies in one of the 3n regions Ωα. This completes the proof.

We consider the following criterion concerning stability of the equilibria:

(H3): −bi +

n∑
j=1

|ωij |g′(ηj) < 0, g′(ηj) := max{g′(xj) | xj = čj , âj}, i = 1, 2, . . . , n.

(2.9)

A simplified yet more restrictive version for condition (H3) is that for i = 1, 2, . . . , n,

bi > g′(η)
n∑

j=1

|ωij | with g′(η) := max{g′(xj) | xj = čj , âj , j = 1, 2, . . . , n}.(2.10)

Theorem 2.3. Under conditions (H1), (H2), and (H3), there exist 2n asymptot-
ically stable equilibria for the Hopfield neural networks without delay (2.1).

Proof. Among the 3n equilibria in Theorem 2.2, we consider those x̄ = (x̄1, . . . , x̄n)
with x̄i ∈ Ωl

i or Ωr
i for each i. The linearized system of (2.1) at equilibrium x̄ is

dyi
dt

= −biyi +

n∑
j=1

ωijg
′
j(xj)yj , i = 1, 2, . . . , n.
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Restated, ẏ = Ay, where DF (x) =: A = [aij ]n×n with

[aij ] =

⎛
⎜⎜⎜⎝
−b1 + ω11g

′(x̄1) ω12g
′(x̄2) · · · ω1ng

′(x̄n)
ω21g

′(x̄1) −b2 + ω22g
′(x̄2) ω2ng

′(x̄n)
...

...
. . .

...
ωn1g

′(x̄1) ωn2g
′(x̄2) · · · −bn + ωnng

′(x̄n)

⎞
⎟⎟⎟⎠ .

Let

ri =

n∑
j=1,j �=i

|aij | =

n∑
j=1,j �=i

|ωijg
′(x̄j)| =

n∑
j=1,j �=i

|ωij |g′(x̄j), i = 1, 2, . . . , n.

According to Gerschgorin’s theorem,

λk ∈
n⋃

i=1

B(aii, ri)

for all k = 1, 2, . . . , n, where λk are the eigenvalues of A and B(aii, ri) := {ζ ∈ C |
|ζ − aii| < ri}. Hence, for each k, there exists some i = i(k) such that

Re(λk) < −bi + ωiig
′(x̄i) +

n∑
j=1,j �=i

|ωij |g′(x̄j).

Notice that for each j, g′(ξ) ≤ g′(čj) (resp., g′(ξ) ≤ g′(âj)) if ξ ≥ čj (resp., ξ ≤ âj).
Since x̄ is such that x̄j ∈ Ωl

j or Ωr
j , we have x̄j ≥ čj or x̄j ≤ âj for all j = 1, 2, . . . , n.

It follows that Re(λk) < 0 by (2.9). Thus, under (H3), all the eigenvalues of A have
negative real parts. Therefore, there are 2n asymptotically stable equilibria for system
(2.1). The proof is completed.

We certainly can replace condition (H3) by weaker ones, such as an individual con-
dition for each equilibrium. Let x̄ be an equilibrium lying in Ωα with α = (α1, . . . , αn)
and αi = “r” or αi = “l,” that is, x̄i ∈ Ωl

i or Ωr
i, for each i. For such an equilibrium

we consider, for i = 1, 2, . . . , n,

bi > ωiig
′(ξi) +

n∑
j=1,j �=i

|ωij |g′(ξj), ξk = čk if αk = “r,” ξk = âk if αk = “l,”

k = 1, . . . , n.

Such conditions are obviously much more tedious than (H3).

3. Stability of equilibria and the basins of attraction. We plan to inves-
tigate the stability of equilibrium for system (2.2), that is, with delays. We shall
also explore the basins of attraction for the asymptotically stable equilibria, for both
systems (2.1) and (2.2), in this section.

Note that the function ξ �→ [ωii +
∑n

j=1,j �=i |ωij |]g′(ξ) is continuous for all i =
1, 2, . . . , n. From (2.9) and ωii > 0, it follows that there exists a positive constant ε0
such that

bi > max

{[
ωii +

n∑
j=1,j �=i

|ωij |
]
g′(ξ) : ξ = âi + ε0, či − ε0

}
, i = 1, 2, . . . , n.(3.1)
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Herein, we choose ε0 such that ε0 < min{|âi − pi|, |či − qi|} for all i = 1, 2, . . . , n. For
system (2.1), we consider the following 2n subsets of Rn. Let α = (α1, . . . , αn) with
αi = “l” or “r,” and set

Ω̃α = {(x1, x2, . . . , xn) | xi ∈ Ω̃l
i if αi = “l,”xi ∈ Ω̃r

i if αi = “r”},(3.2)

where Ω̃l
i := {ξ ∈ R | ξ ≤ âi + ε0}, Ω̃r

i := {ξ ∈ R | ξ ≥ či − ε0}. For system (2.2), we
consider the following 2n subsets of C([−τ, 0],Rn). Let α = (α1, . . . , αn) with αi = “l”
or “r,” and set

Λα = {ϕ = (ϕ1, ϕ2, . . . , ϕn) | ϕi ∈ Λl
i if αi = “l,”ϕi ∈ Λr

i if αi = “r”},(3.3)

where

Λl
i := {ϕi ∈ C([−τ, 0],R) | ϕi(θ) ≤ âi + ε0 for all θ ∈ [−τ, 0]},

Λr
i := {ϕi ∈ C([−τ, 0],R) | ϕi(θ) ≥ či − ε0 for all θ ∈ [−τ, 0]}.

Theorem 3.1. Assume that (H1) and (H2) hold. Then each Ω̃α and each Λα

are positively invariant with respect to the solution flow generated by systems (2.1)
and (2.2), respectively.

Proof. We prove only the delay case, i.e., system (2.2). Consider any one of the
2n sets Λα. For any initial condition φ = (φ1, φ2, . . . , φn) ∈ Λα, we claim that the
solution x(t;φ) remains in Λα for all t ≥ 0. If this is not true, there exists a component
xi(t) of x(t;φ) which is the first (or one of the first) escaping from Λl

i or Λr
i. Restated,

there exist some i and t1 > 0 such that either xi(t1) = či − ε0,
dxi

dt (t1) ≤ 0, and

xi(t) ≥ či − ε0 for −τ ≤ t ≤ t1 or xi(t1) = âi + ε0,
dxi

dt (t1) ≥ 0, and xi(t) ≤ âi + ε0 for

−τ ≤ t ≤ t1. For the first case xi(t1) = či − ε0 and dxi

dt (t1) ≤ 0, we derive from (2.2)
that

dxi

dt
(t1) = −bi(či − ε0) + ωiig(xi(t1 − τii)) +

n∑
j=1,j �=i

ωijg(xj(t1 − τij)) + Ji ≤ 0.

(3.4)

On the other hand, recalling (H2) and previous descriptions of či and ε0, we have
f̌i(či − ε0) > 0 which gives

−bi(či − ε0) + ωiig(či − ε0) + k−i(3.5)

= −bi(či − ε0) + ωiig(či − ε0) −
n∑

j=1,j �=i

|ωij | + Ji > 0.

Notice that t1 is the first time for xi to escape from Λr
i. We have g(xi(t1 − τii)) ≥

g(či − ε0), by the monotonicity of function g. In addition, by ωii > 0 and |g(·)| ≤ 1,
we obtain from (3.5) that

−bi(či − ε0) + ωiig(xi(t1 − τii)) +

n∑
j=1,j �=i

ωijg(xj(t1 − τij)) + Ji

≥ −bi(či − ε0) + ωiig(či − ε0) −
n∑

j=1,j �=i

|ωij | + Ji > 0,
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which contradicts (3.4). Hence, xi(t) ≥ či− ε0 for all t > 0. Similar arguments can be
employed to show that xi(t) ≤ âi+ε0 for all t > 0 for the situation that xi(t1) = âi+ε0
and dxi

dt (t1) ≥ 0. Therefore, Λα is positively invariant under the flow generated by
system (2.2). The assertion for system (2.1) can be justified similarly.

Theorem 3.2. Under conditions (H1), (H2), and (H3), there exist 2n exponen-
tially stable equilibria for system (2.2).

Proof. Consider an equilibrium x̄ = (x̄1, x̄2, . . . , x̄n) ∈ Ωα for some α = (α1, α2,
. . . , αn), with αi = “l” or “r,” obtained in Theorem 2.2. We consider the single-
variable functions Gi(·), defined by

Gi(ζ) = bi − ζ −
n∑

j=1

|ωij |g′(ξj)eζτij ,

where ξj = âj + ε0 (resp., čj − ε0) if αj = “l” (resp., “r”). Then, Gi(0) > 0 from
(3.1) or (H3). Moreover, there exists a constant μ > 0 such that Gi(μ) > 0 for
i = 1, 2, . . . , n, due to continuity of Gi. Let x(t) = x(t;φ) be the solution to (2.2)
with initial condition φ ∈ Λα defined in (3.3). Under the translation y(t) = x(t) − x̄,
system (2.2) becomes

dyi(t)

dt
= −biyi(t) +

n∑
j=1

ωij [g(xj(t− τij)) − g(xj)],(3.6)

where y = (y1, . . . , yn). Now, consider functions zi(·) defined by

zi(t) = eμt|yi(t)|, i = 1, 2, . . . , n.(3.7)

The domain of definition for zi(·) is identical to the interval of existence for yi(·). We
shall see in the following computations that the domain can be extended to [−τ,∞).
Let δ > 1 be an arbitrary real number and let

K := max
1≤i≤n

{
sup

θ∈[−τ,0]

|xi(θ) − x̄i|
}

> 0.(3.8)

It follows from (3.7) and (3.8) that zi(t) < Kδ for t ∈ [−τ, 0] and all i = 1, 2, . . . , n.
Next, we claim that

zi(t) < Kδ for all t > 0, i = 1, 2, . . . , n.(3.9)

Suppose this is not the case. Then there are an i ∈ {1, 2, . . . , n} (say i = k) and a
t1 > 0 for the first time such that

zi(t) ≤ Kδ, t ∈ [−τ, t1], i = 1, 2, . . . , n, i �= k,

zk(t) < Kδ, t ∈ [−τ, t1),

zk(t1) = Kδ with
d

dt
zk(t1) ≥ 0.

Note that zk(t1) = Kδ > 0 implies yk(t1) �= 0. Hence |yk(t)| and zk(t) are differen-
tiable at t = t1. From (3.6), we derive that

d

dt
|yk(t1)| ≤ −bk|yk(t1)| +

n∑
j=1

|ωkj |g′(ςj)|yj(t1 − τkj)|(3.10)
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for some ςj between xj(t1 − τkj) and x̄j . Hence, from (3.7) and (3.10),

dzk(t1)

dt
≤ μeμt1 |yk(t1)| + eμt1

[
−bk|yk(t1)| +

n∑
j=1

|ωkj |g′(ςj)|yj(t1 − τkj)|
]

≤ μzk(t1) − bkzk(t1) +

n∑
j=1

|ωkj |g′(ςj)eμτkjzj(t1 − τkj)

≤ −(bk − μ)zk(t1) +

n∑
j=1

|ωkj |g′(ξj)eμτkj

[
sup

θ∈[t1−τ,t1]

zj(θ)

]
,(3.11)

where ξj = âj + ε0 (resp., čj − ε0) if αj = “l” (resp., “r”). Herein, the invariance
property of Λα in Theorem 3.1 has been applied. Due to Gi(μ) > 0, we obtain

0 ≤ dzk(t1)

dt
≤ −(bk − μ)zk(t1) +

n∑
j=1

|ωkj |g′(ξj)eμτkj

[
sup

θ∈[t1−τ,t1]

zj(θ)

]

< −
{
bi − μ−

n∑
j=1

|ωij |g′(ξj)eμτkj

}
Kδ

< 0,(3.12)

which is a contradiction. Hence the claim (3.9) holds. Since δ > 1 is arbitrary, by
allowing δ → 1+, we have zi(t) ≤ K for all t > 0, i = 1, 2, . . . , n. We then use (3.7)
and (3.8) to obtain

|xi(t) − x̄i| ≤ e−μt max
1≤j≤n

(
sup

θ∈[−τ,0]

|xj(θ) − x̄j |
)

for t > 0 and all i = 1, 2, . . . , n. Therefore, x(t) is exponentially convergent to x̄. This
completes the proof.

In the following, we employ the theory of the local Lyapunov functional [15]
and the Halanay-type inequality [4, 14] to establish other sufficient conditions for
asymptotic stability and exponential stability for the equilibria of system (2.2).

Theorem 3.3. There exist 2n asymptotically stable equilibria for system (2.2)
under conditions (H1) and (H2) and one of the following conditions:

(H4): 2bi >

n∑
j=1

|ωij | + [g′(ηi)]
2

n∑
j=1

|ωji| for ηi = âi and či, i = 1, 2, . . . , n,

(H5): min
1≤i≤n

[
2bi −

n∑
j=1

|ωij |g′(ξj)
]
> max

1≤i≤n

[
n∑

j=1

|ωji|g′(ηi)
]

for ξj = âj and čj ,

ηi = âi and či.

Proof. Similarly to (3.1), there exists ε0 > 0 such that (H4) holds for ηi = âi + ε0,
či − ε0, and (H5) holds for ξj = âj + ε0, čj − ε0, ηi = âi + ε0, či − ε0, i = 1, 2, . . . , n,
by continuity of g′. We thus define Λα as in (3.3). The following computations are
reserved for solutions lying entirely within each of the 2n positively invariant regions
Λα.
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(i) We employ the following Lyapunov functional:

V (y)(t) =
n∑

i=1

y2
i (t) +

n∑
i=1

n∑
j=1

|ωij |
∫ t

t−τij

[g(xj(s)) − g(xj)]
2ds,

where y(t) = x(t) − x. By recalling (3.6) and using (H4), we derive

dV (y)(t)

dt
= 2

n∑
i=1

yi(t)

{
−biyi(t) +

n∑
j=1

ωij [g(xj(t− τij)) − g(xj)]

}

+

n∑
i=1

n∑
j=1

|ωij |[g(xj(t)) − g(xj)]
2 −

n∑
i=1

n∑
j=1

|ωij |[g(xj(t− τij)) − g(xj)]
2

≤ −2

n∑
i=1

biy
2
i (t) +

n∑
i=1

n∑
j=1

|ωij |y2
i (t) +

n∑
i=1

n∑
j=1

|ωij |[g′(ηj)]2y2
j (t)

=

n∑
i=1

{
−2bi +

n∑
j=1

|ωij | + [g′(ηi)]
2

n∑
j=1

|ωji|
}
y2
i (t) < 0.

We thus conclude the asymptotic stability for equilibrium x̄ via applying the theory
of the local Lyapunov functional; cf. [15].

(ii) Recall (3.6), and let

W (y)(t) =
1

2

n∑
i=1

y2
i (t).(3.13)

Then,

dW (y)(t)

dt
=

n∑
i=1

yi(t)

{
−biyi(t) +

n∑
j=1

ωij [g(xj(t− τij)) − g(xj)]

}

≤
n∑

i=1

{
−biy

2
i (t) +

1

2

n∑
j=1

|ωij |g′(ςj)[y2
i (t) + y2

j (t− τij)]

}

≤ −
n∑

i=1

[
bi −

1

2

n∑
j=1

|ωij |g′(ξj)
]
y2
i (t)

+
1

2

[
max

1≤i≤n

n∑
j=1

|ωji|g′(ηi)
]

n∑
i=1

sup
t−τ≤s≤t

y2
i (s)

≤ −βW (y)(t) + ζ sup
t−τ≤s≤t

W (y)(s),

where

β := min
1≤i≤n

{
2bi −

n∑
j=1

|ωij |g′(ξj), ξj = âj + ε0, čj − ε0

}
,

ζ := max
1≤i≤n

{
n∑

j=1

|ωji|g′(ηi), ηi = âi + ε0, či − ε0

}
.
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By (H5), we have β > ζ > 0. By using the Halanay inequality, we obtain that

W (y)(t) ≤
(

sup
−τ≤s≤0

W (y)(s)

)
e−γt(3.14)

for all t ≥ 0, where γ is the unique solution of γ = β − ζeγτ . It follows that

1

2

n∑
i=1

y2
i (t) ≤

[
sup

−τ≤s≤0

(
1

2

n∑
i=1

y2
i (s)

)]
e−γt.(3.15)

Hence, the equilibrium x̄ is asymptotically stable.
Corollary 3.4. Under conditions (H1), (H2), and (H5), there exist 2n expo-

nentially stable equilibria for system (2.2).
We observe from (2.1) and (2.2) that for every i,

Fi(x), F̃i(xt) < 0 whenever xi > 0 is sufficiently large,

Fi(x), F̃i(xt) > 0 whenever xi < 0 and |xi| is sufficiently large,

since bi > 0 and
∑n

j=1 ωijgj(xj(t)) + Ji and
∑n

j=1 ωijgj(xj(t− τij)) + Ji are bounded
for any x and xt. Therefore, it can be concluded that every solution of (2.1) and (2.2)
is bounded in forward time.

4. Further extension. We shall extend our studies in sections 2 and 3 to more
general activation functions in this section.

4.1. Activation functions in general form. Let us consider the activation
functions {gi(·)}n1 which are C2 and satisfy

(C) :

{
ui ≤ gi(ξ) ≤ vi, g′i(ξ) > 0,
(ξ − σi)g

′′
i (ξ) < 0 for all ξ ∈ R,

i = 1, 2, . . . , n. Herein, ui, vi, and σi are constants with ui < vi, i = 1, 2, . . . , n. Under
these circumstances, (H1) can be modified to

(H1
′): 0 = inf

ξ∈R

g′i(ξ) <
bi
ωii

< max
ξ∈R

g′i(ξ) (= g′i(σi)), i = 1, 2, . . . , n.

As in section 2, we define

fi(ξ) = −biξ + ωiigi(ξ) + Ji.

Lemma 4.1. For gi in the class (C), under condition (H1
′), there exist constants

{pi}n1 and {qi}n1 with pi < σi < qi such that f ′
i(pi) = f ′

i(qi) = 0 for each i =
1, 2, . . . , n.

We define

f̂i(ξ) = −biξ + ωiigi(ξ) + k+
i , f̌i(ξ) = −biξ + ωiigi(ξ) + k−i ,(4.1)

where

k+
i :=

n∑
j=1,j �=i

ρj |ωij | + Ji, k−i := −
n∑

j=1,j �=i

ρj |ωij | + Ji(4.2)
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with ρj = max{|uj |, |vj |}. We locate the points âi < b̂i < ĉi and ǎi < b̌i < či, where

f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 and f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.
Let η ∈ R and k ∈ {1, . . . , n} be such that g′k(η) = max{g′i(ξ) : ξ = âi, či,

i = 1, 2, . . . , n}. Consider

(H3
′): bi > g′k(η)

[
ωii +

n∑
j=1,j �=i

|ωij |
]
, i = 1, 2, . . . , n.

Theorem 4.2. Let gi be in the class (C). Under conditions (H1
′), (H2), and

(H3
′), there exist 3n equilibria for systems (2.1) and (2.2) with 2n among them being

exponentially stable.

4.2. Saturated activation functions. In this subsection, we investigate sys-
tems (2.1), (2.2) with saturated activation functions. In particular, we consider the
following continuous functions:

gi(ξ) =

⎧⎨
⎩

ui if −∞ < ξ ≤ pi,
increasing if pi ≤ ξ ≤ qi,
vi if qi ≤ ξ < ∞,

where pi, qi are constants with pi < qi for i = 1, 2, . . . , n. Such a class of functions
includes the piecewise linear function with saturations:

gi(ξ) =

⎧⎨
⎩

ui if −∞ < ξ ≤ pi,
ui + vi−ui

qi−pi
(ξ − pi) if pi ≤ ξ ≤ qi,

vi if qi ≤ ξ < ∞

for each i. Typical graphs for these functions are depicted in Figures 3(a) and (c).
With such activation functions, existence of multiple equilibria for (2.1) and (2.2) can
be obtained under condition

(Hs): bi > 0,−bipi + ωiiui + k+
i < 0, −biqi + ωiivi + k−i > 0, i = 1, 2, . . . , n,

where k+
i , k

−
i are defined as in (4.2). We define f̂i, f̌i as in (4.1). The graphs of f̂i

and f̌i are depicted in Figures 3(b) and (d). Under condition (Hs), we also locate

the points âi < b̂i < ĉi and ǎi < b̌i < či, where f̂i(âi) = f̂i(b̂i) = f̂i(ĉi) = 0 and
f̌i(ǎi) = f̌i(b̌i) = f̌i(či) = 0.

Note that we do not need differentiability at corner points pi, qi of gi in our
analysis; moreover, g′i(ξ) = 0 for ξ < pi and ξ > qi. Thus, (H3) is already satisfied if
bi > 0 for i = 1, 2, . . . , n. With these formulations, we can derive that there exist 3n

equilibria for systems (2.1) and (2.2), and that 2n of them are exponentially stable
under condition (Hs).

4.3. Unbounded activation functions. Our theory can also be extended to
certain unbounded activation functions with controlled slopes, for example, the acti-
vation functions gi with bounded slopes in Figure 4. Herein, we require that the slopes
mr

i of the right- and ml
i of the left-hand parts of gi satisfy bi > ωiim

r
i, bi > ωiim

l
i for

i = 1, . . . , n.

5. Numerical illustrations. In this section, we present two examples (with
delays) to illustrate our theory.
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Fig. 3. (a) The graph for a continuous activation function gi with saturations. (b) The graphs

for f̂i and f̌i induced from the activation function in (a). (c) The graph for a piecewise linear

activation function gi with saturations. (d) The graphs for f̂i and f̌i induced from the activation
function in (c).

.

.

(a) (b)

.

.

Fig. 4. (a) The graph for an unbounded piecewise linear activation function. (b) The graph for
an unbounded activation function with bounded slopes.

Example 5.1. Consider the two-dimensional neural network

dx1(t)

dt
= −x1(t) + 18g1(x1(t− 10)) + 5g2(x2(t− 10)) − 9,

dx2(t)

dt
= −3x2(t) + 5g1(x1(t− 10)) + 30g2(x2(t− 10)) − 15,
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Table 1

Local extreme points and zeros of f̂1, f̌1, f̂2, f̌2.

â1 = −3.993889 p1 = −1.762747 b̂1 = −0.757751 q1=1.762747 ĉ1=14
ǎ1 = −14 b̌1=0.757751 č1=3.993889

â2 = −3.320288 p2 = −1.443635 b̂2 = −0.452309 q2=1.443635 ĉ2=6.666650
ǎ2 = −6.666650 b̌2=0.452309 č2=3.320288
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Fig. 5. Illustrations for the dynamics in Example 5.1.

where g1(x) = g2(x) = g(x) in (2.4) with ε = 0.5. A computation gives

f̂1(x1) = −x1 + 18g(x1) − 4, f̌1(x1) = −x1 + 18g(x1) − 14,

f̂2(x2) = −3x2 + 30g(x2) − 10, f̌2(x2) = −3x2 + 30g(x2) − 20.

Herein, the parameters satisfy our conditions in Theorem 3.2:

Condition (H1): 0 <
b1ε

ω11
=

1

36
<

1

4
, 0 <

b2ε

ω22
=

1

20
<

1

4
.

Condition (H2): f̂1(p1) = −1.722534 < 0, f̌1(q1) = 1.722534 > 0,

f̂2(p2) = −4.085501 < 0, f̌2(q2) = 4.085501 > 0.

Condition (H3): b1 = 1 > 0.025246 = ω11g
′(η1) + |ω12|g′(η2),

b2 = 3 > 0.081566 = |ω21|g′(η1) + ω22g
′(η2),

where η1 = ±3.993889, η2 = ±3.320288 are defined in (2.9). Local extreme points and

zeros of f̂1, f̌1, f̂2, f̌2 are listed in Table 1. The dynamics of this system are illustrated
in Figure 5, where evolutions of 56 initial conditions have been tracked. The constant
initial conditions are plotted in red dots, and the time-dependent initial conditions are
plotted in purple curves. The evolutions of components x1(t) and x2(t) are depicted
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Fig. 6. Evolution of state variable x1(t) in Example 5.1.
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Fig. 7. Evolution of state variable x2(t) in Example 5.1.

in Figures 6 and 7, respectively. There are four exponentially stable equilibria in the
system, as confirmed by our theory. The simulations demonstrate the convergence
to these four equilibria from initial functions φ lying in the basin of the respective
equilibrium.

Example 5.2. In this example, we simulate the neural network

dx1(t)

dt
= −x1(t) + 18g1(x1(t− 10)) + 11g2(x2(t− 10)) + 1,

dx2(t)

dt
= −3x2(t) + 11g1(x1(t− 10)) + 30g2(x2(t− 10)) + 4

with the output function gi(ξ) = h(ξ), where

h(ξ) =
1

2
(|ξ + 1| − |ξ − 1|),(5.1)

for each i. The parameters also satisfy the conditions in our formulations with such an
output function. We demonstrate the dynamics as well as evolutions of components
x1(t), x2(t) for the system in Figures 8, 9, and 10, respectively.
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Fig. 8. Illustrations for the dynamics in Example 5.2.
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Fig. 9. Evolution of state variable x1(t) in Example 5.2.

6. Discussions. Our approach can also be adapted to the cellular neural net-
works with delays. The cellular neural networks (CNNs) were introduced by Chua
and Yang [8] in 1988. A model called delayed cellular neural network [24] is given by

dxi(t)

dt
= −xi(t) +

∑
j∈Nr(i)

aijh(xj(t)) +
∑

j∈Nr(i)

bijh(xj(t− τ)) + Ji,(6.1)

where Nr(i) = {i − 1, i, i + 1} if r = 1. The standard activation function for such a
network is the piecewise linear h defined in (5.1). Notably, (6.1) is a system of CNNs
with cells coupled in the one-dimensional manner, and its local coupling structure is
expressed in the equations. Global exponential stability of a single equilibrium for
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Fig. 10. Evolution of state variable x2(t) in Example 5.2.

(6.1) has been studied by many researchers, for instance, the authors of [3, 20]. The
CNNs can be built by multidimensional couplings among cells. Since there are finitely
many cells at most, the CNNs can always be rewritten in a one-dimensional coupling
form by renaming the indices [28]. It can then be written in a form similar to (1.1).
Such an arrangement, however, destroys the local connection representation. While
previous studies on multistability for the CNNs without delays [17, 26, 27] employed
the structure of local connections among cells of CNNs, our approach does not rely
on such a structure. Moreover, our theory generalized the multistability to the CNNs
with delays (6.1).

In this investigation, we have obtained existence of 2n stable stationary solutions
for recurrent neural networks comprised of n neurons, with delays and without delays.
The theory is primarily based upon an observation on the structures of the equations.
It is thus rather general and can be applied to at least the Hopfield-type neural
networks and the cellular neural networks. The analysis is valid for the networks with
various activation functions, including the typical sigmoidal ones and the saturated
linear ones, as well as some unbounded activation functions. In fact, our formulation
depends on the configuration of the activation functions instead of the precise form of
the functions. The theorems thus developed are pertinent in neural network theory.

Stable periodic orbits and limit cycle attractors are also important for memory
storage and other neural activities. By similar analysis, we can also establish existence
of multiple limit cycles for systems (1.1) and (6.1) with periodic inputs Ji = Ji(t) =
Ji(t + T ). The result will be reported in another article. The approach in this
presentation can be adopted to discrete-time neural networks as well.

The major discussions on neural networks have been centered around monostabil-
ity, in an abundance of articles in the areas of physics, information sciences, electrical
engineering, and mathematics. Multistability in neural networks is, however, essen-
tial in numerous applications such as content-addressable memory storage and pattern
recognition. Recently, further application potentials of multistability have been found
in decision making, digital selection, and analogy amplification [18].

We have exploited further interesting structures of Hopfield-type neural networks
in this study. Our investigations have provided computable parameter conditions for
multistable dynamics in the recurrent neural networks and are expected to contribute
toward practical applications.
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MULTIPLE EQUILIBRIA IN COMPLEX CHEMICAL REACTION
NETWORKS: II. THE SPECIES-REACTION GRAPH∗

GHEORGHE CRACIUN† AND MARTIN FEINBERG‡

Abstract. For mass action kinetics, the capacity for multiple equilibria in an isothermal homo-
geneous continuous flow stirred tank reactor is determined by the structure of the underlying network
of chemical reactions. We suggest a new graph-theoretical method for discriminating between com-
plex reaction networks that can admit multiple equilibria and those that cannot. In particular, we
associate with each network a species-reaction graph, which is similar to reaction network represen-
tations drawn by biochemists, and we show that, if the graph satisfies certain weak conditions, the
differential equations corresponding to the network cannot admit multiple equilibria no matter what
values the rate constants take. Because these conditions are very mild, they amount to powerful
(and quite delicate) necessary conditions that a network must satisfy if it is to have the capacity to
engender multiple equilibria. Broad qualitative results of this kind are especially apt, for individual
reaction rate constants are rarely known fully for complex reaction networks (if they are known at
all). Some concluding remarks address connections to biology.

Key words. equilibrium points, chemical reaction networks, mass action kinetics, SR graph

AMS subject classifications. 92C45, 65H10, 80A30, 37C25

DOI. 10.1137/050634177

1. Introduction. The purpose of this article is to provide theory for distin-
guishing between complex chemical reaction networks that have the capacity to admit
multiple positive equilibria and those that do not. In particular, we shall be interested
in networks governed by mass action kinetics and operating in the context of what
chemical engineers call the continuous flow stirred tank reactor (CFSTR [1]). Models
in cell biology sometimes invoke pictures and mathematics reminiscent of CFSTRs
[9, 12, 17, 14], so it not unreasonable to expect that theory presented here might
ultimately provide insight that is useful in biological applications. Indeed, in biology
one rarely has detailed knowledge of reaction rate constants; at the outset, then, it is
especially appropriate to seek a qualitative understanding of the relationship between
reaction network structure and the capacity for various kinds of behavior (e.g., bista-
bility). As we indicated in the first article of this series [4], the connection between the
two is quite delicate. The theory offered here is intended to render the relationship
between reaction network structure and behavior more concrete.

Our principal results will serve to describe very large classes of networks, includ-
ing highly complex ones, that cannot give rise to multiple steady states regardless
of parameter values. These results provide very strong necessary conditions that a
network must satisfy if it is to have the capacity to give rise, for example, to bistable
behavior.
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Denial of the capacity of a reaction network to admit multiple equilibria follows
from inspection of what we call the Species-Reaction Graph (or SR graph [3]) for
the network, which is similar to the reaction diagram often drawn by biochemists.
Properties of the SR graph and results about it are similar to those in earlier work
[8, 15, 16] on properties of a related graph, called the Species-Complex-Linkage Graph
(or SCL graph). However, the newer results presented here are substantially more
generous in the information they give. Inspection of the SR graph often tells one
very quickly that the network under study is, in the sense of a previous article [4],
injective, which in turn implies that multiple positive equilibria are impossible. That
is, inspection of the SR graph for a reaction network will often tell one that the
complex nonlinear system of differential equations associated with the network cannot
admit multiple positive equilibria, no matter what values the (generally unknown)
parameter values might take.

Our aim in this introductory section is to present, in an informal way, the main
theorem of this article, largely motivated by a single example. More formal definitions
are given in section 2, which will prepare the groundwork for proofs.

A CFSTR consists of a perfectly stirred vessel along with two streams, a feed
stream that carries reactants to the vessel and an outflow stream that leaves the
vessel, carrying away mixture having the same instantaneous composition as that
within the vessel. Hereafter we suppose that the mixtures involved are liquids, all
of which have the same time-invariant density, that the mixture within the vessel is
maintained at a fixed temperature, and that the feed and outflow streams have the
same volumetric flow rate, g (volume/time). For the purposes of an example, we will
suppose that (1.1) is a network of chemical reactions among species A, B, M , N , R,
X, Y , and Z:

A + M � X, B + N � Y → 2A + N, B + X � Z → R + M.(1.1)

By virtue of the occurrence of chemical reactions, the molar concentrations of the
various species within the vessel will generally depend on time. These we denote by
cA(t), cB(t), . . . , cZ(t), which, by supposition, are identical to the species concentra-

tions in the outflow stream. We denote by cfA, c
f
B , . . . , c

f
Z the (fixed) concentrations

of the species in the feed stream. We assume hereafter that the rates of the chemical
reactions are governed by mass action kinetics [4, 6, 7, 10, 11]. In this case, the system
of differential equations associated with network (1.1) is the following:

ċA = (g/V )(cfA − cA) − kA+M→XcAcM + kX→A+McX + 2kY→2A+NcY ,(1.2)

ċB = (g/V )(cfB − cB) − kB+X→ZcBcX + kZ→B+XcZ + kY→B+NcY

− kB+N→Y cBcN ,

ċM = (g/V )(cfM − cM ) − kA+M→XcAcM + kX→A+McX + kZ→R+McZ ,

ċN = (g/V )(cfN − cN ) − kB+N→Y cBcN + kY→B+NcY + kY→2A+NcY ,

ċR = (g/V )(cfR − cR) + kZ→R+McZ ,

ċX = (g/V )(cfX − cX) − kX→A+McX + kA+M→XcAcM − kB+X→ZcBcX

+ kZ→B+XcZ ,

ċY = (g/V )(cfY − cY ) − kY→B+NcY + kB+N→Y cBcN − kY→2A+NcY ,

ċZ = (g/V )(cfZ − cZ) + kB+X→ZcBcX − kZ→B+XcZ − kZ→R+McZ ,

where g is the volumetric flow rate (volume/time), V is the reactor volume, kA+M→X

is the rate constant of the reaction A+M → X, kX→A+M is the rate constant of the
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Fig. 1.1. The SR graph Γ of the reaction network (1.1).

reaction X → A+M , and so on. See [4, 6] for a detailed explanation of how, given a
reaction network, we obtain such a system of differential equations.

We say that the reaction network (1.1) has the capacity for multiple positive
equilibria if there exist some positive flow rate g, positive volume V , nonnegative feed
concentrations cfA, . . . , c

f
Z , and positive rate constants kA+M→X , . . . , kZ→R+M such

that the system of differential equations (1.2) has two or more distinct equilibria at
which the species concentrations are positive.

In preparation for a description of how to draw the SR graph for a reaction
network, we need a little vocabulary: By the complexes [10] of a reaction network we
mean the objects at the heads and tails of the reaction arrows. Thus, the complexes
of network (1.1) are A + B, X, B + N , Y , 2A + N , B + X, Z, and R + M .

The SR graph for a reaction network has two kinds of nodes: species nodes and
reaction nodes. There is a species node for each species in the network (A, B, M , N ,
R, Y , and Z in (1.1)). Moreover, there is a reaction node for each reaction or reversible
reaction pair in the network. That is, reversible reactions such as A + M � X share
the same node. Edges join species nodes to reaction nodes as follows: If a species (such
as A) appears in a complex (such as A+M) at the head or tail of a reaction (such as
A + M � X), then an (unoriented) edge joins the species node to the reaction node
and is labeled with the name of the complex in which that species appears. (Thus,
for example, an edge would join the species node corresponding to A to the reaction
node corresponding to A+M � X, and the edge would be labeled A+M .) The SR
graph for network (1.1) is shown in Figure 1.1.

We now need to define some features of SR graphs that are especially relevant to
our problem. Pairs of edges that meet at a reaction node and have the same complex
label are called c-pairs (complex pairs). For example, the two edges labeled A + M
that meet at the reaction node A + M � X in Figure 1.1 form a c-pair.

Notice that cycles might appear in the SR graph. Cycles that contain an odd
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number of c-pairs are called o-cycles (odd cycles). For example, the outer cycle in
Figure 1.1 is an o-cycle, since it contains three c-pairs, centered at the reaction nodes
A+M � X, B +N � Y , and Y → 2A+N . Cycles that contain an even number of
c-pairs are called e-cycles (even cycles). In particular, cycles that contain no c-pairs
are e-cycles.

The stoichiometric coefficient of an edge is the coefficient of the species adjacent
to that edge in the complex label of the edge. For the reader’s convenience, we have
labeled each edge of the SR graph in Figure 1.1 with its stoichiometric coefficient.
For example, the stoichiometric coefficient of the edge from A to A + M � X in
Figure 1.1 is 1, and the stoichiometric coefficient of the edge from A to Y → 2A +
N is 2. Cycles for which alternately multiplying and dividing the stoichiometric
coefficients along the cycle gives the final result 1 are called s-cycles (stoichiometric
cycles). For example, for the outer cycle that begins at A and visits N , B, Z M , the
stoichiometric coefficients along the cycle are 2, 1, 1, 1, 1, 1, 1, 1, 1, 1 (see Figure 1.1).
Then, by alternately multiplying and dividing the stoichiometric coefficients along the
cycle, we get 2 · 1−1 · 1 · 1−1 · 1 · 1−1 · 1 · 1−1 · 1 · 1−1 = 2, and thus this cycle is not an
s-cycle. On the other hand, for the cycle that visits N,Y we get 1 · 1−1 · 1 · 1−1 = 1,
and thus this cycle is an s-cycle.

We say that two cycles in the SR graph have a species-to-reaction (S-to-R) in-
tersection if the common edges of the two cycles constitute a path that begins at a
species node and ends at a reaction node, or if they constitute a disjoint union of such
paths.

For example, the common edges of the cycle that visits N,Y with the cycle that
visits A,X,B, Y in Figure 1.1 form a path that begins at a reaction node and ends
at a reaction node, and so they do not have an S-to-R intersection.

Then the main result of this article is the following.
Theorem 1.1. Consider a reaction network such that in its SR graph
(i) each cycle is an o-cycle or an s-cycle,
(ii) no two e-cycles have an S-to-R intersection.
Then, taken with mass action kinetics, the reaction network does not have the

capacity for multiple positive equilibria.
In particular, the theorem above implies that the reaction network (1.1) does not

have the capacity for multiple equilibria. Indeed, all cycles in the SR graph of (1.1)
are o-cycles, except for two cycles (the cycle that visits N,Y and the cycle that visits
M,Z,X), which are s-cycles, and so condition (i) is satisfied. Also, these two e-cycles
do not have an S-to-R intersection, so condition (ii) is satisfied. On the other hand,
previous results in [8, 15, 16] give no information about network (1.1).

In general, if there are no cycles in the SR graph, or if all cycles are o-cycles, then
conditions (i) and (ii) are satisfied. Or, if all stoichiometric coefficients in a network
are one, then all cycles are s-cycles, and so condition (i) is satisfied. Also, if no species
node is adjacent to three or more reaction nodes, then no two cycles have an S-to-
R intersection, and so condition (ii) is satisfied. Note then that for some reaction
networks it is not even necessary to draw the SR graph in order to conclude that they
do not have the capacity for multiple equilibria: If all the stoichiometric coefficients
are one and no species appears in three or more reactions, then the reaction network
does not have the capacity for multiple equilibria. For example, if we replace 2A+N
by A + N in (1.1), then the new reaction network has all stoichiometric coefficients
equal to one, and no species appears in three or more reactions. Therefore, without
having to draw its SR graph, it follows that this new reaction network does not have
the capacity for multiple equilibria.
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In the next section we begin our proof of Theorem 1.1. In particular, we will
eventually want to connect the SR graph to network injectivity, an idea introduced
in [4].

2. Reaction networks and injectivity. Let us first give a precise definition
of a reaction network in terms of the set of species, the set of complexes, and the set
of reactions. Recall that the complexes of a reaction network are to be understood
as the objects at the head or tail of reaction arrows. We denote by R the set of
real numbers, by R+ the set of positive numbers, and by R̄+ the set of nonnegative
numbers. Also, given a set I, we denote by RI the vector space of formal linear
combinations

∑
i∈I λii, generated by the elements of i ∈ I, with coefficients λi ∈ R.

By R̄I
+ we mean the members of RI with λi ≥ 0 for all i ∈ I. By RI

+ we mean the
members of RI with λi > 0 for all i ∈ I. By the support of an element x ∈ RI

+ we
mean the set supp(x) = {i ∈ I : xi �= 0}.

As in [4], we can regard a chemical reaction network as an abstract structure
given by the following definition.

Definition 2.1 (see [6, 7]). A chemical reaction network N = (S ,C ,R) con-
sists of three finite sets:

(i) a set S of species of the network,
(ii) a set C ⊂ R̄S

+ of complexes of the network,
(iii) a set R ⊂ C × C of reactions, with the following properties:

(a) (y, y) /∈ R for any y ∈ C ,
(b) for each y ∈ C there exists y′ ∈ C such that (y, y′) ∈ R or such that

(y′, y) ∈ R.

We write the more suggestive y → y′ in place of (y, y′) when (y, y′) is a member
of R. Also, if {y → y′, y′ → y} ⊂ R, we will denote the set {y → y′, y′ → y} by the
more suggestive y � y′ and will say that y � y′ is a reversible reaction. If y → y′ ∈ R
and y′ → y /∈ R, we say that y → y′ is an irreversible reaction. For example, consider
the reaction network

A + B � C, A → 2B.(2.1)

In this case S = {A,B,C}, C = {A + B,C,A, 2B}, R = {A + B → C, C → A + B,
A → 2B}.

Definition 2.2. By a mass action system we mean a reaction network (S ,C ,R)
taken together with an element k ∈ RR

+ . The number ky→y′ is the rate constant for
the reaction y → y′.

In the next definition we use the following notation: for two vectors in R̄S
+ , say

u =
∑

s∈S uss and v =
∑

s∈S vss, we denote by uv the product
∏

s∈S (us)
vs . Here

we use the convention that 00 = 1.

Our aim now is to write the differential equation that, for a mass action system,
governs the evolution of composition vector c ∈ R̄S

+ .

Definition 2.3. For a mass action system (S ,C ,R, k) the associated differen-
tial equation is

ċ =
∑

y→y′∈R

ky→y′cy(y′ − y).(2.2)

In components, the differential equations associated with a mass action system
derived from network (2.1) are
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ċA = −kA+B→CcAcB − kA→2BcA + kC→A+BcC ,(2.3)

ċB = −kA+B→CcAcB + kC→A+BcC + 2kA→2BcA,

ċC = kA+B→CcAcB − kC→A+BcC .

Note that these are not the differential equations one would write for a CFSTR,
for they take no account of the effects of the feed and outflow streams. The appropriate
CFSTR differential equations are

ċA = (g/V )(cfA − cA) − kA+B→CcAcB − kA→2BcA + kC→A+BcC ,(2.4)

ċB = (g/V )(cfB − cB) − kA+B→CcAcB + kC→A+BcC + 2kA→2BcA,

ċC = (g/V )(cfC − cC) + kA+B→CcAcB − kC→A+BcC .

As we indicated in [4], however, the appropriate CFSTR equations do derive from
a mass action system associated with the augmented network

A + B � C, A → 2B, 0 → A, 0 → B, 0 → C, A → 0, B → 0, C → 0.(2.5)

Here 0 is the zero complex, which is understood to be the zero vector of R̄S
+ . As

explained in [4], the added outflow reactions A → 0, B → 0, and C → 0 serve to
model the contributions of the outflow stream to the CFSTR differential equations
(taking each rate constant to be g/V ), while the feed reactions 0 → A, 0 → B, and
0 → C serve to model the contributions of the feed stream (taking the rate constants

to be, respectively, gcfA/V , gcfB/V , and gcfC/V ).
In general, to obtain the augmented network, one adds to the network of true

chemical reactions an outflow reaction s → 0 for each s ∈ S , and a feed reaction
0 → s for each species s deemed to be in the feed stream. Hereafter, when we
speak of a reaction network (S ,C ,R), it will be understood that we have in mind
the augmented network constructed to generate the CFSTR differential equations. In
particular, the full set of reactions R will contain the “true” set of chemical reactions
(denoted Rt) and a reaction s → 0 for each s ∈ S .

Definition 2.4. A reaction network (S ,C ,R) has the capacity to admit mul-
tiple positive equilibria if there is a k ∈ R

R
+ such that, for the mass action sys-

tem (S ,C ,R, k), the associated differential equation admits two distinct equilibria in
R

S
+ .

Remark. Our aim will be to describe networks that do not have the capacity for
multiple positive equilibria. For our study of classical CFSTRs this is apparently a
little more than we need: In Definition 2.4, we permit the rate constants associated
with the outflow reactions (i.e., reactions of the form s → 0 for all s ∈ S ) to take
arbitrary positive values, while for the classical CFSTRs such rate constants should
all be identical (and equal to g/V ).

We are interested in what we call injective reaction networks because injective
reaction networks do not have the capacity for multiple positive equilibria (see [4]).
The characterization of injectivity we use here is the one given by Theorem 3.3 in [4].

Definition 2.5. A reaction network N = (S ,C ,R) with n species is injective
if

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) ≥ 0

for all choices of reactions1 y1 → y′1, . . . , yn → y′n in R.

1Some of these reactions could be feed or outflow reactions.
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Therefore, we need to study the relationship between the signs of det(y1, . . . , yn)
and det(y1 − y′1, . . . , yn − y′n). For this, our main tool will be the SR graph.

3. The SR graph.
Definition 3.1. Consider some reaction network N = (S ,C ,R). The SR

graph ΓN of N is an unoriented graph defined as follows. Each node of ΓN is
either a species node or a reaction node. There is one species node for each species
in S . There is one reaction node for each reversible reaction in Rt, and there is
one reaction node for each irreversible reaction in Rt.

2 Each edge in the graph ΓN
connects a species node to a reaction node (so ΓN is a bipartite graph) according to
the following prescription: Consider a species node s and a reaction node r given by
y → y′ or y � y′. If s ∈ supp(y), then there is an edge between s and r and we label
it with the complex y. Similarly, if s ∈ supp(y′), then there is an edge3 between s and
r and we label it with the complex y′.

For example, for the reaction network (2.1) there are three species nodes and two
reaction nodes, and we get the SR graph in Figure 3.1.

Fig. 3.1. The SR graph of reaction network (2.1).

In an SR graph there are some configurations of edges and cycles that are espe-
cially important to us. The following definition describes them.

Definition 3.2. Consider the SR graph ΓN of some reaction network N . A
pair of edges in ΓN that meet at a reaction node and have the same complex label
is called a c-pair. A cycle that contains an odd number of c-pairs is called an o-
cycle. A cycle that contains an even number of c-pairs is called an e-cycle. The
stoichiometric coefficient of an edge is the coefficient of the species adjacent to that
edge in the complex label of the edge. An s-cycle is one for which, if we alternately
multiply and divide the stoichiometric coefficients of edges along the cycle, we get the
final result 1. An S-to-R chain in an SR graph is a simple path from a species node

2Recall that Rt is the set of true chemical reactions—that is, the set of reactions before the
addition of reactions such as s → 0 or 0 → s.

3If s is contained in both supp(y) and supp(y′) (as in A + B → 2A), then there are two edges
joining the species node s to the reaction node y → y′, one carrying the label y and the other carrying
the label y′.
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to a reaction node. We say that two cycles in ΓN have an S-to-R intersection if their
common edges constitute an S-to-R chain or a disjoint union of two or more S-to-R
chains.

Recall that we gave another example of an SR graph in section 1.

4. The OSR graph. In this section we define the oriented species-reaction graph
(OSR graph), which will be the main tool for proving the results in the rest of this
article. For this and the next section, we consider a fixed reaction network N =
(S ,C ,R). Recall that any complex y in C is a linear combination y =

∑
s∈S yss,

where ys ≥ 0 for all s ∈ S . Recall too that the support of y is defined by supp(y) =
{s ∈ S : ys > 0}. In view of our interest in network injectivity (Definition 2.5), we
consider a fixed ordered set of reactions4 R = {y1 → y′1, . . . , yn → y′n} ⊂ R, where
n is the number of species for the network N . We seek to determine the conditions
under which the product

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n)

is positive when it is not zero. Hereafter, then, we assume that, for the ordered set of
reactions R under consideration, the product above is not zero.

In this case the complexes y1, . . . , yn are linearly independent vectors. Then it is
not difficult to see that one can make a bijective association between the n species of
the network N and the n complexes y1, . . . , yn, which associates with each complex
a particular species in its support. In other words, there exists a (not necessarily
unique) bijection f : {y1, . . . , yn} → S such that f(yi) ∈ supp(yi), i = 1, 2, . . . , n.

Hereafter, we choose one such bijection and denote by ei the species f(yi). Thus,
the set of species of the network N becomes {e1, . . . , en}, and we have ei ∈ supp(yi),
i = 1, 2, . . . , n. For the sake of concreteness, we suppose that the determinant function
is such that det(e1, . . . , en) > 0. (In what follows, some readers might wish to associate
{e1, . . . , en} with the standard basis of Rn, in which case the complexes y1, . . . , yn
would be associated with vectors in Rn.)

Definition 4.1. The OSR graph of R is an oriented graph GR, defined as follows.
The set of nodes of GR is S ∪ (R ∩ Rt). The nodes in S are called species nodes,
and the nodes in R∩Rt are called reaction nodes. Each (oriented) edge in the graph
GR connects a species node to a reaction node or a reaction node to a species node
in the following way. Consider some true reaction yj → y′j. There is exactly one
incoming edge toward the node yj → y′j in GR, and it comes from the node of the
species ej. We label this edge with the complex yj. There is one outgoing edge from
the reaction node yj → y′j toward each species node ei ∈ supp(yj), except for ej. We
label these edges with the complex yj as well. There is one outgoing edge from the
reaction node yj → y′j toward each species node ei ∈ supp(y′j). We label these edges
with the complex y′j.

For example, if in the reaction network (2.1) we choose the reactions that make
up the set R to be y1 → y′1 = A → 2B, y2 → y′2 = A + B → C, y3 → y′3 = C → 0
and we identify A,B,C with e1, e2, e3, then we get the OSR graph in Figure 4.1.

Since the OSR graph is defined similarly to the SR graph, we can also refer to
s-cycles, o-cycles, and e-cycles in the OSR graph, their definitions being analogous
to those in the SR graph. However, whenever we mention a cycle in an OSR graph,
that cycle will have to be an oriented cycle. In particular, the s-cycles, o-cycles, and
e-cycles in an OSR graph have to be oriented cycles, and a c-pair has to be an oriented

4Some of these reactions might be outflow reactions.
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Fig. 4.1. An OSR graph for some reactions in (2.1).

pair of edges as well (i.e., one of the two adjacent edges that form a c-pair should
point toward their common reaction vertex, and the other should point away from
their common reaction vertex).

Remark. Note that each (oriented) edge in the OSR graph GR, connecting some
species node and some reaction node, corresponds uniquely to some (unoriented)
edge in the SR graph ΓN of N connecting the same species node to the corresponding
reaction node in ΓN , and has the same complex label. In other words, the OSR graph
GR is an (oriented) subgraph of the SR graph ΓN .

Remark. Suppose that R contains only outflow reactions, i.e., R = {A1 → 0, . . . ,
An → 0}. Then the OSR graph GR has n species vertices, has no reaction vertices,
and has no edges.

5. Properties of the OSR graph. To be able to formulate properties of the
OSR graph we first need to introduce more definitions and notation.

Note that, for each yi → y′i ∈ R, the complex yi has a decomposition of the form

yi =
∑

ek∈supp(yi)

yikek,

which defines numbers yik > 0. In particular, recall that ei ∈ supp(yi); i.e., we obtain
yii > 0.

In view of Definition 2.5, we will now define a special multilinear expansion of
det(y1 −y′1, . . . , yn−y′n). For each yi → y′i ∈ R the vector yi−y′i has a decomposition
of the form

yi − y′i =
∑

ek∈supp(yi)

yikek −
∑

ek∈supp(y′
i
)

y′ikek,

where yik > 0 were mentioned above. We want now to consider the multilinear
expansion of det(y1 − y′1, . . . , yn − y′n) obtained by expanding each yi − y′i in terms
of the basis elements e1, . . . , en, with one exception: If supp(yi) ∩ supp(y′i) �= ∅ for
some i (as in a reaction of the form A + B → 2A), we do not want to confuse
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the contribution of yi with the contribution of y′i. For this reason, we represent the
multilinear expansion of det(y1 − y′1, . . . , yn − y′n) as the sum of all terms of the form

det(δ1k1ek1 , . . . , δnknekn),

where ek1
∈ supp(y1) ∪ supp(y′1), . . . , ekn

∈ supp(yn) ∪ supp(y′n), and

δiki =

⎧⎨
⎩

yiki if eki ∈ supp(yi)\supp(y′i),
−y′iki

if eki ∈ supp(y′i)\supp(yi),
either yiki or − y′iki

if eki ∈ supp(yi) ∩ supp(y′i).

Definition 5.1. By a term in the expansion of the determinant det(y1 − y′1, . . . ,
yn − y′n) we mean a term in the multilinear expansion of det(y1 − y′1, . . . , yn − y′n)
described above.

Note that a term might have the value zero. We will describe an important
relationship between nonzero terms in the expansion of det(y1 − y′1, . . . , yn − y′n) and
the graph GR. Let us denote by Δ the term det(y11e1, . . . , ynnen). Of course, Δ is a
(nonzero) term in the expansion of det(y1−y′1, . . . , yn−y′n) in the sense of the previous
definition. Suppose that there is an edge ε in GR from the reaction node yi → y′i to
some species node ek and having the complex label yi. Let us denote by Δε the
result of replacing yiiei by yikek in Δ and leaving everything else unchanged. Note
that, according to the definition above, Δε is a (zero-valued) term in the expansion
of det(y1 − y′1, . . . , yn − y′n). Similarly, suppose there is an edge ε′ in GR from the
reaction node yi → y′i to some species node ek and having the complex label y′i. Let
us denote by Δε′ the result of replacing yiiei by −y′ikek in Δ and leaving everything
else unchanged. According to the definition above, Δε′ is also a (zero-valued) term
in the expansion of det(y1 − y′1, . . . , yn − y′n).

If L is a cycle in GR, let us denote by ΔL the term resulting from making re-
placements in Δ as above, simultaneously for all edges in L that go from a reaction
node to a species node. (See the example after the proof of the following lemma.)
Then ΔL is also a (nonzero) term in the expansion of det(y1 − y′1, . . . , yn − y′n). If L
is a set of disjoint cycles in GR, let us denote by ΔL the term resulting from making
replacements in Δ as above, simultaneously for all edges in L that go from a reac-
tion node to a species node. Then ΔL is also a (nonzero) term in the expansion of
det(y1−y′1, . . . , yn−y′n). Lemma 5.1 will show that all nonzero terms in the expansion
of det(y1 − y′1, . . . , yn− y′n) are of the form ΔL for some set L of disjoint cycles in GR.

The case of det(y1, . . . , yn) is similar, but simpler. We have

det(y1, . . . , yn) =
∑

ek1
∈supp(y1),...,ekn∈supp(yn)

det(y1k1
ek1

, . . . , ynkn
ekn

),

and we state the following definition.
Definition 5.2. By a term in the expansion of the determinant det(y1, . . . , yn)

we mean a term in the multilinear expansion of det(y1, . . . , yn) above.
Note now that, according to the two definitions above, each term in the expansion

of the determinant det(y1, . . . , yn) is also a term in the expansion of the determinant
det(y1−y′1, . . . , yn−y′n). Note also that Δε defined as above is a term in the expansion
of det(y1, . . . , yn), since the complex label of ε is yi, while Δε′ defined as above will
not be a term in the expansion of det(y1, . . . , yn), since the complex label of ε′ is y′i.
Let us refer to edges similar to ε′ as product edges. In other words, an edge ε′ is a
“product edge” if it is oriented from a reaction node yi → y′i to a species node, and
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the complex label of the edge ε′ is y′i. Then, if a cycle L in GR contains no product
edges, ΔL is also a (nonzero) term in the expansion of det(y1, . . . , yn). Similarly, if
L is a set of disjoint cycles in GR that contain no product edges, then ΔL is also a
(nonzero) term in the expansion of det(y1, . . . , yn).

The following lemma associates with each nonzero term in the expansion of
det(y1 − y′1, . . . , yn − y′n) a set of mutually disjoint cycles in the OSR graph GR,
in a bijective way (also note the example after the proof).

Lemma 5.1. There is a bijective correspondence that associates with each nonzero
term Δ∗ in the expansion of det(y1 − y′1, . . . , yn − y′n) a set L of disjoint cycles in
GR such that Δ∗ = ΔL. In particular, if L is the collection of all sets of mutually
disjoint cycles in GR, we have

det(y1 − y′1, . . . , yn − y′n) =
∑
L∈L

ΔL.

Proof. Consider some nonzero term Δ∗ = det(δ1k1ek1 , . . . , δnknekn) in the expan-
sion of det(y1 − y′1, . . . , yn − y′n). Then (k1, k2, . . . , kn) is a permutation of the set
{1, 2, . . . , n}. We denote this permutation by σ, i.e., σ(i) = ki, i = 1, . . . , na. Recall
that if ek ∈ supp(yi) ∪ supp(y′i) and i �= k, then there is an edge in GR from the
reaction node yi → y′i to the species node ek. Also, recall that for any i there is an
edge in GR from the species node ei to the reaction node yi → y′i.

Suppose that the permutation σ has a cycle of length two, C = (ij), i �= j.
In this case δij �= 0 and δji �= 0. Then ej ∈ supp(yi) ∪ supp(y′i) and i �= j, so
there is an edge in GR from the reaction node yi → y′i to the species node ej . Also,
ei ∈ supp(yj) ∪ supp(y′j) and j �= i, so there is an edge in GR from the reaction node
yj → y′j to the species node ei. These two edges together with the edge from ei to
yi → y′i and the edge from ej to yj → y′j form an (oriented) cycle LC of length four in
GR. Also, note that ΔLC is the same as Δ∗ at its ith and jth entries. Similarly, with
any other cycle C of σ of length k we associate an (oriented) cycle of length 2k in GR.

Then it is not difficult to see that we have Δ∗ = ΔL, where L is the set of all
cycles LC with C a cycle of σ.

Finally, note that if we begin from some set L of disjoint cycles in GR, construct
the term ΔL, and then construct a set L̃ of disjoint cycles in GR from the term ΔL,
as described above, then L = L̃. This shows that the correspondence described above
is bijective.

Example. Consider the ordered set of five reactions

2A → B, A + B → C, C + D → B + E, D → 2C, E → 0.(5.1)

We identify the species sequence A,B,C,D,E with e1, e2, e3, e4, e5. The correspond-
ing OSR graph appears in Figure 5.1.

There are three oriented cycles: l1, which passes through the species nodes A and
B; l2, which passes through the species nodes B and C; and l3, which passes through
the species nodes C and D.

We have det(y1−y′1, . . . , y5−y′5) = det(2e1−e2, e1+e2−e3, e3+e4−e2−e5, e4−2e3,
e5). The term det(y11e1, . . . , ynnen) in the multilinear expansion of det(y1 − y′1, . . . ,
y5 − y′5) is in this case det(2e1, e2, e3, e4, e5). This term equals Δ∅; i.e., it corresponds
to the set L of disjoint cycles being the empty set.

We will now check that there is a one-to-one correspondence between all other
nonzero terms in the multilinear expansion of det(y1 − y′1, . . . , y5 − y′5) and nonempty
sets of disjoint cycles in the OSR graph.
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Fig. 5.1. An OSR graph for the set of reactions (5.1).

The cycle l1 corresponds to replacing 2e1 in det(2e1, e2, e3, e4, e5) by −e2, and re-
placing e2 in det(2e1, e2, e3, e4, e5) by e1, since the cycle l1 visits the species node B af-
ter leaving A and visits the species node A after leaving B. The corresponding term in
the multilinear expansion of det(y1−y′1, . . . , y5−y′5) is therefore det(−e2, e1, e3, e4, e5).
Similarly, the cycle l2 corresponds to replacing e2 in det(2e1, e2, e3, e4, e5) by −e3,
and replacing e3 in det(2e1, e2, e3, e4, e5) by −e2, since the cycle l2 visits the species
node C after leaving B and visits the species node B after leaving C. The corre-
sponding term in the multilinear expansion of det(y1 − y′1, . . . , y5 − y′5) is therefore
det(2e1,−e3,−e2, e4, e5). Similarly, the cycle l3 corresponds to the term det(2e1, e2,
e4,−2e3, e5). There is one more nonzero term in the expansion of det(y1 − y′1, . . . ,
y5 − y′5). This term is det(−e2, e1, e4,−2e3, e5), and it corresponds to the set {l1, l3}
of disjoint cycles.

To formulate an analogous lemma for det(y1, . . . , yn) let us denote by Lnp the
collection of all sets of mutually disjoint cycles in GR that have no product edges.
Then we have the following result.

Lemma 5.2. There is a bijective correspondence that associates with each nonzero
term Δ∗ in the expansion of det(y1, . . . , yn) a set L ∈ Lnp such that Δ∗ = ΔLnp

. In
particular, we have

det(y1, . . . , yn) =
∑

L∈Lnp

ΔL.

Proof. The proof here is analogous to that of the previous lemma.
Let us now look more closely at the connection between the SR graph and the

OSR graph, as follows.
Lemma 5.3. If two (oriented) cycles l1 and l2 in GR have a common vertex, then

their (unoriented) versions lSR
1 and lSR

2 in ΓN have an S-to-R intersection.
Proof. Suppose that l1 and l2 have a species node s in common. Since they are

oriented cycles, each one of them has to contain an outgoing edge from s. However,
there is a unique outgoing edge adjacent to s in GR. Therefore that edge is common
to the two cycles, and the corresponding edge in ΓN is common to lSR

1 and lSR
2 .

Analogously, if l1 and l2 have a reaction node r in common, each one of them has to
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contain the unique incoming edge adjacent to r in GR. This shows that lSR
1 and lSR

2

have at least one edge in common.
Suppose now that we travel along the two cycles l1 and l2 in GR, beginning from

some common edge and following the orientation of that edge. The first node where
the two cycles separate from each other has to be a reaction node, since all species
nodes have just one outgoing edge in GR. On the other hand, if we travel along the two
cycles l1 and l2 in GR, beginning from some common edge, in the direction opposite
to the orientation of that edge, then the first node where the two cycles separate from
each other has to be a species node, since all reaction nodes have just one incoming
edge in GR. In conclusion, the common edges of lSR

1 and lSR
2 form one or more S-to-R

chains (see Definition 3.2); i.e., lSR
1 and lSR

2 have an S-to-R intersection.
Before we can prove our main result we have to prove a few lemmas about special

types of cycles in OSR graphs.
Lemma 5.4. Consider a set L of disjoint o-cycles in GR. Then ΔL > 0.
Proof. If L = ∅, we have Δ∅ = det(y11e1, . . . , ynnen) > 0. Consider now the case

when L contains exactly one cycle l. Denote by ei1 , ei2 , . . . , eik , ei1 (in this order) the
species vertices visited by the oriented cycle l. Then the term Δ{l} is the same as
det(y11e1, . . . , ynnen) except that the entry yi1i1ei1 in det(y11e1, . . . , ynnen) is replaced
by δi1i2ei2 , the entry yi2i2ei2 is replaced by δi2i3ei3 , and so on, until the entry yikikeik
is replaced by δiki1ei1 .

Since all yii > 0 it follows that the sign of Δ{l} equals the sign of the cyclic
permutation (i1i2 . . . ik) times the sign of the product δi1i2δi2i3 . . . δiki1 . According to
the standard decomposition of a cyclic permutation into a product of transpositions5

the sign of the cyclic permutation (i1i2 . . . ik) is (−1)k−1. On the other hand, note
that if the edge of l from the reaction node yij → y′ij to the species node eij+1 has the
complex label yij , then δijij+1

is positive, and if the edge of l from the reaction node
yij → y′ij to the species node eij+1 has the complex label y′ij , then δijij+1

is negative.6

Recall that the other edge of l adjacent to yij → y′ij has to have the complex label
yij . In conclusion, the number of positive δijij+1

’s equals the number of c-pairs along
l. However, according to the hypothesis, l has an odd number of c-pairs, say 2p + 1.
Then the sign of the product δi1i2δi2i3 . . . δiki1 is (−1)k−2p−1, which implies that the
sign of Δ{l} is (−1)k−1(−1)k−2p−1, i.e., Δ{l} > 0.

For arbitrary L let us notice that since the cycles in L are mutually disjoint it
follows that ΔL can be written as a product of determinants, one for each cycle in
L, and the considerations above apply for each one of these determinants. Then
ΔL > 0.

Lemma 5.5. Suppose that l is an e-cycle and an s-cycle in GR, and L is a set of
cycles in GR that are disjoint from each other and disjoint from l. Then ΔL+ΔL∪{l} =
0.

Proof. Case 1. Suppose that the set L is empty. We have Δ∅ = det(y11e1,
. . . , ynnen). As in the proof of the previous lemma, the term Δ{l} is the same as
det(y11e1, . . . , ynnen) except that the entry yi1i1ei1 in det(y11e1, . . . , ynnen) is replaced
by δi1i2ei2 , the entry yi2i2ei2 is replaced by δi2i3ei3 , and so on, until the entry yikikeik
is replaced by δiki1ei1 . Note that the stoichiometric coefficient of the edge of l from
the species node eij to the reaction node yij → y′ij is yijij , and the stoichiometric

coefficient of the edge of l from the reaction node yij → y′ij to the species node eij+1 is
δijij+1

. Therefore if we alternately multiply and divide the stoichiometric coefficients

5I.e., the decomposition (i1i2 . . . ik) = (i1i2)(i2i3) . . . (ik−1ik).
6Here we are using cyclic notation: By δikik+1

we mean δiki1 , and by eik+1
we mean ei1 .
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of the edges along the cycle l, we get

(yi1i1/δi1i2)(yi2i2/δi2i3) . . . (yik−1ik−1
/δik−1ik)(yikik/δiki1).

Since l is an s-cycle the product above equals 1, and we obtain yi1yi2 . . . yik =
δi1δi2 . . . δik . Then the absolute value of Δ{l} is the same as the absolute value of
det(y11e1, . . . , ynnen). Since l is an e-cycle we reason as in the proof of the previous
lemma to conclude that Δ{l} is negative. Then

Δ∅ + Δ{l} = det(y11e1, . . . , ynnen) + Δ{l} = 0.

Case 2. Suppose that L contains at least one cycle. Since l is disjoint from all
cycles in L, we can argue exactly as in Case 1 that ΔL and ΔL∪{l} have the same
absolute value and different signs.

6. The main result. We can now prove the following theorem.
Theorem 6.1. Consider some reaction network N such that in its SR graph ΓN

all cycles are o-cycles or s-cycles, and no two e-cycles have an S-to-R intersection.
Then the reaction network N is injective.

Proof. Consider some set R = {y1 → y′1, . . . , yn → y′n} of n reactions in N such
that det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) �= 0. We want to show that

det(y1, . . . , yn) det(y1 − y′1, . . . , yn − y′n) > 0.

By reordering the basis vectors ei, we can suppose that ei ∈ supp(yi); i.e., the set
R obeys the conditions imposed in the previous sections. (We are using here the
“standard” determinant, for which det(e1, . . . , en) > 0.)

We will show first that det(y1 − y′1, . . . , yn − y′n) > 0. Recall from Lemma 5.1
that the determinant can be calculated as a sum of terms, one for each member of
the class L of all possible sets (including the empty set) of disjoint cycles taken from
the OSR graph GR:

det(y1 − y′1, . . . , yn − y′n) =
∑
L∈L

ΔL.(6.1)

Let {O1, . . . ,Op} be the collection of all possible sets (including the empty set) of
disjoint o-cycles that can be taken from GR. We partition the class L of all possible
sets of disjoint cycles into p subclasses {L1,L2, . . . ,Lp}, according to the particular
subset of o-cycles that each cycle-set in L contains. That is, Li might contain several
sets of cycles, but for each set of cycles in Li the subset of o-cycles is precisely Oi,
i = 1, . . . , p. In light of this partition, (6.1) can be rewritten as

det(y1 − y′1, . . . , yn − y′n) =

p∑
i=1

∑
L∈Li

ΔL.(6.2)

To show that the (presumed nonzero) det(y1 − y′1, . . . , yn − y′n) is in fact positive, it
will suffice to show that

∑
L∈Li

ΔL ≥ 0 for all i = 1, . . . , p.
With this in mind, we consider a particular collection Li of disjoint cycle-sets,

with Oi the common subset of o-cycles for each cycle-set in Li. If no cycle-set in Li

contains an e-cycle, then, by virtue of Lemma 5.4, ΔL > 0 for every L ∈ Li. (This
is true even if Oi is empty.) Thus, it remains to consider only the case for which
at least one cycle-set in Li contains an e-cycle (which, by hypothesis, must be an
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Fig. 6.1. SR graph for the reaction network (6.4).

s-cycle). Let le be some fixed e-cycle residing in a cycle-set of Li. Since le is disjoint
from all members of Oi and from every other e-cycle (by virtue of the hypothesis
and Lemma 5.3), it follows that, for each cycle-set L ∈ Li that does not have le
as a member, the cycle-set L ∪ {le} also belongs to the family Li. Note that from
Lemma 5.5 we have

ΔL + ΔL∪{le} = 0.(6.3)

By partitioning Li into such cycle-set pairs—one member distinguished from the other
only by the presence of le—we can deduce in this case that

∑
L∈Li

ΔL = 0.
The proof that det(y1, . . . , yn) > 0 is virtually identical, except that we consider

only cycles containing no product edges.
Remark. We will say that two cycles have an orientable S-to-R intersection if the

two cycles have an S-to-R intersection and also have the following additional property:
There are directions along the two cycles, consistent on their intersection, such that,
for each S-to-R connected component of the intersection of the two cycles, its species
end node occurs before its reaction end node. Note then that in Lemma 5.3 one can
replace “S-to-R intersection” by “orientable S-to-R intersection.” It is then possible
to strengthen Theorem 6.1 by replacing “S-to-R intersection” by “orientable S-to-R
intersection.”

The following example shows a reaction network for which Theorem 6.1 gives
no information, but for which this strengthened version of Theorem 6.1 does give
information. Consider the reaction network

A + X � B + Y, A � B, M + N � A, M + N � B.(6.4)

The SR graph of this reaction network is shown in Figure 6.1. The middle cycle and
the outer cycle are e-cycles that have an S-to-R intersection, but they do not have an
orientable S-to-R intersection.

7. Split c-pairs. A different approach to showing that a reaction network does
not have the capacity for multiple equilibria was described in [8, 15, 16] and is based
on a different graph associated with the reaction network, called the SCL graph. That
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approach introduced the notion of a split c-pair. The same notion of split c-pair makes
sense for SR graphs as well: We say that two cycles in an SR graph split a c-pair if
each edge of the c-pair appears in at least one of the two cycles, and if one of the two
cycles contains one edge of the c-pair but not the other edge. (The other cycle might
contain just the other edge, or both.) We have the following claim.

Lemma 7.1. Consider some reaction network N and its SR graph ΓN . Suppose
that there are two cycles l1 and l2 in ΓN that have an S-to-R intersection. Then l1
and l2 split a c-pair.

Proof. Denote by r the reaction node ending of a component of the intersection
of l1 and l2. Note that there are exactly three edges of l1 and l2 adjacent to the node
r, precisely one of which is common to both cycles. Then at least two of these three
edges have the same complex label, because there are at most two different complex
labels on all edges adjacent to r. These two edges that have the same complex label
(say ε1 and ε2) form a c-pair. It is not possible that each one of l1 and l2 contains
both ε1 and ε2, since r is the ending of a component of the intersection of l1 and l2.
On the other hand, each one of l1 and l2 has to contain at least one of ε1 and ε2,
because, of their three edges adjacent to r, only one edge is common to both ε1 and
ε2. Therefore l1 and l2 split a c-pair.

Then our main result implies a criterion based on split c-pairs, but for the SR
graph instead of the SCL graph, as follows.

Corollary 7.2. Consider some reaction network N such that in its SR graph
ΓN all cycles are o-cycles or s-cycles and no two e-cycles split a c-pair. Then the
reaction network N is injective.

8. Concluding remarks and implications for biology. Theorem 1.1 pro-
vides rather easily satisfied conditions for the preclusion of multiple equilibria based
on reaction network structure alone. The first condition will be satisfied in the very
common situation for which every nonzero stoichiometric coefficient is 1 (in which
case every cycle in the SR graph is an s-cycle). Further, violation of the second con-
dition requires not only that there be two cycles in the SR graph but also that there
be two even cycles that intersect in a prescribed way. Indeed, Theorem 1.1 goes a
long way toward explaining just why, despite the great variety of reaction networks
that might arise in nature, there are so few experimental reports in the chemical engi-
neering literature of multiple stationary states in an isothermal homogeneous CFSTR
context.

At the same time, we believe that the theorem provides reasons to believe that
enzyme-driven biochemical reaction networks, written at the mechanistic mass action
level, might be far more prone than others to exhibit multiple equilibria (and partic-
ularly bistability [2, 13, 18]). The fact is that enzyme catalysis promotes the presence
of cycles in the SR graph, as might be seen by constructing the SR graph for even
the simplest possible mechanism of enzyme catalysis:

S + E � SE → P + E.

Here, E is an enzyme, S is a substrate, P is a product, and SE represents S bound to
the enzyme. (The enzyme E serves as a catalyst for the “overall reaction” S → P .)
For more intricate enzyme-catalyzed reaction networks, written at the mechanistic
level, it is easy to see how an abundance of cycles in the SR graph might arise (so
that the second condition of Theorem 1.1 becomes more likely to be violated).

Extensions to biology are somewhat more complicated than might first appear,
for the classical CFSTR model as described in this article might not be entirely ap-
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propriate in biological settings, not even as a crude metaphor. Even if we think of
the stirred reactor vessel as a surrogate for a cell and even if we imagine that sub-
strates and products (S and P in the example above) are transported readily through
the cell membrane, it might be inappropriate to suppose that high molecular weight
enzyme-related molecules (E and ES in the example) are also transported through
the cell membrane. That is, the heavy enzyme-related species might be regarded as
“entrapped” within the cell. For the entrapped species picture, the classical homoge-
neous CFSTR equations, which presume an outflow of all species, might not always
be suitable. (Note that this presumption played a substantive role in proofs contained
in this paper and in its predecessor [4].)

In some cases, it might be appropriate to imagine that enzymes are synthesized
within the cell at constant rate (i.e., constant relative to the rapid time scale of other
reactions) and that all enzyme-containing species degrade within the cell at rates pro-
portional to their concentrations. In such cases, the mathematics becomes essentially
identical to the mathematics of the classical CFSTR: Constant-rate enzyme synthesis
plays the role of a constant enzyme feed rate to the cell, while the degradation of
enzyme-containing species replaces the outflow of these species from the cell.

In other cases, when such suppositions of enzyme supply and degradation are
deemed inappropriate, the resulting mathematical structure is similar but not identical
to that studied in this article; in particular, there are no outflow reactions, such as
E → 0 for the enzymatic species. It happens that the absence of these outflows gives
rise to surprisingly delicate mathematical questions when one tries to extend the
results of Theorem 1.1 to entrapped enzyme models. Indeed, one must reframe the
very question of multiple equilibria to take into account the fact that one is interested
only in equilibria consistent with a fixed enzyme supply.

Nevertheless, there is a sense in which results in this paper and its predecessor
[4] carry over to the entrapped species case. Even when the kinetics is not mass
action, it can be shown that if a reaction network does not have the capacity for
multiple equilibria when all species are in the outflow, then, in the entrapped species
case, the network cannot give rise to multiple equilibria that are, in a certain sense,
nondegenerate [5].
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Abstract. In this paper we investigate long-term dynamics of the most basic model for stage-
structured populations, in which the per capita transition from the juvenile into the adult class is
density dependent. The model is represented by an autonomous system of two nonlinear differential
equations with four parameters for a single population. We find that the interaction of intra-adult
competition and intra-juvenile competition gives rise to multiple attractors, one of which can be
oscillatory. A detailed numerical study reveals a rich bifurcation structure for this two-dimensional
system, originating from a degenerate Bogdanov–Takens (BT) bifurcation point when one parameter
is kept constant. Depending on the value of this fixed parameter, the corresponding triple critical
equilibrium has either an elliptic sector or it is a topological focus, which is demonstrated by the
numerical normal form analysis. It is shown that the canonical unfolding of the codimension-three
BT point reveals the underlying dynamics of the model. Certain new features of this unfolding in the
elliptic case, which are important in applications but have been overlooked in available theoretical
studies, are established. Various three-, two-, and one-parameter bifurcation diagrams of the model
are presented and interpreted in biological terms.
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homoclinic orbits to saddle, saddle-node, and neutral saddle, two-stage population model
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1. Introduction. Population growth models that include age, stage or body
size structure often predict complex population dynamics. The models are rather
sophisticated, involving partial or functional differential equations, difference equa-
tions, or integral equations [3, 6, 7, 35]. In this paper, we investigate a simple-stage
structured model governed by a two-dimensional system of time-autonomous ordi-
nary differential equations. The equations represent the juvenile and adult stage,
respectively. We show that this reduced but biologically-based model predicts, quali-
tatively, complex population dynamics. Of course, the complexity is restricted by the
Poincaré–Bendixson theory. Earlier work addressing competition between age stages
[21] found that periodic orbits can surround a unique interior equilibrium. Here we
show that multiple equilibria are possible, both stable and unstable periodic orbits
can exist and even coexist, and homoclinic orbits can occur through the interaction
of periodic orbits and multiple equilibria.

The best-known two-dimensional ODE system in population biology is the Lotka–
Volterra predator/prey model where the dynamic behavior is simple but structurally

∗Received by the editors March 26, 2005; accepted for publication (in revised form) November
15, 2005; published electronically April 21, 2006.

http://www.siam.org/journals/siap/66-4/62775.html
†Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287 (baer@

math.la.asu.edu).
‡Department of Theoretical Biology, Vrije Universiteit, de Boelelaan 1087, 1081 HV Amsterdam,

the Netherlands (kooi@bio.vu.nl).
§Mathematical Institute, Utrecht Universiteit, Budapestlaan 6, 3584 CD Utrecht, the Netherlands

(kuznetsov@math.uu.nl).
¶Department of Mathematics and Statistics, Arizona State University, Tempe, AZ 85287

(thieme@math.la.asu.edu). This author was partially supported by NSF grants DMS-9706787 and
0314529.

1339



1340 S. BAER, B. KOOI, YU. KUZNETSOV, AND H. THIEME

unstable. In an extension of this model, called the Rosenzweig–MacArthur model,
the trophic interaction is described by a hyperbolic functional response instead of a
linear functional response. If a carrying capacity for the prey is added, stable oscil-
lations can occur, but no more complex dynamics. An extension of the Rosenzweig–
MacArthur model was proposed and studied in [1], where the per capita mortality
rate of the predators is replaced by a density-dependent mortality rate, and in [40]
where the Holling type II functional response is replaced by a nonmonotonic Holling
type IV functional response for the predator-prey interaction. These planar systems
show rich asymptotic dynamic behavior including global bifurcations and a variety of
codimension-two points originating from codimension-three bifurcation points.

We deal with a model for one population with two stages introduced in [21] and
further studied in [34, Chapter 11]. The life history of the individuals comprises a
juvenile and an adult stage. The population state is the number of juveniles and
adults. Juveniles and adults die, while adults reproduce. The transition rate between
the two stages, together with the per capita mortality and reproduction rates, form
the parameters of the two first-order ordinary differential equations (ODEs) which
specify the time derivative of the population state.

We use bifurcation analysis to study the dependence of the long-term dynamic
behavior of this system on parameter variation. See [16, 36, 32, 22] for an introduction
to bifurcation analysis and [1] for applications to ecosystem models. The structural
stability is studied with respect to so-called free or bifurcation parameters. Param-
eter values at which the asymptotic dynamics change are called bifurcation points;
for example, a Hopf bifurcation point represents a transition between constant and
time-periodic solutions. Starting at this point one can vary two parameters simulta-
neously. This is sometimes called a two-parameter bifurcation study. The resulting
bifurcation curves separate regions in the two-dimensional parameter space, which
differ in qualitative asymptotic behavior. At so-called codimension-two points three
or more parameter regions come together. In other words, different types of bifur-
cation points can originate from or terminate at these points, making these points
useful for starting a numerical bifurcation analysis. Codimension-two points can be
followed by varying three parameters simultaneously, and so on.

Our stage-structured population model is a two-dimensional system with four
parameters. When one parameter is fixed, a degenerate Bogdanov–Takens bifurcation
(BT point for short) with a triple critical equilibrium is found. Different types of
such degenerate BT points are studied in detail in [2, 12], where three categories
of topological types are distinguished: the saddle, the focus, and the elliptic case.
We will derive a normal form with terms up to and including fourth order for the
codimension-three BT point by using a time reparameterization combined with a
smooth transformation that also includes fourth-order terms. This analysis reveals
that the elliptic or focus case applies for the two-stage population model depending
on the value of the fixed parameter. When this parameter is varied a transition from
elliptic to focus codimension-three BT bifurcation is found.

The truncated normal form of the codimension-three BT point in the elliptic
case is embedded into an appropriate three-parameter family, and we study its un-
folding by performing a numerical bifurcation analysis for the neighborhood of the
origin in that three-dimensional parameter space. In the three-dimensional parameter
space, two branches of codimension-two BT curves emanate from the codimension-
three point. These curves form the intersection of saddle-node and Hopf bifurcation
planes. Furthermore, codimension-two Bautin bifurcations as well as codimension-two
homoclinic orbits to neutral saddles originate from the codimension-three BT point.
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In two-parameter space, codimension-one homoclinic bifurcation curves can originate
from BT points. Both saddle, saddle-node and neutral saddle homoclinic orbit bi-
furcations actually occur. The analysis reveals unexpected similarities between the
elliptic and the focus cases, which have been overlooked in earlier theoretical studies.

The normal form analysis results are used to interpret those of the numerical
bifurcation analysis study of the full planar two-stage population model and conse-
quently also those reported in [34, Chapter 11].

2. The two-stage population model. The model is introduced in [21] and
further motivated in [34, Chapter 11]. The population is split into juveniles (larvae,
e.g.) and adults, the numbers of which are denoted by L(t) and A(t), respectively.
The system has the form

dL

dt
= β(L,A)A− μ(L,A)L− f(L,A)L ,(2.1a)

dA

dt
= f(L,A)L− α(L,A)A ,(2.1b)

where β is the per capita reproduction rate of an average adult individual, μ is the
per capita mortality rate of an average juvenile individual (α for the adults) and f
the per capita transition rate from the juvenile into the adult stage. In general, these
rates can depend on both the densities of juveniles and adults.

Under realistic additional assumptions, all trajectories converge to an equilibrium
(not necessarily the same) if ∂

∂L [f(L,A)L] ≥ 0 for all L,A > 0 [34, Thm. 11.6]. (See
[21] for a convergence result under different assumptions.) So there are no complex
dynamics if the transition from the juvenile to the adult stage is only weakly affected
by intra-juvenile competition. However, we show in this paper that complex behavior
may indeed occur if there is both a strong influence on the per capita transition
rate by intra-juvenile competition and a strong effect on the per capita birth rate by
intra-adult competition. We restrict our consideration to pure intrastage competition,
i.e., there is no competition between juveniles and adults. So the juvenile per capita
mortality rate depends on the number of juveniles, i.e., μ(L), and the adult per capita
mortality rate α(A) and reproduction rate β(A) depend only on the number of adults
A. This may occur when juveniles and adults have different habitats. For simplicity,
the per capita mortality rates for both juveniles and adults are taken as constants.
Time is scaled such that α = 1; this means that one time unit equals the expectation
of adult life. For convenience we divide the other rates β, μ and f by α, but we do
not introduce new variables. As in [21], a Ricker-type function is chosen for the stage
transition rate,

f(L) =
μ

m
e−L.(2.2)

The reproduction rate β(A) is chosen as

β(A) = g
(m
μ
A
)
.(2.3)

To interpret the parameter m, we consider the expression for the probability of sur-
viving the juvenile stage to become an adult in the absence of competition (L = 0):

p =
f(0)

μ + f(0)
=

1

1 + m
,(2.4)
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where f(0) is evaluated using (2.2). The numerator f(0) is the per capita transition
rate from the juvenile and the adult stage (without competition) and the denominator
μ+ f(0) is the total rate at which juveniles leave their stage. For m = 0 all juveniles
survive to adults, for m = 1 half survive, and as m → ∞ the probability of surviving
approaches zero.

After introducing the scaled number of adults y as

y =
m

μ
A,(2.5)

the stage-structured population model becomes

dL

dt
=

μ

m

[
g(y)y −mL− Le−L

]
,(2.6a)

dy

dt
= Le−L − y.(2.6b)

At equilibrium, (2.6b) gives a fixed relationship between y∗ and L∗ which is inde-
pendent of all parameters. Note from (2.6a) that these values are independent of the
parameter μ. We assume that the birth rate g(y) is also of Ricker-type:

g(y) = e(1/b)(a−y).(2.7)

When not varied, the model parameters have the following reference values a =
0.43, b = 2.2,m = 0.01, while 0 ≤ μ ≤ 1.0.

3. Organizing centers. This section is partially based on [34, section 11.9].
The system (2.6) has been scaled in such a way that the equilibria do not depend on
the parameter μ. The origin (L = 0, y = 0) is always an equilibrium.

The parameter m can be expressed as a function of the L-component of the
interior equilibria, L∗,

m =
[
g(L∗e−L∗

) − 1
]
e−L∗

=: M(L∗).(3.1)

The value

m0 = M(0) = g(0) − 1 = ea/b − 1(3.2)

is the threshold value for the existence of interior equilibria and the stability of the
origin. The Jacobian of system (2.6) evaluated at the origin reads(

− μ
m (m + 1) μ

mg(0)
1 −1

)
.(3.3)

The determinant of this Jacobian matrix switches its sign at m0. Hence, m0 marks a
transcritical bifurcation. If m ≥ m0, the origin is the only equilibrium and it attracts
all solutions starting in the biologically relevant nonnegative quadrant. We therefore
restrict our investigation to m ∈ (0,m0). Then the origin is a saddle with one part of
its unstable manifold lying in the positive quadrant. Moreover the origin is a strong
repeller and not part of ω-limit sets of solutions starting in the nonnegative quadrant,
except at the origin itself. Further, there exists at least one interior equilibrium.

Whatever the choice of the positive parameters a and b, the function M is strictly
decreasing for small L∗ > 0 and large L∗ > 0. It can also be shown that the equation
M(L∗) = m has at most three interior solutions. This implies that, depending on the
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Fig. 3.1. Graph of the function M for b = 2.2 and various values of a. From right to left:
a = 0.5, a = a� = 0.4492276697, a = 0.43, a = 0.4, a = 0.35. The bullet gives the simultaneous
point of inflection and critical point for a = a�. The dotted line connects the critical points where a
is varied. The numbers label the branches where equilibrium Ei occurs at branch i = 1, 2, 3.

choice of a and b, M is either strictly decreasing on [0,∞) or that there are numbers
L2, L1 > 0 such that M is strictly decreasing on [0, L1] and [L2,∞) and strictly
increasing on [L1, L2]. When the transition occurs, the three positive equilibria merge
into one triple equilibrium, and we have a unique L∗ > 0 such that M ′(L∗) = 0 =
M ′′(L∗) = 0. If we fix b > 0, we can use this relation to determine the value of a at
which the transition occurs, say a�. Then, M is strictly decreasing for a > a� and
has changing monotonicity behavior for a < a�. The value of L at the corresponding
equilibrium L� = L∗, which together with (3.1) finally gives m� = M(L∗) and y� =
y∗ = L∗e−L∗

.
Figure 3.1 shows the graph of the function M for b = 2.2 and various values of a.

The dotted curve marks points where M ′(L∗) = 0 when a is varied. This curve cuts
the horizontal axis m = 0 = M(L∗) at L∗ = 1, where a = a� = 0.3679.

For the fixed choice of a� < a < a� and b > 0, M changes its monotonicity;
moreover M is strictly positive on [0,∞). Let

m0 = M(0) = g(0) − 1, m1 = M(L1), m2 = M(L2).(3.4)

The critical points L1 and L2 can be determined as the solutions of M ′(L) = 0 and
one finds m0 > m2 > m1.

We have the following cases depending on m:
m = m1 : There are exactly two interior equilibria and their L-components satisfy

L∗
1 = L1 and L�

2 := L∗
2 > L2.

m = m2: There are exactly two interior equilibria, and their L-components satisfy
L�

1 := L∗
1 ∈ (0, L1) and L∗

2 = L2.
Then,
m ≥ m0: There is no interior equilibrium.
m ∈ (m2,m0): There is exactly one interior equilibrium and its L-component satisfies

L∗ ∈ (0, L�
1).
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m ∈ (m1,m2): There are exactly three interior equilibria and their L-components
satisfy L∗

1 ∈ (L�
1, L1), L∗

2 ∈ (L1, L2), L∗
3 ∈ (L2, L

�
2).

m ∈ (0,m1): There is exactly one interior equilibrium and its L-component satisfies
L∗ > L�

2.
m = 0: There is exactly one interior equilibrium L∗ = 1.

One can show (see [34, page 173]) that the determinant of the Jacobian matrix of
the system (2.6), with y = Le−L, has the opposite sign of the derivative of M . Hence,
every interior equilibrium with L∗ = L1 or L∗ = L2 has at least one eigenvalue 0. As
we have seen, such equilibria occur if and only if m = m1 or m = m2. It can also
be shown (see [34, page 172]) that the trace of the Jacobian matrix evaluated at an
interior equilibrium is a linear function of μ. The trace switches its sign from negative
to positive at

μ = φ(L∗) :=
g(y∗) − 1

L∗ − g(y∗)
, y∗ = L∗e−L∗

.(3.5)

At a = a� we have L∗ = L1 = L2 = L� and m = m1 = m2 = m�, see Figure 3.1.
At this point the determinant and the trace of the Jacobian matrix evaluated at the
equilibrium (L�, y�) are zero. Therefore, for fixed b > 0 and μ = μ�,m = m�, and
a = a�, we have a BT point. Moreover, the equilibrium is triple at this point; thus a
degenerate BT point occurs.

For b = 2.2, we have

L� = 1.513180178, y� = 0.33321523(3.6)

and

μ� = 0.01179614, m� = 0.01192386945, a� = 0.4492276697.(3.7)

4. Normal form analysis. In this section we perform a normal form analysis
of the degenerate BT point and study its canonical unfolding.

4.1. Critical normal form. First, we write system (2.1) for fixed b > 0 at the
critical parameter values (3.7) in a coordinate system where the equilibrium with the
coordinates (3.6) is shifted to the origin of the phase plane by the transformation

x =

(
x1

x2

)
=

(
L− L�

y − y�

)
.(4.1)

The transformed planar system becomes

ẋ = Jx + F(x),(4.2)

where J is the Jacobian matrix evaluated at the equilibrium and F(x) = O(‖x‖2).
Next we use a similarity transformation to put the linear part in the Jordan

canonical form. First we calculate two vectors u,v ∈ R2 such that

J2v = 0, Jv = u, ‖u‖ = 1,(4.3)

where the vector norm is defined by ‖u‖2 = 〈u,u〉 and 〈u,v〉 stands for the standard
inner product in R2: u1v1 + u2v2. These two vectors (the eigenvector u and the
generalized eigenvector v), are linearly independent and form a basis in the plane.
Notice that v is the eigenvector belonging to the zero eigenvalue of the matrix J2
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(J is nilpotent of index 2, that is, J2v = 0 but Jv 
= 0). One can calculate v as
an eigenvector associated with the zero eigenvalue of the squared Jacobian matrix
evaluated at the equilibrium point.

The similarity transformation is now defined by

x = Uy,(4.4)

where U denotes the matrix the columns of which are formed by a normalized eigen-
vector and a generalized eigenvector. The matrix U is invertible, since the vectors u
and v are linearly independent, and we can write

y = U−1x.(4.5)

Then

U−1JU = J0 =

(
0 1
0 0

)
(4.6)

and

ẏ = J0y + U−1F(Uy).(4.7)

Taylor series expansion of the right-hand side of (4.7) at the equilibrium y = 0
gives

dy1

dt
= y2 +

1

2
a20y

2
1 + a11y1y2 +

1

2
a02y

2
2

+
1

6
a30y

3
1 +

1

2
a21y

2
1y2 +

1

2
a12y1y

2
2 +

1

6
a03y

3
2

+
1

24
a40y

4
1 +

1

6
a31y

3
1y2 +

1

4
a22y

2
1y

2
2 +

1

6
a13y1y

3
2 +

1

24
a04y

4
2 + O(‖y‖5),(4.8a)

dy2

dt
=

1

2
b20y

2
1 + b11y1y2 +

1

2
b02y

2
2

+
1

6
b30y

3
1 +

1

2
b21y

2
1y2 +

1

2
b12y1y

2
2 +

1

6
b03y

3
2

+
1

24
b40y

4
1 +

1

6
b31y

3
1y2 +

1

4
b22y

2
1y

2
2 +

1

6
b13y1y

3
2 +

1

24
b04y

4
2 + O(‖y‖5).(4.8b)

The final transformation to the normal form

dξ

dτ
= η,(4.9a)

dη

dτ
= Aξ2 + Bξη + Cξ3 + Dξ2η + Eξ4 + Fξ3η + O(‖(ξ, η)‖5)(4.9b)

is achieved by a time reparameterization combined with a smooth change of coordi-
nates. In this way it is possible to remove both fourth-order terms from (4.9) (using
BC 
= 0 as will be verified numerically in our case).

The time reparameterization introduces a new time τ as follows:

dt = (1 + θ1y1 + θ2y
2
1)dτ,(4.10)
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where θ1 and θ2 are to be defined later. Alternatively one can use (1 + θ1y1 + θ2y2)
which leads to the same results. The smooth transformation reads

ξ = y1 +
1

2
g20y

2
1 + g11y1y2 +

1

6
g30y

3
1 +

1

2
g21y

2
1y2 +

1

2
g12y1y

2
2

+
1

24
g40y

4
1 +

1

6
g31y

3
1y2 +

1

4
g22y

2
1y

2
2 +

1

6
g13y1y

3
2 ,(4.11a)

η = y2 +
1

2
h20y

2
1 + h11y1y2 +

1

6
h30y

3
1 +

1

2
h21y

2
1y2 +

1

2
h12y1y

2
2

+
1

24
h40y

4
1 +

1

6
h31y

3
1y2 +

1

4
h22y

2
1y

2
2 +

1

6
h13y1y

3
2 ,(4.11b)

where gij and hij are unknown coefficients. Differentiating (4.11a) and (4.11b) with
respect to τ yields

dξ

dτ
= (1 + θ1y1 + θ2y

2
1)

(
∂ξ

∂y1

dy1

dt
+

∂ξ

∂y2

dy2

dt

)
,(4.12a)

dη

dτ
= (1 + θ1y1 + θ2y

2
1)

(
∂η

∂y1

dy1

dt
+

∂η

∂y2

dy2

dt

)
.(4.12b)

Substituting (4.8a) and (4.8b) into (4.12a) and (4.12b), and then equating coefficients
(4.9a) and (4.9b), gives the equations to find the coefficients gij , hij , θ1, θ2 in (4.11) and
(4.10), as well as A,B,C,D in (4.9), where θ1 and θ2 are used to enforce E = F = 0.
This gives

A =
1

2
b20,(4.13a)

B =a20 + b11,(4.13b)

C =
1

6
b30 −

1

2
a20b11,(4.13c)

D =
1

2
b21 +

1

4
b02(b11 − a20) +

1

2
b11a11 +

1

2
a30 +

3(a20 + b11)

20(3 a20b11 − b30)

×
(
b40 − 6 a20b21 − 3 b11b02a20 + 3 b02a20

2

−4 b11a30 + 6 b30a11 + b30b02 − 6 b11a20a11) .
(4.13d)

Note that the third-order coefficient D in (4.9) depends (via b40) on the fourth-order
terms of (4.8).

The Taylor coefficient A in (4.9) equals zero, since b20 = 0 because the critical
equilibrium is triple. This implies that one of the nondegeneracy conditions for a
classical codimension-two BT point is violated [22, p. 272]. This leads to a bifurcation
point with codimension three (or higher) and could, together with the requirement
detJ = 0 and tr J = 0, be used as defining functions to determine the critical
parameter values corresponding to this bifurcation point.

If CD 
= 0, then the truncated critical normal form

dξ

dt
= η,(4.14a)

dη

dt
= Bξη + Cξ3 + Dξ2η(4.14b)
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Fig. 4.1. Phase portrait of (2.1) at the critical parameter values with b = 2.2 (left) and an
enlargement of a neighborhood of the critical equilibrium (right), where the elliptic sector is clearly
visible.

can be simplified further by a linear coordinate and time scaling:

dξ

dt
= η,(4.15a)

dη

dt
= βξη + ε1ξ

3 + ε2ξ
2η,(4.15b)

where ε1 = ±1, ε2 = ±1, and

β =
B√
|C|

.

In [2, 12], three topologically different cases are distinguished:
• Saddle case ε1 = 1, any ε2 and β;
• Focus case ε1 = −1 and 0 < β < 2

√
2;

• Elliptic case ε1 = −1 and 2
√

2 < β.
When b = 2.2, the calculated values of the coefficients of the truncated critical

normal form (4.14) are B = 1.0538275511, C = −0.110108078, and D = −1.23163654.
This gives ε1 = −1 (because C < 0), ε2 = −1 (because D < 0), and

β =
B√
−C

= 3.175849820.

We conclude that with b = 2.2 the elliptic case applies, for β = 3.175849820 > 2
√

2.
Direct numerical integration of (2.1) at the critical parameter values (3.7) confirms
this conclusion (see Figure 4.1).

Calculations showed that in an extended range of parameter values b > 0 the
parameters C and D defined in (4.14b) are negative, implying ε1 = −1 and ε2 = −1.
In Figure 4.2 we give the dependence of β on the parameter b. At b� = 1.7300228,
where β = 2

√
2, there is a transition from the elliptic case to the focus case. The

phase portrait at the critical parameter values with b = 1.5 (when the focus case
applies) is depicted in Figure 4.3. Compared with Figure 4.1, where b = 2.2, we see
that the elliptic sector disappeared.

The transition at b = b� is a bifurcation of codimension four (or higher), which
could be considered as the ultimate organizing center in model (2.6). However, in
the following we will deal with b > b� corresponding to the elliptic case because it is
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Fig. 4.2. The coefficient β defined in (4.15b) as a function of the parameter b. There is a
transition from the elliptic case to the focus case at the codimension-four bifurcation point, where
b = b� = 1.7300228.
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Fig. 4.3. Phase portrait of (2.1) at the critical parameter values with b = 1.5 (left) and an
enlargement of a neighborhood of the critical equilibrium (right), where no elliptic sector is present.

the most interesting one. The focus case is discussed extensively in applied literature
(for example, in [1, 22] with the analysis of the Rosenzweig–MacArthur predator-prey
model having density-dependent mortality rate for the predators, as well as in [13],
where an enzyme-catalyzed reaction model is studied). The elliptic case is much less
understood, although it has been found in a mathematical model of a reaction of
catalytic oxidation in [37].

4.2. Bifurcation diagram of the canonical unfolding. The local bifurcation
diagram for the focus and elliptic case has been studied theoretically in [12], where the
truncated critical normal form (4.15) is embedded in the following three-parameter
family

dξ

dt
= η,(4.16a)

dη

dt
= −μ1 − μ2ξ + νη + βξη − ξ3 − ξ2η,(4.16b)

with μ1, μ2, and ν serving as the unfolding parameters. Below we reconstruct the
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Fig. 4.4. Three-parameter bifurcation diagram with μ1, μ2, and ν as bifurcation parameters
for the normal form (4.16), where β = 3.175849820. Only equilibrium bifurcations are shown. The
tangent bifurcation curves T±

e (dashed curves) and Hopf H± and neutral saddle NS curve (dotted
curve) in the (μ1, ν)-plane for μ2 = −0.1 are plotted.

bifurcation diagram of (4.16) in the elliptic case using the same numerical continuation
methods as applied in the next section to compute global bifurcation diagrams of (2.1).

The equilibria of (4.16) satisfy η = 0 and −μ1−μ2ξ−ξ3 = 0. Therefore, depending
on the parameter values μ1 and μ2, there is one or there are three real solutions. For
example, when μ1 = 0, we have ξ = 0 and ξ = ±√−μ2 besides η = 0.

In Figure 4.4, a partial three-parameter bifurcation diagram near the codimension-
three bifurcation point μ1 = μ2 = ν = 0 is shown for the normal form (4.16), where
β = 3.175849820 (elliptic case). Two BT curves of different type emanate from the
codimension-three point denoted by BT=. Locally attracting limit cycles bifurcate
from the first curve which is called a supercritical Bogdanov–Takens bifurcation curve
and is denoted by BT−, while repelling limit cycles bifurcate from the curve of sec-
ond type which is a subcritical Bogdanov–Takens bifurcation curve, denoted by BT+.
Another codimension-two bifurcation curve, namely, a cusp curve denoted by Ne in
the figure, passes through the point BT=. Finally, from BT=, a codimension-two
Bautin (generalized or degenerated Hopf, see [22]) bifurcation curve B emanates.
Software packages locbif [18, 22] and content [25, 15] were used for the numerical
continuation of these curves related to equilibrium bifurcations.

Figure 4.5 presents two-parameter slices of the complete bifurcation diagram of
(4.16) with β = 3.175849820 for μ2 = −0.1 and μ2 = −1. The left diagram with μ2 =
−0.1 gives a clear picture of the unfolding near the codimension-three BT point. The
same diagram (together with corresponding phase portraits) is sketched in Figure 4.6,
which we advise to consult while reading the rest of this section. The codimension-
two BT± points and four saddle-node homoclinic bifurcation points Di, i = 1, . . . , 4
(analyzed theoretically in [26]) are indicated in all diagrams. These points lie all on
the tangent bifurcation curves for equilibria T±

e . At the supercritical BT− point, a
supercritical Hopf bifurcation curve H− originates, and similarly a subcritical Hopf
bifurcation curve H+ emanates from the subcritical BT+. From each BT point, BT−
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Fig. 4.5. Two-parameter bifurcation diagrams of (4.16) with μ1 and ν as bifurcation parameters
and μ2 = −0.1 (left) and μ2 = −1 (right) for normal form (4.16), where β = 3.175849820. The
labels are explained in the text.
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Fig. 4.6. Schematic bifurcation diagram of (4.16) for small μ2 < 0 and β > 2
√

2.

and BT+, a global bifurcation curve emanates, indicated by G+ or G−, respectively.
These are saddle homoclinic bifurcation curves. The homoclinic orbits corresponding
to them are “small”, i.e., they go around one equilibrium only. There exists another
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Fig. 4.7. A nonhyperbolic limit cycle of (4.16) at the critical parameter value ν = 0.8458472970
corresponding to Tc (left) and an enlargement of a neighborhood of the origin, where a saddle
equilibrium is located (right). Other parameters are μ1 = 0, μ2 = −0.1, b = 3.175849820. We recall
that the three equilibria are: η = 0 and ξ = 0 or ξ = ±

√
0.1. The equilibrium in the origin is a

saddle, the left one is stable and the right one unstable.

saddle homoclinic bifurcation curve, denoted by G0 in the figure. In contrast with
G+ and G−, the homoclinic orbit corresponding to G0 is “big”, i.e., it surrounds two
equilibria. The homoclinic curves were calculated using the package HomCont, a
part of auto [11]. The implemented theory and numerical procedures are described
in [4, 5].

A tangent bifurcation curve for limit cycles Tc, where two limit cycles collide
and disappear, crosses the curve T−

e and ends at a point F in the intersection of
the homoclinic curve G0 and the neutral saddle curve NS connecting the Bogdanov–
Takens points BT− and BT+. This point F corresponds to a codimension-two “big”
homoclinic orbit to a neutral saddle, where the trace of the Jacobian matrix is zero [22].
The tangent bifurcation curve for limit cycles Tc and the homoclinic curve G0 have an
infinite-order contact at F [29]. It should be noted that Tc is indistinguishable from
G0 in Figure 4.5. Between the equilibrium bifurcation curves T+

e and T−
e , the curve

Tc is located just above G0. This can be verified by accurate computations in auto

or content with many mesh points (e.g., NTST=1000). Figure 4.7 demonstrates that
the critical limit cycle corresponding to Tc is located at a small but clearly visible
distance from the saddle equilibrium at the origin. This nonhyperbolic limit cycle
bifurcates into (outer) stable and (inner) unstable limit cycles, shown in Figure 4.8
for parameter values between the curves Tc and G0. When we cross the homoclinic
bifurcation curve G0 above point F , the inner unstable limit cycle “collides” with
the saddle and disappears via the saddle homoclinic orbit that is unstable from the
outside, in accordance with the positive sign of the trace of the Jacobian matrix above
the curve NS (see Figure 4.5). Crossing G0 below F results in the appearance of a
stable “big” cycle.

The saddle homoclinic curve G−, originating at the point BT−, terminates tan-
gentially at a point D1 on the bifurcation curve T+

e . Between the two codimension-two
points D1 and D2 the saddle-node equilibrium (existing along the tangent bifurcation
curve T+

e ) has a smooth homoclinic orbit. On this line segment D1D2, the global
bifurcation and the local bifurcation occur simultaneously. The homoclinic orbit is
asymptotic to a saddle-node rather than to a saddle. In point D2, the “big” saddle
homoclinic curve G0 departs tangentially from T+

e . This curve G0 ends also tangen-
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Fig. 4.8. A stable limit cycle (outer, solid) and an unstable (inner, dashed) limit cycle of (4.16)
at ν = 0.8458473000. The other parameters are μ1 = 0, μ2 = −0.1, b = 3.175849820.

tially at a codimension-two point D3 on T−
e , which is similar to D2. Another saddle

homoclinic curve, G−, originating at BT+ on the bifurcation curve T+
e , terminates

tangentially at a point D4 on T−
e . In all points Di, the corresponding homoclinic or-

bits are nonsmooth at the saddle-node. The right diagram with μ2 = −1 shows that
already in the vicinity of the codimension-three point the two saddle-node homoclinic
bifurcation points D3 and D4 are also close to each other and hardly distinguishable
in Figure 4.5.

4.3. Elliptic versus focus case. The bifurcation diagram of the normal form
(4.16) presented in Figure 4.6 differs drastically from the theoretical bifurcation di-
agram for the elliptic case given in [12, p. 8]. The reason for this discrepancy is
that the diagram in [12] concerns phase portraits in a fixed small neighborhood (in
fact, an elliptic disk) of the origin. Therefore, additional bifurcation curves associated
with boundary tangencies appear, while some parts of the global bifurcation curves
described above become “invisible,” since the corresponding bifurcations happen out-
side the neighborhood. This approach is absolutely legitimate in theoretical studies,
but is of little use in applied analysis, where artificial boundaries have no meaning
and global phase portraits in the whole phase plane must be considered. Only such
portraits could provide a good understanding of the long-term dynamics of the model.

Figure 4.5 gives such global bifurcation diagrams of the normal form (4.16). It
turns out that the two-parameter slices are topologically equivalent to those corre-
sponding to the focus case (see [2, p. 36] or [12, p. 7], where an intersection of bi-
furcation surfaces with a small sphere centered at the origin in the three-dimensional
parameter space is shown). However, the inner limit cycle demonstrates rapid am-
plitude changes (“canard-like” behavior) near the bifurcation curve Tc. It is this
phenomenon that makes the continuation of limit cycles near Tc difficult. One could
also observe that, in contrast with the focus case, the “big” homoclinic orbit to the
neutral saddle (see point F ) does not shrink to the origin of the phase plane, when
we approach the codimension-three elliptic BT point in the parameter space. Instead,
this homoclinic orbit tends to the boundary of the elliptic sector that has a finite size
in (4.16). The similarity between the focus and the elliptic cases implies that the
transition between them at b = b�, although interesting from a theoretical point of
view, is of minor importance in applications, since it does not affect dynamics away
from the degenerate BT bifurcation points.
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These similarities and differences between the focus and the elliptic cases were
overlooked in all theoretical studies. Of course, global phase portraits arising from
an elliptic BT case in a specific model could differ from the global bifurcation di-
agrams of the canonical unfolding (4.16) reported above. However, if other phase
objects (equilibria, cycles, etc.) do not interact with the objects bifurcating around
the codimension-three BT point, one would encounter the described bifurcation dia-
grams in his/her system, as it happens in our ecological model (2.1).

5. Bifurcation diagrams of (2.1). To facilitate our understanding of the bifur-
cation structure, we construct three-, two-, and one-parameter bifurcation diagrams
of (2.1) for a representative parameter value b = 2.2 (elliptic case). We also show
explicitly various homoclinic orbits.

5.1. Three-parameter bifurcation diagram. In Figure 5.1, the three param-
eters μ,m, a are changed simultaneously. There is a codimension-three point, denoted
by BT= at the critical parameter values (μ�,m�, a�) given by (3.7). The bifurcation
pattern resembles that of the normal form (4.16) presented in Figure 4.4. There is
now another codimension-two Bautin bifurcation curve B which is not connected to
a codimension-three point BT=. Varying the fourth parameter b showed that such a
connection never occurs in the region of the parameter space of interest in this paper.

a

0.45

0.44

0.43

0.42

0.41 m

0.012

0.011

0.01

μ
0.2

0.15
0.1

0.05
0

Ne

H−

H+

T+
e

T−
e

H+

BT−
BT+

BT=

B

B

•

Fig. 5.1. Three-parameter bifurcation diagram for equilibria of (2.1) with μ, m and a as bi-
furcation parameters. The codimension-three Bogdanov–Takens point is denoted by BT=. From
this point two codimension-two BT curves, BT− and BT+, emanate. They are shown along with
their projections. The codimension-two Bautin bifurcation curves B are long dashed. The Hopf
bifurcation curves (dotted) and tangent bifurcation curves (short dashed) are shown for a = 0.455,
a = 0.4492277, a = 0.44 and a = 0.43. The curve Ne passing through BT= is a cusp bifurcation
curve for equilibria. The two curves T±

e for a = 0.44 are the intersections of the a = 0.44 plane
with the tangent bifurcation surfaces. Similarly the H+ and H− curves from the intersections for
the two-dimensional Hopf bifurcation surfaces. For a-values above the point BT= these sheets are
separated by the codimension-two Bautin bifurcation curves B. These sheets are separated for a-
values below the point BT=, where the two codimension-two BT curves, BT− and BT+, form the
end curves of the separated sheets. For smaller μ-values there is always a codimension-two Bautin
bifurcation curve B that separates super- and subcritical Hopf bifurcation surfaces.
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Fig. 5.2. Two-dimensional bifurcation diagram with μ and m as bifurcation parameters, where
a = 0.44.
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Fig. 5.3. Combined bifurcation diagrams for region around bifurcation point D3, where a =
0.44. The bottom right vertex, for both y and L, corresponds to the point μ = 0.2743923 and
m = 0.01105501 on the Hopf bifurcation H+ in Figure 5.2.

Codimension-one bifurcation curves for a = 0.44 and for the reference value a =
0.43 are investigated in the next section using two-parameter bifurcation diagrams.

5.2. Two-parameter bifurcation diagram. The two-parameter bifurcation
diagram for a = 0.44 in Figure 5.2 strongly resembles that given in Figure 4.5 (right),
where μ2 = −1. The Hopf bifurcation curves H− (origination to the left in BT−)
and H+ (origination to the right in BT+), the neutral-saddle curve NS (between
BT− and BT+), and the tangent bifurcation curves T±

e (straight lines parallel to the
ν-axis) as well as the tangent bifurcation curve for limit cycles Tc are shown. Observe
that although the parameter value a = 0.44 is rather close to a�, the two saddle-node
homoclinic bifurcation points D3 and D4 are indistinguishable in the figure. In two
one-parameter bifurcation diagrams with respect to μ and m combined in Figure 5.3,
the extrema of the cycles in the region close to points D3 and D4 are plotted. The
two homoclinic bifurcations for the cycles C1 and C3 are connected via the tangent
bifurcation of these cycles at Tc. This explains how the large amplitude cycle C3

surrounding all three equilibria, E1, E2, and E3, appears. The tangent bifurcation
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dy
dt = 0
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dt = 0

E1

E2 = E3

•

◦

�

L

y

43210

0.4

0.3

0.2

0.1

0

Fig. 5.4. Phase-plane plot for parameter values between the codimension-two points D3 and
D4, μ = 0.2714740 and m = 0.01107377 for a = 0.44. Also the two isoclines are shown. These
intersect in the two equilibria, namely, the saddle-node, where two points E2 and E3 coincide, and
the unstable equilibrium E1.

curve Tc for limit cycles goes all the way down to the point F corresponding to the
homoclinic orbit to a neutral saddle. Between the lines T±

e , Tc is very close to the
“big” homoclinic curve G0.

A smooth homoclinic orbit to a saddle-node on the tangent bifurcation curve T−
e

between the points D3 and D4 is depicted in Figure 5.4. Also the isoclines are drawn.
The homoclinic orbits locally coincide with a center manifold W c of the saddle-node
E2 = E3 and is therefore smooth. The orbit approaches and leaves the saddle-node
via the center manifold, that is, it is tangent to the eigenvector belonging to the
zero eigenvalue of the saddle-node on T−

e . At the points D3 and D4 the homoclinic
bifurcation curves G+ and G0 terminate at the equilibrium tangent bifurcation curve
T−
e , where the equilibria E3 and E2 coincide. At these points, the homoclinic orbit

to the saddle-node is nonsmooth.
Figure 5.5 shows a two-parameter bifurcation diagram where μ and m are again

the bifurcation parameters, while now a = 0.43. The two-parameter bifurcation dia-
gram in Figure 5.5 resembles that for a = 0.44 given in Figure 5.2 except that there are
no points D3, D4. If the values of the parameter a are lower, the Hopf bifurcation H+

does not intersect the curve T−
e . One can show that H+ has a horizontal asymptote

as μ → ∞, namely, the line m = m� = 0.01026241193. Furthermore, the curve G−

originating at BT− and terminating at D1 follows closely the Hopf bifurcation curve
H−. Figure 5.6 is an expanded view of Figure 5.5 in the region of the the two points
D1 and D2. The tangent bifurcation curve Tc for limit cycles is indistinguishable from
the segment of G0 located above the point F also in Figure 5.6.

5.3. One-parameter bifurcation diagrams. In Figures 5.7 and 5.8, where
m = 0.01, a = 0.43, the bifurcation parameter is μ. For all μ-values, there are three
interior equilibria, denoted by E1, E2 and E3, the positions of which are independent of
μ. For the (scaled) numbers of juveniles and adults at these equilibria, Ej = (L∗

j , y
∗
j ),

we have L∗
1 < L∗

2 < L∗
3 and y∗1 > y∗2 > y∗3 , respectively. Hopf bifurcations of E1 and

E3 occur at H+ and H−, respectively, giving rise to limit cycles. Their maximum and
minimum values are plotted in the figure, a stable one, denoted by C3 and generated
by the supercritical Hopf bifurcation from the equilibrium E3 and an unstable one,
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Fig. 5.5. Two-parameter bifurcation diagram with μ and m as bifurcation parameters, where
a = 0.43. At the Bogdanov–Takens codimension-two point BT−, a tangent (T−

e ), supercritical Hopf
(H−) and a homoclinic curve (G−) meet. Similarly, at the point BT+, a tangent (T+

e ), subcritical
Hopf (H+) and a homoclinic curve (G+) meet. At the Bautin codimension-two point B, a tangent
bifurcation for the limit cycle Tc originates. For more details, see Figure 5.6.

D1 D2

••

F

G− Tc, G
0

H+

T+
e BT+

•

G+

H−

NS

μ

m

0.180.083

0.20.150.10.050

0.00955

0.009525

0.0095

Fig. 5.6. The Hopf bifurcation curve H− (dotted) and the tangent bifurcation T+
e (short dashed)

are shown. Further, the homoclinic bifurcation curve G− which originates from BT− (shown in
Figure 5.5), and the homoclinic bifurcation curve G+ (dashed-dotted) which originates from BT+

(μ = 0.1566) together with T+
e are shown. Between the codimension-two points D1 (μ = 0.1474)

and D2 (μ = 0.0813), there is a smooth saddle-node homoclinic orbit. The tangent bifurcation curve
Tc for limit cycles is indistinguishable from the segment of the homoclinic curve G0 located above
the point F .

denoted by C1 and generated by the subcritical Hopf bifurcation from the equilibrium
E1. For large μ, there is a branch of “big” stable periodic orbits (also denoted by C3)
which surround all three equilibria. This branch also exists for μ values for which the
unstable period orbits C1 surrounding the equilibrium E1 exist. There are homoclinic
orbits at the points where these limit cycles touch the saddle equilibrium E2.

In Figure 5.9, we show the one-parameter diagram for fixed μ = 0.08337 with m
as the bifurcation parameter. The parameter μ has been chosen in such a way that it
lies between the μ-coordinates of the codimension-two points D1 and D2 in Figure 5.6,
where a saddle-node homoclinic bifurcation occurs. In this global bifurcation curve,
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Fig. 5.7. Bifurcation diagram, where m = 0.01 and a = 0.43, and μ is the single bifurcation
parameter. Stable equilibria are represented by solid lines and unstable equilibria by dashed lines
which are horizontal because the y and L equilibrium values are independent of μ. A branch of
stable limit cycles C3 (solid curves) originate through the supercritical Hopf (H−), and a branch of
unstable limit cycles C1 (dashed curves) through the subcritical Hopf bifurcation (H+). A homoclinic
orbit occurs where these limit cycles touch the saddle equilibrium E2.

E2

E1 maxC1

maxC3

minC1

μ

y

H+Tc, G
0, G+

0.36

0.34

0.32

0.840.820.80.780.76

0.3675

0.365

0.3625

0.36

Fig. 5.8. Detail of Figure 5.7. The solid curve is the maximum of the large amplitude cycle
C3. The dashed curve is the unstable limit cycle C1 that emanates from the Hopf bifurcation point
H+. In order to get a better plot, the scaling of the y-axis below y = 0.36 is changed. The two
homoclinic bifurcations G0 and G+, as well as the tangent bifurcation Tc of limit cycles, occur at
almost the same value of μ.

also a local tangent bifurcation T+
e , where the two equilibria E1 and E2 coincide, is

involved. The time-averages of the limit cycles are plotted. The stable limit cycle C3

disappears when the average reaches the tangent point at T+
e . This is explained in

Figure 5.10, where the homoclinic orbit in the phase plane is shown for parameter
values of m at the saddle-node homoclinic bifurcation. The homoclinic orbit is similar
to that shown in Figure 5.4 for a point between the two codimension-two points D3

and D4.
A periodic solution (L(t), y(t)) near the saddle-node homoclinic orbit stays close

to a point where the saddle-node will appear for most of its period, then completes
the orbit by making a rapid and large excursion in the phase plane. Hence the time-
average for one period is approximately the equilibrium value. This explains why it
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Fig. 5.9. Bifurcation diagrams for y = μ
m
A and L with m as bifurcation parameter for μ =

0.08336837 and a = 0.43. Stable equilibria (solid curve) and unstable equilibria (dashed curve) as
well as the time-averages for the stable limit cycle (solid curve) are plotted. Stable limit cycles
originate in the supercritical Hopf (H−) bifurcation shown in Figures 5.5 and 5.6. These cycles
terminate at a smooth saddle-node homoclinic orbit.

dy
dt = 0

dL
dt = 0

E3

E2 = E1

◦

•

3210

0.4
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0.2
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0
y

L

Fig. 5.10. Phase portrait for μ = 0.083, a = 0.43 and m = 0.009513629. The smooth homoclinic
orbit to the saddle-node equilibrium E1 = E2 coincides locally with a center manifold of this point.
Also, the unstable equilibrium E3 inside the homoclinic orbit and two isoclines are shown.

is advantageous to plot the time-averages in addition to the maximum and minimum
values. Observe that y becomes small during the excursion but this occurs over a
relatively (the period T goes to infinity) short time interval. Note that the unstable
manifold of the saddle E2 can go to E1 directly or via a “big” loop around E3 similar
to the saddle-node homoclinic orbit shown in Figure 5.10.

Figure 5.11 is a one-parameter diagram, where m is the bifurcation parameter for
μ = 1.0 and a = 0.43. It shows how the three interior equilibria are connected. There
are two tangent bifurcations T±

e , where two equilibria coincide. A subcritical Hopf
bifurcation of E1 occurs at H+, generating a branch of unstable limit cycles, denoted
by C1, while a supercritical Hopf bifurcation of E3 occurs at H−, generating a branch
of stable limit cycles, denoted by C3. The maximum and minimum values for both
branches have been plotted in the figure. Varying m, this unstable limit cycle touches
the saddle E2 in a homoclinic orbit.
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Fig. 5.11. Bifurcation diagrams for y = μ
m
A and L with m as bifurcation parameter, where

μ = 1.0 and a = 0.43. Stable equilibria (solid curve) and unstable equilibria (dashed curve) as well
as the time-averages for the stable limit cycles (solid curve) and for the unstable limit cycles (dashed
curve) are plotted.
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Fig. 5.12. Two homoclinic orbits and time-evolution for μ = 1.0 and a = 0.43, where m =
0.01004953 and m = 0.01004952 for large amplitude and small amplitude orbits, respectively. The
right figure is an expanded view of the left figure. The stable W s and unstable Wu manifolds of the
saddle point indicated by a � are shown. The stable focus E1 is indicated by a bullet and the source
E3 by a circle. Here the flow direction is indicated by arrows for the stable homoclinic orbit C3 at
the outside and for the unstable homoclinic orbit C1 at the inside.

Furthermore, the average values for the limit cycle C3 are plotted. The unstable
cycle C3 originates in the supercritical Hopf bifurcation H− of equilibrium E3. Both
average curves touch the saddle curve E2. The average curve as a function of m for
the stable limit cycles C3 is very steep close to the bifurcation point. The average
L-values first decrease before increasing up to the saddle-point value. This is most
clear from the graphs y(m) and L(m). Actually, the cycle C3 becomes unstable via a
tangent limit cycle bifurcation not show in the figure. Both homoclinic bifurcations
occur in very close proximity.

Figure 5.12 shows approximations of these two homoclinic orbits, one “big” (solid)
C3 and one “small” (dashed) C1. The period of the plotted limit cycles is very
large, indicating a homoclinic orbit. There are two rather sharp bends in the “big”
homoclinic orbit. The top one is close to the saddle point as expected. The lower
bend is associated with the zero equilibrium (L = 0, y = 0) which is a saddle point
for the parameter values used. Both orbits pass the stable focus E1 closely.
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Fig. 5.13. Bifurcation diagrams for y = μ
m
A and L with m as bifurcation parameter, where

μ = 0.18 and a = 0.43. Stable equilibria (solid curve) and unstable equilibria (dashed curve) as well
as the time-averages for the stable limit cycle (solid curve) and for the unstable limit cycle (dashed
curve) are plotted.
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Fig. 5.14. Phase portrait for μ = 0.18 and a = 0.43. Left: Where m = 0.009534053, there
is a “big” homoclinic orbit C3. Right: An expanded view of the homoclinic orbit C3 (solid curve)
close to saddle E2. For m = 0.009538250, in the same plot the “small” homoclinic orbit C1 (dashed
curve) is shown.

In order to get more detailed information on the dynamics close to the homoclinic
orbits, we study the one-parameter diagram for fixed μ = 0.18, where m is varied (see
also Figure 5.6).

In Figure 5.13, the average values of the variables for the limit cycles are plotted
together with their equilibrium values. For m values below the Hopf bifurcation H+,
the large amplitude stable limit cycles, whose averaged values form the curve C3,
are globally attracting. For m values above the curve H+, the unstable limit cycles
C1 which emanate from E1 at the Hopf bifurcation H+ are separating boundaries.
Starting outside the limit cycle results in convergence to the stable limit cycle C3,
but starting inside the limit cycle gives convergence to the stable equilibrium E1.
Increasing m, this bistability persists until the unstable limit cycle (averaged C1)
disappears abruptly at the global bifurcation G+ via the homoclinic orbit shown in
Figure 5.14. For parameter values m above G+, there is still bistability of the stable
equilibrium E1 and the stable limit cycle C3, but now the stable manifold of the saddle
equilibrium E2 acts as the separatrix.
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Fig. 5.15. Attractors in some regions of the two-parameter bifurcation diagram shown in Fig-
ure 5.6. E1←E2→E3 means bistability of the two equilibria E1 and E3 and the stable manifold of
the saddle E2 is the separatrix.

In Figure 5.15 several attractors for typical points in the two-parameter bifurca-
tion diagram Figure 5.6 are indicated. The regimes are all separated by codimension-
one curves as shown in Figure 5.6. For small μ values, there is bistability of the two
equilibria E1 and E3 and the stable manifold of the saddle E2 is the separatrix. This
region is labeled E1 ←E2 →E3. For larger μ values there is bistability of the equi-
librium E1 and the limit cycle C3, while the stable manifold of either the saddle E2

(E1 ←E2 →C3) or the unstable limit cycle C1 (E1 ←C1 →C3) is a separatrix. Note
that C3 can surround either just E3 or all three equilibria, E1, E2, and E3.

6. Discussion. We have considered the most basic model for stage-structured
populations in which per capita transition from the juvenile into the adult class is
density dependent, namely, a system of two ordinary differential equations. This
model was originally suggested in [21]. Birth pulses have been added in [33], but we
are only interested in the time-autonomous case here. Alternative more sophisticated
models involve differential-delay equations with density-dependent delays [17], trans-
port equations with density-dependent speed [27, 8], difference equations [3, 6, 7],
and integral equations with density-dependent transition kernels [10]. We refer to
[20] for a review of the different model formulations and their relationships. While
more complex models also exhibit more complex behavior than simple models, the
complex behavior may be more difficult to detect and track due to the large number
of parameters and initial conditions inherent in such systems.

In [21], periodic orbits were found which surround a unique interior equilibrium.
Up to three interior equilibria, two of which can undergo Hopf bifurcation, were dis-
covered in [34, sect. 11]. In order to determine more systematically the dynamics
of our planar system (2.6), we have performed a four-parameter bifurcation analysis
under the assumption of pure intrastage competition. To report our results, we fix
a representative value of parameter b that characterizes the birth rate of adults and
then presents the three-parameter bifurcation diagrams. These are the three param-
eters which we have varied. The parameter a is related to the average number of
offspring produced by one typical adult if there is no competition. The parameter μ
represents the per capita mortality rate of juveniles. The parameter m has no direct
interpretation, but p0 = 1

1+m is the probability of surviving the juvenile stage under
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no competition. The parameter a determines the shape of a function M involved
in the equation M(L∗) = m which determines the juvenile coordinate L∗ of an in-
terior equilibrium. Depending on a, M can be either strictly monotone decreasing
in L∗ ≥ 0 or decreasing for small L∗, increasing for intermediate L∗, and decreasing
again for large L∗. The a = a� value at which M undergoes the transition is the a-
coordinate of a codimension-three BT bifurcation point which is the organizing center
of our three-parameter bifurcation diagrams. There exists a unique L∗ > 0 such that
M ′(L∗) = M ′′(L∗) = 0. L∗ is the juvenile coordinate of a saddle-node. m = M(L∗)
is the m coordinate of the degenerate BT point. Its μ-coordinate is determined by
making 0 a double eigenvalue of the Jacobian matrix. This leads to the following
procedure for calculating the position of the codimension-three BT bifurcation point.
When b is fixed, there are five unknowns, namely, two equilibrium values for the state
variables, L�, y� and three parameters a�,m�, μ�. There are two equilibrium equations
(right-hand sides of (2.6) zero), the requirements that the determinant and trace of
the Jacobian matrix evaluated at the equilibrium point are zero and the additional
requirement that M ′′(L�) = 0. The first four are necessary for a codimension-two BT
point, while the latter is satisfied at a codimension-three BT point. Surprisingly, the
latter condition is a geometrical one (the position of the inflection point of a function
M(L∗) defined in (3.1)). The function M(L∗) is the expression for a parameter, m,
derived from the equilibrium equation for one state variable, L, where the solution of
the other state variable, y∗(L∗), from the second equilibrium equation is substituted.
We use the fact that M(L∗) and y∗(L∗) formulations are explicit as is the case with
the population model (2.6). Commonly it is the requirement that one coefficient of a
higher-order term of a Taylor series expansion equals zero (see [22, p. 272] for details).
In this paper we established existence of a codimension-three BT bifurcation in our
model and have verified its nondegeneracy by computing its normal form numerically.

The normal form is computed using a preliminary linear transformation to sim-
plify the linear terms, in this case to put the linear part in the Jordan canonical form.
In [22, 23] this step is omitted by using a representation of any vector in the state
space as a linear combination of the eigenvector and the adjoint eigenvector. That
method is appropriate for higher-order dynamics systems where normalization on the
center manifold is needed [24]. The nonlinear smooth transformation in this paper is
combined with a time reparameterization. This facilitates the removal of all fourth-
order terms in the Taylor series expansion. Therefore the expression for the coefficient
D of the ξ2η term given by (4.13d) differs from the classical expression [19], where
only third-order terms are taken into account. The expressions (4.13) agree with those
reported in [14]. In this way, we have computed the relevant normal form coefficients
and established that the critical equilibrium at the codimension-three BT point is
triple and has an elliptic sector for b > b� = 1.7300228. Apparently, this case has
never been observed in ecological modeling. At b = b�, a transition from the elliptic
codimension-three BT to the focus codimension-three BT point occurs.

Using known theoretical results [2, 12], we have concluded that two BT codimen-
sion-two curves emanate from the codimension-three BT point. Along these curves
a Hopf bifurcation surface, as well as a tangent bifurcation and a homoclinic orbit
surface, meet. There is also a codimension-two Bautin bifurcation curve B in the Hopf
bifurcation surface, where the supercritical Hopf bifurcation becomes subcritical or
vice versa. This happens in a parameter region where only one interior equilibrium
exists. In Bautin bifurcation points, a surface of tangent bifurcations of limit cycles
originates.
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Our numerical analysis of the global bifurcation diagram of the canonical unfold-
ing of the normal form, Figure 4.5, has revealed other global bifurcation curves. On
codimension-two bifurcation curves Di, transitions of the homoclinic orbit to a saddle-
node homoclinic orbit occur. There is also a bifurcation surface G0 corresponding to
a “big” homoclinic orbit to the saddle that surrounds two equilibria. In this surface,
a line F of codimension-two homoclinic orbits to a neutral saddle exists. Figure 5.2
resembles that of the Bazykin’s predator-prey model [1, Fig. 3.5.3] and [22, Fig. 8.10],
despite the fact that the degenerate BT point is here of the elliptic type while in
Bazykin’s model it is of the focus type. The diagrams given in [12] for both types dif-
fer a lot on first sight. However, in [12] additional bifurcation curves associated with
boundary tangencies are reported. In this paper, we do not have such artificial bifur-
cations, since we do not restrict our attention to a small neighborhood of the critical
equilibrium. Instead, we consider global phase portraits, which allows us to obtain a
better understanding of the long-term dynamic behavior of the model. It should be
stressed that without a preliminary analysis of the canonical unfolding (4.16) it would
have been practically impossible to understand the numerical continuation results for
(2.6).

A large-time solution behavior of similar complexity has been found for certain
planar predator-prey systems [1, 22, 38, 31, 39] and epidemic models [30]. Predator-
prey and host-parasite systems involve two species which influence each other in op-
posite ways with one suffering while benefiting the other. The predator-prey models
which show complex behavior take into account competition among prey and predator
competition for prey. Our model involves two stages of one species which compete
among themselves but influence each other positively because we assume pure intra-
stage competition. (Adding interstage competition actually counteracts the complex-
ity.) Mathematically, this is reflected in the fact that the nonlinear terms in our
system only depend on one variable each, whereas predator-prey and epidemic mod-
els always have nonlinear terms which involve both variables. In this paper, we find
complex behavior in a class of planar systems that is different from predator-prey
models both biologically and mathematically.

The complex behavior only occurs in a small parameter region (see [34, Chap-
ter 11] for a discussion of other parameter ranges). In this parameter region, the per
capita mortality rate of juveniles is smaller than the one of adults (μ ≤ 1 = α), and
almost every juvenile makes it into the adult stage if there is no competition (the small
values of m result in p0 ≈ 1). This would hold for species where the juveniles are
less prone to enemies than the adults, and the juvenile stage is very short if there are
plenty of resources available. We expect that the complex behavior can be observed
in a larger parameter region if more sophisticated nonlinearities than the classical
Ricker function are chosen to model the competition among juveniles and adults. A
thorough understanding of the basic stage-structured model is important because its
simplicity makes it a useful building block in models for several species. Recently it
has been used (extended by an intermediate stage of subadult individuals) to explain
emergent Allee effects in predators that feed on structured prey populations [9].

The results show that despite the low dimension of the system, the dependence
of the resulting long-term dynamics on parameter values can be rather complex. The
rich behavior of our model is caused by the interaction of intra-adult competition
and intra-juvenile competition. None of the two alone can generate multiple positive
attractors. It is essential that the intra-juvenile competition does not only affect
juvenile mortality, but also juvenile maturation (the per capita transition rate). A



1364 S. BAER, B. KOOI, YU. KUZNETSOV, AND H. THIEME

density-dependent per capita juvenile mortality rate alone, even if combined with a
density-dependent per capita birth rate, can neither generate Hopf bifurcation nor
multiple interior equilibria. This feature seems to be related to the fact that in our
ODE model the length of the juvenile period is exponentially distributed. If the length
of the juvenile period is the same for all individuals (at least for those that are born
at the same time), then a density-dependent per capita birth rate can lead to periodic
solutions without any other nonlinear model ingredients [21, 28].

Acknowledgments. B.W.K. would like to thank Martin Boer for valuable dis-
cussions.

REFERENCES

[1] A. D. Bazykin, Nonlinear Dynamics of Interacting Populations, World Scientific, Singapore,
1998.

[2] A. D. Bazykin, Yu. A. Kuznetsov, and A. I. Khibnik, in Bifurcation Diagrams of Planar
Dynamical Systems, Ser. Math. Cybernetics, Research Computing Centre, USSR Academy
of Sciences, Pushchino, Moscow Region, 1985 (in Russian).

[3] H. Caswell, Matrix Population Models, Construction, Analysis, and Interpretation. Sinauer
Associates Inc., Sunderland, MA, 2001.

[4] A. R. Champneys and Yu. A. Kuznetsov, Numerical detection and continuation of
codimension-two homoclinic bifurcations. Internat. J. Bifur. Chaos Appl. Sci. Engrg., 4
(1994), pp. 795–822.

[5] A. R. Champneys, Yu. A. Kuznetsov, and B. Sandstede, A numerical toolbox for homoclinic
bifurcation analysis, Internat. J. Bifur. Chaos Appl. Sci. Engrg., 6 (1996), pp. 867–887.

[6] J. M. Cushing, An Introduction to Structured Population Dynamics, Volume 71, Society for
Industrial and Applied Mathematics, Philadelphia, 1998.

[7] J. M. Cushing, R. F. Costantino, B. Dennis, R. A. Desharnais, and S. M. Henson, in
Chaos in Ecology: Experimental Nonlinear Dynamics, Theoretical Ecology Series, Aca-
demic Press, San Diego, 2003.

[8] A. M. de Roos, A gentle introduction to physiologically structured population models, in
Structured-Population Models in Marine, Terrestrial, and Freshwater Systems, S. Tul-
japurkar and H. Caswell, eds., Chapman & Hall, New York, 1997, pp. 119–204.

[9] A. M. de Roos, L. Persson, and H. R. Thieme, Emergent Allee effects in top predators feeding
on structured prey populations, Proc. Roy. Soc. Lond. Ser. B, 270 (2003), pp. 611–618.

[10] O. Diekmann, M. Gyllenberg, H. Huang, M. Kirkilionis, J. A. J. Metz, and H. R.

Thieme, On the formulation and analysis of general deterministic structured population
models. II. Nonlinear theory, J. Math. Biol., 43 (2001), pp. 157–189.

[11] E. J. Doedel, A. R. Champneys, T. F. Fairgrieve, Y. A. Kuznetsov, B. Sandstede,

and X. Wang, Auto 97: Continuation and bifurcation software for ordinary differential
equations, Technical report, Concordia University, Montreal, Canada, 1997.

[12] F. Dumortier, R. Roussarie, J. Sotomayor, and H. Żoladek, Bifurcations of Planar Vector
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Abstract. To better understand the evolution of dispersal in spatially heterogeneous landscapes,
we study difference equation models of populations that reproduce and disperse in a landscape
consisting of k patches. The connectivity of the patches and costs of dispersal are determined by a
k×k column substochastic matrix S, where Sij represents the fraction of dispersing individuals from
patch j that end up in patch i. Given S, a dispersal strategy is a k×1 vector whose ith entry gives the
probability pi that individuals disperse from patch i. If all of the pi’s are the same, then the dispersal
strategy is called unconditional; otherwise it is called conditional. For two competing populations
of unconditional dispersers, we prove that the slower dispersing population (i.e., the population
with the smaller dispersal probability) displaces the faster dispersing population. Alternatively, for
populations of conditional dispersers without any dispersal costs (i.e., S is column stochastic and all
patches can support a population), we prove that there is a one parameter family of strategies that
resists invasion attempts by all other strategies.
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1. Introduction. Plants and animals often live in landscapes where environ-
mental conditions vary from patch to patch. Within patches, these environmental
conditions may include abiotic factors such as light, space, and nutrient availability
or biotic factors such as prey, competitors, and predators. Since the fecundity and
survivorship of an individual depends on these factors, an organism may decrease or
increase its fitness by dispersing across the environment. Depending on their phys-
iology and their ability to accumulate information about the environment, plants
and animals can exhibit two modes of dispersals and a variety of dispersal strate-
gies. Plants and animals can be active dispersers that move by their own energy
or passive dispersers that are moved by wind, water, or other animals. Passive dis-
persers alter their dispersal rates by varying the likelihood of dispersing and the time
spent dispersing [20]. Dispersal strategies can vary from unconditional strategies in
which the probability of dispersing from a patch is independent of the local envi-
ronmental conditions to conditional strategies in which the likelihood of dispersing
depends on local environmental factors. Understanding how natural selection acts on
these different modes and strategies of dispersal has been the focus of much theoretical
work [2, 5, 8, 10, 12, 15, 16, 17]. For instance, using coupled ordinary differential equa-
tion models for populations passively dispersing between two patches, Holt [8] showed
that slower dispersing populations could always invade equilibria determined by faster

∗Received by the editors April 10, 2005; accepted for publication (in revised form) November 15,
2005; published electronically April 21, 2006.

http://www.siam.org/journals/siap/66-4/62893.html
†Department of Mathematics and Statistics, University of Regina, Regina, SK S4S 0A2, Canada

(kirkland@math.uregina.ca). The research of this author was supported in part by NSERC.
‡Department of Mathematics, The College of William and Mary, Williamsburg, VA 23187-8795

(ckli@math.wm.edu, sjschr@wm.edu). The research of the second author was partially supported by
an NSF grant and an HK RCG grant. The second author is an honorary professor of the Heilongjiang
University and an honorary professor of the University of Hong Kong. The research of the third
author was partially supported by NSF grants EF-0436318 and DMS-0517987.

1366



EVOLUTION OF DISPERSAL 1367

dispersing populations. Hastings [5] and Dockery et al. [2] considered evolution of dis-
persal in continuous space using reaction diffusion equations. Dockery et al. proved
that for two competing populations differing only in their diffusion constant, the popu-
lation with the larger diffusion constant is excluded. In contrast, McPeek and Holt [17]
using a two patch model consisting of coupled difference equations found that “dis-
persal between patches can be favored in spatially varying but temporally constant
environment, if organisms can express conditional dispersal strategies.”

In this article, we consider the evolution of conditional and unconditional dis-
persers for a general class of multipatch difference equations. For these difference
equations, individuals in each patch disperse with some probability. When these proba-
bilities are independent of location, the population exhibits an unconditional dispersal
strategy; otherwise it exhibits a conditional dispersal strategy. For dispersing individ-
uals, the nature of the landscape determines the likelihood Sji that a disperser from
patch i ends up in patch j. Unlike previous studies of the evolution of unconditional
and conditional dispersal [2, 5, 8, 17], we allow for an arbitrary number of patches
and place no symmetry conditions on S. For active dispersers, asymmetries in S
may correspond to geographical and ecological barriers that inhibit movement from
one patch to another. For passive dispersers, these asymmetries may correspond to
asymmetries in the abiotic or biotic currents in which they drift.

Our main goal is to determine what types of theorems can be proved about the
evolution of dispersal for this general class of difference equation models. To achieve
these goals, the remainder of the article is structured as follows. In section 2, we intro-
duce the models. Under monotonicity assumptions about the growth rates, we prove
that either populations playing a single dispersal strategy go extinct for all initial con-
ditions or approach a positive fixed point for all positive initial conditions. We also
introduce models of competing populations that differ only in their dispersal ability
and prove a result about invasiveness. In section 3, we prove that for two competing
populations of unconditional dispersers, the slower dispersing population displaces
the faster dispersing population. The proof relies heavily on proving, in section 4,
monotonicity of the principal eigenvalue for a one-parameter family of nonnegative
matrices. In section 5, we prove that, provided there is no cost to dispersal and all
patches can support a population, there is a one-parameter family of conditional
dispersal strategies that resists invasion from other types of dispersal strategies. Nu-
merical simulations suggest that these strategies can displace all other strategies, and
we prove that these strategies can weakly coexist. In section 6, we discuss our findings
and suggest directions for future research.

2. The models and basic results. Consider a population exhibiting discrete
reproductive and dispersal events and living in an environment consisting of k patches.
The vector of population densities is given by x = (x1, . . . , xk)

T ∈ Rk
+, where Rk

+ is
the nonnegative cone of Rk. To describe reproduction and survival in each patch, let
λi : R+ → R+ denote the per-capita growth rate of the population in the ith patch
as a function of the population density in the ith patch. For these per-capita growth
rates we make the following assumptions.

A1: λi are positive continuous decreasing functions.
A2: limxi→∞ λi(xi) < 1.
A3: xi �→ xiλi(xi) is increasing.

Assumption A1 corresponds to the population exhibiting increasing levels of intra
specific competition or interference as population densities increase. Assumption A2
implies that at high densities the population tends to decrease in size. Assumption A3
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implies that the population does not exhibit overcompensating density dependence:
higher densities in the current generation yield higher densities in the next generation.
Many models in the population ecology literature satisfy these three assumptions.
For instance, see the Beverton–Holt model [1] in which λi(xi) = ai

1+bixi
and the Ivlev

model [14] in which λi(xi) = ai(1 − exp(−b xi)).
To describe dispersal between patches, we assume that each individual in patch i

disperses with a probability pi and Sji is the probability that a dispersing individual
from patch i arrives in patch j. About the matrix S we make the following assumption.

A4: S is a k × k primitive column substochastic matrix.
S can be column stochastic if all dispersing individuals migrate successfully or sub-
stochastic if some dispersing individuals experience mortality. The primitive assump-
tion ensures that individuals (possibly after several generations) can move from any
patch to any patch. S characterizes how connected the landscape is for dispersing
individuals. For example, for a fully connected metapopulation, S could be the ma-
trix whose entries all equal 1

k ; i.e., an individual is equally likely to end up in any
patch after dispersing. Alternatively, in a landscape with a one-dimensional lattice
structure with individuals able only to move to neighboring patches in one time step
S is a column substochastic tridiagonal matrix that is primitive, provided it has a
positive entry on the diagonal. From these p and S, the following matrix describes
how the population redistributes itself across the environment in one time step:

Sp = I − diag (p) + S diag (p),

where diag (p) denotes a diagonal matrix with diagonal entries p1, . . . , pk.
If a census of the population is taken before reproduction and after dispersal,

then the dynamics of the population are given by

x′ = SpΛ(x)x =: F (x),(1)

where x′ denotes the population state in the next time step and Λ(x) is the k × k
diagonal matrix whose ith diagonal entry equals λi(xi).

Our first result characterizes the global dynamics of (1). To state this result, let
Fn(x) denote F composed with itself n times. Given x, y ∈ Rk

+, we write x ≥ y if
xi ≥ yi for all 1 ≤ i ≤ k, x > y if x ≥ y and x �= y, and x � y if xi > yi for all
1 ≤ i ≤ k. For a matrix A, let r(A) denote the spectral radius of A.

Theorem 2.1. Assume that Assumptions A1–A4 hold and p ∈ (0, 1]k. If r(Sp

Λ(0)) ≤ 1, then

lim
n→∞

Fn(x) = 0

for all x ≥ 0. Alternatively, if r(SpΛ(0)) > 1, then there exists a fixed point x̂ � 0
for F such that

lim
n→∞

Fn(x) = x̂

for all x > 0.
Proof. Let A(x) = SpΛ(x). Assumptions A1, A4, and p � 0 imply that A(x) is

primitive for all x ≥ 0. Assumption A3 implies that F (x) ≥ F (y) (resp., F (x) > F (y),
F (x) � F (y)) whenever x ≥ y (resp., x > y, x � y). In other words, F is a strongly
monotone map.
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Suppose that r(A(0)) ≤ 1. Let wT � 0 be a left Perron vector of A(0), i.e.,
r(A(0))wT = wTA(0). Define the function L : Rk

+ → R+ by L(x) = wTx. For x > 0,
Assumption A1 implies that wTA(0) � wTA(x). Hence, for any x > 0,

L(F (x)) = wTA(F (x))x

= wTA(0)x + wT (A(F (x)) −A(0))x

< r(A(0))wTx ≤ L(x).

Since L is strictly decreasing along nonzero orbits of F , L(0) = 0, and L(x) > 0 for
x > 0, it follows that limn→∞ Fn(x) = 0 for all x ≥ 0.

Suppose r(A(0)) > 1. First, we show that there exists a positive fixed point x̂.
Let v � 0 be a right Perron eigenvector for A(0), i.e., A(0)v = r(A(0))v. Since
A(0)v � v, continuity of A(x) implies that there exists ε > 0 such that A(y)y � y,
where y = εv. Since F (x) � F (y) whenever x � y, induction implies y 	 F (y) 	
F 2(y) 	 F 3(y) 	 · · · . Assumption A2 implies that the increasing sequence Fn(y) is
bounded. Hence, there exists x̂ such that limn→∞ Fn(y) = x̂. Continuity of F implies
that F (x̂) = x̂. Second, we show that limn→∞ Fn(x) = x̂ whenever x̂ > x > 0. In
particular, x̂ is a unique positive fixed point. Let wT be the left Perron eigenvector
of A(x̂) that satisfies wT x̂ = 1. Since x̂ is a positive fixed point, r(A(x̂)) = 1. Define
L : Rk

+ → R+ by L(x) = wTx. Let x̂ > x > 0. Then x̂ > F (x) > 0 and

L(F (x)) = wTA(F (x))x

= wTA(x̂)x + wT (A(F (x)) −A(x̂))x

> r(A(x̂))wTx = L(x).

Hence, L(x), L(F (x)), L(F 2(x)), . . . is a positive increasing sequence bounded above
by L(x̂) = 1. Since L(x) < 1 for all x < x̂, it follows that limn→∞ Fn(x) = x̂
for all 0 < x < x̂. Third, it can be shown similarly that limn→∞ Fn(x) = x̂ for
all x > x̂. Fourth, consider any x � 0. Choose x > x such that x > x̂ and
choose x < x such that 0 < x < x̂. Since Fn(x) < Fn(x) < Fn(x) for all n and
limn→∞ Fn(x) = limn→∞ Fn(x) = x̂, continuity of F implies that limn→∞ Fn(x) = x̂.
Finally, consider any x > 0. Assumptions A3–A4 imply that there exists n ≥ 1 such
that Fn(x) � 0. Hence, limn→∞ Fn(x) = x̂.

To understand the evolution of dispersal, we shall consider two populations that
differ only in their dispersal ability. Let x, y ∈ Rk

+ denote the vector of densities of
the two populations and p, p̃ denote their dispersal strategies. Since the populations
differ only in their dispersal abilities, their dynamics are given by

x′ = SpΛ(x + y)x =: G1(x, y),(2)

y′ = Sp̃Λ(x + y)y =: G2(x, y).

From Assumption A2 it follows that (2) is dissipative i.e., there exists a compact set
K such that for any (x, y) ≥ (0, 0), Gn(x, y) ∈ K for n sufficiently large. Regarding
the dynamics of (2) near equilibria, we need the following result about invasiveness.
Since we have not assumed that G(x, y) is continuously differentiable, this result does
not follow immediately from the standard unstable manifold theory.
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Proposition 2.2. Assume that p, p̃ ∈ (0, 1]k, S and Λ satisfy Assumptions A1–
A4, and r(SpΛ(0)) > 1. Let x̂ � 0 be the fixed point satisfying G1(x̂, 0) = (x̂, 0). If
r(Sp̃Λ(x̂)) > 1, then there exists a neighborhood U ⊂ Rk

+ ×Rk
+ of (x̂, 0) such that for

any (x, y) ∈ U with y > 0, Gn(x, y) /∈ U for some n ≥ 1.

Proof. Let A(x) = Sp̃Λ(x). Assume that r(A(x̂)) > 1. Let wT � 0 be a left
Perron eigenvector of A(x̂). Since wTA(x̂) � wT , continuity of x �→ A(x) implies
that there exists a compact neighborhood U ⊂ Rk

+ ×Rk
+ of (x̂, 0) and c > 1 such that

wTA(x + y) � cwT for all (x, y) ∈ U . Define L : Rk
+ ×Rk

+ → R+ by L(x, y) = wT y.
Let (x, y) be in U with y > 0. We have L(G(x, y)) = wTAp̃(x + y)y > cL(x, y).
Hence, if (x, y), . . . , Gn(x, y) ∈ U , then L(Gn(x, y)) > cnwT y. Since U is compact
and y > 0, it follows that there exists n ≥ 1 such that Gn(x, y) /∈ U .

3. The slower unconditional disperser wins. In this section, we consider
only an unconditional dispersal strategy p: a strategy that satisfies p1 = · · · = pk for
some common value d. Equivalently, p = d1, where 1 = (1, . . . , 1). Our key result is
the following theorem concerning the monotonicity of the dominant eigenvalue with
respect to the parameter d.

Theorem 3.1. Let S be an irreducible column substochastic matrix and Λ be
a diagonal matrix. If Λ is not a scalar matrix, then d �→ r(((1 − d)I + dS)Λ) is
decreasing on [0, 1].

The proof of Theorem 3.1 is given in section 4, where we also characterize the
function d �→ r(Sd1) when S is reducible. The following corollary follows immediately
from Theorems 2.1 and 3.1.

Corollary 3.2. Assume that F , S, and Λ(x) satisfy Assumptions A1–A4 and
p = d1. Then there exists d∗ ≥ 0 such that we have the following.

Persistence: If d ∈ [0, d∗), then there exists x̂ � 0 satisfying limn→∞ Fn(x) = x̂
for all x � 0.

Extinction: If d ∈ [d∗, 1], then limn→∞ Fn(x) = 0 for all x ≥ 0.

Moreover, d∗ = 0 if maxi λi(0) ≤ 1, d∗ ∈ (0, 1) if maxi λi(0) > 1 and r(SΛ(0)) < 1,
and d∗ ≥ 1 if r(SΛ(0)) ≥ 1.

Corollary 3.2 implies that whenever r(SΛ(0)) < 1, unconditional dispersers have
a critical dispersal rate below which the population persists and above which the
population is deterministically driven to extinction.

To characterize the dynamics of competing unconditional dispersers, we need an
additional assumption on (2) to avoid degenerate cases. Let v � 0 be a right Perron
eigenvector of S, i.e., Sv = r(S)v. We make the following assumption.

A5: Λ(tv) is not a scalar matrix for any t ≥ 0.

This assumption assures that the model exhibits a minimal amount of spatial hetero-
geneity in the per-capita growth rates at fixed points.

Theorem 3.3. Let G = (G1, G2) satisfy Assumptions A1–A5. Assume that

p = d1, and p̃ = d̃1, where 0 < d < d̃ ≤ 1. If r(SpΛ(0)) > 1, then for all x > 0 and
y ≥ 0,

lim
n→∞

Gn(x, y) = (x̂, 0),

where x̂ is the positive fixed point of x �→ G1(x, 0).

Theorem 3.3 implies that the slower disperser always displaces the faster disperser.
This occurs despite the fact that the faster disperser is initially able to establish itself
more rapidly, as illustrated in Figures 1 and 2.
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Fig. 1. A simulation of (2) with k = 50 × 50 (i.e., a two-dimensional spatial grid), λi(xi) =
ai

1+xi
with ai randomly chosen from [1, 2], d = 0.2, d̃ = 0.3, and S given by movement with equal

likelihood to east, west, north, and south, and periodic boundary conditions. The initial condition
corresponds to a density one of both populations in the center patch. The dotted and solid curves
correspond to the abundances of the slower and faster dispersing populations, respectively.
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(c) slower disperser at generation 500 (d) faster disperser at generation 500

Fig. 2. Spatial distributions of the slower disperser in (a) and (c) and the faster dispersers
in (b) and (d). The model and parameters are as in Figure 1. Darker (resp., lighter) shading
correspond to lower (resp., higher) densities.
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Proof. The proof of this theorem relies on a result of Hsu, Smith, and Waltman [11,
Theorem A] and Theorems 2.1 and 3.1. Let Ad(x) = Sd1(x). We start the proof with
an important implication of Assumption A5. Suppose (x, y) satisfies G(x, y) = (x, y).
We claim that Λ(x + y) is not a scalar matrix. Indeed, suppose to the contrary that
Λ(x + y) = tI for some t > 0. Then

x = SpΛ(x + y)x = (1 − d)tx + dtSx,

y = Sp̃Λ(x + y)y = (1 − d̃)ty + d̃tSy.

Consequently, x and y (and hence x+ y) are scalar multiples of v. Since this con-
tradicts Assumption A5, Λ(x + y) is not a scalar matrix for any fixed point (x, y)
of G.

Assuming that r(Ad(0)) > 1, Theorem 2.1 implies that x �→ G1(x, 0) has a
unique positive fixed point x̂ that is globally stable. We prove the theorem in two
cases. In the first case, assume that r(Ad̃ (0)) > 1. Theorem 2.1 implies that there
is a unique ŷ � 0 such that G(0, ŷ) = (0, ŷ) and limn→∞ Gn(0, y) = (0, ŷ) whenever
y � 0. To employ Theorem A in [11] we need to verify two things: G has no positive
fixed point and (0, ŷ) is unstable. First, suppose to the contrary there exists x � 0
and y � 0 such that G(x, y) = (x, y). Then x = Ad(x + y)x, y = Ad̃ (x + y)y,
and r(Ad(x + y)) = 1. Since Λ(x + y) is not a scalar matrix, Theorem 3.1 implies
that 1 = r(Ad(x + y)) > r(Ad̃ (x + y)) = 1. Hence, there can be no positive fixed
point. Second, to show that (0, ŷ) is unstable, we use Theorem 3.1, which implies
that 1 = r(Ad̃ (ŷ)) < r(Ap(ŷ)), and apply Proposition 2.2. Applying Theorem A of
[11] implies that limn→∞ Gn(x, y) = (x̂, 0) whenever x � 0 and y � 0.

Suppose that r(Ad̃ (0)) ≤ 1. Let wT � 0 be a left Perron vector of Ad̃ (0).
Define the function L : Rk

+ → R+ by L(y) = wT y. Let π(x, y) = y. Since
L(Gn(x, y)) is strictly decreasing whenever y > 0, L(0) = 0, and L(y) > 0 for
y > 0, it follows that limn→∞ π(Gn(x, y)) = 0 for all x ≥ 0. Hence, for any
(x, y) ∈ Rk

+×Rk
+, the limit points of Gn(x, y) as n → ∞ lie in Rk

+×{0}. By Theorem
1.8 in [18], the closure of these limit points form a connected chain recurrent set (see
[18] for the definition). Since the only connected chain recurrent sets in Rk

+ ×{0} are
(0, 0) and (x̂, 0), instability of (0, 0) implies that limn→∞ Gn(x, y) = (x̂, 0) whenever
x > 0.

4. Proof of Theorem 3.1. We begin with the following preliminary result.
Lemma 4.1. Let v and wT be positive k-vectors so that wT v = 1. Let P be

the polytope of nonnegative matrices A such that wTA = wT and Av = v. For each
A ∈ P, let DA denote the diagonal matrix of column sums of A. Then

min {wTDAv|A ∈ P} = 1.

A matrix A ∈ P attains the minimum value for wTDAv if and only if DA = I.
Proof. Without loss of generality, assume that wT = (w1, . . . , wk) is such that

w1 ≤ · · · ≤ wk. Note also that if all of the entries in wT are equal, then each matrix in
P is a column stochastic matrix, and the statement of the lemma follows immediately.
We suppose henceforth that wT has at least two distinct entries.

Suppose that A ∈ P and that there are indices i, j, p, q satisfying the following
conditions:

wi < wj , wp < wq, and aip, ajq > 0.(3)
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We claim that in this case, the matrix A does not satisfy

wTDAv ≤ wTDBv for all B ∈ P.(4)

To see the claim, note that from (3), it follows that for sufficiently small ε > 0, the
matrix

Â = A + ε(−ei/wi + ej/wj)(ep/vp − eq/vq)
T

is nonnegative, and satisfies wT Â = wT and Âv = v, so that Â ∈ P. Further,

DÂ = DA + ε
wj − wi

wiwj
diag

(
−ep
vp

+
eq
vq

)
,

so that

wTDÂv = wTDAv − ε
(wj − wi)(wp − wq)

wiwj
< wTDAv.

Thus wTDAv does not yield the minimum, as claimed.
Suppose the minimum entry in w is repeated a times, i.e., w1 = · · · = wa < wa+1.

Partition out the first a entries of wT , to write wT as [w11
T |w̃T ], and partition v

conformally as

v =

[
v̂
ṽ

]
.

Let A ∈ P satisfy (4). Suppose first that there are indices i and p with 1 ≤ i ≤ a and
a + 1 ≤ p, such that aip > 0. Since A is a minimizer, we see from the claim above
that for any indices j, q with j ≥ a + 1 and 1 ≤ q ≤ a, we must have ajq = 0. But
then A has the form

A =

[
A1 X
0 A2

]
,

where A1 is a × a. From the facts that wTA = wT and that the first a entries
of wT are equal and the partitioned form for A, we find that 1TA1 = 1T . Also,
A1v̂ + Xṽ = v̂, so that 1T (A1v̂ + Xṽ) = 1T v̂. Since 1TA1 = 1T , we conclude that
X = 0, a contradiction.

Consequently, we conclude that for any indices i and p with 1 ≤ i ≤ a and
a + 1 ≤ p, we must have aip = 0. Thus we see that A has the form

A =

[
A1 0
Y A2

]
,

where A1 is a × a and A1v̂ = v̂. Using the fact that wTA = wT , we thus find that
w11

TA1 + w̃TY = w11
T . Hence we have w11

TA1v̂ + w̃TY v̂ = w11
T v̂, from which we

deduce that Y = 0.
We conclude that if A ∈ P satisfies (4), then A can be written as[

A1 0
0 A2

]
,
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where A1 is column stochastic. The lemma is now readily established by a deflation
argument.

Our next result lends some insight into the irreducible case.
Lemma 4.2. Suppose that A is an irreducible nonnegative matrix, and let DA

be the diagonal matrix of column sums of A. Let Λ be a diagonal matrix such that
Λ ≥ DA. For each d ∈ [0, 1] let h(d) = r((1 − d)Λ + dA). Then for any d ∈
(0, 1), h′(d) ≤ 0, with equality holding if and only if Λ = DA = aI for some a > 0. In
that case, h(d) = r(A) = a for each d ∈ [0, 1].

Proof. Throughout, we suppose without loss of generality that r(A) = 1.
First, suppose that A is a primitive matrix; we claim that in this case, h′(1) ≤ 0

with equality holding if and only if Λ = DA = I. Let v be a right Perron vector
for A. Since A is primitive, its spectral radius is a simple eigenvalue that strictly
dominates the modulus of any other eigenvalue; it follows that in a sufficiently small
neighborhood of 1, h(d) is an eigenvalue of (1− d)Λ + dA that is differentiable in d.
For d in such a neighborhood of 1, let w(d)T be a left h(d)-eigenvector of (1−d)Λ + dA,
normalized so that w(d)T v = 1. Since Av = v, we have

h(d) = w(d)T ((1 − d)Λ + dA)v

= (d− 1)(w(d)T (A− Λ)v) + w(d)TAv

= (d− 1)(1 − w(d)TΛv) + 1.

Since limd→1 w(d)T = wT , it follows that

lim
d→1

h(d) − h(1)

d− 1
= lim

d→1
(1 − w(d)TΛv) = 1 − wTΛv

= −(wTDAv − 1) − (wT (Λ −DA)v).

Since Λ ≥ DA, we have wT (Λ−DA)v ≥ 0, and by Lemma 4.1, we have wTDAv−1 ≥ 0,
so certainly h′(1) ≤ 0. Further, we see that h′(1) = 0 if and only if wTDAv = 1 and
wT (Λ −DA)v = 0. It now follows from Lemma 4.1 that the former holds if and only
if DA = I, and since wT and v are positive vectors, we see that the latter holds if and
only if Λ = DA. This completes the proof of the claim.

Next, suppose that A is an irreducible nonnegative matrix, and fix d ∈ (0, 1).
Observe that the matrix B = (1 − d)Λ + dA is primitive and that Λ ≥ DB . For each
c ∈ [0, 1], let k(c) = r((1− c)Λ+ cB), and note that k(c) = h(cd). Applying the claim
above to the function k, we see that k′(1) ≤ 0, with equality holding if and only if
Λ = DB = I. But from the chain rule, we find that k′(1) = dh′(d), so that h′(d) ≤ 0,
with equality if and only if Λ = DB = I. That last condition is readily seen to be
equivalent to Λ = DA = I.

Finally, we note that if Λ = DA = I, it is straightforward to see that for each
d ∈ [0, 1], the matrix (1− d)Λ + dA is column stochastic, so that h(d) = 1 = r(A) for
all such d.

The following, which evidently yields Theorem 3.1 immediately, follows from
Lemma 4.2.

Corollary 4.3. Suppose that A is an irreducible nonnegative matrix, and let
DA be the diagonal matrix of column sums of A. Let Λ be a diagonal matrix such that
Λ ≥ DA. For each d ∈ [0, 1] let h(d) = r((1 − d)Λ + dA). Then either

(a) h(d) is a strictly decreasing function of d ∈ [0, 1] or
(b) for some a > 0,Λ = DA = aI and h(d) = a for each d ∈ [0, 1].
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We have the following generalization of Corollary 4.3.
Theorem 4.4. Let S be a column substochastic matrix and Λ be a diagonal

matrix with positive diagonal entries. Define the function f(d) = r(((1− d)I + dS)Λ)

for d ∈ [0, 1]. Then there is a d̂ ∈ [0, 1] such that f is strictly decreasing on [0, d̂] and

f is constant on [d̂, 1]. Specifically, let P be a permutation matrix such that

PTSP =

⎡
⎢⎢⎢⎢⎢⎣

S1 0 . . . 0 X1

0 S2 . . . 0 X2

...
. . .

...
...

0 . . . 0 Sk Xk

0 0 . . . 0 Sk+1

⎤
⎥⎥⎥⎥⎥⎦, and PTΛP =

⎡
⎢⎢⎢⎣

Λ1

Λ2

. . .

Λk+1

⎤
⎥⎥⎥⎦,

where (i) PTSP and PTΛP are partitioned conformally, (ii) for each i = 1, . . . , k, Si

is an irreducible column stochastic matrix, and (iii) Sk+1 is a column substochastic
matrix such that r(Sk+1) < 1. (Note that such a permutation matrix P exists and
that one part of this partitioning of PTSP may be vacuous.) Let r(Λ) = ρ. Exactly
one of the following cases holds.

(a) For some i = 1, . . . , k,Λi = ρI. In this case, f(d) = ρ for all d ∈ [0, 1].
(b) There is an index i0 = 1, . . . , k and an a < ρ such that Λi0 = aI and in

addition, for each j = 1, . . . , k + 1, we have that either r(SjΛj) < a or

r(((1 − d)I + dSj)Λj) = a for all d ∈ [0, 1]. In this case, there is a d̂ ∈ (0, 1)

such that f(d) is a strictly decreasing function of d for d ∈ [0, d̂ ], while for

each d ∈ [d̂, 1], f(d) = a.
(c) If Λi �= ρI for i = 1, . . . , k and there is no index i0 and value a satisfying the

hypotheses of (b), then f(d) is strictly decreasing for d ∈ [0, 1].
Proof. Throughout, we assume without loss of generality that ρ = 1. First, note

that f(d) = max {r(((1−d)I +dSi)Λi) : i = 1, . . . , k+1}. Further, since r(Sk+1) < 1
it follows that no principal submatrix of Sk+1 (including the entire matrix Sk+1 itself)
can have all of its column sums equal to 1; we then deduce from Corollary 4.3 that
r(((1−d)I +Sk+1)Λk+1) is strictly decreasing as a function of d ∈ [0, 1]. Note further
that if none of Λ1, . . . ,Λk is a scalar matrix, then for each i = 1, . . . , k the function
r(((1 − d)I + dSi)Λi) is strictly decreasing in d, from which we conclude that f(d) is
strictly decreasing.

Suppose next that for some i = 1, . . . , k, we have Λi = I. From Corollary 4.3
we see that r(((1 − d)I + dSi)Λi) = 1 for all d ∈ [0, 1], and we conclude readily that
f(d) = 1 for all d ∈ [0, 1].

It remains only to consider the case that Λi �= I for i = 1, . . . , k but that for one
or more indices i = 1, . . . , k, Λi is a scalar matrix. For concreteness, we suppose that
Λi = aiI for i = 1, . . . , j and that for i = j + 1, . . . , k, Λi is not a multiple of the
identity matrix. Again without loss of generality, we can assume that 1 > a1 ≥ · · · ≥
aj . In this situation, we find that for each i = 1, . . . , j, r(((1−d)I+dSi)Λi) = ai, while
for each i = j + 1, . . . , k + 1, r(((1 − d)I + dSi)Λi) is a strictly decreasing function
of d. It follows from the above considerations that f(d) = max {a1, r(((1 − d)I +
dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)}.

Evidently two cases arise: either max {r(Sj+1Λj+1), . . . , r(Sk+1Λk+1)} ≥ a1 or
max {r(Sj+1Λj+1), . . . , r(Sk+1Λk+1)} < a1. In the former case we see that in fact
f(d) = max {r(((1−d)I+dSj+1)Λj+1), . . . , r(((1−d)I+dSk+1)Λk+1)} for all d ∈ [0, 1],
from which we conclude that f is strictly decreasing in d. Now suppose that the latter
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case holds. Since a1 < 1, we see that when d is near to 0, f(d) = max {r(((1 − d)I +
dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)} > a1. Thus, from the intermediate

value theorem it follows that there is a value d̂ ∈ (0, 1) such that max {r(((1 − d)I +

dSj+1)Λj+1), . . . , r(((1 − d)I + dSk+1)Λk+1)} ≥ a1 for d ∈ [0, d̂] and max {r(((1 −
d)I + dSj+1)Λj+1), . . . , r(((1− d)I + dSk+1)Λk+1)} < a1 for d ∈ [d̂, 1]. It now follows

that f(d) is strictly decreasing for d ∈ [0, d̂] and f(d) = a1 for d ∈ [d̂, 1].

5. Competing conditional dispersers. In this section, we extend our study
to conditional dispersers in which p need not be a constant vector. The following
theorem coupled with Proposition 2.2 indicates which dispersal strategies are subject
to invasion by other dispersal strategies.

Theorem 5.1. Assume that Λ(x) and S satisfy Assumptions A1–A4, p ∈ (0, 1]k,
and r(SpΛ(0)) > 1. Let x̂ � 0 be the unique positive fixed point of F , and let v � 0
be a right Perron vector for S. Then r(Sp̃Λ(x̂)) ≤ 1 for all p̃ ∈ (0, 1]k if and only if
λi(0) > 1 for all i, S is column stochastic, and

p = t
(
Λ−1(I)

)−1
v(5)

for some t ∈ (0, 1/max{Λ−1(I)−1v}]. Moreover, if p is given by (5), then Λ(x̂) = I.

In our proof of Theorem 5.1, we show that if either S is strictly substochastic or
p is not given by (5), then there are strategies p̃ arbitrarily close to p that can invade,
i.e., r(Sp̃Λ(x̂)) > 1. When S is stochastic and p is given by (5), we also show that
Λ(x̂) = I and, consequently, r(Sd̃Λ(x̂)) = 1 for all p̃ ∈ [0, 1]k. The populations playing
one of these strategies exhibit an ideal-free distribution at equilibrium [3]; i.e., the per-
capita fitness in all occupied patches are equal. Theorem 5.1 suggests the possibility
that strategies of the form (5) can displace all other strategies. By [11, Theorem A] a
sufficient condition for this displacement is verifying that (5) can invade any strategy

p̃ not given by (5) and cannot coexist at equilibrium with strategy d̃. This turns out
not to be true in general. For example, let λi(xi) with i = 1, 2 be functions such that
λ1(1.2) = λ2(1) = 1, λ1(1.19) = 20

9+
√

41
≈ 1.29844, λ2(9.52/(3 +

√
41)) = 10

9+
√

41
≈

0.642919, where 9.52/(3 +
√

41) ≈ 1.01234, and Assumptions A1–A3 are satisfied.
Define

S =

(
0.5 0.6
0.5 0.4

)
,

which has right Perron vector

v =

(
1

5/6

)
.

Then p = 1 is a strategy of the form (5). Define

p̃ =

(
0.8
2/3

)
.

The unique positive fixed point of y �→ Sp̃Λ(y)y = G(0, y) is by construction given by

ŷ =

(
1.19
9.52

3+
√

41

)
.
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Since a computation reveals that

r(SΛ(ŷ)) = 0.993735 . . . < 1 = r(Sd̃Λ(ŷ)),

the strategy p = 1 cannot invade and displace the strategy p̃. Hence, for a gen-
eral Λ(x), we cannot expect that strategies of the form (5) will displace all other
strategies. However, extensive simulations with the Beverton–Holt growth functions
(i.e., λi(xi) = ai

1+bixi
) suggest that the strategies given by (5) can displace any other

strategy (see Figure 3). Thus we make the following conjecture.
Conjecture 5.1. If λi(xi) = ai

1+bixi
, S is primitive and column stochastic, p is

given by (5), p̃ is not given by (5), and r(SpΛ(0)) > 1, then

lim
n→∞

Gn(x, y) = (x̂, 0)

whenever x > 0.
Proof of Theorem 5.1 The key proposition (which gives us more than we need) is

the following.
Proposition 5.2. Suppose that A is an irreducible nonnegative matrix with

column sums ci such that c1 = mini ci < maxi ci = ck. If Ã is a nonnegative matrix
obtained from A by changing its first column from⎛

⎜⎜⎜⎝
a11

·
...

ak1

⎞
⎟⎟⎟⎠ to

⎛
⎜⎜⎜⎝
a11

·
...

ak1

⎞
⎟⎟⎟⎠ + γ

⎛
⎜⎜⎝
−
∑k

i=2 ai1
a21

. . .
ak1

⎞
⎟⎟⎠

for some positive γ > 0, then r(A) < r(Ã). Alternatively, if Â is a nonnegative matrix
obtained from A by changing its last column from⎛

⎜⎜⎜⎝
a1k

·
...

akk

⎞
⎟⎟⎟⎠ to

⎛
⎜⎜⎜⎝
a1k

·
...

akk

⎞
⎟⎟⎟⎠− γ

⎛
⎜⎜⎝
−
∑k

i=2 aik
a2k

. . .
akk

⎞
⎟⎟⎠

for some γ ∈ (0, 1], then r(A) > r(Â).
Proof. Note that ck > r(A) > c1. Let wT be the left Perron vector for A such

that w1 = 1, and let ṽ be the right Perron vector for Ã normalized so that wT ṽ = 1.
Observe that for any γ such that Ã is nonnegative, Ã is irreducible and, consequently,
v is a positive vector. Set W = diag (w1, . . . , wn). Then WAW−1 has all the column
sums equal to r(A). Consider the first column of WAW−1. We see that

a11 +

k∑
i=2

wiai1 = r(A) > c1 =

k∑
i=1

ai1.

Thus,

k∑
i=2

wiai1 >

k∑
i=2

ai1.

It follows that r(Ã) = wT Ãṽ = wTAṽ + γṽ1(−
∑k

i=2 ai1 +
∑k

i=2 wiai1) > wTAṽ =
r(A).
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Fig. 3. One hundred realizations of an ideal-free disperser competing against a random dispersal
strategy. In the simulations, k = 10 and λi(xi) = ai

1+bixi
. For each simulation, the values of ai

are randomly selected from the interval [1, 2], p is defined by (5), where t is randomly selected from

the interval [0,max
(
Λ−1(I)

)−1
v], and p̃ is randomly selected from [0, 1]10. To normalize the local

population abundances to a value of 1, in each simulation bi is set equal to 1
ai−1

.

A similar argument applies to the matrix Â when γ < 1, while if γ = 1, we see
that the first column of Â is ckek and r(Â) ≥ ck > r(A).

Now assume p ∈ (0, 1]k, r(SpΛ(0)) > 1, x̂ � 0 is the unique positive fixed point
of F , and v � 0 is a right Perron vector for S. Let A = SpΛ(x̂). We begin by showing
that r(Sp̃Λ(x̂)) ≤ 1 for all p̃ ∈ [0, 1]k implies that S is stochastic and p is given by (5).
First, we show that A must have constant column sums ci. Suppose to the contrary
that there exists 1 ≤ j ≤ k such that cj = maxi ci > mini ci. Let p̃ be any strategy
where p̃i = pi for i �= j and p̃j ∈ (0, pj). Then Sp̃Λ(x̂) is given by replacing the jth
column of A by a column which is

≥

⎛
⎜⎜⎜⎝
a1j

·
...

akj

⎞
⎟⎟⎟⎠− γ

⎛
⎜⎜⎝
−
∑k

i=2 aij
a2j

. . .
akj

⎞
⎟⎟⎠,

where γ = 1 − p̃j

pj
> 0. Proposition 5.2 implies that r(Sp̃Λ(x̂)) > r(A) = 1, contrary

to our assumption about p. Therefore A must have constant column sums c = c1 =
· · · = ck. Second, suppose to the contrary that S is substochastic. Let p̃ be any
strategy where p̃i ∈ (0, pi). Since S is substochastic, every column sum Sp̃Λ(x̂) is
greater than or equal to c and at least one column sum is strictly greater than c.
Hence, r(Sp̃Λ(x̂)) > r(A) = 1, contrary to our assumption about p. Therefore, S is
stochastic. Finally, since S is stochastic, it follows that c = 1 and Λ(x̂) = I. Since
x̂ � 0, we have λi(0) > 1 and x̂i = λ−1

i (1) for all i. Since x̂ is a fixed point, we get
that x̂ = (I − diag (p) + S diag (p))x̂. Equivalently, S diag (p)x̂ = diag (p)x̂. Hence,
diag (p)x̂ � 0 is a right Perron vector for S and p is given by (5).

Now suppose that S is stochastic and p is given by (5). Then Λ(x̂) = I and
r(Sp̃Λ(x̂)) = r(Sp̃) = 1 for all p̃ ∈ [0, 1]k.

Conjecture 5.1 suggests that for populations with Beverton–Holt local dynamics,
the evolution of conditional dispersers will favor strategies on the ray defined by (5).
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Hence, it is natural to ask what happens when two strategies on this ray compete
against one another.

Proposition 5.3. Assume that Λ(x) and S satisfy Assumptions A1–A4, λi(0) >
1 for all i, and S is stochastic. Let p and p̃ be strategies given by (5) with t = d and

t = d̃, where 0 < d < d̃ ≤ 1/max {
(
Λ−1(I)

)−1
v}. Then the set of fixed points of G

are (0, 0) and

L = {(αx̂, (1 − α)x̂ : α ∈ [0, 1]},

where x̂ = Λ−1(I)1. Moreover, if Λ(x) is continuously differentiable with λ′
i(xi) < 0

for all i, and d
dxi

xiλi(xi) > 0 for all i, then there exists a neighborhood U ⊂ Rk
+×Rk

+

of L and a homeomorphism h : [0, 1] ×D → U with D = {z ∈ R2k−1 : ‖z‖ < 1} such
that h(α, 0) = αx̂ + (1 − α)x̂, h(0, D) = {(0, y) ∈ U}, h(1, D) = {(x, 0) ∈ U}, and
limn→∞ Gn(x, y) = (αx̂, (1 − α)x̂) for all (x, y) ∈ h({α} ×D).

Proof. By the change of variables x �→ Λ−1(I)−1diag (v)x, we can assume without

any loss of generality that p = d1 and p̃ = d̃1. Thus, a point (x, y) > 0 is a fixed
point of G if and only if

((1 − d)I + dS)Λ(x + y)x = x,

((1 − d̃)I + d̃S)Λ(x + y)y = y.

Since r(((1− d)I + dS)Λ(x+ y))) = r((1− d̃ )I + d̃S)Λ(x+ y)) = 1 and d �= d̃, Theo-
rem 3.1 implies that Λ(x+ y) = I. Therefore, (x, y) needs to satisfy x+ y = Λ−1(I)1,

Sdx = dx, and Sd̃y = d̃y. Since S is primitive, we get that x must be a scalar multiple
of y. Hence, the fixed points of G are given by (0, 0) and L.

Now assume that x �→ Λ(x) is continuously differentiable, λ′
i(x) < 0 for all i, and

d
dxi

xiλi(xi) > 0 for all i. We will show that L is a normally hyperbolic attractor in
the sense of Hirsch, Pugh, and Shub [7]. Let (x, y) ∈ L. We have

DG(x, y) =

(
Sd(Λ

′(x + y)diag (x) + Λ(x + y)) SdΛ
′(x + y)diag (x)

SdΛ
′(x + y)diag (y) Sd(Λ

′(x + y)diag (y) + Λ(x + y))

)
.

Since 0 < λ′
i(xi + yi)(xi + yi) + λi(xi + yi) < λ′

i(xi + yi)xi + λi(xi + yi) for all i, the
diagonal blocks, Sd(Λ

′(x+y)diag (x)+Λ(x+y)) and Sd(Λ
′(x+y)diag (y)+Λ(x+y))

of DG(x, y), are nonnegative primitive matrices. Since λ′
i(xi+yi) < 0 for all i, the off-

diagonal blocks, SdΛ
′(x+y)diag (x) and SdΛ

′(x+y)diag (y), of DG(x, y) are negative
scalar multiples of primitive matrices. Hence, DG(x, y) is a primitive matrix with
respect to the competitive ordering on Rk

+ × Rk
+; i.e., (x̃, ỹ) ≥K (x, y) if x̃ ≥ x and

ỹ ≤ y. Since L is a line of fixed points, DG(x, y) has an eigenvalue of one associated
with the eigenvector (Λ−1(I)1,−Λ−1(I)1). The Perron–Frobenius theorem implies
that all the other eigenvalues of DG(x, y) are strictly less than one in absolute value.
Hence, L is a normally hyperbolic one-dimensional attractor. Theorem 4.1 of [7]
implies that there is a neighborhood U ⊂ Rk

+ × Rk
+ of L and a homeomorphism

h : [0, 1]×D → U with D = {z ∈ R2k−1 : ‖z‖ < 1} such that h(α, 0) = αx̂+(1−α)x̂,
h(0, D) = {(0, y) ∈ U}, h(1, D) = {(x, 0) ∈ U}, and limn→∞ Gn(x, y) = (αx̂, (1−α)x̂)
for all (x, y) ∈ h({α} ×D).

Proposition 5.3 implies that once a “resident” population playing a strategy of
the form (5) has established itself, a “mutant” strategy of the form (5) can invade
only in a weak sense: if the mutants enter at low density, deterministically they will
converge to an equilibrium with a low mutant density. After the invasion, one would
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expect that demographic or environmental stochasticity would with greater likelihood
result in the displacement of the mutants. Hence, once a strategy of the form (5) has
established itself, it is likely to resist invasion attempts from other strategies of the
form (5). Proposition 5.3 also suggests the following conjecture, which is supported
by simulations using the Beverton–Holt growth function.

Conjecture 5.2. Under the conditions of Proposition 5.3, for every (x, y) > 0
there exists α ∈ [0, 1] such that

lim
n→∞

Gn(x, y) = (αΛ−1(I)1, (1 − α)Λ−1(I)1).

6. Discussion. For organisms that disperse unconditionally, we proved that a
slower dispersing population competitively excludes a faster dispersing population.
Similar results have been proven for reaction diffusion equations where the disper-
sal kernel is self-adjoint [2], observed in a partial analysis of two patch differential
equations [8] and illustrated with simulations of two patch difference equations [17].
Our proofs apply to difference equations with an arbitrary number of patches and
without any symmetry assumptions about the dispersal matrix S. Since geographical
and ecological barriers often create asymmetries in the movement patterns of active
dispersers and create asymmetries in abiotic and biotic currents that carry passive
dispersers, accounting for these asymmetries is crucial and results in a significantly
more difficult mathematical problem than the symmetric case. Theorem 3.1 provides
the solution to this problem by proving for any given environmental condition (i.e.,
the choice of Λ and S), the principal eigenvalue for the growth dispersal matrix is a
decreasing function of the dispersal rate. Hence, under all environmental conditions,
populations that disperse more slowly spectrally dominate populations that disperse
more quickly. Despite this spectral dominance, simulations (e.g., Figure 1) illustrate
that for appropriate initial conditions, faster dispersers can be numerically dominant
as they initially spread across a landscape. This initial phase of numerical dominance
has empirical support in studies of northern range limits of butterflies: dispersal rates
increase as species move north to newly formed favorable habitat [6]. Presumably
over a long period of time, selection will favor slower dispersal rates commensurate
with their ancestral rates of movement (R. Holt, personal communication). However,
since all initial conditions do not lead to an initial phase of numerical dominance for
the faster dispersers (e.g., if the initial condition is a Perron vector for the slower
disperser), we still require a detailed understanding of how the local intrinsic rates of
growth, the dispersal matrix, and initial conditions determine whether the faster or
slower disperser is numerically dominant in the initial phase of establishment.

For conditional dispersers experiencing no dispersal costs (i.e., S is column stochas-
tic and λi(0) > 1 for all i), we provide proofs that generalize previous findings in two
patch models [9, 17]. We prove that all dispersal strategies outside of a one-parameter
family are not evolutionarily stable: when a population adopts one of these strategies,
there are nearby strategies that can invade. For populations playing strategies in this
exceptional one-parameter family, the populations exhibit an ideal-free distribution at
equilibrium: the per-capita growth rate is constant across the landscape [3]. Contrary
to prior expectations [17], we show that are growth functions for which these ideal-free
strategies cannot displace all other strategies. However, numerical simulations with
the biologically plausible Beverton–Holt growth functions suggest that populations
playing these ideal-free strategies can displace populations playing any other strat-
egy. Moreover, when a population at equilibrium plays an ideal-free strategy, we prove
that a population playing another ideal-free strategy cannot increase from being rare
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and, consequently, is likely to be driven to extinction by stochastic forces. For popula-
tions playing these ideal-free strategies, the dispersal likelihood in a patch is inversely
proportional to the equilibrium abundance in a patch. Hence, enriching one patch
may result in the evolution of lower dispersal rates in that patch. Conversely, habitat
degradation of a patch may result in the evolution of higher dispersal rates in that
patch. These predictions about ideal-free strategies, however, have to be viewed with
caution, as they are sensitive to the assumption of no dispersal costs. The inclusion of
the slightest dispersal costs destroys this one-parameter family of evolutionary stable
strategies and leaves only the nondispersal strategy as a candidate for an evolutionary
stable strategy.

Our models make several simplifying assumptions, and relaxing these assumptions
provides several mathematical problems of biological interest. Most importantly, our
models do not include temporal heterogeneity, which is an important ingredient in
the evolution of dispersal [17]. Temporal heterogeneity can be generated exogenously
or endogenously and when combined with spatial heterogeneity can promote the evo-
lution of faster dispersers [10, 13, 17]. For instance, Hutson, Mischaikow, and Poláčik
[13] proved that a faster disperser can displace or coexist with a slower disperser for
periodically forced reaction diffusion equations. Whether similar results can be proven
for periodic or, more generally, random difference equations requires answering math-
ematically challenging questions about spectral properties of periodic and random
products of nonnegative matrices. Similar challenges arise when replacing increasing
growth functions with unimodal growth functions [4, 10, 19] that can generate tem-
poral heterogeneity via periodic and chaotic population dynamics.
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VARIABLE EXPONENT, LINEAR GROWTH FUNCTIONALS IN
IMAGE RESTORATION∗
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Abstract. We study a functional with variable exponent, 1 ≤ p(x) ≤ 2, which provides a
model for image denoising, enhancement, and restoration. The diffusion resulting from the proposed
model is a combination of total variation (TV)-based regularization and Gaussian smoothing. The
existence, uniqueness, and long-time behavior of the proposed model are established. Experimental
results illustrate the effectiveness of the model in image restoration.

Key words. image restoration, linear growth functionals, variable exponent, BV-space, Dirichlet
boundary condition
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1. Introduction.

1.1. Background. In this paper we propose a new model for image restoration.
In the version we address, an image, u, is recovered from an observed, noisy image,
I, where the two are related by I = u + noise. The proposed model incorporates the
strengths of the various types of diffusion arising from the minimization problem

min

∫
Ω

|Du|p +
λ

2
(u− I)2(1.1)

for 1 ≤ p ≤ 2 (λ ≥ 0, and Ω is an open, bounded subset of Rn with Lipschitz
boundary). Specifically, we exploit the benefits of isotropic diffusion (p = 2), total
variation (TV)-based diffusion (p = 1), and more general anisotropic diffusion (1 <
p < 2).

TV minimization, p = 1. TV-based regularization, p = 1, as first proposed
by Rudin, Osher, and Fatemi [31], does an excellent job of preserving edges while
reconstructing images. Mathematically this is reasonable, since it is natural to study
solutions of this problem in the space of functions of bounded variation, BV (Ω), allow-
ing for discontinuities which are necessary for edge reconstruction. This phenomenon
can also be explained physically, since the resulting diffusion is strictly orthogonal
to the gradient of the image. The TV model has been studied extensively (see, e.g.,
[1, 15]) and has proved to be an invaluable tool for preserving sharp edges.
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Given the success of TV-based diffusion, various modifications have been intro-
duced. For instance, Strong and Chan [32] proposed the adaptive total variation
model

min

∫
Ω

α(x)|∇u|

in which they introduce a control factor, α(x), which slows the diffusion at likely
edges. This controls the speed of the diffusion and has demonstrated good results, as
it aids in noise reduction. It is also good at reconstructing edges, since the type of
diffusion (strictly orthogonal to the image gradient) is the same as that of the original
TV model.

TV-based denoising favors solutions that are piecewise constant. This sometimes
causes a staircasing effect in which noisy smooth regions are processed into piecewise
constant regions (see Figure 5.1), a phenomenon long observed in the literature; see,
e.g., [9, 15, 20, 28, 30, 34, 36]. Not only do “blocky” solutions fail to satisfy the
ubiquitous “eyeball norm,” but they can also develop “false edges,” which can mislead
a human or computer into identifying erroneous features not present in the true image.

Minimization problem (1.1) with 1 < p ≤ 2. On the other hand, one
can explore different types of diffusion arising from (1.1). Choosing p = 2 results
in isotropic diffusion, which solves the staircasing problem but alone is not good for
image reconstruction since it has no mechanism for preserving edges. Different values
of 1 < p < 2 result in anisotropic diffusion, which is somewhere between TV-based
and isotropic smoothing. This type of diffusion can be effective in reconstructing
piecewise smooth regions. However, a fixed value of 1 < p < 2 may not allow for
discontinuities, thus obliterating edges. This was shown to be true in the discrete
case [28].

Combination of TV-based and isotropic diffusion. Given the strengths
of (1.1) for different values of p, it seems worthwhile to investigate a model which
could self-adjust in order to reap the benefits of each type of diffusion. To this end,
Chambolle and Lions [15] proposed minimizing the following energy functional, which
combines isotropic and TV-based diffusion:

min
u∈BV (Ω)

1

2β

∫
|∇u|≤β

|∇u|2 +

∫
|∇u|>β

|∇u| − β

2
.(1.2)

In this model, the diffusion is strictly perpendicular to the gradient, where |∇u| > β,
that is, where edges are most likely present, and isotropic where |∇u| ≤ β. This
model is successful in restoring images in which homogeneous regions are separated by
distinct edges; however, if the image intensities representing objects are nonuniform,
or if an image is highly degraded, this model may become sensitive to the threshold,
β (see Figures 5.2, 5.3, and 5.4). In this case, one might want more flexibility when
choosing both the direction and speed of diffusion.

Blomgren et al. [9] proposed the minimization problem

min

∫
Ω

|∇u|p(|∇u|)dx,

where lims→0 p(s) = 2, lims→∞ p(s) = 1, and p is monotonically decreasing. This
model should reap the benefits of both isotropic and TV-based diffusion, as well as
a combination of the two. However, it is difficult to study mathematically since the
lower semicontinuity of the functional is not readily evident.
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1.2. Functionals with variable exponent 1 ≤ p(x) ≤ 2. The model pro-
posed in this paper capitalizes on the strengths of (1.1) for the different values of
1 ≤ p ≤ 2. It ensures TV-based diffusion (p ≡ 1) along edges and Gaussian smooth-
ing (p ≡ 2) in homogeneous regions. Furthermore, it employs anisotropic diffusion
(1 < p < 2) in regions which may be piecewise smooth or in which the difference
between noise and edges is difficult to distinguish. We let p = p(x) depend on the
location, x, in the image. This way, the direction and speed of diffusion at each loca-
tion depend on the local behavior. Moreover, our choice of exponent yields a model
which we can show is theoretically sound.

To this end, the proposed model is as follows:

min
u∈BV ∩L2(Ω)

∫
Ω

φ(x,Du) +
λ

2
(u− I)2,(1.3)

where

φ(x, r) :=

{
1

q(x) |r|q(x), |r| ≤ β,

|r| − βq(x)−βq(x)

q(x) , |r| > β,
(1.4)

where β > 0 is fixed and 1 < α ≤ q(x) ≤ 2. For instance, one can choose

q(x) = 1 +
1

1 + k|∇Gσ ∗ I(x)|2 ,(1.5)

where Gσ(x) = 1
σ exp(−|x|2/4σ2) is the Gaussian filter and k > 0 and σ > 0 are fixed

parameters.
The main benefit of (1.3)–(1.4) is the manner in which it accommodates the local

image information. Where the gradient is sufficiently large (i.e., at likely edges),
only TV-based diffusion will be used. Where the gradient is close to zero (i.e., in
homogeneous regions), the model is isotropic. At all other locations, the filtering
is somewhere between Gaussian and TV-based diffusion. Specifically, the type of
anisotropy at these ambiguous regions varies according to the strength of the gradient.
This enables the model to have a much lower dependence on the threshold (see Figures
5.2, 5.3, 5.4, and 5.5).

For several reasons, we’ve chosen here to prove the well-posedness of the Dirichlet
boundary value problem

min
u∈BVg∩L2(Ω)

∫
Ω

φ(x,Du) +
λ

2
(u− I)2,(1.6)

where

BVg(Ω) := {u ∈ BV (Ω)|u = g on ∂Ω},(1.7)

and its associated flow

u̇− div (φr(x,Du)) + λ(u− I) = 0 in ΩT ,(1.8)

u(x, t) = g(x) on ∂ΩT ,(1.9)

u(0) = I in Ω,(1.10)

where

ΩT := Ω × [0, T ] and ∂ΩT := ∂Ω × [0, T ].(1.11)
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First, the theory is more interesting and challenging mathematically than (1.3). Sec-
ond, all of the techniques used to study (1.6) also directly solve (1.3). Finally, the
Dirichlet problem (1.6) also has direct application in image processing, as it can be
used for image interpolation [13, 27], also referred to as noise-free image inpainting
[8, 17, 18].

For a special case of (4), where q(x)≡ 2, i.e., φ(r) := |r| − 1
2 when |r| > 1 and

φ(r) := 1
2 |r|2 when |r| ≤ 1, the existence, uniqueness, and long-time behavior of

solutions of (1.6) and its related flow were studied by Zhou [37]. Later, these results
were extended to general convex linear-growth functionals, φ = φ(Du), by Hardt and
Zhou [23]. In this paper we study the more general case, where the functional has a
variable exponent and where φ = φ(x,Du). We use a different approximate functional
than [37], so different estimates are required. Our analysis is also based on techniques
introduced in [19]; however, our energy functional requires alternate techniques to
establish lower semicontinuity and to pass to the limit from the approximate solution.
More related work on linear-growth functionals and their flows can be found in [2,
3, 4, 5, 6, 7, 12, 14, 33]. We also refer the reader to the work in [15, 16, 26, 35] for
an alternate variational approach for reducing staircasing by minimizing second order
functionals.

The paper is organized as follows. In section 2 we establish some important
properties of φ(x,Du). In section 3 we prove the existence and uniqueness of the
solution of minimization problem (1.6). In section 4 we study the associated evolution
problem (1.8)–(1.10). Specifically, we define the notion of a weak solution of (1.8)–
(1.10), derive estimates for the solution of an approximating problem, prove existence
and uniqueness of the solution of (1.8)–(1.10), and discuss the behavior of the solution
as t → ∞. In section 5 we provide our numerical algorithm and experimental results
to illustrate the effectiveness of our model in image restoration.

2. Properties of φ. Recall that for u ∈ BV (Ω),

Du = ∇u · Ln + Dsu

is a Radon measure, where ∇u is the density of the absolutely continuous part of
Du with respect to the n-dimensional Lebesgue measure, Ln, and Dsu is the singular
part (see [21]).

Definition 2.1. For v ∈ BV (Ω), define∫
Ω

φ(x,Dv) :=

∫
Ω

φ(x,∇v)dx +

∫
Ω

|Dsv|,

where φ is defined as in (1.4). Furthermore, denote

Φλ(v) :=

∫
Ω

φ(x,Dv) +
λ

2

∫
Ω

|v − I|2dx,(2.1)

Φg(v) :=

∫
Ω

φ(x,Dv) +

∫
∂Ω

|v − g|dHn−1,(2.2)

and

Φλ,g(v) :=

∫
Ω

φ(x,Dv) +
λ

2

∫
Ω

|v − I|2dx +

∫
∂Ω

|v − g|dHn−1.(2.3)
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Remark 2.2. For simplicity, we assume that the threshold β = 1 in (1.4) for all
of our theoretical results.

Similarly to the idea of [10, 11], we can establish lower semicontinuity of the
functional Φg. For the convenience of the reader, we include the proof below.

Lemma 2.3. Using the notation in Definition 2.1,

Φg(u) = Φ̃g(u)(2.4)

for all u ∈ BV (Ω), where

Φ̃g(u) := sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫
Ω

−udivψ − q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx +

∫
∂Ω

ψ · ngdHn−1.

Furthermore, Φg(u) is lower semicontinuous on L1(Ω); that is, if uj , u ∈ BV (Ω)
satisfy uj → u in L1(Ω) as j → ∞, then Φg(u) ≤ lim infj→∞ Φg(uj).

Proof. For each ψ ∈ C1(Ω,Rn), the map u →
∫

Ω
−udivψ − q(x)−1

q(x) |ψ|
q(x)

q(x)−1 dx +∫
∂Ω

ψ · ngdHn−1 is continuous and affine on L1(Ω). Therefore, Φ̃g(u) is convex and

lower semicontinuous on L1(Ω) and the domain of Φ̃g(u), {u | Φ̃g(u) < ∞}, is precisely
BV (Ω).

We now show that Φg(u) = Φ̃g(u). For u ∈ BV (Ω), we have that for each
ψ ∈ C1(Ω,Rn),

−
∫

Ω

udivψdx =

∫
Ω

∇u · ψdx +

∫
Ω

Dsu · ψ −
∫
∂Ω

uψ · ndHn−1.

Therefore, since the measures dx, Dsu, and dHn−1 are mutually singular, standard
arguments show that

Φ̃g(u) = sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫
Ω

∇u · ψ − q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx +

∫
Ω

|Dsu| +
∫
∂Ω

|u− g|dHn−1.

The proof is then complete once we establish that∫
φ(x,∇u)dx = sup

ψ∈C1(Ω,Rn)
|ψ|≤1

∫
∇u · ψ − q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx.(2.5)

Since any ρ ∈ L∞(Ω,Rn) can be approximated in measure by ψ ∈ C1(Ω,Rn), we have
that

sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫
Ω

∇u · ψ − q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx = sup

ρ∈L∞(Ω,Rn)
|ρ|≤1

∫
Ω

∇u · ρ− q(x) − 1

q(x)
|ρ|

q(x)
q(x)−1 dx.

(2.6)

Choosing ρ(x) = 1{|∇u|≤1}|∇u|q(x)−1 ∇u
|∇u| + 1{|∇u|>1}

∇u
|∇u| , where 1E is the indicator

function on E, we see that the right-hand side of (2.6) is

≥
∫

Ω

1

q(x)
|∇u|q(x)1{|∇u|≤1} +

[
|∇u| − q(x) − 1

q(x)

]
1{|∇u|>1}dx =

∫
Ω

φ(x,∇u)dx.

(2.7)
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To show equality in (2.5), we proceed as follows. For any ρ ∈ L∞(Ω,Rn), since

q(x) > 1 we have that for almost all x, ∇u(x) · ρ(x) ≤ 1
q(x) |∇u|q(x)+ q(x)−1

q(x) |ρ(x)|
q(x)

q(x)−1 .

In particular, if |∇u| ≤ 1,

∇u(x) · ρ(x) − q(x) − 1

q(x)
|ρ(x)|

q(x)
q(x)−1 ≤ 1

q(x)
|∇u|q(x).(2.8)

On the other hand, if |∇u| > 1 and |ρ| ≤ 1, then since q(x) > 1 for almost all x, we

have that ∇u · ρ = |∇u| ∇u
|∇u| · ρ ≤ |∇u|[ 1

q(x) + q(x)−1
q(x) |ρ|

q(x)
q(x)−1 ], and thus

∇u · ρ− q(x) − 1

q(x)
|ρ|

q(x)
q(x)−1 ≤ 1

q(x)
|∇u| + (|∇u| − 1)

q(x) − 1

q(x)
|ρ|

q(x)
q(x)−1

≤ |∇u| − q(x) − 1

q(x)
.(2.9)

Combining (2.6), (2.7), (2.8), and (2.9), we have that

sup
ψ∈C1(Ω,Rn)

|ψ|≤1

∫
Ω

∇u · ψ − q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx =

∫
Ω

φ(x,∇u)dx,

and thus for all u ∈ BV (Ω), Φ̃g(u) = Φg(u), where Φg is defined as in (2.2).
Lemma 2.4. Suppose Ω ⊂ Rn is open, bounded, and has Lipschitz boundary, and

let w ∈ BV ∩ L2(Ω). Then for each δ > 0, there exists w̃δ ∈ C∞ ∩H1(Ω) such that

‖w̃δ − w‖L2(Ω) ≤ δ(2.10)

and

Φλ,g(w̃δ) ≤ Φλ,g(w) + δ.(2.11)

Furthermore, if we also assume that Trw = TrG on ∂Ω for some G ∈ H1(Ω), then
for each δ > 0, there exists wδ ∈ H1(Ω) satisfying

Trwδ = Trw on ∂Ω,(2.12)

wδ → w strongly in L2(Ω) as δ → 0,(2.13)

and

Φλ,g(wδ) ≤ Φλ,g(w) + δ,(2.14)

where TrG is the trace of G on ∂Ω.
Proof. Fix w ∈ BV ∩ L2(Ω). Using Lemma 2.3 and a slight modification of

the proof of Theorem 1.17 and Remark 1.18 in [22], there exists a sequence {wj} in
C∞ ∩H1(Ω) such that

Trwj = Trw on ∂Ω,(2.15)

wj → w in L2(Ω),(2.16)

and

lim
j→∞

Φg(wj) = Φg(w).(2.17)
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Therefore, for each δ > 0 there exists a function w̃δ ∈ C∞ ∩H1(Ω) such that (2.10)
and (2.11) hold.

Now suppose also that Trw = TrG on ∂Ω. Then by (2.15), w̃δ − G ∈ W 1,1
0 (Ω),

and thus there exists a function hδ ∈ C∞
c (Ω) such that

‖w̃δ −G− hδ‖W 1,1(Ω) + ‖w̃δ −G− hδ‖L2(Ω) ≤ δ.(2.18)

Let wδ = G + hδ ∈ H1(Ω). Then we have that

Trwδ = Trw on ∂Ω,

wδ → w in L2(Ω) as δ → 0,

and

Φλ,g(wδ) ≤ Φλ,g(w) + δ.

The proof is complete.
Remark 2.5. If w ∈ BV ∩ L∞(Ω), then there exist wδ ∈ H1 ∩ L∞(Ω) such that,

in addition to (2.12)–(2.14), we also have that

‖wδ‖L∞(Ω) ≤ C(Ω)‖w‖L∞(Ω).(2.19)

3. The minimization problem. In this section we study the existence and
uniqueness of the solution to minimization problem (1.6). In general, as discussed in
[23, 25, 37], there may not exist a minimizer of Φλ(v) (see (2.1)), since the limit of
the minimizing sequence may not take the boundary value g. However, we can prove
the existence of a unique minimizer for a weaker form of (1.6), where we consider the
minimization problem using the relaxed energy, Φλ,g(v), defined in (2.3). To this end,
we define a pseudosolution of (1.6) as follows.

Definition 3.1. A function u ∈ BV ∩L2(Ω) is a pseudosolution of (1.6) if it is
a solution of

min
v∈BV ∩L2(Ω)

Φλ,g(v),(3.1)

where Φλ,g(v) is defined in (2.3).
First, we show that there exists a pseudosolution of (1.6), that is, a solution of

(3.1), in Theorem 3.2. In Theorem 3.5 we provide the motivation for using the notion
of pseudosolution in Definition 3.1.

Theorem 3.2. Suppose I ∈ BV ∩L2(Ω), g = TrG for some function G ∈ BV (Ω)
with I = g on ∂Ω, and Ω is an open bounded subset of Rn with Lipschitz boundary.
Then there exists a unique pseudosolution of (1.6) as given in Definition 3.1.

Proof. Let {un} be a minimizing sequence of (3.1) in BV ∩ L2(Ω). Since {un}
is bounded in BV (Ω) and L2(Ω), using the compactness of BV (Ω) and the weak
compactness of L2(Ω), we see that there exists a subsequence {unk

} of {un} and a
function u ∈ BV ∩ L2(Ω) satisfying

unk
→ u strongly in L1(Ω),(3.2)

unk
⇀ u weakly in L2(Ω).(3.3)
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By (3.2), (3.3), Lemma 2.3, and the weak lower semicontinuity of the L2-norm,
we have that

Φλ,g(u) ≤ lim inf
k→∞

Φλ,g(unk
) = inf

BV ∩L2(Ω)
Φλ,g(v).

Hence, u is a solution of the minimization problem. Uniqueness follows from the strict
convexity of Φλ,g(v) in v.

To better understand the relationship between (1.6) and (3.1), we need the fol-
lowing two lemmas. For β > 0, let

dβ(x) = min

(
d(x)

β
, 1

)
,(3.4)

where d(x) is the distance of the point x to the boundary of Ω.
Lemma 3.3 (Theorem A.1 of [19]). For each v ∈ BV ∩ L∞(Ω), the vector

measures v∇dβ converge weakly to −vγdHn−1 as β → 0, where γ is the unit outward
normal to ∂Ω, and

lim
β→0

∫
Ω

|v||∇dβ | =

∫
∂Ω

|v|dHn−1.

Lemma 3.4. Let G ∈ W 1,1∩L∞(Ω). Then for any v ∈ BV ∩L∞(Ω), there exists
a sequence {vβ} in BV ∩ L∞(Ω) such that

Trvβ = TrG in L1(∂Ω),

vβ → v in L2(Ω) as β → 0,

and

lim
β→0

Φg(vβ) = Φg(v).

Proof. For β > 0, define dβ(x) as in (3.4). Since d(x) ∈ W 1,∞(Ω) and |∇d| = 1,
we have that

|∇dβ | =
1

β
if d(x) < β and |∇dβ | = 0 if d(x) ≥ β.(3.5)

Fix v ∈ BV ∩ L∞(Ω) and let vβ = dβv + (1 − dβ)G for (x, t) ∈ Ω. Then

vβ ∈ BV ∩ L∞(Ω) with Trvβ = TrG in L1(∂Ω),

vβ → v in L2(Ω).

By Lemma 2.3, lim infβ→0 Φg(vβ) ≥ Φg(v), and thus it remains only to show that

lim
β→0

Φg(vβ) ≤ Φg(v).(3.6)

Writing Φg = Φ̃g (Lemma 2.3), since Dsvβ = dβD
sv and Trvβ = TrG in L1(∂Ω) we

have that

Φ̃g(vβ) = sup
ψ∈C1(Ω,Rn)

|ψ|≤1

[∫
Ω

{(v −G)∇dβ + dβ∇v + (1 − dβ)∇G} · ψ

− q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx +

∫
Ω

dβD
sv · ψ

]
.
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Therefore, by (2.5)

Φ̃(vβ) ≤ sup
ψ∈C1(Ω,Rn)

|ψ|≤1

[∫
Ω

∇v · ψ − q(x) − 1

q(x)
|ψ|

q(x)
q(x)−1 dx

]

+

∫
Ω

|v −G||∇dβ |dx +

∫
Ω

(1 − dβ)(|∇v| + |∇G|)dx +

∫
Ω

dβ |Dsv|

=

∫
Ω

φ(x,∇v) +

∫
Ω

|v −G||∇dβ |dx +

∫
Ω

(1 − dβ)(|∇v| + |∇G|)dx +

∫
Ω

dβ |Dsv|.

By Lemma 3.3, as β → 0,∫
Ω

|v −G||∇dβ |dx →
∫
∂Ω

|v −G|dHn−1.

Furthermore, the Lebesgue dominated convergence theorem gives us that∫
Ω

(1 − dβ)(|∇v| + |∇G|)dx → 0 and

∫
Ω

dβ |Dsv| →
∫

Ω

|Dsv|.

Therefore, (3.6) holds and the lemma is proved.
Theorem 3.5. We have that

inf
v∈BVg∩L2(Ω)

Φλ(v) = min
v∈BV ∩L2(Ω)

Φλ,g(v),(3.7)

where Φλ and Φλ,g are as defined in (2.1) and (2.3), respectively, and BVg is as
defined in (1.7).

Proof. Since BVg(Ω) ⊂ BV (Ω),

inf
v∈BV ∩L2(Ω)

Φλ,g(v) ≤ inf
v∈BVg∩L2(Ω)

Φλ,g(v) = inf
v∈BVg∩L2(Ω)

Φλ(v).

To see the reverse, let u ∈ BV ∩L2(Ω) be the solution of (3.1). By Lemma 3.4, there
exist vβ ∈ BVg ∩ L∞(Ω) such that

Φλ(vβ) = Φλ,g(vβ)
β→0−→ Φλ,g(u) = min

v∈BV ∩L2(Ω)
Φλ,g(v),

and thus

inf
v∈BVg∩L2(Ω)

Φλ(v) ≤ min
v∈BV ∩L2(Ω)

Φλ,g(v).

Thus, the theorem holds.

4. The flow related to minimization problem (3.1).

4.1. Motivation for the weak solution. Due to the boundary term, the lower
semicontinuity of Φλ,g with respect to the L2-norm is not clear. Therefore, the notion
of solution using the theory of maximal monotone operators [12] cannot be directly
applied. However, we can establish the existence and uniqueness of the solution in
the following sense. Suppose that

v ∈ L2(0, T ;H1(Ω))(4.1)
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and that u is a classical solution of (1.8)–(1.10). Multiplying (1.8) by (v − u), inte-
grating over Ω, and using the convexity of φ, we have that∫

Ω

u̇(v − u)dx + Φλ,g(v) ≥ Φλ,g(u).(4.2)

Integrating over [0, s] for any s ∈ [0, T ] then yields∫ s

0

∫
Ω

u̇(v − u)dxdt +

∫ s

0

Φλ,g(v)dt ≥
∫ s

0

Φλ,g(u)dt.(4.3)

On the other hand, setting v = u + εw in (4.3) with w ∈ C∞
0 (Ω) makes it clear that∫ s

0

∫
Ω

u̇(εw)dxdt +

∫ s

0

Φλ,g(u + εw)dt

attains a minimum at ε = 0. Therefore, if u satisfies (4.3) and u ∈ L2(0, T ;BV ∩
L2(Ω)) with u̇ ∈ L2(ΩT ), u is also a solution of (1.8)–(1.10) in the sense of distribution.
This motivates the following definition.

Definition 4.1. We say that a function u ∈ L2(0, T ;BV ∩ L2(Ω)) with u̇ ∈
L2(ΩT ) is a pseudosolution of (1.8)–(1.10) if

1. u(x, 0) = I(x) on Ω, and
2. u satisfies (4.3) for all s ∈ [0, T ] and v ∈ L2(0, T ;BV ∩ L2(Ω)).

4.2. The approximate functional φε. For ε > 0, define

φε(x, r) :=

{
1

q(x) |r|q(x), |r| ≤ 1,
1

1+ε |r|(1+ε) − q(x)−(1+ε)
(1+ε)q(x) , |r| > 1.

(4.4)

Remark 4.2. We note the following properties, as they will be useful in later
computations:

1. φε(x, r) is convex in r.
2. φε

r(x, r) · r ≥ 0 for all r ∈ Rn.
3. φ(x, r) ≤ φε(x, r) for all r ∈ Rn.

To prove the existence and uniqueness of the pseudosolution of (1.8)–(1.10), we
first study solutions of the approximate problem

u̇− εΔu− div (φε
r(x,∇u)) + λ(u− I) = 0 in Ω × [0, T ],(4.5)

u(x, t) = g(x) in ∂Ω × [0, T ],(4.6)

u(x, 0) = Ĩ(x) in Ω,(4.7)

where Ĩ ∈ H1 ∩ L∞(Ω), g ∈ L∞(∂Ω) with g = TrG on ∂Ω for some G ∈ H1(Ω), and
Ĩ|∂Ω = g.

Lemma 4.3. Suppose Ĩ ∈ H1(Ω) with Ĩ|∂Ω = g. Then problem (4.5)–(4.7) has a
unique solution u ∈ L2(0, T ;H1(Ω)) ∩ C(0, T ;L2(Ω)) with u̇ ∈ L2(0, T ;L2(Ω)) such
that ∫ ∞

0

∫
Ω

|u̇|2dxdt + sup
t>0

[∫
Ω

ε

2
|∇u|2 + φε(x,∇u) +

λ

2
|u− Ĩ|2

]
(4.8)

≤
∫

Ω

ε

2
|∇Ĩ|2 + φε(x,∇Ĩ)dx.

Proof. Since (4.5) is uniformly parabolic, we can conclude this lemma by standard
results for parabolic equations [24] and the corresponding energy estimate.
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4.3. Estimates for the solution of the approximate problem.
Lemma 4.4. If Ĩ ∈ H1 ∩ L∞ ∩ BV (Ω), g ∈ L∞(∂Ω) with Ĩ|∂Ω = g, and u is a

solution of (4.5)–(4.7), then

‖u‖L∞(ΩT ) ≤ max(‖Ĩ‖L∞(Ω), ‖g‖L∞(∂Ω)).(4.9)

Proof. Let M := max(‖Ĩ‖L∞(Ω), ‖g‖L∞(∂Ω)). Multiply (4.5) by (u−M)+, where

(u−M)+ =

{
u−M if u−M ≥ 0,
0 otherwise,

and integrate over Ω to get

∫
Ω

u̇(u−M)+dx + ε

∫
Ω

|∇u|2dx +

∫
Ω

φε
r(x,∇u) · ∇udx + λ

∫
Ω

(u− Ĩ)(u−M)+dx = 0.

(4.10)

By property 2 of Remark 4.2, we have that
∫

Ω
φε
r(x,∇u) · ∇udx ≥ 0, and thus

1

2

∫
Ω

d

dt
(u−M)2

+dx ≤ 0.

Therefore, 1
2

∫
Ω
(u−M)2

+dx is decreasing in t, and since

1

2

∫
Ω

(u−M)2
+dx ≥ 0 and

1

2

∫
Ω

(u−M)2
+dx|t=0 = 0,

we have that

1

2

∫
Ω

(u−M)2
+dx = 0 for all t ∈ [0,T],

and thus

u(t) ≤ M = max(‖Ĩ‖L∞(Ω), ‖g‖L∞(∂Ω)) L-a.e. on Ω for all t > 0.

Multiplying (4.5) by (u + M)+, a similar argument yields that u(t) ≥ −M for all t.
Equation (4.9) follows directly.

Lemma 4.5. Let u be the solution of (4.5)–(4.7). Then for all v ∈ L2(0, T ;H1(Ω))
with v|∂Ω = g, ∫ s

0

∫
Ω

u̇(v − u) +
ε

2
|∇v|2 + φε(x,Dv) +

λ

2
|v − Ĩ|2dxdt(4.11)

≥
∫ s

0

∫
Ω

ε

2
|∇u|2 + φε(x,Du) +

λ

2
|u− Ĩ|2dxdt.

Proof. Multiplying (4.5) by v−u, then integrating by parts and using the convexity
of φε(x, r) in r, we see that (4.11) follows.

Remark 4.6. Let u be the solution of (4.5)–(4.7). Then for any 0 < ε < α − 1
(where 1 < α ≤ q(x)), we have the following estimate, which is a direct consequence
of Lemma 4.3:∫ ∞

0

∫
Ω

|u̇|2dxdt + sup
t>0

[∫
Ω

1

1 + ε
|∇u|1+εdx +

λ

2

∫
Ω

|u− Ĩ|2dx
]
≤ C,(4.12)

where C > 0 is a constant depending only on Ω and ‖∇Ĩ‖L2(Ω).
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4.4. Existence and uniqueness of (1.8)–(1.10). Suppose I is given as in
Theorem 3.2. By Lemma 2.4 and Remark 2.5, there exists a sequence {Iδ} in H1 ∩
L∞(Ω) such that

TrIδ = TrI on ∂Ω,(4.13)

‖Iδ‖L∞(Ω) ≤ C‖I‖L∞(Ω),(4.14)

Iδ → I strongly in L2(Ω) as δ → 0,(4.15)

and

Φλ,g(Iδ) ≤ Φλ,g(I) + δ.(4.16)

Theorem 4.7 (existence and uniqueness). Suppose I ∈ BV ∩ L∞(Ω), g ∈
L∞(∂Ω), and I|∂Ω = g with g = TrG for some function G ∈ H1(Ω). Then there
exists a unique pseudosolution u of (1.8)–(1.10) in the sense of Definition 4.1.

Proof. Step 1. First, we fix δ > 0 and pass to the limit ε → 0.
Let {uε

δ} be the sequence of solutions to (4.5)–(4.7) with initial data Ĩ = Iδ.
By Lemma 4.4 and Remark 4.6, there exists a subsequence {uεi

δ } and a function
uδ ∈ L∞(Ω∞) with u̇δ ∈ L2(Ω∞) such that as εi → 0,

uεi
δ ⇀ uδ weakly∗ in L∞(Ω∞),(4.17)

u̇εi
δ ⇀ w weakly in L2(Ω∞).(4.18)

The same argument used in the proof of Lemma 3.1 in [37] gives us that u̇δ = w and
uδ(0) = Iδ.

Moreover, for all f ∈ L2(Ω),∫
Ω

(uεi
δ (·, t) − Iδ)f(x)dx =

∫ ∞

0

∫
Ω

u̇εi
δ (x, s)1[0,t](s)f(x)dxds

εi→0−→
∫ ∞

0

∫
Ω

u̇δ(x, s)1[0,t](s)f(x)dxds

=

∫
Ω

(uδ(·, t) − Iδ)f(x)dx.

Therefore, for each t > 0,

uεi
δ (·, t) ⇀ uδ(·, t) weakly in L2(Ω).(4.19)

From (4.12), for each t > 0, {uεi
δ } is a bounded sequence in W 1,1(Ω). Therefore, there

exists a convergent subsequence {uεij
δ } of {uεi

δ } such that

u
εij
δ (·, t) → uδ(·, t) strongly in L1(Ω).

Note that every convergent subsequence of {uεi
δ } converges to the same limit uδ(·, t)

due to (4.19). Then, for each t > 0,

uεi
δ (·, t) → uδ(·, t) strongly in L1(Ω).(4.20)

From (4.17) and (4.20), we have that for each t > 0,

uεi
δ (·, t) → uδ(·, t) strongly in L2(Ω).(4.21)
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We also have from (4.12) and (4.20) that uδ ∈ L∞(0,∞, BV ∩ L∞(Ω)) with u̇δ ∈
L2(Ω∞). Furthermore, by Lemma 4.5, for all v ∈ L2(0, T ;H1(Ω)) with v|∂Ω = g,∫ s

0

∫
Ω

u̇εi
δ (v − uεi

δ ) +
εi
2
|∇v|2 + φεi(x,∇v) +

λ

2
|v − Iδ|2dxdt(4.22)

≥
∫ s

0

∫
Ω

εi
2
|∇uεi

δ |2 + φεi(x,Duεi
δ ) +

λ

2
|uεi

δ − Iδ|2dxdt.

Using (4.18) and (4.21), we can let εi → 0 in (4.22) to get∫ s

0

∫
Ω

u̇δ(v − uδ) + φ(x,∇v) +
λ

2
|v − Iδ|2dxdt(4.23)

≥ lim
εi→0

∫ s

0

∫
Ω

φεi(x,Duεi
δ )dxdt +

λ

2

∫ s

0

∫
Ω

|uδ − Iδ|2dxdt.

By Lemma 2.3, weak lower semicontinuity (w.l.s.c.), and property 3 of Remark 4.2,

lim
εi→0

∫ s

0

∫
Ω

φεi(x,Duεi
δ )dxdt ≥

∫ s

0

∫
Ω

φ(x,Duδ)dxdt +

∫ s

0

∫
∂Ω

|uδ − g|dHn−1dt.

(4.24)

The combination of (4.23) and (4.24) gives us∫ s

0

∫
Ω

u̇δ(v − uδ) + φ(x,∇v) +
λ

2
|v − Iδ|2dxdt +

∫ s

0

∫
∂Ω

|v − g|dHn−1dt

≥
∫ s

0

∫
Ω

φ(x,∇uδ) +
λ

2
|uδ − Iδ|2dxdt +

∫ s

0

∫
∂Ω

|uδ − g|dHn−1dt(4.25)

for all v ∈ L2(0,∞;H1(Ω)) with v = g on ∂Ω∞. By approximation, (4.25) still holds
for v ∈ L2(0,∞;BV ∩ L∞(Ω)) with v = g on ∂Ω∞. To see that (4.25) holds for all
v ∈ L2(0,∞;BV ∩ L∞(Ω)) (in particular, without v = g on ∂Ω∞), replace v with
vβ = dβv + (1 − dβ)G in (4.25) and (by Lemma 3.4) let β → 0. By approximation,
we can conclude that (4.25) holds for all v ∈ L2(0,∞;BV ∩ L2(Ω)).

Step 2. Now it remains only to pass to the limit as δ → 0 in (4.25) to complete
the proof. First note that (4.8) holds for uεi

δ with Ĩ = Iδ. Fix δ > 0. By w.l.s.c. and
(4.20), the same argument used to deduce (4.24) also gives us that

lim
εi→0

∫
Ω

φεi(x,Duεi
δ )dx ≥

∫
Ω

φ(x,Duδ)dx +

∫
∂Ω

|uδ − g|dHn−1.

Therefore, we can pass to the limit as εi → 0 in (4.8) and get

∫ ∞

0

∫
Ω

|u̇δ|2dxdt + sup
t>0

[∫
Ω

φ(x,Duδ)dxdt +
λ

2
|uδ − Iδ|2 +

∫
∂Ω

|uδ − g|dHn−1dt

](4.26)

≤
∫

Ω

φ(x,∇Iδ)dx.

Then {uδ} is uniformly bounded in W 1,1(Ω) for each t > 0. Note also that in Lemma
4.4 the bound is independent of both ε and δ. Therefore, {uδ} is also uniformly
bounded in L∞(Ω∞). From (4.26), we also have that {u̇δ} is uniformly bounded in
L2(Ω∞).
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By the same argument used to obtain (4.17), (4.18), and (4.21), there exists a
subsequence {uδj} of {uδ} and a function u ∈ L∞(0,∞, BV ∩ L∞(Ω)) with u̇ ∈
L2(Ω∞) such that as δj → 0,

uδj ⇀ u weakly∗ in L∞(Ω∞),(4.27)

u̇δj ⇀ u̇ weakly in L2(Ω∞),(4.28)

uδj (·, t) → u(·, t) strongly in L2(Ω) and uniformly in t.(4.29)

Let δ = δj in (4.25). Using w.l.s.c. and (4.27)–(4.29), we can let δj → 0 in (4.25) to
conclude that for all v ∈ L2(0,∞, BV ∩ L2(Ω)),∫ s

0

∫
Ω

u̇(v − u)dxdt +

∫ s

0

Φλ,g(v)dt ≥
∫ s

0

Φλ,g(u)dt.

Existence is proved.
Step 3 (uniqueness). Suppose that u1, u2 are both weak solutions of (1.8)–(1.10).

As in [23, 37], we can obtain two inequalities: the first by setting u = u1 and v = u2

in (4.3) and the second by setting u = u2 and v = u1. Adding these two inequalities
gives us that for all s > 0, ∫ s

0

∫
Ω

1

2

d

dt
|u1 − u2|2dxdt ≤ 0.

Therefore, u1 = u2 in Ω∞.

4.5. Behavior as t → ∞.
Theorem 4.8. As t → ∞, the weak solution, u(x, t), of (1.8)–(1.10) converges

strongly in L2(Ω) to a minimizer ũ of the function Φλ,g, i.e., the pseudosolution, ũ,
of (3.1).

Proof. Since u satisfies (4.3), for any s > 0 we can substitute v(x) ∈ BV ∩L2(Ω)
into (4.3) as follows:∫

Ω

(u(x, s) − I(x))v(x)dx− 1

2

∫
Ω

(u2(x, s) − I2(x))dx + s

∫
Ω

φ(x,∇v)

+ s
λ

2

∫
Ω

|v − I|2dx + s

∫
∂Ω

|v − g|dHn−1

≥
∫ s

0

∫
Ω

φ(x,∇u)dt +
λ

2

∫ s

0

∫
Ω

|u− I|2dxdt +

∫ s

0

∫
∂Ω

|u− g|dHn−1dt.(4.30)

Proceeding as in [19], let

w(x, s) =
1

s

∫ s

0

u(x, t)dt.

Since u ∈ L∞(0,∞;BV ∩ L∞(Ω)), for each s > 0 we have that w(·, s) ∈ BV ∩
L∞(Ω) with {w(·, s)} uniformly bounded in BV (Ω) and L∞(Ω). Therefore, there
exists a subsequence {w(·, si)} of {w(·, s)} which converges strongly in L1(Ω) and
weakly in BV (Ω) and L∞(Ω) to a function ũ ∈ BV ∩ L∞(Ω) as si → ∞. Since
{w(·, s)} is uniformly bounded in L∞(Ω), {w(·, si)} also converges strongly in L2(Ω)
to ũ.
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Dividing (4.30) by s and taking the limit along si → ∞ gives us that

∫
Ω

φ(x,∇v) +
λ

2

∫
Ω

|v − I|2dx +

∫
∂Ω

|v − g|dHn−1 ≥
∫

Ω

φ(x,∇ũ)

+
λ

2

∫
Ω

|ũ− I|2dx +

∫
∂Ω

|ũ− g|dHn−1

for all v ∈ BV ∩ L2(Ω); i.e., ũ is a pseudosolution of (3.1).

5. Numerical methods and experimental results. We solve the minimiza-
tion problem (1.3) numerically using the flow of its associated Euler–Lagrange equa-
tion,

∂u

∂t
− div (φr(x,Du)) + λ(u− I) = 0 in Ω × [0, T ],(5.1)

∂u

∂n
(x, t) = 0 on ∂Ω × [0, T ],(5.2)

u(0) = I in Ω.(5.3)

To approximate (5.1), we use an explicit finite difference scheme. The degenerate
diffusion term,

div (φr(x,∇u))

= |∇u|p(x)−2

[
(p(x) − 1)Δu + (2 − p(x))|∇u|div

(
∇u

|∇u|

)
+ ∇p · ∇u log |∇u|

]

with

p(x) =

{
q(x) ≡ 1 + 1

1+k|∇Gσ∗I(x)|2 , |∇u| < β,

1, |∇u| ≥ β
(5.4)

for k, σ > 0, and Gσ the Gaussian filter, is approximated as follows:

• The coefficient, |∇u|p(x)−2, is approximated using central differences;
• the isotropic diffusion term, Δu, is approximated using central differences;
• the curvature term, |∇u|div

( ∇u
|∇u|

)
, is approximated using the minmod scheme

for div
( ∇u
|∇u|

)
(see [31]) and central differences for |∇u|;

• if |∇u| = 0, the hyperbolic term ∇p·∇u log |∇u| is computed using an upwind
scheme for ∇p · ∇u (see [29]) and central differences for log |∇u|. Otherwise,
the hyperbolic term is set to zero.

We found that the behavior of (1.3) is an innate behavior of the model, and variants
on this numerical scheme also yield very good results.

We compared our model with the flow of the Euler–Lagrange equation associated
with (1.2) (modified only by a fidelity term),

∂u

∂t
= (p− 1)Δu + (2 − p)div

(
∇u

|∇u|

)
− λ(u− I), where p =

{
2, |∇u| < β,

1, |∇u| ≥ β.

(5.5)
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An explicit finite difference scheme was used, where central differences were used to
implement Δu and the minmod scheme [31] was used to implement div( ∇u

|∇u| ).

All of the images ranged in intensity from 0 to 255. The parameters λ = .05,
σ = .5, k = .0075 and time step = .05 consistently yielded optimal results for all of
the models we tested here. We compared various thresholds, β, to test the sensitivity
of both models (1.2) and (1.3) to this parameter. All of the “edge maps” in the figures
to follow were computed using the function

edge map of u :
1

1 + k|∇Gσ ∗ u(x)|2(5.6)

with k = .0075 (the same value of k is also used to compute the exponent p(x) in
(5.4)). We found that this value also gave the clearest edge map for each model. The
number of iterations was chosen large enough so that the standard deviation between
subsequent images was at most .005.

In Figure 5.1 we illustrate the proposed model’s ability to reconstruct piecewise
smooth functions while avoiding the staircasing effect. The first row from the top
contains a piecewise smooth function plotted as both an image and a surface, and also
contains its edge map (5.6). The surface is viewed from two different orientations:
the first view displays the upper left corner of the image at the origin, and the second
view displays the same surface rotated 180◦. The second row contains the same
series of images for the image degraded by Gaussian noise with mean zero. The
third, fourth, and fifth rows contain reconstructions using isotropic diffusion only
(p ≡ 2), TV-based diffusion only (p ≡ 1), and the proposed model, respectively.
Isotropic diffusion reconstructs smooth regions, but edges are severely blurred. TV-
based diffusion reconstructs sharp edges, but the staircasing effect is clearly present.
This in turn creates false edges, which could lead to an incorrect segmentation of
the image. The proposed model reconstructs sharp edges as effectively as TV-based
diffusion and recovers smooth regions as effectively as pure isotropic diffusion (in
particular, without staircasing).

Figure 5.2 contains a reconstruction of another piecewise smooth image with
additive Gaussian noise. Our goal is to once again reconstruct the smooth regions
while preserving their boundaries and without introducing false edges. Furthermore,
we also wanted to compare the sensitivity of models (1.2) and (1.3) to the threshold,
β. The top row shows the original and noisy images with their edge maps (5.6). The
bottom three rows contain reconstructions using models (1.2) and (1.3). The first
column from the left contains reconstructions using (1.2) with thresholds β = 30, 50,
and 70, respectively, and the second column contains their corresponding edge maps
(5.6). The third column contains reconstructions using TV-based diffusion only ((1.2)
or (1.3) with β = 0) and the proposed model (1.3) with thresholds β = 30 and 100,
respectively. The last column contains their corresponding edge maps (5.6). TV-based
diffusion only (β = 0) shows clear evidence of staircasing, while the proposed model is
relatively insensitive to a broad range of thresholds, β. Although the exact behavior of
the diffusion changes slightly at likely edges between β = 30 and β = 100, the effect on
the resulting image is minimal. On the other hand, model (1.2) demonstrates a large
change in behavior at both noise and edges across the range of thresholds β = 30, 50,
and 70. Similar experiments on the noisy radar images in Figures 5.3 and 5.4 yielded
very similar results. Note that in Figure 5.3, even fine details, such as the lettering
at the bottom of the image, are preserved using the proposed model. In Figure 5.4,
the proposed model preserves the boundaries of the land mines as effectively as the
TV model without enhancing the background noise.
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Fig. 5.1. Top row: true image (100×100), surface plot of the image, surface rotated 180◦, edge
map (5.6). Second row: image + noise. Third row: reconstruction using isotropic diffusion only
(200 iterations). Fourth row: reconstruction using TV-based diffusion only (2000 iterations). Fifth
row: reconstruction using the proposed model (1000 iterations, β = 30, k = .0075).
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Fig. 5.2. Top row: original piecewise smooth image (256 × 256) and edge map (5.6), image +
noise and edge map (5.6). Bottom three rows: First column from left: reconstructions using (1.2)
with thresholds β = 30, 50, 70, respectively (1000 iterations). Second column: corresponding edge
maps (5.6). Third column: reconstruction using TV-based diffusion only (2000 iterations) and the
proposed model with thresholds β = 30, 100, respectively (1000 iterations). Fourth column: corre-
sponding edge maps (5.6) (all images: k = .0075, λ = .05, σ = .5, time step = .05).
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Fig. 5.3. Top row: radar image (256 × 256) and edge map (5.6); radar image with Gaussian
noise and edge map (5.6) with k = .0075. Bottom three rows: First column: reconstructions using
(1.2) with thresholds β = 10, 20, 30, respectively (1000 iterations). Second column: corresponding
edge maps (5.6). Third column: reconstruction using TV-based diffusion only (4000 iterations)
and the proposed model with thresholds β = 30, 100, respectively (1000 iterations). Fourth column:
corresponding edge maps (5.6) (all images: k = .0075, λ = .05, σ = .5, time step = .05).
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Fig. 5.4. First column from left: radar image of land mines (256 × 256); reconstructions using
(1.2) with thresholds β = 10, 20, respectively (750 iterations). Second column: corresponding edge
maps (5.6). Third column: reconstruction using TV-based diffusion only (1000 iterations); recon-
structions using the proposed model with thresholds β = 30, 100, respectively (750 iterations). Fourth
column: corresponding edge maps (5.6) (all images: k = .0075, λ = .05, σ = .5, time step = .05).

Figure 5.5 provides another successful reconstruction of a piecewise smooth image
with additive Gaussian noise. TV-based diffusion alone creates false edges, while the
proposed model preserved accurate object boundaries while minimizing the creation
of false ones. Tests with β = 30 and 100 again demonstrate the proposed model’s
insensitivity to the threshold, β. Figure 5.6 displays a similar experiment with an MRI
of a human heart. The original image is successfully denoised using the proposed
model (top row). We then added more noise and, as in the previous experiments,
found that TV alone created false edges, while the proposed model generated much
fewer false artifacts.

Figure 5.7 contains several more examples in which the noise in each of the im-
ages was acquired directly through acquisition, storage, or transmission. The first
row contains a diffusion tensor image (DTI) of a human brain; the second contains
a magnetic resonance image (MRI) of a human chest cavity; the third contains a
transmission electron microscope (TEM) image of aluminum. In all of these images,
the goal is to detect “true” object boundaries without creating any false edges. The
proposed model is successful in all of these cases.
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Fig. 5.5. Top row: true image (256 × 256) and edge map (5.6); true image + noise and edge
map (5.6). Second row: reconstructions using TV-based diffusion only (2000 iterations) and the
proposed model with thresholds β = 30, 100 (1000 iterations, k = .0075). Third row: corresponding
edge maps (5.6) (all images: k = .0075, λ = .05, σ = .5, time step = .05).
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Fig. 5.6. Top row: true image: human heart MRI (256 × 256), corresponding edge map (5.6),
reconstruction using the proposed model (threshold β = 30), edge map (5.6). Second row: human
heart MRI + noise, edge map (5.6), reconstruction using TV-based diffusion only, edge map (5.6).
Third row: reconstruction using the proposed model (threshold β = 30), edge map (5.6), reconstruc-
tion using the proposed model (threshold β = 100), edge map (5.6) (all images: k = .0075, λ = .05,
σ = .5, time step = .05).
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Fig. 5.7. First column from left: true images: human brain DTI (201 × 171), human chest
cavity MRI (209 × 256), TEM image of aluminum (512 × 512). Second column: corresponding
edge maps (5.6). Third column: reconstructions using the proposed model (420, 1000, 500 itera-
tions, respectively). Fourth column: corresponding edge maps (5.6) with k = .0075 (all images:
threshold = 30, k = .0075, λ = .05, σ = .5, time step = .05).
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[8] M. Bertalḿio, G. Sapiro, V. Caselles, and C. Ballester, Image inpainting, in Proceed-
ings of the 27th Annual Conference on Computer Graphics and Interactive Techniques
(SIGGRAPH), ACM Press/Addison Wesley, New York, 2000, pp. 417–424.



1406 YUNMEI CHEN, STACEY LEVINE, AND MURALI RAO

[9] P. Blomgren, T. F. Chan, P. Mulet, and C. Wong, Total variation image restoration:
Numerical methods and extensions, in Proceedings of the IEEE International Conference
on Image Processing, Vol. III, IEEE, Los Alamitos, CA, 1997, pp. 384–387.
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Abstract. Soil column studies are used frequently in seeking to understand the behavior of a
particular contaminant in a saturated homogeneous soil of a given type. The concentration of the
contaminant is modeled by a parabolic partial differential equation. We seek to identify the sorption
partitioning coefficient as a function of time from limited boundary data. We discuss an output least
squares formulation of the problem with Tikhonov regularization. We explicitly characterize a source
condition that determines the rate of convergence of the method. Numerical examples are presented.
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1. Introduction. The purpose of this paper is to develop theoretical and nu-
merical approaches for approximating an unknown time dependent parameter in a
parabolic partial differential equation, given limited boundary data. The equation we
shall be working with is a model of a soil column study. These column studies are
used frequently in seeking to understand the behavior of a particular contaminant
in a saturated homogeneous soil of a given type. The parameter we are seeking to
approximate is the sorption partitioning coefficient. This parameter is a measure of
the proportion of contaminant that is bound to the soil. In isothermal situations
when there are no other contaminants present, the partitioning coefficient is usually
taken to be constant. However, if there is another contaminant, e.g., sea salt, or if the
temperature is changing, the partitioning coefficient may change as well. Therefore,
strictly speaking, the partitioning coefficient is a function of some physical factor other
than time. However, if we understand the controlling physical factor as a function of
time, we may treat the partitioning coefficient also as a function of time and deduce
the true physical functional relationship after the partitioning coefficient has been
found as a function of time.

This approach will allow us considerable savings in time and resources when
determining how a partitioning coefficient varies with different physical factors. These
savings will result from identifying the partitioning coefficient’s dependence on the
relevant physical factor by means of a single column experiment rather then a large
number of separate batch tests.

Section 2 shall be devoted to a discussion of the model, the simplifying assump-
tions that are applicable, and various necessary facts about the forward problem.
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Section 3 establishes identifiability of the sorption partitioning coefficient from the
available experimental data and applies an output least squares method with Tikhonov
regularization to the parameter identification problem. The method is tested in sec-
tion 4.

2. Discussion of the model. The general approach to modeling convection-
diffusion-sorption models may be found in the work of Leij and Dane [12] and Domenico
and Schwartz [6]. Sorption of mixtures was treated by Oppenheimer [15]. A thorough
treatment of the modeling of the sorption process may be found in Oppenheimer,
Kingery, and Han [16]. Column studies are discussed in detail by Adrian, Ozkan, and
Alshawabkeh [1].

We model the one dimensional flow of water with a dissolved contaminant through
a soil column. The contaminant can be dissolved in the water or bound, that is sorbed,
to the soil. We will assume cylindrical symmetry in the column to reduce the problem
to one spatial dimension. The column will be assumed to have length L and is modeled
as the interval [0, L]. The distance from the inflow end of the column will be given
by z. The time since the start of the experiment will be given by τ . At spatial point
z and time τ, the solution concentration (in mass of contaminant per unit volume of
water) is denoted c (z, τ), and the sorbed concentration (in mass of contaminant per
unit mass of soil) is denoted q (z, τ).

We will assume the equilibrium relationship q = f(c). The function f is called
the equilibrium isotherm.

We will assume the following physical values: ρV (z) is the void density per unit
volume at spatial coordinate z, ρS(z) is the soil mass density per unit volume, A is
the cross-sectional area of the column, v is the fluid velocity, and D is the diffusivity
constant that appears in Fick’s law for diffusion. Fick’s law assumes that the rate of
diffusion of the contaminant in the fluid is given by −D∂c/∂z.

Choosing z to be any interior point of the column, τ any positive time, and Δz
and Δτ small positive numbers, the change in the amount of contaminant stored in
the section of the column [z, z + Δz] between τ and τ + Δτ is given by

∫ z+Δz

z

[AρV (η)c (η, τ + Δτ) + AρS(η)q (η, τ + Δt)

− (AρV (η)c (η, τ) + AρS(η)q (η, τ))]dη.

This will equal the total inward flux less the outward flux at z and z + Δz over the
time from τ to τ + Δτ ,

∫ τ+Δτ

τ

[
vAρV (z) c (z, s) −DAρV (z)

∂c

∂z
(z, s)

−
(
vAρV (z + Δz) c (z + Δz, s) −DAρV (z + Δz)

∂c

∂z
(z + Δz, s)

)]
ds.

Setting the two expressions equal, dividing by ΔzΔτ , and letting Δz and Δτ tend to
zero yields

A [ρV (z)c (z, τ) + ρS(z)q (z, τ)]τ = −vA [ρV (z)c (z, τ)]z + DA [ρV (z)cz (z, τ)]z .

If we assume that the mass density ρS = M/(LA) and the pore volume density
ρV = V/(LA) are constant, where M is the total mass of soil in the cylinder and V
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is the total void space in the cylinder, we obtain

[V c + Mq]τ = −vV cz + DV czz.(2.1)

We have already described the expected equilibrium relationship between the
sorbed concentration, q, and the solution concentration, which is given by q = f (c).
Since the solution concentration is changing in time we must either assume that this
equilibrium relationship holds even as c changes in time or we must specify how q
changes as c changes. For completeness we will describe the nonequilibrium modeling
approach before we make our final assumptions. The standard model [16, 12] for
sorption when c is known at each time t is

∂q

∂τ
= rF (c, q),(2.2)

where r is a sorption rate constant and F satisfies the following requirements: If
q < f(c), then F is positive; if q = f(c), then F = 0; and if q > f(c), then F is
negative. Some typical examples of the isotherm f are the Henry or linear isotherm

f(c) = ξc,

the Langmuir isotherm

f(c) =
ξc

1 + βc
,

and the Freundlich isotherm

f(c) = ξcγ .

An example of F is a simple reversible sink

F (c, q) = f(c) − q,

where the rates of sorption and desorption are the same and where, regardless of
whether the process is sorbing or disorbing, the same fixed c value will yield the same
equilibrium point. Another example of F is a simple irreversible sink

(f(c) − q)
+
,

where there is hysteresis occurring, and while a contaminant can be sorbed, it cannot
be desorbed. There are a wide variety of such models, and the reader is referred to
[16].

When the local kinetics (2.2) are combined with the conservation-of-mass equation
(2.1) previously derived, we obtain

V
∂c

∂τ
+ M

∂q

∂τ
= −vV

∂c

∂z
+ DV

∂2c

∂z2
,(2.3)

∂q

∂τ
= rF (c, q).

The equilibrium partitioning assumption is that r is much larger than D and v.
Dividing the second system by r and defining ε = 1/r, we may consider this a singular
perturbation problem:

V
∂c

∂τ
+ M

∂q

∂τ
= −vV

∂c

∂z
+ DV

∂2c

∂z2
,(2.4)

ε
∂q

∂τ
= F (c, q).



1410 K. R. FISTER, M. L. MCCARTHY, AND S. F. OPPENHEIMER

Since we will consider only cases where we are close to equilibrium, we need consider
only the outer solution to the unperturbed problem

F (c, q) = 0 or q = f (c) .

Thus, we can replace system (2.4) with

∂

∂τ
(V c + Mf(c)) = −vV

∂c

∂z
+ DV

∂2c

∂z2
.

In this paper we will accept the equilibrium partitioning assumption and use a Henry
isotherm. The linear partitioning assumption is usually valid when concentrations are
low. The common set of boundary conditions that we will be using is

c(0, τ) = 0,
∂c

∂z
(L, τ) = 0.

The first boundary condition is used to model the case where the inflow of water
contains no contaminant, and the second boundary condition models the fact that
there is no diffusion across the end of the column, only convection.

We will perform the standard change of variables [12] with respect to time and
length by introducing new variables

t = vτ/L and x = z/L.

Using these new variables, we obtain the form of the model we wish to study:

∂

∂t
(βc) = − ∂c

∂x
+ K

∂2c

∂x2
,(2.5)

c(0, t) = 0,

∂c

∂x
(1, t) = 0,

c (x, 0) = c0 (x) ,

where

β = 1 +
ξM

V
(2.6)

and

K =
D

vL

is the nondimensionalized diffusion coefficient. The pseudotime variable measures
pore volumes; that is, t = 1 is the time it takes the flow to move from the top of the
column to the bottom of the column.

In column studies, measurements of the exit solution concentration are taken.
Therefore, the extra information available is a sequence of N time measurements
taken at the end of the column x = 1,

c(1, t1), . . . , c(1, tN ).

It is worthwhile to briefly discuss how the forward model came to be. The same
model, with constant β, was successfully used to model column studies of fresh water
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sediments. However, the constant β model failed when dealing with salt water sedi-
ments, and it was hypothesized by Myers [13] that β was changing with the saline con-
centration. Since it was expected that the saline concentration would equalize much
more quickly than the concentration of the contaminant being studied, we chose to
approximate the salt concentration as being spatially uniform and, thus, β as spatially
uniform. In the technical report on this approach [14], we used a decreasing expo-
nential ansatz for the saline concentration, assuming that the concentration would be
dominated by the decay in the first eigenfunction. This yielded model fits that were
considered reasonable by the engineers on the project. Henceforth, we assume that ξ,
and hence β, is changing with time.

The initial contaminant concentration is taken to be spatially constant, c(x, 0) =
c0 > 0, because the samples have time to equilibrate before the experiment begins. It
is worth noting that this initial contaminant concentration, while physically accurate,
does not meet the boundary condition. Indeed, in the explicit solutions generated
for the technical report [14], there is a Gibb’s phenomenon. Fortunately the problem
is governed by a parabolic evolution operator, and solutions satisfy the boundary
conditions for all positive times.

2.1. Contaminant mass constraint. We will now compute the value β(0),
which is related to the equilibrium coefficient ξ; see (2.6). We will assume that we
know the total mass of soil in the column M , the total volume of water in the column
V , the cross-sectional area of the column A, the diffusivity constant D, and the fluid
velocity v. We will also assume that we know that the initial solution concentration
is a constant, c0. The mass flow of contaminant out of the tube at time t will be given
by

Ac (1, t)V/A.

Thus, if we let the process continue until almost all of the contaminant has been
flushed from the column at time tN , we have that the total mass of contaminant
present in the column at time t = 0 will be approximately∫ tN

0

c (1, t)V dt.(2.7)

We also know that the total mass of contaminant at time t = 0 will be given by

β (0) c0V.(2.8)

Equating the expressions in (2.7) and (2.8), we obtain

β (0) ≈ 1

c0

∫ tN

0

c (1, t) dt.(2.9)

We need to add a caveat at this point. The physical system allows contaminant to
leave the cylinder only through the boundary at x = 1. However, examining the
original system and integrating with respect to x yields

∂

∂t

∫ 1

0

(βc) dx = c (0, t) − c (1, t) + K
∂c

∂x
(1, t) −K

∂c

∂x
(0, t)

= −c (1, t) −K
∂c

∂x
(0, t) .
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Integrating the previous equation with respect to t from 0 to tN and assuming that
the c (x, tN ) ≈ 0 yields

β (0) c0 ≈
∫ tN

0

c (1, t) dt +

∫ tN

0

K
∂c

∂x
(0, t) dt.

Finally, solving for β (0), we have

β (0) =
1

c0

∫ tN

0

c (1, t) dt +
1

c0

∫ tN

0

K
∂c

∂x
(0, t) dt.

Thus, the model allows for contaminant to leave the cylinder at x = 0, which will
give some discrepancy. We require that D � v, which implies that K ≈ 0, in order
to minimize this error.

3. Identification of the sorption coefficient. The forward problem is

(βc)t = −cx + Kcxx, 0 < x < 1, 0 < t < T = tN ,(3.1)

c(0, t) = 0, cx(1, t) = 0, 0 < t < T,

c (x, 0) = c0 (x) , 0 < x < 1.

Our goal is to estimate the parameter β from noisy measurements of c(1, t). Although
identification problems for parabolic equations have been addressed both theoretically
[11, 2, 3, 5, 18] and numerically [4, 10], the general framework is to consider the
problem

ut = L(a)[u] in Ω × [0, T ],(3.2)

u(x, 0) = u0(x) on Ω,

G(a)[u] = 0 on ∂Ω × [0, T ],

subject to additional information B[u] = 0 on Ω × [0, T ] or ∂Ω × [0, T ]. The spatial
operators L,G,B may be linear or quasi-linear. The unknown coefficient a may
be part of L or G and may depend on x, t, or u. The goal is to recover a from
information about u, the solution of (3.2). Although our forward problem (3.1) can
be transformed into the form (3.2) by setting u = βc, the boundary data available
from our experiment is c(1, t). Thus boundary data for the transformed problem
u(1, t) would require knowledge of β, the parameter we seek. Similar issues arise with
other transformation approaches. As in [3], trace-type functionals can then be used to
establish existence of a solution. This approach can also be implemented numerically
[10]. However, the dependence of the operators on nonlocal information can lead
to numerical instabilities. We wish to develop an algorithm that uses our available
data directly and avoids the use of nonlocal information. We begin by establishing
identifiability of the parameter β from the available data c(1, t). We apply output
least squares with Tikhonov regularization to this problem. We investigate the rate
of convergence and determine an appropriate source condition.

3.1. Identifiability. Recall the contaminant mass constraint (2.9),

β (0) ≈ 1

c0

∫ tN

0

c (1, t) dt,

discussed in section 2.1. As a consequence of this and the fact that our data is c(1, t),
it is reasonable to assume that β(0) is fixed and to let

B =
{
β ∈ H1(0, T ) | 0 < m < β(t) < M, β(0) = b

}
.
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Our existence result follows from the application of standard results; see [20, 9].
Theorem 3.1. If β ∈ B, then cβ ∈ W = L2((0, T );H1(0, 1)) and cβ(1, ·) ∈

L2(0, T ).
In order to establish the identifiability of β we must establish the injectivity of

the parameter-to-output map

β → γcβ ,

where γ denotes the trace operator

γ : L2((0, T );H1(0, 1)) → L2(0, T ), γc = c(1, t).

Theorem 3.2. Let c1(x, t) and c2(x, t) ∈ W be solutions of the direct problem
(3.1) corresponding to β1(t) and β2(t) ∈ B. If γc1 = γc2, then β1(t) = β2(t) for all
t ∈ [0, T ].

Proof. Use β1, c1 and β2, c2 in (3.1) and subtract to find

(β1c1 − β2c2)t = − (c1 − c2)x + K (c1 − c2)xx .

Let φ = β1c1 − β2c2 and rearrange terms

φt = − 1

β1
φx +

K

β1
φxx +

(β2 − β1)

β1
(Ac2) ,

where Ac = −cx + Kcxx. Multiply by φ and integrate with respect to x:∫ 1

0

φtφdx = − 1

β1

∫ 1

0

φxφdx +
K

β1

∫ 1

0

φxxφdx +
(β2 − β1)

β1

∫ 1

0

(Ac2)φdx

= − 1

2β1

∫ 1

0

(
φ2

)
x
dx− K

β1

∫ 1

0

(φx)
2
dx +

(β2 − β1)

β1

∫ 1

0

(Ac2)φdx.

Since 0 < m < βi(t) < M, i = 1, 2, and φ(0, t) = 0, it follows that

1

2

d

dt

(
‖φ‖2

L2(0,1)

)
≤ 2M

m
‖Ac2‖L2(0,1) ‖φ‖L2(0,1) .

By results in [14] or [17], there exists a constant C1 such that

‖Ac2‖L2(0,1) ≤
C1β2(0)

t
‖c0‖L2(0,1) .

Hence

d

dt

(
‖φ‖L2(0,1)

)
≤ 2MC1β2(0)

mt
‖c0‖L2(0,1) .

Integrating this over (t1, t2) yields

‖φ‖L2(0,1) (t2) ≤ ‖φ‖L2(0,1) (t1) +
(
2MC1β2(0) ‖c0‖L2(0,1) /m

)
ln |t2/t1|

≤ ‖φ‖L2(0,1) (t1) +
(
2MC1β2(0) ‖c0‖L2(0,1) /m

)
ln |1 + ε|,

where ε = (t2 − t1)/t1. Since t2 can be chosen to be arbitrarily close to t1, and since
ln (1 + z) < z for all z > 0, it follows that

‖φ‖L2(0,1) (t2) ≤ ‖φ‖L2(0,1) (t1) +
(
2MC1β2(0) ‖c0‖L2(0,1) /m

)
ε
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for all ε > 0. Therefore ‖φ‖L2(0,1) (t2) ≤ ‖φ‖L2(0,1) (t1) or

‖β1c1 − β2c2‖L2(0,1) (t2) ≤ ‖β1c1 − β2c2‖L2(0,1) (t1).

Letting t1 approach 0, we have

‖β1c1 − β2c2‖L2(0,1) (t) ≤ ‖β1c1 − β2c2‖L2(0,1) (0) = |β1(0) − β2(0)| ‖c0‖L2(0,1) = 0

for small t. This implies that β1(t)c1(x, t) − β2(t)c2(x, t) = 0 almost everywhere on
[0, 1]. It follows from c1(1, t) = c2(1, t) that β1(t) = β2(t) for small t. Repeated
application of this argument extends the result to [0, T ].

3.2. Output least squares and Tikhonov regularization. We define

G(β) ≡ γcβ

with

G : B → L2(0, T ).

In the presence of perfect data z, we would solve the nonlinear ill-posed problem

G(β0) = z,(3.3)

where cβ0 is the solution of the direct problem with β = β0. To do this using Tikhonov
regularization would involve approximating the solution by minimizing

min
β∈B

‖G(β) − z‖2
L2(0,T ) + α‖β − β̂‖2

L2(0,T ),

where α > 0 is a small parameter and β̂ is an a priori guess of the true solution β0.
In real applications, measurement errors mean that exact data is not available. Noisy
data is assumed to have an error level δ,∥∥zδ − z

∥∥
L2(0,T )

≤ δ.

We assume attainability of a true solution; i.e., if z ∈ L2(0, T ), there exists β0 ∈ B
such that

G(β0) = z.(3.4)

We seek the minimizer βδ
α ∈ B of

Jα(β) =
∥∥G(β) − zδ

∥∥2

L2(0,T )
+ α‖β − β̂‖2

L2(0,T )(3.5)

for appropriate choices of β̂ ∈ B and α. We begin by establishing the weak-closedness
of the map β → γcβ . This will lead to the existence of a minimizer βδ

α. Continuous
dependence on the data zδ for fixed α, and the convergence of βδ

α toward the true
parameter β0 as the noise level δ and the regularization parameter α go to zero, also
follow.

Theorem 3.3. If βn ⇀ β∗ ∈ B in H1(0, T ), then cβn ⇀ cβ∗ in W and γcβn ⇀
γc∗β in L2(0, T ).
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Proof. Since we have existence of a unique solution to (3.1) from Theorem 3.1,
we define cn = c(βn). We make a change of variables, w = e−λtc, where λ is to be
chosen. The state equation and initial and boundary conditions become

(βw)t + λβw −Kwxx + wx = 0,

w(0, t) = 0, wx(1, t) = 0, t ∈ [0, T ],

w(x, 0) = c0(x).

Let 〈·, ·〉 denote the duality between (H1(0, 1))∗ and H1(0, 1). We use the weak
definition of the transformed equation and integrate in time to obtain

0 =

∫ t

0

〈(βnwn)t, βnwn〉dt +

∫ t

0

∫ 1

0

[
λ(βnwn)2 + Kβn(wn)2

x + βn(wn)xwn

]
dxdt.

(3.6)

Upon simplification, use of 0 < m < βn(t) < M, and Cauchy’s inequality, we have

m2

2

∫ 1

0

[wn(x, t)]
2
dx + λm2

∫ t

0

∫ 1

0

(wn)2dxdt + Km

∫ t

0

∫ 1

0

(wn)2
xdxdt

≤ M2

2

∫ 1

0

[c0(x)]2dx +
M2

2Km

∫ t

0

∫ 1

0

(wn)2dxdt +
Km

2

∫ t

0

∫ 1

0

(wn)2
xdxdt.

After dividing by m2, collecting terms, and choosing λ > (2Km3+1)M2

2Km3 , we obtain∫ 1

0

[wn(x, t)]2dxdt +
K

m

∫ t

0

∫ 1

0

(wn)2
xdxdt + 2M2

∫ t

0

∫ 1

0

(wn)2dxdt

≤ M2

m2

∫ 1

0

[c0(x)]2dx.(3.7)

We can conclude that ‖wn‖L2((0,T ),H1(0,1)), and hence ‖cn‖ is uniformly bounded
independent of n. Using this bound and the state equation, we also have uniform
bounds on ‖(βncn)t‖. We can extract a subsequence such that

cn ⇀ c∗ in L2((0, T );H1(0, 1)),

(cn)t ⇀ (c∗)t in L2((0, T ); (H1(0, 1))∗),

βn → β∗ in L2(0, T ),

where c∗ and β∗ are the relevant weak limits. In order to show that c∗ = c(β∗), we
must establish that c∗ is the state solution associated with β∗. We consider the weak
form of the partial differential equation satisfied by cn,∫ T

0

〈(βncn)t, φ〉dt + K

∫ T

0

∫ 1

0

cnxφxdxdt +

∫ T

0

∫ 1

0

cnxφdxdt = 0,(3.8)

where φ ∈ L2((0, T );H1(0, 1)).
Since βn → β∗ in L2(0, T ) we know that βn ⇀ β∗ in H1(0, T ). Therefore (βn)′ ⇀

(β∗)
′ in L2(0, T ), where ′ is used to indicate the derivative here because β is a function

of one variable, t. We examine the first term in the weak definition of state solution,∫ T

0

∫ 1

0

[(βncn)t − (β∗c∗)t]φdxdt

=

∫ T

0

∫ 1

0

[(βn)′ [cn − c∗]φ + (βn − β∗)
′c∗φ

+βn((cn)t − (c∗)t)φ + (βn − β∗)(c∗)tφ] dxdt.(3.9)
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We note that, from a comparison result in [20], we have that cn → c∗ in L2((0, 1) ×
(0, T )). By (βn)′ ⇀ (β∗)

′ in L2(0, T ) and cn → c∗ in L2((0, 1) × (0, T )), the first
term of (3.9) converges to zero as n → ∞. The second term converges to zero since
(βn)′ ⇀ (β∗)

′ in L2(0, T ). The third and fourth terms converge to zero because of the
strong convergence of the βn sequence. As we pass to the limit in the weak definition
of the solution, we obtain that c∗ = c(β∗).

Existence of a minimizer βδ
α now follows from the lower semicontinuity of the

L2(0, T ) norm. Continuous dependence on the data zδ for fixed α and the convergence
of βδ

α toward the true parameter β0 follow from standard results [19].
Corollary 3.4. For any data zδ ∈ L2(0, T ), a minimizer βδ

α of (3.5) exists.
Corollary 3.5. For fixed α, the minimizers depend continuously on the data

zδ. If α(δ) satisfies

α(δ) → 0, δ2/α(δ) → 0 as δ → 0,

then

lim
δ→0

∥∥βδ
α − β0

∥∥
L2(0,T )

= 0.

3.3. Convergence rates. Although we have established convergence of the min-
imizer βδ

α to the true parameter β0, the rate of convergence may be arbitrarily slow.
We apply the theory of Engl, Hanke, and Neubauer [7] and Engl, Kunisch, and
Neubauer [8] to determine a source condition that will guarantee a certain rate of
convergence. Recall that we seek to solve the nonlinear problem (3.3), G(β) = z,

where G(β) ≡ γcβ . The true solution is β0, and β̂ is an a priori guess. Let L(β) be
the differential operator

L(β)u ≡ (βu)t + ux −Kuxx

on the domain D(L) = {u ∈ W |u(0, t) = ux(1, t) = 0}. The soil problem (3.1)
satisfies

L(β)c = 0, c(x, 0) = c0(x).

We establish next an estimate of the rate of convergence of our algorithm. Even
when our regularization parameter α is comparable to our noise level δ, convergence
requires assumptions involving c(1, t) and β0 − β̂.

Theorem 3.6. Let By ≡ −y′′ + y with

B : D(B) =
{
y ∈ H2(0, T ) | y′(0) = y′(T ) = 0

}
→ L2(0, T ).

If

B
(
β0(t) − β̂(t)

)
c(1, t)

∈ H−1(0, T )(3.10)

and if ∥∥∥∥∥∥
∫ T

t

B
(
β0(t) − β̂(t′)

)
c(1, t′)

dt′

∥∥∥∥∥∥
L2(0,T )

is sufficiently small,(3.11)
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then for the choice α ∼ δ we obtain∥∥βδ
α − β0

∥∥
H1(0,T )

= O(
√
δ) and

∥∥G(βδ
α) − zδ

∥∥
L2(0,T )

= O(δ).

Proof. We define

F (β) ≡ c(x, t).

If Ψh(x, t) = F ′(β)h(t) is the first Fréchet derivative in the direction h, then Ψh ∈
D(L) and

L(β)Ψh = −(hc)t, Ψh(x, 0) = 0.

Similarly, if Φh(x, t) = F ′′(β) (h(t), h(t)) is the second Fréchet derivative in the direc-
tion h, then Φh ∈ D(L) and

L(β)Φh = −2(hΨh)t, Φh(x, 0) = 0.

By continuity of the trace operator, we have

G′(β)h(t) = Ψh(1, t) = γΨh, G′′(β) (h(t), h(t)) = Φh(1, t) = γΦh.

Thus, G is twice Fréchet differentiable.
Define p ∈ W to be the solution of

L(β)∗p = h, p(x, T ) = 0,

where the adjoint L∗ is taken with respect to L2(0, T ). Notice that

〈g,G′(β)∗h〉H1(0,T ) = 〈G′(β)g, h〉L2(0,T )

= 〈γΨg, h〉L2(0,T ) = γ〈Ψg, h〉L2(0,T )

= γ〈−L−1(gc)t, h〉L2(0,T ) = −γ〈(gc)t,
(
L−1

)∗
h〉L2(0,T )

= −γ〈(gc)t, (L∗)
−1

h〉L2(0,T ) = −γ〈(gc)t, p〉L2(0,T )

= γ〈g, cpt〉L2(0,T ),

provided that g(0) = 0. Since

〈g, v〉L2(0,T ) =
〈 (

B−1
)∗

g, v
〉
H1(0,T )

for every v ∈ H1(0, T ), it follows that

γ 〈g, (cpt)〉L2(0,T ) = γ
〈 (

B−1
)∗

g, cpt
〉
H1(0,T )

= γ
〈
g,B−1 (cpt)

〉
H1(0,T )

.

This means that

G′(β)∗h = γB−1 (cpt)

with L(β)∗p = h, p(x, T ) = 0. Since (3.10) holds, there exists w ∈ L2(0, T ) such that

β0 − β̂ = G′(β0)
∗w(3.12)

or B(β0 − β̂) = c(1, t)pt(1, t) with

L(β0)c = 0, c(x, 0) = c0(x), L(β0)∗p = w(t), p(x, T ) = 0.
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Let h := βδ
α − β0 and βs := β0 + sh. Then

∣∣∣∣∣2
〈
w,

∫ 1

0

G′′(βs)(h, h)(1 − s) ds

〉
L2(0,T )

∣∣∣∣∣
=

∣∣∣∣∣2
∫ T

0

w(t)

∫ 1

0

G′′(βs(t))(h(t), h(t))(1 − s) ds dt

∣∣∣∣∣
≤ sup

0≤s≤1

∣∣∣〈w,G′′(βs)(h, h)〉L2(0,T )

∣∣∣
= sup

0≤s≤1

∣∣∣〈γL(β0)∗p, ,G′′(βs)(h, h)
〉
L2(0,T )

∣∣∣
= ‖γp‖L2(0,T )

∥∥γL(β0)Ψh

∥∥
L2(0,T )

.

As in [8], it can be shown that there exist constants C1 and C2 such that

‖Φh‖W ≤ C1 ‖h‖L2(0,T ) ‖Ψh‖W , ‖Ψh‖W ≤ C2 ‖h‖L2(0,T ) ‖c‖W .

By the trace theorem [9, p. 258] and boundedness of the operator L(β0), there exists
C3 such that

∥∥γL(β0)Ψh

∥∥
L2(0,T )

≤ C3 ‖h‖2
H1(0,T ) ‖c‖W .

As the quantity appearing in (3.11) is ‖γp‖L2(0,T ), we deduce that

2

〈
w,

∫ 1

0

G′′(βs)(h, h)(1 − s) ds

〉
L2(0,T )

≤ ρ ‖h‖2
H1(3.13)

with ρ < 1. Since G is twice Fréchet differentiable and both (3.12) and (3.13) hold,
application of the theory of Engl, Kunisch, and Neubauer [8, Theorem 2.4] yields the
desired convergence result.

Discussion of source condition. The condition (3.10) requires that the difference

between the a priori guess β̂ and the true solution β0 must be in D(B) ⊂ H2(0, T ).
In practical applications, this regularity assumption is very restrictive.

It was established in Oppenheimer [14] for Hölder continuous β that there exist
constants C ≥ 0 and θ > 0 such that

‖c(·, t)‖L2(0,1) ≤ C
β(0)

β(t)
e−θt ‖c0‖L2(0,1) .

Since β ∈ B is bounded, there exist constants C ≥ 0 and θ > 0 such that

‖c(·, t)‖L2(0,1) ≤ Ce−θt ‖c0‖L2(0,1) .

The requirement (3.11) means that the difference between our a priori guess β̂ and
the true parameter β0 must be small and very smooth when our measurement c(1, t)
is small. This is both a local and global restriction. Since c(·, t) decays exponentially,
this is possible only for sufficiently small T .
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Fig. 4.1. Exit concentration.

4. Numerical results. In order to demonstrate the effectiveness of Tikhonov
regularization for this application, we consider two examples. Recall that the solution
of our forward problem (3.1) decays over time, i.e., c(x, t) → 0 as t → ∞. As a result,
we do not expect to be able to use all of the available data or to recover β(t) over the
whole time interval.

All computations were carried out in MATLAB. The Tikhonov functional

Jα(β) =

∫ T

0

(
c(1, t) − zδ

)2
dt + α

∫ T

0

(
β(t) − β̂(t)

)2
dt

was minimized using a Gauss–Newton method. Here zδ and β̂ represent noisy data
and an a priori guess of the parameter. During the computation of Jα(β), exit con-
centrations c(1, t) associated with a particular β were computed using an implicit
finite-difference algorithm. The integrals were computed using a trapezoidal rule.
Exit concentration data was generated using a method of lines algorithm with high
accuracy. The a priori guess was chosen to be β̂ = β(0), which was estimated using

the approximation β(0) ≈ (
∫ tN

0
c(1, t) dt)/c0. Strategies for the discussion of regular-

ization parameters are discussed in [21]. For the purposes of this discussion, we will
choose the regularization parameter to be α = 0 in the absence of noise.

Example 1. Let c0(x) = 1 and K = 0.07. Consider the sorption coefficient

β(t) = 1 + 10e−2t.

The exit concentration c(1, t) associated with this β is shown in Figure 4.1. Since
the data decays over time, we restrict the recovery of β to the time interval [0, 2.5].
An initial guess of β = 1 was used. The parameter β and its recovery βnonoise from
noiseless data are shown in Figure 4.2. Notice that quality of the recovery degrades
after t = 2. This is due to the fact that the exit concentrations become very small
and begin to amplify numerical error in the algorithm.

Example 2. Let c0(x) = 1 and K = 0.07. Consider the sorption coefficient

β(t) = 2 + cos (10t).

The exit concentration c(1, t) associated with this β is shown in Figure 4.3. Once again
the data decays over time, and we restrict the recovery of β to the time interval [0, 2].
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Fig. 4.2. βnonoise recovered from exact data.
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Fig. 4.3. Exit concentration.

An initial guess of β = 2 was used. The parameter β and its recovery βnonoise from
noiseless data are shown in Figure 4.4. Notice that quality of the recovery degrades
after t = 1.25.

Example 3: Noisy data. Since data for this problem is measured experimentally,
it will contain a certain amount of noise. The nature of these experiments suggests
that the noise level may be as much as 20%. Noise is introduced into the data from
Example 1 via a normally distributed random number generator. Figure 4.5 shows
the noisy exit concentration data.

In engineering applications, it is not practical to expect to have sufficient infor-
mation about the unknown parameter β0 in order to choose an a priori guess β̂ so
that β0 − β̂ ∈ D(B) ⊂ H2(0, T ). Hence Theorem 3.6 does not apply. Instead, a
regularization parameter of α = 10−3 was chosen heuristically by an L-curve method,
[21]. Figure 4.6 shows the recovery of βnoise with and without regularization. Clearly
α = 10−3 produces better results than α = 0, although the recovery is not as good as
the noiseless case in Example 1.
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Fig. 4.4. βnonoise recovered from exact data.
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Fig. 4.5. Exit concentration data with 20% noise.
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Fig. 4.6. βnoise recovered from noisy data without regularization and with a regularization
parameter of α = 10−3.
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5. Conclusions. In this paper, we have identified the sorption partitioning co-
efficient as a function of time from limited boundary data. A numerical approach
for approximating this time dependent parameter in a parabolic partial differential
equation has been analyzed. This work has brought insight into how a partitioning
coefficient varies with different physical factors such as temperature fluctuations and
contaminant introduction in the soil column. In the column studies, the boundary
data is represented by the measurements of contaminant concentrations as the solu-
tion exits the soil column. The identifiability of the soil sorption parameter, β, is
determined from these noisy exit concentration measurements. In order to establish
the identifiability of the parameter β, we proved the injectivity of the parameter to
the output map. We then discussed an output least squares formulation of the prob-
lem with Tikhonov regularization. Using this format, we found a minimizer to our
approximate problem and were able to prove that this minimizer converges to the
true parameter as the noise level and the regularization parameter approach zero.
Although we proved convergence, the rate of convergence may be arbitrarily slow.
Therefore, we established a source condition that guarantees a given rate of conver-
gence. However, there is a trade-off here. The condition requires that the difference
between our a priori guess and the true parameter must be small and relatively smooth
when the boundary measurements are small. We found that this in possible only over
a small time interval because the contaminant concentration decays over time. Within
the numerical examples, this is seen after t = 2 in Example 1 and after t = 1.6 in
Example 2. However, with the noisy data, the quality of the identification signifi-
cantly improves with the inclusion of a regularization parameter. Consequently, the
implementation of Tikhonov regularization provides a more tractable result.
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INTRODUCING A POPULATION INTO A STEADY COMMUNITY:
THE CRITICAL CASE, THE CENTER MANIFOLD, AND THE

DIRECTION OF BIFURCATION∗

BARBARA BOLDIN†

Abstract. In this paper we study deterministic, finite dimensional, continuous, as well as
discrete time population invasion models. The ability of a newly introduced population, either a new
species or a reproductively isolated subpopulation of one of the already present species, to settle in
the community relies upon the basic reproduction ratio of the invader, R0. When R0 exceeds 1, the
invading population meets with success, and when R0 is below 1, the invasion fails. The aim of this
paper is to investigate the possible effects of an invasion when the parameters of a model are varied
so that R0 of the invading population passes the value 1. We argue that population invasion models,
regardless of the biology that underlies them, take a specific form that significantly simplifies the
center manifold analysis. We make a uniform study of ecological, adaptive dynamics and disease
transmission models and derive a simple formula for the direction of bifurcation from a steady state
in which only the resident populations are present. Furthermore, we observe that among those
bifurcation parameters that satisfy a certain condition, we acquire the same direction of bifurcation.
The obtained mathematical results are used to gain insight into the biology of invasions. The theory
is illustrated by several examples.

Key words. population model, physiologically structured population, i-state, p-state, reproduc-
tively isolated, population, species, center manifold, transcritical bifurcation, direction of bifurcation,
basic reproduction ratio, finitely many states at birth, next generation matrix, invasibility
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1. Introduction. One of the basic questions of population biology is the follow-
ing. Suppose that a population is introduced into a steady community in which it has
not been present before. Under what conditions will this newly introduced population
be able to settle in the community, and when will the dynamics lead to its extinction?

The literature that deals with this question is vast and diverse. We could roughly
group the biological settings into the following categories:

1. In ecology one is studying an introduction of (i) a population of predators
that forages on a resident prey community (i.e., the so-called predator-prey models;
see [7], [11], [20], [26], [27], [30], [31], [32], [34] for some examples), or (ii) a population
that competes for resources with the resident community (for examples of competition
models, see [7], [20], [26], [31], [33]).

While it is common that the newly introduced population is also a new species, i.e.,
one that is not present in the resident community, there are also examples in which one
is interested in the ability of what we shall call a reproductively isolated subpopulation
of one species to be able to settle among individuals of another subpopulation of the
same species. We shall define the precise meaning of the term reproductive isolation
in Appendix B. The reader may at this point have in mind, for example, studying
interactions (say, competition for shared resources) among different year classes of
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semelparous species [2], [8], [9], [10] or different morphs in size-structured populations
[3], [4].

2. In a branch of the theory of evolution called adaptive dynamics one is inves-
tigating the ability of a rare mutant phenotype to invade the environment set by the
resident community (see [12], [21], [25] and the references therein).

3. Epidemiology of infectious diseases is concerned with introductions of infec-
tious pathogens into susceptible populations (see, for example, [13], [18], [19], [22],
[34], [35]).

When the resident community is at a stable equilibrium and we describe the
process of invasion by a deterministic model we can, regardless of the biological back-
ground, answer the invasibility question in terms of the basic reproduction ratio [13],
[15] of the invading population, R0, as follows: if R0 < 1, the invading population
will go extinct, and if R0 > 1, it will settle in the community. The transition hence
occurs when R0 = 1.

Now, what happens when R0 passes the value 1? The answer can be formulated
mathematically or biologically. In mathematical terms one says that a transcritical
bifurcation of a steady state and an exchange of stability take place [5], [6], [24], [36].
From a strictly mathematical point of view there is but one generic type of transcritical
bifurcation. But when it comes to seeing the results from a biologist’s point of view
one must realize that a steady state is meaningful only when all its components are
nonnegative, in particular those corresponding to the invading population. In many
models the latter requirement is fulfilled only when R0 > 1. The bifurcation is then
called supercritical or forward or, also, soft or smooth, since the size of the invading
population remains small when R0−1 is positive but small. In some models, however,
the positivity requirement is fulfilled only for R0 < 1, and one then speaks of a
subcritical or backward bifurcation.

While in the case of a supercritical bifurcation the invasion fails when R0 of
the invading population falls below 1, the invader can meet with success even if
R0 < 1 (when introduced in sufficiently large quantities) when the bifurcation is
backward. Moreover, even when the invader is introduced in small quantities, a small
perturbation of R0 to a value greater than 1 can in a subcritical case lead to a rather
large invader population size. This phenomenon is sometimes called catastrophic
transition (see Figure 2.2).

Clearly then, it is important to be able to tell which of the two cases applies in
any given situation, and in this paper we provide the reader with a simple criterion
to distinguish between the two scenarios.

Of course, the invasibility question is equally meaningful when the resident com-
munity resides in a dynamic attractor. This situation is, however, outside the scope
of this paper.

Throughout this paper we consider communities whose members differ in a finite
number of characteristics. These characteristics are in the context of population
models often called i-states [13], [15], with i standing for individual. Ideally, they
should capture precisely the features that are relevant for the description of the process
one is studying, and are hence to be considered for each problem separately.

In a general setting we assume that the community is divided into m + n sub-
populations, of which m subpopulations constitute the invading population and the
remaining n make up the resident community. We denote by

Y = {(y1, . . . , ym) ; yj ≥ 0 for j = 1, . . . ,m} = R
m
+
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the population state space (p-state space) of the invading population (i.e., for each
j ∈ {1, . . . ,m} we denote by yj the number (or density) of individuals in the jth
subpopulation) and by

Z = {(z1, . . . , zn) ; zj ≥ 0 for j = 1, . . . , n} = R
n
+

the community state space of the resident community. The c-state space of the joint
community will be written as Y × Z.

Now let (y(t), z(t)) denote the community state at time t, where time is measured
from some conveniently chosen point. The dynamics of (y(t), z(t)) in time often
depends not only on the present community state, but also on a number of parameters,
such as per capita death rates, birth rates, etc., and, quite commonly, population
models involve more than one parameter.

The aim of this paper is to study the ability of a newly introduced population
to invade the existing community in the case when its basic reproduction ratio is
near 1 and to derive a formula for the direction of bifurcation from a steady state in
which the invading population is not present. We shall therefore concentrate on one
distinguished parameter which we call the bifurcation parameter.

With this in mind we already at this point include only one (real) parameter μ
and assume that the process we study is either a continuous time process described
by a parametrized system of ordinary differential equations,

ẏ = g(y, z, μ),

ż = h(y, z, μ), y ∈ Y, z ∈ Z, μ ∈ R,(1.1a)

or a discrete time process described by a parametrized map,

y �→ g(y, z, μ),

z �→ h(y, z, μ), y ∈ Y, z ∈ Z, μ ∈ R.(1.1b)

If we consider a steady state of (1.1a) (or (1.1b)) in which the invading population
is not present (these steady states lie on the boundary of the c-state space) and study
the effect of perturbations corresponding to an introduction (in small quantities) of
the missing population, we find that such an equilibrium is locally asymptotically
stable when R0 of the invading population is below 1, and unstable when R0 exceeds
1. Moreover, stability can in these two cases be inferred from the linearization of (1.1)
around the steady state.

The Perron–Frobenius theory of nonnegative matrices [1], [29], which applies for
problems in population dynamics, leads us to the observation that the critical case,
i.e., the case when R0 = 1, corresponds to the situation when

(i) the linearization of (1.1a) around the steady state yields a zero eigenvalue,
(ii) the linearization of (1.1b) around the steady state yields an eigenvalue 1.

In other words, when R0 = 1 we are dealing with nonhyperbolic steady states,
and it is well known [24], [36] that the stability of nonhyperbolic equilibria cannot be
determined by linearization alone.

Several papers (e.g., [11], [14], [18], [19], [22], [28], [30], [32], [35]) deal with this
situation in the context of population models, most of them (with the exception of
[14]) treating special cases or restricting their analysis to models describing the spread
of infectious diseases.

In the present paper we study the critical case for general (not restricted to
any particular biological background) finite dimensional population models. We will
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argue that an introduction of either one new species or a reproductively isolated
subpopulation of one of the existing species yields a property of (1.1) that significantly
simplifies the center manifold analysis. More precisely, (1.1a) will be shown to be of
the form

ẏ = G(y, z, μ)y,

ż = h(y, z, μ), y ∈ Y, z ∈ Z, μ ∈ R.(1.2)

A similar decomposition can be obtained for parametrized maps in (1.1b).
This will lead us to the observation that an introduction of a population whose

basic reproduction ratio is close to 1 corresponds to a transcritical bifurcation of a
steady state of (1.1) in which only the resident populations are present. In order to
obtain the direction of bifurcation from such a steady state only the first derivatives
of G and h are needed. This reduction of the order of the derivatives needed (in
general, second order derivatives are needed) is, of course, most useful when one is
dealing with large systems.

We will also see that among those bifurcation parameters for which{
μ < 0 ⇐⇒ R0 < 1,

μ = 0 ⇐⇒ R0 = 1

holds on some neighborhood of μ = 0 and the crossing of the point R0 = 1 occurs at
a nonzero “speed,” we obtain the same direction of bifurcation.

Moreover, we will show how G in (1.2) can be obtained by only considering the
basic modeling ingredients, such as birth, growth, and survival rates—an approach
that might be of interest to more biologically inclined readers.

The paper is structured as follows. In section 2 we study continuous time popu-
lation invasion models described by (1.2). Section 3 is devoted to justifying the use of
this particular form of models. We argue that this form is characteristic of population
invasion models. It appears in all biological scenarios mentioned at the beginning of
this Introduction and hence allows us to make a uniform study of ecological, adaptive
dynamics and disease transmission models. We also show how G is obtained from
basic modeling ingredients. Population models in discrete time are the theme of sec-
tion 4. Section 5 provides some interpretation of the assumptions made in previous
sections and draws attention to the link between continuous and discrete time pop-
ulation models. In section 6 we give some examples to illustrate the theory of the
preceding sections. And lastly, in appendices at the end of the paper we collect some
basic definitions and results regarding physiologically structured population models
and put the notions of a population, species, and reproductively isolated subpopulation
into a more mathematical setting.

2. Population invasion models in continuous time. We begin our study of
continuous time population models by recalling the decomposition of the community
state space

Y × Z = R
m
+ × Rn

+,

where Y = R
m
+ denotes the population state space of the invading population and

Z = R
n
+ the community state space of the resident community. The processes we

study in this section are continuous time processes described by

ẏ = G(y, z, μ)y,

ż = h(y, z, μ), y ∈ Y, z ∈ Z, μ ∈ R,(2.1)
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where we shall furthermore assume that G ∈ Mm×m(C1(Rm × Rn × R,R)) and h ∈
C1(Rm × Rn × R,Rn).

The form (2.1) is characteristic of continuous time population invasion models and
one with which an experienced modeler may already be familiar. Those not familiar
with it who feel perplexed at this point are referred to section 3, where we shall, in
both mathematical and biological terms, explain why and how this form is obtained.

By writing

x =

[
y
z

]
, f =

[
Gy
h

]
,(2.2)

we shall write (2.1) as ẋ = f(x) and also use (1.1a) whenever this notation will be
more convenient.

Consider now an equilibrium of (2.1) of the form e = (0, z0) for some z0 ∈ Z, i.e.,
a steady state in which only the resident populations are present. In general (2.1)
can have more than one steady state of this form, and these steady states may also
depend on μ. We therefore write e(μ) = (0, z0(μ)) with z0(μ) ∈ Z.

To study the linearized stability of e(μ) we write

Df
(
(0, z0(μ), μ)

)
=

[
G(e(μ), μ) 0
hy(e(μ), μ) hz(e(μ), μ)

]
,

where

hy(y, z, μ) =
∂h(y, z, μ)

∂y
and hz(y, z, μ) =

∂h(y, z, μ)

∂z
.(2.3)

Hence,

σ
(
Df(e(μ), μ)

)
= σ

(
G(e(μ), μ)

)
∪ σ

(
hz(e(μ), μ)

)
.

The next assumption that we shall make is that the equilibrium e(μ) = (0, z0(μ))
is internally asymptotically stable; that is, it is asymptotically stable under pertur-
bations within the invariant subspace {0}m × Z. In other words, as long as no new
population is introduced, the steady state of the resident community, z0(μ), is locally
asymptotically stable. We shall make the slightly stronger assumption that the sta-
bility can be inferred from the linearization. In mathematical terms this means that
we assume

A1. If λ ∈ σ(hz(e(μ))), then Re(λ) < 0.
The spectrum of G(e(μ), μ) thus completely determines the linearized stability of

the steady state e(μ).
For the existence and uniqueness assertions that follow we need only “internal

hyperbolicity,” i.e., that Re(λ) 	= 0 for any λ ∈ σ
(
hz(e(μ), μ)

)
. Assumption A1 will

allow us to make more detailed stability assertions, which are known as the principle
of the exchange of stability [5], [6], [24].

Now we would like to know whether the invading population, after being intro-
duced into the community, is able to settle in that community. As mentioned in the
Introduction, the answer is no when the basic reproduction ratio of the newly in-
troduced population is below 1 and yes when R0 of the invading population exceeds
1.

The basic reproduction ratio is, by definition, the spectral radius of the next
generation matrix.1 All the modeling ingredients needed to write down the next

1See Appendix A for more on the next generation matrix and R0.
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generation matrix in the context of the model (see section 5) given by (2.1) are
contained in G (remember that R0 of the invading population is the one we need),
and it is known (see [13], [35] for the proof) that R0 of the invading population relates
to the spectral bound of G(e(μ), μ) in the following way:

s
(
G(e(μ), μ)

)
< 0 ⇐⇒ R0 < 1,

s
(
G(e(μ), μ)

)
= 0 ⇐⇒ R0 = 1,

where s(.) denotes the spectral bound

s(A) = max{Re(λ);λ ∈ σ(A)}.

Since the next generation matrix is a nonnegative matrix we can apply the Perron–
Frobenius theory [1] to conclude that R0 is an eigenvalue with a corresponding nonneg-
ative eigenvector. The dominant eigenvalue is often called the transversal eigenvalue,
and if it exceeds 1 we say that the newly introduced population is able to invade suc-
cessfully. If R0 is below 1, the invasion of the newly introduced population is doomed
to fail.

The interesting situation to consider is hence the situation when the parameter
μ is such that s(G(e(μ), μ)) = 0, the case where linearization around the steady state
does not yet answer the question of invasibility.

In many models the computation of the basic reproduction ratio R0 and certainly
the spectral bound s(G(e(μ), μ)) yields complicated functions of parameters that we
may not be able to express explicitly. We therefore choose a bifurcation parameter μ
with the following properties:

A2.

⎧⎪⎨
⎪⎩

μ < 0 ⇐⇒ s(G(e(μ), μ)) < 0 ⇐⇒ R0 < 1,

μ = 0 ⇐⇒ s(G(e(μ), μ)) = 0 ⇐⇒ R0 = 1,

μ > 0 ⇐⇒ s(G(e(μ), μ)) > 0 ⇐⇒ R0 > 1.

The results that follow are based on local information only. It therefore suffices that
A2 holds on some neighborhood of μ = 0.

Assumption A2 means that the function μ �→ s(G(e(μ), μ)) crosses the origin. We
shall furthermore assume that this crossing occurs at a nonzero speed, i.e.,

A3.
d
dμs(G(e(μ), μ))

∣∣
μ=0

> 0.

We now denote by e an equilibrium that corresponds to R0 = 1, i.e., e = e(0);
denote e′ = e′(0); and also shorten the notation by defining

Hy = hy(e, 0), Hz = hz(e, 0), G0 = G(e, 0).(2.4)

Denoting by Ec the center subspace of G0, we shall furthermore assume the following.
A4. dimEc = 1.
We have already given the interpretation behind the first three assumptions. We

shall return to this last assumption in section 5 and explain in more detail which
biological requirements are sufficient in order for A4 to hold. Let us remark only that,
in systems that arise from modeling population dynamics, the matrix G0 will be a
matrix with nonnegative off-diagonal entries, and hence the Perron–Frobenius theory
guarantees that A4 is satisfied when G0 is irreducible.

Before stating the main result we make the following observation, which will be
useful later on.
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Lemma 2.1. Let μ �→ G(e(μ), μ) ∈ C1(R,Rm×m), assume A2 and A4, and let w
and v denote, respectively, the left and the right eigenvector of G0 corresponding to
eigenvalue zero, normalized so that v · w = 1. Then

d
dμs(G(e(μ), μ))

∣∣∣
μ=0

= w ·
(
DxG(e, 0)e′ + DμG(e, 0)

)
v.(2.5)

Proof. According to the implicit function theorem there exists a neighborhood of
μ = 0, say U , on which a branch of eigenvalues of G(e(μ), μ) is defined. That is,

G(e(μ), μ)v(μ) = λ(μ)v(μ)(2.6)

for μ ∈ U , and since μ �→ G(e(μ), μ) ∈ C1(R,Rm×m) we have μ �→ λ(μ) ∈ C1(U,R).
Moreover, μ �→ v(μ) ∈ C1(U,Rm). Differentiation of (2.6) with respect to μ yields(

∂G

∂e
e′(μ) +

∂G

∂μ

)
v(μ) + Gv′(μ) = λ′(μ)v(μ) + λ(μ)v′(μ).(2.7)

Since zero is also the spectral bound of G0 and since the spectral bound s(G(e(μ), μ))
is a continuous function of μ we have that λ(μ) = s(G(e(μ), μ)) in some neighborhood
of μ = 0. By taking μ = 0 in (2.7) and taking into account that λ(0) = 0, we obtain

d
dμs(G(e(μ), μ))

∣∣∣
μ=0

v =
(
DxG(e, 0)e′ + DμG(e, 0)

)
v,

which brings us, after premultiplication by w on both sides, to (2.5).
We can now prove the following result.
Theorem 2.2. Consider a population model described by (2.1), and let e(μ) =

(0, z0(μ)) be a steady state of (2.1). Assume that A1, A2, A3, and A4 hold. Further-
more, assume that μ �→ e(μ) ∈ C1(R,Rn+m), and denote by e the steady state that
corresponds to R0 = 1, i.e., e = e(0) and by e′ = e′(0). Let G0, Hy, and Hz be as in
(2.4), and let w and v denote, respectively, the left and the right eigenvector of G0

corresponding to eigenvalue zero, normalized so that v · w = 1 . Let

M =
∑

i,j,k=1,...,m

wi

(
∂Gij(e, 0)

∂yk
+

∂Gik(e, 0)

∂yj

)
vjvk

− 2
∑

i,j=1,...,m
k=1,...,n

wi
∂Gij(e, 0)

∂zk
vj(H

−1
z Hyv)k.(2.8)

There exists a δ > 0 such that
(i) if M < 0, there is a branch μ �→ (y(μ), z(μ)), defined for μ ∈ (0, δ), of

positive, locally asymptotically stable steady states of (2.1);
(ii) if M > 0, there is a branch μ �→ (y(μ), z(μ)), defined for μ ∈ (−δ, 0), of

positive, unstable steady states of (2.1).
In other words, there exists, in a neighborhood of μ = 0, a branch of nontrivial,

positive (and hence biologically meaningful) steady states of (2.1), and M tells us
about its initial slope. The former case, case (i), is often referred to as a supercritical
bifurcation and the latter, case (ii), as a subcritical or backward bifurcation.

At this point the following remarks regarding the terminology are in order.
Remark 1. As already mentioned in the Introduction, the resulting bifurcations

are the so-called transcritical bifurcations. They correspond to an intersection of two
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s

Fig. 2.1. Supercritical (on the left) and subcritical (on the right) bifurcation. The branch of
nonnegative steady states is denoted by a solid line. A dashed line represents steady states with
negative components. Stability of equilibria is indicated by s (for stable) and u (for unstable).

branches of equilibria, the trivial and the nontrivial, at μ = 0, where the branches
exchange stability (see Figure 2.1). In contrast with the purely mathematical point
of view where these two transitions are qualitatively the same, we need to distinguish
between the two in the biological context, since in that case only the nonnegative
equilibria are of any relevance.

Remark 2. Note that only the first order derivatives of G and h are needed to
determine the direction of bifurcation from e. Moreover, the expression M for the
direction of bifurcation is independent of the bifurcation parameter except for the
restrictions A2 and A3. In other words, provided that A2 and A3 are satisfied, we
obtain the same direction of bifurcation for any choice of the bifurcation parameter.

The principle of the exchange of stability guarantees that the biologically mean-
ingful, nontrivial bifurcating branch consists of stable equilibria in the supercritical
case and of unstable equilibria in the subcritical case. The stable manifold of an
unstable equilibrium then serves as a separatrix between the domains of attraction
of the “residents only” steady state and some other attractor (frequently the same
branch bent forward in a saddle node bifurcation).

Suppose now that an invader is introduced in small quantities into the resident
community. In both the supercritical and the subcritical cases, this invasion will fail
if the basic reproduction ratio of the invader is below 1.

In the supercritical case, the invader will be successful when its basic reproduction
ratio exceeds 1, but its population size will be small when R0 − 1 is small. Because
of this smooth transition, one sometimes calls this bifurcation soft or smooth.

In the subcritical case, on the other hand, a small introduction of the invading
population for R0 − 1 small but positive leads to a large invader population size.
Accordingly one also calls this bifurcation hard or catastrophic. Moreover, the invader
can meet with success, despite R0 < 1, if it is introduced in sufficiently large quanti-
ties. Catastrophic transition is illustrated in Figure 2.2, where unstable equilibria are
denoted by a dashed line, stable by a solid line.

To restate Theorem 2.2 in biological terms we could say the following. When a
new population, an invader, is successfully introduced into the community we observe
one of the following:

(i) a smooth change to a positive but small invader population size or
(ii) a sudden, catastrophic transition to a rather large invader population size.

When all the assumptions of Theorem 2.2 are met, the sign of M in (2.8) determines
which of the two scenarios we will observe in a concrete situation.

We now prove Theorem 2.2.

Proof. We have G0v = 0, wTG0 = 0, and v · w = 1. By A1, the matrix Hz is
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y

μ
μc 0

Fig. 2.2. Catastrophic transition.

invertible. The left and the right zero eigenvectors of Df(e), denoted by W and V ,
are then of the form

W =

[
w
0

]
, V =

[
v

−H−1
z Hyv

]
.(2.9)

Moreover, V · W = 1. By A1 and A4, the dimension of the center linear subspace
equals 1, and the subspace is spanned by V .

We take the (generalized) right eigenvectors of Df(e) for the basis of Rm+n. It is
known that the right (generalized) eigenvectors of Df(e) that correspond to nonzero
eigenvalues are orthogonal to W .

The center manifold theory [24], [36] states that the center manifold of the equi-
librium e, denoted by Mc(e), can be (locally) parametrized by μ and a real variable
u as

Mc(e) = {(x, μ); x = e(μ) + uV + Φ(u, μ)},

where Φ(.) is defined on some neighborhood of the origin. Moreover, Φ(0, 0) =
DΦ(0, 0) = 0 and W · Φ(u, μ) = 0 for every u and μ.

The center manifold is also invariant under (2.1); that is,

ẋ = u̇V + Φ̇(u, μ) = f(x, μ) = f(e(μ) + uV + Φ(u, μ), μ).

Since W · d
dt (Φ(u, μ)) = d

dt (W ·Φ(u, μ)) = 0 and V ·W = 1 the inner product with W
yields

u̇ = W · f(e(μ) + uV + Φ(u, μ), μ) = w · g(e(μ) + uV + Φ(u, μ), μ),

where we have used (2.9) in the last equality. Using the Taylor series expansion around
(e, 0), we can continue as follows:

u̇ = w · g(e, 0) + w ·Dxg(e, 0)(e(μ) − e + uV + Φ(u, μ)) + w ·Dμg(e, 0)μ

+ 1
2w ·Dμμg(e, 0)μ2 + 1

2w ·Dxxg(e, 0)(e(μ) − e + uV + Φ(u, μ))2

+ w ·Dμxg(e, 0)(e(μ) − e + uV + Φ(u, μ))μ + O(3),

where O(3) contains the terms of third and higher order in u and μ.
Now, since e is an equilibrium of (2.1) the first term equals zero. So does the

second because wTG0 = 0 and Dzg(e, 0) = 0. Since g = Gy the third and the fourth
terms also equal zero. Hence

u̇ = 1
2w ·Dxxg(e, 0)(e(μ) − e + uV + Φ(u, μ))2

+ w ·Dμxg(e, 0)(e(μ) − e + uV + Φ(u, μ))μ + O(3).
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By writing e(μ) = e + e′(0)μ + O(2) and taking into account that Φ has no constant
and linear terms in u and μ, we can continue with

u̇ = w ·
(

1
2Dxxg(e, 0)e′

2
+ Dμxg(e, 0)e′

)
μ2

+ w ·
(
Dxxg(e, 0)e′V + Dμxg(e, 0)V

)
μu + 1

2w ·Dxxg(e, 0)u2V 2 + O(3)

= w ·
(
Dxxg(e, 0)e′V + Dμxg(e, 0)V

)
μu + 1

2w ·Dxxg(e, 0)u2V 2 + O(3),

where we have in the last equality taken into account that the first m components
of e(μ) equal zero and the fact that g = Gy implies Dzzg(e, 0) = Dzμg(e, 0) = 0.
Moreover, this special form of g then gives us

u̇ = μuw ·
(
DxG(e, 0)e′ + DμG(e, 0)

)
v + 1

2w ·DxG(e, 0)u2V 2 + O(3),

which, by denoting

N = w ·
(
DxG(e, 0)e′ + DμG(e, 0)

)
v,

using (2.8), (2.9) and the fact that the first m components of e′ equal zero, becomes

u̇ = μNu + 1
2Mu2 + O(3).(2.10)

Note that, according to the Lemma 2.1, N = d
dμs(G(e(μ), μ))

∣∣
μ=0

, and so by assump-

tion A3, N 	= 0.
Now, the center manifold theory also states that the stability of the steady state

under the initial system is determined by its stability under the restriction of the
system to the center manifold. This restriction is now given in (2.10).

For u and μ close to zero we can neglect the higher order terms that are collected in
O(3). The nontrivial steady state solutions of (2.10) that are near the origin are then
close to the line u = −2μNM−1, assuming, of course, that M 	= 0. By assumption,
N is nonzero.

Our assumptions were that the steady state e is locally stable for μ < 0 and
unstable when μ > 0. This steady state corresponds to u = 0. The local stability
analysis shows that the nontrivial steady states are locally stable when μ > 0 and
unstable when μ < 0. We shall see in the following section that we can choose the
eigenvectors v and w so that all their components are nonnegative. Hence, the steady
states of (2.1) that correspond to nontrivial equilibria of (2.10) can be biologically
meaningful only when either M < 0 and μ > 0 or M > 0 and μ < 0.

Of course, when M is zero, higher order terms of the Taylor expansion need to be
taken into account in order to obtain some information about the nontrivial equilibria
of (2.10).

The determination of the direction of bifurcation simplifies in a number of cases.
For example, as mentioned before we can choose the eigenvectors v and w so that all
their components are nonnegative. The sign of M can hence sometimes be determined
without explicitly calculating the eigenvectors.

In the remarks that follow we describe a couple of situations in which further
simplifications can be made.

Remark 3. One situation in which the expression for the direction of bifur-
cation can be further simplified is when (2.1) describes the spread of an infectious
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disease. Introduction of an infectious agent to the community of hosts results in a
redistribution of hosts to new compartments, such as, for example, latent or infectious
individuals. A quite common assumption is that the population of hosts has reached
an invariant attracting affine set (the reader can find two such examples in section
6), which means that we can eliminate one of the variables. In the case when the
population of susceptible hosts is homogeneous (i.e., n = 1) we can, by choosing to
eliminate the variable corresponding to the susceptible subpopulation (z), redefine G
(which is now a function of y only and will be denoted by Ĝ) and arrive at

M =
∑

i,j,k=1,...,m

wi

(
∂Ĝij(e, 0)

∂yk
+

∂Ĝik(e, 0)

∂yj

)
vjvk.

Remark 4. Another circumstance that allows for simplification of (2.8) is when
the newly introduced population is homogeneous, i.e., m = 1. We can then choose
v = w = 1, and the expression for the direction of bifurcation becomes

1
2M =

∂G(e, 0)

∂y
−

∑
k=1,...,n

∂G(e, 0)

∂zk
(H−1

z Hy)k.

The reader can find two examples in this spirit in section 6.

3. On the characteristic form of population invasion models. The
derivation of G. The purpose of this section in twofold. We first fulfill the promise
made in section 6 and show that assuming that population invasion models in con-
tinuous time have the form (2.1) did not confine our study to a certain subclass of
population invasion models. We will see that population invasion models, regard-
less of the biology that underlies them, indeed have a distinctive form of which the
continuous time version is given in (2.1).

Once this part is established we shall provide the reader with a way of obtaining
G by only considering the basic modeling ingredients, such as birth, survival, and
reproduction rates.

So let us suppose that the process of invasion is described by the more general
system (1.1) with g ∈ C2(Rm × Rn × R,Rm) and h ∈ C1(Rm × Rn × R,Rn).

Now, in ecology and adaptive dynamics we consider invasions of either one new
species or a reproductively isolated subpopulation of one of the already present species,
and we have by the very definition of reproductive isolation (see Appendix B for this
definition) that g(0, z, μ) = 0 for every z ∈ Z, μ ∈ R and also h(y, 0, μ) = 0 for every
y ∈ Y, μ ∈ R.

On the other hand, when (1.1a) (or (1.1b)) describes the spread of an infectious
disease into a population of susceptible hosts, a slight modification of terminology is
needed. Namely, when an infectious agent is introduced into a population of suscep-
tible hosts we indeed introduce another species, the pathogen. However, from that
point on we are, on a population level, interested in how this agent spreads among
the population of hosts. In this case, therefore, Y captures the subpopulations of
hosts (i.e., members of the resident community) that carry the agent (i.e., the invad-
ing species). Since susceptible individuals don’t have infected offspring we have that
g(0, z, μ) = 0 for every z ∈ Z, μ ∈ R. But since infected individuals (that belong to Y)
may become susceptible again (i.e., enter Z) once they get rid of the infection or they
might have susceptible offspring, the subspace of the invading community, Y × {0}n,
may not be invariant under (1.1).
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In any case we can say the following: since individuals in Z don’t have offspring
in Y the subspace of the resident community, {0}m×Z, remains invariant under (1.1).
In other words,

g(0, z, μ) = 0 for every z ∈ Z, μ ∈ R.(3.1)

Hence the following known result, due to Hadamard, can be used.
Lemma 3.1. Let f = (f1, . . . , fk)

T ∈ Cr(Rm × Rn,Rk) for some r ∈ N be such
that f(0, y) = 0 for every y ∈ Rn. There exists F ∈ Cr−1(Rm × Rn,Rk×m) such that

f(x, y) = F (x, y)x, x = (x1, . . . , xm)T .

The proof of this result can be found in [17].
The property (3.1) therefore yields a matrix G ∈ Mm×m(C1(Rm × Rn × R,R))

such that g in (1.1) can be written as

g(y, z, μ) = G(y, z, μ)y, y = (y1, . . . , ym)T .(3.2)

Note that this decomposition is in general not unique, as the following simple example
shows.

Example 1. Take y = (y1, y2) and g = y1y2. Then G = [y2, 0] and G = [0, y1] are
two possible decompositions.

This nonuniqueness will, however, not affect our results—for our purposes, any
correct decomposition will do. We shall nevertheless now point out one way, more in-
terpretation motivated (and hence perhaps mainly of use to more biologically inclined
readers), of obtaining G in (3.2).

The key to this decomposition is the so-called environmental condition [15], [16].
The defining property of an environmental condition is that individuals are inde-
pendent of one another (and hence the equations are linear) when this condition is
prescribed as a function of time. We then view (1.1) as a linear system together with
feedback equations that tell us how, in turn, the environmental condition is influ-
enced by the population size and composition. In general, the environment is set by
all subpopulations involved. The environmental condition will hence be a function
of x = (y, z). Readers that are not familiar with the notion of an environmental
condition and find this general definition a bit unclear are encouraged to take a look
at Appendix A, where we explain the notion of an environmental condition by way of
a simple example.

In order to arrive directly at the desired decomposition of g in (1.1) we first
separate the reproduction in Y from all other processes.

Since individuals in Z don’t have offspring in Y the invading population com-
pletely determines the reproduction in Y. To describe it we define the following
matrix:

Pij(x) : = the rate with which individuals with birth state i are born to an indivi-

dual with state j, given a constant environmental condition x ∈ X .

What remains is to describe other processes, namely maturation and survival.
We consider the dynamics of an individual’s state after birth as a Markov process

on the set of i-states, where the probabilities of changing a state are again determined
by the environmental condition x ∈ Y × Z. We define the matrix Q by

Qij(x) =

{
the rate of leaving state j to go to state i, i 	= j,

−(the rate of leaving state j), i = j,
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given an environmental condition x.
Hence, the off-diagonal elements of Q describe the changes of states as long as the

individual remains alive and does not move to Z, and the diagonal elements denote
the rate of leaving the state, either by leaving to another state in Y, to Z, or by death.

By taking into account all the processes, we can now write the matrix G as

G = P + Q.(3.3)

This decomposition has, apart from offering biological interpretation, another advan-
tage. Since the off-diagonal elements of G in (3.3) are nonnegative we can apply the
theory of nonnegative matrices [1] to see that we can indeed choose the (left and right)
eigenvector of G0 in (2.4) corresponding to eigenvalue zero to be nonnegative.

If, for example, the off-diagonal elements of G0 are strictly positive, the eigenvec-
tors can be chosen to be strictly positive. In many cases this observation makes it a
lot easier to determine the sign of M in (2.8).

Note that one could make a similar “per capita” description for the resident
populations. However, for our purposes, this description is irrelevant since we are
interested in only the c-states of the resident community that are not close to zero.
It may help, though, when one wants to find z0(μ) (see [14]).

4. Population invasion models in discrete time. Sometimes the nature of
the problem, the available data, or some other reason makes it more convenient to
formulate a discrete time population model. Since the linearization theorem of Hart-
man and Grobman (see [24], [36]) and the center manifold theory apply for discrete
time dynamical systems generated by maps as well as for flows generated by vector
fields we can reformulate the problem and the results so that they hold for population
invasion models in discrete time.

In the same way as before we decompose the population state space

Y × Z = R
m
+ × Rn

+

so that Y denotes the population state space of the newly introduced population and
Z the community state space of the resident community.

We shall now study processes described by a parametrized map

y �→ G(y, z, μ)y,

z �→ h(y, z, μ), y ∈ Y, z ∈ Z, μ ∈ R,(4.1)

where we shall furthermore assume that G ∈ Mm×m(C1(Rm × Rn × R,R)) and h ∈
C1(Rm × Rn × R,Rn).

We shall use the notation in (1.1b) or in (2.2) to write the map (4.1) as x �→ f(x)
whenever this notation will be more convenient.

Suppose that we have a steady state, that is, a fixed point of (4.1) of the form
e(μ) = (0, z0(μ)) for some z0(μ) ∈ Z. The associated linear map is then given by

Df
(
e(μ)

)
=

[
G(e(μ), μ) 0
hy(e(μ), μ) hz(e(μ), μ)

]
.

Hence

σ
(
Df(e(μ), μ)

)
= σ

(
G(e(μ), μ)

)
∪ σ

(
hz(e(μ), μ)

)
.
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We shall again assume that the steady state e(μ) is internally asymptotically stable,
i.e., that it is asymptotically stable under perturbations within the invariant subspace
{0}m × Z and that this can be inferred from the linearization. In the discrete time
setting this means that we assume

B1. If λ ∈ σ
(
hz(e(μ), μ)

)
, then |λ| < 1.

The spectrum of G(e(μ), μ) hence determines the linearized stability of e(μ).
Again, the theory of nonnegative matrices tells us that the spectral radius of G is an
eigenvalue. The interesting case to consider is therefore when the parameter μ is such
that G(e(μ), μ) has an eigenvalue one, a situation where the linearization alone does
not tell us whether the newly introduced population is able to settle in the community.

We now again take for a bifurcation parameter some μ such that the fixed points
of (4.1) of the form e(μ) = (0, z0(μ)) are linearly stable for μ < 0 and unstable when
μ > 0. Thus,

B2.

⎧⎪⎨
⎪⎩

μ < 0 ⇐⇒ r(G(e(μ), μ)) ⇐⇒ R0 < 1,

μ = 0 ⇐⇒ r(G(e(μ), μ)) ⇐⇒ R0 = 1,

μ > 0 ⇐⇒ r(G(e(μ), μ)) ⇐⇒ R0 > 1,

where r(.) denotes the spectral radius. Let us note that here R0 refers to the ba-
sic reproduction ratio in the context of the model, and we refer to [7], [29] for the
justification of the equivalence between r(.) and R0.

Since the results that follow rely upon local information only, it suffices that B2

holds in some neighborhood of μ = 0.
Assumption B2 tells us that the function μ �→ r(G(e(μ), μ)) crosses the point

(μ, r(.)) = (0, 1). We shall again assume that this crossing occurs at nonzero speed,
i.e.,

B3.
d

dμ
r(G(e(μ), μ))

∣∣∣
μ=0

> 0.

Let e denote the equilibrium that corresponds to R0 = 1, i.e., e = e(μ = 0), and
let e′ = e(0). We shall also use the notation introduced in (2.4). Denoting by Ec the
center subspace of G0, we shall furthermore assume that

B4. dimEc = 1

and refer the reader to the next section for the biological interpretation of this as-
sumption.

We can now prove the discrete time analogue of Theorem 2.2.
Theorem 4.1. Consider a population model described by (4.1), and let e(μ) =

(0, z0(μ)) be a steady state of (4.1). Assume that B1, B2, B3, and B4 hold. Further-
more assume that μ �→ e(μ) ∈ C1(R,Rn+m), and denote by e the steady state that
corresponds to R0 = 1, i.e., e = e(0) and by e′ = e′(0). Let G0, Hy, and Hz be as in
(2.4), and let w and v denote, respectively, the left and the right eigenvectors of G0

corresponding to eigenvalue one, normalized so that v · w = 1. Denote

M =
∑

i,j,k=1,...,m

wi

(
∂Gij(e, 0)

∂yk
+

∂Gik(e, 0)

∂yj

)
vjvk

− 2
∑

i,j=1,...,m
k=1,...,n

wi
∂Gij(e, 0)

∂zk
vj((I −Hz)

−1Hyv)k.
(4.2)

There exists a δ > 0 such that
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(i) if M < 0, there is a branch μ �→ (y(μ), z(μ)), defined for μ ∈ (0, δ), of posi-
tive, locally asymptotically stable steady states of (4.1). In other words, the bifurcation
is supercritical.

(ii) if M > 0, there is a branch μ �→ (y(μ), z(μ)), defined for μ ∈ (−δ, 0), of
positive, unstable steady states of (4.1). That is, the bifurcation is subcritical.

Remark 5. We again see that only the first order derivatives of G and h are
needed to determine the direction of bifurcation from e. Moreover, the expression
for the direction of bifurcation is independent of the bifurcation parameter except
for the restrictions B2 and B3. In other words, provided that all the assumptions
of Theorem 4.1 are satisfied, we obtain the same direction of bifurcation for any
bifurcation parameter.

Remark 6. For some further remarks on the terminology and on the interpretation
of the results of Theorem 4.1 in biological terms we refer the reader to the remarks
made after Theorem 2.2.

Proof. We have G0v = v, wTG0 = wT , and w · v = 1. By B1 the matrix I −Hz

is invertible. We can then calculate the left and the right eigenvectors of Df(e)
corresponding to eigenvalue one, denote them by W and V , and find that

W =

[
w
0

]
, V =

[
v

(I −Hz)
−1Hyv

]
.(4.3)

Moreover, W · V = 1.
By B1 and B4, the dimension of the center linear subspace equals 1, and the

subspace is spanned by V . We take for the basis of Rm+n (generalized) eigenvectors
of Df(e). The eigenvectors of Df(e) that correspond to eigenvalues different from 1
are orthogonal to W .

The center manifold theory states that there exists a center manifold of the equi-
librium e, denoted by Mc(e), that can be locally parametrized by μ and a real variable
u as

Mc(e) = {(x, μ); x = e(μ) + uV + Φ(u, μ)},

where Φ is defined on some neighborhood of the origin.
Moreover, Φ(0, 0) = DΦ(0, 0) = 0 and W · Φ(u, μ) = 0 for every u and μ. Since

the center manifold is also invariant under (4.1) we have

x(k + 1) = e(μ) + u(k + 1)V + Φ(u(k + 1), μ)

= f(x(k), μ)

= f(e(μ) + u(k)V + Φ(u(k), μ), μ).

We calculate the inner product with W , take into account that W ·e(.) = 0, W ·V = 1,
and W · Φ(.) = 0, and obtain

u(k + 1) = w · g(e(μ) + u(k)V + Φ(u(k), μ), μ).

Written differently, the restriction of (4.1) to the center manifold is given by a map

u �→ w · g(e(μ) + uV + Φ(u, μ), μ).

Using the Taylor series, we can now write

u �→ w · g(e, 0) + w ·Dxg(e, 0)(e(μ) − e + uV + Φ(u, μ)) + w ·Dμg(e, 0)μ

+ 1
2w ·Dμμg(e, 0)μ2 + 1

2w ·Dxxg(e, 0)(e(μ) − e + uV + Φ(u, μ))2

+ w ·Dμxg(e, 0)(e(μ) − e + uV + Φ(u, μ))μ + O(3),
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where O(3) denotes third and higher order terms in u and μ.

Now, the first term equals zero since e is a fixed point of f , and therefore g(e, 0) =
0. The second term equals u since wTG0 = wT , W · e(μ) = W · e = 0, W · V = 1,
and W · Φ(.) = 0. Since g = Gy, the third and fourth terms are also equal to zero.
Furthermore, by writing e(μ) = e(0) + e′(0)μ + O(2), taking into account that Φ has
no constant and no linear terms in u and μ, and noting that WT = (w, 0)T , we are
left with

u �→ u + w ·
(

1
2Dxxg(e, 0)e′

2
+ Dμxg(e, 0)e′

)
μ2

+ w ·
(
Dxxg(e, 0)e′V + Dμxg(e, 0)V

)
μu

+ 1
2w ·Dxxg(e, 0)u2V 2 + O(3),

which, by writing

N = w ·
(
DxG(e, 0)e′ + DμG(e, 0)

)
v,

taking into account that g = Gy, (4.2), and the fact that the first m components of e
equal zero, becomes

u �→ u + 1
2Mu2 + μNu + O(3).(4.4)

Similar reasoning as in Lemma 2.1 establishes that assumptions B2 and B4 lead to

d

dμ
r(G(e(μ), μ))

∣∣
μ=0

= w ·
(
DxG(e, 0)e′ + DμG(e, 0)

)
v,(4.5)

and so by (4.5) and assumption B4, N 	= 0.

Now, for u and μ close to zero we can neglect the higher order terms that are
collected in O(3) and look for fixed points of u �→ u + 1

2Mu2 + μNu. Nonzero fixed
points are then near the line given by u = −2μNM−1.

Our assumptions were that the steady state e is locally stable for μ < 0 and
unstable when μ > 0. This steady state corresponds to u = 0. The local stability
analysis yields that the nontrivial steady states are locally stable when μ > 0 and
unstable when μ < 0. As we have seen in section 3, we can choose the eigenvectors v
and w so that all their components are nonnegative. Hence, the steady states of (4.1)
that correspond to nontrivial equilibria of (4.4) can be biologically meaningful only
when either M < 0 and μ > 0 or M > 0 and μ < 0. If M is zero, then higher order
terms of the Taylor expansion need to be taken into account in order to obtain some
information about the nontrivial equilibria of (4.4).

All the situations mentioned at the end of section 3 that lead to a simplified
formula for the direction of bifurcation occur, of course, also in the discrete time
setting. Modifying the obtained formulas for M to apply for discrete time models is
a rather straightforward matter, and we therefore leave it to the reader.

5. On the basic reproduction ratio in the context of a model. The case
R0 = 1. The aim of this section is to offer some interpretation of the assumptions
made in previous sections. In order to do this we shall state some known results and
refer the interested reader to the literature for their proofs. Two basic notions, one
of the next generation matrix and the other of R0, are also defined in Appendix A.
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The basic reproduction ratio R0 is defined as the expected number of offspring
an “average” individual has in all of its life and is mathematically expressed as the
spectral radius of the next generation operator (see [13], [15], [35]).

The key to the calculation of R0 of the newly introduced population in the context
of the model is to decompose g in a way that separates reproduction in Y from other
transitions (such as, for example, new infections from progressions of the disease to
another stage), as was already done in section 3.

We then write

g(y, z) =
(
P (y, z) + Q(y, z)

)
y,

where P and Q are as in section 3.
Now, if we denote by e = (0, z0) a steady state of the system and define P = P (e)

and Q = Q(e), then P is a nonnegative matrix and Q is a nonsingular M -matrix
[1], [35]. Hence, Q is invertible and −Q−1 is nonnegative. Moreover, the elements
of Q−1 have the following interpretation: the element −Q−1

jk equals the time that
an individual that was born with i-state k is expected to spend in state j [1], [13],
[35]. In other words, the matrix −Q−1 describes an individual’s i-state dynamics. The
matrix P describes the reproduction, and so the matrix −PQ−1 is the next generation
matrix. By definition, R0 equals its spectral radius.

One can also prove [1], [13], [35] that the following holds:

R0 = r(−PQ−1) < 1 ⇐⇒ s(P + Q) = s(G0) < 0,

R0 = r(−PQ−1) = 1 ⇐⇒ s(P + Q) = s(G0) = 0,
(5.1)

where r denotes the spectral radius and s the spectral bound.
It is reasonable to assume irreducibility of the next generation matrix. This

guarantees that the spectral radius is an algebraically simple eigenvalue and that we
can choose a strictly positive corresponding eigenvector [1]. In biological terms the
assumption of irreducibility of the next generation matrix means that the populations
are well mixed; that is, for every pair of i-states j and k, the individuals of the jth
subpopulation will eventually have offspring in the kth subpopulation.

Under a more strict condition, namely the primitivity [1] of the next generation
matrix, the modulus of the spectral radius is strictly greater than the modulus of all
other eigenvalues of −PQ−1. In biological terms the assumption of primitivity means
that we require that, from some generation on, individuals with birth state j can have
offspring with birth state k for any two conceivable i-states at birth, j and k.

We have assumed in sections 2 and 4 that the dimension of the center subspace of
G0 equals 1. Now, in the discrete time setting the matrix G0 is a nonnegative matrix.
Its primitivity therefore guarantees that the assumption B4 is satisfied.

In contrast with the discrete time setting we know that G0 in the continuous time
case is a nonnegative off-diagonal matrix. The Perron–Frobenius theory then tells us
that already the assumption of an irreducible G0 guarantees that A4 holds; i.e., a zero
eigenvalue is an algebraically simple eigenvalue, and all other eigenvalues have strictly
negative real parts. In biological terms an irreducible G0 means that for every pair
of i-states j and k (j 	= k) we will eventually observe an inflow of individuals of the
jth subpopulation to the kth subpopulation.

The linearization theorem of Hartman and Grobman and the center manifold
theory run for discrete time dynamical systems generated by maps parallel to the one
for flows generated by vector fields, which allows us to formulate the results for both
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settings. The basic reproduction ratio, R0, provides, due to relation (5.1), a further
connection and links the continuous time results directly to corresponding discrete
time results.

6. Examples. In this section we present four examples to illustrate the theory
presented in previous sections.

In the first example we study a continuous time model describing the dynamics in
a community in which the predator selectively forages on a stage structured prey. This
example is motivated by the work of de Roos, Persson, and Thieme [11] and hopefully
demonstrates how little effort is needed to study the occurrence of subcritical equilibria
for a class of models, in this particular case models obtained by varying the preference
of the predators.

The second example is a discrete time model describing the life cycle of bienni-
als. This example is inspired by the work of Davydova and coworkers [9], [10] and
demonstrates how the theory can also be applied to studying reproductively isolated
subpopulations of the same species to see whether one missing year class is, after
being introduced, able to settle among the existing year classes.

The last two examples are simple continuous time epidemic models related to the
author’s other work, namely, modeling the spread of infectious agents that can reside
in several different parts of the host’s body. Though very simple in the first place,
they illustrate how the determination of the direction of bifurcation can be further
simplified by assuming that the total population size has reached an equilibrium and
the fact that the eigenvectors in question can be chosen to be nonnegative (see Remark
3).

After determining the direction of bifurcation from a “residents only” steady
state, we shall in all of these examples write some interpretation of the results for
the problem at hand. We have, however, already in the remarks after Theorem 2.2
described in biological terms what can in general be said about an invasion, given
that we know the direction of bifurcation. We shall therefore not repeat these general
facts in the examples and rather refer the reader to section 2.

Example 2. In this first example we study a continuous time model describing
interactions in a community that consists of a stage structured prey population and
a population of predators that preys exclusively on one of the prey stages.

Suppose that the prey is divided into three stages, juveniles, subadults, and adults,
and let their densities be denoted, respectively, by J , S, and A. The density of the
predators will be denoted by P . We describe the dynamics of the predator popula-
tion that forages exclusively on the adult stages of prey by the following differential
equation:

dP

dt
=

(
φf(A) − ν

)
P.(6.1)

Here, φ indicates the conversion efficiency of prey biomass into newborn predators, ν
denotes the per capita death rate of the predators, and f(.) stands for the predator
functional response (for example, Holling type 2 or Holling type 3 response). In
what follows, the function f will not be specified; we shall assume only that it is an
increasing function of the adult prey density.

We shall take a closer look at a situation in which the regulation of the prey
population takes place within the subadult stage. We describe the dynamics of the
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prey population by the following system of differential equations:

dJ

dt
= βA− ρJ − μJJ,

dS

dt
= ρJ − π(S)S − μS(S)S,(6.2)

dA

dt
= π(S)S − μAA− f(A)P.

Here, the parameters have the following meaning: β denotes the adult fecundity, ρ the
maturation rate from the juvenile to the subadult stage, and μJ the per capita death
rate of the juveniles. Functions π(S) and μS(S) denote, respectively, the (possibly
density dependent) maturation rate of subadults into adults and the per capita death
rate of the subadults. The per capita death rate of the adult prey in the absence of
predators is denoted by μA.

Regulation of the subadult prey population through maturation and/or mortal-
ity can occur if the maturation rate π(.) decreases and/or the mortality rate μS(.)
increases with an increase in the density of subadults. We shall therefore assume that
π(.) is a nonincreasing and μS(.) a nondecreasing function of S, and we exclude the
situation in which the derivatives of both vanish in some point, since the population
is not regulated at all in that case.

We now first calculate the steady states of (6.2) in the absence of the predators.
We obtain (the steady state values are denoted by ∗)

J∗ =
βA∗

μJ + ρ
=

βπ(S∗)S∗

μA(μJ + ρ)
,

A∗ =
π(S∗)S∗

μA

as the steady state densities of the juvenile and adult prey, and the following equilib-
rium equation for the (nontrivial) steady state density of the subadult prey:

ρβπ(S∗)

μA(μJ + ρ)
= π(S∗) + μS(S∗).(6.3)

Now, in our previous notation we would have y = P and (z1, z2, z3) = (J, S,A) and
so G = φf(A) − ν. Since the predator population is homogeneous, we can take
w = v = 1. Furthermore, we consider the case when the basic reproduction ratio of
the predators equals one, i.e.,

R0 =
φf(A∗)

ν
= 1,

and so f(A∗) = ν
φ .

Now, since G is a function of A only we have

M = −2G′(A∗)(H−1
z Hy)3,(6.4)

where

Hy =

⎡
⎣ 0

0
−f(A∗)

⎤
⎦ =

⎡
⎣ 0

0
− ν

φ

⎤
⎦
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and

Hz =

⎡
⎣ −(ρ + μJ) 0 β

ρ −
(
π(S)S + μS(S)S

)′∣∣
S=S∗ 0

0
(
π(S)S

)′∣∣
S=S∗ −μA

⎤
⎦ .

Now, since only the last component of Hy is nonzero and we need only the third
component of H−1

z Hy it suffices to calculate (H−1
z )33. We have

(
H−1

z

)
33

=
1

detHz
(ρ + μJ)

(
π(S)S + μS(S)S

)′∣∣
S=S∗ ,

and we can now rewrite (6.4) as

M = 2ν(ρ + μJ)f ′(A∗)
(
detHz

)−1(
π(S)S + μS(S)S

)′∣∣
S=S∗ .(6.5)

Now, ν and (ρ+ μJ) are positive. According to our assumptions, so is f ′(A∗). Using
(6.3), we can furthermore see that

detHz =
βρS∗(π′(S∗)μS(S∗) − π(S∗)μ′

S(S∗)
)

π(S∗) + μS(S∗)
,

which is, by our assumptions on π(.) and μS(.), strictly negative. We have therefore
arrived at the fact that

sign M = −sign
(
π(S)S + μS(S)S

)′∣∣
S=S∗ ,

as was also found in [11].

We have assumed that μS is a nondecreasing function of the subadult density.
The function μSS is therefore an increasing function. In more biological terms we
could therefore interpret the condition required for the subcritical bifurcation to oc-
cur (i.e., M > 0) in the following way: an emergent Allee effect (i.e., M > 0) is to
occur in the predator population if and only if an overcompensation in the total mat-
uration rate π(S)S takes place, i.e., for certain values of S, an increase in the subadult
density actually decreases the total maturation rate, and that this overcompensation
is sufficiently strong.

In [11] the authors also studied the cases when the predator forages exclusively
on either the juvenile or the subadult prey and found that the emergent Allee effect
can occur (with a suitable overcompensation in the regulation) when the predators
forage on one of the nonregulating stages of the prey population and can never occur
when they forage on the regulating stage.

Hopefully, this example shows how little effort it would take, with the tools that
we have developed in the previous sections, to consider these and also many other
situations of interest.

Example 3. In this example we consider a community of strict biennials, that is,
a community that consists of two age classes, with only the oldest class reproducing.
Time will in this case be measured in years. We shall label the two classes by indices
0 and 1, the 0 denoting the subpopulation of individuals that have not reached age
one and 1 the subpopulation of one-year-old individuals. If individuals survive till the
end of their second year, they reproduce and die.
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Survival and reproduction rates are described in terms of an environmental con-
dition I, which will be taken to be the weighed sum of the two populations. More pre-
cisely, if xj(t) denotes the number (or the density) of j-year-old individuals (j = 0, 1)
at time t, we take

I(t) = c0x0(t) + c1x1(t).

The weights c0 and c1 are also called the impacts of the corresponding age classes. Now
let us denote by F0(I(t)) the probability of surviving the first year and by F1(I(t)) the
reproduction rate of individuals that survive till the end of their second year. Since
increasing the I means worsening the conditions for both classes, the functions F0

and F1 are decreasing functions. We shall also assume that they are differentiable at
least once.

We can now formulate the following discrete time model:

x0(t + 1) = F1(I(t))x1(t),

x1(t + 1) = F0(I(t))x0(t).

The functions Fi are also called sensitivities to the environment, and the index specifies
how this sensitivity depends on age. Typical examples of sensitivity functions are the
so-called

(i) Ricker family, where Fi(I) = aie
−biI ;

(ii) Beverton–Holt family, where Fi(I) = ai
(
1 + biI

)−1
.

In order to illustrate the theory on this example we first compute the full life cycle
map; that is, we apply the map[

x0(t)
x1(t)

]
�→

[
0 F1(I(t))

F0(I(t)) 0

] [
x0(t)
x1(t)

]

twice to obtain the community state after a two year time interval. We have

x0(t + 2) = F1(I(t + 1))x1(t + 1)

= F1

(
c0F1(I(t))x1(t) + c1F0(I(t))x0(t)

)
F0(I(t))x0(t)

= F1(I1(t))F0(I(t))x0(t),

where

I1(t) := c0F1(I(t))x1(t) + c1F0(I(t))x0(t)

denotes the environmental condition in the second year.
The full life cycle map is then given by

x0(t + 2) = F1(I1(t))F0(I(t))x0(t),

x1(t + 2) = F0(I1(t))F1(I(t))x1(t).

Now let us assume that only the individuals with label zero are present in every second
year and that the population is in a steady state, say x∗

0. This means that

F1(c1F0(c0x
∗
0)x

∗
0)F0(c0x

∗
0) = 1.(6.6)
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Furthermore, the assumption that the basic reproduction ratio of individuals with
label 1 equals 1 translates into

F0(c1F0(c0x
∗
0)x

∗
0)F1(c0x

∗
0) = 1.(6.7)

Now, in our previous notation we have

G = F0(I1(t))F1(I(t)),

h = F1(I1(t))F0(I(t))x0(t).

Let us now compute the required derivatives for the case where both sensitivity func-
tions belong to the Ricker family. We obtain

∂G

∂x1
= F0(I1)F1(I)

(
b0b1c0c1F1(I)x1 + b2

0c
2
1F0(I)x0 − b0c0F1(I) − b1c1

)
,

∂G

∂x0
= F0(I1)F1(I)

(
b0b1c

2
0F1(I)x1 + b2

0c0c1F0(I)x0 − b0c1F0(I) − b1c0

)
,

∂h

∂x1
= F0(I1)F1(I)x0

(
b2
1c0c1F1(I)x1 + b0b1c

2
1F0(I)x0 − b1c0F1(I) − b0c1

)
,

∂h

∂x0
= F0(I1)F1(I)

(
x0

(
b2
1c

2
0F1(I)x1 + b0b1c0c1F0(I)x0 − b1c1F0(I) − b0c0

)
+ 1

)
.

We evaluate these derivatives in x0 = x∗
0, x1 = 0; take (6.6) and (6.7) into account;

and denote the results, respectively, by G1,G0,H1, and H0. We arrive at

G1 = b2
0c

2
1F0(c0x

∗
0)x

∗
0 − b0c0F1(c0x

∗
0) − b1c1,

G0 = b2
0c0c1F0(c0x

∗
0)x

∗
0 − b0c1F0(c0x

∗
0) − b1c0,

H1 = x∗
0

(
b0b1c

2
1F0(c0x

∗
0)x

∗
0 − b1c0F1(c0x

∗
0) − b0c1

)
,

H0 = x∗
0

(
b0b1c0c1F0(c0x

∗
0)x

∗
0 − b1c1F0(c0x

∗
0) − b0c0

)
+ 1.

Now, equalities (6.6) and (6.7) in the Ricker case imply that

b0 = b1 or

(
F0(c0x

∗
0) =

c0

c1
and F1(c0x

∗
0) =

c1

c0

)
.(6.8)

Moreover, we can take v = w = 1 in (4.2). The expression for the direction of
bifurcation then translates into

M = 2G1 − 2G0H1

(
H0 − 1

)−1
,

and one can quickly see, by taking (6.8) into account, that the bifurcation is vertical
(i.e., M = 0), as was also found in [9].

In [9], [10] it was actually shown that the bifurcation is vertical in the stronger
sense that a family of period two points exists for exactly the critical parameter
combination.

Example 4. Consider an infectious disease that spreads in a population of hosts
that are susceptible to this infection, and assume that there are two parts of the body
(the same two parts for all individuals) that can become infected. We shall assume
that one of these two parts, part one, is necessarily the part where an individual’s first
infection occurs. Once infected at part one, the infection can spread by endogenous
transmission to part two. We shall use the following notation and assumptions:
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1. β1 denotes the rate with which one individual that is infected at part one
infects a susceptible individual, β12 the rate with which one individual that is infected
at both parts infects a susceptible individual.

2. α denotes the rate of endogenous transmission of an individual’s infection
from part one to part two.

3. Infected individuals become infectious at the moment of infection.
4. Infected individuals retain their infection(s) until death.
5. The death rate is the same for all individuals and is denoted by μ.
6. The population birth rate is denoted by λ.
7. All newborns are susceptible.

Now let S denote the number of susceptible individuals, I1 the number of those
infected at part one, and I12 the number of individuals infected at both parts. If the
sizes of all subpopulations are large, we can write the following system of differential
equations to describe the dynamics:

dS

dt
= λ− β1I1S − β12I12S − μS,

dI1

dt
= β1I1S + β12I12S − (α + μ)I1,(6.9)

dI12

dt
= αI1 − μI12.

Put into our previous notation we have

y = (I1, I12) ∈ R2
+, z = S ∈ R+,

and the disease-free steady state is e = (0, 0, λ
μ ).

Now we have only one i-state at birth in this case—all individuals are born (from
an epidemiological point of view) by acquiring the infection at part one. Each indi-
vidual that is infected at part one is expected to retain (only) this infection for time
1/(μ + α). In this time it is expected to infect β1λ/μ individuals. With probability
α/(α + μ) an individual also becomes infected at part two. It is then expected to
remain as such for time 1/μ and in that time infects on average β12λ/μ susceptibles.
The basic reproduction ratio (i.e., the expected number of new infections caused by
an infected individual that is introduced into a completely susceptible population, in
all of its infectious period) hence equals

R0 =
λβ1

μ(μ + α)
+

λαβ12

μ2(μ + α)
.

The elaboration of the direction of the bifurcation can be further simplified in this
case if we assume that the total population size has reached an equilibrium. The size
of the whole population is then λ/μ, and we can eliminate one of the equations in
(6.9). By choosing to eliminate the first and replacing S by λ/μ−I1−I12 in the other
two equations, we see that we don’t need to compute Hy and Hz in (2.8).

To compute the direction of bifurcation we write

G =

[
β1S − α− μ β12S

α −μ

]

with S = λ
μ − I1 − I12. Then

∂G2i

∂yj
= 0 for i, j = 1, 2
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and

∂G11(e, 0)

∂y1
= −β1,

∂G11(e, 0)

∂y2
= −β1,

∂G12(e, 0)

∂y1
= −β12,

∂G12(e, 0)

∂y2
= −β12.

Hence

M = w1

(
−2β1v

2
1 − 2(β1 + β12)v1v2 − 2β12v

2
2

)
.

Since the off-diagonal elements of G0 are strictly positive we can choose w to be
strictly positive. Since v can always be chosen to be nonnegative we see that M is
negative and the bifurcation is supercritical. In other words, control measures with
which we will decrease the value of R0 below 1 will allow us to eradicate the disease,
while the infection will spread further as long as R0 stays above 1.

The attentive reader must have noticed that we have not specified the bifurcation
parameter. As explained in section 2, we obtain the same direction of bifurcation
for all bifurcation parameters, assuming that the assumptions of Theorem 2.2 are
satisfied. That they indeed hold in this case can easily be verified, and we leave the
details to the reader.

Example 5. Consider again an infectious agent that spreads in the population of
susceptibles, and suppose again that there are two different parts of the body (the
same for all individuals) at which a susceptible can become infected. These are the
additional assumptions and the notation:

1. Susceptibility and infectivity of an individual have independent influences on
the rate of transmission. Susceptibility to infection does not change if one is already
infected at the other part of the body. That way we can write the rate with which
someone, who is already infected at J ⊆ {1, 2}, infects someone at part j as bjBJ .

2. Once infected at one of the parts, individuals can obtain another infection
only by another cross transmission.

3. Infected individuals become infectious at the moment of infection.
4. Infected individuals retain their infection(s) until death.
5. The death rate is the same for all individuals and is denoted by μ.
6. The population birth rate is denoted by λ.
7. All newborns are susceptible.

Let S denote the number of susceptibles and I1, I2, I12 the number of infected indi-
viduals that carry an infection at, respectively, the first, second, or both parts of the
body.

If we assume that the sizes of all subpopulations are large, we can describe the
dynamics by the following system of differential equations:

dS

dt
= λ−

(
μ + (b1 + b2)B1I1 + (b1 + b2)B2I2 + (b1 + b2)B12I12

)
S,

dI1

dt
= b1S(B1I1 + B2I2 + B12I12) − b2I1(B1I1 + B2I2 + B12I12) − μI1,

dI2

dt
= b2S(B1I1 + B2I2 + B12I12) − b1I2(B1I1 + B2I2 + B12I12) − μI2,

dI12

dt
= (b2I1 + b1I2)(B1I1 + B2I2 + B12I12) − μI12.
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Put into our previous notation we have

y = (I1, I2, I12), z = S,

and the disease-free equilibrium is e = (0, 0, 0, λ
μ ).

There are two i-states at birth in this case, i.e., becoming first infected at part one
and becoming first infected at part two. We label these two birth states with 1 and 2,
respectively. The next generation matrix is hence a 2 × 2 matrix, which, written for
the case when an infected individual is introduced into a virgin environment, takes
the form

R =
λ

μ2

[
b1B1 b1B2

b2B1 b2B2

]
.

The basic reproduction ratio R0 equals its dominant eigenvalue. Since R is a matrix
of rank one, R0 equals its trace,

R0 =
λ

μ2

(
b1B1 + b2B2

)
.

We shall again assume that the total population has reached an equilibrium and
eliminate S by taking S = λ/μ− I1 − I2 − I12.

To compute the direction of bifurcation we take

G =

⎡
⎣ b1B1S − b2Y − μ b1B2S b1B12S

b2B1S b2B2S − b1Y − μ b2B12S
b2Y b1Y −μ

⎤
⎦ ,

with Y = B1I1 + B2I2 + B12I12 and S = λ/μ− I1 − I2 − I12.
As was the case in the previous example, all bifurcation parameters yield the

same direction of bifurcation from the disease-free steady state. However, we cannot
determine the sign of M right away. We hence compute the left and the right zero
eigenvectors of G0 and obtain

w =
[
B1, B2, B12

]T
, v =

[
b1, b2, 0

]T
.

Then M = M1 + M2 + M3, where

M1 = B1

(
− 2(b2 + b1)b

2
1B1 − 2(b1B2 + b2B2 + b1B1)b1b2 − 2b1b

2
2B2

)
,

M2 = B2

(
− 2(b2 + b1)b

2
2B2 − 2(b2B1 + b2B2 + b1B1)b1b2 − 2b2b

2
1B1

)
,

M3 = B12

(
2b2

1b2B1 + 2(b1B1 + b2B2)b1b2 + 2b1b
2
2B2

)
.

In contrast with the previous example, bifurcation from a disease-free steady state
may not always be supercritical. However, if we don’t expect any “amplification” of
individual’s infectiousness by multiple infected parts, that is, if we assume that

B12 ≤ B1 + B2,

we expect a supercritical bifurcation, and indeed a simple computation (which we
leave to the reader) shows that in such a case M < 0 and, as in the previous example,
we are able to eradicate the disease by suppressing R0 below 1.

Appendix A. Some general considerations concerning physiologically
structured population models. In this section we review some basic definitions
and results that we have used in the main part of the paper.
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A.1. Environmental condition. We begin with the notion of environmental
condition [14], [15], [16]. The defining property of the environmental condition (we
shall denote it by I) is that individuals are independent of one another when I is
prescribed as a function of time.

The notion of the environmental condition can perhaps most easily be clarified
by way of examples. We write the following ratio dependent predator-prey model and
refer the reader to section 6 and [14], [15], [16] for more examples.

Example 6. Let us consider the following predator-prey model, the so-called
Michaelis–Menten-type model:

ẋ = rx
(
1 − x

K

)
− cxy

my + x
,

ẏ = y

(
fx

my + x
−D

)
,

where x(t) and y(t) denote, respectively, the prey and predator densities at time t.
In the absence of the predators the prey grows with constant intrinsic growth rate
r and constant carrying capacity K. The constants D, c, m, and f stand for the
predators’ per capita death rate, capturing rate, half saturation rate, and conversion
rate, respectively.

In this case both the predator and prey densities influence the rates with which
these two populations interact. Hence, by setting I = (I1, I2) = (x, y), we can rewrite
the equations so that all interactions are expressed in terms of the environmental
variable I,

ẋ =

[
r

(
1 − I1

K

)
− cI2

mI2 + I1

]
x,

ẏ =

[(
fI1

mI2 + I1
−D

)]
y.

Indeed, one sees that when I is prescribed as a function of time the individuals act
independently of one another; i.e., equations are linear.

A.2. The next generation operator and the basic reproduction ratio
R0. A population model is described by a collection of rules for reproduction, mat-
uration, and survival of individuals in a given community. The traditional way to
study a population model is to separate reproduction from all other processes. One
of the modeler’s first tasks is then to find the set of all conceivable i-states at birth
and to construct the next generation operator [13], [15].

When the set of all conceivable i-states at birth is finite, the next generation
operator is a matrix which we shall denote by R and which is defined as follows:

Rij(I) : = the expected number of offspring with birth state i born to one individual

that was born with state j, given a constant environmental condition I.

The basic reproduction ratio, R0(I), is by definition [13], [15] the spectral radius
of R(I).

Now, by its very definition, R(I) is a nonnegative matrix. When it is irreducible
(see [1] and Appendix B for the definition), its spectral radius, i.e., R0(I), is a well-
defined (dominant) eigenvalue, and the corresponding eigenvector can be chosen to
be positive.
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The literature where one can find special examples from population biology and
where the next generation matrices are constructed in the context of models is vast.
We refer the reader to [13], [34] and the references therein and also to section 6 for
some concrete examples.

Appendix B. On the notions of species, population, and a reproduc-
tively isolated subpopulation. In the main part of the paper we have used terms
such as population and reproductively isolated subpopulation in a vague, intuitive way.

The aim of this section is to describe these notions in mathematical terms (here
we are inspired by an unpublished note of Gyllenberg [23]).

First, the following definition.
Definition B.1. A square matrix A is reducible if there exists a permutation

matrix P such that

P−1AP =

[
A1 0
B A2

]
.

A matrix that is not reducible is irreducible.
Following [23], we shall call a matrix A decomposable if the permutation matrix

P can be chosen so that B = 0. A matrix that is not decomposable is indecomposable.
Now, if an element of the next generation matrix, say Rij(I), is strictly positive for

some environmental condition I, then, by definition, individuals with birth state j can
have offspring with birth state i in this environment. Or, equivalently, the predecessors
of individuals with birth state i may, in the environment I, be individuals with birth
state j.

If R(I) is indecomposable for some environmental condition I, then all the i-states
at birth are in this environment related by either ancestry or descent and hence belong
to one species. On the other hand, if the next generation matrix is decomposable for
some environmental condition I, then the set of i-states at birth partitions into (at
least) two disjoint sets of birth states that are not reproductively connected in I.

We shall speak of reproductive isolation of two sets of i-states at birth (and of
reproductive isolation of the corresponding subpopulations) when these two sets are
reproductively isolated in any conceivable environment. Two sets of i-states at birth
(and the corresponding subpopulations) that are not reproductively isolated are re-
productively connected.

A population is a collection of subpopulations that are reproductively connected
and are at the same time the maximal connected collection in the sense that they are
reproductively isolated from every subpopulation that is not included in the collection.

We now make these newly introduced terms more precise and make the following,
almost mathematical definition (where “almost” refers to the unspecified “conceiv-
able” below).

Definition B.2. Consider a finite set J of i-states at birth, and let R(.) denote
the corresponding next generation matrix. We say the following:

1. The set J of i-states at birth (and the corresponding community) is repro-
ductively connected if there exists a conceivable environmental condition I in which
the corresponding next generation matrix R(I) is indecomposable.

2. If the set J of i-states at birth is not reproductively connected, it consists of
(at least) two reproductively isolated subsets of i-states at birth. In other words, if J
is not reproductively connected, the matrix R(I) is decomposable for every conceivable
environmental condition I. (Note, however, that in principle, different environmental
conditions may yield a different number of blocks in the next generation matrix.)
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3. Let J1 ⊆ J . We say that individuals with i-states at birth in J1 form a
population if

(i) J1 is reproductively connected and
(ii) if J1 ⊆ J2 ⊆ J and J2 is reproductively connected, then J1 = J2.

Reproductive isolation is certainly a property that underlies the concept of species;
i.e., two different species are reproductively isolated. Reproductive isolation alone,
however, is not sufficient to deduce that we actually observe different species. Think
of, for example, two groups of individuals that belong to the same species but live in
areas that are not connected, say on two different continents.

Another display of this phenomenon would be the semelparous species, species
that reproduce only once in their lives and die afterwards. Suppose that we observe
a community whose individuals live for a fixed length of time, say l years. We could
characterize individuals by the year of their birth. Instead of doing so, we split the
whole community into year classes according to the year of birth (modulo l); for
example, if l = 2, we divide the community into two year classes, one consisting of
individuals that were born in odd numbered years, and the other of individuals born in
even numbered years. Different year classes are reproductively isolated subpopulations
of the same species that interact (for example, compete for food, etc.), and we can
study whether a missing year class is, after being introduced into the community, able
to settle among the existing year classes. The reader can find one example in this
spirit in section 6.

Consider now a community, consisting of several species perhaps, whose individ-
uals are characterized by finitely many i-states. We introduce one new population
and assume that the set of conceivable i-states of this population is also finite. We
find the set of all possible i-states at birth and write the next generation matrix of
the combined community, which for every conceivable environmental condition I is of
the form

R(I) =

[
R(I)new 0

0 R(I)old

]
.

Since the resident community might consist of several populations, the matrix R(I)old

may be decomposed further into indecomposable blocks. However, finding a way to
deduce the number of reproductively isolated subpopulations from the next generation
matrix and recognizing the set of i-states that constitute a population is not our aim
here. We therefore refrain from these further decompositions.
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Abstract. An epidemic model is proposed to incorporate population dispersals between patches
and to include a constant infection period. A basic reproduction number of the model is established
by means of a next generation matrix. It is found that a disease may spread when the population
migrates in two patches, even though it dies out in each isolated patch. It is also found that the
disease admits multiple exchanges between persistence and extinction for some types of migrations
of individuals.
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1. Introduction. Population movements and the spatial structure of popula-
tion communities can profoundly affect the dynamic process of an epidemic disease.
This has been demonstrated by many communicable diseases. SARS was first re-
ported in Guangdong Province of China in November of 2002. The emerging disease
spread very quickly, due to the traveling of infectious persons by airplanes, trains,
and buses, to some other regions in the mainland of China, as well as Hong Kong,
Singapore, Vietnam, Canada, etc. By late June of 2003, it had spread to 32 coun-
tries and regions, causing about 800 deaths and more than 8000 infections (see, e.g.,
[21, 27]). For measles, Bartlett [5] discovered that population size was a crucial de-
terminant of disease persistence. In large towns, measles was endemic with periodic
eruptions. In cities below a population size threshold, measles displayed an epidemic
pattern with complete disappearance of the disease between epidemics. These show
that spatial structures and population movements, which give rise to spatio-temporal
variations of population dynamics, may be of crucial importance for the prevalence of
diseases. Thus, it is important to study how population movement, spatial structure,
and disease transmission interact to determine the evolution of diseases. Of partic-
ular interest is the basic reproduction number of the disease under the influence of
these components. The basic reproduction number is defined as the number of infec-
tions generated in a completely susceptible population by a single infected individual.
In many cases, it serves as the threshold of disease transmissions, having profound
implications for the control of diseases.

We choose our spatial scale so that we can represent space in a discretized way;
i.e., the space is split into discrete patches. Here, one patch may represent one city or
one village, and population movements in space are simulated by population dispersals
among patches. The study of the effects of population dispersal on disease dynamics
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in the setting of patchy space has been carried out in the context of SARS [21], in-
fluenza [22], measles [6], tuberculosis [13], and malaria [20]. These papers explore the
influences of population dispersal by means of computer simulations or by analytic
methods. In order to simulate the evolution of spatial epidemics and calculate their
basic reproduction numbers, Arino and van den Driessche [2, 3] formulated epidemic
models with population traveling among cities in which the residences of individuals
are maintained. Wang and Zhao [29, 30] considered epidemic models of multipatches
without any record of the residence of individuals. Brauer and van den Driessche [4],
Castillo-Chavez and Yakubu [7], and Wang and Mulone [28] are among other studies of
epidemic models of metapopulations. Based upon their calculations of basic reproduc-
tion numbers, these papers established the thresholds of spatial disease transmissions.
The models capture the essence of SIR (susceptible→infected→recovered) epidemics
or SIS (susceptible→infected→susceptible) epidemics. However, one common feature
of the above works is that the duration of an infectious period is described by an
exponential distribution. This mathematically convenient assumption is equivalent
to assuming that the chance of recovery within a given time interval is constant, re-
gardless of the time since infection. Epidemiologically, this is quite unrealistic, as is
demonstrated by statistical studies of the transmission dynamics of many diseases [19].
In practice, the infectious periods for many diseases including myxomatosis appear to
be distributed fairly closely around mean survival times [1]. As a first approximation,
we can assume that infectious individuals remain infectious for the same amount of
time. The purpose of the present paper is to incorporate a constant infectious pe-
riod into an SIR epidemic model with the spatial structure of patches and study its
evolutionary behavior in terms of the basic reproduction number.

The remaining parts of this paper are organized as follows. In the next section,
we present the formulation of the model. Section 3 is devoted to the establishment
of the basic reproduction number of the disease. Based upon this result, we provide
three examples to illustrate the effect of the population dispersal on the spread of the
disease, in section 4. Section 5 gives a brief discussion of the main results.

2. Model formulations. We consider an SIR type of disease transmission. The
population is divided into three classes: susceptible individuals, infectious individuals,
and recovered individuals. Susceptible individuals become infective after contact with
infective individuals. Infectious individuals become recovered due to treatment or
when an infection age passes the infection period. Measles, rubella, smallpox, and
SARS are typical diseases of SIR type. For simplicity, we consider only two patches,
which is the minimal case needed to investigate the influence of population mobility
on spatial epidemic transmissions. We denote the density of susceptible individuals
in patch i by Si, the density of infective individuals in patch i by Ii, the density
of recovered individuals in patch i by Ri, and the population size in patch i by Ni.
Thus, Ni = Si + Ii +Ri. In order to accommodate more epidemic diseases that have
longer time scales, we consider the demography of populations and suppose that the
demographic structure of the population in patch i is described by

dNi

dt
= Bi(Ni(t))Ni(t) − μiNi(t),

where Bi is the per capita birth rate and μi the per capita death rate. This type of
demography has been adopted by [9, 12, 16]. If Bi = μi, then the population size is a
constant, which is suitable when the duration of an epidemic disease is much shorter
than the lifespan of the individuals in a population. As mentioned in [9], three types
of birth functions Bi(Ni) can be found in the biological literature:
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(C1) Bi(Ni) = Hie
−AiNi with Ai > 0, Hi > 0;

(C2) Bi(Ni) = pi

qi+N
mi
i

with pi, qi,mi > 0;

(C3) Bi(Ni) = Ai

Ni
+ Hi with Ai > 0, Hi > 0.

We assume that the disease transmission in each patch obeys the mass action
incidence. If there is no population dispersal between patches, i.e., the patches are
isolated, with an exponentially distributed infectious period, the dynamics of disease
transmission in the ith patch is governed by

dSi

dt
= Bi(Ni(t))Ni(t) − μiSi(t) − kiSi(t)Ii(t),

dIi
dt

= kiSi(t)Ii(t) − (μi + γi)Ii(t),

dRi

dt
= γiIi(t) − μiRi(t),

(2.1)

where ki is the disease transmission coefficient and γi is the recovery rate of infected
individuals.

When the patches are connected, the dynamics of disease transmission is described
by

dS1

dt
= B1(N1(t))N1(t) − (μ1 + d1)S1(t) − k1S1(t)I1(t) + d2S2(t),

dS2

dt
= B2(N2(t))N2(t) − (μ2 + d2)S2(t) − k2S2(t)I2(t) + d1S1(t),

dI1

dt
= k1S1(t)I1(t) − (μ1 + γ1 + b1)I1(t) + b2I2(t),

dI2

dt
= k2S2(t)I2(t) − (μ2 + γ2 + b2)I2(t) + b1I1(t),

dR1

dt
= γ1I1(t) − (μ1 + c1)R1(t) + c2R2(t),

dR2

dt
= γ2I2(t) − (μ2 + c2)R2(t) + c1R1(t),

(2.2)

where d1 represents the rate at which susceptible individuals migrate from the first
patch to the second patch, d2 the rate at which susceptible individuals migrate from
the second patch to the first patch, b1 the rate at which infectious individuals migrate
from the first patch to the second patch, b2 the rate at which infected individuals
migrate from the second patch to the first patch, c1 the rate at which recovered
individuals migrate from the first patch to the second patch, and c2 the rate at which
recovered individuals migrate from the second patch to the first patch. In this model,
we neglect the death and birth processes of individuals when they are dispersing and
neglect the time that individuals take to move between patches. Furthermore, for the
convenience of mathematical analysis, it is assumed that b1 > 0 and b2 > 0.

We assume that all infectious individuals have a constant length of infection τ .
This means that the duration of the infectious period is described by a step function,
which is one of the conventional methods for representing infectious periods [8, 11, 16],
and the biological motivations are presented in the introduction section. Let a be the
infection age, i.e., the time since infection, and let Ii(a, t) be the density of infected
individuals at time t with respect to infection age a in the ith patch. We assume that
the number of individuals recovered due to treatment per unit time is proportional
to the total of infectious individuals. This means that we neglect the time delay for
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treatment to take effect, which is reasonable when treatment takes effect in a short
time. As a consequence, infected individuals in patch i are treated at a constant rate
ri ≥ 0 up to infection-age τ , when any remaining infected individuals of infection-
age τ immediately transfer to the recovered class. For simplicity, we assume that
the death rates, the disease transmission coefficients, the treatment rates, and the
migration rates are independent of infection ages. Then the force of infection in patch
i at time t is ki

∫ τ

0
Ii(a, t)da. Thus, (2.2) can be modified as

dS1

dt
= B1(N1(t))N1(t) − (μ1 + d1)S1(t) − λ1(t)S1(t) + d2S2(t),

dS2

dt
= B2(N2(t))N2(t) − (μ2 + d2)S2(t) − λ2(t)S2(t) + d1S1(t),

∂I1

∂t
+

∂I1

∂a
= −(μ1 + r1 + b1)I1(a, t) + b2I2(a, t), 0 < a ≤ τ,

∂I2

∂t
+

∂I2

∂a
= −(μ2 + r2 + b2)I2(a, t) + b1I1(a, t), 0 < a ≤ τ,

dR1

dt
= r1

∫ τ

0

I1(a, t)da + I1(τ, t) − (μ1 + c1)R1(t) + c2R2(t),

dR2

dt
= r2

∫ τ

0

I2(a, t)da + I2(τ, t) − (μ2 + c2)R2(t) + c1R1(t),

λi(t) = ki

∫ τ

0

Ii(a, t)da, Ni(t) = Si(t) + Ri(t) +

∫ τ

0

Ii(a, t)da,

Ii(0, t) = λi(t)Si(t), i = 1, 2,

(2.3)

with the initial conditions given by

Si(0) = S0
i > 0, Ri(0) = R0

i ≥ 0, i = 1, 2,

Ii(a, 0) = fi(a) ≥ 0 for 0 ≤ a ≤ τ, i = 1, 2.
(2.4)

Let Pi(t) =
∫ τ

0
Ii(a, t)da be the total density of infected members at time t in

the ith patch. We derive the equations for P1(t) and P2(t) for t ≥ τ . Set Vi(a, t) =
Ii(t − a, t) for 0 ≤ t − a ≤ τ and V(a, t) = (V1(a, t), V2(a, t))

T , where T represents a
transpose of a vector. Then V satisfies

∂V(a, t)

∂t
= BV(a, t), a ≤ t ≤ a + τ,(2.5)

where

B =

[
−μ1 − r1 − b1 b2

b1 −μ2 − r2 − b2

]
.

Integrating (2.5) from a to t, we have

V(a, t) = exp(B(t− a))(I1(0, a), I2(0, a))
T , a ≤ t ≤ a + τ,

and hence

I(a, t) = V(t− a, t) = exp(Ba)(I1(0, t− a), I2(0, t− a))T , a ≤ τ.(2.6)

Set

(bij(a)) := exp(Ba), Qi(t) := kiSi(t)Pi(t).
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It then follows from (2.3) that

I1(a, t) = b11(a)Q1(t− a) + b12(a)Q2(t− a),

I2(a, t) = b21(a)Q1(t− a) + b22(a)Q2(t− a)
(2.7)

for t ≥ τ ≥ a.
Integrating (2.7) from 0 to τ , we have

P1(t) =

∫ τ

0

b11(a)Q1(t− a)da +

∫ τ

0

b12(a)Q2(t− a)da, t ≥ τ,

P2(t) =

∫ τ

0

b21(a)Q1(t− a)da +

∫ τ

0

b22(a)Q2(t− a)da, t ≥ τ,

(2.8)

which is equivalent to

P(t) =

∫ τ

0

exp(Ba)Q(t− a)da =

∫ t

t−τ

exp(B(t− s))Q(s)ds, t ≥ τ,(2.9)

where P(t) = (P1(t), P2(t))
T and Q(t) = (Q1(t), Q2(t))

T . It then follows that

dP

dt
= Q(t) − exp(Bτ)Q(t− τ) + BP(t), t ≥ τ.(2.10)

Define

γi(t) := riPi(t) + bi1(τ)Q1(t− τ) + bi2(τ)Q2(t− τ), i = 1, 2.(2.11)

Consequently, we obtain the following time-delayed model:

dS1

dt
= B1(N1(t))N1(t) − (μ1 + d1)S1(t) −Q1(t) + d2S2(t),

dS2

dt
= B2(N2(t))N2(t) − (μ2 + d2)S2(t) −Q2(t) + d1S1(t),

dP

dt
= Q(t) − exp(Bτ)Q(t− τ) + BP(t),

dR1

dt
= γ1(t) − (μ1 + c1)R1(t) + c2R2(t),

dR2

dt
= γ2(t) − (μ2 + c2)R2(t) + c1R1(t),

Ni(t) = Si(t) + Ri(t) + Pi(t), i = 1, 2,

(2.12)

for t ≥ τ . In view of (2.9), we need to impose the following condition on initial
functions:

P(τ) =

∫ τ

0

exp(B(τ − s))Q(s)ds.(2.13)

It is easy to see that (2.12) is an autonomous functional differential system defined
on C([0, τ ], R6

+). Without loss of generality, we will consider (2.12) on C([−τ, 0], R6
+)

(after a time translation) under the condition

P(0) =

∫ 0

−τ

exp(−Bs)Q(s)ds.(2.14)
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We finish this section with discussion of the well-posedness of system (2.12),
with initial values subject to condition (2.14), and the positivity of its solutions.
Assume that each Bi(Ni)Ni extends to a continuously differentiable function Gi(Ni)
on [0,∞) with Gi(0) ≥ 0. Let u(t) = (S(t),P(t),R(t)) be a continuous function from
[−τ, σ) to R6

+ for some σ > 0. For each t ∈ [0, σ), we define ut ∈ C([−τ, 0], R6
+) by

ut(s) = u(t + s) for all s ∈ [−τ, 0]. Set

X :=

{
(S,P,R) ∈ C([−τ, 0], R6

+) : P(0) =

∫ 0

−τ

exp(−Bs)Q(s)ds

}
.

By the standard theory of functional differential equations (see, e.g., [14, Theorems
2.1 and 2.3] or [18, Theorems 2.1 and 2.2]), it follows that for any φ ∈ C([−τ, 0], R6

+)
there exists a unique solution u(t,φ) of system (2.12) satisfying u0 = φ, which is
defined on its maximal interval of existence [0, σφ). We first show that X is positively
invariant for solutions of system (2.12) in the sense that for any φ ∈ X we have
ut(φ) ∈ X for all t ∈ [0, σφ). Let u(t,φ) = (S(t),P(t),R(t)), and define

W(t) :=

∫ t

t−τ

exp(B(t− s))Q(s)ds ∀t ∈ [0, σφ).

It then follows that

dW(t)

dt
= Q(t) − exp(Bτ)Q(t− τ) + BW(t) ∀t ∈ [0, σφ).

Thus, we obtain

d(P(t) − W(t))

dt
= B(P(t) − W(t)) ∀t ∈ [0, σφ).

Since φ ∈ X, we have P(0) = W(0), and hence

P(t) − W(t) = exp(Bt)(P(0) − W(0)) = 0 ∀t ∈ [0, σφ).

This means that

P(t) =

∫ t

t−τ

exp(B(t− s))Q(s)ds =

∫ 0

−τ

exp(B(−s))Q(t + s)ds ∀t ∈ [0, σφ).

(2.15)

By (2.15) and the differential equations for S1(t), S2(t), R1(t), and R2(t), it then
easily follows that for any φ ∈ X, u(t,φ) is (componentwise) nonnegative on [0, σφ),
and ut(φ) ∈ X for all t ∈ [0, σφ).

3. Basic reproduction number. For simplicity, from this point on we always
assume that two birth functions are of type (C3), that is, Bi(Ni) = Ai

Ni
+Hi, i = 1, 2.

Thus, the model (2.12) reduces to

dS1

dt
= A1 + H1N1(t) − (μ1 + d1)S1(t) −Q1(t) + d2S2(t),(3.1)

dS2

dt
= A2 + H2N2(t) − (μ2 + d2)S2(t) −Q2(t) + d1S1(t),

dP

dt
= Q(t) − exp(Bτ)Q(t− τ) + BP(t),
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dR1

dt
= γ1(t) − (μ1 + c1)R1(t) + c2R2(t),

dR2

dt
= γ2(t) − (μ2 + c2)R2(t) + c1R1(t),

Ni(t) = Si(t) + Ri(t) + Pi(t), i = 1, 2, t ≥ 0.

The objective of this section is to establish a basic reproduction number for model
(3.1) and to show that it is a threshold for the disease invasion. Assume that we have
the following:

(H) Ai, Hi, μi, ki, bi, i = 1, 2, are positive constants with Hi < μi; di and ci are
nonnegative constants for i = 1, 2.

Define

XL :=

{
φ = (φ1, . . . , φ6) ∈ X :

6∑
i=1

φi(0) ≤ L

}
∀L ≥ 0

and

m := min{μ1 −H1, μ2 −H2}, L∗ :=
A1 + A2

m
.

Then we have the following preliminary result.
Lemma 3.1. Let (H) hold. Then for any L > L∗, the set XL is positively

invariant for solutions of (3.1), and every solution u(t,φ) of (3.1) with φ ∈ X
eventually enters into [0, L]6.

Proof. By (3.1) and (2.11), we obtain

dN1

dt
= A1 − (μ1 −H1)N1 − d1S1 + d2S2 − b1P1 + b2P2 − c1R1 + c2R2,

dN2

dt
= A2 − (μ2 −H2)N2 − d2S2 + d1S1 − b2P2 + b1P1 − c2R2 + c1R1.

(3.2)

Let N = N1 + N2. It then follows that

dN

dt
≤ A1 + A2 −mN, t ≥ 0.

Now the standard comparison theorem [24] completes the proof.
Let Φ(t) : X → X be the solution semiflow associated with (3.1); that is, Φ(t)φ =

ut(φ), φ ∈ X, t ≥ 0. By Lemma 3.1, solutions of (3.1) are uniformly bounded
and ultimately bounded. Thus, the semiflow Φ(t) is point dissipative on X, and
Φ(t) : X → X is compact for each t > τ . By [15, Theorem 3.4.8], it then follows that
Φ(t) admits a global attractor, which attracts every bounded set in X.

Under the assumption (H), it is easy to see that (3.1) has a unique disease-free
equilibrium E0 = (S∗

1 , S
∗
2 , 0, 0, 0, 0), where

S∗
1 = − −H2 A1 + μ2 A1 + d2 A1 + d2 A2

−H1 H2 + H1 μ2 + H1 d2 + μ1 H2 − μ1 μ2 − μ1 d2 + d1 H2 − d1 μ2
,

S∗
2 = − d1 A1 −H1 A2 + μ1 A2 + d1 A2

−H1 H2 + H1 μ2 + H1 d2 + μ1 H2 − μ1 μ2 − μ1 d2 + d1 H2 − d1 μ2
.

To determine the basic reproduction number of (3.1), we assume that the popu-
lation is at the disease-free equilibrium E0. It then follows from (2.15) that



POPULATION DISPERSAL AND INFECTION PERIOD 1461

P1(t) = k1S
∗
1

∫ τ

0

b11(a)P1(t− a)da + k2S
∗
2

∫ τ

0

b12(a)P2(t− a)da,

P2(t) = k1S
∗
1

∫ τ

0

b21(a)P1(t− a)da + k2S
∗
2

∫ τ

0

b22(a)P2(t− a)da.

(3.3)

Set

U =

⎡
⎣ k1S

∗
1

∫ τ

0
b11(a)da k2S

∗
2

∫ τ

0
b12(a)da

k1S
∗
1

∫ τ

0
b21(a)da k2S

∗
2

∫ τ

0
b22(a)da

⎤
⎦ .

Since U is a positive matrix, its spectral radius ρ(U) is a simple eigenvalue with a
positive eigenvector. Indeed, two eigenvalues of U are real, and ρ(U) is the maximum
of positive eigenvalues. Let ψ(a) = (ψ1, ψ2)

T be an initial distribution of infected
members in the patches during the infection period, where ψ1 and ψ2 are constants.
If we set

F =

[
k1S

∗
1 0

0 k2S
∗
2

]
,

then Fψ represents the emerging rate of new infectious individuals in the patches.
From (2.6), we see that bij(a) is the probability that an infective initially in patch
j at infection age 0 is in patch i at infection age a. Then Uψ =

∫ τ

0
exp(Ba)Fψda

gives the members of infected individuals in the patches when the infection period
ends. Motivated by [10, 26], we call U the next infection matrix and define ρ(U) as
the basic reproduction number R0 of (3.1).

The following result shows that the disease is persistent if R0 > 1.
Theorem 3.2. Let (H) hold. If R0 > 1, then the disease is uniformly persistent

in the sense that there is a positive number ε such that every solution (S(t),P(t),R(t))
of (3.1) with S(0) ≥ 0, P(0) > 0 (i.e., P(0) ≥ 0 and P(0) �= 0), and R(0) ≥ 0
satisfies lim inft→∞ Pi(t) ≥ ε, i = 1, 2.

Proof. As mentioned before, the solution semiflow Φ(t) of (3.1) has a global
attractor on X. In order to use persistence theory, we define

X0 := {φ ∈ X : φ3(0) > 0, φ4(0) > 0}, ∂X0 := X \X0.

In view of (2.15), it is easy to see that X0 is positively invariant for Φ(t). Clearly,
∂X0 is relatively closed in X, and

∂X0 = {φ ∈ X : φ3(0) = 0 or φ4(0) = 0}.

Let L ∈ (L∗,∞) be fixed. Then Lemma 3.1 implies that every solution of (3.1) enters
[0, L]6 ultimately. Define

M∂ := {φ ∈ X : Φ(t)φ ∈ ∂X0 ∀t ≥ 0}.

Note that b1 > 0 and b2 > 0 imply that exp(Ba) > 0 (see, e.g., [23]). Let
(S(t,φ),P(t,φ),R(t,φ)) be the solution of (3.1) satisfying (S0(φ),P0(φ),R0(φ)) =
φ. It then follows that

M∂ = {φ ∈ ∂X0 : P(t,φ) = 0 ∀t ≥ 0}.

Set
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Uε =

⎡
⎣ k1(S

∗
1 − ε)

∫ τ

0
b11(a)da k2(S

∗
2 − ε)

∫ τ

0
b12(a)da

k1(S
∗
1 − ε)

∫ τ

0
b21(a)da k2(S

∗
2 − ε)

∫ τ

0
b22(a)da

⎤
⎦ .

Since the spectral radius of Uε is continuous in ε, we can restrict ε > 0 small enough
such that Uε is a positive matrix and ρ(Uε) > 1. Let us consider the following linear
system:

du1(t)

dt
= A1 − ξ + H1u1(t) − (μ1 + d1)u1(t) + d2u2(t),

du2(t)

dt
= A2 − ξ + H2u2(t) − (μ2 + d2)u2(t) + d1u1(t),

(3.4)

where ξ > 0 is a small number. It is easy to see that (3.4) admits an equilibrium
(u∗

1(ξ), u
∗
2(ξ)), which is globally stable and satisfies (u∗

1(ξ), u
∗
2(ξ)) → (S∗

1 , S
∗
2 ) as ξ → 0.

Thus, we can restrict ξ > 0 small enough such that every solution (u1(t), u2(t)) of
(3.4) satisfies ui(t) > S∗

i − ε, i = 1, 2, for all large t.
Let δ = min

{
ξ

k1L
, ξ
k2L

}
. We then have the following claim.

Claim. lim supt→∞ max{P1(t,φ), P2(t,φ)} ≥ δ for any φ ∈ X0.
Assume, by contradiction, that the claim does not hold for some φ ∈ X0. Then

Pi(t) := Pi(t,φ) < δ, i = 1, 2, for all large t. It follows that for all large t,

dS1(t)

dt
> A1 − ξ + H1S1(t) − (μ1 + d1)S1(t) + d2S2(t),

dS2(t)

dt
> A2 − ξ + H2S2(t) − (μ2 + d2)S2(t) + d1S1(t).

(3.5)

By the comparison theorem of cooperative systems (see, e.g., [23, 24]), it follows that
Si(t) > S∗

i − ε, i = 1, 2, for all large t. Thus, (2.8) implies that there is a t0 > 0 such
that for all t ≥ t0,

P1(t) > k1(S
∗
1 − ε)

∫ τ

0

b11(a)P1(t− a)da + k2(S
∗
2 − ε)

∫ τ

0

b12(a)P2(t− a)da,

P2(t) > k1(S
∗
1 − ε)

∫ τ

0

b21(a)P1(t− a)da + k2(S
∗
2 − ε)

∫ τ

0

b22(a)P2(t− a)da.

(3.6)

Let v = (v1, v2)
T be a positive right eigenvector of Uε with respect to ρ(Uε).

Choose l > 0 small enough such that lvi < min{Pi(t) : t0 ≤ t ≤ t0 + τ} for i = 1, 2.
We further show that

lvi < Pi(t), i = 1, 2, ∀t ≥ t0.(3.7)

Otherwise, we set

t1 = inf {t ∈ [t0,∞) : lv1 = P1(t) or lv2 = P2(t)} .

Clearly, t1 > t0 + τ . It then follows that lvi < Pi(t), i = 1, 2, for t0 ≤ t < t1, and
lv1 = P1(t1) or lv2 = P2(t1). However, (3.6) implies that for all t ∈ [t0 + τ, t1],

P1(t) > k1(S
∗
1 − ε)lv1

∫ τ

0

b11(a)da + k2(S
∗
2 − ε)lv2

∫ τ

0

b12(a)da = ρ(Uε)lv1,

P2(t) > k1(S
∗
1 − ε)lv1

∫ τ

0

b21(a)da + k2(S
∗
2 − ε)lv2

∫ τ

0

b22(a)da = ρ(Uε)lv2,

(3.8)
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which contradicts lv1 = P1(t1) or lv2 = P2(t1). Thus, (3.7) holds.
Now suppose that for some n ≥ 1,

ρn−1(Uε)lvi < Pi(t), i = 1, 2, ∀t ≥ t0 + (n− 1)τ.(3.9)

We want to prove that

ρn(Uε)lvi < Pi(t), i = 1, 2, ∀t ≥ t0 + nτ.(3.10)

Note that (3.6) and (3.9) imply that ρn(Uε)lvi < Pi(t0 + nτ), i = 1, 2. If (3.10)
is not true, then there is a t2 > t0 + nτ such that ρn(Uε)lvi < Pi(t), i = 1, 2, for
t0 + nτ ≤ t < t2, and ρn(Uε)lv1 = P1(t2) or ρn(Uε)lv2 = P2(t2). By (3.6) and (3.9),
it follows that for t ∈ (t0 + nτ, t2],

P1(t) > k1(S
∗
1 − ε)ρn−1(Uε)lv1

∫ τ

0

b11(a)da + k2(S
∗
2 − ε)ρn−1(Uε)lv2

∫ τ

0

b12(a)da

= ρn(Uε)lv1,

P2(t) > k1(S
∗
1 − ε)ρn−1(Uε)lv1

∫ τ

0

b21(a)da + k2(S
∗
2 − ε)ρn−1(Uε)lv2

∫ τ

0

b22(a)da

= ρn(Uε)lv2,

which contradicts ρn(Uε)lv1 = P1(t2) or ρn(Uε)lv2 = P2(t2). By induction, we
conclude that (3.10) holds for all n ≥ 0. Since ρ(Uε) > 1, we then obtain

lim
t→∞

Pi(t) ≥ lim
n→∞

ρn(Uε)lvi = ∞,

a contradiction. This proves our claim.
Define p : X → R+ by

p(φ) = min{φ3(0), φ4(0)} ∀φ ∈ X.

Clearly, X0 = p−1(0,∞) and ∂X0 = p−1(0). Note that p is a generalized distance
function for the semiflow Φ(t) : X → X (see [25]). It is easy to see that any forward
orbit of Φ(t) in M∂ converges to E0. By the claim above, we see that E0 is an
isolated invariant set in X, and that W s(E0) ∩X0 = ∅, where W s(E0) is the stable
manifold of E0. By [25, Theorem 3.1], it then follows that there exists δ > 0 such
that min{p(ψ) : ψ ∈ ω(φ)} > δ for any φ ∈ X0. This implies our required uniform
persistence of solutions of system (3.1).

Next we show that a small invasion of the disease is unsuccessful if R0 < 1.
Theorem 3.3. Let (H) hold. If R0 < 1, then for every L ≥ L∗ there exists

a ζ = ζ(L) > 0 such that for any φ ∈ XL with (φ3(0), φ4(0)) ∈ [0, ζ]2 the solution
(S(t,φ),P(t,φ),R(t,φ)) of (3.1) converges to E0 as t → ∞.

Proof. Let L ≥ L∗ be given. By Lemma 3.1 and its proof, XL is positively
invariant for the solution semiflow of (3.1). We then have

(S(t,φ),P(t,φ),R(t,φ)) ∈ [0, L]6 ∀t ≥ 0, φ ∈ XL.(3.11)

Set

Vε =

⎡
⎣ k1(S

∗
1 + ε)

∫ τ

0
b11(a)da k2(S

∗
2 + ε)

∫ τ

0
b12(a)da

k1(S
∗
1 + ε)

∫ τ

0
b21(a)da k2(S

∗
2 + ε)

∫ τ

0
b22(a)da

⎤
⎦ .
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By the continuity of the spectral radius of Vε with respect to ε, we can restrict ε > 0
small enough such that ρ(Vε) < 1. Arguing as before, we can choose a small number
ξ1 > 0 and a large number T1 = T1(L) > 0 such that, for any solution (u1(t), u2(t))
of the system

du1(t)

dt
= A1 + ξ1 + H1u1(t) − (μ1 + d1)u1(t) + d2u2(t),

du2(t)

dt
= A2 + ξ1 + H2u2(t) − (μ2 + d2)u2(t) + d1u1(t)

(3.12)

with (u1(0), u2(0)) ∈ [0, L]2, we have ui(t) < S∗
i + ε, i = 1, 2, for all t ≥ T1. Similarly,

we can select a small number ξ2 > 0 and a large number T2 = T2(L) > 0 such that,
for any solution (w1(t), w2(t)) of the system

dw1(t)

dt
= ξ2 − (μ1 + c1)w1(t) + c2w2(t),

dw2(t)

dt
= ξ2 − (μ2 + c2)w2(t) + c1w1(t)

(3.13)

with (w1(0), w1(0)) ∈ [0, L]2, we have Hiwi(t) < ξ1/2, i = 1, 2, for all t ≥ T2.
Let v = (v1, v2)

T be a positive right eigenvector of Vε associated with ρ(Vε).
Choose ξ3 > 0 small enough such that

ξ3 (rivi + bi1(τ)k1Lv1 + bi2(τ)k2Lv2) < ξ2, ξ3viHi < ξ1/2, i = 1, 2.(3.14)

Let T3 = T3(L) := max{T1, T2} + τ and W := diag(k1L, k2L). Then there exists
ζ = ζ(L) > 0 such that for every solution (P1(t), P2(t)) of the linear system

dP(t)

dt
= (W + B)P(t), t ≥ 0,(3.15)

with (P1(0), P2(0)) ∈ [0, ζ]2, we have Pi(t) < ξ3vi, i = 1, 2, for all t ∈ [0, 2T3].
For a given φ ∈ XL with (φ3(0), φ4(0)) ∈ [0, ζ]2, we let (S(t),P(t),R(t)) =

(S(t,φ),P(t,φ),R(t,φ)). By (3.1) and (3.11), we then have

dP(t)

dt
≤ (W + B)P(t) ∀t ≥ 0.

Since P(0) ∈ [0, ζ]2, the comparison principle implies that

Pi(t) < ξ3vi ∀t ∈ [0, 2T3], i = 1, 2.(3.16)

We further claim that (3.16) holds for all t ≥ 0. If the claim is not true, then there
exists a T4 = T4(φ) > 2T3 such that Pi(t) < ξ3vi for 0 ≤ t < T4, i = 1, 2, and
Pj(T4) = ξ3vj for j = 1 or j = 2. It follows from (3.1) and (3.14) that

dR1(t)

dt
≤ ξ2 − (μ1 + c1)R1(t) + c2R2(t),

dR2(t)

dt
≤ ξ2 − (μ2 + c2)R2(t) + c1R1(t)

(3.17)

for τ ≤ t ≤ T4. By the comparison principle and the properties of system (3.13), we
have HiRi(t) < ξ1/2, i = 1, 2, for all t ∈ [T3, T4]. It follows from (3.1) that

dS1(t)

dt
< A1 + ξ1 + H1S1(t) − (μ1 + d1)S1(t) + d2S2(t),

dS2(t)

dt
< A2 + ξ1 + H2S2(t) − (μ2 + d2)S2(t) + d1S1(t)

(3.18)
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for all t ∈ [T3, T4]. By the comparison principle and the properties of system (3.12),
we obtain

Si(t) < S∗
i + ε ∀t ∈ [T3 + T1, T4], i = 1, 2.

Hence, (2.8) implies that for any t ∈ [2T3, T4] we have

P1(t) < k1(S
∗
1 + ε)

∫ τ

0

b11(a)P1(t− a)da + k2(S
∗
2 + ε)

∫ τ

0

b12(a)P2(t− a)da,

P2(t) < k1(S
∗
1 + ε)

∫ τ

0

b21(a)P1(t− a)da + k2(S
∗
2 + ε)

∫ τ

0

b22(a)P2(t− a)da.

(3.19)

It then follows that

P1(t) < k1(S
∗
1 + ε)ξ3v1

∫ τ

0

b11(a)da + k2(S
∗
2 + ε)ξ3v2

∫ τ

0

b12(a)da = ρ(Vε)ξ3v1,

P2(t) < k1(S
∗
1 + ε)ξ3v1

∫ τ

0

b21(a)da + k2(S
∗
2 + ε)ξ3v2

∫ τ

0

b22(a)da = ρ(Vε)ξ3v2

for all t ∈ [2T3, T4]. Since ρ(Vε) < 1, we obtain Pj(T4) < ξ3vj for j = 1, 2, which
contradicts Pj(T4) = ξ3vj for j = 1 or j = 2. This shows that Pi(t) < ξ3vi, i = 1, 2,
for all t ≥ 0, and hence (3.19) holds for all t ≥ 2T3. By an induction argument similar
to that in the proof of Theorem 3.2, it follows that

Pi(t) < ρn(Vε)ξ3vi ∀t ≥ 2T3 + nτ, n ≥ 0, i = 1, 2,

which implies that limt→∞ Pi(t) = 0, i = 1, 2. By using the theory of chain tran-
sitive sets in [17] (see, e.g., the proof of [29, Theorem 2.2]), we further obtain that
(S1(t), S2(t), R1(t), R2(t)) → (S∗

1 , S
∗
2 , 0, 0) as t → ∞.

4. Examples. The objective of this section is to analyze the effect of population
dispersal on the spread of the disease. Since b1 > 0 and b2 > 0 imply exp(Ba) > 0,
it follows that the matrix U is monotonically increasing with respect to τ . Thus,
the basic reproduction number R0, the spectral radius of the positive matrix U, is
an increasing function of the infection period τ . Therefore, the longer the infection
period is, the more likely it is that the disease will spread, which is in accordance with
our intuition.

In order to analyze the influences of the population dispersal, we begin with the
case where two patches are isolated, i.e., di = bi = ci = 0, i = 1, 2. Then we have two
decoupled subsystems:

dS1

dt
= A1 + H1N1(t) − μ1S1(t) −Q1(t),

dP1(t)

dt
= Q1(t) − e−(μ1+r1)τQ1(t− τ) − (μ1 + r1)P1(t),

dR1

dt
= r1P1(t) + e−(μ1+r1)τQ1(t− τ) − μ1R1(t),

N1(t) = S1(t) + R1(t) + P1(t), t ≥ 0,

P1(0) =

∫ 0

−τ

e(μ1+r1)sQ1(s)ds,

(4.1)

and
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dS2

dt
= A2 + H2N2(t) − μ2S2(t) −Q2(t),

dP2(t)

dt
= Q2(t) − e−(μ2+r2)τQ2(t− τ) − (μ2 + r2)P2(t),

dR2

dt
= r2P2(t) + e−(μ2+r2)τQ2(t− τ) − μ2R2(t),

N2(t) = S2(t) + R2(t) + P2(t), t ≥ 0,

P2(0) =

∫ 0

−τ

e(μ2+r2)sQ2(s)ds.

(4.2)

Note that system (4.1) has a disease-free equilibrium E01 = (S∗
01, 0, 0) with S∗

01 =
A1/(μ1 −H1), and that system (4.2) has a disease-free equilibrium E02 = (S∗

02, 0, 0)
with S∗

02 = A2/(μ2 −H2). Let R0i be the basic reproduction number of the disease
in patch i. By arguments similar to those for model (3.1), it follows that

R0i = kiS
∗
0i

∫ τ

0

e−(μi+ri)ada =
kiAi (1 − exp(−(μi + ri)τ))

(μi −Hi)(μi + ri)
,

and R0i > 1 implies that the disease is uniformly persistent in the isolated patch i.
The following result shows that the disease dies out in the isolated patch i if R0i < 1.

Proposition 4.1. Let two patches be disconnected. Then the disease-free equi-
librium E0i is globally attractive if R0i < 1.

Proof. We consider only patch 1, since the proof for patch 2 is similar. As argued
for general model (2.12), we have

P1(t) =

∫ t

t−τ

e−(μ1+r1)(t−s)Q1(s)ds =

∫ 0

−τ

e(μ1+r1)sQ1(t + s)ds ∀t ≥ 0.(4.3)

It easily follows from (4.1) that

dN1

dt
= A1 − (μ1 −H1)N1(t).

Thus,

N1(t) → A1/(μ1 −H1) = S∗
01 as t → ∞.(4.4)

Since R01 < 1, we can choose ε > 0 small enough such that

Rε
01 :=

k1(S
∗
01 + ε) (1 − exp(−(μ1 + r1)τ))

μ1 + r1
< 1.(4.5)

By (4.4), we can choose t̄ > 0 large enough such that

S1(t) < S∗
01 + ε for t ≥ t̄.(4.6)

It follows from (4.3) that

P1(t) < k1(S
∗
01 + ε)

∫ τ

0

e−(μ1+r1)aP1(t− a)da(4.7)

for t ≥ t̄+ τ . Fix a v̄ > 0 such that P1(t) < v̄ for t̄+ τ ≤ t ≤ t̄+ 2τ . By an induction
argument similar to that in the proof of Theorem 3.2, it follows that

P1(t) < (Rε
01)

nv̄ ∀t ≥ t̄ + (n + 1)τ, n ≥ 0.
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Fig. 1. The graph of R0 when α = 0.5.

Since Rε
01 < 1, we have P1(t) → 0 as t → ∞. By using the theory of chain tran-

sitive sets in [17] (see, e.g., the proof of [29, Theorem 2.2]), we further obtain that
(S1(t), R1(t)) → (0, 0) as t → ∞.

When the patches are connected, we use numerical computations to find interest-
ing dynamical behavior.

Example 4.1. We fix A1 = 1, A2 = 0.6, τ = 1, k1 = 0.25, k2 = 0.1, μ1 = μ2 = 0.2,
H1 = 0.05, H2 = 0.1, r1 = r2 = 0. Then we set d2 = d and take d1 = αd, b1 = 0.01αd,
b2 = 0.01d, where α represents the ratio of d1 to d2 and 0.01 means that 99 percent
of infectious individuals in migration cannot pass through the borders of the two
patches, due to control strategies, and only one percent can pass through, due to
the failure of screening. Then R01 = 1.5106 and R02 = 0.5438. This means that if
the two patches are isolated, the disease is persistent in the first patch and dies out
in the second patch. If α = 0.5, which means that individuals in the second patch
have a higher migration rate than those in the first patch, from Figure 1 we see that
R0 > max{R01, R02}. Thus, these kinds of mobilities facilitate disease propagation.
When α = 1, R0 remains greater than 1 but has become a decreasing function of d.
When α = 3, from Figure 2 we see that the disease will die out when d is suitably
large. Hence, the increase of mobility leads to the elimination of disease propagation.
One interesting phenomenon occurs when α is larger. From Figure 3, which is typical
for α ≥ 4, we see that R0 goes through the stages of “above 1,” “below 1,” “above 1”
as d increases, which means that the disease admits switches from persistence to
extinction and then from extinction to persistence. These epidemiological changes
result from the changes of population sizes in each patch under the influences of
population dispersals. Indeed, if we regard S∗

i in the disease-free equilibrium as a
function of d, we have S∗

1 (0) = 6.6667 and S∗
2 (0) = 6, which means that population

sizes in the two patches are initially almost the same. For α < 0.9, S∗
1 is an increasing
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Fig. 2. The graph of R0 when α = 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
0.9

1

1.1

1.2

1.3

1.4

1.5

d 

R 0 

Fig. 3. The graph of R0 when α = 4.

function of d, and S∗
2 is a decreasing function of d. For α > 0.9, S∗

1 is a decreasing
function of d, and S∗

2 is an increasing function of d. Thus, individuals aggregate
towards the first patch when α < 0.9 and aggregate towards the second patch when
α > 0.9. Note that k2 < k1 implies that the second patch is better than the first
patch from the epidemiological perspective. Thus, it is easy to understand why the
basic reproduction number for d > 0 is higher than that for d = 0 when α = 0.5. For
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Fig. 4. R0 > 1 when d > 0.1574.

the cases where α > 0.9, the basic reproduction numbers tend to go down because the
net spatial flow of population mobility is directed toward the better patch. Note that
the basic reproduction number when α = 3 is lower than 1 when the dispersal rate
d is greater than a critical value. However, if α ≥ 4, the basic reproduction number
fluctuates about the threshold value 1 for medium d. This cannot be interpreted in
the manner above, and we should consider the collective effect of population sizes
of two patches and the immigration of infectives. Hence, some unexpected effects of
spatial disease transmission can be produced by population mobility.

It should be noted that there are distinctions in the demographies of the popula-
tions in two patches in the last example. However, we can find similar behavior even
when the demographies of the populations in two patches are the same. Such an ex-
ample can be obtained if we fix A1 = A2 = 0.8, H1 = H2 = 0.9, τ = 1, μ1 = μ2 = 0.2,
r1 = r2 = 0, d2 = d and d1 = αd, b1 = 0.01αd, b2 = 0.01d.

Example 4.2. We fix A1 = 1, A2 = 0.6, τ = 1, k1 = 0.1, k2 = 0.1, μ1 = μ2 = 0.2,
H1 = 0.05, H2 = 0.1, r1 = 0, r2 = 0 and b1 = 0.01d, b2 = 0.002d, d1 = d, d2 = 0.01d.
These values are different from those in the last example only in k1 and migration
rates. Now, R01 = 0.6432 and R02 = 0.5438. This means that if the two patches are
isolated, the disease dies out in the two patches. When we have the migration rates,
we see that the disease spreads in the two patches when d > 0.1574 (see Figure 4).
Hence, the mobility of individuals in this case facilitates the spread of the disease.
Note that the disease transmission coefficients of two patches are the same. We need
to check the demography of two patches to reveal the mechanism of epidemiological
changes. When the patches are disconnected, the condition for the prevalence of the
disease in the ith patch is S∗

i > 11.0333. When d > 0, we see that S∗
1 is a decreasing

function of d, and S∗
2 is an increasing function of d. Thus, when d increases, individuals

aggregate towards the second patch, and S∗
2 reaches 11.0333 at d = 0.1573. However,

the basic reproduction number R0 of the coupled system remains less than 1 for
0.1573 < d < 0.1574. This seems to be related to the spatial heterogeneity. When
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Fig. 5. The graph of R0 where there are multiple exchanges between persistence and extinction
of the disease.

d > 0.1574, we have R0 > 1, which is a consequence of the aggregation of individuals
in the second patch.

Example 4.3. We choose A1 = 1, A2 = 0.6, τ = 1, k1 = 0.2, k2 = 0.1,
μ1 = μ2 = 0.21, H1 = 0.09, H2 = 0.1 and b1 = 0.06d, b2 = 0.4d, d1 = d,
d2 = 0. Numerical calculations show that R0 crosses the critical value 1 three times at
d = 0.0601, 0.2546, 1.1784 (see Figure 5). Hence, the disease admits three exchanges
between persistence and extinction.

5. Discussions. In this paper, we have proposed an epidemic model to simulate
the dynamics of disease transmission under the influence of a population dispersal
among patches. The population dispersal among patches can be interpreted as the
movements by which people travel or migrate from one city to another city or from
one country to another country. We have incorporated a constant infection period
into the model. Under the assumptions that the death rates, the disease transmission
coefficients, the treatment rates, and the migration rates for infected individuals are
constants, by using characteristic methods, we reduce the model to a time-delayed
differential system. For this model, we have established a formula to compute the
basic reproduction number, which extends the method in [26] of computing the basic
reproduction number for multiple compartments governed by ordinary differential
equations.

We have found that the longer the infection period is, the more likely it becomes
that the disease will spread. We have shown that the disease cannot invade the
population distributed in n patches if R0 < 1 and invasion intensity is not strong, and
the disease is uniformly persistent when R0 > 1. If the disease spreads in the first
isolated patch and dies out in the second isolated patch, by numerical calculations
we have shown, in Example 4.1, that an increase of the ratio α between migration
rates may lead to an increase of the basic reproduction number when α is small, lead
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to the extinction of the disease in the two patches when α is larger, and lead to two
switches between the persistence of the disease and extinction of the disease. Another
example further shows that multiple switches between the persistence of the disease
and extinction of the disease are possible. If the disease dies out in each isolated
patch, we have shown that suitable migration rates may result in the outbreak of the
disease in both patches.

We have assumed that the death rates, the infection force, the treatment rates,
and the migration rates for infected individuals are independent of infection age. It is
interesting to study the case where they are age-dependent. We leave this as future
work.
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TRAVELING FRONTS IN PRESSURE-DRIVEN COMBUSTION∗
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Abstract. Brailovsky and Sivashinsky have proposed a model for pressure-driven combustion
in the form of a degenerate parabolic system for temperature, concentration, and pressure. It is
shown that the existence and uniqueness problem for traveling front solutions can be completely
solved by exploiting the existing invariants and by phase plane methods. The approach yields exact
propagation speeds which are noticeably larger than the approximations obtained so far.
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1. Introduction. Brailovsky and Sivashinsky [2], [3] and Brailovsky, Frankel,
and Sivashinsky [4] have proposed a model for pressure-driven subsonic combustion in
a porous medium (deflagration as opposed to detonation). The model neglects inertia
effects, and it does not produce shocks but traveling fronts; see Figure 1.1. This model
and some modifications have been studied in a series of subsequent papers [5], [12],
[13], [11], [7]; see also [6]. The analysis of the model is centered around the existence
and uniqueness of traveling front solutions and their stability. Brézis, Kamin, and
Sivashinsky [5] impose an additional condition derived from the behavior at the leading
edge of the front and thus obtain a simplified system in the form of a degenerate
diffusion system for temperature and pressure alone. Then they reduce the traveling
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Fig. 1.1. Deflagration front. Before the leading edge (right): temperature Θ = 0, pressure
Π = 0, and concentration Φ = 1. Behind the front (left): temperature Θ = 1, pressure Π = 1,
concentration Φ = 0. All quantities are given in nondimensionalized units.
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front problem to the discussion of a nonautonomous scalar differential equation. In
the present paper we find a conservation law for the system of partial differential
equations. In the four-dimensional system of ordinary differential equations for the
shapes and speeds of traveling fronts we can use this conservation law and a second
invariant to reduce the problem to a system in dimension two, which can be treated
by phase plane methods.

In section 2 we define the full problem and the simplified problem and exhibit a
conservation law. Section 3 consists of two parts, reduction of the four-dimensional
traveling front problem to a two-dimensional problem (which works for general non-
linearities) and solution of the specific combustion problem. In section 4 we discuss
the differences between the two models in quantitative terms (with proofs deferred
to an appendix). In section 5 we present some results on a limiting case (gas near
ignition temperature everywhere) without giving the proofs in detail. Finally, in a
conclusion, section 6, we sketch the essentials of the analytic approach and mark the
point from which one must use numerics.

2. The combustion problem. The original problem [2] reads

γΘt − (γ − 1)Πt = Ω(Φ,Θ),

Φt = −Ω(Φ,Θ),

Πt − Θt = ΔΠ,(2.1)

with

Ω(Φ,Θ) = Φg(Θ),(2.2)

where g(Θ) is a nondecreasing function and γ > 1.
The variables Θ, Φ, and Π correspond, after suitable normalization, to the tem-

perature Θ ∈ [0, 1], the concentration of the deficient reactant Φ ∈ [0, 1], and the
pressure Π ∈ [0, 1]. The function g describes the reaction rate as a function of tem-
perature, and the constant γ is the specific heat ratio.

The function g is continuous and piecewise differentiable. There is some β ∈ (0, 1)
such that g(Θ) = 0 for 0 ≤ Θ ≤ β and g(Θ) > 0 for β < Θ ≤ 1.

The number β is the ignition temperature. There are various stationary states of
the gas with temperature below ignition and any pressure and concentration. In [2]
it is assumed that prior to combustion (at the leading edge of the front; see Figure
1.1) the state is

Θ = 0, Φ = 1, Π = 0(2.3)

and that

Θ = 1, Φ = 0, Π = 1(2.4)

after the combustion process has been completed. As a deflagration front passes
through, the state of the gas passes from (2.3) to (2.4). Hence a traveling front
(traveling from left to right) is a wave solution of the system (2.1) which satisfies
(2.3) at x = +∞ and (2.4) at x = −∞.

By linearly combining the equations, the system (2.1) can be written in the form
of a standard dynamical system with only one time derivative in each equation:

Πt = γΔΠ + Φg(Θ),

Θt = (γ − 1)ΔΠ + Φg(Θ),

Φt = −Φg(Θ).(2.5)
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Hence it is obvious that the model (2.1) is a degenerate parabolic system.
The approach in [5] is based on the following idea. If the explosion were homoge-

neous, then the spatial derivatives would vanish. Then, whatever the reaction term
Ω(Φ,Θ) is, Θ + Φ and Π + Φ are constants. Using the initial conditions (2.3), one
finds

Φ = 1 − Θ.(2.6)

If this equation is used to eliminate Φ from (2.5), then one arrives at

Πt = γΔΠ + (1 − Θ)g(Θ),

Θt = (γ − 1)ΔΠ + (1 − Θ)g(Θ).(2.7)

The authors of [5] discuss the problem of traveling fronts for the system (2.7), subject
to the boundary condition Π = Θ = 0 at the leading edge and Π = Θ = 1 after the
front has passed. But we observe that the system (2.5) has a conservation law, and
hence we can improve on [5].

Proposition 2.1. For a given solution of the system (2.5) the function

Φ + γΘ − (γ − 1)Π(2.8)

does not depend on the variable t.
Proof. In (2.5) check the equation Φt + γΘt − (γ − 1)Πt ≡ 0.
The physical interpretation of (2.8) is evident. It says that, for a given solution, at

a given space point, the expression (2.8) does not change in time, or, in other words,
the pressure is determined by the remaining reactant and the temperature. Equation
(2.8) could be used to eliminate the variable Φ from (2.5) and to obtain a system for
the two variables Π and Θ which, however, has coefficients that explicitly depend on
the space variable.

Of course (2.6) is based on a rather crude assumption since, away from the leading
edge, the front is far from equilibrium. It is known that for certain diffusive traveling
front problems (Fisher–KPP with concave nonlinearity) the speed is determined by
the linearization at the leading edge (see [1], [8], [9], [10], [14]), but this is not so for
combustion problems in general. For these reasons we treat the full problem here,
whereby we can use (2.8).

3. Traveling fronts for the full problem. We look for traveling fronts of the
problem (2.5) and for the simplified problem (2.7). We show the following result.

Theorem 3.1. If γ(1 − β) ≤ 1, then there are no traveling fronts for the full
system nor for the simplified system since the specific heat ratio is too small or the
ignition temperature is too high. If γ(1 − β) > 1, then the full system has a traveling
front solution with speed c(1), and the simplified system has a traveling front solution
with speed c(0). In either case the front is unique up to translation. Furthermore,
c(0) < c(1).

3.1. Reduction of the problem. For the proof we make a traveling wave
ansatz in (2.5): Π = Π(x − ct), Θ = Θ(x − ct), Φ = Φ(x − ct) with c > 0. We get a
system of order four (counting the derivatives):

−cΠ′ = γΠ′′ + Φg(Θ),(3.1)

−cΘ′ = (γ − 1)Π′′ + Φg(Θ),(3.2)

−cΦ′ = −Φg(Θ).(3.3)
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The ′ denotes the derivative with respect to the traveling wave coordinate x − ct.
We look for solutions of this system which satisfy the boundary conditions (2.3) at
+∞ and (2.4) at −∞. We recover (2.8) as an invariant of motion and find another
invariant.

Proposition 3.2. The system (3.1), (3.2), and (3.3) has one invariant of motion
independent of the parameter c,

Φ + γΘ − (γ − 1)Π = const,(3.4)

and another invariant of motion depending on the parameter c,

Π′ + c(Π − Θ) = const.(3.5)

Proof. We subtract (3.2) from (3.1), get −cΠ′ + cΘ′ = Π′′, integrate, and obtain
(3.5). We add (3.1) and (3.3), get −cΠ′ − cΦ′ = γΠ′′, integrate, and get

γΠ′ + cΠ + cΦ = const.(3.6)

Combining (3.5) and (3.6) yields (3.4).
Using the condition (2.3) at the leading edge, we get from (3.4) and (3.5) for

traveling fronts the equations

Π′ = cθ − cΠ(3.7)

and

Φ = 1 − Θ + (γ − 1)(Π − Θ),(3.8)

from which the difference from (2.6) is obvious. Now we use (3.7), (3.2), and (3.8) to
get a system for the variables Π and Θ,

Π′ = cΘ − cΠ,

Θ′ = c
γ − 1

γ
(Θ − Π) − 1 − Θ + (γ − 1)(Π − Θ)

cγ
g(Θ).(3.9)

We have used two invariants of motion, and hence this system is of order two only.
On the other hand, for front solutions of the simplified system (2.7) we get another

(three-dimensional) system for the variables Π and Θ,

−cΠ′ = γΠ′′ + (1 − Θ)g(Θ),

−cΘ′ = (γ − 1)Π′′ + (1 − Θ)g(Θ).(3.10)

Integration as before (using only one invariant) leads to a two-dimensional system

Φ′ = cΘ − cΠ,

Θ′ = c
γ − 1

γ
(Θ − Π) − 1 − Θ

cγ
g(Θ).(3.11)

Now we are ready to compare the systems (3.9) and (3.11). We scale the independent
variable by a factor c, and we introduce a parameter ε ∈ [0, 1] such that we can write
both systems in the same form

Π′ = Θ − cΠ,

Θ′ =
γ − 1

γ
(Θ − Π) − 1 − Θ + ε(γ − 1)(Π − Θ)

c2γ
g(Θ),(3.12)
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uβ 1c > c
0

c = c
0
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0

u + v = β

v = −u/γ

Fig. 3.1. Schematic phase plane of the u, v-system for several values of c. There is an interval
of stationary points between the origin and (β, 0) and an isolated stationary point (1, 0). For c = c0

the unstable manifold of the saddle point (1, 0) meets the straight line through the origin, which is
the stable manifold of (0, 0).

with ε = 1 for the full system (2.1) and ε = 0 for the simplified system (2.7).
The system (3.12) can be further transformed by introducing new dependent

variables (a similar substitution has been used in [5]):

u = Π, v = Θ − Π.(3.13)

The new system is

u′ = v,

v′ = − 1

γ
v − 1

c2γ
(1 − u− (1 + ε(γ − 1))v)g(u + v).(3.14)

Now the boundary conditions read

u(+∞) = 0, v(+∞) = 0,

u(−∞) = 1, v(−∞) = 0.

3.2. Qualitative analysis. We enter the qualitative analysis of the system
(3.14). The phase plane is shown in Figure 3.1. There is an interval of station-
ary points (u, 0) with u ≤ β and an isolated stationary point (1, 0), which is a saddle
point. We are looking for a heteroclinic orbit, i.e., for a trajectory, for some value of
c, which leaves the point (1, 0) with the unstable manifold and ends at (0, 0).

In the domain u + v ≤ β the system is linear, u′ = v, v′ = −v/γ, and hence
−dv/du = 1/γ < 1. Hence in this domain any trajectory follows a straight line which
ends at one of the stationary points with u ≤ β. In particular, the trajectory ending
at (0, 0) lies on the straight line v = −u/γ. If we follow this line (backward in time),
then it meets the line u + v = β at the point

P0 = (u0, v0) = (βγ/(γ − 1),−β/(γ − 1)).(3.15)
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The point (1, 0) is a saddle point. Consider the (negative part of the) unstable
manifold of the saddle point. For any given c > 0 it arrives at some point of the line
u+ v = β. Along the unstable manifold we have (1− u− (1 + ε(γ− 1))v)g(u+ v) > 0
in view of v < 0. Hence the factor of −1/c2γ in (3.14) is positive. Using this fact,
one can show that the unstable manifolds for different c do not intersect (e.g., by the
method of positively invariant sets; see [8]). Hence the unstable manifold depends
on c in a monotone way. For very large c it arrives at the line u + v = β at a point
with v small. For very small positive c the unstable manifold arrives at that line near
u = 1, v = −1/γ. If u0 ≥ 1, i.e., if γ(1 − β) ≤ 1, then there cannot be a heteroclinic
connection. Next assume

γ(1 − β) > 1.(3.16)

If c runs from 0 to +∞, then there is exactly one value c0 > 0 where the unstable
manifold meets the point P0 and thus forms a heteroclinic connection to (0, 0). Hence
we have shown the following proposition.

Proposition 3.3. Suppose that (3.16) holds. For any choice of ε ∈ [0, 1] there
is exactly one value c = c(ε) such that the system (3.14) has a heteroclinic orbit
connecting (1, 0) to (0, 0).

If ε is increased from 0 to 1, then in (3.14), for given u, v, and c, the quantity v′ is
increasing, and hence the trajectory is moved upward; we have to increase c to move
it down again to meet the point P0. This argument shows that c(ε) is an increasing
function. This argument can be worked out in detail using positively invariant sets.
Hence Theorem 3.1 has been proved.

4. Quantitative comparison. We have shown for the full system as well as for
the simplified system the existence and uniqueness of the desired front solutions. The
speeds c(0) < c(1) are clearly different. The question arises whether the difference
is small in some sense and whether c(0) can be seen as a useful approximation. We
just mention that in the limiting case β = 0 (see below) the full problem and the
simplified problem yield the same speed because that problem is linearly determined.
However, for β > 0 the two speeds are clearly different. To have something concrete
at hand, we consider a caricature where at ignition temperature β the function g(Θ)
jumps to some positive value κ and then stays constant,

g(Θ) =

{
0, 0 ≤ Θ ≤ β,
κ, β < Θ ≤ 1.

(4.1)

Then the equations (3.14) become piecewise linear and can be solved explicitly. We
get an explicit formula for c(ε),

c2(ε) = κ
1 + (1 + ε(γ − 1))q

q(1 + γq)
, where q =

β

γ − 1 − γβ
.(4.2)

Hence, as stated before, by choosing ε = 0 instead of ε = 1, the speed in underesti-
mated. The effect becomes evident in the limit of large γ, where

c2(ε) ≈ κγ(1 − β)

(
1 − β

β
+ ε

)
.(4.3)

5. The limiting case. The limiting case β = 0 of the combustion problem can
be interpreted as a situation of a traveling front moving into a gas which is at ignition
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temperature but not yet burning. Then we have to be more specific about the shape
of the nonlinearity. We assume

g(0) = 0, g′(Θ) > 0 for Θ ≥ 0.(5.1)

Once the problem has been reduced to the system (3.14) for the variables u and v, the
subsequent qualitative analysis, though complicated in the details, follows essentially
the approach to the Fisher–KPP problem (see [8], [9]).

Linearization at the leading edge of the front yields two critical values for the
speed c,

c± =
√
g′(0)(

√
γ ±

√
γ − 1 ).(5.2)

Proposition 5.1. There is a number c0 ≥ c+ such that for every c ≥ c0 the
unstable manifold of (1, 0) connects to (0, 0) in such a way that the corresponding front
is monotone. There are no monotone fronts for c < c0.

The speeds of monotone fronts form a half-line [c0,∞). There are no such fronts
for c < c+, particularly not for c < c−. Indeed, for c ∈ (c−, c+) the point (0, 0) is a
stable focus, and hence fronts (if they exist) are oscillating. For c ∈ (0, c−) the point
(0, 0) is again a stable node. If the unstable manifold connects to (0, 0), then it first
leaves the domain u > 0.

Now it remains to check whether the lower bound c+ can be achieved. Here
we use the subtangential condition (which in the Fisher case is sufficient for linear
determinacy; see [9], [14]),

g(u) ≤ g′(0)u.(5.3)

The following proposition can be shown by comparison arguments.
Proposition 5.2. Assume that the function g satisfies the subtangential condi-

tion (5.3). Then c0 = c+.
We remark that a unique traveling front can also be shown to exist for “bistable”

nonlinearities such as g(Θ) = Θ(Θ − α) with some α > 0.

6. Conclusion. The combustion model of Brailovsky and Sivashinsky is, in
mathematical terms, a degenerate parabolic system. Therefore one expects deflagra-
tion fronts traveling with asymptotically constant shape and speed. Shape and speed
can be found from a nonlinear boundary value problem for a system of ordinary dif-
ferential equations of order four with boundary conditions at infinity. In this paper we
have found a new conservation law for the full system of partial differential equations,
which yields an invariant of motion for the ordinary differential equations. The latter
have a second invariant of motion independent of the first. With these two invariants
and some invertible transformation we can reduce the four-dimensional problem to a
two-dimensional problem, which can be treated by phase plane methods. These ana-
lytical steps work for the given system as well as for the simplified system which was
studied by Brézis, Kamin, and Sivashinsky and further for a one-parameter family of
problems connecting the full system and the simplified system. This approach yields
the exact speed of propagation. A comparison property shows that it is always larger
than the previously obtained estimates. Concrete examples show that discrepancy
between the correct solution and these estimates can be very large.

In contrast to the traveling front problem for the Fisher equation where the well-
known formula c0 = 2

√
Df ′(0) holds under rather general concavity assumptions on

the nonlinearity f , here in the combustion problem there is no explicit simple formula
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(and cannot be); i.e., in concrete examples (other than in limiting cases as in the
appendix) the two-dimensional boundary value problem (3.14) must be solved by a
numerical method, e.g., by a shooting method starting at the unstable manifold of
the stationary point behind the front (1, 0).

7. Appendix. Proof of formula (4.2). First observe that c2 scales with κ,
and hence we can choose κ = 1. In the domain u + v > β we have

u′ = v,

v′ = − 1

c2γ
+

u

c2γ
− 1

c2γ
(1 + ε(γ − 1) − c2)v.

This is an inhomogeneous linear system. The stationary point (1, 0)T yields a special
constant solution. The homogeneous system has a 2 × 2 matrix with a positive and
a negative eigenvalue (recall that (1, 0) is a saddle point). The positive eigenvalue λ1

corresponds to the unstable manifold:

λ1 =
1 + ε(γ − 1) − c2

2c2γ
+

1

2c2γ

[
(1 + ε(γ − 1) − c2)2 + 4c2γ

]1/2
.

The eigenvector is (1, λ1)
T ; hence the unstable manifold is given by(

1
0

)
−
(

1
λ1

)
eλ1t.(7.1)

This manifold is supposed to meet the point P0 given in (3.15) for some value of t.
This condition yields two equations,

1 − eλ1t =
γ

γ − 1
β, −λ1e

λ1t = − 1

γ − 1
β.(7.2)

We eliminate eλ1t and get

λ1

(
1 − γ

γ − 1
β

)
=

1

γ − 1
β.(7.3)

Recall that λ1 depends on c. In (7.3) we solve for c and get the explicit formula (4.2).
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SMALL- AND WAITING-TIME BEHAVIOR OF A DARCY FLOW
MODEL WITH A DYNAMIC PRESSURE SATURATION RELATION∗
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Abstract. We address the small-time evolution of interfaces (fronts) for the pseudoparabolic
generalization

∂u

∂t
=

∂

∂x

(
uα ∂u

∂x
+ uβ ∂2u

∂x∂t

)

of the porous-medium equation, identifying regimes in which the local behavior remains fixed for
some finite time and others in which it changes instantaneously. A number of phenomena beyond
those exhibited by the porous-medium equation are elucidated, including retreating fronts and novel
types of local behavior. Related results for the important limit case

∂u

∂t
=

∂

∂x

(
uβ ∂2u

∂x∂t

)
are also described.

Key words. degenerate pseudoparabolic equation, small-time behavior, waiting-time phenom-
ena, time-reversibility
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1. Introduction. In this paper we consider the Cauchy problem for the degen-
erate pseudoparabolic equation

∂u

∂t
=

∂

∂x

(
uα ∂u

∂x
+ uβ ∂2u

∂x∂t

)
,(1.1)

where α and β are positive constants, with initial condition u(x, 0) = u0(x) having
u0(x) = 0 for x ≥ a which, for definiteness, we take to satisfy

u0(x) ∼ A(a− x)p+ as x → a(1.2)

for some positive constants A and p. Since we are concerned here with the local be-
havior near the right-hand interface x = a, that near the left-hand one (if there is one)
need not concern us. We shall need to defer detailed discussion of the boundary con-
ditions which can hold at an interface x = s(t) until we have analyzed the permissible
local behavior of solutions. However, we shall throughout impose the conservation of
mass condition

uα ∂u

∂x
+ uβ ∂2u

∂x∂t
= 0 at x = s(t) .(1.3)
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Aspects of the physical background to (1.1) are given in [21] and [10]; see also
[11]. We summarize these here. The model equation for unsaturated flow in porous
media with a dynamic capillary pressure relation has the general form

∂u

∂t
=

∂

∂x

(
K(u)

∂

∂x

(
−pc(u) + L

∂u

∂t

))
.(1.4)

The unknown is the water saturation u in a horizontally placed one-dimensional
porous medium, K(u) is the hydraulic conductivity, pc(u) is the capillary pressure
function, and L can be regarded as a damping coefficient. Under the assumption that
the water saturation u is small, adopting power laws for these nonlinear functions of u
leads to (1.1). Typically pc(u) is a nonincreasing function, such that p′c(0

+) = ∞, and
K(u) is increasing, with K(0) = K ′(0) = 0. According to these criteria, when (1.1)
provides a small u approximation to (1.4) the exponents necessarily satisfy α < β;
nevertheless we consider here all possible positive α and β for completeness and be-
cause of other possible applications. We note that (1.4) combines conservation of
mass and Darcy’s law with the pressure-saturation relation

pc(u) = pa − pw + L
∂u

∂t
(L > 0) ,(1.5)

where pa and pw denote the air and water pressures. This equation is the classical
capillary-pressure relation extended by a relaxation term (L > 0), and models cap-
illary forces, taking into account dynamic effects. This extension of the Darcy flow
model is based on the approach introduced in [19], motivated by previous experimen-
tal work by Stauffer [32], among others; see [17] and [18] for an overview. Earlier
related models can be found in [6], [4], and [3]. For derivations of (1.1) on the basis of
homogenization and hysteresis ideas, see also [7] and [20], respectively. Third order
mixed derivatives terms also appear as regularizations of forward-backward diffusion
equations as in [30], and in the viscous Cahn–Hilliard equation [29]; other degenerate
regularizations of forward-backward equations arise in the case of the viscous Cahn–
Hilliard equation with degenerate mobility (see [14]) and as a model for poroviscous
thin-film flows, which relates closely to (1.1); see [26]. Equation (1.1) can be obtained
as a (somewhat ad hoc) model of thin-film flows of viscoelastic fluids, with α = β = 3
(no slip) or α = β = 2 (strong slip), if instead of surface tension (see [31]) gravity
is considered as the driving force, the usual Reynolds equation being replaced for a
“Maxwell” fluid by

∂u

∂t
=

∂

∂x

(
uα ∂

∂x

(
p + τ

∂p

∂t

))

(where u is the film thickness, p the pressure, and τ the relaxation time). Finally we
mention the work by Düll [13], where (1.1) with α = β appears as a model of case II
diffusion in polymers.

Observe that the classical capillary pressure relation (L = 0 in (1.5)) yields the
familiar porous-medium equation (PME)

∂u

∂t
=

∂

∂x

(
uα ∂u

∂x

)
.(1.6)

This equation is very widely studied as a paradigm degenerate-diffusion equation;
see [1]. An interesting property of the PME is the occurrence of fronts: interfaces



1484 J. R. KING AND C. M. CUESTA

that, in terms of saturation, separate wet (u > 0) and dry (u = 0) regions. Many of
the intriguing phenomena we shall discuss for (1.1) arise even in the absence of the
diffusion term, i.e., for

∂u

∂t
=

∂

∂x

(
uβ ∂2u

∂x∂t

)
,(1.7)

though in the case of (1.7) the evolution has to be forced somehow since the solution
to the Cauchy problem is simply u = u0(x). Equation (1.7) with β = 1 governs (see
[15] and the references therein) the thin-film limit of the Hele–Shaw problem with
linear kinetic undercooling (similarly, (1.1) with α = β = 1 arises when both gravity
and kinetic undercooling are present) and, to the best of our knowledge, first arose
[23] in the description of the growth of oxide layers during the fabrication of silicon
integrated circuits. It is also a limit case of (1.1) for large α (for u < 1), and it is
striking that, because only the time derivative of u appears inside the highest spatial
derivative, it typically does not smooth nonanalyticities in the initial data. Equation
(1.7) is formally time-reversible (i.e., invariant under t → −t), but it is instructive
to highlight straight away one of the noteworthy consequences that follow from the
analysis later in the paper, namely, that this time-reversibility is in fact illusory.
Thus we consider (1.7) with β = 1, say, subject to suitable compactly supported
nonnegative initial data in x > 0 and to

u(t) =

∫ t

0

P (τ)dτ at x = 0 ,(1.8)

with the inlet pressure P (t) prescribed. Were the problem time-reversible, then if,
say, the sign of P changes at t = t1 such that the right-hand side of (1.8) returns
to zero at t = t2 > t1, then at t = t2 we would simply recover the initial data
for all x. If P > 0 for 0 < t < t1 and P < 0 for t1 < t < t2 (for brevity we
consider only a single change in sign), this is indeed what transpires for the problem
formulation described later in the paper, which implies here that u has zero slope at
the interface throughout 0 < t < t2 (corresponding to the motion of a thin film of
fluid in a Hele–Shaw cell over a flat substrate which it completely wets, in the sense of
the contact angle at an advancing contact line being zero; advancing and retreating
contact lines have distinct behaviors for reasons which are to some extent implicit
in the analysis of [15] and are addressed in detail below). However, in the converse
case the interface retreats for 0 < t < t1 (while P is negative; we assume it is not so
negative that the interface reaches x = 0) with u in general having finite slope there,
implying that this retraction is nonreversible: while the interface advances again for
t1 < t < t2 (with P > 0), it does so with zero contact angle and the initial conditions
are not recovered. The unregularized Hele–Shaw problem and the Hele–Shaw problem
with linear kinetic undercooling share formal time-reversibility. In the former case the
suction (negative-pressure) problem typically leads to finite-time singularities through
which the solution cannot usually be meaningfully continued (see, for example, [12]
and the references therein); in the latter case the kinetic-undercooling regularization
ensures that, even if singularities form, the solution can be continued through them
and the failure of time-reversibility has important implications for this and other such
problems, some of which are explored briefly below. Thus the formulation (1.7) is an
important problem in its own right, the theory for which is in its infancy compared to
that of (1.6), and our results, notably those of the appendix, encompass this special
case of (1.1).
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In the context of occurrence of fronts, Hulshof and King [21] studied the behavior
of solutions near fronts for (1.1). They show that for 2 ≤ β < 2α the interface remains
fixed (at x = a) for all time and the solution develops a discontinuity there with

u(a−, t) = U(t), u(a+, t) = 0 .(1.9)

We emphasize that the solution is then genuinely discontinuous, with u = 0 holding
for all t throughout x > a. By contrast, in the other two ranges of (α, β) the front
moves, and behaves locally as a traveling wave. In the range β > 2α the moving-
front behavior is of PME type, whereas in the range β < min(2, 2α) the second order
term in (1.1) is irrelevant at the front, and the behavior of the moving front is “new.”
In the fixed-front cases (1.3) with s(t) = a suffices to furnish a correctly specified
problem, but in the moving-front cases additional conditions involving appropriate
prescriptions of the local behavior are required; these are formulated in section 3
below.

It is well known for (1.6) that interfaces can either move immediately or remain
fixed for a finite time (the waiting time) and then start to move; see, for instance,
[8] and [2]. The purpose of this paper is to investigate such phenomena for (1.1). In
some fixed-front cases we shall find that U(t) > 0 for all t > 0, while in the remainder
(which we term “waiting-time” cases) we have

U(t) = 0 for 0 ≤ t ≤ tw, U(t) > 0 for t > tw(1.10)

for some waiting time tw > 0. (U(t) may in principle return to zero for some t > tw,
but we shall not investigate such cases here.) In other ranges of (α, β) the interfaces
move, at least for sufficiently large t. In some of these cases we shall see that the
right-hand interface, x = s(t) with s(0) = a, satisfies s(t) > a for all t > 0, while for
the waiting-time regimes we have

s(t) = a for 0 ≤ t ≤ tw .(1.11)

We note that in some regimes both retreating and advancing fronts are possible so
that, in contrast to (1.6), s(t) > a need not hold for t > tw. Waiting-time solutions
should not be confused with fixed-front cases, even though (1.11) is satisfied by both;
in view of the first expression in (1.10), fixed- and moving-front regimes are indistin-
guishable during the waiting period, but U > 0 ultimately applies in the former case,
distinguishing waiting fronts (having U = 0) from fixed ones.

Our analysis here aims to clarify such matters by analyzing the local behavior
close to x = a; moreover, we shall also identify retreating-front cases whereby s(t) < a
for sufficiently small positive t, say. The goal of this paper is thus to develop a
comprehensive small-time classification of (1.1)–(1.2) comparable to that established
for the PME in [16], [27] (see also [28]) and, in doing so, to identify new types of
qualitative behavior which are of significance beyond the small-time regime; we shall
see that the range of possibilities for (1.1) is significantly richer than that for (1.6).

In the next two sections we give the necessary ingredients for our subsequent
analysis. In section 3 we reexamine the local balances for (1.1) and identify regimes
of α and β in which retreating fronts are possible. We then turn to the analysis of
the different relevant small-time regimes. Most of these are for brevity summarized
in tables (we refer the interested reader to [24], where the analysis of all cases is given
explicitly). Section 5 examines cases in which (1.6) dominates the local behavior, a
first case where there is no waiting-time, a case where there are “global” waiting-
time scenarios (cf. [27] for (1.6)), and the “local” waiting-time case (cf. [28] for (1.6)).
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Table 1

Each table or section listed below describes a distinct small-time regime. In the borderline cases
we have fronts that move exponentially slowly with t. For a discussion of the distinction between
“global” and “local” cases see the relevant sections below. “Immediate change” means the local
solution instantaneously adjusts, but a waiting-time scenario may still ensue.

β < α + 1 β = α + 1 β > α + 1

p < 2/β Table 21 Table 3 (bottom) Table 3 (top)
non-PME
balance no waiting time

p > 2/α p = 2/α p < 2/α

p > 2/β Table 51 Table 6 Table 4
PME (β > α) (β > α)
balance “global” waiting time “local” waiting time no waiting time

p = 2/β Section 7 Section 81 Section 6
non-PME (β < α) (α = β) (β > α)
balance (I) immediate change (I) no waiting time immediate change

(II) “global” waiting time (II) “local” waiting time
(III) immediate change (III) no waiting time
(borderline) (borderline)

Section 7

Table 6

Table 5Table 4

α

Table 2

Table 3

p

β=α+1

β

β=2/p

Section 8

α=2/ α=β

Table 3

Section 6

bottom

top

(a) Regimes in the (α, β)-plane for fixed
p.

β=2/p

=2/pβnon−PME moving 

fixed fronts

fronts

α

β=2α

if p<1

if p>1

β=α+1

β

α=2/p if p>1

β=2

α=2/p if p<1

PME moving

fronts

(b) The regimes relevant to the small-
time behavior and the moving-fixed-front
cases.

Fig. 1. The (α, β)-plane.

Sections 5 and 6 discuss other non-waiting-time cases. Sections 7 and 8 discuss critical
cases (p = 2/β with β < α and p = 2/α with β = α) in which the behavior is rather
delicate (and novel) and we conclude in section 9 with a discussion.

Table 1 gives a summary of the results of small-time analysis. Figure 1 illustrates
these regimes in the (α, β)-plane, together with the relevant moving/fixed front ranges.
We observe that although in section 5 (i.e., for the case p > 2/β) the dominant balance
is of PME type, the behavior may differ from PME, since this regime lies partially
in the fixed-front ranges and partially in the non-PME moving-front range found in
[21]; see Figure 1(b).

1Relevant regimes for the applications with α = β; see the introduction.
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2. Method/preliminaries. In order to identify the appropriate small-time be-
havior, we first introduce the small-time (outer) expansion

u ∼ u0(x) + u1(x)t as t → 0+ with a− x = O(1) ,(2.1)

which at leading order gives the equation

u1 −
d

dx

(
uβ

0

du1

dx

)
=

d

dx

(
uα

0

du0

dx

)
.(2.2)

The relevant boundary conditions on (2.2) will be noted as they arise. The expansion
(2.1) may be nonuniform as x → a, depending on the behavior of u0(x). If it is, then
it is typically necessary to introduce a local similarity variable η = (x− a)/tω, where
ω needs to be identified, and consider the inner region η = O(1) as t → 0+. It will be
necessary to distinguish several regimes. Observe that in (2.2) the first term of the
left-hand side dominates the second as x → a if p > 2/β, while the second dominates
the first if p < 2/β. In the latter case, and in the borderline case p = 2/β, the sign
of β − (α + 1) dictates the dominant balance as x → a. This leads us to distinguish
regimes for which we will have different similarity (inner) behavior.

We now summarize some possible small-time balances in (1.1); these will provide
the crucial ingredients in the analysis that follows. First, if we assume that the
solution is of the form u(x, t) ∼ tγf(η) for small t, then by (1.1) possible small-time
balances can be identified from

γf−ωη
df

dη
∼ tαγ−2ω+1 d

dη

(
fα df

dη

)
+tβγ−2ω d

dη

(
fβ

(
(γ − ω)

df

dη
− ωη

d2f

dη2

))
.(2.3)

This gives the following possibilities.
(i) If all the terms of (2.3) balance as t → 0+, then ω = β/2(β−α), γ = 1/(β−α)

and

u ∼ t
1

(β−α) f
(
(x− a)/t

β
2(β−α)

)
if β �= α , u ∼ (a− x)

2
α f(t) if β = α ,(2.4)

which give exact similarity reductions of (1.1).
(ii) If the left-hand side and the first term on the right-hand side of (2.3) dominate

as t → 0+, we get a one-parameter (γ) family of similarity solutions with ω = (1 +
αγ)/2, so

u ∼ tγf
(
(x− a)/t

1
2 (1+αγ)

)
as t → 0+ .(2.5)

This is a similarity reduction of the PME limit of (1.1), (1.6) and is consistent for
(1.1) as t → 0+ (i.e., the omitted terms in (2.3) are indeed negligible) when γ > 0 if
β > α with γ > 1/(β−α); the precise value of γ can readily be determined from that
of p in (1.2) (see below).

(iii) If the left-hand side and the last term of the right-hand side in (1.1) balance
and dominate as t → 0+, then the small-time behavior might be of the form

u ∼ Ω
2
β (t)f ((x− a)/Ω(t)) ,(2.6)

which is a similarity reduction of (1.7) for any Ω(t), and hence f satisfies the equation

f − β

2
η
df

dη
=

d

dη

(
fβ d

dη

(
f − β

2
η
df

dη

))
.(2.7)
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We observe that the required solution to this equation, supplemented with appropriate
boundary and initial conditions, can in a number of cases be written in closed form
by noting that

uβ =
β2

2(2 − β)
(s(t) − x)2(2.8)

is an exact solution of (1.7) for any s(t). Writing s(t) − a ∼ η0Ω(t) we thus have the
similarity solution

fβ(η) =
β2

2(2 − β)
(η0 − η)2 .(2.9)

In many cases that follow it will suffice to restrict our attention to the special
one-parameter (power-law) case (the parameter being again γ)

u ∼ tγf
(
(x− a)/t

βγ
2

)
as t → 0+ ,(2.10)

whereby ω = βγ/2, which, from (2.3), is consistent for (1.1) when γ > 0 if α < β with
γ < 1/(β − α) or if α ≥ β.

(iv) If the two terms of the right-hand side balance and dominate as t → 0+, then
γ = 1/(β−α) and the expected small-time behavior is of the one-parameter (namely,
ω) form

u ∼ t
1

(β−α)h ((x− a)/tω) as t → 0+ ,(2.11)

which gives a similarity reduction to

∂

∂x

(
uα ∂u

∂x

)
∼ − ∂

∂x

(
uβ ∂2u

∂x∂t

)
(2.12)

and, from (2.3), is consistent for (1.1) if β > α with ω > β/2(β −α). Requiring mass
conservation, (1.3), and from the matching conditions which will subsequently follow,
it follows that

1

α− β + 1
uα−β+1 ∼ −∂u

∂t
(2.13)

for β �= α + 1. From this we obtain

uβ−α(x, t) ∼ α− β

α− β + 1
t + Uβ−α

0 (x)(2.14)

for some function U0(x) which we shall subsequently equate to the initial data u0(x);
U0 = A(a− x)1/(β−α)ω for constant A corresponds to the self-similar form (2.11).

(v) If the final term in (1.1) dominates, that is (in a slight abuse of notation),

∂

∂x

(
uβ ∂2u

∂x∂t

)
∼ 0 ,(2.15)

then

u ∼ tγh((x− a)/tω) as t → 0+(2.16)
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provides a similarity reduction for any γ and ω, self-consistency demanding that
βγ < 2ω and (β − α)γ < 1. Imposing conservation of mass at x = a implies from
(2.15) that ∂2u/∂x∂t ∼ 0 so for some constants A and B,

h(η) = A(−η)
γ
ω + B .(2.17)

(vi) Other possible small-time balances are of traveling-wave type, and will typi-
cally give inner-inner regions enabling the appropriate local behavior at the front to
be attained. Setting x = s(t) + ζ gives

∂u

∂t
− ṡ

∂u

∂ζ
=

∂

∂ζ

(
uα ∂u

∂ζ
− ṡuβ ∂

2u

∂ζ2
+ uβ ∂2u

∂ζ∂t

)
,(2.18)

so if the right-hand side is negligible, then the local solution scales according to

u ∼ ṡ
2

2α−β (t)G
(
(x− s(t))/ṡ

β
2α−β (t)

)
,(2.19)

the neglect of the right-hand side of (2.18) requiring that s̈ � ṡ
(4α−3β)
(2α−β) ; G(Z) satisfies

d

dZ

(
Gβ d

2G

dZ2

)
− d

dZ

(
Gα dG

dZ

)
− dG

dZ
= 0 .(2.20)

In particular, we may have for β �= 2α that

u ∼ t
2(ν−1)
(2α−β) g

(
(x− μtν)/t

β(ν−1)
(2α−β)

)
as t → 0+ ,(2.21)

where ν > 0, and if α < β < 2α, then ν > β/2(β − α), or if β > 2α, then ν <

β/2(β − α), in view of the condition s̈ � ṡ
(4α−3β)
(2α−β) . Finally, a possible small-time

balance of traveling-wave type for β = 2α is

u ∼ tσg ((x− μt)/tασ) as t → 0+(2.22)

for σ > 2/β. Conserving mass at the interface z = 0, it follows from (2.21) that g(z)
satisfies

−μνg = gα
dg

dz
− μνgβ

d2g

dz2
,(2.23)

solutions to this traveling-wave ordinary differential equation (ODE) having been
discussed in detail in [21]; for (2.22) we obtain (2.23) with ν = 1.

When matching the similarity behavior into traveling-wave inner-inner regions,
knowledge of the local behavior of fronts described in [21] will be valuable. It is
convenient at this stage to summarize these results in the following form; however,
we shall need to revisit this classification, which we do in section 3.

(a) Moving-front cases. The ranges in which the interfaces move, at least for
sufficiently large times, and the corresponding local behaviors, are as follows:

uα ∼ αṡ(t)(s(t) − x) as x → s(t)− if β > 2α ,(2.24)

requiring ṡ ≥ 0 (here the β term in (1.1) is locally negligible);

uα ∼ 2αṡ(t)(
1 +

√
1 + 4(1 − α)ṡ(t)2

) (s(t) − x) as x → s(t)− if β = 2α ,(2.25)
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requiring for all α > 0 that ṡ ≥ 0 and for α > 1 that ṡ ≤ 1/2(α − 1)
1
2 (both terms

on the right-hand side of (1.1) contribute to this local balance, except when α = 1,
β = 2, in which case (2.24) is recovered);

uβ ∼ β2

2(2 − β)
(s(t) − x)2 as x → s(t)− if β < min(2, 2α)(2.26)

(cf. (2.8)), where ṡ can in principle have either sign (in this case the α term from (1.1)
is locally negligible).

(b) Fixed-front cases, 2 ≤ β < 2α. As already noted (see (1.9) and (1.10)),
the front remains fixed in the regime, and u satisfies the conservation of mass condition

uα ∂u

∂x
+ uβ ∂2u

∂x∂t
= 0 at x = a .(2.27)

3. Classification of solution branches in moving-front regimes.

3.1. Local analysis. Equation (1.1) is of second order in x, so in fixed-front
cases the no-flux condition (2.27) is sufficient to specify the solution uniquely. How-
ever, in the frame of reference of a moving front, we have (2.18), which is third order
in ζ, so that the usual mass-conserving interface conditions

u → 0, uα ∂u

∂x
+ uβ ∂2u

∂x∂t
→ 0 as x → s−(t)(3.1)

may not suffice to completely specify the moving-boundary problem. Since (2.18) is
third order, solutions to (1.1) can have up to three degrees of freedom in their local
expansion about a moving front; we pursue below a classification of the local behavior
which clarifies how the problem can be made correctly specified. We now describe the
various possible solution branches and, in particular, identify new classes of retreat-
ing fronts; these did not arise in [21] because only advancing fronts were considered
there. (It is worth remarking that for PME retreating fronts are not possible and
such behavior thus represents a qualitatively distinct, and very important, effect of
including the β term in (1.1); it can occur for β < min(2, α+ 1), which includes some
of the cases of physical interest, e.g., 0 < α = β < 2.)

(A) β > max(α+1, 2α). Here the PME local form (2.24) is correctly specified,
containing the single degree of freedom s. The balance

uα ∂u

∂ζ
∼ ṡuβ ∂

2u

∂ζ2
as ζ → 0−

is also possible in (2.18), implying

ṡ
∂u

∂ζ
∼ −u−(β−α−1)

β − α− 1
+ Φ(t)(3.2)

containing two degrees of freedom, s and Φ (other terms may intrude between the
degrees of freedom, but we shall not keep track of such terms here), and having

uβ−α ∼ β − α

β − α− 1

s(t) − x

ṡ(t)
as x → s−(t) .(3.3)
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As might be expected from its having an additional degree of freedom, (3.3) is less
smooth at ζ = 0 than is (2.24); the signs imply that ṡ > 0 (advancing front) is required
in both cases. The case β = α + 1, in which (3.2) becomes

ṡ
∂u

∂ζ
∼ lnu + Φ(t)

so that

u ∼ 1

ṡ(t)
(s(t) − x) ln

(
1

s(t) − x

)
as x → s−(t) ,

in consequence represents a new borderline regime for (1.1).

(B) β < min(2, 2α). Here the balance (2.26), for which the α term is locally
negligible, contains one degree of freedom, s, and gives no constraints on the sign of
ṡ (so advancing and retreating fronts are both possible, at least in principle). From
the local balance

u ∼ uβ ∂
2u

∂ζ2
as ζ → 0−

in (2.18) we also have

1

2

(
∂u

∂ζ

)2

∼ u(2−β)

2 − β
+

1

2
Λ2(t) ,(3.4)

which provides a two-degree-of-freedom (s and Λ) branch; when Λ = 0 we recover
(2.26), while for Λ > 0 we have finite-slope local behavior,

u ∼ Λ(t)(s(t) − x) as x → s−(t),(3.5)

and advancing and retreating fronts are again both possible. The local balance (3.5)
is self-consistent only for β < min(2, α + 1).

(C) 2α < β < α + 1. This is the most subtle regime. First, the two-degree-
of-freedom branch (3.5) again represents a self-consistent balance, as does the one-
degree-of-freedom (and zero-slope) branch (2.24), in which ṡ > 0 necessarily holds.
However, the one-degree-of-freedom branch (3.3), in which we now require ṡ < 0, is
also possible. For (3.3) to hold with β < α + 1 we require Φ = 0 in (3.2) (setting
Φ ≡ −ṡΛ �= 0 leads in the current regime to (3.5) rather than (3.2)).

3.2. Classification of advancing and retreating fronts. We focus exclu-
sively here (and in the rest of the paper) on the smoothest (and, in consequence,
correctly specified) solution branches, namely, in the case of advancing fronts, the
one-degree-of-freedom branches (2.24) for (A) (in this case a distinct one-degree-of-
freedom branch arises by enforcing Φ = 0 in (3.2)) and for (C), and (2.26) for (B);
see [21] and [10] for a discussion (in terms of a lifting regularization) of why these
solution branches may be expected on physical grounds typically to be the relevant
ones. However, there is an important distinction between advancing and retreating
fronts which is perhaps most easily seen by rewriting (1.1) in the form

∂

∂x

(
uβ ∂w

∂x
+ uα ∂u

∂x

)
= w , w =

∂u

∂t
.(3.6)
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The first of these represents an elliptic two-point boundary value problem for w (treat-
ing u as known) which is to be solved subject to (1.3) (with an appropriate second
boundary condition elsewhere; in the case of the Cauchy problem this will of course
take the form (1.3) at the left-hand interface). In fixed and contracting domain cases
the ODE for u (now treating w as known) requires no further boundary condition
(with the evolution of s(t) then being determined according to where u reaches zero);
by contrast, for advancing fronts initial data on u is not available to the right of the
current front location (i.e., in x > s), which is why a further boundary condition
(such as zero slope) is needed there. Indeed, in order to specify the moving-boundary
problem correctly (3.1) should be supplemented by

uα−1 ∂u

∂x
→ −ṡ(t) as x → s−(t)

in cases (A) and (C), and by

∂u

∂x
→ 0 as x → s−(t)

in case (B). Thus the results of section 3.1 need a different interpretation when ṡ < 0;
retreating fronts are not possible in regime (A), but in regimes (B) and (C) they are
and we need the two-degree-of-freedom branch (3.5) when ṡ < 0, in which (by the
above argument) s and Λ are determined as part of the solution, i.e., (3.5) is a correctly
specified branch when ṡ < 0 and (3.1) on its own specifies the moving-boundary
problem correctly when the interface is retreating. In regime (C), the one-degree-
of-freedom branch (3.3) has the status of a nongeneric (overspecified) branch which
separates advancing fronts (2.24) from retreating ones (3.5). Since (1.1) is of second
order in x, it is worth clarifying further why three boundary conditions are needed
at an advancing front (this is associated with the convected version of (2.18) being of
third order in ζ; this issue of the order of the highest spatial derivative that appears
depending on the frame of reference is common for equations with mixed derivatives
and has here important implications). The key point is that the nonanalyticity at x =
a of the initial data is not instantaneously smoothed. We have continuity conditions

[u]+− =

[
uα ∂u

∂x
+ uβ ∂2u

∂x∂t

]+

−
= 0 at x = a(3.7)

and, defining u(a, t) = ua(t) (which is positive for an advancing front), we have
that the degrees of freedom in the local expansion are (assuming for brevity that
du0/dx = 0 at x = a−) the functions ua(t), λa(t), and Φ±(x) in

u ∼ ua(t) + λa(t)(x− a) + Φ±(x)e
−
∫ t

0
uα−β
a (t′) dt′

as x → ±a,(3.8)

where the continuity of the ua and λa terms corresponds precisely to the conditions
(3.7) and Φ−(x) can be thought of as being determined by the initial data, in which
case it is the determination of the arbitrary function Φ+(x) as part of the solution that
requires a third boundary condition to hold at x = s(t), the latter in effect serving
to provide the initial data in the expanding domain a < x < s(t). We remark that
for (1.7), the explicit solution (2.8) implies that in this special case Φ+(x) ≡ 0; this
will not be the case in general, however. Since for retreating fronts we have u = 0
for x > s(t), where s(t) < a, the nonanalyticity at x = a is lost in the case; this
important distinction is implicit in some of the discussion that follows.
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We now expand upon such matters for the limit case (1.7), in which the α term
is absent, with β < 2. The initial value problem for (1.7) of course has the solution
u = u0(x) for all t so we need to force the solution to evolve by, for example, imposing

u = ub(t) at x = 0(3.9)

for some prescribed ub(t). As noted in [23], if s(t) > a, then the solution in x > a is
given exactly by (2.8) (being the required one-degree-of-freedom (s) solution), with
s(t) to be determined. In 0 < x < a we are thus required to solve (1.7) subject to
continuity of u and of flux, i.e., to

u =

(
β2s(t)2

2(2 − β)

) 1
β

, uβ ∂2u

∂x∂t
= −

(
β2s(t)2

2(2 − β)

) 1
β

ṡ(t) at x = a− ;(3.10)

in other words, we have a fixed domain (0 < x < a) problem for (1.7), subject to (3.9)
and (by elimination of s from (3.10))

u
β
2
∂2u

∂x∂t
= −

√
2 − β

2

∂u

∂t
at x = a− ,(3.11)

which also determines s via (3.10). (Because (1.7) does not smooth nonanalyticities
in the initial data, (2.8) need not, and does not in general, apply at x < a.)

However, the above formulation applies only if ua(t) ≥ 0, and it can easily be seen
that this need not apply. Thus, if picking ub(t) = φ(t) leads to u̇a > 0 initially, then
(in view of the apparent time-reversibility of (1.7)) taking ub(t) = φ(−t) would lead
to u̇a < 0 for small time, and a contracting front of finite slope will instead result,
as in (3.5). This confirms that the moving-boundary problem for (1.7) is not in fact
time-reversible, since if a front switches from retreating (which it will generically do
with nonzero slope) to advancing, then the slope becomes zero instantaneously on
reversal of direction. An exception to this is that for initial data of the extremely
special form (2.8) at t = 0, for which contraction with zero slope occurs, reversibility
is possible; zero-slope retraction will of course occur while s(t) > a for ua decreasing
if ua first increases, so that (2.8) holds in a < x < s, and then decreases again—as
already indicated, such behavior is time-reversible, in contrast to cases in which ua

decreases and then increases again.
We now turn to the description of the small-time behavior, distinguishing several

parameter regimes. We shall only analyse in any detail the retreating front cases,
and advancing and fixed front cases where the behavior of the front or discontinuity
cannot be directly inferred from the small-time similarity balances listed in section 2.
All other cases are summarized in tables, in which we note the inner balances and
the associated front behavior. The expansion (2.1) holds in the outer region. One
of the self-similar forms (i)–(v) of section 2 provides the inner solution and in some
cases yet narrower inner-inner and possibly inner-inner-inner regions are required to
match the corresponding front behavior, i.e., (2.24), (2.25), or (2.26) for advancing
front cases and (3.5) for retreating ones. In most cases in the narrowest region a
traveling-wave balance (section 2 (vi)) provides the solution. In some cases there
are multiple inner structures, whereby an inner region generates a new local exponent
p′ �= p and one then needs to consult the table appropriate to that new value to obtain
the full asymptotic structure. The tables should be read from left to right and the
last column in blocks from top to bottom (starting at cases where the (widest) inner
region matches the front behavior). Thus the solution appearing at the top/right
(specified by writing (inner)) also holds in the inner region of the subsequent cases in
the same block of the table, and so on down the column.
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Table 2

The non-PME balance p < 2/β, β < α + 1, in which the β-term in (1.1) dominates the small-
time behavior of the front. An immediate change occurs with, in the moving-front regime, the
interface advancing (retreating) if B > 0 (B < 0).

2 ≤ β < α + 1 U(t) ∼ Bt as t → 0+

β < α + 1 B > 0 (fixed fronts)
Similarity form (2.16) with γ = 1, ω = 1/p (inner)

No waiting β < 2, β ≤ 2α s(t) − a ∼ η0t
β
2 as t → 0+

time (moving fronts)

(η0 = (2(2 − β))1/2Bβ/2/β)
Similarity form Similarity form (2.10) with γ = 1 (inner-inner)

(2.16) with 2α < β < α + 1 gα(z) ∼ αμν(−z) as z → 0−

γ = 1, ω = 1/p (moving fronts) (inner-inner-inner)
(inner) Traveling-wave form (2.21) with ν = β/2, μ = η0

B < 0 2 < β < α + 1 u ∼ C(a− x)
2(1−p)
(β−2) as t → 0 for σ < x < a

(fixed fronts) (cf. (4.6) and (4.7))
Similarity form (2.16) with γ = 1, ω = 1/p (inner)

β < min(2, α + 1) s(t) − a ∼ −
(−B

A

) 1
p t

1
p as t → 0+

(moving fronts) and Λ(t) ∼ pA
(−B

A

) p−1
p t

p−1
p as t → 0+

(cf. (3.5))
Similarity form (2.16) with γ = 1, ω = 1/p (inner)

4. The case p < 2/β. In this case (2.2) is to be solved subject to the mass
conservation condition

uα
0

du0

dx
+ uβ

0

du1

dx
→ 0 as x → ±a .(4.1)

The regimes p < α + 1, p > α + 1, and p = α + 1 are summarized in Tables 2 and
3. We first consider the regime β < α + 1, p < 2/β. Here the second term of the
left-hand side of (2.2) dominates as x → a−, so that u1(x) ∼ B as x → a, where
the constant B, which may take either sign, is determined by solving (2.2) subject to
(4.1). The expansion (2.1), which becomes

u ∼ A(a− x)p + Bt as t → 0+ ,(4.2)

is nonuniform as x → a. For B > 0, in x < a the local expansion (4.2) is of the
similarity form (2.16) with γ = 1, ω = 1/p, simply giving (2.17). In the fixed-front
cases 2 ≤ β < α + 1 this completes the small-time structure. For the moving-front
cases, however, this structure is clearly incomplete since (2.17) does not become zero,
and a further inner-inner region is needed; see Table 2.

We now turn to the case B < 0, starting with the moving-front regimes. Since
β < α+ 1, we lie in class (B) or (C) of section 3, so in either case a contracting front
occurs, whereby

s(t) − a ∼ −
(
−B

A

) 1
p

t
1
p as t → 0+ ,(4.3)

with the local expansion (4.2) holding right up to the front, so that

Λ(t) ∼ pA

(
−B

A

) p−1
p

t
p−1
p as t → 0+(4.4)
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Table 3

The non-PME balance p < 2/β, β ≥ α+ 1. The α and β terms in (1.1) dominate the left-hand
side of the front. An immediate change occurs, with the interface advancing in the moving-front
cases.

β > α + 1 α + 1 < β < 2α U(t) ∼ h(0)t
1

(β−α) as t → 0+

(fixed fronts)

(h(0) = ((β − α)/(β − α− 1))1/(β−α))
No waiting Similarity form (2.16) with ω = 1/(β − α)p (inner)
time

β > 2α s(t) − a ∼ η0 t
β

2(β−2) as t → 0+

(moving fronts)
Similarity form (2.4) (inner-inner)

β = α + 1 α > 1 U(t) ∼ t ln(1/t) as t → 0+

(fixed fronts)

Similarity form u ∼ t ln(1/t)h
(
(x− a)/t

1
p ln

1
p (1/t)

)
, see (2.16) (inner)

No waiting α = 1, β = 2 s(t) − a ∼ t ln
1
2 (1/t) as t → 0+

time (moving fronts)

Similarity form u ∼ t ln(1/t)f
(
(x− a)/t ln

1
2 (1/t)

)
(inner-inner)

α < 1 Gα(Z) ∼ α(−Z) as Z → 0−

(moving fronts) (inner-inner-inner)

Traveling-wave form (2.19) with s(t) − a = η0t
β
2 ln

β
2 (1/t)

holds in (3.5). In the fixed-front regime β > 2 (for which p < 2/β evidently implies
p < 1), the situation is very different. Here (4.2) holds in x < σ(t), where we introduce
σ(t) such that

σ(t) − a ∼ −
(
−B

A

) 1
p

t
1
p as t → 0+ ,(4.5)

as in (4.3), and setting ζ = x− σ(t) leads to the “traveling-wave” balance

u− u∞(t) ∼ uβ ∂
2u

∂ζ2
,

u → u∞(t) as ζ → +∞ ,
u ∼ Λ(t)(−ζ) as ζ → −∞ ,

(4.6)

where Λ(t) in the second matching condition is again given by (4.4) and u∞(t) is to
be determined as part of the solution of (4.6) (from (4.4), it follows that the relevant

scalings in (4.6) are ζ ∝ t
β(1−p)
(β−2)p , u, u∞ ∝ t

2(1−p)
(β−2)p ). In σ < x < a we have ∂u/∂t = 0

at leading order, subject (by (4.4)) to

u =

(
(β − 1)(β − 2)p2A2

2

)− 1
β−2

(
−B

A

) 2(1−p)
(β−2)p

t
2(1−p)
(β−2)p at x = σ

and hence, by (4.5),

u ∼
(

(β − 1)(β − 2)p2A2

2

)− 1
β−2

(a− x)
2(1−p)
(β−2) as t → 0 for σ < x < a ,(4.7)

with a − x = O(t
1
p ). A front thus attempts to retreat, leaving behind a power-law

profile (4.7) with p′ = 2(1 − p)/(β − 2); since p′ > 2/β for p < 2/β, the small-time
response at x = a generated by (4.7) is as described in section 5 by substituting p′ for
p, with p′ = 2/α corresponding to β = (1 − p)α + 2. Note that for p = 2/β we have
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Table 4

The PME balance 2/β < p < 2/α, β < α, the α term being dominant in (1.1) in the left-hand
side of the front. There is no waiting-time behavior, as for PME.

β < α, β/2 < α < β, β ≥ 2 U(t) ∼ f(0)tp/(2−αp) as t → 0+

p < 2/α (fixed fronts)
Similarity form (2.5) with γ = p/(2 − αp) (inner)

α ≤ β/2 s(t) − a ∼ η0t1/(2−αp) as t → 0+

(moving fronts)
No Similarity form (2.5) with γ = p/(2 − αp) (inner)
waiting time α < 1

(moving fronts) gβ(z) ∼ β2

2(2−β)
(−z)2 as z → 0−

Traveling-wave form (2.21) with ν = 1/(2 − αp), μ = η0 (inner-inner)

Table 5

The PME balance p > max(2/α, 2/β). “Global” waiting-time behavior occurs for 0 < t < tw,
and the local form (1.2) persists for 0 < t ≤ tw. In the fixed front cases (2 ≤ β < 2α) a discontinuity
at x = a will emerge at tw, while in the remaining (moving-front) regimes the interfaces can be
expected to move on arrival of a “shock” (essentially as in [27] for PME; see also [22]).

p > max(2/β, 2/α) 2 ≤ β < 2α (1.10) holds
(fixed fronts)

“Global” α ≤ β/2 arrival of a “shock” at t = tw
waiting time (moving fronts)

Table 6

The PME balance p = 2/α, β > α. A local waiting-time solution is available as for PME. This
case differs from the PME in that fixed-front cases arise (for α > 1 with 2 ≤ β < 2α; see Figure 1).

p = 2/α Fixed and moving tw ≤ α
2(α+2)Aα

“Local” fronts
waiting time

Separable form u ∼ (a− x)
2
α f(t) of (1.6) as x → a− (inner)

formally that p′ = 2/β; the corresponding regime is that described in section A.5 of
the appendix.

We shall not discuss here either of the borderline cases, β = 2 (in which we expect
a profile that is exponentially small in a − x to be left behind; cf. (4.7)) and B = 0
(which, in the moving-front regimes, separates advancing and retreating fronts and is
particularly awkward since it requires the investigation of u2(x), the O(t2) correction
term in the small-t expansion (2.1); this may lead to further subcases (and a further
refined borderline), depending on the sign of u2 at x = a). In case (C) of section 3 the
nongeneric local solution (3.3) corresponds to the borderline behavior when B = 0.

5. The case p > 2/β. The second term on the left-hand side of (2.2) is negli-
gible in this limit, thus giving the local expansion

u(x, t) ∼ A(a− x)p+ + p
(
(α + 1)p− 1

)
Aα+1(a− x)

(α+1)p−2
+ t as x → a .

The sign of p−2/α can therefore be expected to determine whether there is a waiting
time or not. The results in this regime are summarized in the Tables 4–6.

6. The critical case p = 2/β, α < β. In this borderline case for the exponent
p the first and second terms on the left-hand side of (2.2) are the same size as x → a−,
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giving as the dominant balance the equation

u1 + 2Aβ(a− x)
du1

dx
−Aβ(a− x)2 d

2u1

dx2

∼ Aα+1 2(2(α + 1) − β)

β2
(a− x)

2(α+1−β)
β as x → a− .(6.1)

This is a nonhomogeneous Euler equation, with complementary functions of the form
(a− x)m, where m satisfies the quadratic equation 1 −Aβ(m2 + m) = 0. We specify
the solution to (2.2) uniquely by excluding the negative root for m (required for the
no-flux condition (4.1) to hold), leaving the acceptable root

m =
1

2

(
(1 + 4A−β)

1
2 − 1

)
.(6.2)

Defining q = 2(α+1−β)
β , then, provided q �= m, a particular integral to (6.1) satisfies

u1(x) ∼ 2Aα+1(2α + 2 − β)

β2(1 −Aβ(q2 + q))
(a− x)q ;(6.3)

the dominant term in the local expansion for u1 is thus given by (6.3) if q < m and
by u1 ∼ B(a−x)m for some constant B if q > m, with m given by (6.2). Since q < p,
the outer expansion is nonuniform in this regime (m < q < p), and it follows that
waiting-time behavior does not occur.

In the forthcoming analysis we let A1 ≡
(
β2/2(2α + 2 − β) (α + 1 − β)

) 1
β , so that

q satisfies 1−Aβ
1 (q2 + q) = 0. There are various possibilities depending on the sign of

m − q, and these are expressed in terms of A and A1 when β < α + 1. We have the
following cases.

(I)A > A1 for α < β < α+1 (0 < m < q). Here the term on the right-hand
side of (6.1) is locally negligible. Hence

u1(x) ∼ B(a− x)m as x → a−,(6.4)

where m is given by (6.2) and B is a constant which may take either sign and which
can be found by solving (2.2) (subject to the appropriate boundary conditions). In
this case the solution in the inner region close to x = a is of the similarity form (2.10)
with γ = 2/(2 − βm) and with

f(η) ∼ A(−η)
2
β + B(−η)m as η → −∞,(6.5)

both terms here being needed to specify f(η), as is to be expected since some time-
dependent forcing (namely, the B term) is needed if the solution to (1.7) is not to be
simply u ∼ u0(x); note that f(η) = A(−η)2/β is an exact solution of (2.7), and this
implies the presence of a borderline corresponding to the special case B = 0. Such
similarity reductions of (1.7) are the subject of the appendix. We start by discussing
the case B > 0. In the moving-front regime β < 2, f(η) satisfies (2.7), with (2.9)
holding for 0 < η < η0 and in η < 0 we thus have conditions

f
β
2
d

dη

(
f − β

2
η
df

dη

)
= −

√
2 − β

2

(
f − β

2
η
df

dη

)
at η = 0−(6.6)
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Table 7

The parameter regime p = 2/β, α < β, with A > A1 for β < α+ 1 and with B > 0 in (6.5). In
the moving-front cases the interface immediately advances.

A > A1 β ≥ 2 U(t) ∼ f(0)t
2

(2−βm) as t → 0+

for (fixed fronts)
α < β < α + 1, Similarity form (2.10) with γ = 2/(2 − βm) (inner)

β < min(2, 2α) s(t) − a ∼ η0 t
β

2(β−2) as t → 0+

B > 0 (moving fronts)
Similarity form (2.10) with γ = 2/(2 − βm) (inner)

No waiting 2α ≤ β < 2 gα(z) ∼ η0
αβ

(2−βm)
(−z), as z → 0−

time (moving fronts)
Traveling-wave form (2.21) with ν = β/(2 − βm) μ = η0 (inner-inner)

(see (3.11)) and (6.5). Thus as η → −∞ we have in effect two boundary conditions
(both A and B are specified in (6.5), leaving a single eigenmode, (−η)−(m+1)), while
at the origin the eigenmodes are (−η)0, (−η)1, and (−η)2/β ; a relation between the
first two of these is furnished by (6.6), while the third gives a nonanalyticity whereby
u at t = 0+ has a term C0(a−x)2/β as x → a− (C0 being the coefficient of the (−η)2/β

eigenmode, determined by the solution f(η) of (2.7) and not in general equal to A),
but no comparable term in x > a. Assuming that for t > 0 we have ua > 0, then,
by balancing the terms on the right-hand side, (1.1) implies that u contains a term
C(t)(a− x)2/β as x → a−, with this nonanalyticity decaying according to (cf. (3.8))

dC

dt
= −uα−β

a C , C = C0 at t = 0 ;(6.7)

we have

ua(t) ∼ f(0)t
2

(2−βm) as t → 0+(6.8)

and, since m < 2/β < q, it follows that −1 < 2(α− β)/(2 − βm) < 0 and hence that
(6.7) behaves in an appropriate fashion as t → 0+. It is worth repeating the more
general point that (unlike (1.6) with u > 0) equation (1.1) does not instantaneously
smooth nonanalyticities in u. We note that in the special case A = A∗ ≡ (β2/2(2 −
β))1/β (for this value of A to lie in the current regime we require β < 2α) the relevant
similarity solution can be constructed explicitly; we have m = (2 − β)/β and the
solution (2.9) applies for all η, with

η0 =
βB

2A∗ , C0 = A∗(6.9)

(see (A.11)). Table 7 summarizes the front behavior. The analysis of the case B < 0
follows from that of the appendix, and can be summarized as follows. In the moving-
front regime β < 2 the self-similarity form (2.7) applies and for A > A∗ ≡ (β2/2(2 −
β))

1
β we have a contracting front with local behavior of the form (A.3) (with η0 < 0),

while for A1 < A < A∗ we have a switch in the structure of the inner solution
whereby (A.4) provides its local behavior (note that, in the notation of the appendix,

A1 > A2 ≡ (β2/2(β + 2))
1
β holds in this regime, whatever the sign of 2 − β). In

the fixed-front regime β ≤ 2 with B < 0 we recover the local behavior (A.4) for any
A > A1; see the analysis of section A.5. Since in (A.4) we have Â < A2 < A1, this
is not the end of the story in these final two cases, however; Â lies in the regime
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Table 8

The parameter regime p = 2/β, α < β, for α + 1 ≤ β or A < A1 with α < β < α + 1. There is
no waiting-time behavior, and, in particular, the interface immediately advances in the moving-front
cases.

α + 1 ≤ β No α < β < 2α, β ≥ 2 U(t) ∼ f(0)t
1

(β−α) as t → 0+

or waiting (fixed fronts)
A < A1 time Similarity form (2.4) (inner)

with α < β ≤ 2α, β > 2 s(t) − a ∼ η0 t
β

2(β−2) as t → 0+

α < β < α + 1 (moving fronts)
Similarity form (2.4) (inner)

Table 9

The parameter regime p = 2/β, α < β, for A = A1 with α < β < α + 1. There is no
waiting-time behavior as in case (II) above.

A = A1 β ≥ 2 U(t) ∼ f(0)t
1

(β−α) ln
1

β−α (1/t) as t → 0+

for (fixed fronts) with f(0) > 0
α < β < α + 1

Similarity form (2.6) with Ω(t) = t
β

2(β−α) ln
β

2(β−α) (1/t) (inner)

β < 2, β ≤ 2α s(t) − a ∼ η0t
β

2(β−α) ln
β

2(β−α) (1/t) as t → 0+

No waiting (moving fronts)
time

Similarity form (2.6) with Ω(t) = t
β

2(β−α) ln
β

2(β−α) (1/t) (inner)
2α < β < 2 Gα(Z) ∼ α(−Z) as Z → 0−

(moving fronts) (inner-inner)

Traveling-wave form (2.19) with s(t) − a = η0t
β

2(β−α) ln
β

2(β−α) (1/t)

governed by (II) below, so there is in the small-time behavior a further (inner-inner)
region described by the similarity solution (2.4) (in the inner region (2.10) holds with
βγ/2 = β/(2−βm) < β/2(β−α) because m < q here, so (as required) the inner-inner
region is much narrower than the inner one for t � 1).

(II) α + 1 ≤ β or A < A1 with α < β < α + 1 (q < m). See Table 8.

(III) A = A1 for α < β < α + 1 (q = m). See Table 9.

7. The critical case p = 2/β, β < α. The dominant local balance within
this section is (1.7), and the dominant balance in (2.2) is the homogeneous version of
(6.1). Hence u1 is of the form

u1(x) ∼ B(a− x)m as x → a−,(7.1)

where m is given by (6.2), and the constant B is determined by the boundary value
problem for (2.2) implied by (7.1) with (6.2). Whether (7.1) is locally negligible
compared to (1.2) depends on whether m is greater or less than p (= 2/β), and the
critical value of A is therefore given by A2. We accordingly distinguish three cases.

(I) A > A2. Here m < 2/β, so (2.1) is nonuniform and the small-time behavior
is as outlined in case (II) of section 6 except that, since Â < A2 holds in (A.4), in the
relevant cases the local behavior switches into the regime (II) below, corresponding to
waiting-time behavior; see also the appendix. The advancing-front cases can here lie
only in the range given in (2.26), so the front behaves as

s(t) − a ∼ η0t
β

(2−βm) as t → 0+ ,

and a further “traveling-wave” region (i.e., (vi) of section 2) is not present.
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(II) A < A2. Here m > 2/β, and (1.2) is valid as x → a− for t > tw, so that
“global” waiting-time behavior occurs.

(III) A = A2. In this borderline case we have m = 2/β and the appropriate
matching condition thus takes the form

u ∼ (a− x)
2
β (A2 + Bt) .(7.2)

There is no relevant separable solution of the balance (1.7), but adopting the “near-
separable” form

u = (a− x)
2
β Φ(ξ, t), ξ = − ln(a− x) ,(7.3)

it can be inferred that Φ(ξ, t) ∼ A2 + Ψ(ξ, t) as t → 0+ with

Ψ =
Bt

1 − B(β+2)
A2(β+4)ξt

,(7.4)

which for B > 0 blows up as ξt → A2(β+4)−

B(β+2) . Equations (7.3) and (7.4) furnish the

matching condition

u ∼ (a− x)
2
β

⎛
⎝A2 +

A2(β + 4)

(β + 2)

1
A2(β+4)
B(β+2)t + ln(a− x)

⎞
⎠ as x → a− , t → 0+(7.5)

for the final (inner-inner) region for B > 0 in which x−a is exponentially small, with
the asymptotic solution essentially taking the form

u ∼ e−
2A2(β+4)

Bβ(β+2)t f((x− a)e
A2(β+4)

B(β+2)t ),(7.6)

where f(η) is a similarity solution of (1.7) with, in view of (7.5),

f(η) ∼ A2(−η)
2
β +

A2(β + 4)

(β + 2)

(−η)
2
β

ln(−η)
as η → −∞(7.7)

(cf. section A.3 of the appendix, in particular (A.16)). We note that, as is typical in
such borderline regimes, the relevant similarity reduction could in fact include multi-
plicative terms which are algebraic in t, as well as the exponentials in (7.6); calculation
of these terms requires higher-order matching which we shall not pursue here ((7.6)
nevertheless embodies the dominant time dependence of the relevant exponentially
small region).

When B < 0, no blow-up occurs in (7.4), the inner-inner region is absent, and
waiting-time behavior ensues. The local behavior is summarized in Table 10.

This borderline regime A = A2 could be refined further by an analysis of the case
B = 0. We note that we are assuming throughout that the correction terms to (1.2)
are at least algebraically smaller in (x − a) and so do not influence the logarithmic
correction terms in (7.5), for example.

8. The critical case p = 2/β, β = α. This is the most delicate case of all,
lying at the intersection of other borderlines (see Figure 1), and is therefore worth
recording in detail. We also observe that, as in section 7, the only moving fronts
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Table 10

The critical regime p = 2/β, β < α with A = A2. This borderline case is noteworthy in that
in the moving-front regime the interface immediately advances (though exponentially slowly) for
B > 0, while for B < 0 no change in the leading-order local behavior occurs, though a logarithmic
correction term immediately enters; as such this represents a natural borderline with the “switch”
in local behavior which occurs for A > A2.

A = A2 B > 0 β ≥ 2 U(t) ∼ f(0)e
− 2A2(β+4)

Bβ(β+2)t as t → 0+

(fixed fronts) (inner-inner)

Similarity form (2.6) with Ω(t) = e
−A2(β+4)

B(β+2)t

Near-separable No waiting β < 2, β ≤ 2α s(t) − a ∼ η0 e
−A2(β+4)

B(β+2)t as t → 0+

form (7.3) time (moving fronts) (inner-inner)

(inner) Similarity form (2.6) with Ω(t) = e
−A2(β+4)

B(β+2)t

B < 0

Local u ∼ A2(a− x)
2
β
(
1 +

(β+4)
(β+2) ln(a−x)

)
as x → a−

waiting time for 0 < t < tw (inner)

which are possible are of the form (2.26), when p > 1 (β < 2); otherwise, this regime
lies in the fixed-front domain.

The dominant balance in (2.2) is again given by (6.1), i.e.,

u1+2Aβ(a−x)
du1

dx
−Aβ(a−x)2 d

2u1

dx2
∼ Aβ+1 2(β + 2)

β2
(a−x)

2
β as x → a− .(8.1)

As before we let m denote the positive solution of the quadratic equation 1−Aβ(m2 +
m) = 0. In this case q from section 6 is 2/β, and the critical value of A is given by
A2, which in this case coincides with A1. The following three subcases arise.

(I) A > A2. Here m < 2/β, and u1(x) ∼ B(a− x)m as x → a− . The behavior
is identical to that given in case (I) of section 7; in the cases in which (A.4) applies,
the local solution subsequently evolves as in subcase (II) below with Â replacing A.

(II) A < A2. Here m > 2/β and (6.3) holds with q = 2/β, and the matching
condition

u ∼ A(a− x)
2
α

(
1 +

Aα+1

Aα
2 −Aα

t

)
as x → a−

thus applies. Aiming to extend this analysis beyond the small t regime, we seek a
separable solution to (1.1) with β = α of the form (2.4), finding that

(
A2f

−(α+1) − f−1
) df

dt
= 1(8.2)

so that

1

α
(f/A2)

−α + ln f = −t +
1

α
(A/A2)

−α + lnA(8.3)

for t ≤ T , where T is given by f(T ) = A2, i.e.,

T = ln(A/A2) +
(
(A/A2)

−α − 1
)
/α .(8.4)
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Thus the coefficient f of the local solution automatically increases towards the bor-
derline A2 between waiting-time (f < A2) and non-waiting-time (f > A2) scenarios,
and the solution to (8.2) ceasing to exist at t = T , with

f ∼ A2(1 − (2(T − t)/α)
1
2 ) as t → T− .(8.5)

This again represents a local waiting-time solution with tw ≤ T ; unlike (7.4), however,
the solution (8.3) does not blow up as the local waiting time t = T is reached, and a
further set of scalings needs to be considered for t− T small if we are to describe the
“local” waiting-time scenario in which tw = T .

Again we write

u = (a− x)
2
α Φ(ξ, t), ξ = − ln(a− x) .(8.6)

In view of the behavior (8.5) near t = T we now seek a “backward” self-similar solution
of the form

Φ ∼ A2 + Ψ(ξ, t), Ψ(ξ, t) = (T − t)
1
2F−(ξ(T − t)

1
2 ) as t → T−(8.7)

to give (after some manipulations and again assuming the initial data does not contain
correction terms to (1.2) which are only logarithmically smaller in (a− x))

dF−
dζ

=
(α + 2)

(α + 4)A2

(
F 2
− − 2A2

2

α

)
.(8.8)

Matching to (8.5) requires F− → −
√

2/αA2 as ζ → +∞ , while we require F− to
behave as 1/ζ as ζ → 0+ in order that (8.7) have suitable behavior at t = T ; this
finally gives F− = −A2

√
2/α coth((α + 2)/(α + 4)

√
2/αζ) so that at t = T

Φ ∼ A2

(
1 +

(α + 4)

(α + 2) ln(a− x)

)
as x → a−(8.9)

as in section 7 (III) for B < 0; see Table 10. In view of (8.9), we can now continue the
local solution into t > T by seeking a “forward” self-similar solution Ψ of the form

Ψ(ξ, t) = (t− T )
1
2F+(ξ(t− T ))

1
2 as t → T+,(8.10)

so that F+(ζ) satisfies

dF+

dζ
=

(α + 2)

(α + 4)A2

(
F 2

+ +
2A2

2

α

)
,

and matching with (8.9) requires that

F+(ζ) = −
√

2

α
A2 cot

(
(α + 2)

(α + 4)

√
2

α
ζ

)
.(8.11)

Hence F+ → +∞ as ζ → π
√
α/2 (α+ 4)/(α+ 2) and one more region is needed with

scalings essentially of the form

u ∼ e
−π

√
2
α

(α+4)
(α+2)

1

(t−T )1/2 φ

(
(x− a)e

π
√

α
2

(α+4)
(α+2)

1

(t−T )1/2

)
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Table 11

The critical regime p = 2/β, α = β with A < A2, in the local waiting-time case tw = T is avail-
able, for which (unlike the PME) the evolution past the waiting time can be tracked asymptotically.

A < A2 β ≥ 2 U(t) ∼ φ(0)e
−π

√
2
α

(α+4)
(α+2)

1

(t−tw)1/2 as t → t+w
Local (fixed fronts)
waiting time

Similarity form (2.6) with Ω(t) = e
−π

√
α
2

(α+4)
(α+2)

1

(t−tw)1/2 (inner-inner)

Separable β < 2 x− a ∼ η0e
−π

√
α
2

(α+4)
(α+2)

1

(t−tw)1/2 as t → t+w
form (2.4) (moving fronts)

(inner) Similarity form (2.6) with Ω(t) = e
−π

√
α
2

(α+4)
(α+2)

1

(t−tw)1/2 (inner-inner)

Table 12

The critical regime p = 2/β, α = β with A = A2. No waiting time occurs, with the interface
immediately advancing in the moving-front regime albeit exponentially slowly.

A = A2 β ≥ 2 (p ≤ 1) U(t) ∼ φ(0)e
−π

2

√
2
α

(α+4)
(α+2)

1

t1/2 as t → 0+

No waiting (fixed fronts)
time

Similarity form (2.6) with Ω(t) = e
π
2

√
α
2

(α+4)
(α+2)

1

t1/2 (inner-inner)

Near-separable β < 2 (p > 1) s(t) − a ∼ η0e
−π

2

√
α
2

(α+4)
(α+2)

1

t1/2 as t → 0+

form (8.6) (moving fronts)

(inner) Similarity form (2.6) with Ω(t) = e
π
2

√
α
2

(α+4)
(α+2)

1

t1/2 (inner-inner)

(again, both here and in Table 12 there may be additional algebraic terms), giving a
similarity solution of the form (2.6) to (1.7), with α = β and

φ(η) ∼ A2

(
1 +

(α + 4)

(α + 2) ln(−η)

)
(−η)

2
α as η → −∞.(8.12)

A striking feature of this analysis is that, unlike existing analyses of the PME (but
more like Hele–Shaw corners [25]), it is possible here to follow explicitly the local
analysis through the waiting-time in the “local” case tw = T , the behavior being
summarized in Table 11.

(III) A = A2 (m = q = 2/β). See Table 12.

9. Discussion. Our small-time results serve in particular to identify, and to
provide concrete illustrations of, certain phenomena not shared by PME. Specifically,
for (1.1) with β < min(2, α + 1) we have the possibility (when B < 0) of (finite-
slope) retreating fronts or of interfaces which instantaneously switch the coefficient in
their local behavior. Those local solutions which switch necessarily have p = 2/β in
(1.2) with A ∈ (A2, A

∗) and, when they are applicable, represent a (slightly diffuse)
borderline between retreating fronts and solutions in which the local behavior remains
unchanged for some finite time. It is worth remarking that, by choosing initial data
which exhibit different power laws over different orders of magnitude of a − x, it is
possible to construct in the relevant (α, β) regimes solutions in which, for example,
the interface advances, retreats, and then advances again. We leave the behavior at
the end of a waiting time (for example, whether the interface can then begin to retreat
rather than advance) as an open problem.

It is worth highlighting that we have in a number of places alluded to the formal
time-reversibility of (1.7) being violated by differences between advancing and retreat-
ing fronts in terms of the nature of the local singularity at the interface. Thus despite
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its apparent time-reversibility, (1.7) does exhibit a clear arrow of time in the sense
of there being a marked distinction between the two directions of interface motion; a
specific example of this is given in section 1 (taking t2 = 2t1, P (t2 − t) = −P (t), one
could distinguish a film of fluid-thickness profile being run forward from t = 0 from
one being run backwards from t = t2 when P is negative, but not when P is positive,
for 0 < t < t1). Such phenomena are of relevance to other formally time-reversible
evolution equations; see [5] for a discussion of certain related issues. Our final remark
in this regard is that, as described in section 3, the finite-slope branch (3.5), say, can
also be admissible for advancing fronts, but is then underspecified. This implies that
an extra physical constraint is needed to specify the solution, perhaps relating the
slope Λ to the interface speed ṡ (as may occur in other contexts, such as capillary-
driven spreading). It would be worthwhile to explore the circumstances under which
such solutions may be pertinent to (1.1).

Appendix. The similarity solution (2.7).

A.1. Formulation. Here we discuss relevant boundary value problems for (2.7),
the results being of independent interest in view of their direct applicability to (1.7).
We impose the far-field condition (6.5) with A > 0 and B prescribed and with m
given by (6.2). We defer the fixed-front case β > 2 to section A.5, first describing
the various regimes for β < 2. The requirement that m be less than 2/β implies that
A > A2 must hold, where A2 ≡ (β2/2(β + 2))

1
β . The expression (6.5) then represents

two boundary conditions, and imposing (6.6), with (2.9) holding in η > 0, thus yields
a correctly specified system provided a solution exists in which f(0) > 0; the free-
boundary location, η0 > 0, in (2.9) is then given by

η0 =
(2(2 − β)fβ(0))

1
2

β
.(A.1)

However, it is also possible for f(η) to attain zero at η = η0 < 0 with

f → 0, fβ d
2f

dη2
→ 0 as η → η−0(A.2)

leading to a correctly specified free-boundary problem, the solution of which has the
local form

f(η) ∼ λ(η0 − η) as η → η−0 , η0 < 0 ,(A.3)

for some constant λ > 0, corresponding to (3.5) and containing the necessary two-
degree-of-freedom λ and η0. Finally, there is a third possibility with the required two
degrees of freedom, namely, that f attains zero at η0 = 0 (so that this case represents
a waiting-time scenario) with

f ∼ Â(−η)
2
β + B̂(−η)m̂ as η → 0−,(A.4)

where 0 < Â < A2, so that

m̂ =
1

2

(
(1 + 4Â−β)

1
2 − 1

)
(A.5)

satisfies m̂ > 2/β. The constants Â and B̂ provide the two degrees of freedom in
(A.4), with the calculation of the dependence of Â upon A requiring the solution
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of the boundary value problem for f(η). We emphasize that, while the interface
waits in this case, the local behavior (A.3) differs from that of the initial data, with
Â < A2 < A.

Since it may seem mysterious that retreating fronts, whereby (A.3) holds, satisfy
one less boundary condition than advancing ones (for which df/dη = 0 at η = η0)
it is worth also giving an explanation for this in the similarity ODE context (noting
that the ODE (2.7) is of third order in η, whereas (1.1) is second order in x). The
expression (6.5) represents two boundary conditions and (A.2) two more which, given
that η0 is unknown, gives a correctly specified problem for η0 < 0. For η0 > 0,
however, the continuity conditions

[f ]+− =

[
2

β

df

dη
− η

d2f

dη2

]+

−
= 0 at η = 0(A.6)

lead to the degrees of freedom f0, f1, C± in

f ∼ f0 + f1η + C±|η|
2
β as η → 0± .

From (2.9) it happens that C+ = 0; it is the need also to determine C− that requires
the third condition at η = η0.

A.2. Exact results. When B = 0 we have the exact (borderline, steady-state)
solution

f(η) = A(−η)
2
β , η0 = 0 ,(A.7)

which can play the role of separating advancing and retreating fronts. When B �= 0,
the rescaling

f(η) = |B| 2
2−βm f̂(η̂) , η̂ = η

/
|B|

β
2−βm(A.8)

enables us to set B = ±1 without loss of generality, with corresponding solutions
f̂±(η̂), where we might anticipate that

f̂+(0) > 0, η0 = (2(2 − β)f̂β
+(0)

1
2 )B

β
2−βm /β ,(A.9)

and

f̂−(η̂0) = 0, η0 = |B|
β

2−βm η̂0(A.10)

for some η̂0 < 0, so that B > 0 gives an advancing front and B < 0 a retreating one;
in view of the alternative scenario (A.4) this is far from clear a priori, a point to which
we shall return in section A.4.

When A = A∗ ≡
(
β2/2(2 − β)

) 1
β we have m = 2/β − 1 and

fβ(η) =
β2

2(2 − β)
(η0 − η)2 , η0 =

βB

2A∗(A.11)

holds exactly, both for B > 0 (giving η0 > 0) and for B < 0 (with η0 < 0); in
this special case we thus have λ = 0 in (A.3). Other cases may also be analytically
tractable; for example, for β = 1, m = 1/2 (so that A = 4/3) we have f(η) =
4
3 (−η)2 + B(−η)

1
2 for B < 0, so that η0 = −(3|B|/4)

2
3 .



1506 J. R. KING AND C. M. CUESTA

A.3. Asymptotics. The two regimes A → ∞ and A → A+
2 are amenable to

asymptotic investigation. In the former case we have m → 0 and the right-hand
side of (2.7) dominates; the boundary conditions then imply that the leading-order
solution is simply

f(η) ∼ A(−η)
2
β + B ,(A.12)

the relevant η scaling being −η = O((|B|/A)
β
2 ). Hence for B > 0 we have η0 > 0,

given by (A.1) with f(0) ∼ B, while for B < 0 a retreated front occurs with

η0 ∼ −
(
|B|
A

) β
2

, λ ∼ 2

β

(
A

|B|

) β
2

|B| .(A.13)

Now setting A = A2 + ε, with 0 < ε � 1, we have

m ∼ 2

β
− εμ,

where μ = β2/Aβ+1
2 (4 + β), and for algebraic convenience it is helpful to use the

rescaling invariance to set, without loss of generality, |B| = 2ε. Under the change of
variables

f = (−η)
2
β (A2 + εG(ζ)), ζ = −ε ln(−η) ,

appropriate to the outer region ζ = O(1), we find at leading order that

0 =
β

A2
G0

dG0

dζ
− 4 + β

β
Aβ

2

d2G0

dζ2
.

Requiring G0(ζ) ∼ 1 + 2 B
|B|e

μζ as ζ → −∞ yields

dG0

dζ
=

μ

2
(G2

0 − 1)

and then

G0(ζ) = coth
(μ

2
(−ζ)

)
if B > 0 ,(A.14)

G0(ζ) = tanh
(μ

2
(−ζ)

)
if B < 0 .(A.15)

For B > 0 (i.e., B = 2ε), the inner scaling is η = O(1) (i.e., ζ = O(ε)) and at leading
order we obtain the full problem, except that the far-field condition (6.5) is replaced
by

f0(η) ∼ (−η)
2
β

(
A2 +

2

μ ln(−η)

)
as η → −∞(A.16)

in order to match with (A.14); we conjecture that this condition leads to a solution
with η0 > 0. Finally, for B < 0 (i.e., B = −2ε) the outer expansion does not break
down (unlike (A.14), the expression (A.15) does not become singular), and by taking
the limit ζ → +∞ (η → 0−) we obtain

f(η) ∼ (A2 − ε)(−η)
2
β ,(A.17)

consistent with our third scenario (A.4) with Â ∼ A2 − ε; we have m̂ ∼ 2
β + εμ and,

by (A.17), B̂ ∼ 2ε.
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A.4. Parameter regimes. The above results enable us to piece together as the
likely picture the following scenario. The problem evidently warrants further study,
not least by rigorous techniques, in order to confirm the behavior is indeed as outlined
here. Further corroborating evidence for what follows can be obtained by an analysis
of the limit A → A∗; one then finds in particular that, setting A = A∗ − ε with
0 < ε � 1, one has for B < 0

Â ∼ εh∞ for 0 < β < 1 , Â ∼ ε
1

2−β h∞ for 1 < β < 2 ,(A.18)

for some positive constant h∞(β). The reasons for the transition in (A.18) at β = 1
can be identified from noting that the leading-order inner solution satisfies for β �= 1
the traveling-wave balance

1

2 − β
h2−β − 1

1 − β
h∞h1−β +

1

(2 − β)(1 − β)
h2−β
∞ =

1

2

(
dh

dζ

)2

.(A.19)

In the outer region η∗0 < η < 0, where η∗0 = βB/2A∗ is the location of the interface
for the A = A∗ problem (see (A.11)), we have from (2.7) that

h− β

2
η
dh

dη
= 0

holds to leading order (where f = εh for 0 < β < 1, f = ε1/(2−β)h for 1 < β < 2), so
that

f ∼ εh∞(−η/η∗0)
2
β for 0 < β < 1, f ∼ ε

1
2−β h∞(−η/η∗0)

2
β for 1 < β < 2

for η∗0 < η < 0, whereby Â → 0, m̂ → ∞ in (A.4) as ε → 0+. Thus the apparently
abrupt transition in η0 from η∗0 < 0 at A = A∗ to zero for A < A∗ with A∗ − A
arbitrarily small is effected by f tending to zero in η∗0 < η < 0 as ε → 0+.

The main purpose of the subdivision which follows is to distinguish for B < 0 the
ranges of A in which (A.3) holds from those in which (A.4) holds.

(1) A > A∗. Here we have (as illustrated by the large A solution (A.11)) η0 > 0
for B > 0 and η0 < 0 for B < 0 (so (A.3) applies for B < 0), with the borderline case
B = 0 being given by (A.7).

(2) A = A∗. For B < 0, this case furnishes the borderline between the regime
A > A∗ in which solutions satisfy (A.3) with η0 < 0 and A2 < A < A∗ in which
(A.4) applies. It is characterized by the solution (A.10) having zero slope (and thus
representing the exceptional case λ = 0 in (A.3)).

(3) A2 < A < A∗. For B > 0 we conjecture that η0 > 0 remains valid (with
(A.9) here applying whenever A > A2 for B > 0), while for B < 0 we have (A.4), as
illustrated by (A.17) and (A.18) (determining the full dependence of Â on A for given
β would require the boundary value problem to be solved numerically), and η0 = 0
thus holds in this regime for all B ≤ 0.

A.5. The fixed-front regime β ≤ 2. As β → 2− we have A∗ → +∞ and
much of the behavior in the fixed-front cases β ≥ 2 is naturally different from that
described above. The borderline A = A2 still applies, however, but for B < 0 we now
have that (A.4) applies for all A > A2 for the relevant solutions, implying that U(t)
remains zero for some finite time. The analysis of section A.3 for A = A2 + ε still
applies, as does that for A → ∞ with B > 0, so for B > 0 we have

U(t) ∼ Ω
2
β (t)f(0) as t → 0
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with f(0) ∼ B as A → ∞ and with the leading-order expression for f(0) as A → A2

being determined by the boundary value problem in which the far-field condition is
given by (A.16) (we conjecture that this leads to a solution with f(0) > 0). To
complete the picture it remains only to analyze the limit A → ∞ with B < 0, for
which the structure is somewhat similar to that described at the end of section 4. The
scalings in the first of the two outer regions, namely, ξ = O(1) with ξ < −1, are

η = (|B|/A)
β
2 ξ , f = |B|g,

whereby to leading order as A → ∞ we have

0 =
d

dξ

(
gβ

d

dξ

(
g − β

2
ξ
dg

dξ

))
,

from which the leading-order solution

g = (−ξ)
2
β − 1

follows. The inner scalings are

ξ = ξ0(ε) + A− β
β−2 ζ, g = A− β

β−2h ,

with ξ0(0) = −1 and where, for brevity, we shall not address the borderline case
β = 2 in which the relevant scalings are exponentially small. This again gives the
traveling-wave balance

h− h∞ ∼ hβ d
2h

dζ2
,

h ∼ 2

β
(−ζ) as ζ → −∞ ,

h → h∞ as ζ → +∞ ,
(A.20)

at leading order, where the positive constant h∞ is determined as part of the solution;
since the first integral (A.19) is available, we have that

h∞ = (2(β − 2)(β − 1)/β2)−
1

β−2 .

Finally, in the second outer region −1 < ξ < 0 we have

h− β

2
ξ
dh

dξ
= 0

to leading order, so matching into the interior layer ζ = O(1) we obtain h ∼ h∞(−ξ)
2
β ,

and hence in (A.4) we have

Â ∼ A− 2
β−2h∞ as A → ∞ .

A.6. The special case β = 1. The implications of the above results for this
special case (in which A2 = 1/6, A∗ = 1/2) are worth spelling out because it also
represents the thin-film limit of the Hele–Shaw problem with kinetic undercooling
(see [23], [9]; the formulation applies when the problem is symmetric about the x-
axis, though the results can readily be generalized). The current analysis pertains
locally when the initial fluid region contains an outward-pointing cusp of the form

u0(x) ∼ A(a− x)2
+ as x → a− .(A.21)
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In this context y = u(x, t) denotes the upper fluid interface and the thin-film problem
can be written in the form

p =
∂

∂x

(
u
∂p

∂x

)
, p =

∂u

∂t
,

where p corresponds to the fluid pressure. Thus at t = 0 we typically have

p ∼ B(a− x)m as x → a−

for some constant B (so that Ω(t) = t1/(2−m) applies in the small-time local solution
(2.6)), where m is given by (6.2) with β = 1. For A < 1/6 we have m > 2, so
a waiting-time phenomenon ensues in which (A.21) remains valid locally for some
finite time. In the injection case (corresponding to B > 0), for A > 1/6 the interface
immediately propagates forward, though (for reasons discussed more generally in [15])
not according to the above thin-film prescription; rather we should impose on (2.7)
the (fixed-front) condition

f
d

dη

(
f − 1

2
η
df

dη

)
= 0 at η = 0−,

with u in x > a then being asymptotically given for small t by a quarter circle of radius
t2/(2−m)f(0) (which is not of course of large aspect ratio, so does not fall within the
remit of the thin-film evolution equation).

For the suction case (B < 0), however, we have for 1/6 < A < 1/2 that the
local behavior flips to (A.4) and then waits for some finite time. This class of suction
phenomena is strikingly similar to that exhibited by the unregularized (and hence
ill-posed) Hele–Shaw problem in which the interface initially contains a corner [25];
if the corner angle is less than π/2, the local behavior is then preserved for some
finite time (as it is here for A < 1/6), while for angles between π/2 and π the corner
angle instantaneously decreases to a value less than π/2 (which depends only on the
initial angle) and then waits for some finite time (akin to the instantaneous decrease
described above in the relevant coefficient from A to Â (< 1/6), where Â depends
only on A for given β). However, for angles greater than π, the unregularized problem
has no solution for t > 0, whereas in the current case the interface retracts in the
equivalent regime A > 1/2, forming a corner of small but increasing angle (as in (A.3)).
This continued existence of the solution is a desirable feature of the regularization;
moreover, while the Hele–Shaw problem with kinetic undercooling exhibits (not just
in its thin-film limit) formal time-reversal symmetry between the suction and injection
cases, this symmetry is again broken by singularity formation (whereby if a corner
forms and propagates under suction, it is immediately smoothed by injection in a non-
time-reversible fashion; cf. the discussion of cusps in the zero-surface-tension Stokes
flow problem in [12]).

Acknowledgments. The authors thank J. Hulshof for helpful comments. They
gratefully acknowledge the support of the RTN project “Front-singularities” and J. R.
King that of the EPSRC.

REFERENCES

[1] D. G. Aronson, The porous medium equation, in Nonlinear Diffusion Problems, Lect. 2nd 1985
Sess. C.I.M.E., Montecatini Terme, Italy, 1985, Lecture Notes in Math. 1224, Springer,
Berlin, 1986, pp. 1–46.



1510 J. R. KING AND C. M. CUESTA

[2] D. G. Aronson, L. A. Caffarelli, and S. Kamin, How an initially stationary interface begins
to move in porous medium flow, SIAM J. Math. Anal., 14 (1983), pp. 639–658.

[3] G. Barenblatt, V. Entov, and V. Ryzhik, Theory of Fluid Flows through Natural Rocks,
Theory and Applications of Transport in Porous Media 3, Kluwer Academic, Dordrecht,
The Netherlands, 1990.

[4] G. I. Barenblatt, M. Bertsch, R. Dal Passo, V. M. Prostokishin, and M. Ughi, A
mathematical model of turbulent heat and mass transfer in stably stratified shear flow, J.
Fluid Mech., 253 (1993), pp. 341–358.

[5] G. I. Barenblatt, M. Bertsch, R. Dal Passo, and M. Ughi, A degenerate pseudoparabolic
regularization of a nonlinear forward-backward heat equation arising in the theory of heat
and mass exchange in stably stratified turbulent shear flow, SIAM J. Math. Anal., 24
(1993), pp. 1414–1439.
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Abstract. Hysteresis effects in two-phase flow in porous media are important in applications
such as waterflooding or gas storage in sand aquifers. In this paper, we develop a numerical scheme
for such a flow where the permeability hysteresis is modeled by a family of reversible scanning
curves enclosed by irreversible imbibition and drainage permeability curves. The scheme is based
on associated local Riemann solutions and can be viewed as a modification of the classical Godunov
method. The Riemann solutions necessary for the scheme are presented, as well as the criteria that
guarantee the well-posedness of the Riemann problem with respect to perturbations of left and right
states. The numerical and analytical results show strong influence of the permeability hysteresis on
the flow. In addition, the numerical scheme accurately reproduces the available experimental data
once hysteresis is taken into account in the model.
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flow in porous media, Godunov method
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1. Introduction. Capillary hysteresis strongly affects two-phase flow in porous
media during sequential increase and decrease of wetting phase saturation (i.e., during
the so-called imbibition and drainage, respectively) [6, 8]. The alternation of imbibi-
tion and drainage occurs in several oil recovery processes. It occurs in waterflooding
with displacement direction change due to redistribution of injection and production
rates in a system of wells, WAG (water-alternate-gas) injection of sequences of water
and gas slugs, and sequential injection and production in the same well [4]. Annual
injection and production of natural gas in aquifers or in depleted petroleum reservoirs
for storage purposes also result in significant hysteretic phenomena. A similar flow
regime change phenomenon, from imbibition to drainage and vice versa, occurs in sec-
ondary migration of hydrocarbons during the formation of petroleum accumulations
[1], in irrigation, and in soil contamination by gasoline.

Capillary hysteresis at a macroscopic scale is caused by several pore scale phe-
nomena. The contact angle on menisci between wetting and nonwetting phases suffers
hysteresis during flow changes in a single pore. Creation of new interfacial surfaces
resulting in energy losses occurs during imbibition; on the contrary, energy is released
during drainage due to oil droplet joining. All these phenomena result in different
scenarios of porous space filling by wetting and nonwetting phases.
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Models for multiphase flow in porous media are based on conservation of mass
and Darcy’s law. The associated equations contain quantities describing the rock and
fluid properties, in particular relative phase permeabilities. The latter describe the
capability of each phase to flow in the porous medium [2, 9]. Relative permeability
of the nonwetting phase exhibits hysteresis or memory effects [10], i.e., according to
the saturation tendency, the relative permeability is different [18].

The model for hysteretic relative permeability of the nonwetting phase [2, 12]
follows experimental observations of drainage, imbibition, and scanning behavior of
relative permeability [6, 7, 8, 13, 19]. Changes in the direction of the flow in drainage
and imbibition are irreversible [6, 18]; flow in the region between drainage and im-
bibition curves is in general almost reversible [8, 19, 17]; however, we will make the
approximation that it is exactly reversible [6, 13].

Observations and explanations of permeability hysteresis in laboratory experi-
ments for horizontal one-dimensional flow were presented in several works [17, 6, 8].
However, mathematical understanding is insufficient, hindering the inclusion of hys-
teresis in numerical simulation of reservoir flow. Formulae for drainage, imbibition,
and scanning relative permeabilities curves were developed in [2, 12], among others.
In [15], only the imbibition and drainage curves were considered. A model that we will
call the scanning hysteresis model (SHM) for the history dependence of the relative
permeabilities was presented in [10] and in [18].

In the current work, we concentrate on hysteretic gravity segregation. This phe-
nomenon occurs after waterflooding or after gas injection in thick oil formations. It
also occurs in in-situ gas storage in thick formations between injection and production
cycles. Estimation of the gravity separation time is necessary for planning of tertiary
recovery from reformed formations.

Our goal is to develop a numerical tool for the gravitational counterflow segrega-
tion problem with a hysteretic relative permeability. Because Riemann solutions with
hysteresis in the relative permeability are not unique, we introduce criteria to obtain
well-posedness with respect to left and right states. In the large scale approximation
formulation, we do not include the capillarity pressure and its hysteresis [4].

The paper is organized as follows: In section 2, we present the model for two-phase
gravity counterflow segregation. In addition, we extend the SHM for the nonwetting
relative permeability [18] to include gravity. This model associates a hysteretic pa-
rameter π in order to “remember” the value of the saturation at the last time when
the saturation tendency was reversed. In the equations used to model the segrega-
tion, the capillary forces and its hysteresis affect both the transport part and the
diffusive part. We concentrate on the hysteresis in relative permeability. In section
3, the Riemann solutions for the hysteretic conservation law are discussed. Criteria
to select a unique well-posed solution are developed. In section 4, we propose a cor-
rected Godunov scheme that updates both the saturation and the hysteretic states.
This scheme conserves mass locally. Finally, in section 5, we show that the numerical
solution of the Riemann problem converges to the exact solution. Comparisons of the
numerical solution (with and without hysteresis) with laboratory data are presented.
They show that hysteresis must be taken into account to obtain correct predictions
of segregation. Additionally, it is demonstrated that the proposed numerical method
captures adequately the experimental profiles, and the main hysteresis effects can be
modeled through the relative permeability curves.

2. The two-phase model for gravity counterflow segregation. We con-
sider a sand-packed vertical tube with a given initial saturation profile of two incom-
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pressible immiscible fluids. Redistribution of the fluids with different densities occurs
due to gravitational forces. The total flow along the tube is zero as the tube is closed
at the top and bottom. Neglecting diffusive terms due to capillarity relative to gravi-
tational forces, the two-phase flow model equation expressing mass conservation and
Darcy’s law in dimensionless variables (z, t), {0 ≤ z ≤ 1, t ≥ 0} is [4]

∂ts + ∂zF (s, π) = 0,(2.1)

where the flow function F (s, π) is

F (s, π) :=
krwkro

kro + (μo/μw)krw
.(2.2)

We use the indices w and o to refer to the wetting and nonwetting phases, respectively.
The quantities krw (kro) and μw (μo) are the relative permeability and the viscosity
of the wetting phase w (nonwetting o), respectively. In the absence of hysteresis, krw
(kro) are functions of the effective wetting phase saturation s defined as

s :=
sw − swi

sro − swi
,(2.3)

where swi is the irreducible wetting saturation and sro is the residual nonwetting
saturation.

2.1. The SHM: Mathematical description. To model the hysteresis phe-
nomenon observed experimentally in the relative permeabilities [6], we extend the
SHM presented in [10, 18] to include gravity. For simplicity, the nonwetting phase
exhibits hysteresis, while the wetting phase does not. In order to describe the be-
havior due to hysteresis, a parameter π is introduced. Concretely, we generalize the
permeability functions presented in [18] and use the following special permeability
functions of the effective saturation s [3].

The wetting relative permeability is defined as (Figure 2.1(a))

krw(s) := γsβ , β > 1,(2.4)

where γ is a parameter to adjust the curve (2.4) to the relative permeability curve
obtained experimentally, so that krw(1) = γ, as the nonwetting permeability is nor-
malized as 1 for s = 0.

The nonwetting drainage and imbibition relative permeabilities functions (ex-
pressed by kdro and kiro) are defined as (Figure 2.1(a)) [3]

kdro(s) = (1 − s)η for 0 ≤ s ≤ 1 and when
∂s

∂t
< 0,

kiro(s) = (1 − s)θ for 0 ≤ s ≤ 1 and when
∂s

∂t
> 0,

(2.5)

where 1 < θ < η. In this paper, we use β = 2, η = 3, and θ = 2; therefore kdro ≤ kiro.
The scanning region corresponds to the region between the nonwetting drain-

age and imbibition relative permeabilities curves. In such a region the nonwetting
permeability kro is chosen as

kro(s, π) :=
(1 − π)ξ

(1 − απ)ζ
(1 − αs)ζ ,(2.6)
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Fig. 2.1. (a) Nonwetting imbibition and drainage permeabilities functions, and wetting perme-
ability, and (b) scanning curves (as a function of the saturation of the wetting phase sw and the
hysteresis parameter π); inspired by Braun and Holland [6].

where the parameter π (0 ≤ π ≤ 1) discriminates each scanning curve. We use ξ = 2
and ζ = 1; therefore, kro defined above is linear in s for each fixed π; see Figure 2.1(b).
Notice that the dashed lines meet at the point (1/α, 0), where α is another parameter
used to adjust the slopes of the scanning curves to the experimental ones. We use
α = 0.5. In the SHM, the scanning curve associated to π is defined in the saturation
range si(π) < s < sd(π). The functions si(π) and sd(π) are defined implicitly by

kdro(s
d(π)) = kro(s

d(π), π) and kiro(s
i(π)) = kro(s

i(π), π).(2.7)

On the drainage and imbibition permeability curves, expressions for the param-
eter π as a function of the saturation s, and vice versa, can be obtained. Thus we
define from (2.7) the functions πd(s) and πi(s). Plots of these functions are shown in
Figure 2.2(a).

The flux (2.2) depends on the history (expressed by the parameter π) and the
type of the flow (expressed through the sign of ∂ts). Using the relative permeabilities
kro in (2.6) and (2.5), and using krw in (2.4), the flux function (2.2) takes the form

F (s, π) in the scanning region, where ∂tπ = 0,(2.8)

F d(s) := F (s, πd(s)) on the drainage curve, where ∂ts < 0,(2.9)

F i(s) := F (s, πi(s)) on the imbibition curve, where ∂ts > 0.(2.10)

The fluxes F (s, π), F d(s), and F i(s) (given by (2.2), (2.9), and (2.10), respectively)
are shown in Figure 2.2(b). Notice that the drainage and imbibition curves F d(s)
and F i(s) bound the admissible scanning region Ω on the plane (s, F ), defined as
Ω = {(s, F ) ∈ �2 : F d(s) ≤ F ≤ F i(s)}. We define the drainage and imbibition
curves as dr := {(s, F ) ∈ �2 : F = F d(s)} and im := {(s, F ) ∈ �2 : F = F i(s)},
respectively. The permeability functions (2.4) and (2.5) lead to the following necessary
properties of the fractional flow function in the scanning, drainage, and imbibition
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Fig. 2.2. (a) State space. (b) Fractional flow curves (imbibition, drainage, and scanning).

flows in the SHM:

F d(0) = 0, F d(1) = 0, F i(0) = 0, F i(1) = 0,(2.11)

∂sF
d(s) ≤ ∂sF (s, πd(s)), ∂sF

i(s) ≤ ∂sF (s, πi(s));(2.12)

of course other permeability functions satisfying (2.11) and (2.12) can be chosen.
These properties ensure that the intersection of the scanning curves with the drainage
(or imbibition) curve varies smoothly with π. In addition, as we will see in the next
section, property (2.12) guarantees the existence of solution at the intersections of the
scanning with the drainage and imbibition curves.

3. The Riemann problem. For imbibition and drainage flows the pair (s, π)
lies on the imbibition and drainage curves; therefore the value of π is given by π =
πi(s) and π = πd(s). In these cases, scalar conservation laws are satisfied:

∂ts + ∂zF
j(s) = 0, j := i, d.(3.1)

For scanning flow the conservation law (3.1) is extended to include the independent
variable π. Hence the conservation law becomes

∂ts + ∂zF (s, π) = 0,(3.2)

∂tπ = 0,(3.3)

and can be written in quasi-linear form ∂tu + As∂zu = 0 with Jacobian

As =

[
∂sF (s, π) ∂πF (s, π)

0 0

]
and u := [s, π]T .

For scanning flow, the eigenvalues of As (or characteristics speeds) are zero and
∂sF (s, π), with corresponding eigenvectors [∂πF (s, π), −∂sF (s, π)]T and [1, 0]T .
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)
.

3.1. Wave families. For each flow we describe the solution of the Riemann
problem:

(s, π)|t=0 =

{
(sL, πL) for z < zo,
(sR, πR) for z > zo.

(3.4)

Hereafter, we will use the following notation. A state L is defined as L := (s, F ) ∈ Ω,
where sL and FL are the saturation and the flux associated to the state L. Addi-
tionally, πL is the associated parameter π to the state L. In the scanning region,
FL = F (sL, πL), and on the curve dr (im) FL = F d(sL) (FL = F i(sL)).

3.1.1. Imbibition or drainage flow. Since in imbibition (drainage) flow the
saturation increases (decreases) in time, i.e., ∂ts > 0 (∂ts < 0), a rarefaction wave is
characterized by a continuous and monotonically increasing speed λ = ∂sF

j(s) from
sL to sR. Additionally, a shock wave with speed σ satisfies the Rankine–Hugoniot
(RH) condition:

σ =
F j(sR) − F j(sL)

sR − sL
, j = i, d;(3.5)

furthermore, the shock is required to satisfy the Oleinik entropy condition for scalar
equations. Therefore, admissible sequences of shock and rarefaction waves can be con-
structed graphically using the concave and convex hull of the fractional flow curves,
following [16]. We still have to impose the imbibition and drainage flow orienta-
tion. Let sU be the saturation that maximizes F i(s) (U := {(sU , F i(sU ) : FU =
max(F i(s)) for 0 ≤ s ≤ 1}). To select the imbibition (drainage) flow orientation the
conditions sU ≤ sL ≤ sR or sR ≤ sL ≤ sU (sU ≤ sR ≤ sL or sL ≤ sR ≤ sU )
must hold. For instance, a shock satisfying these conditions is shown in Figure 3.1(a),
and we see that ∂ts > 0 in Figure 3.1(b). For other cases, such as sU ≤ sR ≤ sL,
sL ≤ sR ≤ sU (sU ≤ sL ≤ sR, sR ≤ sL ≤ sU for drainage), sL ≤ sU ≤ sR, and
sR ≤ sU ≤ sL, the Riemann solution must contain scanning waves; otherwise ∂ts
would be negative and therefore the solution could not be on the imbibition curve.



1518 SCHAERER, SARKIS, MARCHESIN, AND BEDRIKOVETSKY

0.45 0.65 0.9

0.06

0.09

0.11

F 

s

L 

sh 

st

ra

a 

b c 

d 

Q
i

Q
d
 

R R 

R 

R R 

Fig. 3.2. Scanning cases. Stationary shock, st; shock, sh; rarefaction, ra.

3.1.2. Scanning flow. The RH condition is

F (sR, πR) − F (sL, πL) = σ(sR − sL),(3.6)

0 − 0 = σ(πR − πL).(3.7)

Equations (3.6) and (3.7) are satisfied by two kinds of discontinuities; see Figure 3.2.
The first one is a shock with speed σ:

F (sR, π) − F (sL, π) = σ (sR − sL) ,(3.8)

where π is constant, i.e., π = πL = πR. This corresponds to the Riemann solution
of the single scalar conservation law (3.2) (see Figure 3.2). The second kind of dis-
continuities satisfying the RH condition (3.6)–(3.7) are stationary discontinuities with
speed σ = 0 and constant fractional flow function; generically they satisfy πR �= πL

and sL �= sR.
Summarizing, the scanning curve and the horizontal line through state L divide

the scanning region in R-regions where the solution consists of a combination of a
stationary wave and scanning waves that are either rarefaction or shocks. Some simple
cases are presented in Figure 3.2. A more complex Riemann solution exists when
scanning curves have a maximum in Ω and there is no interaction with the imbibition
and drainage curves. This RP presents multiplicity of solutions; therefore, we have to
make choices to have appropriate solutions. To classify the chosen Riemann solutions,
we analyze the abcd region in Figure 3.2. This region is sketched in Figures 3.3(a) and
(b). The curve QdQi is the set of states Q = (s, F (s, π)) in Ω where the saturation s
maximizes F (s, π) for each π (see Figure 3.2).

In Figures 3.3(a) and (b), we show the regions and their associated Riemann
solutions for left states L1 and L2 lying on opposite sides of the curve QdQi. A
summary of the solutions is given in Table 3.1; the waves are ordered from lower to
higher speeds. For example, the solution L1I1R1 consists of a stationary shock L1I1

connecting states L1 and I1 (denoted by L1
st−→ I1), and a positive speed shock I1R1

connecting states I1 and R1 (denoted by I1
sh+−−→ R1).

3.1.3. Intermediate flow. Denoting by I the intersection state between the πL-
scanning and the drainage (imbibition) curves, the solution between a scanning state
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Fig. 3.3. Regions in the scanning region abcd of Figure 3.2.

Table 3.1

Riemann solutions for a region where the scanning curves have a maximum in Ω where waves
are ordered from negative to positive. Negative speed rarefaction: ra−, negative speed shock: sh−,
stationary shock: st, positive speed rarefaction: ra+, and positive speed shock: sh+.

Riemann solutions for L1, Figure 3.3(a)
waves

L1
st−→ I1

sh+−−−→ R1

L1
sh−−−−→ I2

st−→ R2

L1
sh−−−−→ I2

st−→ Q1
ra+−−−→ R3

L1
st−→ I1

ra+−−−→ R4

Riemann solutions for L2, Figure 3.3(b)
waves

L2
sh−−−−→ I3

st−→ R5

L2
ra−−−−→ Q2

st−→ R6

L2
ra−−−−→ Q2

st−→ I4
sh+−−−→ R7

L2
ra−−−−→ Q2

st−→ I4
ra+−−−→ R8

L2
sh−−−−→ I3

st−→ Q3
ra+−−−→ R9

L and a drainage (imbibition) state R is constructed using a concave (convex) hull
curve on the effective flux function LIR (see Figure 3.4). Therefore, the interaction
of the two waves LI and IR yields a shock LR with speed

σ =
F d(sR) − F (sL, πL)

sR − sL
,(3.9)

since the shock IR has a smaller speed than the rarefaction LI, i.e., (F d(sR) −
F d(sd(πL)))/(sR − sd(πL)) ≤ ∂sF (sd(πL), πL), and at I the drainage and scanning
curves satisfy inequalities (2.12).

3.2. Riemann solutions. The construction of the Riemann solutions is simpli-
fied by describing state space in terms of (s, F ) instead of (s, π). We subdivide Ω into
four subregions (L-regions) defined as follows (see Figure 3.5):

A = {(s, F ) ∈ Ω : sQd
≤ s ≤ 1 and F ≤ F (s, πQd

)},
B = {(s, F ) ∈ Ω : sM ≤ s ≤ sP and F (s, πQd

) ≤ F ≤ F d(sM )},
C = {(s, F ) ∈ Ω : 0 ≤ s ≤ 1 and F d(sM ) ≤ F},
D = {(s, F ) ∈ Ω : 0 ≤ s ≤ sM and F ≤ F d(sM )},
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where the imbibition state P is defined as the intersection point of the imbibition
curve with the scanning curve through the states Qd, while M is the state where sM
maximizes F d(sM ). Next we construct the solutions for L in each of the L-regions.

Case A: L1 = (sL, F (sL, πL)) ∈ A. In this case, there are the following six
R-regions (see Figure 3.6(a)):

�I
A = {(s, F ) ∈ Ω : sE ≤ s and F ≤ F (s, πL)},

�II
A = {(s, F ) ∈ region enclosed by EKV Qd},

�III
A = {(s, F ) ∈ region enclosed by QdV GT},

�IV
A = {(s, F ) ∈ Ω : sM ≤ s ≤ sG and F (s, πT ) ≤ F ≤ F (s, πM )},
�V

A = {(s, F ) ∈ Ω : sH ≤ s ≤ sN and F (s, πM ) ≤ F and F d(sM ) ≤ F},
�V I

A = {(s, F ) ∈ Ω : s ≤ sM and F ≤ F d(sM )},
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Fig. 3.6. Figure (a) (Case A): R-regions for L1 in L-region A. Figure (b) (Case A): solutions
for L1 in L-region A and R in R-regions: R1 ∈ �I

A, R2 ∈ �II
A , R3 ∈ �III

A , R4 ∈ �IV
A , R5 ∈ �V

A ,

and R6 ∈ �V I
A .

where the states E and K are the intersection of drainage and imbibition curves with
the scanning curve through L1. We define the state V ∈ im and the curve QdV
by QdV := {W = (sW , FW ) ∈ Ω : (sW , FW ) = (sI + 2(sQ − sI), FI) ∀I ∈ dr}.
States N and H are the intersections of the imbibition curve with the scanning and
the horizontal line through M , respectively. We define the drainage state T through
∂sF

d(sT ) = (F d(sT ) − FL)/(sT − sL), and the state G as the intersection of the
imbibition curve with the scanning curve though T . Notice that T and G depend on
L1. Assuming that ∂ssF (s, π) < 0, the Riemann solution associated to each R-region
as shown in Figure 3.6(a) is presented in Figure 3.6(b) and described below:

A.1. For R1 ∈ �I
A, the solution is L1

sh−−−→ I1
st−→ R1.

A.2. For R2 ∈ �II
A , the solution is L1

sh−−−→ I2
st−→ R2.

A.3. For R3 ∈ �III
A , the solution is L1

sh−−−→ I3
sh+−−→ R3, where state I3 is de-

termined by the intersection of the drainage curve with the scanning curve
through R3.

A.4. For R4 ∈ �IV
A , the solution is L1

sh−−−→ T
ra−−−→ I4

sh+−−→ R4, where I4 is
determined by the intersection of the drainage curve with the scanning curve
through R4.

A.5. For R5 ∈ �V
A , the solution is L1

sh−−−→ T
ra−−−→ M

st−→ I5
sh+−−→ R5, where state

I5 is the intersection of the horizontal line through M and the scanning curve
through R5.

A.6. For R6 ∈ �V I
A , the solution is L1

sh−−−→ T
ra−−−→ M

st−→ I5
ra+−−→ R6. When I5 is

on the imbibition curve, the solution will be shown in Case C, Figure 3.9(a)
Case B: L2 = (sL, F (sL, πL)) ∈ B. The R-regions are shown in Figure 3.7(a).

The Riemann solutions for the R-regions �V
B , �V I

B , and �V II
B are analogous to those

of solutions for the R-regions �IV
A , �V

A , and �V I
A , respectively. The solutions for

R-regions �I
B , �II

B , �III
B , and �IV

B are shown in Figure 3.7(b) and described below:

B.1. For R1 ∈ �I
B , the solution is L2

sh−−−→ I1
st−→ R1.

B.2. For R2 ∈ �II
B , the solutions is L2

sh−−−→ I2
st−→ Q

ra+−−→ R2.
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B.3. For R3 ∈ �III
B , the solution is L2

sh−−−→ I3
st−→ R3.

B.4. For R4 ∈ �IV
B , the solution is L2

sh−−−→ I4
sh+−−→ R4.

Case C: L3 = (sL, F (sL, πL)) ∈ C. The R-regions are shown in Figure 3.8(a).
The Riemann solution belongs to one of the following cases:

C.1. For R1 ∈ �I
C (Figure 3.8(b)), the solution is L3

sh−−−→ I1
st−→ R1.

C.2. For R2 ∈ �II
C , the solution is analogous to that of Case B (subcase B.2).

In the solution shown, I2 cannot be connected to R2 only by a stationary
shock because the stationary shock intersects the scanning curve with πR.

Therefore, the solution is L3
sh−−−→ I2

st−→ Q
ra+−−→ R2.

C.3. For R3 ∈ �III
C , the solution is L3

sh−−−→ I3
ra+−−→ R3.
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Fig. 3.9. Figure (a) (Case C): solutions for L3 ∈ C and R in R-regions: R5 ∈ �V
C and

R6 ∈ �V I
C . Figure (b) (Case D): R-regions for L4 ∈ D.

C.4. For R4 ∈ �IV
C (Figure 3.9(a)), the solution is L3

st−→ I5
sh+−−→ R4.

C.4. For R5 ∈ �V
C , the solution is L3

st−→ I5
ra+−−→ R5.

C.5. For R6 ∈ �V I
C , L3 cannot be connected to the scanning curve through R6

only by a stationary shock, because the latter intersects the imbibition curve

(state E). For L3 and R6 the solution is L3
st−→ E

ra+−−→ I6
ra+−−→ R6.

Case D: L4 = (sL, F (sL, πL)) ∈ D. The R-regions are shown in Figure 3.9(b).
The Riemann solutions belong to one of the following cases:

D.1. For R1 ∈ �I
D (Figure 3.10(a)), the solution is L4

st−→ K
sh−−−→ I2

st−→ R1.

D.2. For R2 ∈ �II
D , the solution is L4

st−→ K
sh−−−→ I1

st−→ Q
ra−→ R2.

D.3. For R3 ∈ �III
D , the solution is L4

st−→ K
sh+−−→ I3

ra+−−→ R3. Notice that
segment KI3 is tangent to the dr curve at I3 to the scanning curve through
R3.

D.4. For R4 ∈ �IV
D , the solution is L4

st−→ K
sh+−−→ I4

sh+−−→ R4.

D.5. For R5 ∈ �IV
D (Figure 3.10(b)), the solution is L4

st−→ K
sh+−−→ I5

sh+−−→ R5.

D.6. For R6 ∈ �V I
D , the solution is L4

st−→ I6
sh+−−→ R6.

D.7. For R7 ∈ �V II
D , the solution is L4

st−→ I7
ra+−−→ R7. If the stationary shock

intersects the im curve, the solution is analogous to that of Case C (subcase
C.5).

3.3. Uniqueness criteria. Without appropriate restrictions for given L and R
states, the Riemann problem might have multiple solutions. We are interested in solu-
tions satisfying (1) the Oleinik condition in Ω and (2) the orientation of the drainage
and imbibition curves. However, these conditions are insufficient to guarantee unique-
ness of solution. A solution can be obtained if we further require that (3) the solution
must be Lloc

1 continuous with respect to changes in L and R. A Riemann solution
is well posed if it satisfies conditions (1), (2), and (3) mentioned above. The choices
presented in section 3.2 give rise to well-posed global solutions; however, some of them
are not evident; so we discuss these cases here.
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Fig. 3.11. Figure (a) (Case A): R6 ∈ �V I
A . Figure (b) (Case B): L1

2 ∈ B and R1 ∈ �I
B.

Case A: L1 ∈ A and R6 ∈ �V I
A . As mentioned in section 3.2, the solution for

this case is represented by the segment L1TMI5R6 as shown in Figure 3.6(b). We
show that other tentative solutions are impossible. In Figure 3.11(a) we analyze the
connection between states M and R6. Consider the curve MT2R6: the rarefaction
MT2 and shock T2R6. This solution is inadmissible because the rarefaction MT2

violates the physical orientation of the drainage curve. Another tentative solution such
as MEKR6 is also inadmissible because the interaction of the waves EK and KR6

yields the shock ER6, which violates the scanning region RH condition (3.6), (3.7).
Therefore, between states M and R6, the sequence LTMIR6 is the only admissible
solution that we were able to find.

Case B: L1
2 ∈ B and R1 ∈ �I

B (see Figure 3.7(b)). We choose the Riemann solu-
tion L1

2I1R1. We can also consider L1
2I3R1 as another solution (see Figure 3.11(b)).
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Fig. 3.12. Figure (a) (Case C): L3 ∈ C and R6 ∈ �V I
C . Figure (b) (Case D): L4 ∈ D and

R5 ∈ �V
D.

In principle L1
2I1R1 and L1

2I3R1 seem possible. However, only the solution L1
2I1R1

depends continuously on changes of the left and right states. To analyze these solu-
tions we change the state L1

2. In this case the solution L1
2I3R1 generates a sequence

of solutions

L1
2I3R1 → L2

2I3R1 → L3
2I3R1,(3.10)

which converges to the wrong solution L3
2I3R1. Notice that when L1

2 = L3
2 the correct

solution is a shock L3
2R1. Additionally, the solution L1

2I1R1 generates a sequence of
solutions

L1
2I1R1 → L2

2I2R1 → L3
2R1(3.11)

converging to the correct solution L3
2R1 without producing Lloc

1 discontinuities in
the Riemann solution. Therefore, solutions other than L1

2I1R1 do not ensure the
continuity of the solution when the states L and R are perturbed.

Case C: L3 ∈ C and R6 ∈ �V I
C . In this case the orientation of the drainage

and imbibition curves ensures the uniqueness and Lloc
1 continuity of the Riemann

solution. For example, in Figure 3.12(a), the solution for left and right states L3 and
R6 is L3EIR6; notice that another tentative solution such as L3I5I6R6 is inadmissible
because the rarefaction I5I6 violates the drainage curve orientation.

Case D: L4 ∈ D and R5 ∈ �V
D. From Figure 3.12(b), the solution chosen is

L4KI5R5. A tentative solution such as L4IR5 is not possible because its yields a
shock L4R5 which violates the scanning region Oleinik condition.

4. The corrected Godunov method. We discretize the z-t plane by choosing
a mesh width h := Δz = 1/Nz and a time step k = Δt, and we define the discrete
grid points (zj , tn) by

zj = jh + h/2, zj±1/2 = zj ± h/2, j = 0, 1, 2, . . . , Nz − 1,(4.1)

tn = nk, n = 0, 1, 2, . . . .(4.2)
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Fig. 4.1. Numerical fluxes using local Riemann solution.

Each time step of the numerical method consists of two stages. In the first stage
(predictor) equations (3.1) and (3.2) are solved numerically by the Godunov method
[11]. The second stage (corrector) is the correction of the parameter π, which is
necessary when the predicted state lies outside the admissible region Ω. In such a
case, the corrected state is obtained from the predicted state by a projection (with
fixed s) on ∂Ω of the predictor state. The saturation is maintained constant in order
to preserve conservation of mass, which is guaranteed in the prediction step because
it uses Godunov method.

Predictor. Denoting the cell state at (zj , tn) by (snj , π
n
j ), we then have that the

conservative Godunov method on a cell [zj−1/2, zj+1/2] × [tn, tn+1] for the saturation
value is expressed as

sn+1
j = snj − k

h
[F#((snj , π

n
j ), (snj+1, π

n
j+1)) − F#((snj−1, π

n
j−1), (s

n
j , π

n
j ))],(4.3)

where F#((snj , π
n
j ), (snj+1, π

n
j+1)) and F#((snj−1, π

n
j−1), (s

n
j , π

n
j )) are the numerical flux-

es at the right and left boundaries of the cell [zj−1/2, zj+1/2]× [tn, tn+1], respectively.
We impose zero numerical flux boundary conditions at z = 0 and z = 1; see Figure 4.1.

Notice that the left and right numerical fluxes of each cell are constant along the
left and right boundaries, respectively. This is so because these boundaries coincide
with zero speed characteristics at zj−1/2 and zj+1/2, respectively. Consequently, for
each pair of states (s, π), the numerical fluxes can be determined directly from the
Riemann solution presented in section 3.2.

For example, consider the left state L = (sL, FL) and right state R = (sR, FR)
at time tn (see Figure 4.1), with the Riemann solution represented in Figure 5.1(b).
Then the numerical flux F#((snL, π

n
L), (snR, π

n
R)) is exactly the flux F d

M specified by the
state M or I; notice that either choice produces the same numerical flux as shown in
Figure 5.1(b). As another example, consider the left state L and right state R, and
suppose that the Riemann solution consists of a positive speed shock represented in
Figure 3.10(b) by L4KI5R5. Consequently, the numerical flux F#((snL, π

n
L), (snR, π

n
R))

is F (sL, πL) at state L4. In this way, the numerical flux for each pair of left and right
states is chosen by using the solutions presented in section 3.2.

Corrector. Once (4.3) for the saturation is satisfied, we update πn
j . We de-
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fine the external imbibition and drainage regions as Ωi := {(s, F ) ∈ �2 : 0 ≤ s ≤
1 and F i(s) ≤ F} and Ωd := {(s, F ) ∈ �2 : 0 ≤ s ≤ 1 and F ≤ F d(s)}, respectively.
To obtain πn+1

j , we choose πn+1
j = πn

j if (sn+1
j , πn

j ) lies in the scanning region Ω, and

πn+1
j = πi(sn+1

j ) or πn+1
j = πd(sn+1

j ) if (sn+1
j , F (sn+1

j , πn
j )) lies on the external imbi-

bition or drainage region, respectively. This strategy for updating π was proposed in
[18] and guarantees mass conservation of each phase. For the computational results
presented in section 5, we adopt the global CFL condition as | khvmax| ≤ 1, where

vmax = max
(
max(s,π)∈Ω | ∂sF (s, π) |, max(s,F )∈j | ∂sF

j(s) |
)

, j = i, d.(4.4)

We note, however, that a sharper time-dependent CFL condition can be derived as
the maximum velocity of all local Riemann solutions in each time step.

5. Computational results.

Example 1: Comparison between the numerical and the analytical so-
lutions. The aim of this comparison is to demonstrate that the numerical method
can capture accurately all the features of the analytical solution. We consider the
numerical and analytical dimensionless solutions associated to the Riemann prob-
lem with initial discontinuity at z = 0.50 separating states (sl, πl) = (0.7, 0.8) and
(sr, πr) = (0.3, 0.4). Both states lie inside the scanning region. The following param-
eters were used in the simulations μw = 1 cp, μo = 0.9 cp, and for this case the global
CFL condition is 0.3849. The dimensionless simulated time was t = 2.4 103. The ana-
lytical solution (represented in Figure 5.1(b)) is shown as a solid line in Figure 5.1(a),
and the numerical solution obtained with the proposed scheme using Nz = 100 as a
dashed line in the same figure.

The numerical and analytical profiles at dimensionless time are presented in Fig-
ure 5.1. The saturation profile consists from left to right of a scanning to drainage
shock wave LT , followed by a rarefaction wave TM , a stationary wave MI, and a
rarefaction wave IR. The small discrepancy around the shock LT in Figure 5.1(a) is
due to the correction scheme for π. However, the discrepancy potentially occurs at
only one mesh point.
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Fig. 5.1. Comparison between the analytical and the numerical method. Dashed line corre-
sponds to the numerical solution, and solid corresponds to analytical solution.
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Fig. 5.2. The solid curve corresponds to the analytical solution, the dashed curve to the corrected
Godunov method with Nz = 50, and the dotted curve to the corrected Lax–Friedrichs scheme with
Nz = 4000. (a) Saturation values and (b) π values.

Example 2: Comparison between corrected Godunov and corrected
Lax–Friedrichs schemes. We consider the Riemann problem with initial disconti-
nuity at z = 0.50 separating states (sl, πl) = (0.57, 0.69) and (sr, πr) = (0.57, 0.71).
Figure 5.2(a) and (b) show a comparison among the proposed corrected Godunov
scheme with Nz = 40, the corrected Lax–Friedrichs with Nz = 4000, and the an-
alytical solution. The global CFL restriction is followed. To obtain an accurate
approximation for the analytical solution, the corrected Godunov scheme requires a
mesh size Nz = 40, while the corrected Lax–Friedrichs requires Nz = 4000. Hence,
to satisfy the global CFL condition (4.4), the corrected Godunov scheme requires
substantially fewer time steps than the corrected Lax–Friedrichs, so that the sim-
ulation using the Godunov scheme takes 500 times less CPU time than using the
Lax–Friedrichs scheme.

The classical Godunov and Lax–Friedrichs schemes do not work without the cor-
rector step. We note also that the design of numerical schemes for the problems
considered here is not trivial. Because of hysteresis, there are stationary waves, the
orientation of the curves (imbibition and drainage) has to be taken into account, and
the restriction on the admissibility scanning region Ω must be followed.

Example 3: Comparison between solutions with and without hystere-
sis. The strong influence of the hysteresis effect in the saturation profiles can be
seen by comparing the profiles obtained numerically with and without hysteretic rel-
ative permeabilities. We choose the drainage curve opposite the imbibition curve as
the nonhysteretic relative permeability curve since the corresponding nonhysteretic
solution agrees most with the hysteretic solution.

We introduce in the simulation the top and bottom boundaries of the tube. We
perform the simulation with Nz = 50, μw = 1 cp, and μo = 0.9 cp. The density of
the wetting phase is ρw = 1 g/cm3 and the density of the nonwetting phase is taken
as ρo = 0.844 g/cm3. We consider the porous media having a permeability of 11.84
Darcys and porosity of 0.389. The tube length is 86 cm. Additionally, sL = 0.9 and
sR = 0.1.
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Fig. 5.3. Profile s(z) at several times: (a) hysteretic solution, (b) nonhysteretic solution.
Saturations are represented as a solid curve at 5.87 h, as a dashed curve at 14.59 h, and as a dotted
curve at 19.38 h. Compare with Figure 5.4.
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Fig. 5.4. Solutions in (s, F ) space (a) with hysteresis, (b) without hysteresis at imbibition and
drainage curves.

The hysteretic and nonhysteretic simulation results differ significantly; see Fig-
ure 5.3. Observing Figure 5.3(a), three sections are clearly identified. We can see that
in the top zone (around z = 0), wetting phase saturation decreases with time, i.e., a
drainage process. At the bottom zone (around z = 1), the saturation increases with
time, i.e., an imbibition process. The most relevant discrepancy between hysteretic
and nonhysteretic solutions occurs at the middle zone (z ∈ [0.3, 0.7]), where both
drainage and imbibition take place. In this zone the hysteretic profiles have a sharper
decline MI, which is not captured in Figure 5.3(b) without hysteresis.

The discrepancy between the hysteretic and nonhysteretic solutions can be under-
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Fig. 5.5. Comparison between saturation profiles obtained by the numerical simulation and the
laboratory data (marked points) several times ((a) 0 min., (b) 19 min., (c) 60 min., (d) 38.6 hours).
In (a), the dotted line is the initial value of π used for the simulation.

stood by comparing the Riemann solution for hysteretic and nonhysteretic fractional
flow functions. With hysteresis (Figure 5.4(a)), the solution combining imbibition and
drainage necessarily goes through the scanning region. For instance, consider the case
when sL > sR. Due to the imbibition and drainage curve orientation, the solution is
LTMIR, a negative speed shock LT , a drainage rarefaction TM , a stationary shock
wave MI connecting the drainage and the imbibition curves, and a positive speed
imbibition shock IR. On the other hand, without hysteresis (Figure 5.4(b)), the so-
lution is LTNR, a negative speed shock LT , a rarefaction wave TN , and a positive
speed shock NR.

Example 4: Comparison with experimental work data. To validate the
proposed model we compare the numerical gas-water saturation profile with saturation
profiles found in [7] and [20]. Following [7], we consider a sand pack with a perme-
ability of 11.84 Darcys and porosity of 0.389. The tube length is 86 cm. Additionally,



HYSTERESIS IN COUNTERFLOW SEGREGATION 1531

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1s 

z 0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

60 min

z

s

(a) (b)

Fig. 5.6. Comparison between saturation profiles with hysteresis (a) and without hysteresis (b)
obtained by the numerical simulation and the laboratory data (marked points) for 60 min.

we use the following values for the parameters: α = 0.5, γ = 0.5, μw = 0.8550 cp, and
μo = 0.0185 cp. The density of the wetting phase (water) is ρw = 1 g/cm3 and the
density of the nonwetting phase (air) is considered negligible compared to ρw. These
values were taken from [7].

The procedure consists in injecting a measured amount of radioactive water into
the tube containing air in its pores, closing it off at both ends, and allowing the two
phases to reach the equilibrium distribution. This saturation distribution is measured,
providing the initial distribution in the simulation. This distribution is a spatial
transition between air in the presence of residual water to water in the presence of
residual air. This water saturation distribution results from the balance between
pressure gradient and the buoyancy force.

Usage of the correct initial distribution of π is crucial to reproducing the results
presented in [7]. To obtain this initial distribution from the procedure described in
[7], we consider the injection of a certain quantity of water from the top of an air-
saturated tube. Consequently, the lower half of the tube corresponds to an imbibition
process and the upper half corresponds to a drainage process. The values of π are
chosen accordingly. This choice of initial values for π are shown by the dotted line in
Figure 5.5(a).

The tube is then inverted and measurements of water saturation are made during
the segregation process at ten different locations along the tube. Figures 5.5(a)–
(d) confirm the excellent agreement between the laboratory data and the simulated
saturation profiles at different times, while Figures 5.6(a) and (b) show the importance
of including the hysteresis effects in the model. There is agreement in Figure 5.6(a)
with hysteresis and disagreement in Figure 5.6(b) without hysteresis.

6. Concluding remarks. We present Riemann solutions for each left and right
state for a hysteretic counterflow segregation problem as well as criteria to guaran-
tee well-posedness to the solution. Based on the Riemann solutions, we propose a
corrected Godunov scheme that updates both the saturation and the hysteretic pa-
rameter. This scheme conserves mass locally. Numerically, we show that the solution
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obtained by the proposed method agrees with the analytical solution. We also val-
idate the numerical scheme by comparing simulations with laboratory experimental
data. We show numerically that the inclusion of hysteresis effects in the relative
permeability suffices for simulations for accurate simulations.
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Abstract. In this paper we describe a semianalytical approach to computing the temperature
and thermal stress inside a III-V compound grown with the Czochralski technique. An analysis of
the growing conditions indicates that the crystal growth occurs on the conductive time scale. A
perturbation method for the temperature field is developed for an arbitrary crystal profile using the
Biot number as a (small) expansion parameter. The zeroth order solution is one-dimensional in
the axial direction. Explicit solutions are obtained for a cylindrical and a conical crystal. Under
typical growth conditions, a parabolic temperature profile in the radial direction is shown to arise
naturally as the first order correction. As a result, the thermal stress is obtained explicitly and its
magnitude is shown to depend on the zeroth order temperature and Biot number. Both the axial
temperature gradient and crystal profile are shown to be important for controlling thermal stress
and defect density. Some issues relevant to growth conditions are also discussed.

Key words. crystal growth, asymptotic expansion, moving interface, thermal stress, dislocation
density, finite difference method, Czochralski technique
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1. Introduction. Directional solidification methods are widely used for growing
large industrial sized crystals. Among them, the Czochralski (Cz) method is the
most popular technique for growing crystals used by the semiconductor and related
industries. By dipping a small seed crystal into a pool of molten material in the
crucible and carefully controlling the heat balance inside the grower, a large crystal
can be grown by pulling the crystal away from the melt in a slow and steady fashion.
The pulling rod and the crucible are normally rotated in opposite directions during
the growth period. Delicate control is often needed to maintain the crystal quality,
and a slight change of the growth conditions may result in defect formation inside
the crystal. With care, a single crystal with low defect density can be obtained
routinely when the size of the crystal does not exceed a critical value. For a more
detailed account of the Cz and other techniques, we refer the readers to the extremely
informative handbooks by Hurle [16, 17].

Due to the complex nature of the thermal, structural, and dynamic coupling of
the molten material, the crystal, the crucible, the gas chamber, and other parts of the
grower, considerable efforts have been devoted to laboratory experiments and to mod-
eling and simulation of the growth environment over the past several decades. As a
result, there exists an extensive literature, mostly in engineering fields. These studies
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cover a wide spectrum of areas, from decoupled one- or two-dimensional simulations
to fully coupled three-dimensional computations; see, e.g., [4, 5, 16, 17, 18, 26, 27, 29].
Most of the studies rely heavily on computer simulation since the fully coupled system
cannot be solved otherwise. These investigations have generated useful information
including temperature distribution, crystal-melt interface shape, and melt flow pat-
terns inside the crucible. By comparison, much less attention has been paid to the
coupling of defect modeling and field variables even though significant progress has
been made in identifying main factors that determine the formation of defects [31].

In this paper, we present a semianalytical approach for studying the temperature
field inside the crystal and the related thermal stress. It is believed that defect
formation can be related to an excessive thermal stress above some critical value;
see, e.g., [1, 11, 13, 19, 29, 33, 34] and the references therein. Therefore, analysis
of the growth factors that determine the stress level will be extremely useful for
crystal growers. The stress analysis requires that a particular crystal structure be
specified, and we have chosen the ZnS structure shared by the type III-V binary
semiconductors. Even though the basic mathematical structure remains the same for
any III-V compound, we will focus on indium antimonide (InSb) for the rest of the
paper. InSb has the narrowest bandgap and highest temperature mobility of the III-V
binary compound semiconductors. Because of these properties, InSb is widely used
in both magnetic field detectors and infrared sensors. A review of these properties
can be found in Micklethwaite and Johnson [24].

The primary reason for focusing on InSb is that it is exceedingly difficult to
grow with the Cz technique mainly because of its small critically resolved shear stress
(CRSS). It is known experimentally that attempting to grow InSb in a cylindrical
profile with the Cz technique produces crystals with an unacceptable defect density,
contrary to the growth of more common crystals such as silicon, where low defect
density crystals can be grown in a cylindrical shape. Thus it is often an art to find
the most suitable profile of the solidifying crystal by carefully varying the furnace
temperature and the rate that the crystal is extracted [23]. To determine the influence
of various resulting crystal profiles (i.e., axial variations of the lateral surface or crystal
shapes) on the stress experienced within the crystal, we assume that the profile of
the crystal is an arbitrary function of the axial displacement while allowing the solid-
liquid interface to be driven by a Stefan condition and a compatibility condition at
the solid-liquid-gas triple point.

By examining the physical process and parameter values of the growth environ-
ment closely, we are able to identify the main features associated with InSb crys-
tals. In particular, if the heat flux from the melt is uniform across the crystal-melt
interface, the temperature field will be dominated by the lateral flux through the
crystal-gas surface, characterized by a nondimensional Biot number. The value of
the Biot number is small under the growth conditions for InSb crystals, suggesting
an asymptotic expansion of the solution in terms of this parameter. Much of the
asymptotic framework discussed in this paper has appeared elsewhere in the litera-
ture [3, 14, 20, 35, 36, 37, 38, 39]. For example, Kuiken and Roksnoer [20] assumed
a pseudosteady solid-liquid interface to obtain an accurate temperature distribution
of a Si crystal grown with the floating-zone technique. Their solution takes the form
of an expansion in terms of the Peclet and Nusselt numbers of the crystal, giving
a solution valid for slender crystals grown in conductive heat transfer environments.
By specifying an externally defined solid-liquid interface shape these authors avoided
using a Stefan condition to evolve the interface. An asymptotic analysis that con-
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sidered the melt was undertaken by Brattkus and Davis [3], where the geometry
allowed an expansion in terms of the aspect ratio of the solidification cell. Young and
Chait [36] considered a system driven by surface tension and more recently Young
and Heminger [37, 38] have utilized a small aspect ratio to study the growth of single
crystal fibers.

This paper blends the asymptotic expansion with the plane strain approximation
to examine thermal stress inside the crystals. It contrasts significantly with the above
references by assuming a radially independent heat flux from the melt that avoids a
boundary layer analysis around the solidification front, greatly simplifying the asymp-
totics. Any angular dependence is minimized by the rotation of the seed and crucible,
and the experimental evidence of an almost flat interface for Cz grown InSb crys-
tals [23] suggests that the flux from the melt is likely to be largely independent of the
radius. This is also supported in the literature [8, 9]. On the other hand, if the heat
flux is radially dependent then the same asymptotic framework applies, but there will
be a boundary layer solution similar to that in [3, 36] or [20] on the crystal side to
match the asymptotic solutions.

While the details of the motion of the melt are ignored, the crystal-melt and
crucible-melt heat transfer coefficients are estimated from the Ekman layer and nat-
ural convection submodel, respectively. As the crystal grows two situations are in-
vestigated. In the first, the flux is constant so that the model is more accurately a
description of the solid in a directional solidification technique. In the second, the flux
is calculated through an essentially zero-dimensional model for the melt. This enables
the heat flux from the melt to be influenced by some of the crucible and operating
parameters of the Cz process.

In the fully unsteady case, the asymptotic expansion results in a system of one-
dimensional equations and the thermal stress can be obtained explicitly in an analyt-
ical form, under the plane strain assumption. In the pseudosteady limit this reduces
to the classical result that the stress is proportional to the concavity of the tempera-
ture field [22, 34]. This also extends the work of [19], where stress was obtained for a
cylindrical crystal with a flat crystal-melt interface. The pseudosteady solutions are
contrasted with the unsteady solutions for cylindrical and conical crystals justifying
the pseudosteady approximation for the growth parameters of InSb used in this paper.
A detailed description of the pseudosteady approximation with respect to Cz growth
can be found in the paper by Derby and Brown [10]. Other examples of the use of
the pseudosteady approximation can be found elsewhere [14, 35].

Compared to most of the previous work using asymptotic or numerical methods,
this study moves a step further by coupling stress calculation with the asymptotic
field temperature solution and deriving an explicit form for the stress. Furthermore,
formulated in a nondimensional form, the dependence of the stress level on the Biot
number is useful for crystal growers when larger crystals are grown. Since the Biot
number is proportional to the product of the heat transfer coefficient and the mean
crystal radius, it is obvious that one should try to reduce the heat flux via the lateral
surface when a crystal of larger radius is grown. In addition, the explicit nature of
the stress solution enables us to identify the effect of crystal profile (shape) as well
as the crystal size (radius) on the stress. More importantly, obtaining an explicit
formulation for the stress allows us to apply other techniques such as optimal control
methodologies to efficiently search for better growth conditions. A simplified model
for the heat exchange between the gas flow and the crystal is used to clarify the
presentation. However, the asymptotic solution developed here is still valid if a more
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Fig. 1. Shown is a typical crystal at some time t during a growth run with a newly solidified
portion at z = S(x, t). The coordinate system is chosen so that the top of the crystal remains at
z = 0 and the solidification front grows downward in the positive z direction. The radial profile is
given by R(z) and the crystal length is S(x, t). Finally, the heat transfer coefficient hgs may be a
function of the axial position z.

realistic model for the gas is incorporated. More detailed discussion related to the
growth conditions for InSb will be given in sections 2 and 5.

The rest of the paper is organized as follows. In section 2, we will present the
mathematical model and dimensional analysis. Asymptotic solutions are given in sec-
tion 3. Thermal stress is discussed in section 4. In section 5, results are presented for
both pseudosteady and unsteady cases. We conclude the paper with a brief summary
and discussion on future directions in section 6.

2. Mathematical model and dimensional analysis. The basic assumptions
made in this study are (1) the crystal is axis-symmetric; (2) the heat exchange between
the crystal and gas along the lateral surface of the crystal is a constant; (3) the heat
exchange between the crystal and melt along the crystal-melt interface is uniform; (4)
the mean crystal radius is small compared to its length; (5) thermal stress is elastic
and computed under a plane strain assumption. Some of the assumptions are made
to simplify the derivation, and others are made based on previous study of similar
problems or observations made by us and engineers we have been collaborating with.
We will revisit some of the assumptions in section 6.

Figure 1 illustrates the geometry of a typical crystal. The coordinate system is
fixed to the top of the growing crystal at z = 0, the final length of the crystal is
denoted Z, and the crystal radius is denoted R(z). The growth starts with a seed
crystal with radius of order R0 = 0.5 cm and length Z0 = 3 cm. The crystal grows
outward in a slowly developing cone, eventually reaching a radius R(Z) � 5 cm after
a length Z � 30 cm. A crystal can take 10–20 hours to grow. Thus, at the outset we
make two observations. First, the crystal growth is characterized by a large aspect
ratio. Second, it is evident that any transients in the system, unless caused by rapidly
changing boundary conditions, are very slow. These two features will be used to
derive our eventual model.
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Within the crystal Ω, the temperature T (x, t) satisfies the heat equation

ρscs
∂T

∂t
= ks

∑
j

∂2T

∂x2
j

, x ∈ Ω, t > 0,(1)

where ρs, cs, and ks, respectively, are the density, specific heat, and thermal conduc-
tivity of the crystal solid phase. The lateral surface of the crystal is denoted Γg and
is subjected to cooling from the circulating chamber gases and from radiative heat
losses. Although radiation is not insignificant, for simplicity we model both effects
through a simple Newtonian cooling law

−ks
∂T

∂n
= hgs(T − Tg), x ∈ Γg.(2)

Here we assume that the heat transfer coefficient hgs incorporates both convective
and radiative heat transfer (the latter via linearization). The top of the crystal is
fixed at z = 0, where we also invoke a Newtonian cooling law

(3) ks
∂T

∂z
= hch(T − Tch),

in the case that the radius at z = 0 is assumed to be nonzero. Here hch repre-
sents the heat transfer coefficient for the seed-chuck connection and Tch is the chuck
temperature.

The crystal-melt interface is denoted ΓS and is where T = Tm, the melting
temperature. The interface of the phase transition is thus implicitly defined from the
temperature field. Explicitly we denote the melting isotherm by

z − S(x, t) = 0, x ∈ ΓS .(4)

The motion of the interface of the phase transition is governed by the Stefan condition

(5) ρsL |�vn| = ks
∂T

∂n

∣∣∣∣
z→S−

− ql,n,

where |�vn| is the speed at which the interface moves in the direction of the outward
unit normal n, L is the latent heat, and ql,n is the heat flux from the melt normal to
the interface.

Figure 2 illustrates the triple point (TP) where the solid, liquid, and gas come
into contact and the solid-liquid interface moves at a velocity �vn = vnn. If ∂S/∂t
denotes the speed of the interface in the k direction, then

(6) |�vn| = vn =
∂S

∂t
k ◦ n.

Still referring to Figure 2, the profile (shape) of the crystal R(z) is determined by the
motion of the TP given by

(7)
∂R

∂t

∣∣∣∣
z=S

= tan(θ − θc)
∂S

∂t

∣∣∣∣
r=R

,

where θc is the contact angle formed by the wetting fluid (melt) and the crystal and θ
is the angle formed by the meniscus with the vertical z-axis. This expression simply
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Fig. 2. Schematic diagram of the meniscus z = ζ(r) with capillary height ζ0, defined on
R(S) ≤ r ≤ Rc, where R(S) is the radius of the crystal at the interface, θc is the contact angle, and
Rc is the radius of the crucible. The motion of the TP is determined by the advancing interface S,
the speed at which the melt falls vm, and the pull rate applied to the crucible vp.

states that the crystal prefers to grow in the direction defined by the contact angle.
The motion of the advancing interface S, the advancement due to the pulling rate,
and the motion due to the loss of melt determine the vertical position of the triple
junction ζ0 via

(8)
dζ0

dt
= vp + vm − ∂S

∂t
,

where vm is the rate at which the melt-gas surface drops given by

(9) vm =
ρsR

2

ρlR2
c

∂S

∂t

from the law of mass conservation and vp is the pulling rate at which the crucible is
dropped to ensure that the crystal-melt interface remains at the surface of the liquid.

We note that properly it is necessary to close the model by relating growth in
S to that in R, i.e., solving (7). To do this we must model the crystal withdrawal
from the crucible, the formation of the meniscus, and the coupling of S and R. It has
been shown in [32] that the growth angle is related to the capillary height ζ0 for large
Bond number growth. In principle, crystals with desirable shapes can be grown by
adjusting the pulling rate, which determines the meniscus angle θ in (7). Therefore, if
we are not interested in the dynamics, we can impose a geometry R(z) on the model.
This approach has the advantage of allowing us to investigate the thermal fields and
associated stresses that develop for a particular observed shape.

Note that for cylindrical crystals the capillary height does not change throughout
the growth cycle. Therefore (8) can be simplified as

(10) vp =
∂S

∂t
− vm.
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Table 1

A summary of the thermophysical and typical growth parameters of InSb.

Data Symbol Value
Growing properties

Mean crystal radius R 0.03 m
Final crystal length Z 0.30 m
Characteristic growth rate v 6.9 × 10−6 m/s
Ambient gas temperature Tg 600 K

Solid properties at T = Tm

Melting temperature Tm 798.4 K
Density ρs 5.64 × 103 kg/m3

Thermal conductivity ks 4.57 W/m K
Heat capacity ρscs 1.5 × 106 J/m3 K
Latent heat of fusion L 2.3 × 105 J/kg

Heat transfer coefficients
Crystal-gas hgs 1 − 4 W/m2 K

2.1. Typical scales in InSb crystal growth. Although it is possible to treat
the three-dimensional case above, it is somewhat unwieldy, and hence we instead
attempt to simplify the model first. Table 1 specifies a typical set of thermophysical
and process data. Consider a time t, after any initial growth transient, when the
crystal has length S onto which a thin layer of crystal of radius R has just solidified.
Utilizing (1) and the characteristic values in Table 1, the conduction of heat across
a crystal cross-section and the time taken to grow a length R of crystal have the
following time scales:

tcond � R
2
ρscs
ks

= 3.0 × 102 s, tgrow � R

v
= 1.7 × 104 s.

Thus, the conductive time scale is typically much shorter than that for growth (i.e.,
over similar length scales). The growth time scale for the entire crystal is still longer
and given by t � Z/v. It is over this latter growth time scale that significant changes
in either the radius or area occur related to significant changes in the cooling capacity
and heat capacity, respectively.

Therefore, apart from imposed rapid changes in the growth (e.g., at the start of
the process and at the end as the crystal is withdrawn from the melt), all other thermal
changes are slow and occur on the growth time scale. Since there is no process change
that occurs on the conductive time scale, the process is likely to be pseudosteady on
the growth related time scale.

Turning now to the thermal gradients, the magnitude of the radial variation in the
temperature is maximized at the lateral surface where the crystal comes into contact
with the surrounding gas. From (2) and Table 1,∣∣∣∣∂T∂n

∣∣∣∣
Γg

≤ hgs

ks
(Tm − Tg) � 175 K/m.

The magnitude of the axial temperature gradient is maximal at the interface of the
phase transition where the Stefan condition (5)–(6) is satisfied. Assuming a nearly flat
interface, which will be justified later, an estimate for Tz|S− is obtained by neglecting
the heat flux in the liquid phase∣∣∣∣∂T∂z

∣∣∣∣
S−

� ρsLv

ks
= 850 K/m.
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The sides of the crystal are predominantly vertical and the crystal-melt interface
predominantly horizontal. Thus, we see that the vertical gradients dominate, at least
in some neighborhood of the crystal-melt interface. However, we must note that the
vertical gradients arise mostly due to heat loss to the cooling gases, which occurs in
the radial direction. Since the cooling influences are weak, this implies that a long
crystal is needed to get a significant temperature drop along the crystal length and
suggests we will need to scale the axial and radial directions differently.

2.2. Nondimensionalization. The above discussion motivates our scaling be-
low. For simplicity, we start by assuming an axisymmetric model, although the crystal
cross-section is not in fact circular. The other assumptions that we make here, for
simplicity only, are that the heat transfer coefficient hgs and the gas temperature Tg

are constant. In reality there will be local variations along the crystal surface, but in
any case these require a more detailed analysis of the gas flows in order to be properly
evaluated.

We define the Biot number by

(11) ε =
hgsR

ks
,

and using the parameter values in Table 1, we find ε � 0.026 � 1. We seek an
asymptotic expansion in terms of ε. With this in mind we adopt the following scalings:

r = Rr̂, R(z) = RR̂(ẑ), ε1/2z = Rẑ, ε1/2S(r, t) = RŜ(r̂, t̂),

ΔT = Tm − Tg, St =
L

csΔT
, T = Tg + ΔTΘ, t =

StR
2
ρscs

ksε
t̂.

Here variables with hats (ˆ) are the nondimensional ones. In terms of these variables
the heat equation in the crystal (1) becomes

ε

St
Θt =

1

r
(rΘr)r + εΘzz, x ∈ Ω, t > 0,(12a)

with boundary conditions (2)–(4) becoming

−Θr + εΘzR
′(z) = ε

[
1 + ε(R′(z))2

]1/2
Θ, x ∈ Γg,(12b)

Θz(0, t) = δ(Θ(0, t) − Θch),(12c)

Θ = 1, x ∈ ΓS ,(12d)

where δ = ε1/2hch/hgs. The hats have been dropped for brevity. The crystal-melt
interface advances according to the Stefan condition (5)–(6) which in nondimensional
coordinates becomes

Θz −
1

ε
SrΘr = (γ + St) , γ =

qlR

ε1/2ksΔT
,(12e)

where ql and γ are the dimensional and nondimensional heat fluxes in the liquid across
the crystal-melt interface in the axial direction. Note that we have chosen the rate of
solidification to define the characteristic time scale. The Stefan number St gives the
ratio of this characteristic solidification time scale to the time scale associated with
conductive heat loss through the crystal side surface. Based on the parameter values
in Table 1, we have St � 4.3, suggesting that the conductive scale is small and the
temperature inside the crystal is steady on the growth time scale.
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2.3. Growth conditions. Under general growth conditions the process may be
pseudosteady. However, near the end of the process, transient influences may become
important. To investigate both possibilities two situations are considered.

1. The growth of the crystal is characterized by an externally chosen value of ql
(or the nondimensional flux γ), constant for the duration of the simulation.

2. Using the temperature of the crucible Θc as a control parameter, ql is deter-
mined implicitly by an effective heat transfer coefficient of the crucible to the
crystal through the melt.

In the second scenario a simple model is used to couple the heat fluxes inside the
grower based on the fact that the system is almost at thermal equilibrium. The
nondimensional liquid temperature satisfies

(13a)
φ

λ St

d

dt

[(
Tg

ΔT
+ Θl

)
Vl

]
= −μλ2 hsl

hgs
A(Θl−1)−μ

hgl

hgs
(Ac−λ2A)Θl+

hcl

hgs
Al(Θc−Θl)

with Θl(0) = 1 and Θc(0) chosen so that Θ′
l(0) = 0. The detailed derivation is given

in the appendix, and from expression (47c) the γ in (12e) becomes

(13b) γ = ε1/2 hsl

hgs
(Θl − 1).

3. Perturbation solution. We now seek to approximate the scaled model in
section 2.2 via a straightforward perturbation expansion. In turn, this perturbation
model will form the basis for a numerical solution. Since St is O(1) under the current
growth conditions it is retained as a parameter. Equations (12a) and (12b) strongly
suggest that the temperature Θ is independent of r to leading order. If true, then the
crystal-melt interface S is also independent of r to leading order, and we see that this
is consistent in (12e) with the growth being driven primarily by the vertical gradients.
These observations motivate the following approximations:

Θ ∼ Θ0(z, t) + εΘ1(r, z, t) + ε2Θ2(r, z, t) + · · · ,
S ∼ S0(t) + εS1(r, t) + ε2S2(r, t) + · · · .

(14)

We substitute them into the scaled model, expand in powers of ε, simplify, and collect
terms. The resulting field equations to first order are

1

St
Θ0,t − Θ0,zz =

1

r

∂

∂r
(rΘ1,r), x ∈ Ω, t > 0,(15a)

1

St
Θ1,t − Θ1,zz =

1

r

∂

∂r
(rΘ2,r), x ∈ Ω, t > 0,(15b)

where the boundary condition on the lateral surface becomes

(Θ1,r −R′Θ0,z + Θ0)(R(z), z, t) = 0,(16a) (
Θ2,r −R′Θ1,z +

1

2
R′2Θ0 + Θ1

)
(R(z), z, t) = 0.(16b)

Continuing this procedure for the remaining conditions, at the top of the crystal one
has

Θ0,z(0, t) = δ(Θ0(0, t) − Θch),

Θ1,z(r, 0, t) = δΘ1(r, 0, t),
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and at the solid-liquid interface

Θ0(S0(t), t) = 1,(17a)

(S1Θ0,z + Θ1)(r, S0(t), t) = 0.(17b)

Finally, the evolution of the interface is governed by

S′
0(t) = Θ0,z(S0(t), t) − γ, S0(0) = Z0,(18a)

S1,t(r, t) =

(
Θ1,z + S1Θ0,zz +

Θ2
1,r

Θ0,z

)
(r, S0(t), t), S1(r, 0) = 0,(18b)

where we have used (17b) to eliminate the S1,r term. We note that by expanding the
solid-liquid interface into the same asymptotic series and deriving the above equa-
tions, we have implied that the interface will adjust its shape to avoid a temperature
singularity at the solid-liquid-gas triple point. We also note that Z0 is the nondimen-
sional length of the seed. In addition there will be symmetry conditions at r = 0 for
Θk, Sk, k = 0, 1.

3.1. Resolution of the zeroth order model. Integrating (15a) once and im-
posing the symmetry condition Θ1,r = 0 at r = 0, we have

r

2

(
1

St
Θ0,t − Θ0,zz

)
= Θ1,r.

Applying (16a) at r = R gives the zeroth order problem

1

St
Θ0,t − Θ0,zz =

2

R
(R′Θ0,z − Θ0) , 0 < z < S0(t), t > 0,(19a)

Θ0,z(0, t) = δ(Θ0(0, t) − Θch), t ≥ 0,(19b)

Θ0(S0(t), t) = 1, t ≥ 0,(19c)

S′
0(t) = Θ0,z(S0(t), t) − γ, S0(0) = Z0, t > 0,(19d)

with an initial condition Θ0(z, 0) = f(z) ≤ 1 compatible with the boundary condi-
tions. Provided that R ∈ C1([0, S0]), the Stefan problem will have a unique solution.
For details see Friedman [12].

Equation (19a) is parabolic and involves only the heat fluxes along the length of
the crystal. With the chosen expansion we see that at zeroth order the temperature
field has no radial dependence. In addition, we can see that the thermal gradients,
as discussed previously, are caused by cooling effects at the surface. In section 5.1 we
solve the time dependent system (19) on 0 < z < S0(t) for a suitable set of initial
conditions. Also notice expression (19d) illustrates that the chosen time scale balances
the growth. The appearance of St > 1 in (19a) suggests that thermal transients in
the bulk of the crystal are not as important as the growth transient. This is explored
further in section 5.1. The limit as St → ∞ leads naturally to a pseudosteady leading
order model in which time dependency enters the thermal model only through the
growth; i.e., we also solve as the pseudosteady limit

Θ0,zz +
2

R
(R′Θ0,z − Θ0) = 0, 0 < z < S0(t), t > 0,(20)

with (19b)–(19d). Expression (20) together with (19b)–(19d) is analogous to a Hele–
Shaw problem, and it is well known that in one dimension solutions of the Stefan



Cz GROWTH AND THERMAL STRESS OF TYPE III-V COMPOUNDS 1543

−λ 0

λ

δ

γ

S0(t) < 0

0 0.2 0.4 0.6 0.8 1

0.6

1.2

1.8

} δ = 0

γ = −0.07
γ = 0
γ = 0.07

t

S 0
(t

)

} δ = 0.5

} δ = 2

γ = −0.07

γ = −0.07

γ = 0

γ = 0

γ = 0.07

γ = 0.07

’

S0(t) > 0’

k

Fig. 3. To the left is the evolution of the length of a cylindrical crystal grown using the
pseudosteady approximation according to (22). For the simulations, Θch = 0, R0 = 1, Z0 = 0.162
(3 cm), and ε = 0.026 (hgs = 4W/m2K). The position S0 = 1.8 at t = 1 corresponds to a crystal
length of 33 cm grown in 13.6 hours, typical for Cz grown InSb [24]. The curve on the right is
S′

0(t) = 0, which characterizes the balance of the heat flux from the melt with the loss of heat at the
chuck. The quantity λ = k tanh kS0 increases with S0.

problem (19) converge to solutions of Hele–Shaw as St → ∞. However, the conver-
gence is not uniform and the intermediate asymptotic behaviors are different [30].

We start by exploring two special cases for which an analytic solution may be
computed to the pseudosteady model.

3.1.1. Constant radius crystals. In this case we take R(z) = R0, and (20)
becomes simply

Θ0,zz −
2

R0
Θ0 = 0, 0 < z < S0(t), t > 0,

with boundary conditions (19b) and (19c). Solving for Θ0 gives

Θ0(z, t) =
k cosh kz + δ sinh kz + δΘch sinh k(S0 − z)

k cosh kS0 + δ sinh kS0
, k2 =

2

R0
.(21)

The crystal grows at a rate governed by the Stefan condition (19d)

S′
0(t) = k

k sinh kS0 + δ cosh kS0 − δΘch

k cosh kS0 + δ sinh kS0
− γ, S0(0) = Z0.(22)

The left-hand side of Figure 3 shows the time dependence of the position of the
interface and therefore the length of the crystal as a function of time for various
combinations of δ and γ. The right-hand side details the balance between these
two parameters. The initial position of the curve is determined by the length of
the seed Z0. If the γ, δ pair is chosen above the curve S′

0(t) = 0
(
γ > γmax(δ) =

k2(λ0 + δ)/(k2 + δλ0), λ0 = k tanh kZ0,Θch = 0
)
, the seed melts back. If we are

below the curve, then S0(t) increases without bound and the curve asymptotically
approaches γ = k. For small S0, (22) gives S′

0 = k2S0−γ+δ(1−Θch)(1−δS0)+O(S2
0)

and for large S0, the growth rate is asymptotically S′
0 = k − γ.

3.1.2. Conical crystals. One source of ambiguity in the constant radius model
above is the need to specify the chuck temperature and heat transfer coefficient. In
the case of a conical crystal, which is closer to reality, this ambiguity is less prominent.
We assume R(z) = R0 + αz, where arctanα � O(1) is one-half the opening angle of
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the crystal when using nondimensional units. This assumption is predicated on the
condition that the dimensional version of α � O(

√
ε), and it is easily verified using

the data in Table 1. Substituting for R(z) we solve

Θ0,ηη +
2

η
(Θ0,η − Θ0) = 0, R0 < α2η < R0 + αS0, t > 0,(23a)

Θ0,η = αδ(Θ0 − Θch), α2η = R0, t ≥ 0,(23b)

Θ0 = 1, α2η = R0 + αS0, t ≥ 0,(23c)

where α2η(z) = R0 +αz. The resulting solution takes the form of linear combinations
of modified Bessel functions

(24) Θ0(η, t) =
Wfg(η, η(0)) − αδ [Vfg(η, η(0)) − ΘchVfg(η, η(S0))]

Wfg(η(S0), η(0)) − αδVfg(η(S0), η(0))
,

where

Wfg(x, y) =

∣∣∣∣f(x) g(x)
f ′(y) g′(y)

∣∣∣∣ , Vfg(x, y) =

∣∣∣∣f(x) g(x)
f(y) g(y)

∣∣∣∣ ,
f(η) =

I1(
√

8η)
√
η

, g(η) =
K1(

√
8η)

√
η

.

The corresponding expression for the growth rate is

S′
0(t) =

1

α

Vf ′g′(η(S0), η(0)) + αδ [Wfg(η, η(0)) − ΘchWfg(η, η(S0))]

Wfg(η(0), η(S0)) − αδWfg(η(S0), η(S0))
−γ, S0(0) = Z0.

Two limiting cases are considered. To compare with the cylindrical case one sets
R0 = 1 and expands (24) in a power series of α yielding

(25a) Θ0(z, t) =
cosh

√
2z

cosh
√

2S0

{
1 − α

8

[
6(z − S0) +

√
8(z2 − U) tanh

√
2z

−
√

8(S2
0 − U) tanh

√
2S0

]}
+ O(α2)

with

(25b) U =
3

2
+ 2δ

(
1 − Θch cosh

√
2S0

)
.

Expressions (25) should be compared to (21). Since for a cone R0 � 1, a simple form
of (24) can be obtained by expanding the solution in R0 as

(26) Θ0(z, t) =

√
S0

z

I1(
√

8z/α)

I1(
√

8S0/α)

[
1 +

R0

α

(√
2

αz

I0(
√

8z/α)

I1(
√

8z/α)

−
√

2

αS0

I0(
√

8S0/α)

I1(
√

8S0/α)
− 1

z
+

1

S0

)]
+ O(R2

0).

The solution for conical crystals is more complicated, and we will defer the dis-
cussion to section 5.
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3.1.3. Comments. This model for a one-dimensional temperature variation in
the axial direction is not new. For example, it has been used in [32] but without formal
justifications. What we have done here, by deriving it using asymptotic expansion, is
to allow the reader to realize the applicability and restrictions of the model.

3.2. Radial variations: Resolution of the first order model. Having
solved the zeroth order model, to give Θ0 and S0, we can resolve the radial varia-
tions in temperature, which occur at first order in Θ1, and also consider the shape
of the crystal-melt interface as it evolves, through S1. From resolution of the zeroth
order model we have

Θ1,r =
r

2

(
1

St
Θ0,t − Θ0,zz

)
,

and integrating with respect to r we have

Θ1(r, z, t) = Θ1(0, z, t) +
r2

4

(
1

St
Θ0,t − Θ0,zz

)
,

or

(27) Θ1(r, z, t) = Θ0
1(z, t) + r2Θ1

1(z, t),

where Θ0
1(z, t) = Θ1(0, z, t) and using (19a)

(28) Θ1
1(z, t) =

1

2R
(R′Θ0,z − Θ0).

The function Θ1
1(z, t) is known from the data and the zeroth order solution. By

adopting the same procedure as for the zeroth order model we can find Θ0
1(z, t),

i.e., integrating (15b) with respect to r and using the boundary condition at r = R
to eliminate Θ2,r. We derive

1

St
Θ0

1,t − Θ0
1,zz =

2

R
(R′Θ0

1,z − Θ0
1) + F1, 0 < z < S0(t), t > 0,(29a)

Θ0
1,z(0, t) = δΘ0

1(0, t), t ≥ 0,(29b)

Θ0
1(S0(t), t) = −S1(0, t)Θ0,z(S0(t), t), t ≥ 0,(29c)

S′
1(r, t) =

(
Θ0

1,z + S1Θ0,zz + r2F2

)
(S0(t), t), S1(r, 0) = 0, t > 0,(29d)

where

F1 = −R2

2

(
1

St
Θ1

1,t − Θ1
1,zz

)
+ 2R(R′Θ1

1,z − Θ1
1) −

R′2Θ0

R
, F2 = Θ1

1,z +
4(Θ1

1)
2

Θ0,z
,

(29e)

and r appears as a parameter in (29d).
This first order problem (29) has the same structure as the zeroth order prob-

lem (19) but is inhomogeneous; i.e., the zeroth order solution provides the forcing
(or heating). A further key difference is in the coupling with the crystal-melt inter-
face position S1. Equation (29c) provides the lower boundary condition for Θ1 and
S1 advances through (29d), which is consequently a first order quasi-linear partial
differential equation.
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In general, the coupled system (29) must be solved numerically. For the pseu-
dosteady case, the formula can be simplified as follows. From the definition of Θ1

1 and
using the pseudosteady condition Θ0,zz = −4Θ1

1, expressions (29a) and (29d) reduce
to

(30)

Θ0
1,zz +

2

R
(R′Θ0

1,z −Θ0
1) =

1

4
(2R′ + 5R′R′′ −RR′′′)Θ0,z −

1

4R
(2R− 4R′2 + 5RR′′)Θ0

and

(31)

S′
1(r, t) = Θ0

1,z +
2

R
(1 −R′Θ0,z)S1 +

r2

2R2

(
−3R′ + (RR′′ + R′2 + R)Θ0,z +

2

Θ0,z

)
,

where the right-hand side of (31) is evaluated at z = S0(t) and r appears as a param-
eter.

3.2.1. Constant radius crystals. Since R(z) = R0, expression (30) reduces to
Θ0

1,zz − k2Θ0
1 = −Θ0/2 with k2 = 2/R0. Solving for Θ0

1 and using (27)–(28) one finds

Θ1(r, z, t) =
cosh kz

cosh kS0

[
−Γ(S0) − S0

1Θ0,z(S0)
]
+ Γ(z) − 1

4
k2r2Θ0(z)

with S0
1 = S1(0, z) and

Γ(z) =
1

2k

∫ z

0

Θ0(ξ) sinh k(ξ − z) dξ.

When δ = 0, Γ(z) = −z sinh kz/4k cosh kS0 yields

Θ1(r, z, t) =
1

4k

cosh kz

cosh kS0

(
S0 tanh kS0 − z tanh kz − 4k2S0

1 tanh kS0 − k3r2
)
.

S1 can be obtained by (29d).

3.2.2. Conical crystals. Since R(z) = R0 + αz, and from (20) Θ1
1 = (αΘ0,z −

Θ0)/2R = −Θ0,zz, we find

Θ1
1,z = −

(
3α2

2R2
+

1

2R

)
Θ0,z+

3α

2R2
Θ0, Θ1

1,zz =

(
6α3

R3
+

3α

R2

)
Θ0,z−

(
6α2

R3
+

1

R2

)
Θ0.

Consequently, (30) reduces to

(32) Θ0
1,zz +

2α

R
Θ0

1,z −
2

R
Θ0

1 =
α

2
Θ0,z +

1

2R
(2α2 −R)Θ0,

and we see that even for the pseudosteady cone, numerical methods will have to be
used in general.

Further discussion is deferred to section 5. In the following we turn our discussion
to thermal stress inside the crystal.

4. Thermal stress. The thermal stress experienced by the crystal during its
growth leads to the generation of structural defects in the crystal [31]. If we want
to eliminate these undesirable defects, then one must control the thermal stress. We
begin with a brief introduction to the case of an isotropic body. Although InSb is
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anisotropic with respect to its elasticity, this will be dealt with in a subsequent section.
Fundamentals can be found elsewhere [21, 28].

From the elements of the stress tensor the characteristic amount of stress at a
particular position can be described by the von Mises stress σVM with the relationship

(33) 2σ2
VM = (σ1 − σ2)

2 + (σ1 − σ3)
2 + (σ2 − σ3)

2,

where σ1, σ2, σ3 are the eigenvalues of the stress tensor. Being a function of the
eigenvalues, the von Mises stress is invariant under coordinate transformations.

For a given temperature field, the resulting set of thermoelastic equations for the
displacement vector are coupled, and a numerical method will be needed to solve the
displacements before thermal stress can be computed. It is instructive to consider the
special case where the displacement occurs in one of the three directions, due to the
nature of temperature variation. In the following, we will address the thermal stress
that arises from temperature variation in the radial direction, as this is the dominant
contribution.

4.1. Thermal stress due to radial temperature variation. We assume the
displacement vector is of the form �u = 〈u(r), 0, 0〉 and converting to nondimensional
units u satisfies

∂

∂r

[
1

r

∂

∂r
(ru)

]
= ε

(1 + ν)

(1 − ν)

∂Θ1

∂r
, u(0) < ∞, σrr(R) = 0,

where ν is the Poisson ratio. The condition u(0) < ∞ is due to the axisymmetry, and
since the crystal surface is unstressed, σrr(R) = 0. The stress has been nondimen-
sionalized by α0ΔTE/(1 − ν), E is the Young’s modulus, and α0 is the coefficient of
thermal expansion. We have assumed here that Θz � 0 since we want to focus on the
sole effect of any radial temperature variations. The solution satisfying the boundary
conditions is

u(r) = ε
(1 + ν)

(1 − ν)

[
1

r

∫ r

0

Θ1(s)s ds + (1 − 2ν)
r

R2

∫ R

0

Θ1(s)s ds

]
,

and using (27), the corresponding nontrivial stresses are

σrr = ε

[
1

R2

∫ R

0

Θ1(s)s ds−
1

r2

∫ r

0

Θ1(s)s ds

]
=

1

4
εΘ1

1

(
R2 − r2

)
,(34a)

σθθ = ε

[
1

R2

∫ R

0

Θ1(s)s ds +
1

r2

∫ r

0

Θ1(s)s ds− Θ1(r)

]
=

1

4
εΘ1

1

(
R2 − 3r2

)
,(34b)

σzz = ε

[
2

R2

∫ R

0

Θ1(s)s ds− Θ1(r)

]
=

1

2
εΘ1

1

(
R2 − 2r2

)
(34c)

with σzz modified using St. Venant’s principle.
Using (33) to compute the von Mises stress gives

(35) σVM(r, z, t) =
1

4
ε
∣∣Θ1

1

∣∣R2

[
1 − 4

( r

R

)2

+ 7
( r

R

)4
]1/2

.

The object in the square brackets is a shape factor, and it ranges from a value of
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√
3/7 at a radius of r =

√
2/7R(z) to a maximum value of two at the outer edge of

the crystal. For
√

4/7R(z) < r ≤ R(z) this factor is greater than one.
Remark 1. From (19a) and (28), Θ1

1 = (Θ0,t/St−Θ0,zz)/4, which reduces to
|Θ1

1| = |Θ0,zz|/4 in the pseudosteady limit. This generalizes the classical result that
the stress level is a characteristic of the concavity of the temperature in the axial
direction [22, 34]. The stress is also linearly proportional to the Biot number ε indi-
cating that an increase in the crystal radius will also increase the stress level, other
conditions being equal. It also indicates that the increase of radius can be offset by
reducing the heat transfer coefficient hgs, suggesting that a possible way to reduce
the stress is by changing the local heat flux from the crystal lateral surface.

Remark 2. Also from (28), it is clear that there are two components in the
expression for Θ1

1. Therefore both the temperature gradient and the crystal profile
are important for stress reduction. Since circular cylindrical shape is normally adopted
for the growth of more common crystals such as silicon, the shape effect has not been
discussed much in the literature. However, for crystals such as InSb with relatively
low resistance to thermal stress, finding the right shape is often part of an important
strategy for growing defect-free crystals. We will address this issue again in later
sections.

Remark 3. As other stresses, such as the total resolved stress, are often con-
sidered more relevant for causing defects, it is important to point out that the same
characteristics remain for different representations of the thermal stress or for crystals
being pulled in different directions. These issues will be the topic of the following two
subsections.

4.2. Resolved stress. InSb crystallizes in a zincblende or 43m structure. The
structure description is two interpenetrating face-centered cubic (f.c.c.) sublattices
of In and Sb separated by the displacement vector a〈1, 1, 1〉/4. Each In (Sb) atom
is tetrahedrally coordinated with an Sb (In) atom. An alternative description of the
structure is a f.c.c. sublattice of Sb atoms with one-half of the tetrahedral sites filled
with In atoms. The nearest neighbor distance is

√
3a/4 and the lattice parameter is

a = 0.6476 nm.
The preferred method of dislocation generation in InSb, as in all III-V semicon-

ductors, is through the generation of slip defects, in particular the {111}, 〈110〉 slip
system [19]. This system consists of four glide planes within which atoms can slip
in one of three directions. For example, in the (111) plane the slip directions are
[101], [110], and [011]. Figure 4 looks down the z-axis of the tetrahedral structure of
the crystal and shows each of the 12 permissible glide directions classified into five
different categories.

The amount of stress in a particular slip direction �g within a given glide plane with
normal �n is known as the resolved stress, σRS. If one assumes the crystallographic
axes coincide with the coordinate axes, then σRS is computed by finding

(36) σRS = �gTQσQT�n,

where Q is the coordinate transformation matrix that takes (r, θ, z) → (x, y, z) and
σ is the stress tensor in the (r, θ, z) coordinates. In summary, the five categories



Cz GROWTH AND THERMAL STRESS OF TYPE III-V COMPOUNDS 1549

[100]

[010]

[100]

[010]

(111)(111)

(111) (111)

-I:
[11

0]

I:[110]-I:
[11

0]

I:[110]

II:[011]II
I:[

01
1]

II
:[0

11
] III:[011]

V:[101]

IV:[101] V:[101]

IV:[101]

Fig. 4. Illustrated are each of the 12 slip directions in the {111}, 〈110〉 slip system. The roman
numerals refer to the functional form of the stress in the direction of the appropriate slip plane.

illustrated in Figure 4 yield1

σI
RS = − 1√

6
(σrr − σθθ) cos 2θ,(37a)

σII
RS =

1√
6
[(σzz − σθθ) − (σrr − σθθ)(sin

2 θ + sin θ cos θ)],(37b)

σIII
RS = − 1√

6
[(σzz − σθθ) − (σrr − σθθ)(sin

2 θ − sin θ cos θ)],(37c)

σIV
RS = − 1√

6
[(σzz − σθθ) − (σrr − σθθ)(cos2 θ + sin θ cos θ)],(37d)

σV
RS =

1√
6
[(σzz − σθθ) − (σrr − σθθ)(cos2 θ − sin θ cos θ)].(37e)

Plastic deformation of the crystal occurs if the stress in any of the 12 slip directions
exceeds the critical resolved shear stress, σcrss. To leading order, the actual density
of dislocations suffered by the crystal is proportional to the total excess stress at any
given point within the crystal. In this sense, an estimation of where dislocations are
likely to occur is given by the distribution of the total absolute stress:

(38) |σtot| = 4
∣∣σI

RS

∣∣ + 2
(∣∣σII

RS

∣∣ +
∣∣σIII

RS

∣∣ +
∣∣σIV

RS

∣∣ +
∣∣σV

RS

∣∣) .
An additional complication is that, in general, the elastic constants depend on the
solidification direction since the thermal and crystallographic axes are not aligned.
However, for crystals that belong to the cubic classes this does not play a role [2].

1Note: θ = −ϕ, where ϕ is the angular coordinate used by Jordan, Caruso, and von Neida [19].
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4.3. Crystal extraction in an arbitrary direction. The previous subsection
supposes the crystal is extracted from the melt in a direction coincident with the
crystallographic axes. If there is a misalignment between the frame defined by the
crystallographic axes of the unit cell and the frame with its z-axis coincident with the
solidification direction, then a coordinate transformation is required to align �n and �g.
These directions must change because they are with respect to the crystallographic
axes and not the the temperature field that determines the stress tensor. Let Uvp

denote a coordinate transformation, depending on the pulling direction, that takes
vectors in the crystallographic frame to the solidification frame. The total resolved
stress of the {111}, 〈110〉 slip system becomes

(39) |σtot| =

12∑
i=1

∣∣∣�gTi UT
vp
QσQTUvp�ni

∣∣∣ ,
where the symmetry in expression (38) has been broken.

5. Numerical results and discussion. We first discuss the temperature so-
lutions for the decoupled growth; i.e., the heat flux from the melt to the crystal is
assumed a known (constant) value. In particular, we compare the pseudosteady

(
(19),

(29) with Θ0,t = Θ0
1,t = Θ1

1,t = 0
)

and the unsteady solution (12). Even though the
Stefan number is not much bigger than unity, the results show that the pseudosteady
solutions are in good agreement with the unsteady calculation. This indicates that the
thermal stress can be reasonably estimated using the pseudosteady solution, which
greatly simplifies the calculation. The case for coupled growth is also investigated,
and we show the transient influence of the melt is only important towards the end of
the growth. During the growth, the heat flux from the melt to the crystal changes
slowly, suggesting that the temperature solutions for the decoupled case are good
approximations. The thermal stress is computed based on the pseudosteady solution
using the decoupled growth condition for simplicity.

Table 2 displays the various quantities used in the simulation and not found in
the previous table.2

5.1. Temperature solutions.

5.1.1. Decoupled growth. In this section we attempt to justify the pseu-
dosteady approximation. To begin, we assume γ = δ = 0, decoupling the crystal
from the melt in the crucible. Figure 5 compares the time dependence of the position
of the crystal-melt interface S(r, t) using (12) (the unsteady case) with its zeroth order
approximation S0(t) using (20), (19b)–(19d) (the pseudosteady case). To determine
the influence of both the crystal profile and the amount of heat transfer, a cylindrical
and conical profile were assumed and, for each profile, two values of ε (ε1 = 0.0066,
ε2 = 0.026) were considered. Using only the zeroth order approximation, the inter-
face position is uniformly overestimated with the pseudosteady approximation, and
the amount of overestimate is proportional to ε. The largest relative difference is
about 10% and occurs at the end of the growth for a cylindrical crystal with the
largest value of ε.

The radial dependence of the interface can be estimated with the first order per-
turbation, S0(t)+ εS1(r, t). Figure 6 compares this approximation with the radial de-

2hsl and hcl are based on estimated boundary layer thicknesses of 2.5 mm and 1.8 mm, respec-
tively. The former is due to an Ekman layer (rotations of crucible and the crystal at 5 rpm) and the
latter is due to natural convection (ΔT = 1 K, ν = 3.3 × 10−7 m2/s, Grashof number � 6.0 × 106).
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Table 2

Remaining liquid and growth parameters used in the simulations.

Data Symbol Value
Growing properties

Ambient temperature Ta 600 K
Seed radius R0 0.005 m
Seed length Z0 0.03 m

Crucible depth Z̃c 0.0875 m

Crucible radius R̃c 0.0875 m
Thermal expansion α0 5.5 × 10−6 /K

Liquid properties at T = Tm

Density ρl 6.47 × 103 kg/m3

Thermal conductivity kl 9.23 W/m K
Heat capacity ρlcl 1.7 × 106 J/m3 K

Heat transfer coefficients
Solid-liquid hsl 3700 W/m2 K
Gas-liquid hgl 2 W/m2 K
Crucible-liquid hcl 5230 W/m2 K
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Fig. 5. Time evolution of S0(t) for the pseudosteady approximation compared with S(0, t). For
both values of ε and both crystal profiles S0(t) closely approximates S(0, t).

pendence obtained by solving the unsteady equations at the end of the crystal growth,
t = tf . In both the case of a cylindrical and a conical crystal the growth interface is
convex (viewed from inside the crystal). For the conical crystal the interface is flatter
even though the curvature grows with time for both cases. The pseudosteady results
closely track the unsteady solution with a maximum relative difference less than 5%.

As a final comparison, Figures 7 and 8 display the predicted thermal profile for
the cylindrical and conical crystals, respectively. The crystals are displayed in the
physically correct aspect ratio and with their respective solid-liquid interface. It can
be seen that the pseudosteady and unsteady solutions are in close agreement.

From the previous results it is clear that without any coupling from the melt, the
pseudosteady solution approximates the solution of the fully time dependent Stefan
problem. When one considers coupling the melt in the crucible with the crystal,
the pseudosteady approximation will remain valid if the predicted heat flux from the
melt does not change appreciably over the growth of the crystal. In this case the
temperature and flux of the melt are determined by (13).
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Fig. 7. Nondimensional temperature contours for the cylinder at the end of the growth illus-
trated at the correct aspect ratio.

5.1.2. Coupled growth with melt in the crucible. In this simulation we
solve (19) with a cylindrical seed where γ = γ(t) as determined by (13). In addition,
hgs = 4, δ = 0, and the remaining heat transfer coefficients are listed in Table 2.
Results for a cylindrical and conical crystal pulled from a parabolic crucible

(
z =

Z̃c(r/R̃c)
2
)

are displayed in Figure 9. In both cases the temperature of the crucible
was initially Tc(0) = Tm + 0.046 K (dimensional) and reduced at a constant rate of
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Fig. 8. Nondimensional temperature contours for the cone at the end of the growth illustrated
at the correct aspect ratio.

0.2 K/hr.
On the far left of Figure 9 the grown crystal is illustrated at the physically correct

aspect ratio with the initial and final melt levels. The initial level is chosen so that
25% of the melt remains in the crucible once the crystal achieves its final length.
Growth times for each crystal are indicated on the far right.

The center two images display the time evolution of the crystal temperature with
the pseudosteady position (St → ∞) of the interface indicated with crosses. For the
cylindrical case the initial rapid increase in the radius imprints an echo of the seed into
the thermal field which will increase the stress in the shoulder of the crystal. Such an
effect has recently been described elsewhere [22]. The dashed lines show the solution
if γ = 0. By setting γ constant the growth rate of the crystal becomes essentially
constant rather than accelerating as seen in the coupled case.

The far right shows the growth rate of the interface S′
0(t), the corresponding pull

rate vp(t), and the rate at which the melt drops λ2vm(t). For the cylindrical crystal,
the growth rate rapidly decreases as the crystal shoulder is formed from the initial
seed. This effect is decreased for the conical crystal, leading to a more uniform pull
rate with this profile. As the crucible empties, the melt falls more rapidly, causing the
pulling speed to reduce near the end of the growth. For the cone this is emphasized
as the cross-sectional area increases with time.

Figure 10 illustrates both γ(t) and the components of expression (13) during the
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the coupled system (13) and (19). On the left is the final crystal position in the furnace. The
temperature field is detailed in the center and the interfacial velocities are displayed to the right.
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growth cycle for the cylindrical and conical crystal profiles. The flux from the melt
γ(t) is shown to the left of the figure. Changes in the flux are driven primarily by
the chosen rate of change of the crucible temperature and is relatively insensitive to
the crystal profile. In both cases the magnitude of undercooling was � 2 K. A more
sophisticated model that considers the dynamics of the melt is clearly required to
quantitatively estimate any undercooling effects. This research is currently underway.

Even with our very simple model for the melt, two separate growth regimes are
clearly identified. By considering the source of the various heat fluxes acting on the
melt one observes that in the initial states of growth, the heat loss to the ambient gas
Qgl = hgl(Ac −A)(Tl − Tg) and the heat gain from the crucible Qcl = hclAl(Tc − Tl)
are the dominant terms in (13). Once the crucible is cool enough, it becomes the
dominant channel for heat loss, whereas the melt is heated by the solid-liquid interface
at Tm and the decreased heat capacity through volume loss of the melt. The profile
of the crystal changes Qsl = hslA(Tl − Tm) and Qgl, while the shape of the crucible
governs the behavior of Qcl. Qvl = −ρlclTlV

′
l is dictated by the rate of growth.

The nondimensional quantities in Figure 10 are found by dividing the Qi by the
dimensional factor R̃c

2Z̃chgsΔT/R.
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Fig. 10. The nondimensional flux and the heat flux components of expression (13) through the
growth cycle. The various components detailed to the right are discussed in section 5.1.2.

5.2. Thermal stress. For an anisotropic crystal, Young’s modulus E and Pois-
son’s ratio ν depend on the specific orientation of the crystal. However, these values
are invariant within the {111} planes [2]. For InSb one has

E{111} =
4(C11 + 2C12)(C11 − C12)C44

(C11 + 2C12)(C11 − C12) + 2C11C44
= 6.18 × 104 MPa,

ν{111} =
1

3

(C11 + 2C12)(C11 − C12) − 2C44(C11 − 4C12)

(C11 + 2C12)(C11 − C12) + 2C11C44
= 0.364,

where C11 = 6.70 × 104, C12 = 3.65 × 104, C44 = 3.02 × 104 are crystal stiffness con-
stants3 in MPa and, consequently, the dimensional constant for the stress calculations
is α0ΔTE/(1 − ν) � 107 MPa.

Figure 11 shows the stress contours of the von Mises stress for the cylinder and the
cone at the end of the growth corresponding to the pseudosteady results in Figures 7
and 8. For a fixed value of ε the stress in the conical case is about one-half that of the
cylindrical case. Also, increasing ε increases the stress level dramatically. By growing
a conical crystal the stress can be reduced significantly. For a given temperature the
amount of stress at which crystal deformation begins to occur is known as the critical
resolved shear stress, σcrss. In the case of InSb, σcrss varies from 0.245 MPa [25] to
4.90 MPa [6] as the temperature varies from Tm = 798.4 K to 491 K, respectively,
indicating that the conical crystal remains below this critical stress level.

An additional method of reducing the stress level in the crystal is to use the
anisotropic nature of the crystal to our advantage by changing the direction in which
the crystal is solidified. From expression (39) one can see that for a fixed vertical
position in the crystal the total absolute resolved stress is a complicated function of

3The corresponding compliances are S11 = 2.42 × 10−5 MPa−1, S12 = −8.55 × 10−6 MPa−1,
S44 = 3.31 × 10−5 MPa−1.
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Fig. 11. von Mises stress for the pseudosteady cylindrical and conical crystal cases. Isostress
contours are labeled as a percent of the maximum stress (0.176 MPa for ε1 and 0.706 MPa for ε2).

the angular coordinate. Figure 12 shows the stress pattern for a cylindrical crystal
just inside the crystal-melt interface when the crystal is pulled in the directions [001],
[111], [101], and [121] respectively. The temperature field corresponds to values of
hgs = 4, γ = 0, and δ = 0 grown with the pseudosteady approximation. The 〈211〉
directions are preferred growth directions [23]. The other directions are for compar-
ative purposes. Notice that the isostress contours are square for the [001] direction
and hexagonal for the [111] direction, while the [121] direction generates distorted
rectangular isostress curves. If one assumes that the crystal will solidify in a manner
consistent with minimizing the surface stress, then these curves should somewhat ap-
proximate the actual cross-sectional shape of the crystal as it is pulled from the melt.
Clearly the crystal orientation can significantly reduce the stress. However, not all
growth directions are amenable to crystal growth [23]. Because of these other issues,
changes in the growth orientation are more effective at redistributing the stress within
a particular cross-section than reducing the overall magnitude of stress. The issue of
optimizing the growth conditions will be addressed in a subsequent paper.

6. Conclusion. In this study, we present a semianalytical approach for the tem-
perature and thermal stress inside an InSb crystal. The purpose of the paper is
twofold. By identifying the main physical features and using suitable mathematical
models, we have gained useful insights into this complex manufacturing process. In
particular, we have determined the dependence of the crystal stress on the evolving
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Fig. 12. Total resolved stress distribution, computed using (39), for a cylindrical crystal, at the
indicated orientation, just inside the crystal-melt interface at the end of the growth. All reported
stress values are expressed in percent with 100% occurring at the outer edge of a crystal grown in
the [001] direction.

crystal profile. By deriving semianalytical solutions, we have also provided a base that
can be used to search for suitable growth conditions to improve the manufacturing
procedure for all III-V compounds.

An important feature of our approach is that it allows us to derive explicit re-
lationships between the thermal stress and relevant physical and geometrical param-
eters. This is achieved by using an asymptotic expansion of the solution in terms
of the Biot number, characterizing the lateral heat flux. The asymptotic solution is
obtained by solving essentially one-dimensional problems. The results show that the
stress induced by radial temperature variation is related to the size (radius) and the
profile (variation of the radius) of the crystal and heat flux through the side surface.
On the other hand, the influence of the crystal radius on the stress induced by the
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axial temperature variation is much weaker. The heat flux through the side surface is
an important factor for reducing the overall thermal stress inside the crystal. The ex-
plicit nature of the thermal stress allows for a more efficient optimal control approach
for finding better growth conditions, as shown in [15].

The other advantage of our semianalytical approach is that it can be extended to
cases with more complicated models for the melt and gas flows. For example, the effect
of the gas flow on the lateral heat flux between the crystal surface and the gas can
be modeled by a nonconstant heat exchange coefficient hgs. The motion of the melt
can also be modeled by a similar approach, using a boundary layer argument [8, 9] or
by solving the Navier–Stokes equations and temperature equation numerically. These
will be the subject of a subsequent paper.

As pointed out earlier, we have assumed that the pulling rate can be adjusted
to grow a crystal with a desirable shape. In practice, we may need to consider the
dynamics and stability of the radial motion of the three-phase triple point. Models and
computations have been carried out to capture the motion of the three-phase contact
point [7, 32] and can be incorporated with the current model in a straightforward
fashion. This work is currently underway.

Finally, we note that our study has its limitations and there is room for improve-
ments and future investigations. For example, a nonuniform heat flux from the melt
will introduce radial variation in the zeroth order temperature solution. As a result,
the thermal stress will be determined not only by the axial gradient of the zeroth
order solution but its radial variation as well. However, this radial variation is likely
to be small, from our own observations and others, and an asymptotic solution can
also be obtained, as indicated in [20]. Furthermore, we have not discussed the validity
of the plane strain assumption. We believe that an asymptotic argument similar to
that used for the temperature can be employed to derive the plane strain solution as
part of the asymptotic series. We plan to address this issue also in a future study.
Finally, the crystal grown in practice is not axisymmetric. It would be of practical
interest to investigate the effect of anisotropy. Study is currently underway for a
weakly anisotropic crystal.

Appendix: A simple model for the melt temperature. Starting with di-
mensional variables, we consider crystal growth in an axisymmetric setting where the
rate of growth is small. We assume that the melt (liquid) in the crucible is well mixed
and the temperature of the melt, Tl(t), is uniform in space except in the thin lay-
ers near the crystal-melt and melt-ambient gas interfaces. We also assume that the
ambient gas is well mixed and the temperature of the gas is a constant Tg. Further-
more, we will neglect the shape of the meniscus and assume that the crystal-melt and
melt-gas interfaces are flat.4 Therefore by adjusting the pulling speed vp, the posi-
tions of the crystal-melt and melt-gas interfaces can be described by a single function
z = S(t).5 Finally, we assume that the crystal radius R(z) varies slowly in the z
direction, |Rz| � 1. The coordinate system is fixed to the top of the growing crystal
at z = 0, as described previously.

Figure 13 shows the three surfaces through which the melt can transfer heat

4For InSb crystals under consideration here, the typical length scale is R = 0.03 m, the surface
tension coefficient between the melt and gas is σgl = 0.434 N/m, and the melt density is ρl =

6.47 × 103 kg/m3. The Bond number is Bo = ρlgR
2/σgl � 132 � 1. Thus the meniscus is

dominated by the gravity effect and the meniscus changes shape only near the three-phase contact
point with a small capillary rise.

5The flat interface assumption allows one to drop the explicit r dependence of S(t).
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Fig. 13. For a small time interval Δt the new crystal extends a distance S′(t)Δt beyond the
original interface location (dashed-dotted line). The corresponding drop in the melt is vmΔt (dashed
line), and to realign the melt-gas interface and the crystal-melt the crystal must be extracted an
additional distance of vpΔt (solid line).

energy. These are denoted as A = πR2, the area of the crystal-melt interface; Ac =
πR2

c , the cross-sectional area of the crucible (Ac − A is the area of the melt-gas
interface); and Al, the surface area of the crucible in contact with the melt. Continuing
to refer to the figure, conservation of mass implies that the rate at which the melt-gas
interface drops due to the change in density upon solidification is

(40) vm(t) =
ρsA

ρlAc
S′(t).

To ensure that the crystal-melt interface remains at the surface of the liquid the
crucible is dropped at an optimal pull rate

(41) vp(t) = (S′ − vm)(t) =
ρlAc − ρsA

ρlAc
S′(t).

If the actual pull rate of the crystal exceeds vp by a moderate amount, then the surface
tension of the melt will cause the radius of the crystal to decrease. Similarly, pulling
at a rate slower than vp will cause the radius to increase.

Using these velocities, the position of the crystal-melt interface is S = Z0+uw+up,
where

uw(t) =

∫ t

0

vm(τ) dτ, up(t) =

∫ t

0

vp(τ) dτ(42)

are the displacements due to the loss of melt during the solidification and the growth
of the crystal, respectively. The top of the crystal is fixed at z = 0.

During the growth period we assume that the heat flux from the melt to the
crystal is given by

(43) ql = hsl(Tl − Tm).
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As a result the heat balance inside the melt yields

d

dt
(ρlclTlVl) = −qlA− hgl(Ac −A)(Tl − Tg) + hclAl(Tc − Tl),(44)

where Vl is the time dependent volume of the melt, and Tc is the temperature of the
crucible. The last term in (44) is the heat flux from the crucible to the liquid and is
assumed to be a control parameter with Tc acting as the control.

For simulations in section 5.1.2 the crucible was assumed to be parabolic and
filled to the extent that once the crystal reaches its final mass ρsVxtal and growth
stops, there is a given proportion, p, of melt mass left in the crucible. As a result,
Rc(ξ) = R̃c(ξ/Z̃c)

1/2, 0 ≤ ξ ≤ Z̃c, and the initial depth of the melt Zc0 is determined
with the condition

(45)
ρs
ρl

Vxtal = (1 − p)

∫ Zc0

0

πR2
c(ξ) dξ.

Since the shape of the crucible is known, Al and Vl can be obtained as

Al(t) =

∫ Zc0−uw(t)

0

2πRc(ξ)

√
1 + R′2

c(ξ) dξ, Vl(t) =

∫ Zc0−uw(t)

0

πR2
c(ξ) dξ(46)

computed with respect to a local coordinate system fixed to the bottom of the crucible.
A nondimensionalized version of (44) is obtained by substituting the characteristic

radius R̃c and depth Z̃c for the crucible so that

Rc = R̃cR̂c, A = R
2
Â, Ac = R̃2

cÂc, Al = R̃cZ̃cÂl, Vl = R̃2
cZ̃cV̂l.

Letting Tl = Tg +ΔTΘl and Tc = Tg +ΔTΘc and defining λ = R/R̃c, μ = R̃c/Z̃c, φ =
ρlcl/ρscs one obtains

(47a)
φ

λ St

d

dt̂

[(
Tg

ΔT
+ Θl

)
V̂l

]
= −μλ2Â

hsl

hgs
(Θl−1)−μ

hgl

hgs
(Âc−λ2Â)Θl+

hcl

hgs
Âl(Θc−Θl)

with Θl(0) = 1 and a nondimensional heat flux given by

(47b) γ =
ql,nR

ε1/2ksΔT
= ε1/2 hsl

hgs
(Θl − 1).

When commencing, the growth of the seed is slowly dropped until it contacts the
melt surface and a meniscus is supported. Once the meniscus stabilizes and the seed
reaches a thermal equilibrium with the melt and the crystal, the seed is extracted
and the furnace temperature is slowly decreased [23]. Assuming a cylindrical seed of
length Z0 and radius R0 and using expression (22) one finds an initial interface speed
of

(47c) S′
0(0) = k

k sinh(kZ0) + δ cosh(kZ0) − δΘch

k cosh(kZ0) + δ sinh(kZ0)

with k2 = 2/R0. The initial crucible temperature is chosen so that Θ′
l(0) = 0 and

from (47a) one has

(47d) Θc(0) =

[
1 + μ

hgl

hcl

(
Âc − λ2Â

Âl

)
+

φ

λ St

hgs

hcl

1

Âl

dV̂l

dt̂

(
Tg

ΔT
+ 1

)]
(0).
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To simulate the cooling of the furnace the crucible temperature was dropped at a
constant rate of 0.2 K/hr for all simulations.

Nondimensional versions of the interface speeds (40)–(41), displacements (42),
initial depth condition (45), and geometrical factors (46) are derived using the sub-
stitutions

Zc0 = Z̃cẐc0, ε1/2up = Rûp, ε1/2uw = λ3R̃cûw.
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DISCRETE-TIME SIS EPIDEMIC MODEL IN A SEASONAL
ENVIRONMENT∗
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Abstract. We study the combined effects of seasonal trends and diseases on the extinction and
persistence of discretely reproducing populations. We introduce the epidemic threshold parameter,
R0, for predicting disease dynamics in periodic environments. Typically, in periodic environments,
R0 > 1 implies disease persistence on a cyclic attractor, while R0 < 1 implies disease extinction.
We also explore the relationship between the demographic equation and the epidemic process. In
particular, we show that in periodic environments, it is possible for the infective population to be on
a chaotic attractor while the demographic dynamics is nonchaotic.
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1. Introduction. The complexities of a periodic environment can significantly
affect the regulation of species [26]. In periodic environments, population sizes are
often either enhanced via resonance or diminished via attenuance [5, 10, 11, 13, 14, 15,
16, 17, 18, 19, 20, 23, 24, 25, 30, 31, 32, 33, 34, 35, 37, 38, 45, 48, 50]. However, most
epidemic models in the literature (with a few exceptions) neglect seasonal factors
[3, 4, 12]. For example, Allen and Burgin [1], Allen [2], and Castillo-Chavez and
Yakubu [7, 8, 9] studied disease invasions in discretely reproducing populations that
live on attractors in constant (nonperiodic) environments. Cushing and Henson [14],
Elaydi and Sacker [17, 18, 19, 20], Franke and Yakubu [23, 24], Kocic [35], Kocic and
Ladas [36], Kon [37, 38], and others have studied the effects of periodic environments
on ecological models without explicit disease dynamics [46].

In this paper, we focus on the impact of seasonal factors on a discrete-time SIS
(susceptible-infected-susceptible) epidemic model. The model reduces to the SIS epi-
demic model of Castillo-Chavez and Yakubu when the environment is constant (non-
periodic) [7, 8, 9]. To understand the impact of seasonality and disease on life-history
outcomes, we study the long-term dynamics of our model under specific functional
forms for the periodic recruitment function. The periodic Beverton–Holt [6], the pe-
riodic constant, and the periodic Malthus (geometric growth) models are the periodic
recruitment functions for this study [7, 8, 9].

We assume that a disease invades and subdivides the target population into two
classes: susceptibles (noninfectives) and infectives. Prior to the time of disease inva-
sion, the population is assumed to be governed by a periodically forced demographic
equation with a periodic recruitment function. Hence, the population is assumed to be
either at a demographic “steady state” (an attracting cycle) or growing at a periodic
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geometric rate. The transition from susceptible to infective is a function of the con-
tact rate α (between individuals) and the proportion of infectives (prevalence) in the
population. We derive the epidemic threshold parameter, R0, for predicting disease
persistence or extinction in periodic environments. We also explore the relationship
between the demographic equation and the epidemic process. Castillo-Chavez and
Yakubu, in [7, 8, 9], show that in constant environments the demographic equation
drives the disease dynamics. In stark contrast, we use numerical simulations to show
that in periodic environments the demographic equation does not always drive the
disease dynamics. We show that, in periodic environments, it is possible for the in-
fective population to be on a chaotic attractor while the demographic dynamics is
nonchaotic.

The paper is organized as follows. In section 2, we introduce the periodically
forced demographic equation for the study. The equation, a nonautonomous nonlin-
ear difference equation with periodic recruitment function, describes the dynamics of
the (total) population before disease invasion. We review, in section 2, the results of
Franke and Yakubu on periodically forced recruitment functions. The main model,
a periodically forced discrete-time SIS epidemic model, is constructed in section 3.
When the recruitment function is either a periodic constant or the periodic Beverton–
Holt model, then the total population is persistent and lives on a globally attracting
cycle. Autonomous discrete-time models do not support (nontrivial) globally stable
cycles [21]. In section 4, the basic reproductive number R0 is introduced and used
to predict the (uniform) persistence or extinction of the infective population, where
the recruitment function is either a periodic constant or the periodic Beverton–Holt
model. Section 5 covers the SIS epidemic model under asymptotically cyclic demo-
graphic dynamics, while sections 6 and 7 describe the epidemic model under geometric
demographic dynamics. As in section 4, in section 6, R0 is used to predict the (uni-
form) persistence or extinction of the proportion of infectives in the total population.
Conditions for disease persistence on cyclic attractors are introduced in section 7.

Periodically forced population models support multiple attractors, and we use
numerical simulations to show, in section 8, that our periodic epidemic model supports
multiple attractors. Section 9 is on period-doubling bifurcations in the epidemic model
where the demographic dynamics is simple and nonchaotic. The implications of our
results are discussed in section 10.

2. Demographic equations with seasonality. In constant environments, the-
oretical discrete-time epidemic models are usually formulated under the assumption
that the dynamics of the total population size in generation t, denoted by N(t), is
governed by equations of the form

N(t + 1) = f(N(t)) + γN(t),(1)

where γ ∈ (0, 1) is the constant “probability” of surviving per generation and f :
R+ → R+ models the birth or recruitment process [7, 9].

Seasonality can be introduced into (1) by writing the recruitment function as
a p-periodically forced function. This is modeled with the p-periodic demographic
equation

N(t + 1) = f(t,N(t)) + γN(t),(2)

where ∃ p ∈ N such that

f(t,N(t)) = f(t + p,N(t)) ∀t ∈ Z+.
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We assume throughout that f(t,N) ∈ C2(Z+ × R+,R+) and γ ∈ (0, 1) [25].
Franke and Yakubu, in [25], studied model (2) with the periodic constant recruit-

ment function

f(t,N(t)) = kt(1 − γ)

and with the periodic Beverton–Holt recruitment function

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)
,

where the carrying capacity kt is p-periodic, kt+p = kt for all t ∈ Z+ [14, 25]. Franke
and Yakubu proved that the periodically forced recruitment functions generate glob-
ally attracting cycles in model (2) [25]. We summarize their results in the following
two theorems.

Theorem 1. Model (2) with f(t,N(t)) = kt(1 − γ) has a globally attracting
positive s-periodic cycle that starts at

x0 =
(1 − γ)

(
kp−1 + kp−2γ + · · · + k0γ

p−1
)

1 − γp
,

where s divides p.

Theorem 2. Model (2) with f(t,N(t)) = (1−γ)μktN(t)
(1−γ)kt+(μ−1+γ)N(t) and μ > 1 has a

globally attracting positive s-cycle, where s divides p.
Theorems 1 and 2 imply that the total population is asymptotically periodic

(bounded) and lives on a cyclic attractor when the recruitment function is either a
periodic constant or the Beverton–Holt model. Denote this cycle by {N0, N1, . . . ,
Ns−1}. When new recruits arrive at the periodic positive per-capita growth rate λt,
then

f(t,N(t)) = λtN(t),

where λt+p = λt for all t ∈ Z+. The solution to the demographic equation is

N(t) =

(
t−1∏
J=0

(λJ + γ)

)
N(0),

and the demographic basic reproductive number is

Rd =

∏p−1
J=0 (λJ + γ) − γp

1 − γp
.(3)

Rd gives the average number of descendants produced by a typically small initial
population over a p-cycle. If Rd < 1, the total population goes extinct at a geometric
rate, and if Rd > 1, the total population explodes at a geometric rate. In constant
environments, p = 1, λJ = λ, and Rd reduces to

Rd =
λ

1 − γ
.

In [7, 8, 9], Castillo-Chavez and Yakubu used Rd = λ
1−γ to study the long-term

behavior of geometrically growing populations in constant environments.
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3. SIS epidemic model in periodic environments. In this section, we in-
troduce the main model, an SIS epidemic model with periodic forcing. To do this,
we assume that a nonfatal infectious disease has invaded a population living in a
seasonal environment. The population is governed by (2). To model the disease, we
build a simple SIS epidemic process on “top” of the periodic demographic equation.
We let S(t) denote the population of susceptibles; I(t) denotes the population of the
infected, assumed infectious; N(t) ≡ S(t) + I(t) denotes the total population size
at generation t, N∞ denotes the demographic steady state or attracting population,
and N0 the initial point on a globally attracting cycle, when they exist. We assume
that individuals survive with constant probability γ each generation, and infected
individuals recover with constant probability (1 − σ).

Let φ : [0,∞) → [0, 1] be a monotone concave probability function with φ(0) = 1,
φ′(x) < 0, and φ′′(x) ≥ 0 for all x ∈ [0,∞). We assume that the susceptible individ-
uals become infected with nonlinear probability

(
1 − φ

(
α I

N

))
per generation, where

the transmission constant α > 0. When infections are modeled as Poisson processes,
then φ

(
α I

N

)
= e−α I

N [7, 8, 9].
Our assumptions and notation lead to the following SIS epidemic model in period

p environments:

S(t + 1) = f(t,N(t)) + γφ
(
α I(t)

N(t)

)
S(t) + γ(1 − σ)I(t),

I(t + 1) = γ
(
1 − φ

(
α I(t)

N(t)

))
S(t) + γσI(t),

⎫⎪⎬
⎪⎭(4)

where 0 < γ, σ < 1 and N(t) > 0. When the environment is constant, f(t,N(t)) =
f(N(t)) and model (4) reduces to the model of Castillo-Chavez and Yakubu [7, 8, 9].
The total population in generation t + 1, S(t + 1) + I(t + 1), the sum of the two
equations of model (4), is the demographic equation (2). Using the substitution
S(t) = N(t) − I(t), the I-equation in model (4) becomes

I(t + 1) = γ

(
1 − φ

(
α
I(t)

N(t)

))
(N(t) − I(t)) + γσI(t).

Let

FN (I) = γ

(
1 − φ

(
α
I

N

))
(N − I) + γσI.

When FN has a unique positive fixed point and critical point, we denote them by IN
and CN , respectively.

I(t + 1) = FN(t)(I(t)),

and the set of iterates of the nonautonomous map FN(t) is the set of density sequences
generated by the infective equation. In the next section, we use the map FN to study
disease dynamics in the periodic SIS epidemic model, model (4).

4. Disease extinction versus disease persistence. The classical theory of
disease epidemics usually involves computation of an epidemic threshold parameter,
the basic reproductive number R0 [3]. Here, we introduce R0 and use it to pre-
dict the successful invasion or extinction of the disease modeled in (4). In constant
environments f(t,N(t)) = f(N(t)), and

R0 =
−γαφ′(0)

1 − γσ
.(5)
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R0 is the average number of secondary infections generated by an initial population
of infected (assumed infectious) individuals over their lifetimes [7, 8, 9].

In our periodic model, we use the same R0 to prove that R0 < 1 implies disease
extinction and R0 > 1 implies disease persistence. To prove this result we need the
following definition [49].

Definition 3. The total population in model (2) is persistent if

lim
t→∞

inf N(t) > 0

whenever N(0) > 0. The total population is uniformly persistent if there exists a
positive constant η such that

lim
t→∞

inf N(t) ≥ η

whenever N(0) > 0.
By this definition, when the recruitment function is either a periodic constant or

the Beverton–Holt model, the total population is uniformly persistent. Also, when
new recruits arrive at the periodic positive per-capita growth rate λt and Rd > 1, the
total population is uniformly persistent. However, the population goes extinct when
Rd < 1.

The following auxiliary lemmas will be used to prove our results.
Lemma 4. If 0 < I(t) ≤ N(t) in model (4), then I(t+1) < min{N(t), N(t+1)}.
Proof. In model (4),

I(t + 1) = γ

(
1 − φ

(
α
I(t)

N(t)

))
S(t) + γσI(t)

and

N(t + 1) = S(t + 1) + I(t + 1) = f(t,N(t)) + γN(t).

Therefore,

I(t + 1) = γ

(
1 − φ

(
α
I(t)

N(t)

))
(N(t) − I(t)) + γσI(t)

< γ(N(t) − I(t)) + γI(t) = γN(t)

= N(t + 1) − f(t,N(t)) ≤ N(t + 1).

Hence,

I(t + 1) < min{N(t), N(t + 1)}.

Lemma 5. If I(0) > 0 in model (4), then I(t) > 0 for all t ∈ Z+.

Proof. I(t + 1) = γ
(
1 − φ

(
α I(t)

N(t)

))
(N(t) − I(t)) + γσI(t). By Lemma 4, N(t) −

I(t) ≥ 0 for all t ∈ Z+. Therefore, γ
(
1 − φ

(
α I(t)

N(t)

))
(N(t) − I(t)) ≥ 0. I(0) > 0

implies γσI(0) > 0, and hence I(1) > 0. By induction, I(t) > 0 and γσI(t) > 0.
Hence, I(t + 1) > 0.

Lemma 6.

FN (I) = γ

(
1 − φ

(
α
I

N

))
(N − I) + γσI

satisfies the following conditions:
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(a) F ′
N (0) = −αγφ′ (0) + γσ and F ′

N (N) > −1.
(b) FN (I) is concave down on [0, N ].
(c) FN (I) ≤ F ′

N (0)I on [0, N ].
(d) If F ′

N (0) > 1, then FN has a unique positive fixed point IN in [0, N ].
(e) Let ΨN (I) = I

N . Then F1(ΨN (I)) = ΨN (FN (I)). That is, ΨN is a topologi-
cal conjugacy between F1 and FN .

(f) If N0 < N1 and (−αγφ′ (0) + γσ) > 1, then IN0 < IN1 where INi is the
positive fixed point of FNi in [0, Ni].

(g) If C1 exists, then CN = NC1.
(h) If N0 < N1, then FN0(I) < FN1(I) for all I ∈ (0, N0].
Proof. (a)

F ′
N (I) = −αγ

N
φ′

(
α
I

N

)
(N − I) − γ

(
1 − φ

(
α
I

N

))
+ γσ,

F ′
N (0) = −αγ

N
φ′ (0) (N − 0) − γ (1 − φ (0)) + γσ

= −αγφ′ (0) + γσ,

F ′
N (N) = −αγ

N
φ′

(
α
N

N

)
(N −N) − γ

(
1 − φ

(
α
N

N

))
+ γσ

= −γ (1 − φ (α)) + γσ > −γ > −1.

(b)

F ′′
N (I) = −

( α

N

)2

γφ′′
(
α
I

N

)
(N − I) + 2

αγ

N
φ′

(
α
I

N

)
.

Since φ′ < 0 and φ′′ ≥ 0 on [0,∞), we have

F ′′
N (I) < 0 on [0, N ].

(c) FN (0) = 0 implies that y = F ′
N (0)I is the tangent line to the graph of FN (I)

at 0. Since FN is concave down on [0, N ], its graph is below the tangent line at the
origin on [0, N ]. Hence,

FN (I) ≤ F ′
N (0)I on [0, N ].

(d) FN (N) = γσN < N . Since F ′
N (0) > 1, the graph of FN (I) starts out higher

than the diagonal and must cross it before I = N . The concavity property of FN (I)
(see (b)) implies that there is a unique positive fixed point.

(e) F1(I) = γ (1 − φ (αI)) (1 − I) + γσI. Thus,

F1(ΨN (I)) = γ

(
1 − φ

(
α
I

N

))(
1 − I

N

)
+ γσ

I

N
=

1

N
FN (I) = ΨN (FN (I)).

(f) Since F ′
N0

(0) = (−αγφ′ (0) + γσ) > 1, IN0 exists with FN0(IN0) = IN0 . Thus
ΨN0 (FN0

(IN0
)) = ΨN0

(IN0
) = F1(ΨN0

(IN0
)). That is ΨN0

(IN0
) = I1, the unique

positive fixed point of F1, and IN0 = N0I1. Similarly, IN1 = N1I1. Hence, N0 < N1

implies IN0 < IN1 .
(g) Topological conjugacy preserves critical points. The result follows from (e).
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(h) Let N0 < N1 and I ∈ (0, N0]. The topological conjugacy in part (e) shows that
FN0(I) = N0F1(

I
N0

) and FN1(I) = N1F1(
I
N1

). Note that I
N1

< I
N0

. Since the graph
of F1 goes through the origin with positive slope and is concave down, the ray through
the origin and

(
I
N1

, F1(
I
N1

)
)

has a larger slope than the ray through the origin and(
I
N0

, F1(
I
N0

)
)
. The first ray contains the point

(
I,N1F1(

I
N1

)
)
, while the second ray

contains
(
I,N0F1(

I
N0

)
)
. Hence, FN1(I) = N1F1(

I
N1

) < N0F1(
I
N0

) = FN0(I).

Theorem 7. Let the total population in model (2) be uniformly persistent.

(a) If R0 < 1, then in model (4), limt→∞ I(t) = 0 whenever I(0) ≤ N(0). That
is, the disease goes extinct.

(b) If R0 > 1, then in model (4), ∃ η > 0 such that limt→∞ inf I(t) ≥ η whenever
N(0) ≥ I(0) > 0. That is, the disease persists uniformly.

Proof. Since I(0) ≤ N(0), Lemma 4 implies that I(t) ≤ N(t) for all t ∈ Z+.

(a) R0 = −γαφ′(0)
1−γσ < 1 is equivalent to −αγφ′ (0) + γσ < 1. Lemma 6 gives

F ′
N (0) = F ′

N(t)(0) = −αγφ′ (0) + γσ < 1 and I(t + 1) = FN(t)(I(t)) ≤ F ′
N(t)(0)I(t).

Thus, the sequence {I(t)} is dominated by the geometrically decreasing sequence
{(−αγφ′ (0) + γσ)t I(0)}, and hence

lim
t→∞

I(t) = 0.

(b) Lemma 5 implies that I(t) > 0 for all t ∈ Z+. Lemma 6 gives F ′
N (0) =

F ′
N(t)(0) = −αγφ′ (0) + γσ > 1. Since I(t + 1) = FN(t)(I(t)), I(t + 1) > I(t) on

the open interval
(
0, IN(t)

)
. If I(t) ∈ (IN(t), N(t)), I(t + 1) ≥ min{IN(t) = N(t)I1,

FN(t)(N(t)) = γσN(t)}. Since the total population is uniformly persistent, ∃ η̂ > 0
satisfying limt→∞ inf N(t) ≥ η̂ whenever N(0) > 0. This implies that ∃ η > 0 such
that

lim
t→∞

inf (min{N(t)I1, γσN(t)}) ≥ η > 0.

Thus, the orbit {I(t)} increases when it is small and eventually gets larger and remains
larger than a fixed positive number. Hence, ∃ η > 0 satisfying

lim
t→∞

inf I(t) ≥ η.

A slight modification of the proof of Theorem 7 reveals that uniform persistence
can be replaced with persistence in the hypothesis and conclusion. That is, if the
total population persists, then the disease persists whenever R0 > 1.

When the recruitment function is either a periodic constant or the periodic
Beverton–Holt model, then the (total) population is uniformly persistent. If, in ad-
dition, R0 < 1, then in model (4), limt→∞ I(t) = 0, and the disease goes extinct.
However, if R0 > 1, then in model (4), limt→∞ inf I(t) ≥ η > 0, and the disease
persists uniformly (Theorem 7).

In constant environments, when the total population lives on a globally attracting
positive fixed point, R0 > 1 implies uniform persistence of the infectives on a globally
attracting positive fixed point [7, 8, 9]. With the advent of periodicity, when the
total population lives on an attracting cycle, R0 > 1 implies uniform persistence
of the infectives on a globally attracting cycle (section 5), multiple cyclic attractors
(section 8), or a chaotic attractor (section 9). We summarize these results in the
following corollary.
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Corollary 8. If the demographic equation, model (2), has a globally attracting
p-cycle (p > 1) and R0 > 1, then the uniform persistent infective population in
model (4) is not on a fixed point attractor.

Proof. By Theorem 7, the infective population in model (4) is uniformly persistent
when R0 > 1. To establish this result, we use a contradiction proof to show that the
infective population in model (4) has no positive fixed point when the demographic
equation, model (2), has a globally attracting p-cycle (p > 1).

Assume that (N(0), I(0)) is an initial condition where {I(t)} is constantly fixed
at I(0) > 0. Now I(t + 1) = FN(t)(I(t)) = I(0). Lemma 6 gives the fixed point of
FN(t) = N(t)I1 = I(0). Hence, {N(t)} is constantly fixed at N(0). Since all initial
total populations are attracted to a nontrivial cycle, we have a contraction. Hence,
the uniformly persistent infective population in model (4) is not on a fixed point
attractor.

5. Asymptotically cyclic epidemics. We now study the long-term disease
dynamics for a population living in a seasonal environment, where the p-periodic
demographic equation has a globally attracting positive cycle {N0, N1, . . . , Np−1}.
For example, when the recruitment function is either periodically constant or periodic
Beverton–Holt, the demographic equation is asymptotically cyclic (Theorems 1 and 2).
If in addition R0 > 1, we show that it is possible for the uniformly persistent epidemic
to live on a globally attracting cycle. That is, the demographic dynamics drives the
disease dynamics. To predict this long-term dynamics of the epidemic process, we use
the very general “limiting systems” theory of Franke and Yakubu [23].

The general theory of Franke and Yakubu uses the following periodic hierarchical
system:

x(t + 1) = g(t, x(t)), x(0) = x ∈ Rn
+,

y(t + 1) = h(t, x(t), y(t)), (x(0), y(0)) = (x, y) ∈ V ⊆ Rn+m
+ ,

}
(6)

where g : Z+ × Rn
+ → Rn

+ and h : Z+ × V → Rm
+ are smooth functions and where

there exist smallest positive integers T1 and T2 satisfying g(t + T1, x(t)) = g(t, x(t))
and h(t + T2, x(t), y(t)) = h(t, x(t), y(t)), respectively.

Let

V = {(N, I) : I ≤ N}.

Then V is a connected set, and for each N ∈ R+

{I ∈ R+ : (N, I) ∈ V }

is a connected set. Lemma 4 shows that the (N, I) system,

N(t + 1) = f(t,N(t)) + γN(t),

I(t + 1) = γ
(
1 − φ

(
α I(t)

N(t)

))
(N(t) − I(t)) + γσI(t),

⎫⎬
⎭(7)

is an example of model (6).
System (6) is the sequence of maps {Gi}, where for each i ∈ Z+, Gi : V → V is

defined by

Gi(x, y) = (g(imod(T1), x), h(imod(T2), x, y)) ≡ (gi(x), hi(x, y)).

Gi has period T = lcm(T1, T2).
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To define a limiting system for system (6), we assume that {x0, x1, . . . , xk−1} is
a k-cycle for the T1-periodic dynamical system {g0, g1, . . . , gT1−1}. For each i ∈ Z+,
define the sets Vi = {y ∈ Rm

+ : (ximod(k), y) ∈ V }. Also, define the periodically forced
(nonautonomous) maps

Ĝi : Rn
+ × Vi → R

n
+ × Vi+1 by Ĝi(x, y) = (gi(x), hi(ximod(k), y)),

and

Ĥi : Vi → Vi+1 by Ĥi(y) = hi(ximod(k), y).

Note that

ĤkT2−1 ◦ · · · ◦ Ĥ1 ◦ Ĥo : V0 → V0.

The periodic system {Ĝ0, Ĝ1, . . . , Ĝq−1, . . . } is a limiting system of model (6) when
the k-cycle is attracting.

Inserting cycle {N0, N1, . . . , Np−1} into model (7) produces the limiting system

N(t + 1) = f(t,N(t)) + γN(t),

I(t + 1) = γ
(
1 − φ

(
α I(t)

Nt

))
(N t − I(t)) + γσI(t).

⎫⎬
⎭(8)

The second equation of system (8) is FNt
(I(t)).

The following straightforward generalization of a theorem of Franke and Yakubu
gives conditions under which the long-term qualitative dynamics of the nonautono-
mous system (6) is equivalent to that of the limiting system.

Theorem 9 (see [23]). Assume that all orbits of system (6) are bounded, V is a
connected set, and for each x ∈ Rn

+

{y ∈ Rm
+ : (x, y) ∈ V }

is a connected set. Then system (6) has

{(x0, y0), (x1, y1), . . . , (xl−1, yl−1), . . . }

as a globally attracting cycle if and only if

{x0, x1, . . . , xk−1, . . . }

is a globally attracting k-cycle of the T1-periodic dynamical system {g0, g1, . . . , gT1−1}
and y0 is a globally attracting fixed point of the composition ĤkT2−1 ◦ · · · ◦ Ĥ1 ◦ Ĥo.

To apply Theorem 9, we need the following result.
Corollary 10. Assume that all orbits of system (7) are bounded. Then sys-

tem (7) has

{(N0, I0), (N1, I1), . . . , (Np−1, Ip−1), . . . }

as a globally attracting cycle if and only if {N0, N1, . . . , Np−1, . . . } is a globally at-
tracting cycle for the p-periodic dynamical system {g0, g1, . . . , gp−1}, where

gi(N) = f(i,N) + γN,
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and I0 is a globally attracting fixed point of the composition Ĥp−1 ◦ · · · ◦ Ĥ1 ◦ Ĥo,
where

Ĥi(I) = FNi
(I) = γ

(
1 − φ

(
α

I

N i

))(
N i − I

)
+ γσI.

Now we derive conditions for disease persistence on a globally attracting cycle in
periodic environments. In the following result, we prove that the disease lives on a
globally attracting cycle when F1 is a monotone map with no critical points.

Theorem 11. If F1 has no critical points in [0, 1] and R0 > 1, then the compo-
sition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle.

Proof. By Lemma 6, each FNi
is increasing, concave down, and has no critical

point on [0, N i]. R0 > 1 is equivalent to F ′
Ni

(0) > 1. FNi
(0) = 0 and FNi

(N i) =

γσN i < N i. Thus, each positive initial condition converges under FNi
iterations

monotonically to the positive fixed point. That is, FNi
has a globally attracting

positive fixed point on [0, N i].
By Lemma 4,

FNp−1
◦ · · · ◦ FN1

◦ FN0
: [0, N0] → [0, N0).

Using the chain rule on the composition map FNp−1
◦ · · · ◦FN1

◦FN0
shows that it is

increasing, concave down, and has derivative at the origin larger than 1. So, as in the
previous paragraph, FNp−1

◦ · · · ◦ FN1
◦ FN0

has a unique globally attracting positive

fixed point, I0. By Corollary 10, the uniformly persistent epidemic lives on a globally
attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle as
predicted by Theorem 11, we assume that infections are modeled as Poisson processes
[7, 8, 9]. Then φ

(
α I

N

)
= e−α I

N and

FNi
(I) = γ

(
1 − e

−α I
Ni

) (
N i − I

)
+ γσI.(9)

Example 12. In (9), set the following parameter values:

α = 2, γ = 0.9, σ = .9.

From the graph of F1 (see Figure 1) it is clear that F1 has no critical points in
[0, 1] and R0 > 1.

Hence, with these parameters, the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point, I0, and the uniformly persistent epidemic
lives on a globally attracting cycle (Theorem 11). Numerical experiments show that
this result is also true when α ∈ [1, 2.1], γ = [0.88, 1), and σ = [0.88, 1); as well as on
other intervals.
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Fig. 1. Graph of F1 satisfies the hypotheses of Theorem 11.

If in Example 12 the recruitment function is the periodic Beverton–Holt model

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)

with

μ = 2, γ = 0.9, α = 2, σ = 0.9, p = 2, k0 = 2, k1 = 8,

then, as predicted by Theorem 11, the total population, susceptible population, and
infective population live on the globally attracting 2-cycle

{(8.087, 1.903, 6.184), (7.788, 1.437, 6.351)}.

In the following result, we prove that the disease lives on a globally attracting
cycle when F1 has a critical point with an image (under F1 iteration) smaller than
the critical point.

Theorem 13. Let F1 have a critical point, C1, in (0, 1). If

C1 > F1(C1), Fmax{Ni}(Cmax{Ni}) < Cmin{Ni},

and R0 > 1, then the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each FNi
is increasing, concave down,

and has no critical point on [0, Fmax{Ni}(Cmax{Ni})]. Since C1 > F1(C1), I1 < C1 and

F1 is increasing on [I1, C1]. Consequently, I1 < F1(C1), and by topological conjugacy
and Lemma 6, INi

< FNi
(CNi

) ≤ Fmax{Ni}(Cmax{Ni}) < Cmin{Ni}. Further, R0 > 1

is equivalent to F ′
Ni

(0) > 1. Thus, each positive initial condition converges under

FNi
iterations monotonically to the positive fixed point. That is, FNi

has a globally
attracting positive fixed point on [0, Fmax{Ni}(Cmax{Ni})].

By the preceding arguments,

FNp−1
◦ · · · ◦ FN1

◦ FN0
: [0, Fmax{Ni}(Cmax{Ni})] → [0, Fmax{Ni}(Cmax{Ni})).
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Fig. 2. Graphs of F1 and F0.99 satisfy the hypotheses of Theorem 13.

Using the chain rule on the composition map FNp−1
◦ · · · ◦FN1

◦FN0
shows that it is

increasing, concave down, and has derivative at the origin larger than 1. So, as in the
previous paragraph, FNp−1

◦ · · · ◦ FN1
◦ FN0

has a unique globally attracting positive

fixed point on [0, Fmax{Ni}(Cmax{Ni})]. Since Fmax{Ni}(Cmax{Ni}) is the maximum
value of all the FNi

, every point immediately gets into [0, Fmax{Ni}(Cmax{Ni})], and
the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point, I0. By Corollary 10, the uniformly
persistent epidemic lives on a globally attracting cycle.

Next we demonstrate, via a specific example, disease persistence on a globally
attracting cycle, as predicted by Theorem 13.

Example 14. In (9), set the following parameter values:

α = 7, γ = 0.25, σ = 0.25, max{N i} = 1, min{N i} = .99.

From the graphs of Fmax{Ni} and Fmin{Ni} (see Figure 2) it is clear that C1 > F1(C1),

Fmax{Ni}(Cmax{Ni}) < Cmin{Ni},

and R0 > 1.
Hence, with these parameters, the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle. Numerical experiments show that this result is
also true when α ∈ [7, 10], γ = [0.15, 0.25], σ = [0.15, 0.25], and NJ ∈ [0.9, 1]; as well
as on other intervals.

If in Example 14 the recruitment function is the periodic Beverton–Holt model

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)

with

μ = 2, γ = 0.25, α = 7, σ = 0.25, p = 2, k0 = 0.665, k1 = 0.965,
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then

max{N i} = 0.995, min{N i} = 0.905,

and, as predicted by Theorem 13, the total population, susceptible population, and
infective population live on the globally attracting 2-cycle

{(0.995, 0.860, 0.135), (0.905, 0.765, 0.140)}.

Next, we prove that the disease lives on a globally attracting cycle when F1 has
a critical point with an image (under F1 iteration) bigger than the critical point.

Theorem 15. Let F1 have a critical point, C1, in (0, 1). If

C1 < F1(C1), Fmax{Ni}(Cmax{Ni}) < min{N i},

Cmax{Ni} < Fmin{Ni} ◦ Fmax{Ni}(Cmax{Ni}),

and R0 > 1, then the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each FNi
is decreasing on [CNi

, N i] ⊇
[Cmax{Ni}, Fmax{Ni}(Cmax{Ni})] and FNi

(Cmax{Ni}) ≤ Fmax{Ni}(Cmax{Ni}). By our
hypothesis, Cmax{Ni} < Fmin{Ni} ◦Fmax{Ni}(Cmax{Ni}) ≤ FNi

◦Fmax{Ni}(Cmax{Ni}).
Thus, each FNi

is decreasing on [Cmax{Ni}, Fmax{Ni}(Cmax{Ni})] and sends this in-
terval into itself. Consequently, each FNi

has a fixed point INi
in this interval. Since

F ′
Ni

(I) ∈ (−1, 0] for all I ∈ [Cmax{Ni}, Fmax{Ni}(Cmax{Ni})] and N i ∈ {N0, N1, . . . ,

Np−1} (Lemma 6), each FNi
is a contraction on this interval. This implies that

FNp−1
◦ · · · ◦ FN1

◦ FN0
is a contraction with a unique fixed point, which is I0.

By Lemma 6 and our hypothesis, FNi
(I) < FNi

(CNi
) ≤ Fmax{Ni}(Cmax{Ni}) <

min{N i} for all I ∈ [0, N i] and N i ∈ {N0, N1, . . . , Np−1}. FNi
(I) > I for all

I ∈ (0, INi
). Thus, all positive points below Cmax{Ni} increase until they are in

[Cmax{Ni}, Fmax{Ni}(Cmax{Ni})]. Consequently, FNp−1
◦ · · · ◦ FN1

◦ FN0
has a glob-

ally attracting positive fixed point, I0, and by Corollary 10, the uniformly persistent
epidemic lives on a globally attracting cycle.

Now we demonstrate, via a specific example, disease persistence on a globally
attracting cycle, as predicted by Theorem 15.

Example 16. In (9) set the following parameter values:

α = 20, γ = 0.5, σ = .5, max{N i} = 1, min{N i} = .7.

From the graphs of Fmax{Ni} and Fmin{Ni} (see Figure 3) it is clear that

C1 < F1(C1), Fmax{Ni}(Cmax{Ni}) < min{N i},

Cmax{Ni} < Fmin{Ni} ◦ Fmax{Ni}(Cmax{Ni}),

and R0 > 1.
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Fig. 3. Graphs of F1 and F0.7 satisfy the hypotheses of Theorem 15.

Hence, with these parameters, the composition map

FNp−1
◦ · · · ◦ FN1

◦ FN0

has a globally attracting positive fixed point I0, and the uniformly persistent epidemic
lives on a globally attracting cycle. Numerical experiments show that this result is
also true when α ∈ [15, 25], γ = [0.45, 0.6), σ = [0.45, 0.6), and NJ ∈ [0.7, 1]; as well
as on other intervals.

If in Example 16 the recruitment function is the periodic Beverton–Holt model

f(t,N(t)) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)

with

μ = 2, α = 20, γ = 0.5, σ = .5, p = 2, k0 = 0.1, k1 = 0.9,

then

max{N i} = 0.917, min{N i} = 0.741,

and, as predicted by Theorem 15, the total population, susceptible population, and
infective population live on the globally attracting 2-cycle

{(0.917, 0.644, 0.273), (0.741, 0.352, 0.389)}.

In all the above examples, we use the periodic Beverton–Holt model as the recruit-
ment function to highlight uniform persistence via attracting cycles. Similar examples
can be obtained using the periodic constant recruitment function.

6. Uniform persistence and geometric demographics. When new recruits
arrive at the periodic positive per-capita growth rate λt, the demographic long-term
dynamics is determined by the demographic basic reproductive number Rd (see (3)).
In this case, we use proportions to study the epidemic process. We introduce the new
variables

s(t) =
S(t)

N(t)
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and

i(t) =
I(t)

N(t)
.

In the new variables, when f(t,N) = λtN , then

N(t + 1) = (λt + γ)N(t),

and model (4) becomes

s(t + 1) = λt

λt+γ + γφ(αi(t))
λt+γ s(t) + γ(1−σ)

λt+γ i(t),

i(t + 1) = γ(1−φ(αi(t)))
λt+γ s(t) + γσ

λt+γ i(t).

⎫⎬
⎭(10)

Since i(t)+s(t) = 1 for all t, the substitution s(t) = 1−i(t) reduces the i-equation
of the system to the one-dimensional nonautonomous equation

i(t + 1) =
γ (1 − φ (αi(t)))

λt + γ
(1 − i(t)) +

γσ

λt + γ
i(t).

Let

F̃λ(i) =
γ (1 − φ (αi))

λ + γ
(1 − i) +

γσ

λ + γ
i.

Since i ≤ 1,

F̃λ(i) < 1 and F̃λ(i) =
1

λ + γ
F1(i).

By Lemma 6,

F̃ ′
λ(0) =

−αγφ′ (0) + γσ

λ + γ

and (
F̃λp−1

◦ · · · ◦ F̃λ1 ◦ F̃λ0

)′
(0) =

(−αγφ′ (0) + γσ)
p∏p−1

t=0 (λt + γ)
.

Let

R0 =
−αγφ′ (0)

(Rd(1 − γp) + γp)
1
p − γσ

.

If Rd = 1, the total population is bounded and uniformly persistent, and R0 reduces

to −αγφ′(0)
1−γσ , which is (5). We will prove that R0 > 1 implies that i(t) persists, and

R0 < 1 implies limt→∞ i(t) = 0. First, we obtain local stability results when R0 = 1.

Lemma 17. R0 > 1 is equivalent to
(
F̃λp−1 ◦ · · · ◦ F̃λ1

◦ F̃λ0

)′
(0) > 1, and R0 < 1

is equivalent to
(
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)′
(0) < 1.

Proof. Assume R0 > 1; then

−αγφ′ (0)

(Rd(1 − γp) + γp)
1
p − γσ

> 1.
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Since −αγφ′ (0) > 0, (Rd(1−γp)+γp)
1
p −γσ > 0 and −αγφ′ (0) > (Rd(1−γp)+γp)

1
p −

γσ. This implies that

(−αγφ′ (0) + γσ)
p
> Rd(1 − γp) + γp =

∏p−1
J=0 (λJ + γ) − γp

1 − γp
(1 − γp) + γp

=

p−1∏
J=0

(λJ + γ) .

Hence,

(
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)′
(0) =

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)
> 1.

Since all the steps are reversible, R0 > 1 is equivalent to
(
F̃λp−1

◦· · ·◦F̃λ1
◦F̃λ0

)′
(0) > 1.

To prove the other inequality, note that (Rd(1−γp)+γp)
1
p −γσ > (γp)

1
p −γσ > 0,

and proceed as in the proof of the last inequality.
Theorem 18. Let

f(t,N) = λtN

in model (2), where λt+p = λt.
(a) If R0 < 1, then in model (10), limt→∞ i(t) = 0. That is, the proportion of

infectives in the total population goes extinct.
(b) If R0 > 1, then in model (10), ∃ η > 0 satisfying limt→∞ inf i(t) ≥ η. That

is, the proportion of infectives in the total population uniformly persists.
Proof. (a) Lemma 17 shows that R0 < 1 implies

(
F̃λp−1 ◦ · · · ◦ F̃λ1

◦ F̃λ0

)′
(0) =

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)
< 1.

Let i > 0; then F̃λ(i) = 1
λ+γF1(i) < 1

λ+γF
′
1(0)i = −αγφ′(0)+γσ

λ+γ i, by Lemma 6. Using
this p times gives

i(p) =
(
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)
(i(0)) <

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)
i(0) < i(0).

Thus, the sequence {i(tp)} is dominated by the geometrically decreasing sequence⎧⎨
⎩
(

(−αγφ′ (0) + γσ)
p∏p−1

J=0 (λJ + γ)

)t

i(0)

⎫⎬
⎭

and hence, by continuity of the system,

lim
t→∞

i(t) = 0.

(b) Lemma 17 shows that R0 > 1 implies

(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) > 1.
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Since
(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)
(0) = 0, the graph of F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

starts out

above the diagonal. Since for each λJ and each i ∈ [0, 1], F̃λJ
(i) < 1,

(
F̃λp−1

◦ · · · ◦
F̃λ1 ◦ F̃λ0

)
(1) < 1. Thus F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 has at least one positive fixed point.

Let i∗ be the minimum of these positive fixed points; then i((t + 1)p) > i(tp) when
i(tp) is in the open interval (0, i∗).

Let

m = min
{(

F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)
(i) : i ∈ [i∗, 1]

}
.

Note that m > 0. If i(tp) ∈ (0,m), then i((t + 1)p) > i(tp), and the sequence {i(tp)}
continues to increase until the value is at least m. But then the sequence can never
jump lower than m. Hence,

lim
t→∞

inf i(tp) ≥ m.

Now each of the maps F̃λ0 , F̃λ1 ◦ F̃λ0 , . . . , F̃λp−1 ◦· · ·◦ F̃λ1 ◦ F̃λ0 has positive minima on
[m, 1], and limt→∞ inf i(t) is at least the minimum of these minima. Hence, ∃ η > 0
satisfying

lim
t→∞

inf i(t) > η.

7. Cyclic attractors and geometric demographics. We assume that the
total population is growing geometrically. That is, the recruitment function in the
p-periodic demographic equation is f(t,N(t)) = λtN(t). If, in addition,

R0 =
−αγφ′ (0)

(Rd(1 − γp) + γp)
1
p − γσ

> 1,

we show that it is possible for the persistent i-population to live on a globally attract-
ing cycle. This implies that both the i-dynamics under periodic geometric recruitment
function and the I-dynamics under either periodic constant or periodic Beverton–Holt
recruitment functions are capable of living on globally attracting cycles.

Next, we prove that the proportion of infectives live on a globally attracting cycle
when F̃λt is a monotone map with no critical points.

Theorem 19. If each F̃λt has no critical points in [0, 1] and R0 > 1, then the
composition map

F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0

has a globally attracting positive fixed point i0, and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

Proof. By Lemma 6 each F̃λt(i) = 1
λt+γF1(i) is increasing, concave down, and has

no critical point on [0, 1]. Hence, F̃λp−1
◦· · ·◦F̃λ1

◦F̃λ0
is also increasing, concave down,

and has no critical point on [0, 1]. R0 > 1 is equivalent to
(
F̃λp−1

◦· · ·◦F̃λ1
◦F̃λ0

)′
(0) >

1. Since (
F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

)
(0) = 0,

F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
has a fixed point in (0, 1). Thus, each positive initial condition

converges monotonically under iteration of F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
to the positive fixed
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point. That is, F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
has a globally attracting positive fixed point

on [0, 1], and the uniformly persistent proportion of infectives in the total population
lives on a globally attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle
as predicted by Theorem 19, following Example 12, we assume that infections are
modeled as Poisson processes [7, 8, 9]. Then φ (αi) = e−αi, φ′ (0) = −1, and

F̃λ(i) =
γ
(
1 − e−αi

)
λ + γ

(1 − i) +
γσ

λ + γ
i.(11)

Example 20. In (11), set the following parameters:

α = 2, γ = 0.9, σ = 0.9, λ0, λ1 ∈ [0.1, 0.75].

As in Example 12, F̃λ has no critical point in [0, 1]. For the special case α = 2,
γ = 0.9, σ = 0.9, λ0 = 0.5, and λ1 = 0.6 the proportion of infectives in the total
population lives on the stable period 2 orbit {0.447, 0.469} (see Theorem 19).

Now, we prove that the disease lives on a globally attracting cycle when F1 has a
critical point with an image (under F̃max{λt} iteration) smaller than the critical point.

Theorem 21. Let each Fλ have a critical point, C1, in (0, 1). If

F̃min{λt}(C1) < C1

and R0 > 1, then the composition map

F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0

has a globally attracting positive fixed point i0, and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each F̃λt
(i) = 1

λt+γF1(i) has C1 as its

only critical point on [0, 1], is increasing on [0, C1], and concave down on [0, 1]. We
also have

F̃max{λt}(i) ≤ F̃λt(i) ≤ F̃min{λt}(i).

Since F̃min{λt}(C1) < C1, the image of each F̃λt
is in [0, C1). Thus, F̃λp−1

◦· · ·◦F̃λ1
◦F̃λ0

has C1 as its only critical point, and its image is in [0, C1). Hence, F̃λp−1 ◦· · ·◦F̃λ1 ◦F̃λ0

is increasing and concave down on [0, C1].

R0 > 1 is equivalent to
(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) > 1. Since

(
F̃λp−1

◦ · · · ◦
F̃λ1 ◦ F̃λ0

)
(0) = 0, F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 has a fixed point in (0, C1). Thus, each

positive initial condition gets into [0, C1] and converges monotonically under iteration

of F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 to the positive fixed point. That is, F̃λp−1 ◦ · · · ◦ F̃λ1 ◦ F̃λ0 has
a globally attracting positive fixed point on (0, 1], and the uniformly persistent pro-
portion of infectives in the total population lives on a globally attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle
as predicted by Theorem 21, following Example 14, we assume that infections are
modeled as Poisson processes [7, 8, 9].

Example 22. In (11), set the following parameter values:

α ∈ [7, 10], γ ∈ [0.15, 0.25], σ ∈ [0.15, 0.25], λ0, λ1 ∈ [0.85, 1.0].
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As in Example 14, all the conditions of Theorem 21 are satisfied. For the special
case α = 7, γ = 0.25, σ = 0.25, λ0 = 0.85, and λ1 = 0.95 the proportion of infectives in
the total population lives on the stable period 2 orbit {0.107, 0.113} (see Theorem 21).

Next, we prove that the disease lives on a globally attracting cycle when F1 has a
critical point with an image (under F̃max{λt} iteration) bigger than the critical point.

Theorem 23. Let F1 have a critical point, C1, in (0, 1). If

C1 < F̃max{λt} ◦ F̃min{λt}(C1),

then R0 > 1, and the composition map

F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0

has a globally attracting positive fixed point i0, and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

Proof. By Lemma 6 and our hypothesis, each F̃λt
(i) = 1

λt+γF1(i) has C1 as its

only critical point on [0, 1], is increasing on [0, C1], and concave down on [0, 1]. We
also have

F̃max{λt}(i) ≤ F̃λt
(i) ≤ F̃min{λt}(i).

Since C1 < F̃max{λt} ◦ F̃min{λt}(C1) < F̃max{λt}(C1) ≤ F̃λt(C1) and F̃λt(0) = 0, each

F̃ ′
λt

(0) > 1. Hence,
(
F̃λp−1

◦ · · · ◦ F̃λ1
◦ F̃λ0

)′
(0) > 1 and, by Lemma 17, R0 > 1.

By our hypothesis, C1 < F̃max{λt} ◦ F̃min{λt}(C1) ≤ F̃λt
◦ F̃min{λt}(C1) and

F̃λt
(C1) ≤ F̃min{λt}(C1) for each λt. Thus, each F̃λt

is decreasing on [C1, F̃min{λt}(C1)]

and sends this interval into itself. Consequently, each F̃λt
has a fixed point iλt

in this
interval:

F̃ ′
λi

(i) =
1

λi + γ
F ′

1(i) =
1

λi + γ
(−αγφ′ (αi) (1 − i) − γ (1 − φ (αi)) + γσ)

>
−γ

λi + γ
> −1.

Hence, F̃ ′
λi

(i) ∈ (−1, 0] for all i ∈ [C1, F̃min{λt}(C1)] and all λi. Each F̃λi is a contrac-

tion on this interval. This implies that F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
is a contraction with a

unique fixed point in [C1, F̃min{λt}(C1)]. Thus, all positive points below C1 increase

until they are in [C1, F̃min{λt}(C1)]. Consequently, F̃λp−1
◦ · · · ◦ F̃λ1

◦ F̃λ0
has a glob-

ally attracting positive fixed point on (0, 1], and the uniformly persistent proportion
of infectives in the total population lives on a globally attracting cycle.

To give a specific example of disease persistence on a globally attracting cycle
as predicted by Theorem 23, following Example 16, we assume that infections are
modeled as Poisson processes [7, 8, 9].

Example 24. In (11), set the following parameter values:

α ∈ [15, 25], γ ∈ [0.45, 0.6], σ ∈ [0.45, 0.6], λ0, λ1 ∈ [0.7, 1.0].

As in Example 16, all the conditions of Theorem 23 are satisfied. For the special case
α = 20, γ = 0.5, σ = 0.5, λ0 = 0.8, and λ1 = 0.9 the proportion of infectives in the
total population lives on the stable period 2 orbit {0.289, 0.327} (see Theorem 23).
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Fig. 4. Two attracting 4-cycles (multiple attractors). Red and black attractors.

8. Multiple attractors. In constant environments, single patch discrete-time
epidemic models typically support only one attractor [7, 8, 9]. Henson and coworkers
[30, 31, 32, 33], Franke and Selgrade [22], and Franke and Yakubu [24] found multiple
attractors in periodically forced models, where the corresponding models in constant
environments have no multiple attractors. These multiple attractors are a result of
periodic perturbations of the corresponding models in constant environments. In this
section, we illustrate that our periodically forced discrete-time single patch epidemic
model can generate multiple (coexisting) attractors. In this situation, the long-term
disease dynamics depends on initial conditions.

Periodicity is not the only mechanism for generating multiple attractors. Migra-
tion and age-structure are known to induce multiple attractors in population models
[5, 7, 9, 28, 29, 48, 50]. Also, epidemic models with “backward” bifurcations support
multiple attractors [27, 47].

Example 25. Consider model (7) with 4-periodic constant recruitment function

f(t,N) = kt(1 − γ)

and

φ

(
αI

N

)
= e−

αI
N ,

where

α = 250, γ = 0.4, σ = 0.02, k0 = 1, k1 = 200, k2 = 1, k3 = 210.

Example 25 has two coexisting 4-cycle attractors, a “red” attractor at

{(60.32, 52.44), (144.13, 3.57), (58.25, 56.14), (149.30, 1.29)}

and a “black” attractor at

{(60.32, 58.19), (144.13, 1.32), (58.25, 51.32), (149.30, 3.18)}.

In this example, the total population is on a globally attracting 4-cycle, while the
infective population is on multiple 4-cycle attractors. That is, the disease dynamics
has multiple outcomes, while the total population has a single long-term dynamics.
Figure 4 displays the two attracting 4-cycles.
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Fig. 5. As k1 varies between 3600 and 4300, the infective population in Example 26 undergoes
period-doubling bifurcations route to chaos.

9. Nonchaotic demographic dynamics generates chaotic disease dy-
namics. In constant environments, the demographic dynamics is capable of driving
the disease dynamics [1, 2, 7, 8, 9]. That is, when the total population (in the absence
of the disease) is on a cycle of period k, the population of infectives (in the presence
of the disease) is also on a cycle of the same period k, albeit the amplitude of the
total population is much larger than that of the infected population.

Our demographic equation with periodic constant or periodic Beverton–Holt
or periodic geometric recruitment function can have either asymptotically bounded
growth via globally attracting cycles (constant or Beverton–Holt models) or geometric
growth (geometric model). In this section, we use numerical simulations to illustrate
that the periodic epidemic model (4) can generate chaotic attractors where the peri-
odic recruitment function is periodic constant or the periodic Beverton–Holt or peri-
odic geometric function [39, 40, 41, 42, 43, 44, 45]. That is, in periodic environments,
the demographic dynamics does not always drive the disease dynamics. We illustrate
these cases in the following three examples.

Example 26. Consider model (7) with 2-periodic constant recruitment function

f(t,N) = kt(1 − γ),

φ

(
αI

N

)
= e−

αI
N ,

and

α = 250, γ = 0.44, σ = 0.002, k0 = 1, 3600 ≤ k1 ≤ 4300.

Figure 5 shows parameter regimes of chaotic dynamics in the infective population
of Example 26, where the total population is on a cyclic (nonchaotic) attractor. In
this example, the recruitment function is a 2-periodic constant function. Next, we
use numerical simulations to illustrate chaotic dynamics in the infective population
where the recruitment function is the periodic Beverton–Holt model.

Example 27. Consider model (7) with 2-periodic geometric growth model

f(t,N) =
(1 − γ)μktN(t)

(1 − γ)kt + (μ− 1 + γ)N(t)
,
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Fig. 6. As k1 varies between 30000 and 85000, the infective population in Example 27 undergoes
period-doubling bifurcations route to chaos.

φ

(
αI

N

)
= e−

αI
N ,

and

α = 250, γ = 0.44, σ = 0.002, μ = 2, k0 = 1, 30000 ≤ k1 ≤ 85000.

As we vary k1 between 30000 and 85000, Figure 6 shows the infective population
undergoing period-doubling bifurcations route to chaos. As in Figure 5, Figure 6
shows parameter regimes of chaotic dynamics in the infective population of Exam-
ple 27, where the total population is governed by the 2-periodic Beverton–Holt model
(nonchaotic dynamics). Next, we use numerical simulations to illustrate chaotic dy-
namics in the infective population where the recruitment function is the periodic
geometric growth model.

Example 28. Consider model (7) with 2-periodic geometric growth model

f(t,N) = λtN

and

φ

(
αI

N

)
= e−

αI
N ,

where

α = 250, γ = 0.44, σ = 0.002, λ0 = 0.0004, 0.3 ≤ λ1 ≤ 1.5.

As λ1 varies between 0.3 and 1.5, the infective population in Example 28 under-
goes period-doubling bifurcations route to chaos. As in Figures 5 and 6, Figure 7
shows parameter regimes of chaotic dynamics in the infective population of Exam-
ple 28, where the total population is under geometric (nonchaotic) growth.

In periodic environments, Examples 26, 27, and 28 show that demographics dy-
namics does not always drive disease dynamics. In particular, they illustrate chaotic
disease dynamics in the absence of chaotic dynamics in the demographic equation.
These examples have only highlighted some of the complex interactions between dis-
ease and demographics dynamics in periodic environments.
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Fig. 7. As λ1 varies between 0.3 and 1.5, the infective population in Example 28 undergoes
period-doubling bifurcations route to chaos.

10. Conclusion. The study of the combined effects of seasonal trends and dis-
eases on the extinction and persistence of discretely reproducing populations has
received little attention. The focus has been on the impact of diseases on populations
in constant (nonseasonal) environments [1, 2, 3, 7, 8, 9]. Most species live in seasonal
environments, and the neglect of seasonal factors is apt to lead to a misunderstanding
of how the population is interacting with its environment [26]. In this paper, we focus
on the joint impact of periodic environments and disease epidemics on life-history
outcomes of discretely reproducing populations. We formulated and analyzed a peri-
odically forced discrete-time SIS epidemic model via the epidemic threshold parameter
R0. We also investigated the relationship between the predisease invasion population
dynamics and the diseases dynamics.

Fixed point (nonoscillatory) dynamics are rare in periodic environments. We use
the periodic Beverton–Holt, the periodic constant, and the periodic Malthus (geomet-
ric growth) models as recruitment functions to highlight disease (uniform) persistence
on globally attracting cycles whenever R0 > 1. The disease persists on fixed point
attractors in the corresponding autonomous epidemic models [7, 8, 9].

In constant environments, Castillo-Chavez and Yakubu, in an earlier work, showed
that the SIS discrete-time epidemic model supports only one attractor [7, 8, 9]. That
is, the long-term epidemic dynamics is independent of initial population sizes. It is
known that periodically forced (nonautonomous) population models without explicit
disease dynamics are capable of generating multiple attractors via cusp bifurcations,
where the corresponding autonomous models do not have multiple attractors [24].
In periodic environments, we use numerical simulations to show that the SIS model
supports multiple attractors. That is, in periodic environments, the ultimate disease
dynamics depends on initial population sizes. Seasonality is not the only mechanism
for generating multiple attractors. Dispersal and age-structure are other factors that
lead to the creation of multiple attractors in constant environments.

Castillo-Chavez and Yakubu, in [7, 8, 9], used the autonomous SIS discrete-time
epidemic model to answer the following questions. Will the infective population sur-
vive? And if it does, will it settle on a particular attractor? What is the relationship
between the population and epidemic attractors? Castillo-Chavez and Yakubu showed
that in constant environments, infectives can survive on cyclic attractors. The period
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of the (predisease invasion) population attractor is the same as the period of the in-
fective population. In this paper, we show that it is possible for the disease dynamics
to be chaotic, where the (predisease invasion) population is cyclic and nonchaotic.
That is, with the advent of seasonality the demographic dynamics does not always
drive the disease dynamics.

Acknowledgment. We thank the referees for useful comments and suggestions.
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THE MOTION OF A THIN LIQUID FILM DRIVEN BY
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Abstract. We investigate wave solutions of a lubrication model for surfactant-driven flow
of a thin liquid film down an inclined plane. We model the flow in one space dimension with a
system of nonlinear PDEs of mixed hyperbolic-parabolic type in which the effects of capillarity
and surface diffusion are neglected. Numerical solutions reveal distinct patterns of waves that are
described analytically by combinations of traveling waves, some with jumps in height and surfactant
concentration gradient. The various waves and combinations are strikingly different from what
is observed in the case of flow on a horizontal plane. Jump conditions admit new shock waves
sustained by a linear surfactant wave traveling upstream. The stability of these waves is investigated
analytically and numerically. For initial value problems, a critical ratio of upstream to downstream
height separates two distinct long-time wave patterns. Below the critical ratio, there is also an exact
solution in which the height is piecewise constant and the surfactant concentration is piecewise linear
and has compact support.

Key words. PDE, surfactants, hyperbolic-parabolic system
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1. Introduction. Spatial variations in surface tension on the free surface of a
fluid induce a surface force, known as a Marangoni force [8]. Such variations can
occur through temperature changes [2, 4] or by introducing surfactants. In thin film
flow, surfactants have been studied in the context of industrial coating processes
[9, 16] and as a component in the treatment of premature babies, whose lungs are in
danger of collapse due to insufficient natural surfactant [3, 11]. Both applications have
motivated extensive recent research on thin films driven by surfactant [12, 13, 17, 18].

In much of the research into surfactant spreading, the effect of gravity in driving
the flow has been assumed to be negligible [10]. In this paper, we consider flow on an
inclined plane, building on the work of Edmonstone, Craster, and Matar [6, 7] that
explores the effect of adding gravity to the driving force. Our results demonstrate that
gravity has a profound effect and probably should not be neglected in simulations of
surfactant spreading.

For constant Marangoni force, as in studies of thermally driven thin films [2,
4, 8], the equations of motion are reasonably represented by a scalar fourth order
PDE, known as the thin film equation. In the presence of surfactant, however, the
Marangoni force is not constant; the density and motion of the surfactant molecules
are modeled by an additional equation. The full model, derived using lubrication
theory in [3], consists of a system of two nonlinear coupled PDEs for the film height
and the surfactant concentration.

The PDE system exhibits a complicated combination of wave-like structures in the
solution of initial value and boundary value problems [6, 7]. The complexity comes
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about in part because the underlying equation for the transport of surfactant is a
degenerate parabolic equation resembling the porous medium equation, the degeneracy
occurring at zero surfactant concentration. In contrast with the scalar thin film
equation [15], we cannot appeal to the theory of hyperbolic equations to predict
the long-time behavior of solutions, and indeed we find that it is different from the
combination of shocks and rarefaction waves of the hyperbolic theory. Nonetheless, we
explore the point of view that long-time behavior of the underlying equations should
be predictable from basic information in the initial and boundary conditions, and it
should be given by combinations of similarity solutions of the equations.

The underlying equations we study are derived from the full lubrication system
(in section 2) by omitting terms related to surface diffusion and capillarity, i.e., taking
the Péclet number to be infinite and the capillary number to be zero. We also neglect
a second order diffusive term that is small for steep inclines. This enables us to focus
on the underlying structure of solutions by analogy with the connection between
hyperbolic systems and their parabolic regularization.

Numerical simulations of the reduced system, described in section 3, contain
discontinuities in film height and surfactant concentration gradient. These solutions
have a recognizable structure, and the goal of much of the rest of the paper is to
explain the structure analytically. There is extensive numerical evidence [6] that
the omitted regularizing terms primarily smooth the discontinuities without changing
their structure or speeds, provided the coefficients are small.

The analysis of traveling waves in section 4 and jump conditions in section 5
reveals a surprisingly rich variety of individual waves. In section 6, we show how these
waves can be combined to explain the wave patterns in the numerical simulations.
However, the combination is possible only below a critical value of the ratio hR/hL

of downstream height hR to upstream height hL. This analysis is used in section 7 to
generate special exact solutions that are piecewise constant in h and piecewise linear
in Γ, with Γ having compact support.

Above the critical value a different wave pattern emerges, described through nu-
merical experiments in section 7. A notable feature of these new patterns is a hyper-
bolic precursor wave propagating ahead of the surfactant front. Also in this section we
probe the critical value in PDE simulations and investigate the stability of individual
waves predicted by jump conditions. In section 8 we summarize the catalogue of new
individual waves and discuss the results in the context of ongoing research into the
role of gravity in surfactant spreading.

2. The model. Consider a flat solid substrate, inclined as shown in Figure 1, in
which z = h̃(x, y, t) is the height of a thin film flowing down the slope. On the surface
of the film is a layer of surfactant with concentration Γ̃(x, y, t), which measures the
density of surfactant molecules on the free surface. The surfactant is assumed to be
immiscible and does not add to the height of the film.1

The full multidimensional model consists of a system of two nonlinear PDEs de-
rived from the Navier–Stokes equations and the well-known lubrication approximation
[1, 6, 13, 19]:

ht + ∇ ·
[
C
h3

3
∇∇2h− G cos θ

h3

3
∇h− h2

2
∇Γ

]
+

[
G sin θ

h3

3

]
x

= 0,(2.1)

1The amount of surfactant is also assumed to be below the critical micelle concentration [5].
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Fig. 1. A thin film on an inclined substrate with partial coating by surfactant of varying
concentration and negligible height.

Γt + ∇ ·
[
C
h2

2
Γ∇∇2h− G cos θ

h2

2
Γ∇h− hΓ∇Γ

]
+

[
G sin θ

h2

2
Γ

]
x

− D∇2Γ = 0.

(2.2)

Here h,Γ are dimensionless variables: h = h̃/H, Γ = Γ̃/Γm, where H is a character-
istic length scale for the film thickness, and Γm is a typical surfactant concentration.
The system contains nondimensional parameters associated with gravity, G = ρgHL

Π ,

surface diffusion D = 1
Pe = μDs

ΠH (where Pe is the Péclet number), and capillarity

C = ε2σm

Π . These parameters depend on density ρ, gravity g, viscosity μ, and surface
diffusivity Ds of the surfactant, all taken to be constant. They also depend on a
characteristic length L of the film and on the small parameter ε = H

L . The spreading
pressure Π is given by Π = σ0 − σm, where σ0 is the surface tension in the absence
of surfactant, and σm is a typical reduced surface tension in the presence of a typical
concentration of surfactant. The spreading pressure Π is related to the Marangoni
number, which after nondimensionalization is effectively set to 1. Note that in (2.1),
(2.2) we have used a linear relation σ = 1 − Γ (in nondimensional form) between
surface tension and surfactant concentration. We refer the reader to [6] for typical
values of the parameters.

In this paper, we consider a reduced model in which the variables are considered to
be independent of the transverse variable y, and the regularizing effects of capillarity
and surface diffusion are neglected by taking C = 0 and D = 0. Letting α = G sin θ,
the reduced equations are

ht −
1

2

(
h2Γx

)
x

+
α

3

(
h3

)
x

= 0,(2.3)

Γt − (hΓΓx)x +
α

2

(
h2Γ

)
x

= 0.(2.4)

In this system we have also neglected the gravity terms with coefficient G cos θ.
This coefficient is small for θ near π

2 , where it has a minor smoothing effect on solu-
tions [6]. It is well known that fourth order diffusion gives rise to a capillary ridge [20],
which is not captured in the reduced system. Neither capillarity nor surface diffusion
affects wave speeds significantly, at least for small values of C and D, as verified
numerically in [6].
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It is perhaps helpful to compare this system to familiar PDEs. For a given function
Γ(x, t), (2.3) would be a scalar conservation law

ht + f(h)x = 0,

with f(h) = − 1
2h

2Γx + α
3 h

3. Similarly, for a given h(x, t), (2.4) resembles a porous
medium equation. Specifically, if h is constant, and α = 0, then (2.4) is

Γt =
1

2
h
(
Γ2

)
xx

.

Consequently, we may expect discontinuities in h and Γx, while Γ itself remains con-
tinuous; this would be typical in a quasi-linear conservation law for h and a porous
medium equation for Γ.

As this discussion suggests, the system of equations is of parabolic-hyperbolic
type. In a series of papers [17, 18], Renardy examined analytical issues such as local
existence, propagation speed, and formation of shocks in the case α = 0. While some
of these results may generalize to the case α > 0, we do not pursue this line of analysis
in this paper.

3. Numerical experiments I. The numerical algorithm used to compute so-
lutions of the system of PDEs (2.3), (2.4) is a first order composite finite difference
scheme that couples a fully implicit time step and central spatial differences for sec-
ond order derivatives with an upwind scheme for the more hyperbolic first order terms
(with coefficient α in (2.3), (2.4)).

We define a spatial finite difference operator acting on un
j = u(xj , tn) as

(δxu)nj+ 1
2
≡

un
j+1 − un

j

Δx
.(3.1)

We also use standard notation for spatial averages:

(ū)nj+ 1
2
≡

un
j+1 + un

j

2
,(3.2)

and let λ ≡ Δt
Δx . The finite difference scheme is then defined as

hn+1
j = hn

j + λ

(
1

2

(
h̄2δxΓ

)n+1

j+ 1
2

− 1

2

(
h̄2δxΓ

)n+1

j− 1
2

− α

3

(
(h3)nj − (h3)nj−1

))
,(3.3)

Γn+1
j = Γn

j + λ
((

h̄Γ̄δxΓ
)n+1

j+ 1
2

−
(
h̄Γ̄δxΓ

)n+1

j− 1
2

− α

2

(
(h2Γ)nj − (h2Γ)nj−1

))
.(3.4)

The resulting nonlinear system is solved with Newton’s method; the composite scheme
is formally first order in both time and space.

The goal of our analysis is to understand the structure of long-time solutions as
a function only of boundary data. In order to simulate initial value problems with
initial data in which h and Γ are constant outside an interval, and Γ = 0 downstream,
we impose simple boundary conditions at the end points of the computational domain
[0, xmax]:
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Fig. 2. Typical solution profiles h(x, 60) (left) and Γ(x, 60) (right) with hR = 0.1. Initial data
h(x, 0) and Γ(x, 0) are represented by dashed lines. Numbered labels: (1) nonlinear traveling wave;
(2) jump in h,Γx; (3) linear traveling wave with Γ linear and h constant; (4) jump in h,Γx.

h(0, t) = hL, Γ(0, t) = ΓL; h(xmax, t) = hR, Γ(xmax, t) = 0.

In the PDE simulations, we exploit the following scalings in the equations. Let
h = H(x, t), Γ = g(x, t) satisfy (2.3), (2.4) with H(0, t) = 1, g(0, t) = 1, and α = 1.
Then h,Γ given by

h(x, t) = hL H

(
αhL

ΓL
x,

α2h3
L

ΓL
t

)
and Γ = ΓL g

(
αhL

ΓL
x,

α2h3
L

ΓL
t

)
(3.5)

satisfy (2.3), (2.4) with h(0, t) = hL, Γ(0, t) = ΓL, provided ΓL > 0. Thus, to explore
variation in wave structures, we can fix α = hL = ΓL = 1 and vary hR (note that
ΓR = 0). We employ this simplification in numerical simulations. In the analysis, we
retain all the parameters so that their effect can be seen explicitly.

Figure 2 contains graphs of numerical simulations of (2.3), (2.4) at time t = 60.
The initial data (indicated by dashed lines) contain a single (smoothed) jump in h
from hL = 1.0 to hR = 0.1 and in Γ from ΓL = 1.0 to ΓR = 0. The same structure
emerges from the same upstream and downstream heights for more general smooth
height data (including oscillatory data) after transients have died away. The figure
is annotated to show the broad wave structure of the solution. In the graph of h,
note that at (1) the height increases monotonically from the fixed boundary value hL

to a maximum height hM ; at (2) there is a jump from hM to the height hm of the
horizontal “step” at (3). Finally, the step contains a second jump at (4) from hm to
the precursor layer of fixed height hR.

The graph of the surfactant concentration Γ has jumps at the same locations
as those of the height, but the jumps are in the slope Γx (henceforth denoted by
G, as in the figure), while Γ is continuous. The surfactant concentration increases
monotonically (1) to a maximum concentration Γ0 at the corner (2), where there is a
jump in Γx from GM > 0 to Gm < 0. In (3), Γ appears to be linear, extending down
to Γ = 0, where there is a second jump (4) in Γx from Gm < 0 to zero.

As the spatial grid is refined, the discontinuities are better resolved, and no
additional data points appear in the discontinuities. We demonstrate this for the
jump in height in Figure 3, in which the number of grid points is doubled from 2500
(Δx = 0.012) to 5000 (Δx = 0.006).
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Fig. 3. Grid refinement to distinguish the discontinuity in height from a steep gradient. The
coarse grid on the left has 2500 points; the fine grid on the right has 5000 points. The number of
points in the shock is approximately the same in both cases.
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Fig. 4. Numerical solutions showing the evolution of h and Γ for hR = 0.1. The profiles are
separated by 40 time steps, and the final profiles at t = 180 are in bold. The computational time
step is Δt = 0.001, and the grid is fairly coarse with Δx = 0.04.

Figure 4 illustrates the evolution of the solution, with a dashed line indicating the
initial profile. After a rapid initial transient between the first two plots, the maximum
height h slowly asymptotes to a constant value, whereas the maximum surfactant
concentration Γ increases without bound. (Note that surfactant is supplied from
the left boundary.) The step height hm develops at a very early time and remains
constant, although the width of the step increases slowly.

To visualize the data from Figure 4 in a different way, in Figure 5 we plot the
curves (h(x, t),Γ(x, t)), 0 < x < xmax, for various values of t > 0. Starting from
(hL,ΓL) = (1, 1), there is a sequence of curves on the right that appears to be con-
verging. A jump in h occurs at the maximum value of Γ, which is increasing in time.
On the left of the figure, Γ decreases to zero at a height h which is constant in space
and time. The final step occurs on the h-axis.

4. Traveling waves. In this section we explore analytical solutions of the PDE
(2.3), (2.4) that capture some of the features observed in the numerical simulations.

The traveling waves we consider are smooth solutions h = ĥ(x − ct), Γ = Γ̂(x − ct)
that move with constant speed c. Substituting into system (2.3), (2.4) and integrating
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once, we obtain the ODE system (dropping the hats)

−ch− 1

2
h2Γ′ +

α

3
h3 = K1,(4.1)

−cΓ − hΓΓ′ +
α

2
h2Γ = K2(4.2)

in which Γ′ = dΓ
dξ , ξ = x−ct. First, we observe that there are traveling waves in which

h is constant and Γ is linear. We refer to these traveling waves as simple traveling
waves. Note that simple traveling waves should be considered to be defined only for
values of x− ct where Γ is nonnegative.

Theorem 4.1. Let h > 0 be constant, and let Γ = Γ0 + Gξ, with G = Γ′ =
constant. Then (4.1) is satisfied identically with K1 = −ch− 1

2h
2G+ α

3 h
3, and (4.2)

is satisfied if and only if K2 = 0 and

c = −hG +
α

2
h2.(4.3)

Proof. The only complication is in the Γ equation, where the left-hand side has a
constant term and a term linear in ξ. The restrictions on K2 and c come from equating
coefficients.

Interestingly, the speed in (4.3) is the transport velocity in (2.4); it is neither
the transport velocity − 1

2hG + α
3 h

2 nor the characteristic speed −hG + αh2 for the
conservation law (2.3) with Γx = G constant. This is not a contradiction, since h is
constant.

There are also nonlinear traveling waves corresponding to solutions of system
(4.1), (4.2) in which h is not constant and Γ is not linear. Consider a solution h(ξ),
Γ(ξ) with boundary conditions at ξ = −∞:

h(−∞) = hL, Γ(−∞) = ΓL, Γ′(−∞) = 0.(4.4)



THIN FILM DRIVEN BY SURFACTANT AND GRAVITY 1595

These conditions serve to determine the constants K1,K2, so that (4.1), (4.2) become

−ch− 1

2
h2Γ′ +

α

3
h3 = −chL + α

h3
L

3
,(4.5)

−cΓ − hΓΓ′ +
α

2
h2Γ = −cΓL +

α

2
h2
LΓL.(4.6)

Eliminating Γ′, we obtain an invariant curve through (hL,ΓL) in the (h,Γ)-plane:

Γ(h) =
hΓL

(
c− α

2 h
2
L

)
c(2hL − h) + α

(
1
6h

3 − 2
3h

3
L

) .(4.7)

On the curve Γ(h), the flow is given by solving (4.1) for Γ′ and using the chain
rule dΓ

dξ = dΓ
dh

dh
dξ to obtain an expression for h′. Differentiating (4.7), we obtain

dΓ

dh
=

6ΓL(2c− αh2
L)(6chL − αh3 − 2αh3

L)

(12chL − 6ch + αh3 − 4αh3
L)2

.(4.8)

Therefore, after some processing, we find

dΓ

dξ
=

2
3 (hL − h)(3c− α(h2 + hhL + h2

L))

h2
,(4.9)

dh

dξ
=

− 1
9 (h− hL)(3c− α(h2 + hhL + h2

L))(12chL − 6ch + αh3 − 4αh3
L)2

h2ΓL(2c− αh2
L)(6chL − αh3 − 2αh3

L)
.(4.10)

In particular, the point (hL,ΓL) is an equilibrium; whether it is stable or unstable
depends on the signs of the various factors in (4.9), (4.10). It is unstable for the
traveling waves we seek.

As suggested by the numerical results of the previous section, the traveling waves
of most interest to us in this paper have h and Γ increasing, with h approaching finite
limits at ±∞, and Γ unbounded at +∞. The following result establishes the existence
of such waves.

Theorem 4.2. For each hM ∈ (hL, 2
2
3hL), there is a traveling wave solution

h(ξ), Γ(ξ), ξ = x− ct satisfying
(i) h′(ξ) > 0; Γ′(ξ) > 0;
(ii) h(−∞) = hL, Γ(−∞) = ΓL, h(∞) = hM , Γ(∞) = ∞, Γ′(∞) = GM

with speed

c = −hMGM +
α

2
h2
M ,(4.11)

where

GM =
α

3

(hL − hM )

hM (2hL − hM )
(h2

M − 2hLhM − 2h2
L).(4.12)

Proof. Let

d(h; c, hL) = c(2hL − h) +
α

6
(h3 − 4h3

L),

the denominator in the expression (4.7) for Γ = Γ(h). Solving d(h; c, hL) = 0, we find

c = c(h) =
α

6

(
h3 − 4h3

L

h− 2hL

)
.(4.13)
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By considering the graph of this rational function of h, we find c has a positive local
maximum at h = hL, a zero at h = 2

2
3hL < 2hL, and c(0) = α

3 h
2
L. Consequently, for

hM in the range of the theorem, there is a single zero of d, parameterized by either
h = hM or by c ∈ (0, α

2 h
2
L). For α

3 h
2
L < c < α

2 h
2
L, there is a second positive root

h0 < hL, which crosses h = 0 at c = α
3 h

2
L.

In summary, the zero of d that we seek is given by (4.13) with h = hM :

c = c(hM ) =
α

6

(
h3
M − 4h3

L

hM − 2hL

)
, hL < hM < 2

2
3hL.(4.14)

Then Γ(h) has a vertical asymptote at h = hM and, moreover, Γ stays positive:
Γ(h) → ∞ as h ↗ hM . Examining the flow (4.9), (4.10), we find that (hL,ΓL) is
an unstable equilibrium. Let (h(ξ),Γ(ξ)) be the corresponding trajectory satisfying
(4.5), (4.6) with (h(−∞),Γ(−∞)) = (hL,ΓL), h′ > 0, Γ′ > 0. Then h(∞) = hM and
Γ(∞) = ∞.

The final step is to set h = hM in (4.9), from which we find (after substitution
for c from (4.14)) Γ′(ξ) → GM , as given in (4.12). Formula (4.11) is then easily
checked.

Remarks. 1. Formula (4.11) suggests that the traveling wave approaches a simple
traveling wave as ξ → ∞. Indeed, h(ξ) → hM , a constant, and Γ′(ξ) → GM , as
ξ → ∞.

2. Equations (4.11), (4.12) link the asymptotic behavior as ξ → ∞ to the equilib-
rium (hL,ΓL) without needing to integrate the ODEs. The formulae are independent
of ΓL, reflecting the scale invariance of the equations. Moreover, these formulae per-
sist as ΓL → 0. In this limit, the traveling wave approaches a simple nonsmooth wave
(see Corollary 5.5 below).

3. From (4.14), we observe that c(hM ) ∈
(
α
3 h

2
L,

α
2 h

2
L

)
, an interval that collapses

onto zero as α → 0. Consequently, the nonlinear traveling waves of the theorem do
not appear in the case α = 0 of the horizontal substrate.

5. Jump conditions. As discussed above, and as observed in numerical simula-
tions, solutions of system (2.3), (2.4) typically contain discontinuities in h and Γx. In
this section, we begin a systematic study of the Rankine–Hugoniot jump conditions
for the system.

Consider the Cauchy problem for system (2.3), (2.4) with initial data

h(x, 0) = h0(x), Γ(x, 0) = Γ0(x), −∞ < x < ∞.(5.1)

By a weak solution of the Cauchy problem, we mean a function (h,Γ) : R×R+ → R
2
+

with h,Γ,Γx ∈ L∞ ∩ L1
loc such that for every test function φ ∈ C∞

c (R× R+),∫ ∞

0

∫ ∞

−∞

{
hφt − ( 1

2h
2Γx − α

3 h
3)φx

}
dx dt =

∫ ∞

−∞
h0φ(x, 0)dx,

∫ ∞

0

∫ ∞

−∞

{
Γφt − (hΓΓx − α

2 h
2Γ)φx

}
dx dt =

∫ ∞

−∞
Γ0φ(x, 0)dx.

(5.2)

Note that in this definition of weak solutions, Γ(x, t) is continuous with respect to x
for each time t.

In analyzing jump conditions, we will always assume that h is C1 and Γ is C2,
apart from a finite number of curves x = γ(t) across which h and Γx can have
jump discontinuities. We refer to such solutions as piecewise-smooth. We shall be
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particularly interested in solutions in which surfactant spreads into a region with
initially uniform film height. Let (h,Γ) be a piecewise-smooth weak solution, and
suppose the leading edge of the surfactant is located on a curve x = γ�(t):

Γ(x, t) = 0, x ≥ γ�(t).(5.3)

The following theorem determines the speed at the leading edge of the surfactant.
Theorem 5.1. Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4) sat-

isfying (5.3). If G− ≡ Γx(γ�(t)−, t) < 0, then

γ′
�(t) = −h−G− +

α

2
h2
−,(5.4)

where h− = h(γ�(t)−, t).
Proof. Differentiating Γ(γ�(t)−, t) = 0, we have

Γxγ
′
�(t) + Γt = 0.

But from (2.4), Γt = (hΓΓx)x − α
2

(
h2Γ

)
x

= h−G
2
− − α

2 h
2
−G−, since Γ = 0 at the

leading edge x = γ�(t). The formula (5.4) now follows, since Γx = G− 
= 0.
Now we derive a set of equations from the Rankine–Hugoniot conditions for the

discontinuities in h and Γx and an equation enforcing the continuity of Γ at the
discontinuities. Consider a solution (h,Γ) that is smooth away from a differentiable
curve C = {x = γ(t)} such that Γ is continuous across C, and h,Γx have well-defined
one-sided limits at C. Let [u] denote the jump in a function u across C, and let
c = γ′(t). It is also convenient to use the notation

G = Γx, Γ = Γ(γ(t), t).

Then the jump conditions are as follows. From (2.3) we obtain

−c[h] +

[
−1

2
h2G +

α

3
h3

]
= 0,(5.5)

while (since Γ is continuous) (2.4) yields

Γ
[
−hG +

α

2
h2

]
= 0.(5.6)

The continuity of Γ provides an additional equation matching the left and right
limits of Γ at x = γ(t):

Γ(γ(t)−, t) = Γ(γ(t)+, t).(5.7)

We refer to weak solutions that consist of a simple traveling wave (see section 4)
on either side of a jump in h,Γx as a simple jump. In a simple jump, both h and G
are constant, so that the jump condition (5.5) implies the speed is constant also. By
translation invariance, we may without loss of generality take the simple jump to lie
along the line x = ct:

h(x, t) =

⎧⎨
⎩

h− if x < ct,

h+ if x > ct,
Γ(x, t) =

⎧⎨
⎩

Γ0 + G−(x− c−t) if x < ct,

Γ0 + G+(x− c+t) if x > ct.

(5.8)
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In this solution, we are leaving open the possibility that the simple traveling waves
on either side of the jump travel with different speeds. In this case, continuity of Γ
(5.7) requires

G−(c− c−) = G+(c− c+).(5.9)

The jump conditions (5.5), (5.6) for a simple jump (5.8) become

−c(h+ − h−) − 1

2
(h2

+G+ − h2
−G−) +

α

3
(h3

+ − h3
−) = 0,(5.10)

(Γ0 + G−(c− c−)t)
(
−h+G+ + h−G− +

α

2
(h2

+ − h2
−)

)
= 0.(5.11)

Equating coefficients in the second equation, we have a pair of conditions:

Γ0

(
−h+G+ + h−G− + α

2 (h2
+ − h2

−)
)

= 0,

G−(c− c−)
(
−h+G+ + h−G− + α

2 (h2
+ − h2

−)
)

= 0.
(5.12)

The analysis of the jump conditions is organized as follows. First, we show that
for α = 0, and Γ = 0, there is a simple jump in h; the height doubles across the jump,
and the speed is determined by the height and surfactant concentration gradient on
one side of the jump. However, when Γ > 0, there are no simple jumps when α = 0.
For α > 0, there are two simple jumps: one at the leading edge, but with the jump
in height coupled to the surfactant concentration gradient, and another in the bulk,
where the jump conditions can be solved explicitly.

The horizontal substrate: α = 0. First, we investigate the structure of the
leading edge of the surfactant when α = 0. The speed c = γ′

�(t) of the leading edge
x = γ�(t) was characterized in Theorem 5.1.

Theorem 5.2.
2 Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4) with

α = 0 satisfying (5.3). If G− = Γx(γ�(t)−, t) < 0, then

h− = 2h+,(5.13)

where h± = h(γ�(t)±, t).
Proof. The result follows immediately by substituting the expression for the speed

at the jump (5.4) into the height jump condition (5.5). Specifically, (5.5) with α = 0
becomes

−c(h+ − h−) +
1

2
h2
−G− = 0,(5.14)

since G+ = Γx(γ�(t)+, t) = 0. But from (5.4), c = −h−G−. Substitution into (5.14)
leads to the result, since G− 
= 0.

Next, we show there are no simple jumps with Γ > 0.
Theorem 5.3. Let α = 0, Γ > 0. There are no simple jumps with c 
= 0. For

c = 0, there is a nonphysical solution with a stationary jump in h and no jump in Γx.
Proof. Set α = 0 in the jump conditions (5.10), (5.12) to get

−c(h+ − h−) − 1

2
h2

+G+ +
1

2
h2
−G− = 0(5.15)

2These jumps were first characterized by Borgas and Grotberg [3].
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and

Γ0 (−h+G+ + h−G−) = 0,

G−(c− c−) (−h+G+ + h−G−) = 0.
(5.16)

Since Γ0 > 0, we see that

h−G− = h+G+.(5.17)

Consequently, the speeds c−, c+ of the simple traveling waves on each side of the
simple jump are equal (see Theorem 4.1 with α = 0):

c− = −h−G− = c+ = −h+G+.(5.18)

Substituting (5.17) into (5.15), we conclude that either h+ = h−, in which case
G+ = G− and there is no jump, or h+ 
= h− and a jump in h and G would have speed

c = −1

2
h−G−.(5.19)

But then (5.9), (5.18) imply that either c = c− = c+ = 0, so that G− = G+ = 0, or
G− = G+ 
= 0. In the former case, we regard the solution with an arbitrary stationary
jump in h as unphysical, since the fluid discontinuity would collapse in the presence
of additional smoothing terms such as capillarity or second order diffusion. In the
latter case, (5.17) implies h− = h+, and we are back to the simple traveling wave of
the previous section with no jump in h or Γx.

The inclined substrate: α > 0. When we consider a film flowing down an
inclined substrate in which α > 0, we find solutions of the jump conditions that are
strikingly different from the α = 0 case. We explore the wave structures analytically
here and numerically in section 7. As with α = 0, we treat the leading edge of
surfactant separately.

Theorem 5.4. Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4) with
α > 0 satisfying (5.3). Let h± = h(γ�(t)±, t), and suppose G− = Γx(γ�(t)−, t) < 0.
Then

(a) h− < h+ or (b) 2h+ < h− < (1 +
√

3)h+;(5.20)

in both cases

G− =
α

3

(h− − h+)(h2
− − 2h−h+ − 2h2

+)

h−(h− − 2h+)
, γ′

�(t) = −h−G− +
αh2

−
2

.(5.21)

Proof. The speed in (5.21) is given by Theorem 5.1 (see (5.4)). Substituting
c = γ′

�(t) and G+ = 0 into the jump condition (5.10) gives the formula for G− in
(5.21). The inequalities (5.20) are equivalent to G− < 0. (The inequality G− ≤ 0 is
needed to ensure Γ > 0 behind the leading edge of the surfactant.)

Remarks. 1. For α > 0, the jump in h and the surfactant concentration gradient
are linked, in contrast to the α = 0 case, in which the jump in h is determined, and
G− is a free parameter that influences only the speed.

2. Conditions (5.21) correspond to the limit ΓL → 0 of the nonlinear traveling
wave in Theorem 4.2.

3. The case h− < h+ appears to be unphysical; both gravity and the surfactant
concentration gradient act downwards and cannot sustain such a jump in the height.
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We conjecture that this jump is unstable, as suggested by the numerical evidence in
Figure 8. Further explanation for the instability of the wave is suggested by the obser-
vation that the speed of the discontinuity in (5.21) is smaller than the characteristic
speed αh2

+ in the surfactant-free region ahead of the discontinuity.
The following corollary parallels the result of Theorem 5.4, except that it concerns

the trailing edge of the surfactant, so the roles of h+, h− are exchanged. However, the
cases are not symmetric, since gravity and the Marangoni force are now opposed. In
particular, h+ > h−.

Corollary 5.5. Let h,Γ be a piecewise-smooth weak solution of (2.3), (2.4)
with α > 0 satisfying Γ(x, t) = 0, x ≤ γT (t). Let h± = h(γT (t)±, t), and suppose
G+ = Γx(γT (t)+, t) > 0. Then

(a) h+ > (1 +
√

3)h− or (b) h− < h+ < 2h−;(5.22)

in both cases

G+ =
α

3

(h+ − h−)(h2
+ − 2h−h+ − 2h2

−)

h+(h+ − 2h−)
, γ′

T (t) = −h+G+ +
αh2

+

2
.(5.23)

Proof. The proof parallels that of Theorem 5.4 with h−, h+ switched; the bounds
on h± ensure G+ > 0.

Theorem 5.6. For α > 0, let h,Γ be a piecewise-smooth weak solution of (2.3),
(2.4) with a simple jump across the line x = ct, where Γ = Γ0 > 0. Then either
(a) Γ = Γ0 + G(x− st) is linear, in which case

G =
α

2
(h+ + h−); s = −α

2
h+h−; c =

α

12
(h+ − h−)2,(5.24)

or (b) Γx has a jump with

G− = − α

6h−
(h+ − h−)(h+ + 2h−); G+ =

α

6h+
(h+ − h−)(2h+ + h−);

c =
α

6
(h2

+ + h+h− + h2
−).

(5.25)

Proof. In case (a), we substitute Γ = Γ0 + G(x− st), h = h± into (2.4) to find

s = −h+G +
α

2
h2

+ = −h−G +
α

2
h2
−.

(That is, (h±,Γ) is a simple traveling wave with the same speed s and surfactant
gradient G on each side of x = ct but with a jump in h.) The second equality gives
the formula for G (consistent with (5.6)) from which the expression for s follows. The
speed of the jump in h comes from the jump condition (5.10) in which G± = G.

In case (b), since Γ > 0, the jump condition (5.11) together with Theorem 4.1 for
simple traveling waves implies

c+ = −h+G+ +
α

2
h2

+ = −h−G− +
α

2
h2
− = c−.

But now continuity of Γ (see (5.9)) and G+ 
= G− imply c = c+ = c−. Substituting
into the jump condition (5.10) leads to the result (noting that h+ = h− implies
G+ = G−).

Remark. The motion of the film in this case is somewhat surprising, since the lin-
ear wave with slope G = α

2 (h+ +h−) moves to the left with speed s = −α
2 h+h−, while

simultaneously the jump in height moves to the right with speed c = α
12 (h+ − h−)2.
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6. Combining waves when α > 0. The numerical experiments of section 3
suggest that as time increases, the solution approaches a combination of traveling
waves and simple jumps. We can now interpret this structure in terms of the traveling
waves of section 4 and the jumps of section 5. Each of the four numbered features
in the figure is associated with formulae relating the parameters labeled in the figure
to each other and to the wave speeds. In processing the equations, we observe that
the jump condition (5.6) effectively equates wave speeds of simple traveling waves on
either side of a jump. Consequently, the four wave speeds are all equal to a single
speed c. We combine the following:

(1) A traveling wave with speed c connecting hL to hM (see Theorem 4.2):

c =
α
(

1
6h

3
M − 2

3h
3
L

)
hM − 2hL

,(6.1)

GM =
α

3

(hL − hM )(h2
M − 2hLhM − 2h2

L)

hM (2hL − hM )
.(6.2)

(2) A simple jump in h,Γx (see Theorem 5.6):

GM = − α

6hM
(hm − hM )(hm + 2hM ),(6.3)

Gm =
α

6hm
(hm − hM )(2hm + hM ).(6.4)

(3) A simple traveling wave with Γ descending to zero and (4) a simple jump in h (see
Theorems 4.1 and 5.4):

Gm =
α

3

(hm − hR)(h2
m − 2hmhR − 2h2

R)

hm(hm − 2hR)
.(6.5)

Noting the symmetry in the expressions for Gm and GM , we solve the equations
by treating hL and hR as parameters. We can then simplify the equations by equating
GM in (6.2), (6.3) and equating Gm in (6.4), (6.5), giving two simultaneous equations
for hM , hm:

2hL(h2
m + h2

M − 2h2
L) − hMhm(hM + hm − 2hL) = 0,(6.6)

2hR(h2
m + h2

M − 2h2
R) − hMhm(hM + hm − 2hR) = 0.(6.7)

Theorem 6.1. The polynomial equations (6.6), (6.7) have two positive solutions
for 0 < hR/hL < r∗, where r∗ = 1

2 (
√

3 − 1), and no solution for r∗ < hR/hL < 1.
The only relevant solution has hm < hM .

Proof. It is perhaps easier to see the structure if we rewrite the variables in (6.6),
(6.7):

x = hM , y = hm, u = hL, v = hR.

Then the system becomes

2u(x2 + y2 − 2u2) − xy(x + y − 2u) = 0, (a)

2v(x2 + y2 − 2v2) − xy(x + y − 2v) = 0. (b)
(6.8)
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Since u 
= v, taking v(a)−u(b) leads to

xy(x + y) = 4uv(u + v).(6.9)

Substituting back into (6.8(a)), we get

x2 + y2 + xy = 2(u2 + uv + v2).(6.10)

We can eliminate x, since xy(x + y) = y(x2 + xy). Thus, x2 + xy = 4uv(u + v)/y.
Substituting into (6.10),

y2 + 4uv(u + v)/y = 2(u2 + uv + v2),

leaving a cubic in y:

y3 − ay + b = 0,(6.11)

where a = 2(u2 + uv + v2), b = 4uv(u + v). Consequently, the equation has one
negative root and zero, one, or two positive roots, since u > 0, v > 0. The number of
solutions of (6.11) changes from one to three precisely on the curve

27b2 = 4a3.

In terms of u, v this equation is

27u2v2(u + v)2 = 2(u2 + uv + v2)3.(6.12)

The polynomial 27u2v2(u + v)2 − 2(u2 + uv + v2)3 has three quadratic factors:

27u2v2(u + v)2 − 2(u2 + uv + v2)3

=
(
v2 + 4uv + u2

) (
v2 − 2uv − 2u2

) (
u2 − 2uv − 2 v2

)
.

The first factor is positive in the first quadrant, and the other factors have conjugate
roots stemming from

v

u
=

1

2

(√
3 − 1

)
≡ r∗,

the threshold beyond which we can no longer obtain solutions consistent with (6.1)
through (6.5).

To understand better how the various parameters relate to each other, first we
note that x = hm and y = hM are interchangeable in (6.8). Without loss of generality,
we take u = hL = 1 and rewrite (6.11) as a quadratic equation for v in terms of y = hm

(or hM ):

v2 + v +
y(y2 − 2)

2(2 − y)
= 0.(6.13)

For 0 < y <
√

2, the product of the two roots is negative, so they are real and of
opposite sign. In Figure 6, we plot v = hR on the horizontal axis to clarify that for
each choice of hR, 0 < hR < r∗, there are two values of y corresponding to hm, hM .
From this graph or from (6.13), we see that, as the precursor height hR = v → 0,

we have hm → 0 and hM →
√

2. From (6.3), we find that Gm → −∞, GM →
√

2
3 .
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Fig. 6. Plot of hR versus hm, hM from (6.13).

Correspondingly, the speed c → 1
3 , a value that appears in the proof of Theorem 4.2.

That is, if hM is restricted to lie in the interval (hL,
√

2hL) in Theorem 4.2, then
the traveling wave speed is in the interval

(
α
3 h

2
L,

α
2 h

2
L

)
. In Figure 6 we observe that

hm, hM both approach h = 1 as v = hR approaches the threshold r∗ = 1
2 (
√

3 − 1) of
Theorem 6.1.

For a film propagating onto a prewetted surface (i.e., with a small precursor
height hR), it might seem reasonable from Figure 6, relating the values of hM and
hm to hR, to approximate the height of the step to be twice that of the precursor
height. However, for larger precursors this is not a good approximation. The step
is always greater than twice the precursor height; in fact, for a given hR, as hm

approaches 2hR, GM approaches ∞ and the speed of the wave goes to ∞. Moreover,
hm → 1 as hR → r∗.

In the next section, numerical simulations illustrate the wave structures intro-
duced in the analysis of sections 5 and 6.

7. Numerical simulations II. PDE simulations of (2.3), (2.4) for the inclined
substrate illustrate a number of issues presented in the above analysis. First, we
explore a combination of linear waves and simple jumps using the analysis of section 6
to choose appropriate initial film profiles. Then we test the stability of linear waves
and simple jumps, presented in Theorems 5.4 and 5.6. Next, we explore simulations
near the critical threshold r∗. Finally, we vary hR to observe changes in the wave
structures that occur above the threshold.

PDE simulations for linear waves and simple jumps. Equations (6.1)–
(6.5) were derived to explain the numerical simulations shown in Figure 4. However,
the same equations apply to a combination of linear waves and simple jumps with
ΓL = 0 = ΓR, all traveling with speed c given by (6.1). The connection between the
two structures stems from the limit ΓL → 0 in the nonlinear traveling wave, which
does not affect the formulae in (6.1), (6.2).

In the PDE simulations of Figure 7, we choose initial data in which h is piecewise
constant and Γ is piecewise linear, consistent with (6.1)–(6.5). The intermediate
parameters hm, hM , Gm, and GM annotated in Figure 2 are calculated from (6.6),
(6.7), (6.3), and (6.4) for the most common boundary conditions in the simulations,
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Fig. 7. PDE simulations of simple traveling waves. Initial profiles are dashed, final profiles are
in bold, and plots are separated by 8 time units.
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Fig. 8. Numerical evidence that the linear wave and jump combination of (5.20) with h− = 0.2,
h+ = 1.0 is unstable as in Theorem 5.4. Initial data are dotted, and final profiles in bold are at time
t = 10.

hL = 1.0, hR = 0.1:

hM = 1.3787; hm = 0.2019; GM = 0.4210; Gm = −1.7316.(7.1)

The initial data have jumps at x = 10, x = 20; the initial location of the leading
edge of the surfactant is then determined by the data.

In Figure 7, the entire structure moves to the right with speed 0.37 predicted by
Theorem 5.4. Note that the maximum value of Γ remains constant, as expected.

Figure 8 provides numerical evidence that the waves conjectured to be unstable
in Theorem 5.4 are indeed so. In these plots notice that for the wave emerging from
hL, it appears that hx → ∞, followed by a jump in the height corresponding to a
corner in Γx. To the right of the discontinuity, there is a smooth wave preceded by a
hydrodynamic wave where there is no surfactant present.

The numerical experiments shown in Figures 9 and 10 explore the wave structure
introduced in Theorem 5.6(a). In this case, the positive surfactant gradient creates a
linear profile for Γ that travels up the incline and maintains the jump in film height,
which can have either sign. The depth-averaged velocity − 1

2hG + α
3 h

2 changes sign
across the jump, but the surface velocity s = −α

2 h+h− is negative, while the jump
speed c = α

12 (h+−h−)2 is positive. Since G = Γx is constant, the jump in h is a shock
wave solution of (2.3). In general, a jump down satisfies the Lax entropy condition
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Fig. 9. PDE simulation of linear wave in Γ moving to the left as jump in h moves to the right.
The initial condition is dotted, and the final profile at time t = 1.5 is in bold (Δx = .00025). For
the height plot, the dashed profile at t = 1.5 has a more coarse grid (Δx = .001); the consistent
location of grid points in the final profile at both mesh sizes and steepening with mesh refinement
indicate the presence of a shock.
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Fig. 10. PDE simulation of initially linear Γ with a jump up in h demonstrating the instability
of jump-up shocks.

and is stable, as in Figure 9, while a jump up is unstable, as shown in Figure 10.
In the latter case, it is tempting to think of the spreading solution as a rarefaction,
with Γx constant, but, in fact, the rarefaction solution fails to satisfy the surfactant
equation (2.4).

PDE simulations varying hR. Figure 11 contains the results of numerical
simulation of the PDE with hL = 1 and with hR just above and just below the
threshold of the theorem. For hR = 0.365, below the threshold, the step in h is
clearly emerging, but for hR = 0.367, above the threshold, the step fails to emerge.
To quantify this observation, in Figure 12 we plot the difference in height Δh between
the local maximum near the leading shock and the local minimum immediately behind.
Plotted as a function of time in the figure, we observe that Δh approaches zero for
hR = 0.365, whereas Δh appears to be converging to a positive value for hR = 0.367.

Numerical PDE simulations with hL = 1, ΓL = 1, and α = 1 and varying values of

hR below the critical threshold hR =
√

3−1
2 of Theorem 6.1 reproduce the same pattern

of waves shown in Figure 4. In Figure 13 we show the results of PDE simulations
for selected values of hR above the critical threshold. These wave structures have not
been observed previously, since hR is generally taken to be the thickness of a precursor
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Fig. 11. Solutions near the transition between solution types. hL = 1, hR = 0.365 (left);
hL = 1, hR = 0.367 (right). Plots are separated by 100 time units.
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Fig. 12. Comparison of step heights for the plots in Figure 11. As the step forms for the solution
below the critical threshold (hR < r∗), the difference Δh in maximum and minimum heights within
the step goes to zero. Above the threshold (hR > r∗) the height difference decreases much more
slowly, evidence that no step emerges.

layer, and therefore much smaller than hL. In all of the height plots, a distinctive jog
in the height develops, which on the incline resembles a Z-shaped wave. We call this
new wave a Z-wave, in which a shock is between two smooth waves. By comparison,
an N -wave of hyperbolic conservation laws consists of a rarefaction bounded by two
shocks. The middle height to the right of the Z is the same as hL, instead of the step
height hm observed below the threshold.

In Figure 13(a), we observe a leading shock (i.e., a jump in h) ahead of the leading
edge of surfactant. The shock is a solution of the conservation law

ht +
1

3
(h3)x = 0,(7.2)

i.e., (2.3) with α = 1 and Γ = 0. Similarly, in Figure 13(b), the fluid surface is initially
flat. The surface tension gradient and gravity force a volume of fluid out ahead of
the surfactant, forming a rarefaction wave interacting with a shock, both solutions of
(7.2) and decaying in time. For larger values of hR, as in Figure 13(c), there is also
a leading shock being eroded by the rarefaction wave behind it, once again ahead of
the surfactant.
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Fig. 13. Variation in wave structure for fixed upstream height hL = 1 and various downstream
heights hR. Each plot has graphs for t = 0 (dotted line), t = 15 (dashed line), t = 45 (thin line),
and t = 75 (bold line).

The structure of the surfactant profiles is remarkably unchanged over the entire
range of hR. However, Γ appears to reach Γ = 0 smoothly without the corner observed
in simulations with hR below the critical value.

8. Discussion. The mixed hyperbolic-parabolic system of this paper is derived
from the lubrication approximation for the influence of surfactant on flow of a thin
liquid film on an inclined plane, neglecting smoothing terms of capillarity and surface
diffusion. The analysis of traveling waves and jump conditions leads to the identifi-
cation of a variety of individual waves.

There are traveling waves in which h and Γ are smooth and nonlinear (Theo-
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rem 4.2), and there are three cases in which h is piecewise constant and Γ is piecewise
linear:

Neither h nor Γx jumps (Theorem 4.1). h is constant and Γ is linear.

Only h jumps (Theorem 5.6(a)). In numerical simulations, we find that jumps
down are stable and jumps up are unstable. The stable waves are counterpropagating
in that the thin film and surfactant flow up the inclined plane but the jump propagates
downwards.

Both h and Γx jump (Theorems 5.4 and 5.6). Jumps at Γ = 0, the leading edge
of the surfactant, are related to the step in film height discovered by Borgas and
Grotberg [3] for horizontal substrates.

We have constructed an exact solution of the PDE with three jumps that is
piecewise constant in h and piecewise linear in Γ and propagates with constant speed.
However, this construction is possible only for the ratio of downstream to upstream
height below a critical value r∗. This ratio also limits the construction of wave combi-
nations that mimic numerical simulations of initial value problems in which surfactant
is supplied from upstream. The supply of surfactant from the boundary has the effect
of allowing the maximum surfactant concentration to grow without bound, as shown
in Figure 4. This effect is not explained by the analysis, but Taylor series expansions
can be used to capture the increase locally in space and time [14].

Above the critical ratio, solutions approach a different structure that we plan to
analyze in a future paper. These solutions have a distinctive Z-wave pattern, together
with precursor waves propagating into the undisturbed film with no surfactant. As
the Z-wave pattern forms, the film height has large dips, which might lead to dewet-
ting. This is a concern in surfactant replacement therapy [13], in which a coating of
surfactant is required for healthy lung function. This risk of dewetting does not occur
for boundary height ratios below the critical ratio.

While we have discussed stability of waves numerically and to some extent ana-
lytically, much remains to be done. It would be interesting to analyze stability of the
individual waves for C > 0 and D > 0. In a future paper, we plan to analyze the
constant volume case in which a thin liquid drop on an inclined substrate is spread
by the influence of surfactant and gravity.
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INTERACTION OF ADVANCING FRONTS AND MENISCUS
PROFILES FORMED BY SURFACE-TENSION-GRADIENT-DRIVEN

LIQUID FILMS∗

P. L. EVANS† AND ANDREAS MÜNCH‡

Abstract. On a tilted heated substrate, surface tension gradients can draw liquid up out of
a reservoir. The resulting film thickness profile is controlled by two parameters, which depend on
the tilt of the substrate, the imposed temperature gradient, and the thickness of a postulated thin
precursor layer. The evolution of this film in time is studied using a lubrication model. A number
of distinct behaviors are possible as the substrate tilt angle and other parameters are varied. Recent
results for the multiple stationary profiles possible near the meniscus are used, and the interaction of
these profiles with the advancing front is examined. We demonstrate how to systematically determine
the evolution of the entire film profile from the meniscus to the apparent contact line. This allows
a categorization of the range of behaviors for a transversely uniform profile in a two-dimensional
parameter space. In addition to capillary fronts and double shock structures, new combinations that
arise for certain ranges of large substrate tilt and precursor thickness are described. These include
profiles involving rarefaction fans, connecting to either an undercompressive or a classical wave at
the advancing front.

Key words. lubrication theory, Marangoni shear stress, capillarity, traveling waves

AMS subject classifications. 76D08, 35Q35, 76A20, 76D45, 35G25, 34E05
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1. Introduction. In this paper we consider the time-dependent behavior of a
thin liquid film on a tilted heated substrate. Such a film is produced when a temper-
ature difference is imposed along a substrate with one end immersed into a reservoir
containing a liquid such as silicone oil, giving rise to a surface tension gradient. The
resulting surface shear stress drags liquid up from the reservoir, while gravitational
forces act to return liquid to the reservoir. This may give rise to a film of liquid which
climbs up the substrate. The evolution of the film above the reservoir has received
considerable attention in recent years [11, 12, 16]. An understanding of thin-film flows
driven by surface tension gradients is of importance, for instance, in “Marangoni dry-
ing” [9] and controlling flows in microfluidic applications [6].

Experiments (e.g., by Schneemilch and Cazabat [14, 15]) reveal that the film tends
to advance with a steep front at a contact line, where the liquid-air interface meets
the substrate. Previous studies have considered the film behavior in the vicinity of
the meniscus and at the advancing front independently of each other. The advancing
front can be a simple compressive one or an undercompressive shock as part of a
double wave structure [2, 11]. Furthermore, it is known that at the meniscus, multiple
film profiles are possible. For a fixed combination of substrate inclination and shear
stress, the meniscus can settle into either of basically two different profiles [13]. In
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Fig. 1.1. The thin film on a heated tilted substrate rises from a meniscus. Two heaters hold the
temperature at the ends of the substrate at temperatures T+ > T−. The resulting Marangoni shear
stress drives a thin liquid film of thickness h(x, t) up the substrate. At the front, the film advances
over a thin precursor layer of thickness b (not shown).

this paper we determine which meniscus profiles are linked with which traveling wave
profiles, and how this link occurs, i.e., which are selected. In the sense that this is
a composite description, this work is in the spirit of earlier work by Hocking [7] on
the connection between a moving contact line and the meniscus during withdrawal
of a moving substrate, which is closely related to the present work. The picture that
emerges here for the Marangoni-driven film is, however, more complicated, since we
have to include the additional possibility arising from structures involving nonclassical
waves in our investigation.

As in our earlier work [13], we consider the arrangement shown in Figure 1.1.
The substrate is held at an angle α measured from the vertical, and it is heated so
as to impose a uniform temperature gradient (dT/dx) = γ < 0 along the substrate.
The film surface tension is σ at some reference temperature, and σT = (dσ/dT ) < 0
is the sensitivity of the surface tension to temperature changes. The shear stress is
then τ = γσT . The film density is ρ, and g is the acceleration due to gravity. We
begin section 2 with a statement of the equations governing the film evolution. We
then review the evolution of the film at the meniscus and advancing front, considered
individually. The former area has been the subject of extensive investigations by us
[11, 13] and others, and the latter by Münch, Bertozzi, and others [2, 10].

The dimensionless parameter D was introduced by Bertozzi, Münch, and Shearer
[2]. It is a measure of both the substrate angle α and the strength of the surface shear
stress driving the flow. Thus

D =

(
3δ

cos2 α

)2/3

sinα, where δ =
τ

2
√
σρg

.(1.1)

Bertozzi, Münch, and Shearer [2] define their substrate angle as the complement of
α, but their definition of D is equivalent to (1.1). For large inclinations from the
vertical (and fixed shear stress) the parameter D is relatively large, and in this case
the normal component of gravity is important. A distinct separation between the
meniscus and a structure at the advancing front occurs in most circumstances. We
build on earlier work, including our preliminary investigation [13], by systematically
considering the possible interactions between these structures, and we describe what
structures can arise, and the connections between them, in section 3. The combined
picture we present is confirmed by dynamical simulations. We also extend previous
work by considering the large D limit in section 4. In this case we find that the film
can no longer be thought of as separate meniscus and front structures; instead the
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film smoothly varies from one to the other without a flat region. The result of our
investigations in sections 3 and 4 is a coherent picture of the film behavior as D and
the thickness of a presumed precursor layer are varied, which we present in section 5.
Finally section 6 summarizes our work.

2. Preliminaries.

2.1. Formulation. We denote the time-dependent film thickness profile by h(x, t),
where x measures distance up the substrate and t is time. Using ideas from singular
perturbation theory, an evolution equation governing h(x, t) may be obtained [11].
This governing equation is

ht + Ωx(h2)x − (h3)x = −(h3κx)x + D(h3hx)x,(2.1)

where κ = hxx(1 + ε2hx)−3/2 is the nonlinear expression for the curvature of the free
surface. Here ε = H/L (where H and L are given below) is a small parameter, and so
ε � 1. In (2.1), Ω is a dimensionless temperature profile for which Ωx = 1 except near
the heaters, where Ω becomes constant, cutting off surface tension gradients there.
Equation (2.1) is obtained by scaling h, x, and t by

H =
3τ

2ρg cosα
, L =

(
3στ

2ρ2g2 cos2 α

)1/3

, T0 = 2μ

(
4σρg cosα

9τ5

)1/3

,

respectively. The terms in h2 and h3 on the left-hand side of (2.1) account for the
competing effects of the imposed shear stress and drainage due to the component
of gravity parallel to the substrate. The first term on the right-hand side is due to
surface tension, which is supposed to not differ appreciably from its reference value,
except inasmuch as it provides the driving shear stress. The second arises from the
leveling effect of the component of gravity normal to the substrate. It is useful to
define the flux function, f(h) = h2 − h3, which represents the flux of liquid up the
substrate in the absence of the second- and fourth-order smoothing terms in (2.1).

As explained in our earlier work [13], when ε = H/L = (9δ2/ cosα)1/3 � 1, it is
appropriate to replace κ by the approximate expression hxx in the thin film region
away from the reservoir. In addition, when ε � D it follows that ε|hx| � 1 in the
vicinity of the reservoir, and approximating κ by hxx is also appropriate there. We set
Ωx ≡ 1, requiring that as α is increased the position of the heater is moved further into
the reservoir, i.e., towards large negative x values. In this way a uniform temperature
gradient, and hence uniform shear stress, is imposed. Equation (2.1) then reduces to

ht + (h2 − h3)x = −(h3hxxx)x + D(h3hx)x.(2.2)

An appropriate boundary condition at the meniscus is that the film profile flattens
out to meet the undisturbed reservoir, so ∂h∗/∂x∗ ∼ − cotα in dimensional units.
After rescaling, this yields

h ∼ −x/D as x → −∞.(2.3)

To avoid the singularity associated with a moving contact line, we adopt a precursor
model so

h → b as x → ∞(2.4)
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and define the apparent contact line to be the point where the film thickness first
becomes approximately b.

We are concerned with the behavior of solutions of (2.2) subject to (2.3) and (2.4).
Solutions of (2.2)–(2.4) are potentially influenced by just two parameters, D defined
by (1.1) above and the precursor layer thickness, b. A particular combination of these
parameters determines the structure of the climbing film, including the meniscus. In
the following sections, we enumerate and describe the possible film structures.

Solutions of (2.2) typically have two distinct parts, a meniscus and a wave struc-
ture consisting of one or two advancing waves. Near the reservoir the meniscus part
settles into an equilibrium solution with thickness approaching some value hm. Im-
mediately behind the moving apparent contact line, where the film abruptly decreases
to the precursor, is a traveling wave, which we refer to as the “advancing front.” Be-
hind it may be additional waves that, together with the advancing front, make up the
moving wave structure.

A good guide to the possible behavior of the complete film comes from considering
what happens in the two parts independently. In the remainder of this section, we
first describe the waves near the contact line. Here the resulting wave structure is
determined by a left thickness hw, together with D and b. We then (in section 2.3)
summarize what limiting meniscus thicknesses hm are possible for a given D. We
assume that the precursor thickness b is the smallest thickness scale that appears in
the film profile, and so we consider only cases where hw > b.

2.2. Advancing front behavior. The wave dynamics that arise at and behind
the rising contact line have been investigated in detail in recent years [1, 2, 10] by
considering solutions of (2.2) with initial data that connect flat left and right states
where the film profile thicknesses are hw and b, respectively. To capture the large
scale structure of the emerging waves, we rescale x = x∗/λ and t = t∗/λ in (2.2) and
let λ → 0. We find that (2.2) is a nonlinear perturbation of the scalar conservation
law (dropping the asterisks),

ht + [f(h)]x = 0, f(h) ≡ h2 − h3.(2.5)

We first discuss the situation when (2.5) is considered as the limit of the problem
with exclusively nonlinear second-order diffusion, i.e., of the equation

ht + [f(h)]x = (h3hx)x.(2.6)

One quickly finds that traveling wave solutions of (2.6) with left and right far-field
conditions hw > b and b, respectively, exist precisely if hw ≤ hint ≡ (1 − b)/2. In the
limit of vanishing second-order diffusion, these traveling waves correspond to shock
solutions of (2.5), i.e., jump discontinuities

h(x, t) =

{
hw if x < st,
b if x > st,

(2.7)

that move according to the Rankine–Hugoniot condition,

s = s(hw, b) = (f(hw) − f(b))/(hw − b).(2.8)

If, however, hw > hint, a double wave structure forms, which corresponds to a
rarefaction-shock solution of (2.5),

h(x, t) =

⎧⎨
⎩

hw if x ≤ f ′(hw)t,
f ′−1(x/t) if f ′(hw)t ≤ x ≤ f ′(hint)t,
b if x ≥ st,

(2.9)
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where the speed s = s(hint, b) of the shock between the intermediate height hint and
b also satisfies s = f ′(hint).

This solution structure is consistent with the classical theory of conservation laws,
which admits only Lax (also called compressive) shocks in solutions of (2.5), i.e.,
shocks that satisfy the Lax entropy condition

f ′(b) < s < f ′(hw),(2.10)

which stipulates that characteristics from both states must cross the shock trajectory,
or at most the limits of Lax shocks, sometimes called generalized Lax shocks, where
one of the inequalities is replaced by an equality. The shock in (2.9) is an example of
a generalized Lax shock.

Returning to the situation where (2.5) is considered to be the limit problem of
(2.2), we find that new combinations of waves that include nonclassical undercom-
pressive shocks which violate (2.10) arise for D = 0, i.e., pure fourth-order diffusion,
and for a range of D > 0. These waves have been studied in detail for D = 0 by
Bertozzi, Münch, and Shearer [2] and for general D by Münch [10]. This investigation
was carried out via numerical simulations of (2.2) and by systematic determination
of the traveling wave solutions h(x, t) = h(ξ), ξ = x − st with far-field states h− as
ξ → −∞ and b as ξ → ∞. Inserting this ansatz into (2.2), we obtain, after integrating
once and using the far-field condition, the third-order ODE

h′′′ = −Dh′ + f(h) − f(b) − s(h− b), ′ ≡ d/dξ,(2.11)

with the wave speed s = s(h−, b) given by (2.8). This ODE was systematically
investigated via phase space methods [2, 3, 10]. Traveling wave profiles appear as
heteroclinic connections between the equilibria of (2.11), formed by the intersections
of invariant manifolds. These can be computed numerically by following individual
trajectories on the manifolds, and the intersections of invariant manifolds can be
tracked (as b is varied) in Poincaré sections.

We now summarize the results of these studies on the solution of (2.2) connecting
hw and b. For D = 0 and a fixed value for b < 1/3, four different situations arise as
hw > b is increased. For b < hw < hii(b), with a b-dependent upper bound, a com-
pressive wave arises. In contrast to the case of second-order diffusion, which smooths
the shock to a monotonic profile, the fourth-order diffusion induces a capillary ridge
(see Figure 2.1, lower left corner). Furthermore, in a thin region hi(b) < hw < hii(b),
multiple traveling wave solutions of (2.2) exist that correspond to the same compres-
sive shock. These waves differ by the width of their capillary ridge. Furthermore, for
1 − huc − b < hw < hii(b), double shocks composed of a Lax and an undercompres-
sive shock are also possible; huc and undercompressive shocks are explained below.
However, for hw < hii(b), monotonic initial data for (2.2) typically gives rise to the
compressive wave with the smallest capillary ridge. For hii(b) < hw < huc(b) a double
shock results,

h(x, t) =

⎧⎨
⎩

hw if x ≤ s(hw, huc)t,
huc if s(hw, huc)t ≤ x ≤ s(huc, b)t,
b if x ≥ s(huc, b)t,

(2.12)

where the trailing shock that connects the states hw and huc is a Lax shock, and the
leading shock from huc to b is undercompressive; i.e., it violates the Lax entropy con-
dition (2.10) in that characteristics only enter from the right. The undercompressive
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Fig. 2.1. The front wedge diagram for b = 0.005 showing the four possible types of advancing
front behavior, depending on D and the left state value hw. Surrounding subfigures show quali-
tatively the behavior observed in each of regions 1 to 4: region 1—compressive front; 2—double
shock structure (compressive and undercompressive waves); 3—rarefaction fan and undercompres-
sive front; 4—rarefaction fan and generalized Lax shock. These regions are described further in the
text. Labels indicate the type of front: L—Lax shock; uc—undercompressive shock; gL—generalized
Lax shock.

wave arises as a codimension one intersection of invariant manifolds for (2.11) and for
a given b (and D) appears only for a specific value of the left state, huc. (In contrast,
compressive waves arise as codimension zero intersections.) In practice, a shooting
method allows easy computation of huc(D, b) and hence the shape of the wedge. The
trailing wave moves at a slower speed, so that the width of the plateau separating the
two waves grows in time. The profile of a numerical solution of (2.2) corresponding
to such a double shock is shown in the upper left corner of Figure 2.1. The emergence
of nonclassical undercompressive shocks as one passes a certain threshold for hw has
been interpreted as “nucleation” [8].

For hw > huc, we get a rarefaction-undercompressive shock wave combination,

h(x, t) =

⎧⎪⎪⎨
⎪⎪⎩

hw if x ≤ f ′(hw)t,
f ′−1(x/t) if f ′(hw)t ≤ x ≤ f ′(huc)t,
huc if f ′(huc)t ≤ x ≤ s(huc, b)t,
b if x ≥ s(huc, b)t.

(2.13)

Note that since the shock is undercompressive, i.e., f ′(huc) < s(huc, b), it separates
from the leading edge of the trailing rarefaction wave. The upper right corner of
Figure 2.1 shows the corresponding solution of the full PDE (2.2).

The results for general values of D as described by Münch [10] may be summarized
in a two-dimensional diagram that displays, for each D, the values of left states hw

where the different types of wave or waves connecting this state to the precursor right
state b exist. In the (D,hw) plane, the boundaries between these different ranges
essentially form a wedge-like shape, shown in Figure 2.1 for the precursor thickness
b = 0.005. This shape is defined by the graphs of huc(D, b) (at the upper edge) and
h1(D, b) = 1 − huc − b (lower edge). We refer to this shape as the “front wedge.”

Because huc depends on b, the shape and position of the front wedge on a (D,hw)
diagram also depends on b. The apex of the wedge (shown as F in Figure 2.1) is located
at (DF , (1 − b)/2)), where DF is itself a monotonically decreasing function of b. The
significance of this will become apparent in section 3. The two sides of the wedge,
together with the extension of the wedge’s apex {(D,h) : D > DF , h = (1 − b)/2}
and the line {(D,h) : D = DF , h > (1 − b)/2} divide the plane into four regions,
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labeled 1–4 in the figure. Which wave structure results from a particular (D,hw) pair
is indicated by the region in which the pair belongs, as follows:

1. For relatively small values of hw, corresponding to region 1, a simple com-
pressive wave arises. This wave has a capillary ridge that diminishes as D
increases.

2. Within the wedge (region 2), one obtains the compressive-undercompressive
double shock structure described above.

3. For large values of hw, one obtains double wave structures involving a rarefac-
tion fan; these are either a rarefaction-undercompressive wave when D < DF

and hw > huc (region 3), or
4. a rarefaction-shock wave (with a leading generalized Lax shock), for larger D

(region 4).

The sketches for regions 3 and 4 in Figure 2.1 differ in the profile behind the lead-
ing undercompressive wave. In the former, the rarefaction wave separates from the
leading shock, giving rise to a convex portion behind the front, while the latter pro-
file is concave right up to the shock. In region 3, the rarefaction wave separates
from the leading shock, but not in region 4. To the right of the apex (D > DF )
there are no structures involving undercompressive waves: above (1 − b)/2 there is a
rarefaction-shock wave combination, while below this line a simple compressive wave
occurs. Existence of undercompressive shock solutions for D less than some finite
upper bound, and nonexistence for sufficiently large D, was proved by Bertozzi and
Shearer [3].

We have limited the above discussion to values of hw > b. In this study, the initial
film profiles used have thickness h ≥ b everywhere, and so the thickness at later times
is never much smaller than b.

In addition, we have simplified matters by neglecting the presence of a thin region
of thicknesses hw located around the lower side of the wedge. This exists for a range
of D close to zero, where multiple wave structures that connect hw to b are possible,
either one of a number of compressive waves or the double shock structure. This range
ends towards the right at a value D (say D1) below two [10]. Which wave structure is
selected in a numerical simulation depends on the initial profile; for monotonic initial
data connecting hw and b, a single compressive wave with the smallest capillary ridge
typically arises [1, 2]. Hence for such initial data and D < D1, the range of hw for
which we get a single compressive front is slightly increased above the lower edge of
the wedge.

2.3. Meniscus structures. At the meniscus, the profile should become sta-
tionary after the contact line has moved away, up the inclined substrate. Hence, of
primary interest here are the stationary solutions of (2.2) with far-field condition (2.3)
as x → −∞ and a flat right state h → hm for x → ∞. Letting ht = 0 and integrating
once yields the ODE

hxxx = Dhx − (f(h) − f(hm))/h3.(2.14)

Note that the constant of integration Q = f(hm) represents the total flux through the
flat film. In earlier work [13] we investigated this boundary value problem by numer-
ically exploring the relevant invariant manifolds in the three-dimensional phase space
associated with (2.14). Solutions satisfying the far-field conditions as x → −∞ form
a two-dimensional invariant manifold, while those that tend to a constant film thick-
ness hm as x → ∞ form either a one- or a two-dimensional (stable) invariant manifold
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Fig. 2.2. The first two stable and first two unstable Type II steady meniscus profiles, for
D = 0.322. The profiles labeled a and c are stable, while b and d are unstable. Here hm =
hT (0.322) = 0.8744, so there are an infinite number of these profiles. Also shown is the Type I
meniscus profile for this value of D; it has hm = hB(0.322) = 0.4002.

when either hm < 2/3 or hm > 2/3, respectively. Hence the stationary meniscus pro-
files correspond to either codimension one or codimension zero intersections of the
invariant manifolds, respectively, and we call these Type I meniscus solutions in the
former, and Type II meniscus solutions in the latter, case. While Type I solutions
monotonically decrease in thickness as they approach hB , Type II solutions typically
have a characteristic depression or dimple in the meniscus region, particularly for suffi-
ciently small values of D, followed by damped oscillations as x → ∞ (Figure 2.2). The
dimple and the oscillations can be suppressed by the normal component of gravity,
i.e., for larger values of D.

The Type I solutions are structurally unstable and, for given D, exist only for
discrete values of hm. In fact, for a range of values D < DM = 0.8008, numerical
exploration of the phase space [13] shows that a unique Type I solution exists for a
single thickness hm = hB(D), while there are none at all for D > DM . In the range
D > DM , Type II meniscus profiles exist for all hm > 2/3, while for D < DM , the
situation is more complicated. We define hT (D) to be the larger positive root h of the
cubic equation f(h) = f(hB), so that hT > 2/3. Then Type II solutions can always
be found for hm ≥ hT (D). In addition, for D < DB = 0.7142, Type II solutions exist
for a range of thicknesses hm slightly below hT (D), down to a value h∗(D). Moreover,
when hm is near hT (D), in the range h∗(D) < hm < h∗∗(D), with a D-dependent
value h∗∗(D) > hT (D), multiple Type II solutions appear with the same thickness hm;
their profiles differ by the depth and width of the dimple, as shown in Figure 2.2. The
profiles of four of the multiple Type II menisci are shown in Figure 2.2 for D = 0.322
and hm = hT (0.322) ≈ 0.8744. (The corresponding Type I profile for this value of
D is also shown.) The question of which, if any, of the Type II menisci are stable
to in-plane disturbances then arises. Numerical simulations of the time-dependent
PDE (2.2) revealed that these meniscus solutions are alternately stable and unstable.
These simulations were initialized using the Type II profiles computed by a shooting
method [13]. The unstable solutions to the ODE do not occur as solutions of the PDE
at long times; instead, initial conditions which are close to these evolve toward the
stable solutions. In Figure 2.2 the stable and unstable solutions are shown as solid
and dashed lines, respectively.

Figure 2.3 summarizes the solution structure, showing the thicknesses hB(D) and
hT (D) controlling Type I and Type II solutions in the (D,h) plane. These values
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Fig. 2.3. The meniscus wedge diagram. Lines show the allowable values for the right state
of the meniscus, hm. For D < DM , the meniscus may approach a thickness hm, where either
hm = hB(D) is given by the lower branch (a Type I solution) or hm lies above the upper branch,
i.e., hm > hT (D) (a Type II solution). The dark shaded line indicates where multiple Type II
menisci are possible for a range of values hm above and below hT (D). For D > DM , Type I
solutions are not possible, but Type II solutions exist for all hm above 2/3. The light shaded region
shows where one or more Type II menisci are available.

merge with h = hT = hB = 2/3 when D approaches DM , at the point labeled M
in the figure. We call the structure formed by the graphs of hT (D) and hB(D) the
“meniscus wedge.” Note that it does not depend on b. One or more Type II solutions
exist at points in the light shaded region. The range of thicknesses with multiple
Type II solutions is not precisely shown in Figure 2.3, but is indicated there by the
dark shaded line along hT (D), ending in a solid dot in the figure at D = DB .

3. Interaction of meniscus and front dynamics. The information summa-
rized in section 2.2 and encapsulated in the front wedge diagram gives a fairly complete
picture of which wave, or combination of waves, arises near the contact line if, for given
b and D, the leftmost value of the film thickness is set at some specific value, hw. The
question of how this value is selected then arises; it is evident that the meniscus plays
an important role here. If at long times, when the contact line has traveled far from
the reservoir, the meniscus profile approaches a steady state, then the value of hw

must be equal to an hm for which either a Type I or Type II solution exists. This
information is found in the “meniscus wedge” diagram in section 2.3. An overview of
the possible combinations of the different types of meniscus and wave structures can
be obtained by superimposing the two wedge diagrams. In many cases, this suggests
more than one possible outcome for a given D and b. For example, if D < DM ,
wave structures can be found to connect either to a Type I meniscus or to a whole
range of Type II menisci. However, the only situations which can arise dynamically
are those for which the wave part next to the meniscus has a nonnegative speed. (If
its speed were negative, such a wave part could never emerge from the meniscus.)
Rarefaction waves, or parts of rarefaction waves, move with a wave speed given by
characteristics, namely f ′(h), where the film thickness is h. For shock profiles, with
left and right states h− and h+ the wave speed s is given by the Rankine–Hugoniot
condition, s = (f(h+) − f(h−))/(h+ − h−).

In this section we use such considerations to determine which meniscus and film
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profile eventually evolves from monotonic initial data representing a thin precursor
layer on a substrate which is partially immersed into the reservoir. The approach
outlined above nearly always allows us to single out one possible scenario. The ex-
ceptions will be pointed out further below. We then verify our predictions using
time-dependent simulations of (2.2). To obtain numerical solutions we use finite dif-
ference schemes on a finite spatial domain, [0, L]. At the left-hand boundary, we
specify h = H0 to be a large constant (typically 20–50) and impose hxxx = 0. At
the right-hand boundary, hx = hxxx = 0. Solutions are advanced in time using an
implicit Euler scheme. The time step is controlled using a step-doubling approach.

Simulations began from an initial profile h(x, 0) = h0(x). The form used for h0

was generally

h0(x) =

{
D−3/2

(
exp(D1/2x) −D1/2x− 1

)
+ b for x ≤ 0,

b for x > 0.
(3.1)

This represents the static meniscus which arises through the balance of mean surface
tension and gravity for x < 0, and joins smoothly to the precursor layer at x = 0.
Other initial profiles, including the function

h0(x) =
log(2 cosh(ay)) − ay

2a
+ b,(3.2)

where y = x/D − 20 and a = 0.4, were also used. This has slope −1 for x → −∞,
and has h0 → b as x → ∞. We also used

h0(x) = max (−x/D, b) .

The particular choice did not alter the qualitative behavior of the film.
As explained in section 2.2, the apex of the front wedge at D = DF moves towards

smaller values of D as b is increased. Following Bertozzi, Münch, and Shearer [2], b is
restricted to be less than 1/3. Depending on b, the front wedge and meniscus wedge
can therefore overlap in four characteristic arrangements, leading to four different
cases. In increasing order of b, these are as follows:

A. The most important case is for small b, i.e., a very thin precursor layer. In this
case DF is large, and h = (1− b)/2 is close to its maximum value of 1/2. The
upper part of the front wedge huc(D) makes intersections with both hT (D)
and h = 2/3. This is the arrangement which results when b = 0.005; it is
shown in Figure 3.1(a). Here a line marked with circles indicates the left state
of the advancing front hf , while the right state of the meniscus hm = hw is
shown by crosses, for each value of D. It continues until huc(DM , b) = 2/3;
this happens for b = 0.0202 (to four decimal places).

B. For larger b, the line huc(D) makes only one intersection with the meniscus
wedge, and this is now along the lower branch hB(D). Figure 3.1(b) shows
the situation for b = 0.05. At b = 0.1484, the apex of the meniscus wedge
and that of the front wedge are at the same value of D, i.e., DF = DM .

C. In the third case (for 0.1484 < b < 0.2338 to four decimal places), DF < DM ,
but hB(DF ) > (1 − b)/2, so the graph of huc(D) still intersects hB(D). The
significance of this is explained below. Figure 3.1(c) shows this case when
b = 0.16.

D. For the largest b (b > 0.2338 to four decimal places) DF is small enough that
the merger at D = DF happens with h = (1− b)/2 > hB(D), i.e., above and
to the left of the line hB(D) (see Figure 3.1(d) for b = 0.25).
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Fig. 3.1. The (D,h) diagrams, showing the front wedge (solid lines) and meniscus wedge
(dashed lines). A line marked with circles indicates the left state, hf , of the advancing front. A line
with crosses indicates the right state of the meniscus, hm. When these lines coincide, there is a flat
film region directly connecting the meniscus to the advancing front. (a) Case A, when b = 0.005;
(b) Case B for b = 0.05. In (b), a new profile featuring a Type I meniscus connected to a rarefaction
fan becomes possible for D between DII and DM . (c) Case C, b = 0.16; (d) Case D, b = 0.25. In
Case C, DF < DM , requiring a connection between hB and (1 − b)/2 for DF < D < DM . In
Case D, DF is so small that the front wedge does not intersect hB at all.

3.1. Case A: Thin precursor layer. We first define DI(b) to be the solutions
of

hB(D) = h1(D, b) = 1 − b− huc(D, b);

thus, for a given value of b, (DI, hB(DI)) is the point in the (D,h) diagram where the
lower sides of the two wedges intersect. We also define DII(b) and DIII(b), denoting
the solutions of

hT (D) = huc(D, b) and huc(D, b) =
2

3
,

respectively. These define the intersection of the upper side of the front wedge with
the upper side of the meniscus wedge or the line h = 2/3, respectively, and are
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Fig. 3.2. Numerical solutions of (2.2) when (a) D = 0.1021 and (b) D = 0.322. Film profiles
are shown at dimensionless times given in the legends. In (a) there is a single compressive wave,
while in (b) an undercompressive-Lax double shock develops and travels up the substrate. There is
a thin precursor film of thickness b = 0.005 in both cases.

shown as points II and III on Figure 3.1(a). When b = 0.005, the numerical value for
DI = 0.1461. The other special values of D given in this section are also for b = 0.005.

We begin with the smallest D (but sufficiently large that hB > b) and argue that
the meniscus must be of Type I there. First, consider values of D < DI. Suppose that
the meniscus is of Type II, with a right state thickness hm ≥ hT . In this range of D,
hT in turn is larger than huc. A connection from hm to the precursor would involve a
rarefaction fan followed by an undercompressive wave joining to b. However, the left
part of the rarefaction fan would have negative speed, and therefore would fall back
into the meniscus. Hence such a solution cannot persist.

On the other hand, if the meniscus is of Type I, then hm = hB < h1, and a simple
compressive connection to the precursor is possible. This is connected by a flat film
to a steadily advancing front. The left state of the advancing front and the right
state of the meniscus are identical in this case, since the two are directly connected.
Our dynamical simulations for D = 0.1021 < DI and b = 0.005 (Example 1 in [13],
also shown in Figure 3.2(a)) confirm that this combination of Type I meniscus and
a simple compressive wave occurs. The flat region thickness in this case is controlled
by the meniscus.

When D is increased above DI, the graph of hB(D) enters the undercompressive
region of the front wedge. In place of a simple compressive connection, a Type I
meniscus must now connect to a double shock structure. A Type II meniscus is still
not possible, for the same reason as in the previous case, namely that hT > huc while
D < DII. Now the left state of the advancing front is the undercompressive wave
height huc. The flat region ahead of the meniscus, with thickness hB , is connected
to huc by the trailing compressive part of the double wave structure. This trailing
shock moves upwards, but somewhat slower than the advancing front. In the (D,h)
diagram, Figure 3.1(a), the line marked by circles jumps to huc at D = DI, separating
from the line portion emphasized by crosses.

In section 2.2 it was noted that when D is small, compressive waves exist for
hw < hii, where hii is slightly larger than h1. For h1 < hw < hii, the meniscus can be
connected to either a double shock structure or to one of several compressive waves.
These all have positive wave speeds, and which one is selected depends on the initial
data. Due to the experience with monotonic (jump) initial data, we expect that the
simplest compressive wave is selected if hB < hii. The net effect of this is that, for
the initial profiles considered in this paper, the transition from a compressive front to
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Fig. 3.3. Evolution of (2.2) for D = 0.6424 at dimensionless times given in the legends.
Only the undercompressive shock propagates away from the meniscus, which evolves into a Type II
meniscus. Again the precursor layer thickness is b = 0.005.

a double shock is delayed and occurs for a value D′
I slightly larger than DI . Indeed,

for b = 0.005 we find that this transition occurs for D between 0.16 and 0.18, instead
of precisely at DI = 0.1461.

This behavior continues until D = DII, the value of D at which huc = hT and the
upper sides of the two wedges cross. For b = 0.005, DII equals 0.535. A double shock
structure moving up the substrate is shown for D = 0.322 in Example 2 of [13], and
also in Figure 3.2(b) just as we described it here.

For DII < D < DIII, huc is larger than hT , and so it is in the region where Type II
meniscus solutions are possible. Hence a direct undercompressive shock connection
from a Type II meniscus to the precursor is possible. (The existence of multiple
Type II solutions for h near hT means that a Type II solution is available for matching
to huc via a direct connection at values of D slightly below DII.) These continue until
D = DIII; for b = 0.005, DIII = 2.025. For D < DIII, huc is larger than 2/3. Thus
we can rule out connections involving intermediate waves as follows. Only shocks can
connect to huc from below (since characteristics for the left and right state would
cross, ruling out a rarefaction fan), and these would have a negative speed. Similarly,
any wave connection from above must be a rarefaction fan, all parts of which would
also have a negative speed.

As a result, the only structure possible is a Type II meniscus connecting directly to
a flat state with thickness huc. This flat state is the left state of an undercompressive
shock connection to the precursor. The right state of the meniscus and the left state
of the advancing front are again identical, and in Figure 3.1(a) the lines marked by
crosses and circles coincide. It is notable that in this range of D the thickness of
the flat region, huc, is determined by the precursor thickness, not by the meniscus.
We therefore refer to these structures as “front controlled.” This situation in this
range is exactly what is observed for Example 3 from [13] and in Figure 3.3, where
D = 0.6424.

Once again, this description has to be slightly amended. The reason is that, for
D < DB = 0.7142, Type II menisci exist even for hm below hT (down to the value h∗
introduced in section 2.3). Hence, in principle, they can arise and connect directly to
an advancing front for values slightly smaller than DII, as an alternative to a double
shock structure rising from a Type I meniscus. Furthermore, in the range from h∗ to
h∗∗ > hT , mentioned in section 2.3, different Type II meniscus solutions sharing the
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Fig. 3.4. (a) Evolution of (2.2) when D = 3.5 and b = 0.005, so D < DF . The front
is undercompressive. A small flat region of thickness huc (indicated by a dotted line) gradually
develops behind the front. (b) With D increased to 6, larger than DF , the front is a generalized Lax
shock. The rarefaction fan is also shown at t = 3000 (+ symbols) and t = 1013 (×); it was obtained
by solving the scalar hyperbolic conservation law as described in detail in section 4.

same value for hm exist. Hence, in the thin range of values of D for which huc(D, b) lies
between the graphs of h∗(D) and h∗∗(D), the combination of the wedge diagrams and
the criterion for the wave speeds is not sufficient to predict the film behavior. Instead
behavior can be determined by, e.g., numerical simulations. We will not elaborate
further on this subtlety.

For the small values of D considered so far, there is in fact a distinct flat region
between the meniscus and the wave structure. For larger D, this is not so. As D
increases beyond DIII, the height of the left state for an undercompressive front huc

drops below h = 2/3. Now there can be no direct connection between meniscus and
front. All available meniscus profiles have hm larger than huc, so an intermediate wave
is needed to span the gap of thicknesses. From the front wedge part in Figure 2.1, we
see that the resulting wave structure must be a rarefaction-undercompressive wave
combination.

No flat film can emerge between the meniscus and the rarefaction wave of thick-
ness hm = hw strictly larger than 2/3, since the portions of the rarefaction wave
larger than 2/3 would have a negative characteristic speed. Instead, the meniscus
evolves into a shape that is the limiting profile of all the Type II menisci, while the
portions of the film between 2/3 and huc tend to the profile of a rarefaction wave with
left state 2/3. Since the characteristic speed at h = 2/3 is exactly zero, the rarefac-
tion wave never completely separates from the meniscus, but as it gets increasingly
stretched, the film thickness at any fixed position x in front of the meniscus eventually
tends to 2/3. We call the emerging limiting meniscus profile with thickness hm = 2/3
a generalized Type II meniscus, in analogy to the terminology for Lax shocks, to reflect
the fact that f ′(2/3) = 0.

This situation is indicated in Figure 3.1(a), where for D > DIII the crossed and
circled lines part again. The former lies at the boundary of the Type II regime, while
the latter follows the upper edge of the front wedge. Dynamical simulations with
D = 3.5 confirm our picture. In Figure 3.4(a) we show the evolution of the film from
the initial condition (3.2), for D = 3.5. At long times, the film left of the advancing
front forms a flat plateau with thickness equal to huc = 0.5783 (the value was obtained
by solving the traveling wave ODE as in [2, 10]). At an increasing distance from the
advancing front, the film profile slightly steepens to a rarefaction wave, which blends
over into the meniscus.
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When D increases further, huc decreases, and the difference between the speed of
the undercompressive wave and the left characteristic speed of this wave also decreases.
They become equal when D = DF and huc = (1−b)/2 at the apex of the front wedge.
For b = 0.005, DF is 5.227. For the largest D, in excess of DF , the possible wave
structures are those that are permitted according to classical shock theory.

Again, the meniscus profile tends to a generalized Type II meniscus, and it must
connect to a rarefaction fan with left state 2/3. The rarefaction wave now connects
directly to the advancing front, which connects in turn to b. The characteristic speed of
the thickness (1−b)/2 where the two structures connect is identical to the shock speed.
The leading shock is therefore a generalized Lax shock, which is not undercompressive,
and there is neither the flat region of thickness huc nor the steep shock front which
were visible when D = 3.5. This is seen in a dynamical simulation for D = 6 in
Figure 3.4(b). Instead, the rarefaction fan expands over time, always stretching from
the meniscus to the advancing front. The front is a generalized Lax shock and connects
to the rarefaction fan via a rounded corner at thickness h = (1 − b)/2 = 0.4975.

3.2. Case B: Thicker precursor layer, 0.0202 < b < 0.1484. For larger
precursor thicknesses, the expected film configuration is generally similar to the small
b case described above. However, some new configurations do appear for a range of
D values, while the front controlled profiles with a Type II meniscus and flat region
thicker than 2/3 no longer occur.

The intersections occurring at D = DII and D = DIII both happen at D = DM

when b = 0.0202. For larger b, the upper branch huc of the front wedge intersects only
the lower branch of the meniscus wedge. We call the value of D for the remaining
intersection DII, and so

hB(DII) = huc(DII, b)

for this range of b. The two wedges are shown for b = 0.05 in Figure 3.1(b). We
describe below the profiles which result as D is increased.

For D < DII, the film behaves as for the first two cases in Case A (section 3.1).
For the smallest D, profiles continue to be controlled by the meniscus, with a Type I
meniscus, a flat region of thickness hB , and simple compressive front, with a capillary
ridge connecting the flat region to the precursor layer. When DI < D < DII, there
are again a Type I meniscus and flat region with thickness hB , but at the advancing
front there is a double shock structure. Both these behaviors have been seen in our
dynamic simulations with b = 0.05.

Because huc(D) is smaller than in Case A for the larger values of b considered here,
it never exceeds hT , the threshold for a Type II meniscus. (See Figure 3.1(b).) Thus
for this range of b there are no front controlled profiles. Instead, for DII < D < DM ,
a new configuration is possible. Now both hB and hT are greater than huc, so any
connection from the meniscus must be via a rarefaction fan. This cannot connect to
a Type II meniscus, since hT > 2/3, and so the left part of the rarefaction would have
negative speed. Thus here there is a Type I meniscus, connected via a rarefaction fan
to a flat region of height huc where the film is thinner. This in turn is connected via
an undercompressive shock to b. All parts of the rarefaction wave have positive speed,
so it must gradually move away from the meniscus, leaving a flat region of thickness
hB behind it. Furthermore, the leading edge of the rarefaction fan is slower than
the undercompressive wave, so the length of the flat region between the rarefaction
fan leading edge and the advancing front, with thickness huc, will increase with time.
Dynamical simulations with D = 0.7 and b = 0.05, shown in Figure 3.5(a), confirm
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Fig. 3.5. (a) Evolution of the film when D = 0.7 and b = 0.05 (so DII < D < DM ). A
Type I meniscus, which tends towards hB = 0.6298, is connected via a rarefaction fan to a flat
region of height huc, which connects to the precursor thickness b via an undercompressive shock.
This configuration is possible only when b > 0.0202. (b) Evolution of the film when D = 0.72. Here
b = 0.16. The front is now a generalized Lax shock, unlike that seen in the left figure. The meniscus
is still Type I, approaching a value hB = 0.6376 < 2/3. A knee develops close to h = (1−b)/2 = 0.42.

that two flat regions develop. The first has thickness close to hB = 0.6298, as expected
for a Type I meniscus solution for this value of D, and extends up to the rarefaction
fan. A second develops between the rarefaction fan and the advancing front, with a
thickness close to the expected undercompressive region height huc = 0.5907.

For D > DM , the behavior is similar to that for D > DIII for small b (section 3.1).
There is a rarefaction fan extending from a generalized Type II meniscus at h =
2/3 to huc. Provided that D < DF , a flat region of thickness huc exists before an
undercompressive shock, while for D > DF there is no flat region, and the connection
to the precursor is a generalized Lax shock.

3.3. Case C: Even thicker precursor layer, 0.1484 < b < 0.2338. As b is
further increased, DF reduces, so that when it reaches the critical value b = 0.1484,
DF and DM are equal. For somewhat larger b (so that DF < DM , but is not too small)
the apex of the front wedge still lies outside the meniscus wedge. This arrangement
of the wedges is shown in Figure 3.1(c) when b = 0.16.

With this arrangement, the film behaves as for Cases A and B while D < DII,
forming a Type I meniscus with a compressive shock for D < DI, and then a double
shock for DI < D < DII. For D > DII but less than DF , the Type I meniscus
still exists and connects to the precursor via a flat region of thickness hB , then a
rarefaction fan and undercompressive shock, as in Case B. In dynamic simulations
the flat huc region takes a long time to develop.

For DF < D < DM another new behavior occurs. Type I menisci are still possible,
but they must connect to the precursor by a rarefaction fan with right state (1−b)/2,
followed by a classical generalized Lax shock, since undercompressive connections do
not exist for D > DF . Such behavior is seen in Figure 3.5(b), for D = 0.72 and
b = 0.16. (Note that DF = 0.7153 for b = 0.16.) Here hB = 0.6376, and it is apparent
that in the meniscus region the film approaches this thickness before entering the
rarefaction fan region and dropping to (1− b)/2 = 0.42. Since hB is quite close to 2/3
here, characteristics have a slow speed, and the left edge of the rarefaction fan takes
a long time to move away from the meniscus. Finally, for D > DM , behavior is again
as for the largest D values in Cases A and B: a generalized Type II meniscus connects
to a rarefaction fan and from there to a generalized Lax shock, as in Figure 3.4(b).
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3.4. Case D: Thickest precursor layers: b > 0.2338. With this arrange-
ment of the wedges, DF < DI, and the front wedge lies entirely within the meniscus
wedge. Figure 3.1(d) shows the case b = 0.25. Three types of behavior are possible;
these are similar to those of Case C.

For small D < DI (but sufficiently large that hB > b), the film continues to
display meniscus-controlled behavior. There is a Type I meniscus, followed by a
flat region with thickness hB(D), which is connected to the precursor layer by a
compressive advancing front. This is the case, regardless of whether D is larger or
smaller than DF .

When D > DI, the connection to the precursor must be via a classical structure
(since DI > DF ). Since the preferred right state of the meniscus exceeds (1 − b)/2,
there is a rarefaction fan, connecting to a classical generalized Lax shock. The two
behaviors possible for D > DI differ near the meniscus: for DI < D < DM , it is a
Type I meniscus, which connects to the rarefaction fan as in section 3.3. Once D
exceeds DM , there is a generalized Type II meniscus that joins to the rarefaction fan,
as for the largest D values in the previous cases.

4. Nearly horizontal substrate: Large D. For a substrate which is nearly
horizontal, the leveling effects of the normal component of gravity become important.
Here we consider steady state profiles in the limit D → ∞. For studying this regime,
we adopt a scaling in which surface tension is neglected but both components of
gravity are retained. Smoothing of discontinuities in the film is now provided by the
normal component of gravity instead of predominantly by surface tension. Rescaling
by defining x̃ and t̃ by

Dx̃ = x, Dt̃ = t,(4.1)

and letting D → ∞ causes the governing PDE (2.2) to reduce from fourth to second
order:

ht̃ +
(
h2 − h3

)
x̃

=
(
h3hx̃

)
x̃
.(4.2)

Steady state solutions of (4.2), which represent feasible meniscus profiles, must satisfy
boundary conditions far upstream and downstream. The film must match onto the
reservoir, so

dh

dx̃
→ −1 as x̃ → −∞

(which is simply the rescaled form of (2.3)), and its thickness must approach a constant
value hm far downstream:

h → hm as x̃ → ∞.

Setting ht̃ to zero, (4.2) can be integrated with respect to x̃ to yield a first-order
(nonlinear) ODE:

hx̃ =
h2 − h3 − c

h3
.(4.3)

For large h, equation (4.3) has hx̃ → −1, and by setting the constant of integration
c = (h2

m − h3
m), both boundary conditions are satisfied. Note that c is the total flux

of liquid flowing through the flat film in front of the meniscus; physically meaningful
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Fig. 4.1. (a) Solutions of (4.3) in a parameter regime where surface tension is unimportant.
Shown are hm = 0.7, 0.8, 0.9. On this scale, the solution with hm = 0.7 is barely distinguishable
from the solution of (4.5) with hm = 2/3, shown as a dotted line. (b) Steady solutions of (2.2),
which have hm = 0.91, rescaled according to (4.1). As D is increased, these approach the large D
limit, shown as a solid line. The dip which is a feature of Type II solutions for small D is gone for
D = 2.

values for climbing films are 0 < c ≤ 4/27. A one-parameter family of solutions is
generated by varying hm, or alternatively, c. For c < 4/27, the positive-valued fixed
points of (4.3) are h = hB < 2/3 and h = hT > 2/3, the same as those of the steady
form of (2.2).

When hB and hT are distinct, (4.3) shows that hx̃ is negative for h > hT and
h < hB , and positive for hB < h < hT ; hT is therefore a stable fixed point, while
hB is unstable. Any solution which becomes infinite as x̃ → −∞ must be monotonic,
decreasing, and have h > hT > 2/3 everywhere, with h → hT as x̃ → ∞. In other
words, the meniscus profiles for c < 4/27 connect to a thickness hm > 2/3, and so are
Type II profiles. The exact solution to (4.3), up to translation in x̃, is given implicitly
by

x̃ = −h +

3∑
i=1

h3
i

(hi − hj)(hk − hi)
log |h− hi| , j �= i, k �= i, j,(4.4)

where the summation is over the three distinct roots hB , hT , and (1 − hB − hT ) of
the cubic equation h2 −h3 − c = 0. Solutions of the form of (4.4) are shown in Figure
4.1(a) for three values of hm > 2/3. The solution with hm = 0.91 is compared to
meniscus profiles with finite D in Figure 4.1(b). As the influence of surface tension
diminishes, the dip disappears, and the meniscus profiles become monotonic, even
though they are of Type II.

As hm approaches 2/3, the fixed points hB and hT also approach 2/3. When
hm = 2/3, c = 4/27, and there is a repeated root of h2 − h3 − c = 0. The solution to
(4.3) is then given by

x̃ = −h +
8

27

1

h− 2/3
− 28

27
log

∣∣∣∣h− 2

3

∣∣∣∣ +
1

27
log

∣∣∣∣h +
1

3

∣∣∣∣ .(4.5)

The (h− 2/3)−1 term rapidly blows up, indicating that the film requires a very long
distance to reach its limiting value hm. The solution for hm = 2/3 is shown in Figure
4.1(a) as a dotted line.

At this point, we have established essentially the same picture for the possible
meniscus structure as for the large (but finite) D case discussed in section 3. On
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t̃ = 169. Also shown is the long-time solution for hm = 2/3 and D = ∞ (dotted line), which is
approached by the solutions for large D, and when the front has moved far from the meniscus.

the other hand, since (4.2) is a second-order equation, the classical theory of shocks
only allows a rarefaction fan and generalized Lax shock combination for connecting a
thickness larger than (1−b)/2 with a precursor of thickness b. Therefore in numerical
simulations of (4.2) a generalized Type II meniscus profile should emerge connected
to such a combination, and indeed, this is seen in the results of the previous section
for sufficiently large D.

We compared the profiles obtained from our dynamic model including the surface
tension terms (2.2) for two moderately large values of D with those of the time-
dependent model (4.2) valid when D → ∞. Simulations were performed with b =
0.005, for which DF ≈ 5.227. The same initial condition (3.2) was used for each case.

As described in section 2.2, when D is larger than DF , the presence of the surface
tension terms is expected to give rise to a classical front, with a rarefaction fan
connected to a compressive shock. Numerical simulations with D = 6 confirm this.
This is shown in Figure 3.4(b), where the front advances with a rounded corner,
typical of a generalized Lax shock. In contrast, when D = 3.5 < DF the advancing
front is undercompressive (Figure 3.4(a)). It separates from the rarefaction wave and
has a markedly higher left state. At the same rescaled time t̃ = 169, the rescaled
profiles for the meniscus region and much of the film are very similar to the large D
result, i.e., using (4.2), for both finite D values. This is shown in Figure 4.2. However,
at the advancing front, the difference between the undercompressive and generalized
Lax fronts is evident, while the transition from generalized Lax shock to the precursor
is slightly more rounded for D = 6 than for D = ∞.

Finally, we demonstrate that the portion behind the advancing front seen in Fig-
ure 3.4(b) (and also Figure 3.5(b)) is indeed a rarefaction fan, by comparing it directly
to solutions of the first-order equation resulting from neglecting all second- and fourth-
order smoothing terms in (2.2). Rarefaction wave solutions of ht + f(h)x = 0 may be
found, subject to appropriate initial data, using the method of characteristics. Thus
within the rarefaction fan delimited by left and right states h− and h+,

h(x, t) = hR(ξ) = (f ′)−1(ξ), where ξ =
x− x0

t− t0
(4.6)

for some x0 and t0. The function hR(ξ) is given implicitly by ξ = f ′(h) = 2h − 3h2.
The unknowns x0 and t0 may be estimated as follows. For the situation shown in
Figure 3.4(b), we take h+ to be (1−b)/2 = 0.4975. At a given time, t2 say, we observe
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where h(x, t2) = h+, at x = x+ say, and estimate a value for t0. We then compute

x0 = x+ + (t2 − t0)ξ+,

where ξ+ = f ′(h+). The shape of the rarefaction fan may be constructed at any time
t using

x = (t− t0)ξ(h) + x0 for h+ < h < 2/3.(4.7)

We vary t0 until (4.7) provides a good fit for h(x, t2) within the rarefaction fan.
We demonstrate this by computing the rarefaction fan constants x0 and t0 using

our result at t = 3000 (shown using “+” symbols in Figure 3.4(b)) and then confirming
these by comparison with (4.7) at t = 1013 (“×” symbols in Figure 3.4(b)). The
agreement is satisfactory in the interior of the rarefaction fan. At the ends, the
higher-order terms in (2.2) are important and smooth the profile.

5. Summary of behavior: A catalog. The previous sections’ observations
can be summarized by considering regions of (D, b) parameter space in which distinct
behaviors arise. These are shown in Figure 5.1. The graphs of Di(b) (i = I, II, III) and
DF (b) divide the parameter space into several regions. These regions are indicated
by the labels in the figure. The descriptions given for Cases A to D in section 3
correspond to moving along horizontal lines (constant b) in this figure.

A number of features are apparent. For small D (though with D � ε), a Type I
meniscus (labeled “T1+L”) results for all choices of b. At the other extreme, for the
largest D > max(DF , DM ), the advancing front is a generalized Lax shock, and the
connection to the meniscus is via a rarefaction fan (labeled “2/3+rf+gL”). States in
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which there is only a flat region between the meniscus and front—the Type I meniscus
with a Lax front or with a double shock structure, and the Type II meniscus with an
undercompressive front—exist in the lower left part of the diagram, shown by labels
“T1+L,” “T1+ds,” and “T2+uc.” These are states are familiar from previous work,
e.g., [13]. For a fixed value of D, one of these three configurations can arise only when
a sufficiently thin precursor is present. As the precursor layer is thickened these give
way to film profiles with rarefaction fans, shown by “rf” in the figure labels. These
new kinds of behavior were described in section 3. In particular, the combination of a
Type I meniscus and rarefaction fan seen in Figure 3.5(a) occurs only for b > 0.0202,
while a Type II meniscus with an extended flat region and undercompressive front
occurs only for b smaller than this value. In the upper right part of the diagram lie
structures with rarefaction fans, for which there is no clear separation between the
meniscus and the front.

It should be noted that in a set of experiments, the dimensional precursor thick-
ness b∗ (or equivalently the wetting behavior) is likely to be fixed. If the sub-
strate angle α is varied while other parameters including b∗ are fixed, then this
corresponds to moving along a curved path in Figure 5.1, given parametrically by
((3δ)2/3 sinα/ cos4/3 α, b0 cosα), where b0 is the dimensionless precursor thickness for
α = 0. One such curve is shown in the figure for δ = 0.00782, corresponding to
experiments by Schneemilch and Cazabat [14], and b0 = 0.2, as a dotted line. This
value is likely to be larger than in their experiments, but demonstrates how the film
changes from a Type I meniscus and compressive front to more complex behavior
as α is increased. For this value of δ, values of b0 > 0.11 result in not entering the
“T2+uc” region for any α.

6. Concluding remarks. In this paper, understanding of the film on a heated
tilted substrate near a meniscus and at an advancing front has been combined to gen-
erate an understanding of the possible behavior for the entire film. This is graphically
summarized by Figure 5.1. This analysis is based on approximating the curvature,
which is appropriate for relatively tilted substrates, for which tanα � 1. This is
equivalent to requiring that D � ε.

When D is of order ε or smaller, the curvature can no longer be approximated by
hxx everywhere. In this limit hB approaches a finite nonzero value [4, 5, 11, 13]. For
practical values of the shear stress, the most significant effect is to move the bottom
edge of the meniscus wedge so that the graph of 1 − b − huc no longer intersects
hB(D). This situation occurs more easily for smaller values of b. In that case, instead
of a Type I meniscus with a compressive front for the smallest values of D, either a
double shock profile or a Type II meniscus with undercompressive front may occur. In
principle, this means that undercompressive advancing fronts are possible for nearly
vertical substrates, provided that the precursor layer is sufficiently thin. Retaining
full curvature would modify the results shown in Figure 5.1 for D near 0.

Our results indicate that when the control parameter D is sufficiently large there
is no extended flat region, but rather a rarefaction fan links the meniscus to the
advancing front. An interesting observation is that when a Type II meniscus arises,
its flat region thickness is not controlled by conditions at the meniscus, as for the
Type I meniscus. Rather, it is the precursor thickness which determines huc and so
the thickness of the flat region.

Similarly the interesting question of what would happen if the film were to advance
over a substrate for which wetting is imperfect, i.e., for which there is a nonzero
contact angle, has not been addressed. For the drag-out problem, there is a minimum
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withdrawal speed required to draw out a film, if the contact angle is prescribed [7].
Despite these limitations, we expect that the guide presented here will be a useful

tool for experimentalists. We look forward to experimental confirmation of these
results.
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IMAGE SEGMENTATION AND DENOISING MODELS∗
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Abstract. We show how certain nonconvex optimization problems that arise in image processing
and computer vision can be restated as convex minimization problems. This allows, in particular,
the finding of global minimizers via standard convex minimization schemes.
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1. Introduction. Image denoising and segmentation are two related, funda-
mental problems of computer vision. The goal of denoising is to remove noise and/or
spurious details from a given, possibly corrupted, digital picture while maintaining
essential features such as edges. The goal of segmentation is to divide the image into
regions that belong to distinct objects in the depicted scene.

Approaches to denoising and segmentation based on the calculus of variations and
partial differential equations (PDEs) have had great success. One important reason
for their success is that these models are particularly well suited to imposing geometric
constraints (such as regularity) on the solutions sought. Among the best known and
most influential examples are the Rudin–Osher–Fatemi (ROF) total variation–based
image denoising model [22] and the Mumford–Shah image segmentation model [17].

Denoising models such as the ROF model can be easily adapted to different
situations. An interesting scenario is the denoising of shapes: Here, the given image
is binary (representing the characteristic function of the given shape), and the noise is
in the geometry of the shape: Its boundary might be very rough, and the user might
be interested in smoothing out its boundary, and perhaps removing small, unnecessary
connected components of the shape. This task is a common first step in many object
detection and recognition algorithms.

A common difficulty with many variational image processing models is that the
energy functional to be minimized has local minima (which are not global minima).
This is a much more serious drawback than nonuniqueness of global minimizers (which
is also a common phenomenon) because local minima of segmentation and denoising
models often have completely wrong levels of detail and scale: whereas global min-
imizers of a given model are usually all reasonable solutions, the local minima tend
to be blatantly false. Many solution techniques for variational models are based on
gradient descent, and are therefore prone to getting stuck in such local minima. This
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makes the initial guess for gradient descent–based algorithms sometimes critically
important for obtaining satisfactory results.

In this paper we propose algorithms which are guaranteed to find global min-
imizers of certain denoising and segmentation models that are known to have local
minima. As a common feature, the models we consider involve minimizing functionals
over characteristic functions of sets, which is a nonconvex collection; this feature is
responsible for the presence of local minima. Our approach, which is based on ob-
servations of Strang in [23, 24], is to extend the functionals and their minimization
to all functions in such a way that the minimizers of the extended functionals can be
subsequently transformed into minimizers for the original models by simple thresh-
olding. This allows, among other things, computing global minimizers for the original
nonconvex variational models by carrying out standard convex minimization schemes.

Our first example is binary image denoising, which we briefly discuss as a precursor
to and a motivation for the more general segmentation problem that we subsequently
consider. Here the given noisy image for the ROF model is taken to be binary, and
the solution is also sought among binary images. This problem has many applications
where smoothing of geometric shapes is relevant. Some examples are the denoising of
fax documents, and the fairing of surfaces in computer graphics. Because the space of
binary functions is nonconvex, the minimization problem involved is actually harder
than minimizing the original ROF model. In section 2, we recall results from [6] that
show how this model can be written as a convex optimization problem, and we exhibit
its use as a numerical algorithm. In this section, we also analytically verify that the
energy concerned possesses local minimizers that are not global minimizers, which
can trap standard minimization procedures.

In section 3, we extend some of the results of [6] to the more important problem
of image segmentation. In particular, we consider the two-phase, piecewise constant
Mumford–Shah segmentation functional proposed by Chan and Vese in [7] and show
that part of the minimization involved can be given a convex formulation. This model
has become a very popular tool in segmentation and related image processing tasks
(also see [26] for its multiphase version). The convex formulation we obtain turns
out to be closely related to the algorithm of Chan and Vese presented in [7]. Our
observations indicate why this algorithm is successful in finding interior contours and
other hard-to-get features in images.

2. Previous work. The results and the approach of this paper follow very
closely the observations of Strang in [23, 24]. In those papers, optimization prob-
lems of the following form, among others, are studied:

inf
{u:

∫
fu dx=1}

∫
|∇u|,(1)

where f(x) is a given function. It is shown in particular that the minimizers of (1)
turn out to be characteristic functions of sets. The main idea involved is to express
the functional to be minimized and the constraint in terms of the super level sets of
the functions u(x) and f(x). The coarea formula of Fleming, Rishel, and Rishel [11]
is the primary tool.

In this paper, the idea of expressing functionals in terms of level sets is applied to
some simple image processing models. For instance, in section 4, where we study the
piecewise constant Mumford–Shah energy, we show that the relevant energy, which is
originally formulated in terms of sets, can be reformulated as an optimization problem
over functions in such a way that the resulting convex energy turns out to be almost
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the same as (1). After this reformulation, following Strang’s work, we are also able
to express the resulting convex variational problem in terms of super level sets of the
unknown functions. That in turn allows us to extract a minimizer of the original
nonconvex model from a minimizer of the convex functional by simple thresholding.

We should point out that our emphasis in this paper is in some sense opposite that
of [23, 24]. Indeed, in those works the main point is that some energies of interest that
need to be minimized over all functions turn out to have minimizers that take only
two values. In our case, we start with a variational problem that is to be minimized
over only functions that take two values (i.e., characteristic functions of sets) but show
that we may instead minimize over all functions (that are allowed to take intermediate
vales), i.e., we may ignore the nonconvex constraint. This allows us to end up with a
convex formulation of the original nonconvex problem.

3. The ROF model. Rudin, Osher, and Fatemi’s total variation image denois-
ing model [22] is one of the best known and successful of PDE-based image denoising
models. Indeed, being convex it is one of the simplest denoising techniques that has
the all-important edge preserving property.

Let D ⊂ RN denote the image domain. In practice, D is simply a rectangle,
modeling the computer screen. Therefore, mathematically, it is natural to assume
that D is a bounded domain with Lipschitz boundary. However, for the convenience
of not dealing with boundaries, in this section we will take D to be the entire space
RN . This simplifying assumption has no bearing on the essential ideas discussed
below.

Let f(x) : RN → [0, 1] denote the given (grayscale) possibly corrupted (noisy)
image. The energy to be minimized in the standard ROF model is then given by

E2(u, λ) =

∫
RN

|∇u| + λ

∫
RN

(
u(x) − f(x)

)2

dx.(2)

The appropriate value of the parameter λ > 0 in the model (2) can be determined
if the noise level is known; an algorithm for doing so is given in [22]. If information
about noise level is not available, then λ needs to be chosen by the user. This choice
can be facilitated by the observation that λ acts as a scale parameter [25]: Its value
determines in some sense the smallest image feature that will be maintained in the
reconstructed image. Energy (2) is often minimized via gradient descent; however,
see [5, 9] for an alternative approach in the λ = 0 case.

An interesting application of the ROF model described above is to binary image
denoising. This situation arises when the given image f(x) is binary (i.e., f(x) ∈ {0, 1}
for all x ∈ RN ) and is known to be the corrupted version of another binary image
u : RN → {0, 1} that needs to be estimated. Naturally, f(x) can then be expressed
as

f(x) = 1Ω(x),

where Ω is an arbitrary bounded measurable subset of RN . In this case, the noise is
in the geometry ; for example, the boundary ∂Ω of Ω might have spurious oscillations,
or Ω might have small connected components (due to presence of noise) that need
to be eliminated. The ROF model (2) can easily be specialized to this scenario by
restricting the unknown u(x) to have the form u(x) = 1Σ(x), where Σ is a subset of
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RN . One then obtains the following optimization problem:

min
Σ⊂RN

u(x)=1Σ(x)

∫
RN

|∇u| + λ

∫
RN

(
u(x) − 1Ω(x)

)2

dx.(3)

Problem (3) is nonconvex because the minimization is carried out over a nonconvex
set of functions. Recalling that the total variation of the characteristic function of
a set is its perimeter (see, e.g., [10, 12] for such basic facts), and noticing that the
fidelity term in this case simplifies, we write (3) as the following geometry problem:

min
Σ⊂RN

Per(Σ) + λ|Σ � Ω|,(4)

where Per(·) denotes the perimeter, | · | is the N -dimensional Lebesgue measure, and
S1 � S2 denotes the symmetric difference between the two sets S1 and S2.

Usual techniques for approximating the solution. A very successful method
of solving problems of the type (4) has been via some curve evolution process, some-
times referred to as active contours. Indeed, the unknown set Σ can be described by
its boundary ∂Σ. The boundary ∂Σ is then updated iteratively, usually according to
gradient flow for the energy involved.

Numerically, there are several ways of representing ∂Σ. For the applications
mentioned above, explicit curve representations as in Kass, Witkin, and Terzopoulos
[15] are not appropriate, since such methods do not allow changes in curve topology
(and have a number of other drawbacks). Instead, the most successful algorithms are
those based on either the level set method of Osher and Sethian [21, 20] or on the
variational approximation approach known as Gamma convergence theory [8].

In the level set formulation, the unknown boundary ∂Σ is represented as the
0-level set of a (Lipschitz) function φ : RN → R:

Σ =
{
x ∈ RN : φ(x) > 0

}
,

so that ∂Σ = {x ∈ RN : φ(x) = 0}. The functional to be minimized in (3), which we
called E2(·, λ), can then be expressed in terms of the function φ(x) as follows:∫

RN

|∇H(φ(x))| dx + λ

∫
RN

(
H(φ(x)) − 1Ω(x)

)2

dx.(5)

Here, the function H(x) : R → R is the Heaviside function:

H(ξ) =

{
0 if x < 0,
1 if x ≥ 0.

In practice, one takes a smooth (or at least Lipschitz) approximation to H(x), which
we shall call Hε(ξ), where Hε(ξ) → H(ξ) in some manner as ε → 0.

The Euler–Lagrange equation for (5) is easy to obtain. It leads to the following
gradient flow:

φt(x, t) = H ′
ε(φ)

{
div

(
∇φ

|∇φ|

)
+ 2λ

(
1Ω(x) −Hε(φ)

)}
.(6)

When (6) is simulated using reinitialization for the level set function φ(x) and a com-
pactly supported approximation Hε(x) to H(x), it is observed to define a continuous
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evolution (with respect to, say, the L1-norm) for the unknown function u(x) = 1Σ(x)
and decreases the objective energy (3) through binary images. It is analogous to the
gradient descent equation in [7], which is natural since (3) is the restriction to binary
images of also the energy considered in that work, namely, the two-phase, piecewise
constant Mumford–Shah segmentation energy. In section 4, we will consider this
energy for general (not necessarily binary) images.

Another representation technique for the unknown set Σ in (4) is, as we men-
tioned, based on the Gamma convergence ideas. Here, the given energy is replaced
by a sequence of approximate energies with a small parameter ε > 0 in them. The
sequence converges to the original energy as ε → 0. The approximations have the
form

Eε(u, λ) =

∫
RN

ε|∇u|2 +
1

ε
W (u) + λ

{
u2

(
c1 − f

)2
+ (1 − u)2

(
c2 − f

)2
}
dx.

In this energy, W (ξ) is a double-well potential with equidepth wells at 0 and 1; for
instance, a simple choice is W (ξ) = ξ2(1 − ξ)2. The term 1

εW (u) can be thought of
as a penalty term that forces the function u to look like the characteristic function
of a set: u is forced to be approximately 0 or 1 on most of RN . The term ε|∇u|2,
on the other hand, puts a penalty on the transitions of u between 0 and 1. Taken
together, it turns out that these terms both impose the constraint that u should be a
characteristic function and approximate its total variation. Precise versions of these
statements have been proved in [16]. The remaining terms in Eε are simply the fidelity
term written in terms of u. This approach was extended to the full Mumford–Shah
functional in [4].

We now argue, with the help of a very simple example, that these techniques will
get stuck in local minima in general, possibly leading to resultant images with the
wrong level of detail. This fact is already quite familiar to researchers working with
these techniques from practical numerical experience.

Example. Consider the two-dimensional case, where the observed binary image
f(x) to be denoised is the characteristic function of a ball BR(0) of radius R, which
is centered at the origin. In other words, we take Ω = BR(0). Implementing the
gradient descent algorithm defined by (6) requires the choice of an initial guess for
the interface φ(x) (or, equivalently, an initial guess for the set Σ that is represented
by φ(x)). A common choice in practical applications is to take the observed image
itself as the initial guess. In our case, that means initially we set Σ = BR(0).

Now, one can see without much trouble that the evolution defined by (6) will
maintain radial symmetry of φ(x). That means, at any given time t ≥ 0, the set (i.e.,
the candidate for minimization) represented by φ(x) is of the form{

x ∈ R2 : φ(x) > 0
}

= Br(0)

for some choice of the radius r ≥ 0. We can write the energy of u(x) = 1Br(0)(x) in
terms of r, as follows:

E(r) := E2(1Br(0)(x), λ) = 2πr + λπ|R2 − r2|.

A simple calculation shows that if λ < 2
R , then the minimum of this function is at

r = 0. Hence, if we fix λ > 0, then the denoising model prefers to remove disks of
radius smaller than the critical value 2

R .
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Fig. 1. Energy (3) of u(x) = 1Br(0)(x) as a function of r ∈ [0, 2] when the observed image is

given by f(x) = 1BR(0)(x). Here, R = 3
2

and the parameter λ was chosen to be λ = 1. There is

clearly a local minimum, corresponding to r = R = 3
2

.

But now, once again an easy calculation shows that if R > 1
λ , then E(r) has a

local maximum at rmax(λ) = 1
λ . See Figure 1 for the plot of E(r) in such a case.

Thus the energy minimization procedure described by (6) cannot shrink disks of radius
R ∈ ( 1

λ ,
2
λ ) to a point, even though the global minimum of the energy for an original

image given by such a disk is at u(x) ≡ 0.
We can easily say a bit more: There exists δ > 0 such that if Σ ⊂ RN satisfies

|Σ � BR(0)| < δ, then E2(1Σ(x), λ) > E2(1BR(0)(x), λ). In other words, all binary
images close to, but not identical with, the observed image 1BR(0)(x) have strictly
higher energy. This can be seen simply by noting that the energy of any region that
is not a disk is strictly larger than the energy of the disk having the same area as the
given region and its center at the origin.

To summarize: If f(x) = 1BR(0)(x) with R ∈ ( 1
λ ,

2
λ ), and if the initial guess

for the continuous curve evolution–based minimization procedure (6) is taken to be
the observed image f(x) itself, then the procedure gets stuck in the local minimizer
u(x) = f(x). The unique global minimizer is actually u(x) ≡ 0.

Our example highlights the following caveat of using continuous curve evolution–
based gradient descent algorithms in practice: There are many situations in which
the user should be able to choose the value of λ that appears in the model in such a
way that all image features smaller than the one implied by this choice of parameter
are eliminated from the final result. (Such a need might arise, for instance, in the
denoising of printed text, where the noise can consist of small ink blots.) With con-
tinuous curve evolution techniques, whether this goal will be achieved depends on the
initial guess (our example above exhibits an unfortunate initial guess). It is clearly of
interest to find an algorithm that does not have this dependence on initial conditions.

Proposed method for finding the global minimum. We now turn to an
alternative way of carrying out the constrained, nonconvex minimization problem (3)
that is guaranteed to yield a global minimum.
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The crux of our approach is to consider minimization of the following convex
energy, defined for any given observed image f(x) ∈ L1(RN ) and λ ≥ 0:

E1(u(x), λ) :=

∫
RN

|∇u| + λ

∫
RN

|u(x) − f(x)| dx.(7)

This energy differs from the standard ROF model only in the fidelity term: The L2-
norm square of the original model is replaced by the L1-norm as a measure of fidelity.
It was previously introduced and studied in signal and image processing applications
in [1, 2, 3, 18, 19, 6]. This variant of the ROF model has many interesting properties
and uses; the point we’d like to make in this section is that it also turns out to solve
our geometry denoising problem (4).

First, let us state the obvious fact that energies (2) and (7) agree on binary
images (i.e., when both u and f are characteristic functions of sets). On the other
hand, energy (7) is convex, but unlike energy (2), it is not strictly so. Accordingly, its
global minimizers are not unique in general. Nevertheless, being convex, it does not
have any local minima that are not global minima, unlike the constrained minimization
(3). We therefore adopt the following notation: For any λ ≥ 0, we let M(λ) denote
the set of all minimizers of E1(·, λ). It is easy to show that for each λ ≥ 0 the set
M(λ) is nonempty, closed, and convex.

The relevance of energy (7) for our purposes is established in Theorem 5.2 of
[6], where additional geometric properties of it are noted. The proof is based on the
following proposition, taken from [6], that expresses energy (7) in terms of the super
level sets of u and f .

Proposition 1. The energy E1(u, λ) can be rewritten as follows:

E1(u, λ) =

∫ ∞

−∞
Per

(
{x : u(x) > μ}

)
+ λ

∣∣∣{x : u(x) > μ} � {x : f(x) > μ}
∣∣∣ dμ.(8)

Proof. The proof can be found in [6] (Proposition 5.1).
We now recall also Theorem 5.2 of [6].
Theorem 1. If the observed image f(x) is the characteristic function of a

bounded domain Ω ⊂ RN , then for any λ ≥ 0 there is a minimizer of E1(·, λ) that is
also the characteristic function of a (possibly different) domain. In other words, when
the observed image is binary, then for each λ ≥ 0 there is at least one u(x) ∈ M(λ)
which is also binary.

In fact, if uλ(x) ∈ M(λ) is any minimizer of E1(·, λ), then for almost every
γ ∈ [0, 1] we have that the binary function

1{x:uλ>γ}(x)

is also a minimizer of E1(·, λ).
Proof. The proof can be found in [6] (Theorem 5.2).
The proposition and its consequence, the theorem cited above from [6] (which

are related to observations in [23, 24]), lead to a guaranteed algorithm for solving the
binary image denoising problem (3), which we now state.

Algorithm 1. To find a solution (i.e., a global minimizer) u(x) of the nonconvex
variational problem (3), it is sufficient to carry out the following three steps:

1. Find any minimizer of the convex energy (7); call it v(x).
2. Let Σ = {x ∈ RN : v(x) > μ} for some μ ∈ (0, 1).
3. Set u(x) = 1Σ(x).
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Fig. 2. Original noisy binary image used in the numerical experiment of section 3.

Then u(x) is a global minimizer of (3) for almost every choice of μ.

Algorithm 1 reduces the shape optimization problem (4) to the image denoising
problem (7). In section 4, we will obtain the analogue of Proposition 1 for the piece-
wise constant Mumford–Shah segmentation model of Chan and Vese, which will lead
to a guaranteed algorithm for finding global minimizers of the more general shape
optimization problem involved in that model, just like Algorithm 1 did for model (3);
this is the content of Theorem 2 in that section. Our convex formulation will once
again reduce the Chan–Vese shape optimization to a variant of the image denoising
model (7).

The most involved step in the solution procedure described in Algorithm 1 is
finding a minimizer of (7). One can approach this problem in many ways; for instance,
one possibility is to simply carry out gradient descent.

Numerical example. The synthetic image of Figure 2 represents the given
binary image f(x), which is a simple geometric shape covered with random (binary)
noise. The initial guess was an image composed of all 1’s (an all white image).
In the computation, the parameter λ was chosen to be quite moderate, so that in
particular the small circular holes in the shape should be removed while the larger
one should be kept. The result of the minimization is shown in Figure 3; in this case
the minimizer is automatically very close to being binary, and hence the thresholding
step of Algorithm 1 is almost unnecessary.

Figure 4 shows the histograms of intermediate steps during the gradient descent
based minimization. As can be seen, the intermediate steps themselves are very far
from being binary. The histogram in the lower right-hand corner belongs to the final
result shown in Figure 3. Thus the gradient flow goes through nonbinary images, but
in the end reaches another binary one. Although this is not implied by Proposition 1,
Theorem 1, or Algorithm 1, it seems to hold in practice.

4. Piecewise constant segmentation. In this section, we extend the discus-
sion of section 3 to the two-phase, piecewise constant Mumford–Shah segmentation
model [17] of Chan and Vese [7]. Unlike in the previous section, this time we let
the corrupted image f(x) be nonbinary: it is merely assumed to be some measurable
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Fig. 3. Final result found using the algorithm proposed in section 3, by minimizing (7). Algo-
rithm 1 says that global minimizers of the binary image denoising problem can be obtained by simply
thresholding this result. In this case, the minimizer of energy (7) turns out to be very close to being
binary itself, so there is no need to threshold. In the experiment, the value of λ was chosen small
enough so that small holes in the original shape should get filled in, but also large enough so that
the large hole in the middle should be maintained.
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Fig. 4. Histograms for intermediate images as the gradient descent proceeds. As can be seen,
the intermediate images themselves are not binary; however, by the time the evolution reaches steady
state, we are back to a binary image.
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function that takes its values in the unit interval. Thus, the discussion of this section
supersedes that of the previous. Also, from now on we will assume that the image
domain D is a bounded subset of RN with Lipschitz boundary. The segmentation
energy, which we will call MS, can then be written as

MS(Σ, c1, c2) := Per(Σ;D) + λ

∫
Σ

(c1 − f(x))2 dx + λ

∫
D\Σ

(c2 − f(x))2 dx.(9)

The model says we should solve

min
c1,c2∈R

Σ⊂D

MS(Σ, c1, c2).(10)

This optimization problem can be interpreted to be looking for the best approximation
in the L2 sense to the given image f(x) among all functions that take only two values.
These values, denoted c1, c2, and where each is taken, namely, Σ and D \ Σ, are
unknowns of the problem. As before, there is a penalty on the geometric complexity
of the interface ∂Σ that separates the regions where the two values c1 and c2 are
taken. Functional (9) is nonconvex and can have more than one minimizer. Existence
of at least one minimizer follows easily from standard arguments. Notice that if Σ is
fixed, the values of c1 and c2 that minimize MS(Σ, ·, ·) read

c1 =
1

|Σ|

∫
Σ

f(x) dx and c2 =
1

|D \ Σ|

∫
D\Σ

f(x) dx.(11)

A natural way to approximate the solution is a two-step scheme where in the first
step one computes c1 and c2 according to these formulae, and in the second step
updates the shape Σ. Even the minimization of MS(·, c1, c2) is a difficult problem
since this functional is nonconvex. In what follows we focus on the minimization of
MS(·, c1, c2).

We point out that if the two constants c1 and c2 are fixed to be 1 and 0, respec-
tively, and if the given image f(x) in (9) is taken to be the characteristic function
1Ω(x) of a set Ω, then the minimization problem (10) reduces to the geometry problem
(4); it is in this sense that this section’s problem is a generalization of the previous
section’s.

Chan–Vese algorithm. In [7] Chan and Vese proposed a level set–based algo-
rithm for solving the optimization problem (10). The idea is to represent the boundary
∂Σ with the 0-level set of the function φ : D → RN . Energy (9) can then be written
in terms of the level set function φ; it turns out to be

(12) CV (φ, c1, c2) =

∫
D

|∇Hε(φ)|

+ λ

∫
D

Hε(φ)(c1 − f(x))2 + (1 −Hε(φ))(c2 − f(x))2 dx.

The function Hε is, as before, a regularization of the Heaviside function. The pre-
cise choice of the regularization Hε of H is a crucial ingredient of the Chan–Vese
algorithm. We will return to this topic.

Variations of energy (12) with respect to the level set function φ lead to the
following gradient descent scheme:

φt = H ′
ε(φ)

{
div

(
∇φ

|∇φ|

)
− λ

(
(c1 − f(x))2 − (c2 − f(x))2

)}
.
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The optimal choice for the constants c1, c2 is easily determined in terms of the function
φ.

The proposed algorithm. The Chan–Vese algorithm chooses a noncompactly
supported, smooth approximation Hε for H. As a result, the gradient descent equation
given above and the following one have the same stationary solutions:

φt = div

(
∇φ

|∇φ|

)
− λ

(
(c1 − f(x))2 − (c2 − f(x))2

)
,

where we simply omitted the approximate Heaviside function altogether. This equa-
tion, in turn, is gradient descent for the following energy:∫

D

|∇φ| + λ

∫
D

(
(c1 − f(x))2 − (c2 − f(x))2

)
φdx.(13)

This energy is homogeneous of degree 1 in φ. As a result, it does not have a
minimizer in general. In other words, the gradient descent written above does not
have a stationary state: If the evolution is carried out for a long time, the level
set function φ would tend to +∞ wherever it is positive, and to −∞ wherever it is
negative. This issue is related to the nonuniqueness of representation with level sets
and is easy to fix: one can simply restrict minimization to φ such that 0 ≤ φ(x) ≤ 1
for all x ∈ D. With this fix, and following [23, 24], we arrive at the statement below.

Theorem 2. For any given fixed c1, c2 ∈ R, a global minimizer for MS(·, c1, c2)
can be found by carrying out the following convex minimization:

min
0≤u≤1

∫
D

|∇u| + λ

∫
D

{
(c1 − f(x))2 − (c2 − f(x))2

}
u(x) dx︸ ︷︷ ︸

:=Ẽ(u,c1,c2)

and then setting Σ = {x : u(x) ≥ μ} for a.e. μ ∈ [0, 1].
Proof. We once again rely on the coarea formula; since u takes its values in [0, 1],

we have ∫
D

|∇u| =

∫ 1

0

Per({x : u(x) > μ};D) dμ.

For the other terms that constitute the fidelity term, we proceed as follows:∫
D

(c1 − f(x))2u(x) dx =

∫
D

(c1 − f(x))2

∫ 1

0

1[0,u(x)](μ) dμ dx

=

∫ 1

0

∫
D

(c1 − f(x))21[0,u(x)](μ) dx dμ

=

∫ 1

0

∫
D∩{x:u(x)>μ}

(c1 − f(x))2 dx dμ.

Also, we have∫
D

(c2 − f(x))2u(x) dx =

∫ 1

0

∫
D∩{x:u(x)>μ}

(c2 − f(x))2 dx dμ

= C −
∫ 1

0

∫
D∩{x:u(x)>μ}c

(c2 − f(x))2 dx dμ,
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where C =
∫
D

(c2 − f)2 dx is independent of u. Putting it all together, and setting
Σ(μ) := {x : u(x) > μ), we get the following formula that is valid for any u(x) ∈ L2(D)
such that 0 ≤ u(x) ≤ 1 for a.e. x ∈ D:

Ẽ(u, c1, c2) =

∫ 1

0

{
Per(Σ(μ);D) + λ

∫
Σ(μ)

(c1 − f(x))2 dx

+ λ

∫
D\Σ(μ)

(c2 − f(x))2 dx

}
dμ− C

=

∫ 1

0

MS
(
Σ(μ), c1, c2

)
dμ− C.

It follows that if u(x) is a minimizer of the convex problem, then for a.e. μ ∈ [0, 1]
the set Σ(μ) has to be a minimizer of the original functional MS(·, c1, c2).

Remark. The optimization problem that forms the content of Theorem 2 can be
interpreted as follows: The level set formulation of the two-phase model depends on
the level set function φ only through the term H(φ). The term H(φ) represents a
parametrization of binary functions (since, for any given function φ, the function H(φ)
is binary). So the minimization of (12) is thus a minimization over binary functions.
Minimization of (13), on the other hand, corresponds to removing the nonconvex
constraint of being binary; instead we minimize over functions that are allowed to
take intermediate values. The content of the theorem above is that the minimizers
(essentially) automatically satisfy the more stringent constraint.

We now turn to the question of how to minimize the convex problem stated in
the theorem. In that connection, we have the following claim.

Claim 1. Let s(x) ∈ L∞(D). Then the convex, constrained minimization problem

min
0≤u≤1

∫
D

|∇u| + λ

∫
D

s(x)u dx

has the same set of minimizers as the following convex, unconstrained minimization
problem:

min
u

∫
D

|∇u| +
∫
D

αν(u) + λs(x)u dx,

where ν(ξ) := max{0, 2|ξ − 1
2 | − 1}, provided that α > λ

2 ‖s(x)‖L∞(D).
Proof. The term αν(u) that appears in the second, unconstrained minimization

problem given in the claim is an exact penalty term [13, 14]; see Figure 5 for a plot
of its graph. Indeed, the two energies agree for {u ∈ L∞(D) : 0 ≤ u(x) ≤ 1 ∀x}. So
we only need to show that any minimizer of the unconstrained problem automatically
satisfies the constraint 0 ≤ u ≤ 1. This is immediate: If α > λ

2 ‖s(x)‖L∞ , then

|λs(x)|max{|u(x)|, |u(x) − 1|} < αν(u(x)) whenever u(x) ∈ [0, 1]c,

which means that the transformation u → min{max{0, u}, 1} always decreases the
energy of the unconstrained problem (strictly if u(x) ∈ [0, 1]c on a set of positive
measure). That leads to the desired conclusion.

Numerical examples. Here we detail how we obtained the numerical results
pertaining to the two-phase piecewise constant segmentation models that are pre-
sented in this paper. Given c1, c2, the “exact penalty” formulation of the equivalent
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Fig. 5. The function ν(ξ) is used for exact penalization as a method to impose the constraint
0 ≤ u ≤ 1 in the minimization of Claim 1.

minimization problem described above leads to the following Euler–Lagrange equa-
tion:

div

(
∇u

|∇u|

)
− λs(x) − αν′(u) = 0,

where s(x) = (c1 − f(x))2 − (c2 − f(x))2. The following explicit gradient descent
scheme was used to solve the last equation:

(14)
un+1 − un

δt
= D−

x

⎛
⎝ D+

x u
n√

(D+
x un)2 + (D+

y un)2 + ε1

⎞
⎠

+ D−
y

⎛
⎝ D+

y u
n√

(D+
x un)2 + (D+

y un)2 + ε1

⎞
⎠− λs(x) − αν′ε2

(un),

where ε1, ε2 > 0 are small constants, and νε2(ξ) is a regularized version of ν(ξ) that
smooths the latter’s kinks at 0 and 1.

The image shown in the Figure 6 is not piecewise constant with two regions; in
fact it is not very well approximated by any image that takes only two values. This
makes it a challenging test case for the two-phase segmentation problem (images that
are already approximately two-valued are easily and very quickly segmented by these
algorithms, and thus are easier examples).

Figure 7 shows the result found (i.e., the function u) using (14) to update the
unknown function u(x) that represents the two phases, when the given image f(x)
is the one shown in Figure 6. The two constants c1 and c2 were initially chosen to
be 1 and 0, and updated occasionally according to (11); they eventually converged
to 0.4666 and 0.0605, respectively. Although the considerations above (in particular,
Theorem 2) do not imply that the minimizers of the objective functional turn out
to be binary themselves (which would make the thresholding step in the algorithm
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Fig. 6. The given image f(x) used in the two-phase segmentation numerical results discussed
in section 4.
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Fig. 7. The solution u(x) obtained by the numerical scheme of section 4. Although our claims
do not imply the solution itself turns out to be binary, this seems to be always the case in practice.
As can be seen, the computed solution is very close to being binary.

of Theorem 2 unnecessary), in practice they seem to. Indeed, the image of Figure 7
is very close to being binary. Furthermore, it gets even closer to being binary if the
computation is repeated using smaller values of the regularization parameters ε1 and
ε2 that appear in scheme (14). On the other hand, it might be possible to cook up
special given images f and special values λ for which there are nonbinary minimizers;
for instance, in the case of the convex formulation (7) of the related geometry problem
(4), the simple example of a disk as the given shape leads to nonbinary solutions for
a specific choice of the parameter λ, as shown in [6].

Figure 8 displays the histograms of u(x) at intermediate stages of the gradient
descent computation. During the evolution, the function u certainly takes a contin-
uum of values; however, as the steady state approaches, the values that u can take
accumulate at the extreme ends of its allowed range. In this case, the extreme values
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Fig. 8. Histograms of intermediate solutions un(x) of the flow in (14), for the example of
Figures 6 and 7.

seem to be about 0.04 at the low end and 0.97 at the high end. They are not 0 and
1 because the exact penalty function ν that appears in (14) is regularized.

The theory above says that for fixed c1 and c2, all level sets of the function u(x)
are minimizers. The table below shows the value of energy (9) computed by taking
Σ = {x : u(x) = μ} for several different values of μ, where u(x) is the numerical
example of Figures 6, 7, and 8, and the constants c1 and c2 have the values quoted
above.

μ Energy
0.2 17.7055
0.4 17.6458
0.5 17.6696
0.6 17.6655
0.8 17.6740

For comparison, we note that the energy of a disk centered at the middle of the image
with radius a quarter of a side of the image domain has energy of about 112. Thus,
even though there is some minor variation among different level sets of the function
u(x) (see Figure 9 for a plot of several level contours) and their corresponding energies
(due to some of the approximations, such as in the penalty function μ, that were made
to get a practical numerical algorithm), the difference in energy between them is quite
small; they are all almost minimizers.

Acknowledgment. The authors would like to thank Prof. Robert V. Kohn, from
whom they learned the observations of Strang in [23, 24].
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Fig. 9. Plot of several level contours of the solution obtained. They are all very close to each
other.
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MULTIPLE SCATTERING BY MULTIPLE SPHERES:
A NEW PROOF OF THE LLOYD–BERRY FORMULA

FOR THE EFFECTIVE WAVENUMBER∗

C. M. LINTON† AND P. A. MARTIN‡

Abstract. We provide the first classical derivation of the Lloyd–Berry formula for the effective
wavenumber of an acoustic medium filled with a sparse random array of identical small scatterers.
Our approach clarifies the assumptions under which the Lloyd–Berry formula is valid. More precisely,
we derive an expression for the effective wavenumber which assumes the validity of Lax’s quasi-
crystalline approximation but makes no further assumptions about scatterer size, and then we show
that the Lloyd–Berry formula is obtained in the limit as the scatterer size tends to zero.

Key words. multiple scattering, effective wavenumber, random media, acoustics
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1. Introduction. Suppose that we are interested in the scattering of sound by
many small scatterers; for example, we might be interested in using ultrasound to
determine the quality of certain composites [15], fresh mortar [2], or food products
such as mayonnaise [24]. If we knew the shape, size, and location of every scatterer, we
could solve the multiple-scattering problem by solving a boundary integral equation,
for example [22]. However, usually we do not have this information. Thus, it is
common to regard the volume containing the scatterers as a random medium, with
certain average (homogenized) properties. Here, we are concerned with finding an
effective wavenumber , K, that can be used for modeling wave propagation through
the scattering volume. This is a classical topic with a large literature: we cite well-
known papers by Foldy [7], Lax [18, 19], Waterman and Truell [28], Twersky [26], and
Fikioris and Waterman [6], and we refer to the book by Tsang et al. [25] for more
information.

A typical problem is the following. The region z < 0 is filled with a homogeneous
compressible fluid of density ρ and sound-speed c. The region z > 0 contains the
same fluid and many scatterers; to fix ideas, suppose that the scatterers are identical
spheres. Then, a time-harmonic plane wave with wavenumber k = ω/c (ω is the an-
gular frequency) is incident on the scatterers. The scattered field may be computed
exactly for any given configuration (ensemble) of N spheres, but the cost increases
as N increases. If the computation can be done, it may be repeated for other config-
urations, and then the average reflected field could be computed (this is the Monte
Carlo approach). Instead of doing this, we shall do some ensemble averaging in order
to calculate the average (coherent) field. One result of this is a formula for K.

Foldy [7] considered isotropic point scatterers; this is an appropriate model for
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small sound-soft scatterers. He obtained the formula

(1.1) K2 = k2 − 4πign0/k,

where n0 is the number of spheres per unit volume and g is the scattering coefficient for
an isolated scatterer. The formula (1.1) assumes that the scatterers are independent
and that n0 is small. We are interested in calculating the correction to (1.1) (a term
proportional to n2

0), and this will require saying more about the distribution of the
scatterers; specifically, we shall use pair correlations. Thus, our goal is a formula of
the form

(1.2) K2 = k2 + δ1n0 + δ2n
2
0,

with computable expressions for δ1 and δ2. Moreover, we do not want to restrict our
formula only to sound-soft scatterers.

There is some controversy over the proper value for δ2. In order to state one such
formula, we introduce the far-field pattern f . For scattering by one sphere, we have
uin = exp (ik · r) for the incident plane wave, where k = kk̂, r = rr̂, k = |k|, and

r = |r|; the angle of incidence, θin, is defined by cos θin = k̂ · ẑ, where ẑ = (0, 0, 1) is
a unit vector in the z-direction. Then the scattered waves satisfy

(1.3) usc ∼ (ikr)−1eikrf(Θ) as kr → ∞,

where cos Θ = r̂ · k̂. Then, Twersky [26] has obtained (1.2) with

(1.4) δ1 = −(4πi/k)f(0) and δ2 = (4π2/k4) sec2 θin

{
[f(π − 2θin)]2 − [f(0)]2

}
.

The formula for δ2 involves θin, so that it gives a different effective wavenumber for
different incident fields. The same formulas but with θin = 0 (normal incidence) were
given by Urick and Ament [27] and by Waterman and Truell [28]:

(1.5) δ1 = −(4πi/k)f(0) and δ2 = (4π2/k4)
{
[f(π)]2 − [f(0)]2

}
.

Other formulas were obtained more recently [14, 30].
In 1967, Lloyd and Berry [21] showed that the formula for δ2 should be

(1.6) δ2 =
4π2

k4

{
−[f(π)]2 + [f(0)]2 +

∫ π

0

1

sin (θ/2)

d

dθ
[f(θ)]

2
dθ

}
,

with no dependence on θin. They used methods and language coming from nuclear
physics. Thus, in their approach, which they

call the “resummation method,” a point source of waves is considered to be situ-

ated in an infinite medium. The scattering series is then written out completely,

giving what Lax has called the “expanded” representation. In this expanded rep-

resentation the ensemble average may be taken exactly [but then] the coherent

wave does not exist; the series must be resummed in order to obtain any result

at all.

The main purpose of the present paper is to demonstrate that a proper analysis
of the semi-infinite model problem (with arbitrary angle of incidence) leads to the
Lloyd–Berry formula. Our analysis does not involve “resumming” series or divergent
integrals. It builds on a conventional approach, in the spirit of the paper by Fikioris
and Waterman [6].
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There are two good reasons for giving a new derivation of the Lloyd–Berry for-
mula. First, our analysis clarifies the assumptions that lead to (1.6). Second, erro-
neous formulas (such as (1.4) or (1.5)) continue to be used widely, perhaps because
they are simpler than (1.6) or perhaps because the original derivation in [21] seems
suspect. For some representative applications, see [15, 2, 23] and [24, Chapter 4].

The paper begins with a brief summary of some elementary probability theory.
The pair-correlation function is introduced, including the notion of “hole correction,”
which ensures that spheres do not overlap during the averaging process. In section 3,
we consider isotropic scatterers and derive the integral equations of Foldy (indepen-
dent scatterers, no hole correction) and of Lax (hole correction included). Foldy’s
equation is solved exactly. A method is developed in section 3.2 for obtaining an
expression for K which does not require an exact solution of the integral equation,
merely an assumption that an effective wavenumber can be used at some distance
from the “interface” at z = 0 between the homogeneous region (z < 0) and the re-
gion occupied by many small scatterers (z > 0). The virtue of this method is that
it succeeds when the governing integral equation cannot be solved exactly. Thus,
in section 3.3, we obtain an expression for K from Lax’s integral equation; Foldy’s
approximation is recovered when the hole correction is removed. The same method
is used in section 4 but without the restriction to isotropic scatterers. We start with
an exact, deterministic theory for acoustic scattering by N spheres; the spheres can
be soft, hard, or penetrable. We combine multipole solutions in spherical polar coor-
dinates with an appropriate addition theorem. This method is well known; for some
recent applications, see [17, 10, 12]. The exact system of equations is then subjected
to ensemble averaging in section 4.3; Lax’s “quasi-crystalline approximation” [19] is
invoked. This leads to a homogeneous infinite system of linear algebraic equations;
the existence of a nontrivial solution determines K. We solve the system for small n0

and recover the Lloyd–Berry formula.

An analogous theory can be developed in two dimensions and leads to a result that
is reminiscent of the Lloyd–Berry formula [20]. However, the three-dimensional calcu-
lations described below are much more complicated, as they involve addition theorems
for spherical wavefunctions and properties of spherical harmonics. Nevertheless, the
final results are rather simple.

2. Some probability theory. In this section, we give a very brief summary
of the probability theory needed. For more information, see [7], [18], or Chapter 14
of [13].

Suppose that we have N scatterers located at the points r1, r2, . . . , rN ; denote
the configuration of points by ΛN = {r1, r2, . . . , rN}. Then, the ensemble (or config-
urational) average of any quantity F (r|ΛN ) is defined by

(2.1) 〈F (r)〉 =

∫
· · ·
∫

p(r1, r2, . . . , rN )F (r|ΛN ) dV1 · · ·dVN ,

where the integration is over N copies of the volume BN containing N scatterers.
Here, p(r1, . . . , rN ) dV1 dV2 · · ·dVN is the probability of finding the scatterers in a
configuration in which the first scatterer is in the volume element dV1 about r1, the
second scatterer is in the volume element dV2 about r2, and so on, up to rN . The
joint probability distribution p(r1, . . . , rN ) is normalized so that 〈1〉 = 1. Similarly,
the average of F (r|ΛN ) over all configurations for which the first scatterer is fixed
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at r1 is given by

(2.2) 〈F (r)〉1 =

∫
· · ·
∫

p(r2, . . . , rN |r1)F (r|ΛN ) dV2 · · ·dVN ,

where the conditional probability p(r2, . . . , rN |r1) is defined by p(r1, r2, . . . , rN ) =
p(r1) p(r2, . . . , rN |r1). If two scatterers are fixed, say the first and the second, we
can define

(2.3) 〈F (r)〉12 =

∫
· · ·
∫

p(r3, . . . , rN |r1, r2)F (r|ΛN ) dV3 · · ·dVN ,

where p(r2, . . . , rN |r1) = p(r2|r1) p(r3, . . . , rN |r1, r2).
As each of the N scatterers is equally likely to occupy dV1, the density of scatterers

at r1 is Np(r1) = n0, the (constant) number of scatterers per unit volume. Thus

(2.4) p(r) = n0/N = |BN |−1,

where |BN | is the volume of BN . For spheres of radius a, the simplest sensible choice
for the pair-correlation function is

(2.5) p(r2|r1) = (n0/N)H(R12 − b), where R12 = |r1 − r2|

and H is the Heaviside unit function: H(x) = 1 for x > 0, and H(x) = 0 for x < 0.
The parameter b (the “hole radius”) satisfies b ≥ 2a so that spheres are not allowed
to overlap.

3. Foldy–Lax theory: Isotropic scatterers. Foldy’s theory [7] begins with a
simplified deterministic model for scattering by N identical scatterers, each of which
is supposed to scatter isotropically. Thus, the total field is assumed to be given by
the incident field plus a point source at each scattering center, rj :

(3.1) u(r|ΛN ) = uin(r) + g

N∑
j=1

uex(rj ; rj |ΛN )h0(k|r − rj |).

Here, hn(w) ≡ h
(1)
n (w) is a spherical Hankel function, g is the (assumed known)

scattering coefficient, and the exciting field uex is given by

(3.2) uex(r; rn|ΛN ) = uin(r) + g

N∑
j=1
j �=n

uex(rj ; rj |ΛN )h0(k|r − rj |);

the N numbers uex(rj ; rj |ΛN ) (j = 1, 2, . . . , N) required in (3.1) are to be determined
by solving the linear system obtained by evaluating (3.2) at r = rn.

If we try to compute the ensemble average of u, using (3.1) and (2.1), we obtain

(3.3) 〈u(r)〉 = uin(r) + gn0

∫
BN

〈uex(r1)〉1 h0(k|r − r1|) dV1,

where we have used (2.2), (2.4), and the indistinguishability of the scatterers. For
〈uex(r1)〉1, we obtain

(3.4) 〈uex(r)〉1 = uin(r) + g(N − 1)

∫
BN

p(r2|r1) 〈uex(r2)〉12 h0(k|r − r2|) dV2,
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where we have used (2.3) and (3.2). Equations (3.3) and (3.4) are the first two in
a hierarchy, involving more and more complicated information on the statistics of
the scatterer distribution. In practice, the hierarchy is broken using an additional
assumption. At the lowest level, we have Foldy’s assumption,

(3.5) 〈uex(r)〉1 	 〈u(r)〉,

at least in the neighborhood of r1. When this is used in (3.3), we obtain

(3.6) 〈u(r)〉 = uin(r) + gn0

∫
BN

〈u(r1)〉h0(k|r − r1|) dV1, r ∈ BN .

We call this Foldy’s integral equation for 〈u〉. The integral on the right-hand side is
an acoustic volume potential. Hence, an application of (∇2 + k2) to (3.6) eliminates
the incident field and shows that (∇2 + K2)〈u〉 = 0 in BN , where K2 is given by
Foldy’s formula, (1.1).

At the next level, we have Lax’s quasi-crystalline assumption (QCA) [19],

(3.7) 〈uex(r)〉12 	 〈uex(r)〉2.

When this is used in (3.4) evaluated at r = r1, we obtain

(3.8) v(r) = uin(r) + g(N − 1)

∫
BN

p(r1|r) v(r1)h0(k|r − r1|) dV1, r ∈ BN ,

where v(r) = 〈uex(r)〉1. We call this Lax’s integral equation.
In what follows, we let N → ∞ so that BN → B∞, a semi-infinite region, z > 0.

3.1. Foldy’s integral equation: Exact treatment. Consider a plane wave
at oblique incidence, so that

(3.9) uin = exp (ik · r) = eiαz exp (ikT · q),

where r = (x, y, z), q = (x, y, 0), k = kT + αẑ, ẑ = (0, 0, 1), the wavenumber vector
k is given in spherical polar coordinates by

k = kk̂ with k̂ = (sin θin cosφin, sin θin sinφin, cos θin), 0 ≤ θin < π/2,

α = k cos θin, and kT is the transverse wavenumber vector, satisfying kT · ẑ = 0.
For a semi-infinite domain B∞ (z > 0), Foldy’s integral equation (3.6) becomes

〈u(x, y, z)〉 = uin(x, y, z) + gn0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
〈u(x+X, y + Y, z1)〉h0(k	1) dX dY dz1,

for 0 ≤ |x| < ∞, 0 ≤ |y| < ∞, and z > 0, where 	1 =
√

X2 + Y 2 + (z − z1)2. This
equation can be solved exactly. Thus, writing

(3.10) 〈u(x, y, z)〉 = U(z) exp (ikT · q), 0 ≤ |q| < ∞, z > 0,

we obtain

(3.11) U(z) = eiαz + gn0

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
U(z1)h0(k	1) exp (ikT · Q) dX dY dz1
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for z > 0, where Q = (X,Y, 0).
In Appendix B, it is shown that

(3.12)

∫ ∞

−∞

∫ ∞

−∞
h0(k	1) exp (ikT · Q) dX dY =

2π

kα
eiα|z−z1|.

Thus, we see that U solves

(3.13) U(z) = eiαz +
2πgn0

kα

∫ ∞

0

U(z1) eiα|z−z1| dz1, z > 0.

Now, set U(z) = U0 eiλz, so that (3.13) gives

U0 eiλz − eiαz =
2πgn0

ikα
U0

(
2αeiλz

λ2 − α2
− eiαz

λ− α

)
,

where we have assumed that Imλ > 0. If we compare the coefficients of eiλz, we see
that U0 cancels, leaving

(3.14) λ2 − α2 = −4πign0/k,

which determines λ. Then, the coefficients of eiαz give U0 = 2α/(λ + α). A similar
method can be used to find 〈u〉 when B∞ is a slab of finite thickness, 0 < z < h.

It is natural to define an effective wavenumber vector by

K = K(sinϑ cosϕ, sinϑ sinϕ, cosϑ) = KK̂(3.15)

= (k sin θin cosφin, k sin θin sinφin, λ),

whence

(3.16) λ = K cosϑ and K sinϑ = k sin θin.

The last equality is recognized as Snell’s law, even though K and ϑ are complex, with
ImK > 0. Hence, we see that

(3.17) λ2 − α2 = K2 − k2,

whence (3.14) reduces to Foldy’s formula (1.1).

3.2. Foldy’s integral equation: Alternative treatment. We have seen that
Foldy’s integral equation can be solved exactly, and that the solution process has two
parts: first find λ (and hence the effective wavenumber) and then find U0. In fact,
λ can be found without finding the complete solution; the reason for pursuing this is
that we cannot usually find exact solutions. Thus, consider (3.13), and suppose that

U(z) = U0e
iλz for z > ,

where U0, λ, and  are unknown. To proceed, we need say nothing about the solution
U in the “boundary layer” 0 < z < . Now, evaluate the integral equation for z > ;
we find that

U0 eiλz − eiαz =
2πgn0

kα
eiαz

∫ �

0

U(t) e−iαt dt +
2πgn0

kα

∫ ∞

�

U(t) eiα|z−t| dt

= A eiλz + B eiαz for z > ,
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where A = −4πign0U0/[k(λ2 − α2)] and

B =
2πgn0

kα

∫ �

0

U(t) e−iαt dt +
2πign0U0

kα(λ− α)
ei(λ−α)�.

Then, setting U0 = A gives (3.14) again, without knowing the solution U everywhere.
This basic method will be used again below.

3.3. Lax’s integral equation. Using (2.5) for p(r1|r) in (3.8) gives

(3.18) v(r) = uin(r) + gn0
N − 1

N

∫
Bb

N

v(r1)h0(kR1) dr1, r ∈ BN ,

where Bb
N (r) = {r1 ∈ BN : R1 = |r − r1| > b}, which is BN with a (possibly

incomplete) ball excluded.
Let N → ∞ and take an incident plane wave, (3.9), giving

v(x, y, z) = eiαz exp (ikT · q) + gn0

∫
z1>0, �1>b

v(x + X, y + Y, z1)h0(k	1) dX dY dz1,

for 0 ≤ |q| < ∞ and z > 0. As in section 3.1, we write

(3.19) v(x, y, z) = V (z) exp (ikT · q), 0 ≤ |q| < ∞, z > 0,

giving

(3.20) V (z) = eiαz + gn0

∫
z1>0, �1>b

V (z1)h0(k	1) exp (ikT · Q) dX dY dz1

for 0 ≤ |q| < ∞ and z > 0, where Q = (X,Y, 0). Then, using (3.12), we see that V
solves

(3.21) V (z) = eiαz + gn0

∫ ∞

0

V (z1)L(z − z1) dz1, z > 0,

where the kernel, L(z − z1), is given by

L(Z) =
2π

kα
eiα|Z| −

∫ c(Z)

0

∫ 2π

0

h0(k
√
Q2 + Z2)eikQ sin θin cos (Φ−φin)QdΦ dQ

=
2π

kα
eiα|Z| − 2π

∫ c(Z)

0

h0(k
√
Q2 + Z2) J0(kQ sin θin)QdQ(3.22)

with c(Z) =
√
b2 − Z2 H(b− |Z|); here, Jn is a Bessel function, and we have written

the double integral over X and Y in (3.20) as an integral over all X and Y minus an
integral through the cross section of the ball at z, if necessary.

We have been unable to solve (3.21) exactly. However, the alternative method
described in section 3.2 can be used. Thus, let us suppose that

(3.23) V (z) = V0 eiλz for z > ,

where V0, λ, and  are unknown. Then, consider (3.21) for z >  + b, so that the
interval |z − z1| < b is entirely within the range z1 > . Using (3.22), (3.21) gives

V0 eiλz − eiαz

gn0
=

2π

kα
eiαz

∫ �

0

V (t) e−iαt dt +
2π

kα

∫ ∞

�

V (t) eiα|z−t| dt(3.24)

− 2π

∫ z+b

z−b

V (t)

∫ c(z−t)

0

h0(k
√
Q2 + (z − t)2) J0(kQ sin θin)QdQdt
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for z >  + b. Equation (3.23) can be used in the second and third integrals. The
second integral is elementary, and has the value

2πiV0

kα

{
ei(λ−α)�

λ− α
eiαz − 2α

λ2 − α2
eiλz

}
.

Denote the third integral in (3.24) by I3; we have

I3 = −2πV0

∫ b

−b

eiλ(z+ξ)

∫ √
b2−ξ2

0

h0(k
√
Q2 + ξ2) J0(kQ sin θin)QdQdξ

= −2πV0 eiλz

∫ π

0

∫ b

0

eiλr cos θ h0(kr) J0(kr sin θ sin θin) r2 sin θ dr dθ

= −V0 eiλz

∫ 2π

0

∫ π

0

∫ b

0

eir[λ cos θ+k sin θ sin θin cos (φ−φin)] h0(kr) r
2 sin θ dr dθ dφ.

Using (3.16), the exponent simplifies to K · r, whence

I3 = −V0 eiλz

∫
r<b

exp (iK · r)h0(k|r|) dV (r)

= −2πV0 eiλz

∫ b

0

∫ π

0

eikr

ikr
eiKr cos θ r2 sin θ dθ dr

=
2πV0

kK
eiλz

∫ b

0

eikr
(
eiKr − e−iKr

)
dr =

4πiV0

k(K2 − k2)
eiλz{1 −N0(Kb)},

where N0(x) = eikb{cosx − i(kb/x) sinx}. Using these results in (3.24) and noting
(3.17), we obtain

V0 eiλz − eiαz = A eiλz + B eiαz for z >  + b,

where

A =
4πign0V0

k(k2 −K2)
N0(Kb), B =

2πgn0

kα

∫ �

0

V (t) e−iαt dt +
2πign0V0

kα(λ− α)
ei(λ−α)�.

For a solution, we must have A = V0, whence

(3.25) K2 = k2 − 4πig(n0/k)N0(Kb),

which is a nonlinear equation for K. Notice that this equation does not depend on
the angle of incidence, θin.

We have N0(Kb) → 1 as Kb → 0 so that, in this limit, we recover Foldy’s formula
for the effective wavenumber, (1.1).

Let us solve (3.25) for small n0. (We could use the dimensionless volume fraction
4
3πa

3n0, but it is customary to use n0.) Begin by writing

(3.26) K2 = k2 + δ1n0 + δ2n
2
0 + · · · ,

where δ1 and δ2 are to be found; for δ1, we expect to obtain the result given by (1.1).
It follows that K = k + 1

2δ1n0/k + O(n2
0) and then

N0(Kb) = N0(kb) + (Kb− kb)N ′
0(kb) + · · ·

= 1 − 1
2 ib(n0/k)δ1d0(kb) + O(n2

0),
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where d0(x) = 1−x−1eix sinx. When this approximation for N0(Kb) is used in (3.25),
we obtain

K2 = k2 − 4πign0/k − 2πbg(n0/k)2δ1d0(kb).

Comparison of this formula with (3.26) gives δ1 = −4πig/k (as expected) and δ2 =
8π2ig2bk−3d0(kb), so that we obtain the approximation

(3.27) K2 = k2 − 4πig

k
n0 +

8ib(πgn0)
2

k3

(
1 − eikb sin kb

kb

)
.

(Recall that a common choice for the hole radius is b = 2a.) As far as we know, the
formula (3.27) is new. Note that the second-order term in (3.27) vanishes in the limit
kb → 0.

4. A finite array of identical spheres: Exact theory. Let O be the origin
of three-dimensional Cartesian coordinates, so that a typical point has position vector
r = (x, y, z) with respect to O. Define spherical polar coordinates (r, θ, φ) at O, so
that r = rr̂ = r(sin θ cosφ, sin θ sinφ, cos θ). We consider N identical spheres, Sj ,
j = 1, 2, . . . , N . The sphere Sj has radius a and center Oj at r = rj . We define
spherical polar coordinates (ρj , θj , φj) at Oj , so that r = ρj + rj with

ρj = ρjρ̂j = ρj(sin θj cosφj , sin θj sinφj , cos θj).

We assume that θj = 0 is in the z-direction (θ = 0).
Exterior to the spheres the pressure field is u, where

(4.1) ∇2u + k2u = 0.

Inside Sj , the field is uj , where

(4.2) ∇2uj + κ2uj = 0,

κ = ω/c̃, and c̃ is the sound speed inside the spheres. The transmission conditions on
the spheres are

(4.3) u = uj ,
1

ρ

∂u

∂ρj
=

1

ρ̃

∂uj

∂ρj
on ρj = a, j = 1, . . . , N,

where ρ̃ is the fluid density inside the spheres.
A plane wave, given by (3.9), is incident on the spheres. The problem is to

calculate the scattered field outside the spheres, defined as usc = u − uin. We start
with just one sphere, in order to fix our notation.

4.1. Scattering by one sphere. For the incident plane wave, we have

(4.4) uin(r) = exp (ik · r) = 4π
∑
n,m

inψ̂m
n (r)Y m

n (k̂),

where ψ̂m
n (r) = jn(kr)Y m

n (r̂), jn(w) is a spherical Bessel function, Y m
n (r̂) = Y m

n (θ, φ)
is a spherical harmonic (see Appendix A), the overbar denotes complex conjugation,
and we have used the shorthand notation

∑
n,m

≡
∞∑

n=0

n∑
m=−n

.
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With our choice of normalization, the spherical harmonics are orthonormal; see (A.1).
For the scattered and interior fields, we can write

usc(r) = 4π
∑
n,m

inAm
n Znψ

m
n (r) and uint(r) = 4π

∑
n,m

inBm
n jn(κr)Y m

n (r̂),

respectively, where ψm
n (r) = hn(kr)Y m

n (r̂), the coefficients Am
n and Bm

n are to be
found, and the factor

(4.5) Zn =
qj′n(ka)jn(κa) − jn(ka)j′n(κa)

qh′
n(ka)jn(κa) − hn(ka)j′n(κa)

,

with q = ρ̃c̃/(ρc), has been introduced for later convenience. Then, the transmission

conditions on r = a yield Am
n and Bm

n ; in particular, we obtain Am
n = −Y m

n (k̂). Also,
the far-field pattern, defined by (1.3), is given by

(4.6) f(Θ) = 4π
∑
n,m

ZnA
m
n Y m

n (r̂) = −
∞∑

n=0

(2n + 1)ZnPn(cos Θ),

where cos Θ = r̂ · k̂ and we have used (A.3) in order to evaluate the sum over m. Note
that we recover the sound-soft results in the limit q → 0, whereas the limit q → ∞
gives the sound-hard results.

4.2. Scattering by N spheres. A phase factor for each sphere is defined by
Ij = exp (ik · rj), and then we can write

(4.7) uin = Ij exp (ik · ρj) = 4πIj
∑
n,m

inψ̂m
n (ρj)Y

m
n (k̂).

We seek a solution to (4.1) and (4.2) in the form

u = uin + 4π

N∑
j=1

∑
n,m

inAm
njZnψ

m
n (ρj), uj = 4π

∑
n,m

inBm
nj jn(κρj)Y

m
n (ρ̂j),

for some set of unknown complex coefficients Am
nj and Bm

nj .
Now, in order to apply the transmission conditions on each sphere, we shall need

an addition theorem. Thus, given vectors a, b, and c = a + b, we have

(4.8) ψm
n (c) =

∑
ν,μ

Smμ
nν (b) ψ̂μ

ν (a) for |a| < |b|,

where the separation matrix Sμm
νn is given by

(4.9) Sμm
νn (R) = 4πin−ν(−1)m

∑
q

iqψμ−m
q (R)G(n,m; ν,−μ; q).

In this formula, G is a Gaunt coefficient (defined by (A.5)), and the sum has a finite
number of terms; in fact, q runs from |n− ν| to (n + ν) in steps of 2, so that

(4.10) (q + n + ν) is even.

For more information on the addition theorem, see [3, 10, 11] and references therein.
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Let Rsj = rs − rj = ρj − ρs be the position vector of Os with respect to Oj .
Then, provided that ρs < Rsj = |Rsj | for all j, we can write the field exterior to the
sphere Ss as

u = 4π
∑
n,m

in
{
Isψ̂

m
n (ρs)Y

m
n (k̂) + Am

nsZnψ
m
n (ρs)

}
(4.11)

+ 4π
∑
n,m

ψ̂m
n (ρs)

N∑
j=1
j �=s

∑
ν,μ

iνAμ
νjZνS

μm
νn (Rsj).

The geometrical restriction implies that this expression is valid near the surface of
Ss, and so (4.11) can be used to apply the transmission conditions on ρs = a. Thus,
after using the orthogonality of the functions Y m

n (ρ̂s), (A.1), and then eliminating
the coefficients Bm

nj , we obtain

(4.12) Am
ns +

N∑
j=1
j �=s

∑
ν,μ

iν−nAμ
νjZνS

μm
νn (Rsj) = −IsY m

n (k̂),
s = 1, 2, . . . , N,
n = 0, 1, 2, . . . ,
m = −n, . . . , n,

an infinite linear system of equations for Am
nj . Note that the quantities q, κ, and a

enter the equations only through the terms Zν .

4.3. Arrays of spheres: Averaged equations. The above analysis applies to
a specific configuration of scatterers. Now we take ensemble averages. Specifically,
setting s = 1 in (4.12) and then taking the conditional average, using (2.5), we obtain

(4.13) 〈Am
n1〉1+n0

N − 1

N

∑
ν,μ

iν−nZν

∫
BN :R12>b

Sμm
νn (R12) 〈Aμ

ν2〉12 dV2 = −I1Y m
n (k̂),

for n = 0, 1, 2, . . . and m = −n, . . . , n. Then, we let N → ∞ so that BN becomes the
half-space z > 0, and invoke Lax’s QCA, (3.7). This implies that 〈Am

n2〉12 = 〈Am
n2〉2.

Hence, (4.13) reduces to

(4.14) 〈Am
n1〉1 + n0

∑
ν,μ

iν−nZν

∫
z2>0, R12>b

Sμm
νn (R12) 〈Aμ

ν2〉2 dV2 = −I1Y m
n (k̂),

for n = 0, 1, 2, . . . and m = −n, . . . , n. As I1 = exp (ik · r1) = eiαz1 exp (ikT · q1) with
α = k cos θin and qs = (xs, ys, 0), we seek a solution to (4.14) in the form

(4.15) 〈Am
ns〉s = Φm

n (zs) exp (ikT · qs)

so that
(4.16)

Φm
n (z1) + n0

∑
ν,μ

iν−nZν

∫
z2>0, R12>b

Sμm
νn (R12) exp (ikT · q21) Φμ

ν (z2) dV2 = −eiαz1Y m
n (k̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n, where qsj = qs − qj .
Proceeding as before, suppose that for sufficiently large z (say, z > ) we can

write

(4.17) Φm
n (z) = Fm

n eiλz.
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Then if z1 >  + b, (4.16) becomes
(4.18)

Fm
n eiλz1 +n0

∑
ν,μ

(−i)ν−nZν

{∫ �

0

Φμ
ν (z2)Lμm

νn (z21) dz2 +Fμ
ν eiλz1Mμm

νn

}
= −eiαz1Y m

n (k̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n, where z21 = z2 − z1,

Lμm
νn (z21) =

∫ ∞

−∞

∫ ∞

−∞
Sμm
νn (R21) exp (ikT · q21) dx2 dy2,

Mμm
νn =

∫
z2>�,R21>b

Sμm
νn (R21) exp (ikT · q21) eiλz21 dV2,

and we have used Sμm
νn (−r) = (−1)n+νSμm

νn (r), a relation that follows from (4.9).
Indeed, because of (4.9), it is sufficient to consider

Lm
n (z) =

∫ ∞

−∞

∫ ∞

−∞
ψm
n (R) exp (ikT · Q) dX dY

for z < 0 and

Mm
n =

∫
z2>�,R21>b

ψm
n (R21) Ψ(R21) dV2,

where Ψ(R) = eiλz exp (ikT · Q) = exp (iK · R) and K = KK̂ is defined by (3.15).
From (B.5), we have

Lm
n (z21) =

2πin

kα
Y m
n (k̂) eiα(z1−z2) for z1 > z2.

Hence, Lμm
νn is proportional to eiα(z1−z2), and so the integral term in (4.18) is propor-

tional to eiαz1 .
The volume integral Mm

n can be evaluated readily using Green’s theorem. We
have ψm

n ∇2Ψ − Ψ∇2ψm
n = (k2 −K2)ψm

n Ψ. It follows that

Mm
n =

1

k2 −K2

∫
∂B

[
ψm
n

∂Ψ

∂n
− Ψ

∂ψm
n

∂n

]
dS2,

where ∂B consists of two parts, the plane z2 =  and the sphere R12 = b. Now, on
z2 = , ∂/∂n = −∂/∂z2, and so we have

−
∫
z2=�

[
ψm
n

∂Ψ

∂z2
− Ψ

∂ψm
n

∂z2

]
dx2 dy2 =

2π

kα
ei(α−λ)(z1−�) in−1(λ + α)Y m

n (k̂),

using (B.8). Thus, the plane part of ∂B contributes a term to Mμm
νn proportional to

ei(α−λ)z1 , which in turn gives a contribution to (4.18) proportional to eiαz1 .
Next, from (4.4), we have

Ψ = exp (iK · R) = 4π
∑
ν,μ

iνjν(KR)Y μ
ν (R̂)Y μ

ν (K̂).

Then, the contribution from the sphere R12 = b is

−
∫

Ω

[
ψm
n

∂Ψ

∂R
− Ψ

∂ψm
n

∂R

]
R=b

b2 dΩ

= 4πb2
∑
ν,μ

iνY μ
ν (K̂){kjν(Kb)h′

n(kb) −Kj′ν(Kb)hn(kb)}
∫

Ω

Y m
n Y μ

ν dΩ

= 4πb2inY m
n (K̂){kjn(Kb)h′

n(kb) −Kj′n(Kb)hn(kb)},
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which is independent of z1; here, Ω is the unit sphere and we have used (A.1).
Collecting up our results, we find that (4.18) can be written as

(4.19) Am
n eiλz1 + Bm

n eiαz1 = −eiαz1 Y m
n (k̂),

for n = 0, 1, 2, . . . ,m = −n, . . . , n, and z1 >  + b, where

(4.20) Am
n = Fm

n +
(4π)2in0(−1)m

k(k2 −K2)

∑
ν,μ

ZνF
μ
ν

∑
q

Y μ−m
q (K̂)Nq(Kb)G(n,m; ν,−μ; q),

(4.21) Nn(x) = ikb{x j′n(x)hn(kb) − kb jn(x)h′
n(kb)},

and we have used (4.10) to remove a factor of (−1)q+n+ν . In particular, we note that
N0 appeared in section 3.3 during our analysis of Lax’s integral equation.

From (4.19), we immediately obtain Am
n = 0 for n = 0, 1, 2, . . ., m = −n, . . . , n.

These equations yield an infinite homogeneous system of linear algebraic equations
for Fm

n . The existence of a nontrivial solution to this system determines K.
It is worth noting that even though the solution of the system Am

n = 0 can depend
on θin via K̂ (see (3.15)), the effective wavenumber itself, K, should not depend on θin.

4.4. Approximate determination of K for small n0. The only approxima-
tion made in the derivation of the system Am

n = 0 is the QCA, which is expected to
be valid for small values of the scatterer concentration (n0a

3 � 1). We now assume
(as in section 3.3) that n0b/k

2 is also small and write K2 = k2 + δ1n0 + δ2n
2
0 + · · · .

Then

(4.22) Nn(Kb) = 1 − ibn0

2k
δ1dn(kb) + O(n2

0),

where

(4.23) dn(x) = xj′n(x)[xh′
n(x) + hn(x)] + [x2 − n(n + 1)]jn(x)hn(x),

and so

(4.24)
Nn(Kb)

k2 −K2
= − 1

δ1n0
+

ibdn(kb)

2k
+

δ2

δ2
1

+ O(n0).

If (4.24) is substituted into Am
n = 0, with Am

n defined by (4.20) and O(n2
0) terms

neglected, we obtain
(4.25)

Fm
n =

(4π)2i

kδ1
(−1)m

(
1 − n0δ2

δ1

)∑
ν,μ

ZνF
μ
ν W

mμ
nν +

(4π)2bn0

2k2
(−1)m

∑
ν,μ

ZνF
μ
ν X

mμ
nν ,

where

Wmμ
nν =

∑
q

Y μ−m
q (K̂)G(n,m; ν,−μ; q),(4.26)

Xmμ
nν =

∑
q

Y μ−m
q (K̂)G(n,m; ν,−μ; q) dq(kb).(4.27)

The Gaunt coefficients appear in the linearization formula for spherical harmonics,
(A.4). Replacing μ by −μ and r̂ by K̂ in the complex conjugate of (A.4), we obtain

Wmμ
nν = Y −m

n (K̂)Y μ
ν (K̂).
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Thus, at leading order, (4.25) gives

Fm
n =

(4π)2i

kδ1
Y m
n (K̂)

∑
ν,μ

ZνF
μ
ν Y

μ
ν (K̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n. Set Fm
n = Y m

n (K̂) F̃m
n , whence

F̃m
n =

(4π)2i

kδ1

∑
ν,μ

Zν F̃
μ
ν Y

μ
ν (K̂)Y μ

ν (K̂)

for n = 0, 1, 2, . . . and m = −n, . . . , n. However, the right-hand side of this equation
does not depend on n or m, so that F̃m

n = F̃ , say. Hence

(4.28) δ1 =
(4π)2i

k

∞∑
ν=0

Zν

ν∑
μ=−ν

Y μ
ν (K̂)Y μ

ν (K̂).

The sum over μ can be evaluated using Legendre’s addition theorem, (A.3). Setting

r̂1 = r̂2 = K̂ in (A.3) and noting that Pn(1) = 1, we obtain

(4.29) δ1 =
4πi

k

∞∑
ν=0

(2ν + 1)Zν = −4πi

k
f(0),

where f is the far-field pattern given by (4.6).
Returning to (4.25), we now set

Fm
n = Y m

n (K̂) F̃ + n0G
m
n ,

and then the O(n0) terms give

(4.30) Gm
n = Y m

n (K̂)V +
(4π)2b

2k2
(−1)mF̃

∑
ν,μ

ZνY
μ
ν (K̂)Xmμ

nν ,

where

(4.31) V =
(4π)2i

kδ1

∑
ν,μ

ZνG
μ
νY

μ
ν (K̂) − δ2

δ1
F̃ .

Note that V does not depend on n or m. Substituting for Gμ
ν from (4.30) in (4.31),

making use of (4.28), gives a formula for δ2:

(4.32) δ2 =
(4π)4ib

2k3

∑
n,m

∑
ν,μ

(−1)mZnZνY
m
n (K̂)Y μ

ν (K̂)Xmμ
nν .

So far we have not made any assumptions about the size of ka or kb (though
clearly kb ≥ 2ka). Now we will assume that kb is small. In the limit x → 0, we have
dn(x) ∼ in/x. Using this approximation simplifies Xmμ

nν , defined by (4.27). Hence,

(4.33) δ2 ∼ −1

2
(4π/k)4

∞∑
n=0

∞∑
ν=0

ZnZν Knν(K̂) as kb → 0,
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where

(4.34) Knν(K̂) =

n∑
m=−n

ν∑
μ=−ν

(−1)mY m
n (K̂)Y μ

ν (K̂)
∑
q

q Y μ−m
q (K̂)G(n,m; ν,−μ; q).

From (A.5) and
∫ 2π

0
eimφ dφ = 2πδ0m, we have

Y μ−m
q (K̂)G(n,m; ν,−μ; q) = (−1)m

∑
M

Y M
q (K̂)

∫
Ω

Y m
n Y μ

ν Y M
q dΩ

= (−1)m
2q + 1

4π

∫
Ω

Y m
n (r̂)Y μ

ν (r̂)Pq(r̂ · K̂) dΩ(r̂),

using (A.3). Hence, using (A.3) two more times, we obtain

Knν(K̂) =
(2n + 1)(2ν + 1)

(4π)3

∑
q

q(2q + 1)

∫
Ω

Pn(r̂ · K̂)Pν(r̂ · K̂)Pq(r̂ · K̂) dΩ(r̂)

=

√
(2n + 1)(2ν + 1)

(4π)3/2

∑
q

q
√

2q + 1G(n, 0; ν, 0; q),

where we have used Y 0
n =

√
(2n + 1)/(4π)Pn and (A.5). When this formula for Knν

is substituted into (4.33), we obtain complete agreement with the formula of Lloyd
and Berry [21]; see Appendix C.

In conclusion, we note that if we were to replace (2.5) with the (clearly unreason-
able)

p(r2|r1) = (n0/N)H(|z2 − z1| − a),

an analysis similar to that given above yields Twersky’s erroneous expression for δ2,
as given in (1.4). We omit the details of this calculation, but see [21] for a related
discussion and [20] for analogous calculations in two dimensions.

It is perhaps worth summarizing the various approximations that are needed to
arrive at the Lloyd–Berry formula. The system Am

n = 0 (with Am
n defined by (4.20))

serves to determine the effective wavenumber, subject only to the QCA. The QCA is
certainly appropriate only for low volume fractions, but it is very difficult to make a
precise quantitative assessment of its range of validity. Some numerical estimates of
the accuracy of the QCA can be found in, for example, [16] and [9]. If we assume
that the concentration of scatterers is small, in the sense that n0a

3 � 1 (which is
consistent with the QCA) and also that n0b/k

2 � 1, then the effective wavenumber,
up to second order in concentration, follows from (4.29) and (4.32). If we finally let
kb → 0, we obtain the Lloyd–Berry formula in the form of (4.29) and (4.33).

Appendix A. Spherical harmonics. We define spherical harmonics Y m
n by

Y m
n (r̂) = Y m

n (θ, φ) = (−1)m
√

2n + 1

4π

√
(n−m)!

(n + m)!
Pm
n (cos θ) eimφ,

where Pm
n is an associated Legendre function. We have orthonormality,

(A.1)

∫
Ω

Y m
n Y μ

ν dΩ = δnνδmμ,
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where Ω is the unit sphere. Also, Y −m
n = (−1)mY m

n .
For 0 ≤ m ≤ n, we have the expansion

(A.2)
Pm
n (t)

(1 − t2)m/2
=

1

2n n!

dm+n

dtm+n
(t2 − 1)n =

[(n−m)/2]∑
l=0

Bn,m
l tn−m−2l,

where [n] denotes the integer part of n. The coefficients Bn,m
l are known explicitly,

but we shall not need them.
We shall make use of Legendre’s addition theorem, namely,

(A.3) Pn(r̂1 · r̂2) =
4π

2n + 1

n∑
m=−n

Y m
n (r̂1)Y m

n (r̂2),

where Pn(t) is a Legendre polynomial.
The linearization formula for spherical harmonics is

(A.4) Y m
n (r̂)Y μ

ν (r̂) =
∑
q

Y m+μ
q (r̂)G(n,m; ν, μ; q),

where G is a Gaunt coefficient. Note that G is real. Making use of (A.1), we obtain

(A.5) G(n,m; ν,−μ; q) = (−1)m
∫

Ω

Y m
n Y μ

ν Y μ−m
q dΩ.

Appendix B. Some integrals. Consider the integral

L(z) =

∫ ∞

−∞

∫ ∞

−∞
h0(kR) exp (ikT · Q) dX dY,

where R = |R|, R = (X,Y, z), and Q = (X,Y, 0). Set Q = Q(cos Φ, sin Φ, 0) so
that kT ·Q = kQ sin θin cos (Φ − φin). Hence, as dX dY = QdQdΦ, we can integrate
over Φ, giving

L(z) = 2π

∫ ∞

0

h0(k
√
Q2 + z2) J0(kQ sin θin)QdQ.

We have

Qh0(k
√
Q2 + z2) =

Q eik
√

Q2+z2

ik
√
Q2 + z2

=
1

(ik)2

d

dQ
eik

√
Q2+z2

,

so that an integration by parts (using J ′
0 = −J1) gives

(B.1) L(z) = 2πk−2{eik|z| − L̂(z)},

where

L̂(z) = k sin θin

∫ ∞

0

J1(kQ sin θin) eik
√

Q2+z2
dQ.

Now, from [8, equation 6.637(1)] (with ν = 1 therein), we have

(B.2)

∫ ∞

0

e−a
√

x2+β2√
x2 + β2

J1(γx) dx = I1/2(X−)K1/2(X+),



MULTIPLE SCATTERING BY MANY SPHERES 1665

where X± = 1
2β{

√
a2 + γ2 ± a}, Re a > 0, Reβ > 0, and Re γ > 0. From [1, 10.2.13

and 10.2.17], the modified Bessel functions are given by

I1/2(w) = {2/(πw)}1/2 sinhw and K1/2(w) = {π/(2w)}1/2 e−w,

so that

I1/2(X−)K1/2(X+) = (βγ)−1
{

e−aβ − e−β
√

a2+γ2
}
.

Then, differentiating (B.2) with respect to a gives

(B.3) γ

∫ ∞

0

J1(γx) e−a
√

x2+β2
dx = e−aβ − a√

a2 + γ2
e−β

√
a2+γ2

.

The calculations leading to (B.3) are certainly valid for Re a > 0, Reβ > 0, and
Re γ > 0. We want to use (B.3) for β = z; as the left-hand side of (B.3) is an
even function of β, we can replace β by |β| on the right-hand side. We also want to

substitute a = −ik and γ = k sin θin, so that
√
a2 + γ2 = ±ik cos θin. To determine

the sign, we note that (from [8, equations 6.671(1) and 6.671(2)])

γ

∫ ∞

0

J1(γx) eikx dx = 1 − k√
k2 − γ2

for k > γ,

implying that we should take
√
a2 + γ2 = −ik cos θin. (Alternatively, we note that

the right-hand side of (B.3) is an analytic function of a in a cut plane; we can take
the cut between a = iγ and a = −iγ (γ real and positive), and we choose the branch
so that the right-hand side of (B.3) is real when a is real and positive. This leads to√
a2 + γ2 = −i

√
k2 − γ2 when a = −ik with k > γ > 0.) Hence,

L̂(z) = eik|z| − eik|z| cos θin sec θin,

and so (B.1) gives

(B.4) L(z) =

∫ ∞

−∞

∫ ∞

−∞
h0(kR) exp (ikT · Q) dX dY =

2π

k2 cos θin
eik|z| cos θin .

This formula generalizes. Thus, let

Lm
n (z) =

∫ ∞

−∞

∫ ∞

−∞
ψm
n (R) exp (ikT · Q) dX dY,

with ψm
n (r) = hn(kr)Y m

n (r̂). Then,

(B.5) Lm
n (z) =

2π in

k2 cos θin
Y m
n (k̂) e−ikz cos θin for z < 0,

with a similar formula for z > 0 (which we shall not need). When both m = 0 and
θin = 0, (B.5) reduces to a result obtained in [27].

To prove (B.5), begin by assuming that 0 ≤ m ≤ n. Let

(B.6) Ωm
n (r) = hn(kr)Pm

n (cos θ) eimφ.

(ψm
n (r) is a normalized form of Ωm

n (r).) Then, we have [5, 29, 4]

Ωm
n (r) = Ym

n h0(kr),
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where the Erdélyi operator Ym
n is defined by

Ym
n = (Dxy)

m

[(n−m)/2]∑
l=0

(−1)lBn,m
l (Dz)

n−m−2l, Dxy = −1

k

(
∂

∂x
+ i

∂

∂y

)
,

and Dz = −k−1∂/∂z; the coefficients Bn,m
l appear in the expansion (A.2). Hence,

Om
n (z) ≡

∫ ∞

−∞

∫ ∞

−∞
Ωm

n (R) exp (ikT · Q) dX dY =
∑
l

(−1)lBn,m
l (Dz)

n−m−2lIm(z),

where the sum is from l = 0 to the integer part of (n−m)/2, and

Im(z) =

∫ ∞

−∞

∫ ∞

−∞
exp (ikT · Q) (DXY )mh0(kR) dX dY

=

∫ ∞

−∞

∫ ∞

−∞
h0(kR) (−DXY )m exp (ikT · Q) dX dY = im sinm θin eimφinL(z).

Hence, substituting for L(z) from (B.4) and carrying out the differentiations with
respect to z, we obtain

(B.7) Om
n (z) =

2π in

k2 cos θin
Pm
n (cos θin) eimφin e−ikz cos θin

for z < 0. The result (B.5) follows after multiplication by the appropriate normaliza-
tion constant. It can be shown that the same result is also true for −n ≤ m ≤ 0.

Next, we consider an integral required in section 4.3. We have

−
∫
z2=�

[
Ωm

n

∂Ψ

∂z2
− Ψ

∂Ωm
n

∂z2

]
dx2 dy2

= eiλ(�−z1)

∫ ∞

−∞

∫ ∞

−∞
exp (ikT · q21)

[
−iλΩm

n +
∂Ωm

n

∂z2

]
z2=�

dx2 dy2,

where Ψ = exp (iK · R21). Using

DzΩ
m
n = (2n + 1)−1{(n−m + 1)Ωm

n+1 − (n + m)Ωm
n−1}

and (B.7) thrice gives the integral’s value as

(B.8)
2π

kα
ei(α−λ)(z1−�) in−1(λ + α)Pm

n (cos θin) eimφin ,

where we have also used (2n + 1)tPm
n (t) = (n−m + 1)Pm

n+1(t) + (n + m)Pm
n−1(t).

Appendix C. The Lloyd–Berry formula. Recall the formula (1.6). From
(4.6) and Y 0

n (r̂) =
√

(2n + 1)/(4π)Pn(cos θ), we obtain

f(θ) = −
√

4π

∞∑
n=0

√
2n + 1ZnY

0
n .

Then, the linearization formula (A.4) gives

(C.1) [f(θ)]2 =

∞∑
n=0

∞∑
ν=0

∑
q

T (n, ν; q)Pq(cos θ),



MULTIPLE SCATTERING BY MANY SPHERES 1667

where

T (n, ν; q) =
√

4π(2n + 1)(2ν + 1)(2q + 1)ZnZν G(n, 0; ν, 0; q).

Hence,

(C.2) −[f(π)]2 + [f(0)]2 =

∞∑
n=0

∞∑
ν=0

∑
q

T (n, ν; q) {1 − (−1)q}.

For the integral term in (1.6), we use (C.1) and

(C.3)

∫ π

0

1

sin (θ/2)

d

dθ
Pq(cos θ) dθ = −

∫ 1

−1

√
2

1 − x
P ′
q(x) dx = (−1)q − 1 − 2q.

(The last equality was obtained as follows. From [8, equation 7.225(1)], we have

2

2n + 1

1√
1 + x

{Tn(x) + Tn+1(x)} =

∫ x

−1

1√
x− t

Pn(t) dt

= 2(−1)n
√

1 + x + 2

∫ x

−1

√
x− t P ′

n(t) dt,

after an integration by parts, where Tn(cos θ) = cosnθ is a Chebyshev polynomial,
and we have used Pn(−1) = (−1)n. Now, differentiate this formula with respect to x
and then let x → 1, using Tn(1) = 1 and T ′

n(1) = n2.) Substituting (C.1), (C.2), and
(C.3) into (1.6) gives

(C.4) δ2 = −8π2

k4

∞∑
n=0

∞∑
ν=0

∑
q

q T (n, ν; q),

which is the same as (4.33).
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Abstract. The effects of additive white noise upon the dynamics of a system described by its
Hopf normal form are investigated, with particular reference to the well-known model of a detuned
single-mode laser. The power spectrum corresponding to the laser amplitude is determined by
finite-difference solution of a partial differential equation, and analytical formulas are determined in
the asymptotic limits of large parameters. The effect of the amplitude-phase coupling parameter
in generating non-Lorentzian lineshapes is highlighted, and the regions of parameter space where
accurate first-eigenvalue approximations of the Fokker–Planck equation exist are indicated.
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1. Introduction. In this paper we consider the effects of white noise upon the
dynamics of a system near a Hopf bifurcation point. The well-known deterministic
(noise-free) Hopf normal form is [1]

dE

dt
= iΩE + (1 + iδ)

(
a− |E|2

)
E,(1)

where E(t) is a complex-valued function of time representing, for example, the electric
field of a single-mode laser in a semiclassical approximation [2] with fundamental
frequency Ω. The parameters a and δ are real-valued and dimensionless; see the
Appendix for details of their derivation from the standard normal form parameters.
This equation can be written in amplitude-phase coordinates using E = r exp(iθ),
with the dynamics of the polar coordinates r(t) and θ(t) being governed by the pair
of equations

dr

dt
=

(
a− r2

)
r,

dθ

dt
= Ω + δ

(
a− r2

)
.(2)

As discussed in Chapter 12 of [2], noise effects may be incorporated into the deter-
ministic system by the addition of a complex Langevin fluctuation term

Γ(t) = ξx(t) + i ξy(t)(3)

to the right-hand side of (1). The zero-mean, real-valued white noise processes ξx(t)
and ξy(t) are described by their delta-function autocorrelation functions [2]:

〈ξx(t)ξx(t′)〉 = 〈ξy(t)ξy(t′)〉 = 2δ(t− t′), 〈ξx(t)ξy(t
′)〉 = 0.(4)
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Note that the noise intensity is set to unity by our choice of length and time units (see
the Appendix for details). Angle brackets are used throughout this paper to denote
averaging over an ensemble, i.e., taking an expectation value. Our goal is to describe
the effects of the noise terms upon the dynamics of the system (2).

Any system undergoing a Hopf bifurcation may be written in the Hopf normal
form (1). The deterministic dynamics of the Hopf bifurcation are well understood.
When the bifurcation parameter a is negative, the origin r = 0 is an attracting
point for all trajectories of the system (2) in the absence of noise. As the bifurcation
parameter passes through zero and becomes positive, the origin becomes unstable and
trajectories are attracted to the stable limit cycle at r =

√
a. The flow on the limit

cycle is purely circular, with angular speed Ω. The parameter δ does not affect these
steady-state results, but it has important consequences when the system is subject
to fluctuations. For example, in the stable limit cycle case a > 0, trajectories which
are kicked off the limit cycle eventually flow back onto it, moving at an angular speed
which varies with their amplitude when δ �= 0 and being equal to the steady-state
speed Ω only when on the limit cycle. Because δ quantifies this effect of amplitude
fluctuations upon the phase angle θ, it is sometimes referred to as the amplitude-
phase coupling parameter. When a < 0 the flow into the attracting origin has a spiral
structure. Nonzero δ alters the angular speed of the spiral motion and induces a
differential rotation effect; i.e., trajectories further from the origin spiral inwards at
rates different from those closer to r = 0.

In this paper we study the effect of noise on the dynamics of (2), with particular
reference to the correlation function of E,1

R(τ) = 〈E(t)E∗(t + τ)〉 ,(5)

or to its power spectrum, which is found by Fourier transforming R(τ). The deter-
ministic limit cycle solution described above in the case a > 0 is periodic, and so the
power spectrum of E exhibits a delta-function spike at the frequency Ω. The effect of
small random fluctuations modeled by the noise terms ξx and ξy in (3) is to broaden
the peak in the power spectrum, and so generate a finite linewidth. For a < 0 the
stable solution is r = 0, but “precursor” peaks in the power spectrum of E can be
seen: these grow in intensity as the bifurcation parameter a is increased towards the
bifurcation point [3, 4, 5]. The stable oscillation generated when a > 0 is generic
and has been studied in many fields, including electric and electronic engineering,
chemical physics, and laser physics. As the system (2) has been extensively studied
in the laser literature (at least for the case δ = 0), for convenience we will adopt the
nomenclature and notation specific to that field. However, our results are applicable
to any system of the form (2) in the presence of additive white noise. Recent examples
where nonzero values of the parameter δ are important arise in applications to elec-
tronic oscillator circuits [5, 6, 7] and to chemical reaction systems [8]. For instance,
Coram [7], as a test case for various recently proposed methods [5, 9] for predicting
the spectral lineshape of noisy electronic oscillator circuits, proposes a model which
(in the limit of small noise) is essentially equivalent to (2). The important new effects
due to the amplitude-phase coupling parameter δ demonstrated in this paper are thus
also immediately applicable to electronic oscillator models such as Coram’s.

In the laser literature the parameter a is commonly referred to as the pump pa-
rameter, with the regime a < 0 termed below (lasing) threshold, and a > 0 above

1In the laser physics literature the function R(τ) is known as the amplitude correlation function;
here star denotes complex conjugation.
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threshold. The parameter δ has received comparatively little attention in the litera-
ture, owing to its relative insignificance in the most commonly studied laser systems.
Depending on the physical causes of the effect, the parameter has variously been
named the detuning parameter [2], the linewidth enhancement factor [10], or as noted
above, the amplitude-phase coupling parameter. The effect of δ is known to be non-
negligible in semiconductor lasers, and so we believe this study of its effects is timely.
As mentioned above, the Hopf normal form (2) is frequently used as the simplest
model of a noisy, self-sustained oscillator in many other fields, e.g., electronic circuit
design [7] and chemical reaction dynamics [8], and so a complete description of the
power spectrum beyond the well-studied δ = 0 case is of some importance.

The dynamics of Hopf bifurcations with additive noise, but with δ = 0, have been
studied by several authors. For instance, Baras, Mansour, and Van den Broek [11]
discuss in detail the stationary probability density near a Hopf bifurcation point in
the weak noise limit. In the review paper [12] the more general stationary distribution
problem for a noisy Hopf bifurcation with a noncircular limit cycle is discussed. The
effects of multiplicative [13, 14] or colored noises [15, 16] near a Hopf bifurcation
have also been considered, as well as noisy bifurcations in delay-differential equations
[17]. Our work concentrates on the simplest additive white noise case, and is new
in two respects: first, it describes the spectral lineshape (not just the stationary
probability density) of the dynamical system near the bifurcation point, and, second,
to our knowledge, this is the first comprehensive study of the important effects of
the amplitude-phase coupling parameter δ—most previous studies assume δ to be
zero or negligibly small. While we use standard results for the stationary probability
density near the bifurcation point (e.g., see (8) below), the focus of our work is on
the dynamical effect of δ, as evidenced by the shape of the power spectrum. The
distinction is crucial—the stationary probability density is independent of δ, while
the spectral lineshape is very sensitive to nonzero δ values.

The most complete study of the δ-effect to date appears to be that of Seybold and
Risken [18], referred to hereafter as SR. They approach the Fokker–Planck equation
corresponding to (2) using the same methods that were successful in the δ = 0 case [2],
i.e., an eigenfunction expansion of the transition probability density. The resulting
correlation function is then an infinite sum of exponentials, yielding a power spectrum
composed of a sum of Lorentzians. Although the calculation of eigenvalues must be
done numerically, a crucial result of SR is that for δ < 1.2 the first term in the
infinite series is dominant, and so only this first eigenvalue term need be used to
find the spectrum to a high order of accuracy. As shown in Figure 1, this single-
Lorentzian expression for the spectrum is accurate to power levels many orders of
magnitude below the peak. The divergence between the exact spectrum and the SR
approximation seen at high frequencies in Figure 2 can be traced to the inaccuracies
in the small-time expansion of the correlation function, as noted in SR. However, near
the peak of the spectrum (within, say, three orders of magnitude in power level) the
SR Lorentzian form of the spectrum is very accurate for δ ∼< 1. Thus the description of
the spectral lineshape (and linewidth) is reduced to finding the appropriate eigenvalue
of the Fokker–Planck equation. We note in passing that this first-eigenvalue approach
is also used in recent papers attempting to predict the spectral lineshape arising from
noise in electronic oscillator circuits [5, 6] and limit cycles modeling chemical clocks
[8].

The SR paper covers only the case δ < 1.2, which encompassed the values of
the parameter δ of interest to the laser community at the time. However, more
recent research in the field of semiconductor lasers indicates that the values of δ
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Fig. 1. Spectrum F (ω) for δ = 0 and various values of a: (a) a = −3, (b) a = 0, (c) a = 5,
(d) a = 10. Results from the numerical solution (25) are shown as symbols; the solid line is the
Lorentzian lineshape (31); the dashed (for a < 0) and dotted (for a > 0) lines show the asymptotic
results of section 4.
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Fig. 2. Log-log plot of the spectrum F (ω) for large frequencies, with parameters a = 5 and
δ = 0 (cf. Figure 1(c)). Line types are as in Figure 1.

appropriate to the model (2) are on the order of 5 to 7. The most obvious effect of
this larger δ is a significant widening of the spectral line—hence the title of linewidth
enhancement factor (or simply α-factor) which is sometimes applied to δ. Implicit
in most discussions of the linewidth of semiconductor lasers is the belief that the
lineshape is intrinsically Lorentzian. Indeed some workers have followed the methods
of SR to calculate the first eigenvalue in the case δ ≥ 5, and to compare the resulting
linewidth to experimental calculations [19]. However, our results, using numerical
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Fig. 3. Spectrum F (ω) for δ = 5 and various values of a: (a) a = −3, (b) a = 0, (c) a = 5,
(d) a = 10. See Figure 1 for description of line types.

solutions and asymptotic analysis of the Fokker–Planck equation (see Figures 3 and
4), indicate that the lineshape is markedly non-Lorentzian at δ = 5 (at least for certain
values of the pump parameter a). It is therefore useful to experimentalists working
with δ levels higher than those examined in SR to have numerical methods and closed
form asymptotic solutions which are valid for arbitrarily large values of the parameter
δ.

The main results of this paper are presented in caricature form in Figure 5,
showing the (a, δ) parameter plane. Since the spectrum for negative δ can be found
from the corresponding positive δ result by changing the sign of frequencies (ω →
−ω, Ω → −Ω), we consider only δ ≥ 0. The hatched region is where the SR first-
eigenvalue Lorentzian lineshape fits reasonably well2 to the exact spectrum, which we
determine by a finite-difference numerical solution of (23) below. As originally shown
in SR, the Lorentzian lineshape fits well for all values of the pumping parameter a,
provided that δ is less than approximately unity. When δ is significantly greater than
one, SR remains accurate very far from the threshold at a = 0, but the required
magnitude of the pumping increases as δ increases. For instance, we show that for
a < 0 the SR solution is accurate when the ratio δ/a2 	 1; the corresponding
requirement for positive pumping parameter is that δ/a 	 1. These constraints on the
SR solution give the borders of the hatched region above δ = 1. These limits on the
single-Lorentzian form of the spectrum are derived using new asymptotic solutions,
valid for |a| 
 1 and for all δ values. Our new asymptotic solutions are found to
be accurate outside of the region of the (a, δ) plane enclosed by the dashed lines
at a = −5 and a = 3, and show that non-Lorentzian lineshapes are increasingly

2The precise meaning of “reasonably well” of course depends on the level of accuracy desired;
Figure 5 is intended to indicate only the estimated (order of magnitude) borders where various
approximations hold.
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Fig. 4. Spectrum F (ω) for δ = 10 and various values of a: (a) a = −3, (b) a = 0, (c) a = 5,
(d) a = 10. See Figure 1 for description of line types.
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Fig. 5. The (a, δ) parameter plane. The shaded region shows where the single-Lorentzian
spectrum of SR matches the exact result reasonably well; the boundaries are taken to be δ/a2 = 1/2
for a < 0, and δ/a = 1/2 for a > 0. The new asymptotic results derived in section 4 match the exact
results well when a � −5 or a � 3. These limits are shown as dashed lines in the figure—note the
considerable regions of the parameter plane (e.g., for a � 3 and δ � a/2) where our asymptotic
results match the exact values, but those of SR do not. The labeled dots mark the parameter values
where spectra are plotted in the corresponding figures.
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important as δ increases. The analytical expressions are likely to be useful not only
to experimentalists characterizing lineshapes with δ > 1, but also in providing a novel
test case for schemes attempting to characterize spectral lineshapes in self-sustained
oscillators of arbitrary dimension in various applications [5, 20].

2. Fokker–Planck equation. The dynamics of the system (1) in the presence
of the noise term (3) is fully described by the solution of the Fokker–Planck equation
[2], which gives the transition probability density P (x, τ |x′, 0) of the two-dimensional
stochastic process x(t), written in polar coordinates as x(t) = (r(t) cos θ(t), r(t) sin θ(t))
using (2). The transition probability density is the probability that a trajectory of
the system passes through the point x at time t = τ , given that it passed through x′

at time t = 0. The Fokker–Planck equation is a partial differential equation for P :

∂P

∂τ
+

1

r

∂

∂r

[(
a− r2

)
r2P

]
+

∂

∂θ

[(
Ω + δ

(
a− r2

))
P
]
− 1

r

∂

∂r

[
r
∂P

∂r

]
− 1

r2

∂2P

∂θ2
= 0,

(6)

with initial condition

P (x, 0|x′, 0) = δ(x − x′),(7)

where here δ(x) is the Dirac delta-function (not to be confused with the parameter δ,
as should be clear from the context). Equation (6) has a stationary (τ → ∞) solution
which depends only on r (and is independent of δ), as shown in [11, 2]:

P∞(r) = C exp

(
ar2

2
− r4

4

)
.(8)

The normalization constant C is given in terms of the error function as

C =
exp

(
− a2

4

)
π

3
2

[
1 + erf

(
a
2

)] ,(9)

in order to ensure unit probability over the two-dimensional space∫ 2π

0

∫ ∞

0

P∞(r)r dr dθ = 1.(10)

Note that stationary moments may be calculated from P∞(r), for example [2]:〈
r2
〉

= a + 2πC.(11)

The transition probability density may be used to calculate the correlation be-
tween arbitrary functionals f(x) and g(x) of the dynamical system trajectories at
times separated by τ [2, 21]:

〈f (x(t)) g (x(t + τ))〉 =

∫
dx′ P∞(x′)f (x′)

∫
dxP (x, τ |x′, 0)g (x),(12)

where each of the integrals above is over the two-dimensional trajectory space. The
correlation function may be directly related to the Fokker–Planck equation by defining
an auxiliary function Q(x, τ) as

Q(x, τ) =

∫
P∞ (x′) f (x′)P (x, τ |x′, 0) dx′.(13)
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Note that this auxiliary function is a solution of the Fokker–Planck differential equa-
tion (6):

∂Q

∂τ
+

1

r

∂

∂r

[(
a− r2

)
r2Q

]
+

∂

∂θ

[(
Ω + δ

(
a− r2

))
Q
]
− 1

r

∂

∂r

[
r
∂Q

∂r

]
− 1

r2

∂2Q

∂θ2
= 0,

(14)

but with an initial condition that differs from (7):

Q(x, 0) = f (x)P∞ (x) .(15)

Assuming that the auxiliary function has been determined, the correlation function
is then obtained by integration:

〈f (x(t)) g (x(t + τ))〉 =

∫
g(x)Q(x, τ) dx.(16)

The correlation function of the complex quantity E defined in (5) may be calcu-
lated by applying this general method, using the functionals

f(x) = r exp(iθ) and g(x) = r exp(−iθ)(17)

and the stationary probability density given by (8) and (9). In this case, the auxiliary
function is defined as the solution of (14) with initial condition

Q(r, θ, 0) = reiθP∞ (r),(18)

and the desired correlation function is found from Q by integration:

R(τ) = 〈E(t)E∗(t + τ)〉 =

∫ 2π

0

∫ ∞

0

r2e−iθQ(r, θ, τ) dr dθ.(19)

The power spectrum of E is defined using the Fourier transform of the correlation
function, following the convention of SR:

F (ω) ≡ 2 Re

[∫ ∞

0

eiωτR(τ) dτ

]
.(20)

This formulation of the problem in terms of the auxiliary function Q proves extremely
useful for both numerical calculations and asymptotic analysis, and thus forms the
theoretical basis for the remainder of the paper. While the formulation (12) for
correlation functions is common [2, 21], the reduction to a partial differential equation
(pde) for an auxiliary function Q is a nonstandard approach. This idea is potentially
very useful for the calculation of correlation functions and spectra in low-dimensional
systems, where standard numerical methods for pdes may be applied, as in (23) below.

3. Numerical calculations. In this section we compare two methods for nu-
merical calculation of the spectrum. The auxiliary function approach presented in
section 3.1 provides the high-accuracy solutions used throughout the paper; the single-
eigenvalue spectrum used by Seybold and Risken is also reviewed in section 3.2.
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3.1. Auxiliary function approach. The solution of the pde (14) for the auxil-
iary function is facilitated by noting that the initial condition (18) permits a separable
form:

Q(r, θ, τ) = eiθq(r, τ).(21)

Moreover, the power spectrum F (ω) may be calculated without first finding the cor-
relation function. To see this, multiply (14) by exp(iωτ) and integrate over τ . The
resulting equation for the quantity q̂(r, ω), defined as

q̂(r, ω) ≡
∫ ∞

0

eiωτq(r, τ) dτ

=

∫ ∞

0

eiωτe−iθQ(r, θ, τ) dτ,(22)

is an ordinary differential equation, parameterized by the frequency ω:

−iωq̂ − rP∞(r) +
1

r

d

dr

[(
a− r2

)
r2q̂

]
+ iΩq̂ + iδ

(
a− r2

)
q̂ − 1

r

d

dr

[
r
dq̂

dr

]
+

1

r2
q̂ = 0.

(23)

The boundary conditions on q̂ are

q̂ → 0 as r → 0,

q̂ → 0 as r → ∞.(24)

Equation (23) is solved numerically for each frequency ω using a standard finite-
difference algorithm. The boundary condition for r → ∞ is implemented by trun-
cating the finite-difference grid at a large value of r and setting a Dirichlet condition
at the truncation point. We check that this truncation point is sufficiently large to
have negligible effect on all spectra shown. Finally, the spectrum F (ω) is calculated
directly from q̂ by numerical integration:

F (ω) = 4πRe

[∫ ∞

0

r2q̂(r, ω) dr

]
.(25)

The accuracy of the finite-difference solution depends only on the number of grid
points and on the truncation point, and so effectively gives an exact solution for the
spectrum. The values found from this numerical method are plotted as symbols in the
figures and enable us to compare various analytical approximations for the spectrum.

3.2. Eigenfunction expansion. The formulation given in SR (see also [2]) uses
(12) to calculate the correlation function, but instead of defining the auxiliary func-
tion and solving (14), the Fokker–Planck equation (6) for the transition probability
density P (x, τ |x′, 0) is solved directly. The solution may be found by an eigenfunction
expansion [18] or by expansion into a complete set as in [2], i.e., writing P as

P (r, θ, τ |r′, θ′, 0) =
1

2π
e−r2/α

∞∑
n=0

∞∑
ν=−∞

c(ν)
n

(
r′

2

α
, τ

)
r|ν|α−|ν|/2L(|ν|)

n

(
r2

α

)
eiν(θ−θ′).

(26)

Here L
(|ν|)
n denotes the generalized Laguerre function, and α is a scaling parameter

which can be varied to improve the accuracy of a truncated series approximation



1678 J. P. GLEESON AND F. O’DOHERTY

to (26). The coefficients c
(ν)
n satisfy ordinary differential equations, which may be

written as

dc
(ν)
n

dτ
=

∞∑
m=0

A(ν)
nmc(ν)

m ,(27)

with initial conditions derived from (7); see [2] for details. To solve numerically, we
truncate the sums over n and m in (26) and (27) at a large integer N , and for each ν

solve for c
(ν)
n using the matrix exponential of the (N + 1) × (N + 1) complex-valued

matrix A(ν)τ . The final result for the correlation function (19) is then of the form

RSR(τ) =
〈
r2
〉 N∑
n=0

Vn e
Λnτ ,(28)

where Λn are the eigenvalues of the matrix A(1), and the Vn depend upon the eigen-
vectors and the initial conditions. The value of

〈
r2
〉

is given in (11). All Λn have
negative real parts, so the dominant term when the separation time τ is large gives

RSR(τ) ∼
〈
r2
〉
V0 e

Λ0τ as τ → ∞,(29)

where Λ0 is the eigenvalue of A(1) with largest real part. The corresponding spectrum
is

FSR(ω) = 2
〈
r2
〉

Re

[
V0

−Λ0 − iω

]
.(30)

Seybold and Risken [18] take V0 ≡ 1 (with error of less than 3% when δ ≤ 1.2), and
we therefore compare our numerical results to the SR first-eigenvalue spectrum

FSR = 2
〈
r2
〉 |Λ0r|

Λ0r
2 + (Λ0i + ω)

2 ,(31)

with Λ0r and Λ0i being the real and imaginary parts of Λ0. This Lorentzian spectrum
is peaked at frequency ω = ωp = −Λ0i and reaches half of its peak power at frequencies
ω = ωp ± Δω, where Δω = |Λ0r|. The frequency difference Δω gives the half-width
of the Lorentzian spectrum at half of the peak value, and when normalized by

〈
r2
〉

it is referred to as the half-width-at-half-maximum (HWHM), or simply linewidth,
of the laser spectral line. The spectrum (31) is plotted as a solid line in the figures
for comparison with numerical values calculated using the auxiliary function method
(symbols), and with asymptotic approximations. The linewidth is examined further
in Figures 6 and 7, see section 4.1.

4. Asymptotic solutions. To simplify our notation and conform with the usual
conventions in the laser physics literature [18], we set the fundamental frequency Ω
to zero in (2). Note that this can formally be accomplished by moving to a rotating
reference frame, i.e., changing the angular variable from θ to θ − Ωt. This change of
frame shifts the spectrum so that the peak at ω = Ω in the original frame is moved to
ω = 0. All results reported here are thus at frequencies ω relative to the fundamental
frequency Ω.
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4.1. Above threshold: a � 1. The deterministic dynamics of (2) for positive
values of the pump parameter a lead to limit cycles of radius

√
a, as discussed in

section 1. When a is sufficiently large, the effects of the (order one) noise terms on
the amplitude are small compared to

√
a. The behavior of the dynamics close to the

deterministic limit cycle may be examined by making the change of variables

r =
√
a +

ρ√
2a

(32)

in (14). This scaling focuses close to the limit cycle at r =
√
a, with (as shown

below) the new variable ρ being of order one in the region of interest. The variable
ρ is interpreted as a linear variable, with range (−∞,∞) in the a → ∞ limit. The
two-dimensional area integral is modified as follows:∫ 2π

0

∫ ∞

0

r dr dθ −→ 1√
2

∫ 2π

0

∫ ∞

−∞
dρ dθ,(33)

and the stationary probability density becomes

P∞(ρ) =
1

2π3/2
exp

(
−ρ2

2

)
.(34)

Using (32) in (14) leads to the linearized equation

∂Q

∂τ
− 2a

∂

∂ρ
(ρQ) −

√
2δρ

∂Q

∂θ
− 2a

∂2Q

∂ρ2
− 1

a

∂2Q

∂θ2
= 0,(35)

where the first term of an asymptotic expansion for a → ∞ replaces each term in
(14). The initial condition (18) is expanded to

Q(τ = 0) =
√
a

(
1 +

ρ√
2a

)
eiθP∞(ρ).(36)

Equation (35) with initial condition (36) may be solved exactly by Fourier transform-
ing in ρ and using the method of characteristics [2]. Separating variables as in (21)
and defining the spatial Fourier transform as

q̃(k, τ) =

∫ ∞

−∞
eiρkq(ρ, τ) dρ,(37)

we obtain the hyperbolic equation

∂q̃

∂τ
+
(
2ak −

√
2δ
) ∂q̃

∂k
= −

(
2ak2 +

1

a

)
q̃(38)

with initial condition

q̃(k, 0) =
1

π

√
a

2

(
1 + i

k√
2a

)
e−

1
2k

2

.(39)

Solving (38) by the method of characteristics leads to the solution

q̃(k, τ) =
1

π

√
a

2
[f1(τ) + f2(τ)k] exp

[
−1

2
k2 + f3(τ)k −D(τ)

]
,(40)
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where

f1(τ) = 1 + i
δ

2a2

(
1 − e−2aτ

)
,

f2(τ) = i
1√
2a

e−2aτ ,

f3(τ) =
δ√
2a

(
e−2aτ − 1

)
,

D(τ) =
1

a
τ +

δ2

2a2

(
2aτ + e−2aτ − 1

)
.(41)

The correlation function (19) can be related directly to the Fourier transform of Q
via

R(τ) =
√

2aπ

[
q̃ − i

1√
2a

∂q̃

∂k

]∣∣∣∣
k=0

,(42)

and the final result may be written as

R(τ) = a
(
a0 + a1e

−2aτ + a2e
−4aτ

)
e−D(τ),(43)

where the coefficients an depend upon the parameters as follows:

a0 =

(
1 +

δ

2a2
i

)2

,

a1 =
1

2a2

(
1 +

δ2

a2
− 2δi

)
,

a2 = − δ2

4a4
.(44)

Note that for convenience we have assumed τ > 0 in the above; the symmetry of R
implies that for negative arguments τ should be replaced by |τ |.

Analytical expressions may be found for the Fourier transform of (43). For in-
stance, a series expansion of the exp(D(τ)) term allows the autocorrelation to be
written as

R(τ) = a exp

(
δ2

2a2

) ∞∑
n=0

bne
−λnτ ,(45)

with λn = 2an + 1
a

(
δ2 + 1

)
, and

b0 =

(
1 +

δ2

2a2
i

)2

,(46)

b1 =
1

2a2

(
1 +

δ2

2a2
− iδ

)2

,(47)

bn =
(−1)n+1

n!

δ2n−2

2na2n

[
n +

δ2

2a2
− iδ

]2

for n ≥ 2.(48)

The corresponding spectrum is then an infinite sum of Lorentzians,

F (ω) = 2a exp

(
δ2

2a2

)
Re

[ ∞∑
n=0

bn
λn − iw

]
.(49)
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Fig. 6. The normalized linewidth (HWHM)
〈
r2

〉
Δω of the spectra as a function of a for δ = 5.

Numerical results are shown by symbols; the dotted line is the SR first-eigenvalue result.

Note that this sum converges very slowly when |δ| 
 1, so that many terms are
required to give the spectrum accurately. Also, the leading-order dependence on δ
is of the form δ/a; this implies that non-Lorentzian lineshapes arise when δ is a
nonnegligible fraction of a, and leads us to sketch the estimated border δ = a/2 for
positive a in Figure 5.

An alternative expression for the spectrum may be given in terms of a finite sum,
but involving the generalized incomplete gamma function [22, 23], defined as

γ(y, z) =

∫ z

0

ty−1e−tdt.(50)

In terms of this function, the spectrum is

F (ω) = exp

(
δ2

2a2

)
Re

⎡
⎣ 2∑
n=0

an

(
2a2

δ2

)λn−iω
2a

γ

(
λn − iω

2a
,
δ2

2a2

)⎤⎦ ,(51)

with the coefficients an as defined in (44). The spectrum (51) is plotted with a dotted
line in parts (c) and (d) of Figures 1, 3, and 4, and matches the numerical spectrum
(symbols) very well, even for values of a as low as 5. The SR Lorentzian spectrum
(solid line) fits poorly when δ > 0. Close to the peak of the spectrum the fit of the
SR approximation can be quantified by the HWHM of the lineshape, as defined in
section 3.2. The fit of the numerical linewidth to the SR prediction is reasonably
good at δ = 5 (Figure 6), indicating that the non-Lorentzian effects have most impact
away from the peak; however, the SR linewidth estimation decays in accuracy as δ
increases; see the δ = 10 case in Figure 7.

4.1.1. Large-frequency spectrum. A small-τ expansion of R(τ) from (43)
yields

R(τ) ∼ a− 2(1 − iδ)|τ | + O
(
τ2, a−1

)
as τ → 0, a → ∞,(52)

and the corresponding large-frequency asymptotic form of the spectrum F (ω) from
(20) is

F (ω) ∼ 4

ω2
+ O

(
ω−3

)
as ω → ∞.(53)
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Fig. 7. The normalized linewidth (HWHM)
〈
r2

〉
Δω of the spectra as a function of a for δ = 10.

Line types are as in Figure 6.

Note that this leading order behavior of the spectrum can be derived directly from a
small-τ expansion in (14) and (19), and is independent of the values of the parameters
a and δ.

In the a 
 1 asymptotic limit, the single-Lorentzian form of the spectrum used
in SR corresponds to the correlation function

RSR(τ) = a exp

[
−1

a

(
1 + δ2

)
|τ |

]
.(54)

The large-frequency asymptote of the SR spectrum is then [18]

FSR ∼
2
(
1 + δ2

)
ω2

+ O
(
ω−3

)
as ω → ∞(55)

and clearly does not match the exact result (53) for general δ. The mismatch of
the exact spectrum and the SR approximation far from the peak can be clearly seen
in Figure 2. As noted by SR, this effect occurs even when δ = 0. We show in
the following sections that the correct large-frequency asymptote depends upon the
consistent inclusion of random fluctuations in the amplitude r of the oscillations.

4.1.2. Comparison with other approximations. The above-threshold laser
regime has been the subject of many theoretical and experimental investigations.
Here we compare our results for |a| 
 1 with other approximation schemes yielding
non-Lorentzian lineshapes.

The Langevin equations arising from (2) and (3) may be linearized near the
deterministic orbit by the change of variables (32) to give (with Ω = 0)

dρ

dt
= −2aρ +

√
2aξr,(56)

dθ

dt
= −

√
2δρ +

1√
a
ξθ.(57)

Here ξr(t) and ξθ(t) are independent, unit intensity white noise terms; cf. the Fokker–
Planck equation (35). Equation (56) is linear in ρ with a white-noise forcing, and so
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generates an Ornstein–Uhlenbeck colored-noise process ρ(t). Equation (57) describes
the stochastic process of the phase angle θ(t), which is forced by the colored-noise
process ρ(t) and the white noise ξθ.

In the full description of the correlation function (5), fluctuations in both the
phase θ(t) and the amplitude r(t) of the oscillation have important effects. The
linearized Langevin equations, however, suggest the use of a phase oscillator ap-
proximation [24], wherein the effects of the colored noise ρ are incorporated into the
evolution of the phase angle θ, but all other influence of the amplitude fluctuations
are neglected. Under this approximation, the correlation function (5) is simply

RPO(τ) = a 〈exp [i θ(t) − i θ(t + τ)]〉(58)

and can be calculated directly from the linearized Langevin equation for θ. The result
is [22]

RPO(τ) = a e−D(τ),(59)

where D(τ) is given in (41). Note that this corresponds to setting a0 = 1 and
a1 = a2 = 0 in the asymptotic result (43).

The spectrum of (59) is non-Lorentzian for δ > 0, but the large-frequency asymp-
tote is

FPO ∼ 2

ω2
+ O

(
ω−3

)
as ω → ∞,(60)

i.e., a factor of 2 lower than the correct form (53). This discrepancy is due to the
neglect of the direct effect of amplitude fluctuations upon the spectrum of E within
the phase oscillator approximation; the correct values of a0, a1, and a2 from (44) are
required for the full description of the spectrum.

The Voigt lineshape, obtained by convoluting a Lorentzian and a Gaussian in
frequency space, is sometimes fitted to experimental oscillation data [25, 26]. We
note that in the phase-oscillator approximation the correlation function (59) is the
exponential of the function D(τ); if this function is assumed to be replaced by the
first two terms of its Taylor series about τ = 0, the resulting correlation function

RV(τ) = a e−
1
a |τ |−δ2τ2

(61)

corresponds to a Voigt spectral lineshape. This result can also be derived directly
from the linearized phase equation (57) if the amplitude deviation ρ is assumed to be
a (frozen) random variable chosen from the Gaussian distribution (34). This approxi-
mation completely ignores the temporal variation of ρ(t) as given in (56), and is valid
only in the limit δ → ∞.

4.2. Below threshold: a � −1. When the pumping parameter a is negative,
the origin r = 0 is the attracting steady solution of the deterministic system (2). In
order to find asymptotic solutions valid for a 	 −1, we therefore rescale lengths to
closely examine the neighborhood of the origin:

r =
1√
|a|

ρ,(62)

where ρ is of order one and is restricted to the interval [0,∞). The two-dimensional
area integral transforms as∫ 2π

0

∫ ∞

0

r dr dθ −→ 1

|a|

∫ 2π

0

∫ ∞

0

ρ dρ dθ,(63)
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and the stationary probability density is

P∞(ρ) =
|a|
2π

exp

(
−ρ2

2

)
.(64)

Retaining the most significant terms (and all δ-dependent terms) in (14) as |a| → ∞
yields the asymptotic equation

∂Q

∂τ
+

a

ρ

∂

∂ρ

(
ρ2Q

)
+

(
aδ +

1

a
δρ2

)
∂Q

∂θ
+

a

ρ

∂

∂ρ

(
ρ
∂Q

∂ρ

)
+

a

ρ2

∂2Q

∂θ2
= 0,(65)

with initial condition

Q(τ = 0) =

√
|a|

2π
eiθρ e−

1
2ρ

2

.(66)

Motivated by work in the mixing of scalar fields in vortex fluid flows [27, 28], we seek
a solution of (65) in the form

Q =

√
|a|

2π
eiθρ exp

[
−g(τ)ρ2 + h(τ)

]
.(67)

This is an exact solution of the equation if g and h satisfy the ordinary differential
equations

1

|a|
dg

dτ
= 2g − 4g2 − i

δ

a2
,

1

|a|
dh

dτ
= −8g + 3 + iδ,(68)

with initial conditions g(0) = 1/2, h(0) = 0. The solutions of this system may be
obtained in closed form, and the correlation function resulting from the integration
(19) is

(69)

R(τ) =
1

|a|

∫ ∞

0

ρ3 exp
[
−g(τ)ρ2 + h(τ)

]
dρ

=
1

2|a|g2(τ)
exp [h(τ)]

=
2 (1 − 4μ)

2

|a| (1 − 2μ)
4 exp [(−1 + iδ + 8μ) |aτ |]

{
1 − 4μ2

(1 − 2μ)2
exp [(−2 + 8μ) |aτ |]

}−2

,

where μ =
(
1 −

√
1 − 4iδ/a2

)
/4.

In contrast to the above-threshold case in section 4.1, an analytical formula for
the spectrum corresponding to this correlation function has not been found. However,
numerical integration of (20) using (69) can be used to find the asymptotic spectrum
for a 	 −1, valid for arbitrarily large values of δ. This spectrum is plotted for a = −3
as a dashed line in part (a) of Figures 1, 3, and 4. The requirement a 	 −1 for validity
of the asymptotics does not really hold at the chosen value of a, and the fit to the
numerical spectrum is poor near the peak, though better than the SR lineshape away
from the peak. However, for a = −10, Figure 8 shows an excellent match between
the asymptotic spectrum and the numerics—here we have taken δ = 200 (so that
δ/a2 = 2) in order to highlight the non-Lorentzian lineshape. Note that the non-
Lorentzian effects in (69) depend on the parameter combination δ/a2; this leads us
to define the border δ/a2 = 1/2 for negative a in Figure 5.
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Fig. 8. Spectrum F (ω) for a = −10 and δ = 200. See Figure 1 for description of line types.

5. Conclusions. We have studied the effects of additive white noise on the
spectral lineshape of a dynamical system described by the Hopf normal form (1).
Particular emphasis is laid on the role of the amplitude-phase coupling (detuning)
parameter δ. Non-Lorentzian lineshapes occur when δ is nonnegligible, in contrast to
the heretofore most studied case of δ = 0.

We use asymptotic methods to find closed form solutions for the laser amplitude
correlation function, valid for any δ value, when the pump parameter a is both above
(equation (43)) and below (equation (69)) threshold. In the former case an analytic
formula for the spectrum is also given. The asymptotics are formally valid for |a| 
 1,
but we find they match the numerical solution well even when the magnitude of a is as
small as 5. In contrast to previous work on this problem, no assumption on the size of
δ is made, so that the formulas are valid for arbitrarily large δ values. The spectrum
becomes non-Lorentzian as δ increases, and we indicate (Figure 5) the parameter
regions where single-eigenvalue methods fail to accurately describe the lineshape. We
look at existing approximation methods (section 4.1.2) and show that they are special
limiting cases of our results.

Both asymptotic and numerical solutions are based on the auxiliary function ap-
proach developed in section 2. It should be stressed that (despite the use of convenient
nomenclature from the laser physics literature) the results presented are quite gen-
eral and apply to any noisy dynamical system near a Hopf bifurcation point. We
anticipate that the results and methods presented here will be of interest both for
their applicability to high-δ lasers, and as test cases for single-eigenvalue methods de-
veloped to predict spectra in high-dimensional oscillators for electronic and chemical
applications [5, 8, 20]. It would also be interesting to apply the asymptotic methods
used here to more detailed models of lasers which supplement (1) with equations for
the laser gain and carrier density, leading to relaxation oscillation sidebands in the
spectrum [29].

Appendix. The Hopf normal form equations (2) contain only three parameters:
a, Ω, and δ. In this appendix we describe in detail the derivation of (2), beginning
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with the standard deterministic Hopf normal form presented in [1]:

dr̃

dt̃
=

(
dμ + ãr̃2

)
r̃,

dθ

dt̃
= ω + cμ + br̃2.(70)

(Here we use tildes to distinguish between certain parameters and dimensionless ver-
sions of the same name.) The parameters ã, b, c, and d are all typically of order unity,
with ã < 0, and can in theory be found from the properties of the dynamical system at
the bifurcation point μ = 0. The bifurcation parameter is μ, and for analysis “near”
the bifurcation point, the magnitude of μ is assumed to be small: |μ| 	 1. The
differential equation for the evolution of the complex quantity Ẽ = r̃ exp (iθ) follows
from (70); the effect of random fluctuations is modeled by adding a white noise term
Γ̃:

dẼ

dt̃
= i (ω + cμ) Ẽ +

(
dμ + (ã + ib)

∣∣Ẽ∣∣2) Ẽ + Γ̃,(71)

with

Γ̃ = ξ̃x(t) + iξ̃y(t)(72)

being a complex noise of intensity κ:〈
ξ̃x(t)ξ̃x(t′)

〉
=

〈
ξ̃y(t)ξ̃y(t

′)
〉

= 2κδ(t− t′),
〈
ξ̃x(t)ξ̃y(t

′)
〉

= 0.(73)

As further discussed below, the balance between the noise intensity κ and the (small-
magnitude) bifurcation parameter μ is crucial to understanding the effects of noise
upon the dynamics.

To nondimensionalize the system, we write the Fokker–Planck equation for (71)
in the polar coordinates r̃ and θ:

∂P

∂τ̃
+

1

r̃

∂

∂r̃

[(
dμ + ãr̃2

)
r̃2P

]
+

∂

∂θ

[(
ω + cμ + br̃2

)
P
]
− κ

r̃

∂

∂r̃

[
r̃
∂P

∂r̃

]
− κ

r̃2

∂2P

∂θ2
= 0.

(74)

Choosing a length scale L and a time scale T as references, r̃ and τ̃ may be written
in terms of the dimensionless variables r and τ used in (2):

r̃ = Lr, τ̃ = Tτ.(75)

The Fokker–Planck equation (74) then becomes

(76)

∂P

∂τ
+

1

r

∂

∂r

[(
Tdμ + TL2ãr2

)
r2P

]
+

∂

∂θ

[(
Tω + Tcμ + TL2br2

)
P
]
− κT

L2

1

r

∂

∂r

[
r
∂P

∂r

]

− κT

L2

1

r2

∂2P

∂θ2
= 0.

We can now choose the length and time scales L and T in order to reduce the number
of dimensionless parameters. The conventional choice in the laser literature (see, e.g.,
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Chapter 12 of [2]) is to set the diffusion coefficients κT/L2 to unity, and the parameter
combination TL2ã to −1 (recall that ã is negative). These choices determine T and L
in terms of the parameter ã and the noise intensity κ, and yield the nondimensional
Fokker–Planck equation:

∂P

∂τ
+

1

r

∂

∂r

[(
a− r2

)
r2P

]
+

∂

∂θ

[(
Ω + δ

(
a− r2

))
P
]
− 1

r

∂

∂r

[
r
∂P

∂r

]
− 1

r2

∂2P

∂θ2
= 0,

(77)

as used in (6). The parameters a, Ω, and δ appearing here are thus given in terms of
the original system parameters as

a = dμ

√
−1

κã
, Ω =

√
−1

κã

(
ω + cμ− bdμ

ã

)
, δ =

b

ã
.(78)

Note the appearance of the bifurcation parameter μ and the noise intensity κ in the
definition of the parameter a. As stated above, the magnitude of μ must be small,
|μ| 	 1, for analysis near the Hopf bifurcation point. However, the noise intensity κ
may also be very small, and the resulting parameter a may therefore have arbitrarily
large magnitude even for small |μ| if the noise intensity κ goes to zero. Note also that
the amplitude-phase coupling parameter δ is independent of μ and depends only on
the properties of the dynamical system at the bifurcation point (as determined by the
parameters b and ã in the normal form (70)).

The derivation of the normal form equations at a bifurcation point relies on the
transformation of the dependent and/or independent variables in the original system.
The assumption made above that the noise terms enter additively into (71) is there-
fore somewhat simplistic—when the noise in the original dynamical system is subject
to the normal form transformation, it may very well appear in (71) as, for exam-
ple, multiplicative noise [13], or with unequal intensities in the real and imaginary
directions. Nevertheless, the generality of the normal form is such that the study of
the simplest case, i.e., additive isotropic white noise, is still instructive. Moreover,
additive isotropic noise is often adopted as a phenomenological model when the de-
tails of the noise sources or the underlying dynamical system are not known; this
is the case for the semiclassical laser equations as derived in Chapter 12 of [2], for
example. It is hoped that the new results of this paper (especially on the importance
of the amplitude-phase coupling parameter δ) for additive isotropic noise will stimu-
late further work on the combined effects on spectral lineshapes with nonzero δ and
multiplicative and/or nonisotropic noise.
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PHASE TRANSITIONS AND CHANGE OF TYPE IN
LOW-TEMPERATURE HEAT PROPAGATION∗
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Abstract. Classical heat pulse experiments have shown heat to propagate in waves through
crystalline materials at temperatures close to absolute zero. With increasing temperature, these
waves slow down and finally disappear, to be replaced by diffusive heat propagation. Several features
surrounding this phenomenon are examined in this work. The model used switches between an
internal parameter (or extended thermodynamics) description and a classical (linear or nonlinear)
Fourier law setting. This leads to a hyperbolic-parabolic change of type, which allows wavelike
features to appear beneath the transition temperature and diffusion above. We examine the region
around and immediately below the transition temperature, where dissipative effects are insignificant.

Key words. phase transition, hyperbolic-parabolic, change of type
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1. Introduction. The analysis in this paper is based on a low-temperature heat
propagation model described in [9] and [10]. The model is based on experimental
results of [3], [2], [5], and [6], which provide evidence of second sound, i.e., hyperbolic,
or wavelike, thermal effects where Fourier’s law fails, in very pure crystals of sodium
fluoride and bismuth.

Significantly, these features appear only at certain temperatures below which the
materials reach their peak thermal conductivities (at approximately 18.5 K and 4.5 K
for NaF and Bi, respectively). No wavelike behavior is found in NaF and Bi at higher
temperatures, where only diffusive heat propagation is observed. Further, the speed,
UE , at which small amplitude thermal waves propagate is a decreasing function of
temperature in the region where the waves can be detected, after which the diffusion
process dominates. This hyperbolic region appears separated from the diffusive region
by a “critical” temperature, ϑλ, at which UE = 0 [1]. The aim of this paper is to
understand the dynamics of regular solutions having temperatures close to that of
the phase transition. We begin, in section 2, by describing a phenomenological one-
dimensional model which uses an internal variable behaving as an order parameter.
In section 3, we will examine properties of the phase transition, and in section 4, we
obtain conditions under which this class of solutions remain smooth. Some explicit
cases are, finally, examined in section 5.

2. Preliminaries. We briefly describe our model and refer to [10] (see also [9])
for further details concerning the thermodynamics of materials with internal parame-
ters. In the present context, two forms of heat transmission—diffusive propagation at
high temperatures and wavelike propagation at low temperatures—are separated by
a phase transition at a critical temperature, ϑλ > 0. At temperatures above ϑλ, we
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employ the equations for heat flow through a one-dimensional rigid solid, consisting
of balance of energy and Fourier’s law,

ε(ϑ)t + qx = 0,(2.1)

q = −k(ϑ)ϑx,(2.2)

where ε(ϑ) represents internal energy, ε′(ϑ) = cv(ϑ) is the specific heat at constant
volume, q denotes heat flux, and k(ϑ) is the heat conductivity.

At temperatures between ϑ = 0 (absolute) and ϑ = ϑλ, experimental results
indicate that the constitutive description of q given by (2.2) is inadequate [2]. This
then requires the use of an extended form of thermodynamics, in which we employ
an internal parameter, p , to appropriately model observations. The internal param-
eter satisfies a particular form of evolution equation (see [10], [9]), and heat flow is
described below ϑλ by the equations

ε(ϑ)t + qx = 0,(2.3)

pt = g1(ϑ)ϑx + g2(ϑ)p,(2.4)

q = −α(ϑ)p,(2.5)

where g1(ϑ) ≥ 0 ≥ g2(ϑ) and α(ϑ) ≥ 0 are material functions. The second law of
thermodynamics imposes the restriction that α(ϑ) = ψ20ϑ

2g1(ϑ), where the constant
ψ20 > 0 comes from the Helmholtz free energy, ψ, which has the form ψ = ψ1(ϑ) +
1
2ψ20ϑp

2. While satisfying the second law of thermodynamics, the model has internal
energy depending only on temperature [9]. In effect, (2.3)–(2.5) permit q to depend
on the history of the temperature gradient.

The following constitutive relations will be used for g1 and g2 (see [10]):

g1(ϑ) = g10(ϑ)(ϑλ − ϑ)r, g10(ϑ) > 0,(2.6)

g2(ϑ) = g20(ϑ)(ϑλ − ϑ)2r, g20(ϑ) < 0,(2.7)

where 0 ≤ ϑ ≤ ϑλ. Here g10, g20 ∈ C[0, ϑλ] and r ∈ (0, 1). The form of these func-
tions can be derived from experimental data on the wave speed, UE(ϑ), the heat
conductivity, K(ϑ), and the specific heat, cυ(ϑ), as we now describe.

The characteristic equation for (2.3)–(2.5) is given by

cυ(ϑ)λ2 + λα′(ϑ)p− α(ϑ)g1(ϑ) = 0.(2.8)

If one considers waves propagating into an undisturbed state ϑ = constant, p = 0
(q = 0), this provides an expression for UE ,

λ2 = U2
E ≡ α(ϑ)g1(ϑ)

cυ(ϑ)
= ψ20ϑ

2 g
2
1(ϑ)

cυ(ϑ)
.(2.9)

Given experimental measurements of UE(ϑ) and cυ(ϑ), this specifies g1(ϑ). It is ob-
served that second sound is a decreasing function of temperature, which we allow to
reach zero [1] at ϑ = ϑλ (cf. (2.6)).
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In order to find g2(ϑ), we use measurements of heat conductivity made in near-
stationary states, for which fast processes are considered to be minor, pt ≈ 0.1 In this
case, the difference between solutions to (2.3)–(2.5) and the diffusion equation

ε(ϑ)t − (K(ϑ)ϑx)x = 0,(2.10)

where K(ϑ) = −α(ϑ)g1(ϑ)
g2(ϑ) = −U2

E(ϑ)cυ(ϑ)
g2(ϑ) > 0, becomes small. Requiring K(ϑ) to

remain finite as ϑ → ϑλ− then leads to the form of g2(ϑ) in (2.7).
The behavior of the specific heats of Bi and NaF is typically considered to be

continuous in temperature, and we will assume this here, with

cυ(ϑ) ∼ cλ, |ϑλ − ϑ| 	 1, cλ > 0,(2.11)

where “∼” denotes leading order behavior. Otherwise cυ is considered to be described
by a continuous function which obeys Debye’s law, cυ(ϑ) ∼ ϑ3, as ϑ → 0.

Particular forms of (2.6) and (2.7) chosen to fit available data for crystals of high
purity NaF and Bi can be found in [10]. Together with (2.11), these result in UE

having the general form

U2
E(ϑ) ∼ U2

0 (ϑ)(ϑλ − ϑ)2r(2.12)

for ϑ ≤ ϑλ, with U0, a continuous function of ϑ, found experimentally.
For convenience, we introduce the following change of variables:

e = ε(ϑ) − ε(ϑλ), ϑ = ε−1(e + ελ), and ελ = ε(ϑλ).(2.13)

We may rewrite (2.1), (2.2) in terms of e > 0 and q as

et + qx = 0,(2.14)

q = −d(e)ex,(2.15)

where d(e) = k(ϑ)/cυ(ϑ), k(ϑ) > 0. When e < 0, equations (2.3), (2.4) become

et + qx = 0,(2.16)

qt +
h′(e)

h(e)
qqx = f(e){q + D(e)ex},(2.17)

where2

f(e) = g2(ϑ), h(e) = α(ϑ), D(e) =
K(ϑ)

cυ(ϑ)
.(2.18)

1In this limit, however, thermal waves do not necessarily propagate at the speed dictated by the
qualitatively approximate parabolic equation (2.10), but still at a characteristic velocity, λ, given by
(2.9). We also distinguish pt ≈ 0 (for which g1(ϑ), g2(ϑ) �= 0) from pt = 0 (where g1(ϑ) = g2(ϑ) = 0).
The former is an assumption concerning the dynamics, such as the time asymptotic behavior which
may arise due to damping (for instance, as seen in [4], and which still preserves hyperbolic features
such as finite speed of propagation) in the original system. In the latter case, ϑ is assumed to have
reached the transition temperature, ϑ = ϑλ.

2For physical reasons [2], we will here assume that k(ϑλ) = K(ϑλ) (where q = −K(ϑ)ϑx =
−D(e)ex), which occurs in the limit pt ≈ 0 leading to (2.10). K(ϑ) is sometimes known as the
quasistatic heat conductivity.
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Continuous initial data, e0(x) or ϑ0(x), will be defined such that

e(ϑ(x, 0)) = e0(x), e0(0) = 0,(2.19)

with

xe0(x) > 0 for x 
= 0,(2.20)

where

ϑ(x, 0) = ϑ0(x), ϑ0(0) = ϑλ.(2.21)

Given the observed sharp decay in the speed of heat pulse propagation, nonlinear
effects are involved. Since the system (2.16), (2.17) is quasilinear and hyperbolic (cf.
(2.3)–(2.5)), it is possible to account for this decay, but it also becomes possible for
shocks to form in finite times [7], [8], [10] in temperatures below ϑλ. The present
analysis examines the situation under which solutions taking values at temperatures
on both sides of ϑλ should remain smooth. As such, it can be regarded as a first
step in analyzing experiments using large amplitude temperature pulses crossing into
phases that involve dissipation.

3. Properties of phase transitions. Let Γ denote a curve x = ϕ(t), t ≥ 0,
such that e(ϕ(t), t) = 0 (ϑ(ϕ(t), t) = ϑλ) and let V ⊂ R2

+ = {(x, t) ∈ R2, t ≥ 0} be a
neighborhood of Γ. Set V = U− ∪ Γ ∪ U+, where the regions U− and U+ correspond
to e < 0 and e > 0, respectively. Heat propagation is then governed by (2.14), (2.15)
in U− and by (2.16), (2.17) in U+.

We denote limits of a function u from the left and right of Γ, as x → ϕ(t),
by u−(t) = u(ϕ(t)−, t) and u+(t) = u(ϕ(t)+, t), respectively, and denote the jump
of u across Γ by [u](t) = u+(t) − u−(t). Let PC1(Q) denote the class of piecewise
differentiable functions on Q ⊂ R2. By assuming ϑ ∈ PC1(R2

+), e becomes continuous
across Γ.

Let s = ϕ̇. Using (2.14) and (2.16) together with the jump condition across Γ,

−s[e] + [q] = 0,(3.1)

demonstrates that q is continuous across Γ. This allows us to define

q�(t) ≡ q(ϕ(t), t) = − lim
x→ϕ(t)+

(d(e)ex) = −k(ϑλ)ϑ+
x (t).(3.2)

In the following, where we wish to categorize s and to obtain a relationship between
ϑ+
x (t) and ϑ−

x (t), ϑ and q are considered to be smooth in V \Γ (at least locally). For
convenience, we next set ψ20 = 1.

Lemma 3.1. Let ϑ+
x > 0. Then sϑ−

x = 0, and q ∈ C1(V ) if s = 0.
Proof. Let us write (2.17) in the form

qqx =
h(e)

h′(e)
(f(e){q + D(e)ex} − qt).(3.3)

Using (2.6)–(2.13), (2.18) in U− for e ∼ 0 (ϑ ∼ ϑλ) gives

cυ(ϑ) ∼ cλ,(3.4)

h(e) ∼ ϑ2
λg10(ϑλ)

(
1

cλ
|e|

)r

,(3.5)
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f(e) ∼ g20(ϑλ)

(
1

cλ
|e|

)2r

,(3.6)

and

D(e) ∼ − (ϑλg10(ϑλ))2

cλg20(ϑλ)
.(3.7)

Thus, since D(e)ex = D(e)cυ(ϑ)ϑx, (3.3) implies

qqx ∼ −1

r
eqt → 0 as e → 0−.(3.8)

Using (3.2) for ϑ+
x > 0 implies that q−x = 0 and consequently e−t = 0, by (2.16). The

definition of Γ implies that e−t + se−x = 0, and so se−x = 0, whence sϑ−
x = 0.

Finally, if s = 0, the definition of Γ also implies that e+
t = 0, in which case (2.14)

implies q+
x = 0.

Assuming that solutions depend continuously on the initial data (2.21) locally in
time in V, we now obtain the following.

Corollary 3.2. Let ϑ′±
0 = limx→0± ϑ′

0(x) > 0. Then there exists τ > 0 such
that s = 0 for t ∈ (0, τ).

Proof. This follows immediately from the lemma, since ϑ−
x (t), ϑ+

x (t) > 0, through
continuous dependence, over some interval t ∈ (0, τ).

Remark. Since ϕ(0) = 0 from (2.19), in this case ϕ(t) ≡ 0 for all t ∈ (0, τ).
The next results provide a connection between the left and right states of Γ and

show that the condition s = 0 is controlled only by initial data corresponding to these
states and by the solution to the diffusion equation, (2.14), (2.15), and (2.19).

Lemma 3.3. Let ϑ′−
0 , ϑ

′+
0 > 0 and s = 0. Then ϑ+

x (t) > 0 ⇒ ϑ−
x (t) > 0, t ∈

(0, τ).
Proof. Let γα ⊂ U− denote the line segment x = α < 0, t ∈ (0, τ), which lies

parallel to Γ. For α sufficiently small, q|γα can be bounded above, strictly, by 0. This
can be seen by defining a curve γβ ∈ U− ∪ Γ as follows,

γβ =

{
(x, t(x)), x ≤ 0 :

dt

dx
=

h(e)

h′(e)q
, t(0) = β ≥ 0

}
,(3.9)

and by writing (2.17) in the form

1

2

dq2

dx

∣∣∣∣
γβ

=
h(e)

h′(e)
f(e){q + D(e)ex} ≡ h

h′M.(3.10)

Using (2.7), (2.18), and (3.5), we find that

h(e)

h′(e)
|γα

∼ e

r
(3.11)

for α ∼ 0.
Also, D(e)ex = K(ϑ)ϑx|γα

→ k(ϑλ)ϑ−
x and q|γα

→ q� = −k(ϑλ)ϑ+
x as α → 0.

Since e|γα
→ 0 as α → 0, and through (3.6), it follows that as α → 0,

M|γα
∼ g20(ϑλ)k(ϑλ)

(
1

cλ

)2r

(ϑ−
x − ϑ+

x )(|e|2r)|γα
∼ 0.(3.12)
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As a result, by (3.10),

q(x, t)|γβ
∼ q�(β),(3.13)

where

dt

dx
|γβ

∼ e

rq
.(3.14)

Next, the use of (2.16), (2.17), and (3.12) shows that(
qt −

r

e
qet

)∣∣∣
γα

∼ 0,(3.15)

from which a rearrangement and integration give

q(α, t) ∼ q(α, 0)

(
e(α, t)

e0(α)

)r

.(3.16)

Since ϑ′+
0 > 0 and e0(α) < 0, we have, locally for x < 0 and t > 0, that e < 0 and

q ∼ q� ∼ −k(ϑλ)ϑ+
x < 0. Consequently dt

dx |γβ
> 0 by (3.14), and hence there exists

some β > 0 such that q(α, 0) ∼ q�(β), with β → 0+ as α → 0 − . Therefore (3.16)
implies

q�(t) = q�(0) lim
α→0

(
e(α, t)

e0(α)

)r

.(3.17)

Given ε′(ϑ) = cυ(ϑ) and (2.11), (2.13), and (3.4), we have

lim
α→0

e(α, t)

e0(α)
= lim

α→0

ϑλ − ϑ(α, t)

ϑλ − ϑ0(α)
=

ϑ−
x (t)

ϑ′−
0

.(3.18)

Finally, since q�(t)/q�(0) = ϑ+
x (t)/ϑ′+

0 , this implies

ϑ−
x (t)

ϑ′−
0

=

(
ϑ+
x (t)

ϑ′+
0

)1/r

,(3.19)

which leads to the desired conclusion.
Theorem 3.4. Let ϑ′−

0 , ϑ
′+
0 > 0, and ϑ+

x (t) > 0 for t ∈ (0, T ), where T > 0.
Then s = 0 for t ∈ (0, T ).

Proof. Suppose that t
 < T denotes the first time for which ϑ−
x (t) = 0, so that

t
 > 0 by Corollary 3.1. Using Lemma 3.1 and continuity in t implies s(t
) = 0, and
thus Lemma 3.2 holds for t ∈ (0, t
). Using continuity once again then implies that
ϑ+
x (t
) = 0, which violates the hypothesis ϑ+

x (t) > 0 for t ∈ (0, T ). The result follows
through contradiction.

4. Smooth solutions in the transcritical region. Next we set up the problem
of phase transition in the region U− ∪ Γ ∪ U+, where we now extend U+ to all of
R

2
++ = {(x, t) ∈ R2, t ≥ 0, x > ϕ(t)} and restrict U− to temperatures close to ϑλ.

Assuming ϑ′
0
+
, ϑ′

0
−

> 0 means that we may set ϕ(t) = 0 for t > 0, given ϕ(0) = 0,
from the results of the previous section.

The transcritical phase transition problem reduces to solving

et − (d(e)ex)x = 0(4.1)
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in U+, by (2.14) (2.15). In U−, equations (2.16), (2.17) become

et + qx = 0,(4.2)

qt +
rq

e
qx = 0,(4.3)

where we have used (3.11) to obtain (4.3). We recall that across Γ, where now

e(0, t) = 0, t > 0,(4.4)

both e and q are continuous. Initial data for (4.1)–(4.3) are given by

e(x, 0) = e0(x), with xe0(x) > 0 for x 
= 0, and e0(0) = 0.(4.5)

In U+, e(x, t) is a solution to (4.1) satisfying the Dirichlet boundary condition
(4.4), together with (4.5). This solution determines q�(t),

q�(t) = q(0, t) = − lim
x→0+

(d(e(x, t))ex(x, t)) = −k(ϑλ)ϑ+
x (t),(4.6)

as a function of the initial data e0(x), for x > 0.
In U−, the pair (e(x, t), q(x, t)) is a solution to (4.2), (4.3) satisfying (4.4), (4.5),

and (4.6).
Eigenvalues of the system (4.2), (4.3) are given by λα = 0 < λβ = rq

e . Due to the
fact that q does not possess initial data, characteristic curves γα, γβ are parametrized
by t and x, respectively (see (3.9), (3.14)):

dx

dt

∣∣∣∣
γα

= 0, x(t;α)

∣∣∣∣
γα

= x(0;α)

∣∣∣∣
γα

= α < 0,(4.7)

and

dt

dx

∣∣∣∣
γβ

=
e

rq
, t(x;β)

∣∣∣∣
γβ

> 0, t(0;β)

∣∣∣∣
γβ

= β > 0.(4.8)

This system has Riemann invariants, |e|r/q and q, which satisfy

|e|r
q

∣∣∣∣
γα

= constant(4.9)

and

q|γβ
= constant.(4.10)

In order to examine when solutions in U− remain smooth, we use the following
results.

Lemma 4.1. Let (e, q) ∈ C1(U−), and suppose that there are constants δ >
0, α0 < 0 such that e0(α) < −δ for α < α0 and q�(β) > −1/δ for β > 0. Then for
each β small enough, there is a unique characteristic, γβ , connecting Γ with R− =
{(x, t) : x < 0, t = 0}.

Proof. Consider a region W ⊂ U− bounded to the left and right by the line
x = α < 0 and by Γ , and to the top and bottom by the characteristic γβ and by R−.
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Fig. 4.1.

Let γβ meet the line x = α at (x, t) = (α, τ), where τ = τ(α, β) ≤ β by (4.8) (see
Figure 4.1). We assume in the following that γβ is entirely contained inside U−.

Applying the divergence theorem to (4.2) on W, and using (4.10), provides the
relation ∫ 0

α

e0(x)dx =

∫ β

0

q�(t)dt− (1 − r)βq�(β) + τ(1 − r)q�(β) −
∫ τ

0

q(t, α)dt.(4.11)

Fixing β in (4.11) and differentiating with respect to α then gives

−e0(α) = ((1 − r)q�(β) − q(τ, α))
∂τ

∂α

= −rq�(β)
∂τ

∂α
.(4.12)

So ∂τ
∂α = e0(α)

rq�(β) > δ2/r for α < α0, which means that τ(α, β) is bounded below, for

fixed β, by a uniformly increasing function of α. Since τ(0, β) = β > 0, it follows that
τ must reduce to zero as α decreases from α = 0, at which point γβ meets R−.

We note that if γβ connects Γ to R−, then (4.11) reduces to∫ 0

α

e0(x)dx =

∫ β

0

q�(t)dt− (1 − r)βq�(β),(4.13)

which gives a functional relation between α and β. In particular, differentiating with
respect to α,

−e0(α)
dα

dβ
= rq�(β) − (1 − r)βq′�(β)(4.14)

shows that dα
dβ < 0 if rq�(β) − (1 − r)βq′�(β) < 0. Thus, at least for small β > 0, one

finds that dα
dβ < 0, since q�(0) < 0 due to our assumption ϑ′

0
+
> 0.
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Fig. 4.2.

We will use the notation β = β(α, τ) to denote the time of intersection of the
characteristic curve going through (x, t) = (α, τ), with Γ, i.e., β = β(α, τ(α, β)), α < 0.
The inversion is possible whenever ∂τ

∂β > 0, which is a subject of the following results.

Lemma 4.2. Let (e, q) ∈ C1(U−), q�(β) < 0, and q′�(β) 
= 0. Then ∂t
∂β (x, β) > 0,

and if ∂t
∂β → 0 as x → x∗ < 0, then |qt(x, t(x, β))| → ∞.

Proof. By (4.10), we have that

q(x, t(x, β)) = q�(β)(4.15)

along γβ , and so q|γβ
< 0. Differentiating relation (4.15) in β gives

(qttβ)|γβ
= qt(0, t(0, β)) = q′�(β)(4.16)

since t(0, β) = β. Thus ∂t
∂β → 0 ⇔ |qt||γβ

→ ∞.

In the following we take, for simplicity, U− to be the vertical strip {(x, t) ∈ R2
+ :

x∗ < x < 0} for some x∗ < 0. With regard to the theorem, we remark that the
two crystalline materials, bismuth and sodium fluoride, have values of the material
constant, r, lying between zero and one-half [10].

Theorem 4.3. Let β1 
= β2. Then γβ1 and γβ2 do not intersect in U−, provided
that one of the following holds:

Case 1. r ∈ (0, 1), and either
(i) q′�(β) > 0

or
(ii) q′�(β) < 0 and rq�(β) − (1 − r)βq′�(β) < 0.

Case 2. r > 1, and either
(i) q′�(β) < 0

or
(ii) q′�(β) > 0 and rq�(β) − (1 − r)βq′�(β) < 0.
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Case 3. r = 1.
Proof. Recalling (4.9) and (4.10), for (x, t) ∈ U−,

|e(x, t)|r
q�(β(x, t))

=
|e(x, t)|r
q(x, t)

=
|e0(x)|r
q(x, 0)

=
|e0(x)|r

q�(β(x, 0))
,(4.17)

which gives

|e(x, t)|r =
q�(β(x, t))

q�(β(x, 0))
|e0(x)|r.(4.18)

As a result, (4.8) can be written as

dt

dx
|γβ

= −|q�(β(x, t))|(1−r)/r e0(x)

r|q�(β(x, 0))|1/r .(4.19)

Integrating (4.19) along γβ and using (4.10) again,

t = t(x, β) = β − |q�(β)|(1−r)/r

∫ x

0

e0(y)

r|q�(β(y, 0))|1/r dy(4.20)

with x∗ < x < 0 and 0 < t < β. Thus, differentiating with respect to β = β(x, t),

∂t

∂β
= 1 − 1 − r

r
|q�(β)|1/r−3q�(β)q′�(β)

∫ x

0

e0(y)

r|q�(β(y, 0))|1/r dy.(4.21)

Case 1(i) of the proof follows since e0 < 0, q� < 0, and characteristics spread with
decreasing x, ∂t

∂β > 1.

In order to establish Case 1(ii), let us first suppose that (x∗, t∗) ∈ ∂U− for x∗ < 0,
and that t∗ > 0 is the least time at which solutions may fail to be in C1. Next, assume
that β1 < β2 are such that γβ1

and γβ2
intersect at (x∗, t∗), where γβi

= {(x, t) : t =
t(x, βi)}, i = 1, 2. So (4.20) holds for i = 1, i = 2 at (x∗, t∗),

t∗(x∗, βi) = βi − |q�(βi)|(1−r)/r

∫ x∗

0

e0(y)

r|q�(βi(y, 0))|1/r dy, i = 1, 2,(4.22)

where we note that the integral terms are identical for i = 1, 2. Eliminating this term
leads to the relation

t∗ − β2 = (t∗ − β1)

(
q�(β2)

q�(β1)

)(1−r)/r

,(4.23)

where Q ≡ q�(β2)
q�(β1) )

(1−r)/r > 1 since q′� < 0, by our hypothesis. However, it is easily

shown that conditions (ii) imply

1 < Q <
β2

β1
.(4.24)

Thus t∗ > 0 cannot exist since (4.23), (4.24) imply

t∗ = β1
β2/β1 −Q

1 −Q
< 0.(4.25)
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Cases 2(i) and (ii) can be established as above, and Case 3 follows since (4.20)
then implies tβ ≡ 1.

Remark. In addition to qt, the terms et, qx, and ex naturally blow up where
∂t
∂β → 0, under the conditions of Theorem 4.3. This results from q remaining constant

on γβ and e remaining bounded away from zero on γα by (4.10) and (4.9). Equation
(4.3) then implies |qx| → ∞ as |qt| → ∞, and therefore |et| → ∞ by (4.2). On
differentiating (4.9) in α, the same result follows for |ex|.

Let us finally state some relationships more concisely. For any point (x, t) ∈ U− ,
the solution (e(x, t), q(x, t)) to (4.2), (4.3) subject to (4.4), (4.5), and (4.6) takes the
form

q(x, t) = q�(β(x, t)),(4.26)

e(x, t) =

(
q�(β(x, t))

q�(β(x, 0))

)1/r

e0(x),(4.27)

with

t = β(x, t) −
(
q�(β(x, t))

q�(β(x, 0))

)(1−r)/r

β(x, 0),(4.28)

where β(x, 0) is derived from (4.13) (with α = x) and (4.28) comes from repeated use
of (4.20) with t > 0 and t = 0 to eliminate the integral term. Using Theorem 4.3,
we may invert (4.28) for fixed x in order to obtain β(x, t) used in (4.26) and (4.27).
Similarly, by using (4.20) in (4.21), one can find ∂t

∂β in terms of β(x, t) in the useful
form

∂t

∂β
= 1 − 1 − r

r

q′�(β)

q�(β)
(β − t).(4.29)

5. Some explicit smooth solutions. Having observed the role that heat flux
continuity across Γ plays in solving (4.2)–(4.3), we now examine the effect on U− of
having a stationary or self-similar solution to (4.1) in U+. The solutions are defined
for U− lying in the transcritical region.

In the case that the U+ component of the solution is stationary, i.e., et = qx = 0
with q = −d(e)ex < 0, this implies that q�(β) = q�(0) for all β > 0. Since q|γβ

remains
constant, this means in turn that q = q�(0) in U− . Consequently, since (|e|r/q)|γα is
also constant, it follows that e(x, t) = e0(x) for arbitrary initial temperature distri-
butions, e0(x), in U− . As a result, the solution is everywhere stationary.

In the next case, we choose U+ to be governed by the linear heat equation d(e) = 1
(assuming cλ = 1), in which we can use, for example, any explicit solution formula for
the semi-infinite interval. We set up the following example by means of a self-similar
solution, in U+ , of the form e(x, t) = e(x/

√
t + 1) and let this extend to U− through

Γ. The solution in U+ is then represented by

e(x, t) = A
√
π erf

(
x

2
√
t + 1

)
, A > 0,(5.1)

giving heat flux as

q(x, t) = − A√
t + 1

e−x2/4(t+1) with q�(t) = − A√
t + 1

.(5.2)
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Fig. 5.1. Temperature evolution with ϑλ = 18K, for 0 ≤ t ≤ 2.5μsec. and −.5 ≤ x ≤ 1 cm.

Since q′�(t) > 0, Theorem 4.1 guarantees that the characteristics in U− do not inter-
sect. We choose as initial data for e in U−,

e0(x) = x, x < 0,(5.3)

which is equivalent to ϑ0(x) = x + ϑλ. The following connection can now be made
from (4.13) (with α = x),

β(x, 0) =

(
B(x) +

√
B(x)2 − (1 − r2)

1 + r

)2

− 1,(5.4)

where

B(x) =
1

4A
x2 + 1.(5.5)

Equation (4.28) then leads to a relation for β = β(x, t),

t = β − (β + 1)−(1−r)/2r(β(x, 0) + 1)(1−r)/2rβ(x, 0).(5.6)

Taking, as a special case, r = 1/3 in (5.6) gives

β(x, t) =
t− 1 +

√
(1 + t)2 + 4H(x; 1/3)

2
,(5.7)
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Fig. 5.2. Heat flux evolution with ϑλ = 18K, for 0 ≤ t ≤ 2.5μsec., −.5 ≤ x ≤ 1 cm, with
−0.4 ≤ q < 0W/cm2.

where we have set

H(x; r) = (β(x, 0) + 1)(1−r)/2rβ(x, 0).(5.8)

Using (4.26), (4.27) together with (5.2), (5.3), (5.4), and (5.7) finally gives a solution
for (e, q) in U− ,

e(x, t) =

(
3
√

2

4

)3
⎛
⎝ B(x) +

√
B(x)2 − 8/9√

t + 1 +
√

(1 + t)2 + 4H(x; 1/3)

⎞
⎠

3

e0(x),(5.9)

q(x, t) = −
√

2
A√

t + 1 +
√

(1 + t)2 + 4H(x; 1/3)
,(5.10)

where, from (2.11), (2.13) and the definition ε′(ϑ) = cv(ϑ),

ϑ(x, t) = ϑλ + e(x, t).(5.11)

Figures 5.1 and 5.2 illustrate the behavior of ϑ(x, t) and q(x, t) in U− ∪Γ∪U+, using
(5.1), (5.2), and (5.9)–(5.11) with A = 2/5.
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One can see in Figure 5.2 that, despite the temperature gradient being initially
larger to the left of the phase transition at x = 0 than to the right (see Figure 5.1), q is
nevertheless greater there than at the transition itself. This illustrates distinctly “non-
Fourier” behavior in U− . It is also possible to observe in Figure 5.1 the derivative
discontinuity in ϑ at x = 0 changing from “concave down” to “concave up” as time pro-
gresses. From (3.19), with r = 1/3, this change occurs when ϑ+

x (t) = (ϑ′+
0 )3/(ϑ′−

0 )1/2 ,
or at about t = 1. With q′�(β) > 0 and r < 1, as in the present case, it is easy to check

that such a concavity change can occur only if 0 < ϑ′
0
+
< ϑ′

0
−
.
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FIBER DYNAMICS IN TURBULENT FLOWS:
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Abstract. The paper at hand deals with the modeling of turbulence effects on the dynamics
of a long slender elastic fiber. Independent of the choice of the drag model, a general aerodynamic
force concept is derived on the basis of the velocity field for the randomly fluctuating component
of the flow. Its construction as a centered differentiable Gaussian field complies thereby with the
requirements of the stochastic k-ε turbulence model and Kolmogorov’s universal equilibrium theory
on local isotropy.
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spectrum, double-velocity correlations, differentiable Gaussian fields
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1. Introduction. The understanding of fiber-fluid interactions is of great in-
terest for research, development, and production in textiles manufacturing. In the
melt-spinning process of nonwoven materials, hundreds of individual endless fibers
obtained by continuous extrusion of a melted polymer are stretched and entangled
by highly turbulent air flows to finally form a web. The quality of this web and the
resulting nonwoven material depends essentially on the dynamics of the fibers.

Fiber-turbulence interaction is a complex phenomenon that is governed by many
factors, including the nature of the flow field, turbulent length scales, concentration,
and size of fibers [13], [14]. Thin fibers decrease the turbulent intensity by increas-
ing the apparent viscosity, whereas fibers whose thickness induces Reynolds numbers
greater than some critical one intensify the turbulence due to vortex shedding [5]. Both
mechanisms are strongly affected by the concentration. In the application considered
here, however, the turbulence is not significantly influenced by the fibers. Hence,
the turbulent flow is determined under neglect of suspended fibers, and its effect is
theoretically studied on a single long slender fiber using a general drag model.

The fiber dynamics is described in section 2 by the Kirchhoff–Love equations for
the motion of a Cosserat rod capable of large bending deformations. In terms of
these the fiber slenderness allows the formulation of a wavelike system of nonlinear
PDEs of fourth order with the algebraic constraint of inextensibility. The behavior
of this system relies on the model for the external force imposed on the fiber by the
turbulent flow, particularly on the choice of the air drag coefficients. The modeling
of a generally valid aerodynamic force in section 4 is based on the splitting of the
flow velocity into mean and fluctuation parts in the Reynolds-averaged Navier–Stokes
equations. Thus, a centered differentiable Gaussian field for the randomly fluctuating
component of the flow velocity is derived under the Global-from-Local Assumption
of underlying locally isotropic and homogeneous turbulence, given in section 3. The
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construction of the initial condition for the respective local double-velocity correla-
tion tensors satisfies thereby Kolmogorov’s universal equilibrium theory as well as the
local distribution of kinetic energy k and dissipation ε provided by the stochastic k-ε
turbulence model. The dynamic behavior of the local correlation tensors is described
by an advection equation, whose solution coincides with Taylor’s hypothesis of frozen
turbulence patterns. The temporal change of the global coherences is included by
the averaging procedure. In section 4 the developed local velocity fluctuation fields
hand their properties to the corresponding correlated local stochastic forces along
the fiber. Gluing them together yields the global aerodynamic force that represents
the turbulence effects on the fiber motion. Considering a wide class of feasible air
drag models, the stated Global-from-Local Force Concept in combination with a lin-
earization ansatz enables a good L2- and L∞-approximation of the correlated force
by Gaussian white noise with flow-dependent amplitude in case of a macroscopic
description of the fiber.

2. Fiber dynamics. In the actual spinning process the fiber is endless, and its
deposition plays a crucial role for the generation of the nonwoven material. However,
as this paper focuses exclusively on the description of its dynamics due to the turbulent
flow, the following considerations are restricted on a long slender elastic polymer fiber
that is fixed at one end, suspended in a highly turbulent air stream. Let l denote
its length and d its diameter with slenderness ratio δ = d/l � 1. To describe its
motion a one-dimensional model is derived on the dynamical Kirchhoff–Love theory
for a Cosserat rod capable of large geometrically nonlinear deformations [2].

2.1. Equations of motion. Treat the fiber in the reference configuration as a
body B given within a fixed Cartesian frame e1, e2, e3. Define p(z, t) to be the position
of the material point z ∈ B at time t; then p(., t) states the actual configuration of
the closure clB of B at time t. Introduce the curvilinear coordinates x := (x1, x2, s) ∈
R× R× [0, l] on B with s denoting the arc length. Then define p̃(x, t) := p(z̃(x), t),
where z̃ assigns z ∈ clB to each x. In particular, p̃(., ., s, t) describes the actual
configuration of the cross section B(s) at time t.

The fiber model is now developed under the assumption that the position field p̃
is determined by three vector-valued functions r(s, t), d1(s, t), and d2(s, t), i.e.,

p̃(x, t) = r(s, t) + j(r(s, t),d1(s, t),d2(s, t),x, t),(1)

where the fiber line r(s, t) might be interpreted as the actual configuration of the
center line at time t and the orthonormal directors d1(s, t) and d2(s, t) state the
orientation of the actual configuration of B(s) at time t. Additionally, let d3(s, t) =
d1(s, t) × d2(s, t). In terms of these functions, the feasible deformations of the fiber,
e.g., flexure κ1, κ2, torsion τ , shear w1, w2, and dilatation w3, are then expressed using
the relations ∂sdi = b × di, b = κ1d1 + κ2d2 + τd3, and ∂sr =

∑3
i=1 widi. Thus,

κ1 = −d2 · ∂sd3, κ2 = −d3 · ∂sd1, τ = −d1 · ∂sd2,

wi = ∂sr · di.

According to Bernoulli’s hypothesis that cross sections never experience warping as
a consequence of deformation, the function j of (1) can moreover be prescribed by
j(r,d1,d2,x, t) = x1d1 + x2d2. Assuming the reference configuration B to be a
homogeneous (with respect to the density distribution) cylindrical body with circular
cross sections of constant radius, the linear and angular impulse-momentum laws for
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B read [2]

∂sq + f = ρA∂ttr,(2)

∂sm + ∂sr × q + l = ρI

2∑
i=1

(∂ttdi × di).(3)

Here, ρ denotes density, A = πd2/4 cross-sectional area, and I = πd4/64 the moment
of inertia. Closing the system by means of constitutive laws for inner force q and
moment m as well as given outer line force f and moment l, the Kirchhoff–Love
equations (2) and (3) yield the description for fiber line and directors r, d1, d2. The
orthonormality of d1 and d2 thus reduces the number of unknowns to six. As no
outer moment is acting on the fiber, l = 0.

Constitutive laws for elastic materials look in general like

m = M(κ1, κ2, τ, w1, w2, w3, s), q = Q(κ1, κ2, τ, w1, w2, w3, s).

We apply here, in particular, Bernoulli–Euler beam theory that the inner moment m
arises due to bending and torsion,

m = EI(κ1d1 + κ2d2) + GJτd3,(4)

with Young’s modulus E, shear modulus G, and polar moment of inertia J = πd4/32.
Moreover, we interpret q as a vectorial Lagrangian multiplier and impose instead of
a material law for q the following constraints on d3 and ∂sr:

d3 =
∂sr

‖∂sr‖2
, ‖∂sr‖2 = 1.(5)

This excludes shear and extensional deformation from the model. The restrictions are
reasonable for a long slender fiber because shear and elongation are negligibly small
in comparison to bending.

Apart from this, the slenderness enables a further simplification of system (2), (3).

Nondimensionalizing (3) yields ∂sm+∂sr×q = δ2 D
∑2

i=1(∂
2
ttdi×di) with negligibly

small right-hand side as the slenderness ratio δ satisfies δ � 1 and D = O(1). Setting
the right-hand side to zero, i.e.,

∂sm + ∂sr × q = 0,(6)

and using (5), we obtain ∂sτ = 0. Consequently, the torsion over the whole fiber
equals the introduced torsion at the ends, τ = τ0. Rewriting (4) thus gives m =
EI(d3×∂sd3)+GJτ0d3, where ∂sd3 represents the curvature vector ∂ssr = κn with
κ =

√
κ2

1 + κ2
2 and n a normal vector. Splitting the inner force q into tangential and

normal parts with respect to the fiber position yields

q = (q · d3)d3 + d3 × (q × d3)

(6)
= (q · d3 + EI (∂ssd3 · d3))d3 − EI (d3 · d3) ∂ssd3 + GJτ0 d3 × ∂sd3.

Defining

T := q · d3 + EI (∂ssd3 · d3)

(5)
= q · ∂sr︸ ︷︷ ︸

tension

− EI ‖∂ssr‖2
2︸ ︷︷ ︸

curvature due to bending
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e3

s = l

s = 0

r(s, t)
fiber line

p̃(x, t)

fgrav

gravitational force

fair

aerodynamic force

n

Fig. 1. Fiber dynamics caused by external forces.

as a modified tractive force, q depends exclusively on fiber line r and scalar Lagrangian
multiplier T , and thus two more degrees of freedom vanish, which is consistent with
the removing of the unknown directors di. Plugging

∂sq
(5)
= ∂s(T ∂sr) − EI ∂ssssr + GJτ0 ∂sr × ∂sssr

into (2), the dynamics of a freely swinging fiber that is fixed at one end (cf. Figure 1)
is described by

ρA∂ttr(s, t) = ∂s[T (s, t) ∂sr(s, t)] − EI ∂ssssr(s, t) + GJτ0 ∂sr(s, t) × ∂sssr(s, t)

+ fgrav + fair(r(.), s, t),(7)

‖∂sr(s, t)‖2 = 1,(8)

for (s, t) ∈ (0, l)×R+ with Dirichlet conditions at the fixed end (s = l) and Neumann
at the free end (s = 0),

r(l, t) = 0,

∂sr(l, t) = e3,

∂ssr(0, t) = 0,

∂sssr(0, t) = 0,

T (0, t) = 0,

as well as appropriate initial conditions (t = 0), e. g.,

r(s, 0) = (s− l) e3, ∂tr(s, 0) = 0.

The Neumann conditions might be interpreted as natural boundary conditions,
and the ending s = 0 is free of stress. Thus, neither outer moment nor force are
acting on it. Moreover, T (0, t) viewed as a tractive force vanishes. The Lagrangian
multiplier T (s, t) is thereby related to the algebraic constraint (8) of conservation of
length. The behavior of our fiber system (7), (8)—but definitely also of the original one
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(2), (3)—is strongly affected by the external line forces that arise due to gravitational
(fgrav = ρAg) and aerodynamic (fair) forces. We prescribe the aerodynamic force
as a function depending on arc length s, time t, and additionally on the fiber line
r : [0, l] × R+

0 → R
3 in a functional sense.

In this work, we initially introduce no twisting at the fiber ends, τ0 = 0, such that
(7) simplifies to a wavelike system of nonlinear PDEs of fourth order, if the feasible
functional dependence of the aerodynamic force is localized on the fiber point, e.g.,
fair(r(.), s, t) = fair(r(s, t), ∂sr(s, t), ∂tr(s, t), s, t).

2.2. Air drag. The description of the fiber dynamics in a turbulent flow relies
essentially on the model for the aerodynamic force fair that is imposed on the fiber by
the fluid. Neglecting the fiber influence on the flow, a dimensionless air drag coefficient
cdrag based on Reynolds (Re), Mach, and Froude numbers can be associated with fair

[16]. If just frictional and inertial forces occur in the flow around the fiber, cdrag is
particularly determined by

cdrag =
‖fair‖2

0.5 ρair d ‖v‖2
2

,

with air density ρair, fiber diameter d, and relative velocity between fluid flow and
fiber v = u− ∂tr. Thus, the magnitude of the line force is proportional to Bernoulli’s
dynamic pressure p = 0.5ρair‖v‖2

2 acting along d. In general, we characterize a feasible
air drag model by a function f : R3 × R2 → R

3, depending on a given velocity and a
normalized direction. In this context, the aerodynamic force of (7) reads as

fair(r(.), s, t) = f(u(r(s, t), t) − ∂tr(s, t), ∂sr(s, t)),(9)

where the flow velocity u : R3 × R+
0 → R

3 acts as outer input parameter to the
fiber problem. However, as this instantaneous flow velocity is not available from a
stochastic description of a turbulent flow, we derive a concept for a random Gaus-
sian aerodynamic force in this work. Note that this concept utilizes exclusively the
functional relation f and is hence generally applicable to a wide class of air drag
models.

3. Model for a velocity fluctuation field. Consider the flow to be subsonic,
highly turbulent, with small pressure gradients and Mach number Ma < 1/3. Then
it can be modeled as an incompressible Newtonian fluid using the incompressible
Navier–Stokes equations (NSE). Solving NSE by means of direct numerical simulation
(DNS) gives the exact velocity field needed for the determination of the force of (9).
However, DNS presupposes the resolution of all vortices ranging from the large energy-
bearing ones of length lT to the smallest, viscously determined Kolmogorov vortices
of size η with lT/η = Re3/4 [18]. Therefore, the number of grid points that are

required for the refinement of a three-dimensional domain is proportional to Re9/4.
Despite the existence of recent high speed computers, DNS is thus still restricted to
simple, small Reynolds number flow. Large eddy simulation (LES) as a combination
of DNS and stochastic turbulence models offers an alternative. Applying a low-pass
filter on NSE, only the vortices of large scales are resolved directly, whereas the
small vortices are taken into account by a stochastic approximation of their effect
on the larger ones [15]. However, for the relevant flow regime under consideration,
LES also requires enormous computational capacity, due to very long run time and
high memory demands. Because of neglect of the fiber influence on the flow, which
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leads to the decoupling of fiber and flow computation, the Reynolds number is here
specified by the machine geometry and not by the fiber diameter. For the resulting
high Reynolds number flow, the stochastic turbulence models represent a reasonable
compromise between accuracy and computational efficiency [6]. They are based on the
Reynolds-averaged NSE (RANS), where the instantaneous velocity u : R3×R+

0 → R
3

is expressed as the sum of a mean ū and a fluctuating part u′:

u(x, t) = ū(x, t) + u′(x, t).

Applying in particular the standard k-ε model [12] yields a deterministic description
of mean velocity ū : R3 ×R+

0 → R
3, turbulent kinetic energy k : R3 ×R+

0 → R
+, and

dissipation rate ε : R3×R+
0 → R

+. Hereby, the variables k and ε might be interpreted
as parameters of an R3-valued differentiable random field representing the fluctuations
(u′

x,t, (x, t) ∈ R3 × R+
0 ):

k(x, t) =
1

2
E[u′(x, t) · u′(x, t)],(10)

ε(x, t) = ν E[∇u′(x, t) : ∇u′(x, t)].(11)

To conform to the notation of probability theory and turbulence literature, note that
the mean E[u′] equals the averaged quantity u′. Constructing a suitable fluctuation
field requires the analysis of the turbulent behavior of the flow, which is characterized
by means of statistical quantities, i.e., double-velocity correlations revealing spatial
and temporal relations within a domain.

Definition 1 (velocity fluctuation field). Let (Ω,A,P) be a probability space.
The velocity fluctuation field of a turbulent flow is said to be a centered R3-valued
random field (Φx,t, (x, t) ∈ R3 × R+

0 ) with Φx,t ∈ L2(Ω,A,P). Its correlation tensor
reads

Γ(x, t,y, τ) = E[Φ(x, t) ⊗ Φ(y, τ)].

Classifying turbulence, we face shear turbulence in practice. Although it can be
simulated via RANS models, this kind of flow is hardly understood. Physical inter-
preting and mathematical handling of the statistical quantities is extremely difficult.
Therefore, it is helpful to consider approximations like homogeneous and/or isotropic
turbulent flows. Isotropy obviously has a hypothetical character, but knowledge of its
characteristics forms a fundamental basis for the study of actual, anisotropic turbulent
flows. Certain theoretical considerations concerning the energy transfer through the
eddy-size spectrum from the larger to the smaller eddies (i.e., forward-scatter) lead to
the conclusion that the fine structure of anisotropic turbulent flows is almost isotropic
(Kolmogorov’s local isotropy hypothesis [8]). Thus, many features of isotropic tur-
bulence apply to phenomena in actual turbulence that are mainly determined by the
fine-scale structure. Even if we consider the anisotropic large-scale structure of an
actual turbulence, it is possible to treat such a turbulence, for purposes of a first ap-
proximation, as isotropic. The differences are mostly sufficiently small [10]. However,
effects like back-scatter are not included. As velocity fluctuations in an isotropic flow
are Gaussian [7], we restrict ourselves to Gaussian flows that are uniquely determined
by their correlation tensor. This motivates the following assumption.

Global-from-Local Assumption. Let (Ω,A,P) be a probability space. Let
{(wy,τ

x,t , (x, t) ∈ R3 × R+
0 ), (y, τ) ∈ R3 × R+

0 } be a family of local velocity fluctuation
fields that correspond to spatially and temporally homogeneous, isotropic, and incom-
pressible Gaussian flows with respect to the points (y, τ). Let γ̃y,τ : (R3 × R+

0 )2 →
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R
3×3 denote their respective correlation tensors. For each local field the quantities

k = k(y, τ), ε = ε(y, τ), and ū = ū(y, τ) are taken as constant. Then we assume that
our actual global fluctuation field u′ can be constructed as

u′(x, t) = 〈wy,τ (x, t)〉M(x,t),(12)

with M(x, t) = {(y, τ) ∈ R3 × R+
0 | ‖x − y − ū(x, t)(t − τ)‖2 ≤ lT ∧ |t − τ | ≤ tT},

|M(x, t)| =
∫
M(x,t)

dy dτ , and turbulent large-scale length lT and time tT. The

brackets 〈·〉 represent the Gaussian average that is uniquely prescribed by expectation
and covariance (resp.) correlations according to

E[u′(x, t)] =
1

|M(x, t)|

∫
M(x,t)

E[wy,τ (x, t)] dy dτ = 0,

Cov(u′(x1, t1),u
′(x2, t2)) =

1√
|M(x1, t1)||M(x2, t2)|

∫
M(x1,t1)∩M(x2,t2)

γ̃y,τ (x1, t1,x2, t2) dy dτ

= Γ′(x1, t1,x2, t2).

Note that the terminology used will be explained in the course of this section.
The construction rule (12) enables the realization of a globally inhomogeneous and
anisotropic turbulent flow on the basis of a very limited number of data stemming
from general turbulence theory and specific, case-dependent k-ε simulations. So far, it
is not clear at all whether such a differentiable turbulent field exists. The underlying
local fluctuation fields wy,τ , which can be interpreted as fine-scale structure of the
turbulence, satisfy Kolmogorov’s local isotropy hypothesis as well as the local kinetic
energy k and dissipation ε distribution of the k-ε model. Averaging their statistical
parameters over a region M where the local stochastic quantities differ only slightly
glues them together to the global fluctuation field u′, the anisotropic large-scale struc-
ture. The respective global quantities ku′ and εu′ are thus prescribed as averages of
the hardly varying local ones. This is indicated by using the turbulent large-scale
length lT and time tT. Presuming global homogeneity, the global and local quantities
coincide and obey (10), (11), as desired.

In the following, we deal with the generation of the centered local fluctuation
fields by modeling their correlation tensors. Therefore we skip the superscripts de-
noting the respective points. To determine the temporal behavior of the correlations,
we first construct an initial condition for the correlation tensor satisfying the assump-
tions of homogeneity and isotropy as well as the requirements of the k-ε model and
Kolmogorov’s energy spectrum (sections 3.1–3.4). This initial condition meets the
smoothness demands and guarantees the differentiability of the actual global field.
Then we formulate an advection equation for the dynamics, whose solution coincides
with Taylor’s hypothesis of frozen turbulence (section 3.5). In section 3.6 we finally
formulate the global fluctuation field as Ito-integral over the local fields, which yields
the positive definite correlation tensor proposed in the Global-from-Local Assumption.

3.1. Locally homogeneous isotropic turbulence.

Definition 2 (homogeneous turbulence). Let (Ω,A,P) be a probability space.
Let (Φx,t, (x, t) ∈ R3×R+

0 ) be a velocity fluctuation field with correlation tensor Γ. A
turbulent flow is said to be spatially homogeneous if Γ is invariant regarding spatial
translations, i.e.,

Γ(x, t,y, τ) = Γ(x − a, t,y − a, τ) ∀a ∈ R3.
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A turbulent flow is said to be temporally homogeneous if Γ is invariant regarding time
shifts, i.e.,

Γ(x, t,y, τ) = Γ(x, t− a,y, τ − a) ∀ a ∈ R.

Definition 3 (isotropic turbulence). Let (Ω,A,P) be a probability space. Let
(Φx,t, (x, t) ∈ R3×R+

0 ) be a velocity fluctuation field with correlation tensor Γ. A tur-
bulent flow is said to be isotropic if Γ is invariant regarding rotations and reflections,
i.e.,

Γ(x, t,y, t) = S Γ(S−1x, t,S−1y, t) St ∀S ∈ O(3).(13)

The correlation tensor γ̃ corresponding to a local fluctuation field w, γ̃(x, t,y, τ) =
E[w(x, t)⊗w(y, τ)], depends only on the spatial and temporal difference of its argu-
ments due to homogeneity. Thus, we define

γ(z, ς) = γ̃(x + z, t + ς,x, t).(14)

To derive the structure of the initial correlation tensor in the following, we focus now
on

γ0(z) = γ(z, 0) or γ̃0(x,y) = γ̃(x, t,y, t).

Properties of the Initial Correlation Tensor. The correlation tensor
corresponding to a homogeneous isotropic turbulent flow has the following properties:

γ0(z) = γ0(−z),(15)

γ0(z) is symmetric,(16)

γ0(0) = cI, c = 0,(17)

γ0(z) has two different eigenvalues:(18)

c1(z) in z
z and c2(z) in the respective normal plane,

γ0(z) =
c1(z) − c2(z)

z2
z ⊗ z + c2(z)I, z = ‖z‖2.(19)

Hereby, the symmetry of γ0, (16), results directly from its definition and the
permutability of the arguments (15) that is concluded from the translation and reflec-
tion invariance. Applying additionally rotation invariance yields (17) and (18). The
general form (19) is deduced from the spectral theorem using the eigenvalues of (18).

The one-dimensional functions c1 and c2 ∈ C∞(R+
0 ) can be interpreted as lon-

gitudinal and lateral correlations [10]. In general c1 = c2, but for z → 0 we have
c2(z) → c1(z) → c, with c given in (17).

As a turbulent flow contains a continuous spectrum of scales, it is convenient to
introduce the spectral density M depending on the wave vector κ. Assuming absolute
Lebesgue-continuity of the spectrum of the underlying fluctuation velocity field [4],
the spectral density M is the Fourier transform of the correlation tensor γ0,

M(κ) =
1

(2π)3

∫
R3

e−iz·κγ0(z) dz.(20)

Then, the spectral energy distribution (energy spectrum) E is defined by

E(κ) =
1

2
κ2

∫
S2

tr(M(κe)) de,(21)
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with κ = ‖κ‖2, unit sphere S2, and unit vector e ∈ S2.
Properties of the Spectral Density. The spectral density corresponding to

a homogeneous isotropic turbulent flow has the following properties:

M(κ) =
e1(κ) − e2(κ)

κ2
κ ⊗ κ + e2(κ)I,(22)

trM(κ) =
1

2π

E(κ)

κ2
.(23)

Due to the Fourier relation (20), M inherits the isotropic property (13) from
γ0 and therefore has an analogous representation with the one-dimensional spectral
functions e1, e2 ∈ C∞(R+

0 ). The connection (23) between trace trM and energy
spectrum E can be concluded from (21). Because of isotropy the sphere integral
becomes

∫
S2 tr(M(κe))de = 4π trM(κ).

In our case of an incompressible local flow field w, the presented characteristics
and dependencies of correlation and spectral functions can be simplified, which halves
the number of unknowns and results in a well-structured Sine–Fourier relation between
c1 and E.

Influence of Incompressibility on Correlations and Spectral Den-

sity. Assuming incompressibility, the following relation for the correlation functions
c1 and c2 : R+

0 → R is valid:

c1(z) +
z

2
∂zc1(z) = c2(z).(24)

Moreover, the spectral functions e1 and e2 : R+
0 → R are given by

e1(κ) = 0, e2(κ) =
1

4π

E(κ)

κ2
.(25)

Relation (24) is concluded from the incompressibility using

0 = E[(∇x · w(x, t))w(y, t)] = ∇x · γ̃0(x,y)
z:=x−y

= ∇z · γ0(z)

and substituting (19). Analogously to the correlation functions, the number of un-
known spectral functions can be reduced to one. In particular, (25) is deduced by
combining 0 = ∇z · γ0(z) = i

∫
R3 eiκ·z M(κ)κ dκ and thus M(κ)κ = 0 for all κ ∈ R3

with (23).
For an incompressible isotropic and homogeneous turbulent flow, the correlation

tensor γ0 of second order can thus be expressed by the single one-dimensional corre-
lation function c1. In particular,

trγ0(z) = 3c1(z) + z ∂zc1(z) =
1

z2
∂z (z3 c1(z)).(26)

Consequently, the whole local fluctuation velocity field is uniquely determined by c1,
whose relation to E will be useful for the further realization of the initial correlations.

Relation between Correlation Function and Energy Spectrum. Let
c1 be the correlation function, and E the energy spectrum corresponding to an ho-
mogeneous, isotropic, and incompressible turbulent flow. This implies their finiteness
over the whole definition range. Then the following relations are valid:

c1(z) =
2

z3

∫ ∞

0

1

κ
∂κ

(
E(κ)

κ

)
sin(κz) dκ,(27)

E(κ) =
κ

π

∫ ∞

0

1

z
∂z (z3 c1(z)) sin(κz) dz.(28)
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The Sine–Fourier relations follow from the respective connections of c1 and E to
the Fourier transforms γ0 and M. Plugging (26) and (23) into

trγ0(z) =

∫ ∞

0

∫ 2π

0

∫ 1

−1

eiκzqκ2 trM(κ) dq dφ dκ =
4π

z

∫ ∞

0

κ trM(κ) sin(κz) dκ

gives ∂z(z
3 c1(z)) = 2z

∫∞
0

E(κ)/κ sin(κz) dκ and consequently, after some algebraic
manipulations, (27).

Further Decisive Coherences. Further relevant relations between longitudi-
nal correlation function c1 and energy spectrum E are formulated as

c1(0) =
2

3

∫ ∞

0

E(κ)dκ,(29)

∂zzc1(0) = − 2

15

∫ ∞

0

E(κ)κ2dκ.(30)

By means of partial integration, (27) can be rewritten as

c1(z) = 2

∫ ∞

0

E(κ)
sin(κz) − κz cos(κz)

k3z3
dκ,

from which L’Hospital directly yields (29) and (30).
Finally, the differentiability of a homogeneous Gaussian flow can be concluded

from ∫
R3

(ln(1 + κ))α κ2p M(κ)dκ < ∞ for α > 3.(31)

According to [11], equation (31) ensures the existence of an almost surely p-times
sample differentiable modification, which we equate to the considered flow for purposes
of an intuitive notation. As for our isotropic incompressible local flow field, the
differentiability can thus be formulated as a requirement on the decay of the energy
spectrum E by rewriting the volume integral of (31) with the help of (22) and (25) as

∫ ∞

0

∫
S2

(ln(1 + κ))α κ2p E(κ)

4π
(I − e ⊗ e) de dκ =

∫ ∞

0

2

3
(ln(1 + κ))α κ2p E(κ)dκ I.

(32)

3.2. Parameters from the k-ε model. The kinetic turbulent energy k and
the dissipation rate ε stemming from the k-ε turbulence model act as parameters for
the differentiable local fluctuation fields. Presupposing an isotropic, homogeneous,
and incompressible Gaussian flow, they can be expressed in terms of the correlation
c1 (resp., the energy function E).

With E[w(x, t) · w(x, t)] = trγ0(0)
(26)
= 3 c1(0), we obtain

k =
1

2
E[w(x, t) · w(x, t)] =

3

2
c1(0)

(29)
=

∫ ∞

0

E(κ)dκ.(33)

As for ε, we consider E[∇w(x, t) ⊗ ∇w(y, t)] = ∇x∇yγ̃0(x,y) = −∇z∇zγ0(z)
with z = x − y. Thus, the dissipation reads as

ε = ν E[∇w(x, t) : ∇w(x, t)] = −ν∇z · ∇ztr(γ0(z))|z=0 = −3ν ∂zztrγ0(z)|z=0,
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and with (26) and the differentiability of c1,

ε = −15ν ∂zzc1(0)
(30)
= 2ν

∫ ∞

0

E(κ)κ2dκ.(34)

The even extension c1(z) = c1(−z) for z ≤ 0 in combination with the Fourier
relation (27) results in a global differentiability of c1 on R such that its odd derivatives
vanish at z = 0. Therefore, the parameters k and ε describe the behavior of c1 for
small z by a Taylor expansion up to fourth order,

c1(z) =
2

3
k − 1

30

ε

ν
z2 + O(z4).

3.3. Kolmogorov’s energy spectrum. For the construction of the complete
correlation function c1 we need additional physical information about the flow, which
can be gained from the energy spectrum E. The energy spectrum of isotropic turbu-
lence was a well-studied topic of research during the last century (see references in
[8, 10]). In particular, Kolmogorov’s work (1941) was trendsetting. Based on dimen-
sional analysis, he derived not only the characteristic ranges but also the typical run
of the spectrum which agree with later physical concepts and experiments [1]. In the
following, we briefly state Kolmogorov’s 5/3-law and his hypothesis of local isotropy.

By (21), the energy spectrum depends on the wave number κ. Moreover, observing
that turbulence is strongly driven by the large eddies, E can certainly be expected
to be a function of the length lT of the larger energy-containing eddies and the mean
strain rate feeding the turbulence through direct interaction between mean flow and
large eddies. Since turbulence is dissipative in the mean, it should additionally depend
on ν and ε. Assuming a wide separation of energy (κe) and dissipation (κd) scales,
Kolmogorov formulated the following.

Universal equilibrium theory (see [8]).
1. If κe < κd, there exists a range for wave numbers κ > κe in which the turbu-

lence is in a statistical equilibrium and exclusively determined by dissipation
ε and kinematic viscosity ν. This equilibrium state is universal; i.e., it oc-
curs in isotropic as well as anisotropic turbulence. (This is the local isotropy
hypothesis.)

2. If κe � κd, there exists an inertial subrange for wave numbers κe < κ < κd in
which the energy spectrum is just a function of dissipation ε and wave number
κ.

By means of dimensional analysis the first hypothesis leads to the Kolmogorov
scales for length η, time tK, and velocity vK:

η =

(
ν3

ε

)1/4

, tK =
(ν
ε

)1/2

, vK = (ν ε)1/4,

with characteristic wave number κK = η−1 ≈ κd. The Kolmogorov length η is the
smallest characteristic turbulence length. The second hypothesis yields Kolmogorov’s
5/3-law,

E(κ) = CK ε2/3κ−5/3, κe < κ < κd,(35)

with Kolmogorov constant CK. Here, CK = 0.5 is supposed to be an appropriate
estimate according to the experiments of Yeung and Zhou [19].

The form of the energy spectrum sketched in Figure 2 is also designed by Batchelor
and Proudman [3]. They derived that E(κ) ∼ κ4 for κ → 0, whereas Heisenberg [9]
deduced E(κ) ∼ κ−7 for κ → ∞.
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κ

E(κ)

∼ κ4

∼ κ

εt2

ν = const

∼ κ−5/3

∼ κ−7

κe = l−1
T κd = η−1

largest eddies
of permanent
character

energy-containing
eddies

inertial subrange viscous range

universal equilibrium range

Fig. 2. Sketch of energy spectrum for isotropic turbulence.

3.4. Initial local correlations. Having provided the mathematical and physi-
cal fundamental ideas, we now model the initial correlation tensor of a local, homoge-
neous, L2-continuous, and differentiable Gaussian fluctuation field that satisfies the
k-ε model and Kolmogorov’s 5/3-law. For this purpose, we introduce an admissible
underlying spectral energy distribution function.

Model for the Initial Local Correlation Tensor. Let (Ω,A,P) be a
probability space. Let (wx,t, (x, t) ∈ R

3 × R+
0 ) be the Gaussian velocity fluctuation

field of an isotropic, homogeneous, and incompressible turbulent flow with wx,t ∈
L2(Ω,A,P). Let kinetic energy k and dissipation rate ε be constant. Construct the
initial correlation function c1 ∈ C∞(R+

0 ),

c1(z) =
2

z3

∫ ∞

0

1

κ
∂κ

(
E(κ)

κ

)
sin(κz) dκ,

by choosing E ∈ C2(R+
0 ) as

E(κ) =

⎧⎪⎨
⎪⎩

Kκ
−5/3
1

∑6
j=4 aj ( κ

κ1
)j , κ < κ1,

Kκ−5/3, κ1 ≤ κ ≤ κ2,

Kκ
−5/3
2

∑9
j=7 bj ( κ

κ2
)−j , κ > κ2,

(36)

where κ1 and κ2 are implicitly given by∫ ∞

0

E(κ) dκ = k and

∫ ∞

0

E(κ)κ2 dκ =
ε

2ν
.(37)

The parameters are fixed as a4 = 230/9, a5 = −391/9, a6 = 170/9, b7 = 209/9,
b8 = −352/9, b9 = 152/9, K = CK ε2/3, CK = 0.5, and viscosity ν.

Then, (wx,t, (x, t) ∈ R3 ×R+
0 ) is differentiable and fulfills the requirements of the

Kolmogorov’s 5/3-law as well as these of the k-ε model,

k =
1

2
E[w(x, t) · w(x, t)], ε = ν E[∇w(x, t) : ∇w(x, t)].

According to (27), the presented nonnegative function E satisfies the requirements
on a spectral energy distribution function. Furthermore, it coincides with the run of
Kolmogorov’s energy spectrum (35). The differentiability of the local flow field, i.e.,
(ln(1 + κ))α κ2 E(κ) ∈ L1(R+

0 ) for α > 3 (cf. (32)), is ensured by the constructed
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decay of E(κ) ∼ κ−7 for κ → ∞. The information coming from the k-ε model is
finally included in the defined moments of E on the basis of (33) and (34).

Alternatively, smoother variants of the piecewise composed energy spectrum are
also imaginable for adapted regularity parameters ai and bj . However, E given by
(36), (37) turns out to successfully satisfy our demands.

Summing up, the high Reynolds number flow under consideration is character-
ized by the flow quantities k, ε, ν in combination with the model for the energy
spectrum, equations (36), (37). The flow quantities particularly determine the size of
the characteristic energy ranges (energy bearing, inertial, and viscous) in Figure 2 by
specifying κ1 and κ2 for fixed regularity parameters ai and bj . Note that, outside of
the flow regime, the use of the k-ε turbulence model with the stated energy spectrum
is questionable. However, the derivation of the initial local correlation tensor and the
following general force concept require just the description of an appropriate spectral
energy distribution that could alternatively be obtained by another turbulence model,
e.g., LES.

3.5. Dynamics of local correlations. The dynamics of a local correlation
tensor γ might be described by an advection equation according to the observation
that the decay of the mean properties is rather slow with respect to the time scale of
the fluctuating fine-scale structures

∂ςγ(z, ς) + ū · ∇zγ(z, ς) = 0.

Its solution,

γ(z, ς) = γ0(z − ūς),(38)

coincides with Taylor’s hypothesis of frozen turbulence [17]; i.e., fluctuations arise due
to so-called frozen turbulence patterns that are transported by the mean flow without
changing their structure.

Equation (38) completes the construction of the local correlation tensor γ. Conse-
quently, we deal here locally with homogeneous, isotropic, incompressible turbulence
moving with the mean flow velocity ū, whose spectral energy distribution E fulfills
the demands of the k-ε model as well as of Kolmogorov’s universal equilibrium theory.

3.6. Construction of global turbulence. The Global-from-Local Assumption
(12) prescribes the actual global fluctuation field (u′

x,t, (x, t) ∈ R3×R+
0 ) on the basis of

the family of underlying parameterized local fields {(wy,τ
x,t , (x, t) ∈ R3 ×R+

0 ), (y, τ) ∈
R

3 ×R+
0 }. However, so far the positive definiteness of its proposed correlation tensor

Γ′ is not proved, but it might be concluded from an explicit formulation of u′.
Explicit Formulation of the Global Fluctuation Field. Let the global

fluctuation field (u′
x,t, (x, t) ∈ R3 ×R+

0 ) be given as an Ito-integral over the family of

the local fields {(wy,τ
x,t , (x, t) ∈ R3 × R+

0 ), (y, τ) ∈ R3 × R+
0 }:

u′(x, t) =
1√

|M(x, t)|

∫
M(x,t)

wy,τ (x, t) dWy,τ ,(39)

M(x, t) = {(y, τ) ∈ R3 × R+
0 | ‖x − y − ū(x, t)(t− τ)‖2 ≤ lT ∧ |t− τ | ≤ tT},

where (Wy,τ , (y, t) ∈ R3×R+
0 ) represents a Wiener process (Brownian motion). Then

the field of (39) satisfies the probability distribution, expectation, and covariance struc-
ture of the averaging procedure 〈·〉 in the Global-from-Local Assumption.
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The global field results from linear superpositions of joint Gaussians and is thus
also Gaussian. Due to the permutability of expectation and integration with respect to
space and time following from Fubini’s theorem, it inherits the centered property from
the local fields, so that the constructed (u′

x,t, (x, t) ∈ R3 ×R+
0 ) satisfies the definition

of a turbulent Gaussian flow. Additionally, it is differentiable. Its correlation tensor
reads

Γ′(x1, t1,x2, t2) =
1√

|M(x1, t1)| |M(x2, t2)|

· E
[∫

M(x1,t1)

wy1,τ1(x1, t1) dWy1,τ1
⊗
∫
M(x2,t2)

wy2,τ2(x2, t2) dWy2,τ2

]
.(40)

By means of the Ito-calculus, the expectation of the dyadic product of the integrals
can be expressed by

E

[∫
M(x1,t1)

wy1,τ1 (x1, t1) dWy1,τ1 ⊗
∫
M(x2,t2)

wy2,τ2(x2, t2) dWy2,τ2

]

= E

[∫
M(x1,t1)∩M(x2,t2)

wy,τ (x1, t1) ⊗ wy,τ (x2, t2) dy dτ

]
.

Plugging this relation into (40), we obtain the proposed covariance of the Global-
from-Local Assumption for the in general inhomogeneous, anisotropic global flow

Γ′(x1, t1,x2, t2) =
1√

|M(x1, t1)| |M(x2, t2)|

∫
M(x1,t1)∩M(x2,t2)

γ̃y,τ (x1, t1,x2, t2) dy dτ.

Due to its derivation from the random field of (39), Γ′ is undoubtedly a positive
definite function, which is necessary for the numerical realization of u′.

The global quantities for kinetic energy ku′ and dissipation rate εu′ are the av-
erages over a region M where the local, RANS-based quantities k and ε differ only
slightly. This region is determined by means of the turbulent large-scale length lT
and time tT and under regard of the advective influence of the mean flow in (38):

ku′(x, t) =
1

|M(x, t)|

∫
M(x,t)

k(y, τ) dy dτ,

εu′(x, t) =
1

|M(x, t)|

∫
M(x,t)

ε(y, τ) dy dτ.

In case of global homogeneity we achieve, in particular, the conformity of the global
and local statistic quantities.

Despite weakening the conditions on the global turbulent flow, Γ′ still keeps the
correlation structure of the local fields. Let λT be the turbulent fine-scale length;
then γy,τ

0 (x1 − x2 − ū(y, τ)(t1 − t2)) ≈ 0 for ‖x1 − x2 − ū(y, τ)(t1 − t2)‖2 > λT,
(y, τ) ∈ R3 × R+

0 . Gluing the local correlations together yields Γ′(x1, t1,x2, t2) ≈ 0,
even if M(x1, t1) ∩ M(x2, t2) = ∅ as λT � lT. Thus, Γ′ states no wrong, absurd
correlations.

4. General aerodynamic force concept. In the course of this section, the
aerodynamic force that is acting on the fiber is modeled on top of the RANS-based
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description for the turbulent flow. Thus, we introduce the mean relative velocity
v̄(s, t) = ū(r(s, t), t) − ∂tr(s, t). Then,

f̃air(s, t) = f(v̄(s, t) + u′(r(s, t), t), ∂sr(s, t))(41)

prescribes a stochastic force (f̃airs,t , (s, t) ∈ [0, l]×R+
0 ) as a (generally nonlinear) function

on the derived global fluctuation field u′. However, the efficient numerical handling
of this inhomogeneous construct (41) seems to be hopeless because of its complexity.
Thus, we follow the Global-from-Local ansatz once more.

Global-from-Local Force Concept. Let f : R3 ×R2 → R
3 be an arbitrarily

chosen air drag model. Let {(gσ,τ
s,t , (s, t) ∈ [0, l]×R+

0 ), (σ, τ) ∈ [0, l]×R+
0 } be a family

of homogeneous local aerodynamic forces that are imposed by local Gaussian velocity
fluctuation fields on the locally linear fiber around the respective fiber points (σ, τ).
Then, the global aerodynamic force is constructed as a Gaussian,

fair(r(.), s, t) =〈gσ,τ (s, t)〉N(r(.),s,t),(42)

with

N(r(.), s, t) ={(σ, τ) ∈ [0, l] × R+
0 |(43)

‖r(s, t) − r(σ, τ) − ū(r(s, t), t)(t− τ)‖2 ≤ lT ∧ |t− τ | ≤ tT},

and mean flow velocity ū, turbulent large-scale length lT, and time tT as well as
averaging brackets 〈·〉 defined analogously to (12).

In analogy to the velocity fluctuations in section 3, this concept (42) realizes a
Gaussian global aerodynamic force along the fiber on the basis of a family of homo-
geneous local random forces. Focusing on the construction of these forces, correlated
local forces are deduced from the restriction of our derived Gaussian local velocity
fields on the fiber in section 4.1. The proposed linearization approach of section 4.2
enables their approximation by Gaussian white noise with flow-dependent amplitude
for a macroscopic description of the fiber. Therefore, L2- and L∞-similarity estimates
are stated in section 4.3. In section 4.4 we finally present the corresponding correlated
global aerodynamic force and its uncorrelated asymptotic limit.

4.1. Correlated local force. Define the family {(gσ,τ
s,t , (s, t) ∈ [0, l] × R

+
0 ),

(σ, τ) ∈ [0, l] × R+
0 } of local aerodynamic forces by

gσ,τ (s, t) = f(v̄(σ, τ) + wσ,τ
f (s, t), ∂sr(σ, τ)),(44)

wσ,τ
f (s, t) = wr(σ,τ),τ (r(σ, τ) + (s− σ)∂sr(σ, τ) + (t− τ)∂tr(σ, τ), t).(45)

Presupposing a linear fiber around the point (σ, τ), the centered local Gaussian ve-
locity fluctuation fields of section 3 keep their homogeneous correlation structure for
their respective restrictions on the fiber in (45):

E[wσ,τ
f (s1, t1) ⊗ wσ,τ

f (s2, t2)] = γ
r(σ,τ),τ
0 ((s1 − s2)∂sr(σ, τ) − (t1 − t2)v̄(σ, τ))

= γσ,τ
f (s1 − s2, t1 − t2).(46)

Locally, for small spatial and temporal differences, the assumption of fiber linearity is
reasonable, whereas for large ones, γσ,τ

f ≈ 0 anyway due to the decay of the correla-
tions. By means of the transformation theorem of random variables, the homogeneous
property is handed on gσ,τ for all feasible drag models f in (44). Indeed, the chosen
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drag model determines the probability distributions of gσ,τ that are in general not
Gaussian. Averaging over the prescribed homogeneous local forces along the fiber in
(42) results in a correlated global aerodynamic force that represents the turbulence
effects on the fiber motion in (7). Be aware that the stated Global-from-Local Force
Concept generates here a functional dependence between fair and r, so that the fiber
dynamics is not modeled by a system of PDEs as in the deterministic flow case of (9).

4.2. Linearization approach. The numerical realization of the correlated Gaus-
sian global aerodynamic force fair depends crucially on the determination of the
probability distributions of gσ,τ , particularly on the computation of the integrals for
expectation and covariance according to the definition of the averaging brackets 〈·〉;
cf. (12). The degree of difficulty is thereby mainly determined by the air drag model.
For practical reasons, we hence propose a linearization ansatz for gσ,τ that yields
Gaussian local forces

gσ,τ (s, t) = f(v̄(σ, τ) + wσ,τ
f (s, t), ∂sr(σ, τ))

≈ f(v̄(σ, τ), ∂sr(σ, τ)) + Lf (σ, τ) wσ,τ
f (s, t)

= gσ,τ
cc (s, t),(47)

where the linear operator Lf is induced by the air drag model f . The finite-dimensional
distributions of gσ,τ

cc are uniquely given by expectation and covariance,

E[gσ,τ
cc (s, t)] = f(v̄(σ, τ), ∂sr(σ, τ)) = μσ,τ ,

Cov(gσ,τ
cc (s1, t1),g

σ,τ
cc (s2, t2)) = Lf (σ, τ) γσ,τ

f (s1 − s2, t1 − t2) (Lf (σ, τ))t

= Γσ,τ
g,cc(s1 − s2, t1 − t2),(48)

whose evaluation is directly deduced from the centered, homogeneous Gaussian wσ,τ
f ;

see (46).

4.3. Limit to uncorrelated local force. The correlated Gaussian local forces
gσ,τ
cc contain all turbulent coherences explicitly in their covariance function Γσ,τ

g,cc :

[0, l] × R+
0 → R

3×3 of (48). Alternatively, uncorrelated generalized Gaussian local
forces gσ,τ

uc might be introduced whose flow-dependent amplitude represents the mean
turbulent coherences. Their covariance functions read

Γσ,τ
g,uc(s, t) =

∫
R2

Γσ,τ
g,cc(ξ, ς) dξ dς δ0(s) δ0(t),(49)

with the real one-dimensional Dirac function δ0. If their effects, i.e., their correlations,
are compared on a macroscopic fiber scale that includes the whole covariance structure
of gσ,τ

cc , the family of the uncorrelated forces gσ,τ
uc is a good approximation for that of

the correlated gσ,τ
cc . In the following, L2- and L∞-estimates for their similarity take

center stage.
Define the family {((gσ,τ

uc )s,t, (s, t) ∈ [0, l] × R+
0 ), (σ, τ) ∈ [0, l] × R+

0 } of local
uncorrelated aerodynamic forces by

gσ,τ
uc (s, t) = f(v̄(σ, τ), ∂sr(σ, τ)) + Lf (σ, τ) zσ,τ (s, t),(50)

zσ,τ (s, t) = Dσ,τ pσ,τ (s, t).(51)

The centered uncorrelated local velocity fluctuation fields (zσ,τs,t , (s, t) ∈ [0, l] × R+
0 )

along the fiber are particularly given by Gaussian white noise (pσ,τ
s,t , (s, t) ∈ [0, l]×R+

0 )
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with flow-dependent amplitude

Dσ,τ =

√∫
R2

γσ,τ
f (ξ, ς) dξ dς(52)

that contains the integral correlations of wσ,τ
f . The existence of Dσ,τ presupposes the

linear independence of the fiber tangent ∂sr(σ, τ) and the relative velocity v̄(σ, τ), as
can be concluded from the definition of γσ,τ

f in (46). The velocity correlations are
then described by

E[zσ,τ (s1, t1) ⊗ zσ,τ (s2, t2)] = (Dσ,τ )2 δ0(s1 − s2) δ0(t1 − t2)

= δσ,ς
f (s1 − s2, t1 − t2),(53)

with the real one-dimensional Dirac function δ0. In this sense, δσ,τ
f is the uncorrelated

analogue to γσ,τ
f and induces the desired integral dependence (49) between Γσ,τ

g,uc and
Γσ,τ

g,cc due to the linear construction in (50) and (47).
Focusing on an arbitrarily chosen fiber point (σ, τ), we skip the superscripts of

the quantities in the following and deduce a formulation for the force amplitude D
in terms of the manageable energy spectrum E of (21). Therefore, we presume the
linear independence of fiber tangent t = ∂sr and mean relative velocity v̄, so that
they induce the intuitive choice of a right-hand orthonormal basis, i.e., t, n = (v̄ −
(v̄ · t)t)/‖v̄ − (v̄ · t)t‖2, b = t × n.

Relation between Local Fiber Correlations and Spectral Quanti-

ties. Assume t and v̄ to be linearly independent. Let γf (ξ, ς) = γ0(ξt − ςv̄),

(ξ, ς) ∈ R2, be the local velocity correlation tensor along the fiber. Then, its nega-
tive Fourier transform m = Fγf

is expressed by the spectral density M of (20):

m(λ1, λ2) =

∫
R3

M(κ) δ0(λ1 − t · κ) δ0(λ2 + v̄ · κ) dκ.(54)

The integral correlations are prescribed by m(0, 0) = (2π)−2
∫

γf (ξ, ς) dξ dς = Fδf
.

In particular,

m(0, 0) =
1

2πv̄n

∫ ∞

0

E(κ)

κ2
dκ Pt,n,(55)

where Pt,n := t⊗ t + n⊗n denotes the projector onto the plane spanned by t and n,
and v̄n := v̄ · n.

Inserting the Fourier relation (20) for γ0 and M into the definition of m and
evaluating the two-dimensional integral over the exponential function yields relation
(54). Using isotropy and incompressibility of M, (22) and (25), the dependence on
the energy spectrum follows:

m(λ1, λ2) =
1

4π

∫
R3

E(κ)

κ2

(
I − 1

κ2
κ ⊗ κ

)
δ0(λ1 − t · κ) δ0(λ2 + v̄ · κ) dκ,(56)

with κ = ‖κ‖2. Consider the matrix mt,n,b that represents the tensor m in the (t, v̄)-
induced basis, and substitute t · κ = κt, n · κ = κn, and b · κ = κb. Integration over
κt and κn then gives mt,n,b(0, 0) =

∫∞
0

E(κ)/κ2dκ/(2πv̄n) diag(1, 1, 0) and, with the
spectral theorem on the eigenvalues, the invariant form (55) of the tensor.
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Relation between Force Amplitude and Energy Spectrum. Let D be the
force amplitude and E the energy spectrum corresponding to a homogeneous, isotropic,
and incompressible local velocity fluctuation field. Then the following relation holds:

D =

√
2π

v̄n

∫ ∞

0

E(κ)

κ2
dκ Pt,n.(57)

Relation (57) results directly from (52) and (55). It allows the interesting obser-
vation that the uncorrelated local velocity fluctuation field z of (51) has no component
in the binormal direction b of the fiber. The reason for this behavior is the incom-
pressibility of the underlying flow field, since

Pb

∫
R2

γf (ξ, ς) dξ dς = Pb

∫ ∞

0

zc2(z) dz = Pb

∫ ∞

0

e1(κ) dκ = 0, Pb = b ⊗ b,

due to (25) or, respectively, to (24) and partial integration.
Proceeding with the general similarity estimates for the correlated and an uncor-

related local force, it is sufficient to study the effects of the centered local velocity
fluctuation fields on a macroscopic fiber scale because of their linear relation, (47),
(50). For this purpose, we consider the respective macroscopic velocity fields that are
gained from spatially and temporally smoothing along the fiber, and compare their
correlation tensors.

Let wf and z be a correlated and an uncorrelated local velocity fluctuation
field. The introduction of the normalized spatial and temporal smoothing functions
Gα : R2 → R, α = (αs, αt) ∈ (R+

0 )2, enables then the definition of two families of
macroscopic velocity fields along the fiber:

Wα(s, t) =

∫
Gα(s− φ, t− ψ) wf (φ, ψ) dψ dφ,(58)

Zα(s, t) =

∫
Gα(s− φ, t− ψ) z(φ, ψ) dψ dφ,(59)

with their correlation tensors

ΓWα(ξ, ς) =

∫
Hα(ξ − φ, ς − ψ) γf (φ, ψ) dψ dφ,(60)

ΓZα(ξ, ς) =

∫
Hα(ξ − φ, ς − ψ) δf (φ, ψ) dψ dφ,(61)

where Hα(ξ, ς) =
∫
Gα(ξ − φ, ς − ψ) Gα(φ, ψ) dψ dφ are also normalized smoothing

functions. Taking the convolution keeps the properties of the local fields so that Wα

and Zα are Gaussian, centered, and homogeneous for all smoothing parameters α ∈
(R+

0 )2. The Gaussian property follows thereby directly from the linear superposition
of joint Gaussians. The centered and homogeneous properties are deduced by using
the permutability of expectation and integration according to Fubini’s theorem.

Choice of Smoothing Operators. Let the smoothing functions Gα : R2 → R,
α = (αs, αt) ∈ (R+

0 )2, be defined as products of spatial and temporal characteristic
functions

Gα(ξ, ς) = αsαt χ[ −1
2αs

, 1
2αs

](ξ)χ[ −1
2αt

, 1
2αt

](ς).(62)
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Then, Hα : R2 → R are given by the products of the hat functions, and their respective
negative Fourier transforms are

Hα(ξ, ς) = αs αt (1 − |αs ξ|) (1 − |αt ς|) χ[ −1
αs

, 1
αs

](ξ)χ[ −1
αt

, 1
αt

](ς),

FHα(κ1, κ2) = FH1

(
κ1

αs
,
κ2

αt

)
=

1

π2

1 − cos(κ1/αs)

(κ1/αs)2

1 − cos(κ2/αt)

(κ2/αt)2
.(63)

The relation between FHα
and FH1 results directly from their definition by using

Hα(ξ, ς) = αs αt H1(αs ξ, αt ς).
The derivation of the similarity estimates depends decisively on the behavior of

the symmetric, nonnegative, differentiable function E : R2 → R
+
0 that is defined by

means of the energy spectrum E,

E(κ1, κ2) :=

∫
R

E(‖(κ1, κ2, l)‖2)

(κ1, κ2, l)2
dl.(64)

It is radially decaying with maximum in the origin, i.e., maxκ E(κ1, κ2) = E(0, 0) and
g(κ) := E(κ, aκ), κ ∈ R+

0 , strictly monotonically decreasing for a ∈ R.
Similarity Estimates. Choose the smoothing functions Gα : R2 → R, α =

(αs, αt) ∈ (R+
0 )2, of (62) for the definition of the families of macroscopic velocity

fields according to (58) and (59). Then the following estimates hold:
L2-similarity:

IL2 := ‖ΓWα
− ΓZα

‖L2(l2(R2))

≤
√
αs αt√
6π v̄n

√
S2

(
α2
s

(
1 +

v̄2
t

v̄2
n

)
+

α2
t

v̄2
n

)
+

8E2
0

3π

(
α3
s +

α3
t

(v̄n + |v̄t|)3

)
.(65)

L∞-similarity:

IL∞ := ‖ΓWα
− ΓZα

‖L∞(l2(R2))

≤
√

2αs αt

π2 v̄n

[
S

(
αs

(
1 +

v̄t

v̄n

)(
c

2
+ ln

(
1

αs

))
+

αt

v̄n

(
c

2
+ ln

(
v̄n + |v̄t|

αt

))

+ E0

(
αs +

αt

v̄n + |v̄t|

)]
,(66)

where

‖Γ‖L2(l2(R2)) :=

(∫
R2

Γ(ξ, ς) : Γ(ξ, ς) dξ dς

)1/2

,

‖Γ‖L∞(l2(R2)) := sup(ξ,ς)∈R2(Γ(ξ, ς) : Γ(ξ, ς))1/2.

The quantities E0 = E(0, 0) and S = supκ∈[0,1]2 ‖∇κE(κ1, κ2)‖2 are defined by the

energy moment of (64). Moreover, v̄t = v̄ · t, v̄n = v̄ · n, and c =
∫ 1

0
(1 − cos ι)/ι dι.

Proof. (1) L2-similarity. The norm in L2(l2(R2)) is conserved under the Fourier
transformation according to the Plancherel theorem as the operator : induces a scalar
product in the l2-space. Using the fact that the Fourier transform of a convolution
equals the product of the respective Fourier transforms then gives

‖ΓWα − ΓZα‖2
L2(l2(R2)) = (2π)2 ‖(Fγf

−Fδf
)FHα‖2

L2(l2(R2))

= (2π)2

∫
R2

‖m(λ1, λ2) − m(0, 0)‖2
l2 F2

Hα
(λ1, λ2) dλ1dλ2.(67)
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With (56) and (
I − 1

κ2
κ ⊗ κ

)
:

(
I − 1

ι2
ι ⊗ ι

)
= 1 +

(κ · ι)2

κ2ι2
≤ 2,(68)

we obtain

‖m(λ1, λ2) − m(0, 0)‖2
l2 =

1

(4π)2

∫
R3

∫
R3

E(‖κ‖2)

κ2

E(‖ι‖2)

ι2

(
1 +

(κ · ι)2

κ2ι2

)
· (δ0(λ1 − t · κ)δ0(λ2 + v̄ · κ) − δ0(t · κ)δ0(v̄ · κ))

· (δ0(λ1 − t · ι)δ0(λ2 + v̄ · ι) − δ0(t · ι)δ0(v̄ · ι)) dκ dι.

Inserting this relation into (67) and integrating over λ1 and λ2 cancels two Dirac
functions. The other two vanish after choosing the (t, v̄)-induced basis. Applying
(64) and (68) yields, with v̄t = v̄ · t and v̄n = v̄ · n = ‖v̄ − (v̄ · t)t‖2 > 0,

I2
L2 ≤ 1

2v̄n

[∫
R2

(
E2(κ1, κ2) − 2E(κ1, κ2)E(0, 0)

)
F2

Hα
(κ1,−(v̄tκ1 + v̄nκ2)) dκ1 dκ2

+

∫
R2

1

v̄n
E2(0, 0) F2

Hα
(λ1, λ2) dλ1 dλ2

]

=
αsαt

2v̄2
n

∫
R2

(
E
(
αsι1,

1

v̄n
(αtι2 − αsv̄tι1)

)
− E(0, 0)

)2

F2
H1

(ι1, ι2) dι1 dι2.

(69)

The latter calculation is based on the substitution κ1 = αsι1, v̄tκ1 + v̄nκ2 = αtι2,
λ1 = αsι1, λ2 = αtι2 and on the properties of the even smoothing functions (63).
Positivity and radial decay of E induce the splitting of the integral in (69),

I2
L2 ≤ αsαt

2v̄2
n

(JU + JR2\U ),(70)

with regard to the domain decomposition R2 = U ∪ (R2 \ U), where

U := {(ι1, ι2) | ι1 ∈ [−α−1
s , α−1

s ] ∧ ι2 ∈ [−α−1
t (v̄n + |v̄t|), α−1

t (v̄n + |v̄t|)]}.

The energy difference in JU can be estimated by means of its differentiability, for
(E(αsι1, v̄

−1
n (αtι2 − αsv̄tι1)) − E(0, 0))2 ≤ S2 ‖(αsι1, v̄

−1
n (αtι2 − αsv̄tι1))‖2

2. Thus,

JU ≤ S2

∫
U

(
α2
s

(
1 +

v̄2
t

v̄2
n

)
ι21 +

α2
t

v̄2
n

ι22 − 2αsαt
v̄t

v̄2
n

ι1ι2

)
F2

H1
(ι1, ι2) dι1 dι2.

The odd term vanishes by the integration. Using the equivalence of the integrand in
the four quadrants, we obtain with (63)

JU ≤ 4S2

∫ α−1
t (v̄n+|v̄t|)

0

∫ α−1
s

0

(
α2
s

(
1 +

v̄2
t

v̄2
n

)
ι21 +

α2
t

v̄2
n

ι22

)
F2

H1
(ι1, ι2) dι1 dι2

≤ S2

3π2

(
α2
s

(
1 +

v̄2
t

v̄2
n

)
+

α2
t

v̄2
n

)
,(71)

where the compact integration domain is replaced by (R+
0 )2. On the other hand, the

energy difference in JR2\U can be estimated by its maximum E0 due to the strict decay
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of E . The equivalence of the integrand in the quadrants leads then to

JR2\U ≤ 4E2
0

(∫ ∞

0

∫ ∞

α−1
s

F2
H1

(ι1, ι2) dι1 dι2 +

∫ ∞

α−1
t (v̄n+|v̄t|)

∫ α−1
s

0

F2
H1

(ι1, ι2) dι1 dι2

)

≤ 8E2
0

9π3

(
α3
s +

α3
t

(v̄n + |v̄t|)3

)
,

(72)

where the integration interval of ι1 in the second summand is replaced by R+
0 . Insert-

ing (71) and (72) into (70) yields the L2-estimate.
(2) L∞-similarity. The L∞-estimate is derived in analogy to the L2-estimate.

Consider therefore

‖(ΓWα − ΓZα)(σ)‖2
l2 =

∥∥∥∥
∫

R2

eiλ·σ (m(λ) − m(0))FHα(λ) dλ

∥∥∥∥
2

l2

=
1

(4π)2

∫
R2

∫
R2

∫
R3

∫
R3

ei(λ+μ)·σ FHα
(λ)FHα

(μ)
E(‖κ‖2)

κ2

E(‖ι‖2)

ι2

(
1 +

(κ · ι)2

κ2ι2

)
· (δ0(λ1 − t · κ)δ0(λ2 + v̄ · κ) − δ0(t · κ)δ0(v̄ · κ))

· (δ0(μ1 − t · ι)δ0(μ2 + v̄ · ι) − δ0(t · ι)δ0(v̄ · ι)) dκ dι dλ dμ,

according to (56) and (68). Following the calculations of the L2-estimate gives

‖(ΓWα − ΓZα)(σ)‖2
l2

≤ α2
s α

2
t

8π2 v̄2
n

(∫
R2

ei(αsι1,−αtι2)·σ
(
E
(
αsι1,

1

v̄n
(αtι2 − αsv̄tι1)

)
− E(0, 0)

)
FH1(ι)dι

)2

≤ α2
s α

2
t

8π2 v̄2
n

(∫
R2

∣∣∣∣E
(
αsι1,

1

v̄n
(αtι2 − αsv̄tι1)

)
− E(0, 0)

∣∣∣∣ FH1(ι) dι

)2

.

Repeating then the splitting ansatz for the integral and the estimation arguments for
the energy difference in JU and JR2\U yields

JU ≤ 4S
π2

∫ α−1
t (v̄n+|v̄t|)

0

∫ α−1
s

0

(
αs

(
1 +

|v̄t|
v̄n

)
ι1 +

αt

v̄n
ι2

)
FH1(ι1, ι2) dι1 dι2

≤ 4S
π2

∫ ∞

0

1 − cos ι

ι2
dι

(
αs

(
1 +

|v̄t|
v̄n

) (∫ 1

0

1 − cos ι

ι
dι +

∫ α−1
s

1

1 − cos ι

ι
dι

)

+
αt

v̄n

(∫ 1

0

1 − cos ι

ι
dι +

∫ α−1
t (v̄n+|v̄t|)

1

1 − cos ι

ι
dι

))

≤ 2S
π

(
αs

(
1 +

v̄t

v̄n

)(
c + 2 ln

(
1

αs

))
+

αt

v̄n

(
c + 2 ln

(
v̄n + |v̄t|

αt

)))
,

with c =
∫ 1

0
(1 − cos ι)/ι dι and

JR2\U ≤ 4E0

(∫ ∞

0

∫ ∞

α−1
s

FH1(ι1, ι2) dι1 dι2 +

∫ ∞

α−1
t (v̄n+|v̄t|)

∫ α−1
s

0

FH1(ι1, ι2) dι1 dι2

)

≤ 4E0

π

(
αs +

αt

(v̄n + |v̄t|)

)
.
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In the limit αi → 0, i = s, t, the support of the smoothing function Gα tends
to be the whole R2. This is unrealistic, as the fiber length l prescribes a natural
upper bound for the spatial smoothing parameter αs. Thus, αs = lT/l is certainly
a reasonable value for the macroscopic smoothing of the turbulent flow effects on
the fiber. The temporal flow and fiber scales are related to the spatial ones by the
respective velocities ū and ∂tr. The choice of αt = αs‖∂tr‖2/‖ū‖2 seems likely.
Consequently, the actual quality of the similarity estimates (65) and (66) is determined
by the scales of the considered fiber-flow problem. Moreover, it depends crucially
on the relation between fiber direction t and mean relative velocity v̄. Be aware
that the estimates do not hold for linear dependence, because the amplitude D of
the underlying uncorrelated velocity fluctuation field z is then not defined; cf. (51),
(57). However, these events might be viewed as elements of a nullset, since the
perturbing influence of the turbulence and the fiber inertia prevents the fiber from
moving continuously within the mean streamlines.

4.4. Correlated and uncorrelated global force. After having provided the
correlated local forces gσ,τ

cc and their uncorrelated asymptotic limits gσ,τ
uc , we conclude

this section with the statement of the corresponding global forces. According to the
Global-from-Local Force Concept (42) and the linearization approach of (47), the
correlated and uncorrelated global aerodynamic forces read

faircc (r(.), s, t) = 〈gσ,τ
cc (s, t)〉N(r(.),s,t)

= 〈f(v̄(σ, τ), ∂sr(σ, τ))〉N(r(.),s,t) + 〈Lf (σ, τ) wσ,τ
f (s, t)〉N(r(.),s,t),(73)

fairuc (r(.), s, t) = 〈gσ,τ
uc (s, t)〉N(r(.),s,t)

= 〈f(v̄(σ, τ), ∂sr(σ, τ))〉N(r(.),s,t) + 〈Lf (σ, τ) zσ,τ (s, t)〉N(r(.),s,t),(74)

where

〈Lf (σ, τ) zσ,τ (s, t)〉N(r(.),s,t) =
√
〈Lf (σ, τ)(Dσ,τ )2(Lf (σ, τ))t〉N(r(.),s,t) p(s, t)

=

√
1

|N(r(.), s, t)|

∫
N(r(.),s,t)

Lf (σ, τ)(Dσ,τ )2(Lf (σ, τ))t dσ dτ p(s, t)

by means of Ito-calculus and the integration rule of independent Gaussian random
fields. Here, (ps,t, (s, t) ∈ [0, l] × R+

0 ) describes as R3-valued Gaussian white noise a
centered homogeneous generalized Gaussian random field on a two-dimensional pa-
rameter set, i.e.,

lim
(�s,�t)→0

√
�s�t p(s, t) ∼ N (0, I).

The global forces (73), (74) inherit thereby the proven approximation quality of the
local forces on a macroscopic fiber scale because of the applied linear averaging pro-
cedure 〈·〉.

The local flow quantities hardly ever differ in the fiber region N , since it is con-
tained in the turbulence domain M of (12). This fact, in combination with the as-
sumption of a locally linear fiber, motivates the skipping of the averaging procedure.
For further theoretical and numerical treatment it is hence convenient to consider the
following approximative forces:

f̂aircc (r(.), s, t) = f(v̄(s, t), ∂sr(s, t)) + Lf (s, t) 〈wσ,τ
f (s, t)〉N(r(.),s,t),(75)

f̂airuc (r(.), s, t) = f(v̄(s, t), ∂sr(s, t)) + Lf (s, t) Ds,t p(s, t).(76)
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Analogously to (39), the averaging brackets in (75) can be explicitly formulated as
Ito-integrals with the Wiener process/Brownian motion (Wσ,τ , (σ, τ) ∈ [0, l] × R+

0 ):

〈wσ,τ
f (s, t)〉N(r(.),s,t) =

1√
|N(r(.), s, t)|

∫
N(r(.),s,t)

wσ,τ
f (s, t) dWσ,τ .

Whereas the functional dependence between f̂aircc and r remains as a consequence of the
realization of the correlation structure of the underlying local velocity fluctuation fields
wσ,τ

f , the applied simplification localizes the uncorrelated global force in (76), i.e.,

f̂airuc (r(.), s, t) = f̂airuc (r(s, t), ∂sr(s, t), ∂tr(s, t), s, t). Thus, the resulting fiber motion
is given by a wave-like system of stochastic PDEs with algebraic constraint.

5. Conclusions and outlook. Our presented Global-from-Local Force Concept
in combination with the linearization approach (47) allows the approximation of the
constructed correlated random aerodynamic force by Gaussian white noise with flow-
dependent amplitude in the case of a macroscopic description of the fiber dynamics.
The stated general results are applicable to concrete practical problems with fiber-
turbulence interaction scales that yield negligibly small deviations in the L2- and
L∞-estimates of (65) and (66). Choose therefore a specific air drag model f and

derive an appropriate linear drag operator Lf ; then the global aerodynamic force f̂airuc

of (76) leads to a stochastic partial differential system with additive white noise for
the fiber dynamics, (7), which can efficiently be handled numerically. For the choice
of an empirically motivated, nearly quadratic drag model in a melt-spinning process,
the effects of the correlated global force and its uncorrelated asymptotic limit that are
imposed on the fiber by the turbulent flow are quantified and numerically compared
in a subsequent paper.
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THE LINEAR LIMIT OF THE DIPOLE PROBLEM FOR THE THIN
FILM EQUATION∗
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Abstract. We investigate self-similar solutions of the dipole problem for the one-dimensional
thin film equation on the half-line {x ≥ 0}. We study compactly supported solutions of the linear
moving boundary problem and show how they relate to solutions of the nonlinear problem. The
similarity solutions are generally of the second kind, given by the solution of a nonlinear eigenvalue
problem, although there are some notable cases where first-kind solutions also arise. We examine
the conserved quantities connected to these first-kind solutions. Difficulties associated with the lack
of a maximum principle and the non–self-adjointness of the fundamental linear problem are also
considered. Seeking similarity solutions that include sign changes yields a surprisingly rich set of
(coexisting) stable solutions for the intermediate asymptotics of this problem. Our results include
analysis of limiting cases and comparisons with numerical computations.
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1. Introduction. The dipole problem for the one-dimensional “absolute-valued”
thin-film equation

∂h

∂t
= − ∂

∂x

(
|h|n ∂

3h

∂x3

)
,(1.1)

where n is a real constant, is defined as an initial-boundary value problem on the
half-line {x ≥ 0}, starting from bounded compactly supported initial data

h(x, 0) = h0(x) for 0 ≤ x ≤ �0,(1.2)

with h(x, 0) ≡ 0 for x ≥ �0. At the origin, we impose the boundary conditions
[11, 21, 38]

h = hx = 0 at x = 0.(1.3)

For n > 0, it is well known that compactly supported solutions of (1.1) exist with
fronts that have a finite speed of propagation (see, for example, [6, 7, 8, 9, 10]). Mean-
while, for n = 0, where (1.1) is linear, solutions starting from compact initial data
instantaneously gain support over the entire domain for t > 0. In [12], Bernis, Hul-
shof, and Quiros compared the n → 0 limit with the n = 0 (linear) behavior in the
Cauchy problem for (1.1). In a similar spirit, we will study related issues for the
more complicated problem of second-kind similarity solutions for the dipole problem
(1.1)–(1.3).
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Fig. 1.1. Numerical simulation of the dynamics of the dipole initial-boundary value problem
for (1.1) with n = 0.1. Starting from nonnegative compact initial data (dotted curve), the dynamics
approach a self-similar mixed draining/spreading evolution with the appearance of sign changes.

To this end, we consider solutions of the moving boundary problem on 0 ≤ x ≤
�(t) with boundary conditions [32]

h = hx = |h|nhxxx = 0 as x → �−(t),(1.4)

where �(0) ≡ �0. From formal considerations, we can write the equation for interface
motion as

d�

dt
= lim

x→�−(t)
|h|n−1hxxx.(1.5)

A sample numerical simulation of the dynamics for (1.1)–(1.3) with small positive n
is shown in Figure 1.1. We will present evidence that, for appropriate initial data,
the dipole similarity solutions accurately predict the dynamics of (1.1).

The dipole problem for (1.1) was first referred to by Barenblatt [1] as an extension
of the analogous problem for the porous medium equation [3, 4, 28, 29],

∂th = ∂x (|h|m∂xh) ;(1.6)

a comparison between dipole similarity solutions of (1.6) and experimental results on
gravity currents was undertaken in [33]. Barenblatt noted that the properties of the
thin-film equation (1.1) were likely to yield an intricate set of nontrivial similarity
solutions. An important difference between (1.6) and (1.1) is that the thin-film equa-
tion does not have a maximum principle. That is, solutions starting from nonnegative
initial data do not necessarily stay nonnegative [16, 18, 19]; indeed, observe Figure 1.1.

Equation (1.1) with n > 0 arises in the study of surface tension–driven thin
films [9, 15, 16, 17, 18, 23, 34, 35, 36]. For these problems, h(x, t) is representative of
the thickness of the fluid film, and from physical considerations, the solutions must
be nonnegative, h(x, t) ≥ 0. More recently, similar higher-order nonlinear degenerate
parabolic equations have been applied to image processing problems [25, 26]. In this
paper, we are primarily interested in the mathematical structure of solutions to (1.1)
for small n, and we will admit solutions that change sign (consequently, the usual
hn in the thin-film equation is written as |h|n in (1.1)). Removing the positivity
requirement means that x = �(t) in (1.5) is not necessarily the first point in the
solution of (1.1) at which h = 0, in contrast with the study in [12]. This yields a
much richer set of solutions, including the traditional nonnegative solution and new
classes of solutions with sign changes.
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In section 2 we introduce a similarity solution of (1.1) and clarify our use of
the terminology “first-kind” and “second-kind.” The latter class of solution will be
most prevalent herein, reducing the thin-film equation (1.1) to a fourth-order non–
self-adjoint eigenvalue problem that will be the main focus of the paper. Section 3
considers the fundamental linear problem for (1.1) in terms of the known conserved
quantities of (1.1)–(1.4). We focus on the linear case in detail in section 4. Classes
of solutions with compact support or with support on the half-line are obtained and
shown to be consistent with the conserved quantity results of section 3. In section 5,
we return to the fully nonlinear problem and consider the limit n → 0. This small n
study links the solutions of the nonlinear problem to the linear results found in section
4. In section 6, numerical simulations of (1.1) are compared with the predictions given
by the dipole solutions. We conclude, in section 7, with a discussion of the results
obtained in the previous sections.

2. Similarity solutions. We seek self-similar solutions of the thin film equation
(1.1) taking the form

h = τ−αH(η), η = x/τβ , τ = t + t0.(2.1)

Similarity solutions of this general form solve many different classes of initial and
boundary value problems for (1.1): source-type solutions of the Cauchy problem,
draining solutions of the Dirichlet problem, and Boltzmann solutions of the dam-break
problem [13, 20, 22, 32, 38]. Moreover, these special solutions often act as large-time
attractors for solutions starting from much wider classes of initial conditions; we also
expect this to be true for the dipole problem.

Substituting (2.1) into (1.1) and separating temporal and spatial variables forces
the relation

nα + 4β = 1,(2.2)

with the similarity function H(η) satisfying a boundary value problem on 0 ≤ η ≤ L
for the nonlinear ordinary differential equation,

αH + 1
4 (1 − nα)ηH ′ − (|H|nH ′′′)

′
= 0,(2.3a)

with H = H ′ = 0 at η = 0,(2.3b)

and H = H ′ = |H|nH ′′′ = 0 as η → L−.(2.3c)

We will refer to (2.3) as problem (P). Here, L is a constant corresponding to the free
boundary (1.4) of the form �(t) = Lτβ . Problem (P) has been previously investigated
by application of dynamical systems techniques [21, 27].

If a second independent relation between α and β were known, then these scaling
constants could be determined explicitly. For the Cauchy problem, the conserved
quantity

∫
h dx determines α = β, and hence α = β = 1/(n + 4) [13, 32]. For the

Dirichlet problem, boundary conditions set β = 0, and hence α = 1/n [22, 38], while
for dam-break, appropriate boundary conditions set α = 0 and β = 1/4 [20]. All of
these scenarios are classified as similarity solutions of the first kind; see Barenblatt [1].
For the dipole problem, there is in general no such direct second relation between α
and β. In (2.3a), β has been eliminated via β = (1−nα)/4, but α is left undetermined.
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Consequently problem (P) is a challenging nonlinear eigenvalue problem for the scaling
constant α, and the similarity solution (2.1) is said to be of the second kind [1]. There
are, however, two exceptional cases (which we will come to in sections 3 and 6.1).

We note that problem (P) is invariant under the rescaling H(η) → λ4/nĤ(η̂),
η → λη̂ for any λ > 0 when n �= 0. In addition, for the n = 0 linear problem, H and
η can be rescaled independently. Therefore, to uniquely specify a solution of (P), an
additional arbitrary normalization condition must be imposed. For this, we choose to
set the average of the square of the similarity solution to be unity, i.e.,

1

L

∫ L

0

H2 dη = 1;(2.3d)

this is a simple condition on the L2 norm of the solution, which will be convenient
in our numerical scheme for solving the boundary value problem. A different, local,
normalization condition was used in [21], which was more convenient for their shooting
method calculations.

For self-similar solutions (2.1), the quantity
∫
h dx scales as O(τβ−α). It was

proved rigorously in [11] that a solution of problem (P) exists only for n < 2 and
necessarily has α > β. We therefore restrict attention to solutions where d

dt

∫
h dx < 0,

and hence from (2.2), α > 1/(n + 4). Previous analysis [21] has also indicated that
there exists a critical value of n = nc, such that −4 < nc < 0, below which solutions
of the form (2.1) do not exist; we return to this issue in a later section.

Rather than trying to construct solutions to (P) directly, we split it into two
subproblems:

(PA) = {(P) with (2.3c) replaced by H = H ′ = 0 at η = L}(2.4)

and

(PB) = {(P) with (2.3c) replaced by H = |H|nH ′′′ = 0 at η = L} .(2.5)

For a given value of L, both (PA) and (PB) define fourth-order boundary value prob-
lems, with α playing the role of an eigenvalue. Consequently, we expect nontrivial
solutions to the subproblems to exist only for specific values of α at each L: there
will be continuous families of solutions of these problems defined by curves in the
(L,α) parameter plane; see Figure 4.6(left). Intersections of the solution curves for
problems (PA) and (PB) then identify solutions of the original problem (P), that is,
P = PA ∩ PB (see Figure 4.6(right)). We will develop this in sections 4–6.

3. Conserved quantities. As described above, similarity solutions are said to
be of the first kind if the scaling parameters α, β can be obtained directly by com-
bining (2.2) with another relation. Additional scaling relations can often be obtained
from equations for conserved quantities, such as the conservation of

∫
h dx, or of an

energy functional. For the dipole problem, conserved quantities are known for only
two specific values of n, namely the first moment,

∫∞
0

xh dx, for n = 1 [11, 21, 31]

(which will be discussed further in section 6.1), and
∫∞

0
gh dx for n = 0, where we

specify possible functions g(x, t) below. There is a subtle difference between these two
conserved integrals. The former conserved quantity provides a unique specification
of α = 1/3 for all solutions, whereas, as will become evident in what follows, the
latter (through the choice of g) provides a countably infinite set of viable first-kind
similarity solutions.
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Consider the linear problem, (1.1) with n = 0. From (2.2), β = 1/4, but α is
undetermined in (2.1). Suppose that α can be determined by finding a function g(x, t)
such the integral of the product gh is conserved [31]. From integration by parts (with
appropriate assumptions on the decay of h as x → ∞), we find that

d

dt

(∫ ∞

0

gh dx

)
(3.1)

=

∫ ∞

0

(gt − gxxxx)h dx− [ghxxx − gxhxx − gxxhx − gxxxh]

∣∣∣∣
∞

0

= 0.

In other words, g should satisfy the backward fourth-order linear diffusion equation,
gt − gxxxx = 0, and the boundary terms should vanish, i.e., g(0, t) = gx(0, t) = 0 [21].
There are, in fact, an infinite number of suitable polynomial solutions for g(x, t) given
by

g(x, t) =

k∑
m=0

x4m+2tk−m

(4m + 2)!(k −m)!
or

k∑
m=0

x4m+3tk−m

(4m + 3)!(k −m)!
,(3.2)

for k = 0, 1, 2, 3, . . .. Each choice of g(x, t) provided by (3.2) therefore specifies a con-
served quantity for n = 0 via (3.2), which can then be used to identify corresponding
similarity solutions. Using the relationship x = ηt1/4 allows (3.2) to be written as
separable functions of η and t:

g2k(x, t) = tk+2/4
k∑

m=0

η4m+2

(4m + 2)!(k −m)!
,(3.3)

g2k+1(x, t) = tk+3/4
k∑

m=0

η4m+3

(4m + 3)!(k −m)!
,

where the index of g corresponds to the parity of its terms. Writing the integral in
(3.2) in terms of self-similar variables and requiring it to be time-independent then
yields two sequences of critical exponents for (2.1),

ᾱ2k = k + 3
4 , ᾱ2k+1 = k + 1,(3.4)

arising from the corresponding choices for g in (3.3). We have therefore constructed
a countably infinite set of first-kind similarity solutions for n = 0. We note that (3.3)
can then be written in the form

gj(x, t) = tᾱj−1/4Ḡj(η) for j = 0, 1, 2, 3 . . . ,(3.5)

and the value of the conserved integral
∫∞

0
gj(x, t)h(x, t) dx =

∫∞
0

Ḡj(η)H̄(η) dη, for
similarity solutions (2.1).

We also note the existence of transformations connecting these critical ᾱ values
and the corresponding H̄(η) similarity solutions. Since, for n = 0, equation (1.1) is
linear, if h(x, t) is a solution, then its derivatives are also solutions (subject to the
boundary conditions). Taking a ∂x-derivative of the similarity solution (2.1) yields
another solution of the form h(x, t) = t−[ᾱ+1/4]H̄ ′(η), and hence the transformation

{ᾱ2k, H̄(η)} → {ᾱ2k + 1
4 , H̄

′(η)}.(3.6)
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Similarly, taking the ∂t-derivative of (2.1) yields the transformation

{ᾱj , H̄(η)} → {ᾱj + 1,−ᾱjH̄(η) − 1
4ηH̄

′(η)}.(3.7)

Note that (3.7) can be applied to any ᾱ in (3.4), ᾱj → ᾱj+2, but (3.6) only maps even
to odd modes, ᾱ2k → ᾱ2k+1. This is due to the constraints imposed by the boundary
conditions at x = 0 given in (1.3). These two transformations can be used to obtain
the solutions for all k in terms of the first solution, with ᾱ0 = 3/4.

4. Similarity solutions of the n = 0 linear problem. We consider subprob-
lem (PA) with n = 0, that is, the linear problem,

αH + 1
4ηH

′ −H ′′′′ = 0, 0 ≤ η ≤ L,(4.1a)

H(0) = H ′(0) = 0, H(L) = H ′(L) = 0.(4.1b)

The structure of the set of solutions for this boundary value problem is nontrivial; for
any fixed value of the support, L, this is a fourth-order non–self-adjoint eigenvalue
problem for the compactly-supported second-kind similarity solutions {α,H(η)}.

L

α ᾱ3

ᾱ2

ᾱ1

ᾱ0

403020100

4

2

0

Fig. 4.1. Branches of solution curves in the (L,α) parameter plane for the n = 0 (PA) sub-
problem, (4.1). Details of the structure in the boxed region will be discussed later (see Figure 4.5).

The results from a computational study for the set of nontrivial solutions of (PA)
are shown in Figure 4.1. The arrangement of the solution branches exhibits interesting
regular patterns in different regions of the (L,α) parameter space. These patterns
correspond to different qualitative forms of the H(η) solution profiles (see Figure 4.3).
In this section, we perform an asymptotic analysis of (4.1) in the two distinct limits,
L → ∞ and α → ∞, in an effort to understand the structure of Figure 4.1. In the
process, we determine the solutions defined on the half-line that correspond to the
critical ᾱ values (3.4). Interestingly, these first-kind solutions are limiting cases of
sequences of compactly supported second-kind solutions with increasing support (and
increasing numbers of sign changes).

4.1. Limiting behavior for L → ∞. The analysis of this limit problem is
composed of two stages. First, we obtain analytic solutions of (4.1) on the half-
line {η ≥ 0} in terms of an integral representation and employ steepest descents
to construct the leading-order asymptotic approximation to H(η). This approach
yields the critical values (3.4) from an argument independent of section 3. Second, we
consider the leading-order behavior of solutions for large but finite L; this will explain
the “wavy” structure of the solution curves and the “bends” shown in Figure 4.1.
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Fig. 4.2. The steepest descent contours defining the solutions (4.4) in the complex plane.
s1, s2, s3 are the saddle points of φ(s) = ηs− s4.

4.1.1. Solutions on the half-line. We can express the solutions of (4.1) in
terms of a generalized Laplace transform,

H(η) =

∫
C

Y (s)eηs ds,(4.2)

with (4.1a) then taking the form∫
C

[
αY − 1

4

d

ds
(sY ) − s4Y

]
eηs ds = −sY (s)eηs

∣∣∣
C
.(4.3)

Choosing the contour C appropriately so that the boundary terms vanish yields a
first-order equation for Y (s) with solution Y (s) = s4α−1e−s4

. Therefore, we define
four linearly independent solutions of (4.1a) as

Ĥk(η) =

∫
Ck

s4α−1e−s4

eηs ds,(4.4)

for k = 1, 2, 3, 4. The boundary terms in (4.3) vanish for |s| → ∞ in sectors centered
along the real and imaginary axes. The boundary terms in (4.3) also vanish at the
origin, s = 0. The four contours can therefore be defined as shown in Figure 4.2.
Deforming contours C1,2 onto the real and imaginary axes, we can express these
integrals more explicitly as the complex conjugate solutions

Ĥ1,2(η) = e±iπ(4α−1)

∫ ∞

0

t4α−1e−t4e−ηt dt + e±i2πα

∫ ∞

0

t4α−1e−t4e±iηt dt,(4.5)

which can also be written in terms of generalized hypergeometric functions. Using
steepest descents [5], we can obtain the leading-order asymptotic behaviors of these
solutions as η → ∞ from the contributions of the three saddle points of the phase
function φ(s) = ηs − s4 (that is, φ′(sk) = 0, with s1,2 = (η/4)1/3e±i2π/3 and s3 =

(η/4)1/3). Solutions Ĥ1,2(η) are exponentially decaying as η → ∞,

Ĥ1,2(η) ∼
√

π

6

(η
4

)2(2α−1)/3

e±iπ(8α−1)/3e−3(η/4)4/3[1∓i
√

3]/2.(4.6)

The third solution Ĥ3(η) is exponentially growing as η → ∞ and cannot contribute
to the bounded solutions of (4.1a) on 0 ≤ η < ∞,

Ĥ3(η) =

∫ ∞

0

t4α−1e−t4eηt dt ∼
√

π

6

(η
4

)2(2α−1)/3

e3(η/4)4/3

.(4.7)
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The final linearly independent solution is given by a contour from the origin to infinity
along the negative real axis,

Ĥ4(η) = eiπ(4α−1)

∫ ∞

0

t4α−1e−t4e−ηt dt.(4.8)

Laplace’s method applied to this integral yields the leading-order algebraic decay
behavior as η → ∞,

Ĥ4(η) ∼ e−(4α−1)[1−iπ]

√
2π

4α− 1

(
4α− 1

η

)4α

.(4.9)

A local analysis of the solutions of (4.1a) at η = 0 shows that there are four
regular, linearly independent solutions with power series in η4, starting with terms
1, η, η2, and η3, respectively. Noting that (4.9) is singular as η → 0 suggests that
WKB analysis would yield that the origin is a turning point of (4.1a) [5]. Because
the asymptotic formulae for Ĥk(η) are not uniformly valid down to η = 0, we must
apply the boundary conditions (4.1b) directly to the linear combination of the integral
forms for the solutions, (4.5) and (4.8). Specifically, imposing the conditions that
H(0) = H ′(0) = 0 and that H ′′(0) is real and positive yields

H(η) =
(
2Re(e−iπ(2α+3/4)Ĥ1(η)) + B(α)Ĥ4(η)

)
,(4.10)

with

B(α) = e−i4πα
(
2 cos(π[2α + 1/4]) −

√
2
)
.(4.11)

Since (4.9) decays algebraically as η → ∞, while (4.6) decays exponentially, if B(α) �=
0, then H(η) ∼ B(α)Ĥ4(η). However, since |Ĥ4(η)| given by (4.9) is strictly positive
and monotone decreasing, then only the trivial solution would satisfy the interface
boundary conditions (4.1b). Hence we conclude that B(α) = 0, corresponding to the
infinite sequence of roots ᾱ,

ᾱ2p = p + 3
4 , ᾱ2p+1 = p + 1, for p = 0, 1, 2, 3, . . ..(4.12)

Using (4.6) in (4.10), the leading-order behavior of solutions of (4.1) on the half-line
for η → ∞ is then given by

H̄(η) ∼
√

2π

3

(η
4

) 4
3 (ᾱ− 1

2 )

e−
3
2 (η/4)4/3

cos
(

3
√

3
2

(
η
4

)4/3
+ π

3 [2ᾱ + 11
4 ]
)
.(4.13)

Similarly, expanding (4.10) for η → 0 yields the local behavior of the solution near
the origin,

H̄(η) ∼ 1 + cos(2πᾱ) − sin(2πᾱ)

2
√

2

∞∑
k=0

(
Γ(k + 5

4 )

Γ(4k + 3)
η4k+2 −

Γ(k + 3
2 )

Γ(4k + 4)
η4k+3

)
.(4.14)

Indeed, (4.12) coincides exactly with (3.4). The form of (4.13) is suggestive of the
strongly damped oscillatory solutions shown in Figure 4.3 (right). In Figure 4.4 we
show the excellent agreement between (4.13) for ᾱ0 = 3/4 and a numerically computed
solution on the first branch of solutions at large L. Next, we improve upon this result
by determining the oscillatory structure of the branches of solutions at large L as they
approach the singular values, α(L) → ᾱ.
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Fig. 4.3. Examples of numerically computed solutions H(η) of (4.1): (left) weakly decaying
oscillatory solutions from the first three solution branches (different L’s) for fixed α = 5, and (right)
strongly damped solutions from the first two branches for fixed L = 25 with different values of α.
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Fig. 4.4. Log-linear plot comparing the asymptotic solution H̄(η) of the half-line problem
(dashed curve for (4.13), dotted curve using the first twenty terms of (4.14)) for ᾱ0 = 3/4 with
a numerically computed solution for L = 30 (solid curve) from the first branch of solutions of (PA).

4.1.2. Behavior for L → ∞. Having obtained the ᾱ scaling exponents for
the half-line problem, we now consider how these values are approached in the limit
L → ∞. In what follows, we shall use ᾱ to denote the values taken from (4.12);
where necessary, additional subscripts will be used to distinguish special cases. We
will obtain the asymptotic behavior of α(L) ∼ ᾱ + δ(L), with δ → 0 as L → ∞.

The general solution of (4.1a) can be written as

H(η) = c1Ĥ1(η) + c2Ĥ2(η) + c3Ĥ3(η) + c4Ĥ4(η).(4.15)

On the half-line, the contribution from Ĥ3 was omitted (c3 = 0), as it was inconsistent
with the required far-field behavior as η → ∞. However, for finite L, the contribution
of Ĥ3 is bounded and and must be retained in (4.15). We begin by imposing H(0) =
H ′(0) = 0 from (4.1b) on (4.15). This yields c1, c2, and c4 in terms of c3:

c1 = 1
4 (−1 − i)ω + ic3ω, c2 = 1

4 (−1 + i)ω−1 − ic3ω
−1,

c4 = 1
4 (1 + i)ω − 1

2ω
2 + 1

4 (1 − i)ω3 + c3(−iω + ω2 + iω3),
(4.16)

where ω = e−i2πα (setting c3 = 0 recovers (4.10), (4.11)). The remaining boundary
conditions from (4.1b), namely H(L) = H ′(L) = 0, are then imposed on (4.15) to
yield a system of equations relating c3, δ, L. These equations can be simplified using
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Fig. 4.5. Details from Figure 4.1: comparison between the numerical results (solid curves) and
the asymptotic results α(L) = ᾱ+ δ(L), (4.18), (dashed curve) for large L. (left) for ᾱ0 = 3/4, and
(right) |α− ᾱ| compared with |δ(L)| for ᾱ1 = 1.

the asymptotics of the Ĥk(η) from section 4.1.1 and the knowledge that c3 → 0 and
δ → 0 in the limit L → ∞. We postulate that the relevant leading-order balance
in the H ′(L) = 0 equation is between the Ĥ ′

3 and {Ĥ ′
1, Ĥ

′
2} terms. These terms

dominate as the process of differentiation introduces into them an additional factor of
(L/4)1/3. Working through the algebra yields the leading-order asymptotic expression
for L → ∞,

c3 ∼ − 1√
2

exp
(
− 9

2 [L/4]
4/3

)
sin

(
π
3

(
11
4 − 2ᾱ

)
− 3

√
3

2 [L/4]
4/3

)
.(4.17)

To obtain a corresponding expression for δ(L) we consider the H(L) = 0 equation.
As Ĥ4(η) is inherently linked to the requirement that B(ᾱ) = 0 from (4.11) (when L
is infinite), we expect this term to contribute in the analysis of the limit L → ∞. This
is indeed the case, and Ĥ4(η) balances with all of the terms from (4.15). We also make
the a priori assumption that c3, as given by (4.17), decays more rapidly than δ as
L → ∞. Expanding complex exponentials as Taylor series, eiρα ∼ eiρᾱ(1 + iρδ), and
imposing B(ᾱ) = 0 removes the leading-order contribution from Ĥ4(η), leaving the
higher-order terms to balance with the remaining leading-order terms; this becomes
obvious once c3 is substituted in from (4.17), as this shows that Ĥ3(η) and {Ĥ1, Ĥ2}
have the same decay rate as L → ∞. The result of this analysis is an expression that
can be simplified (exploiting the asymptotic ordering c3 � δ � 1 as L → ∞) to give

δ ∼ ± [L/
√

2]
2
3 (8ᾱ−1)

π
√

2 (4ᾱ− 1)
4ᾱ− 1

2

exp
(
4ᾱ− 1 − 3

2 [L/4]4/3
)

sin
(

π
3

(
9
4 − 2ᾱ

)
− 3

√
3

2 [L/4]
4/3

)
.

(4.18)
The positive sign is taken for ᾱodd, while the negative is used for ᾱeven. It is clear
that (4.18) decays more slowly than (4.17) as L → ∞, thereby justifying our original
assumption on the ordering c3 � δ; (4.18) contains an algebraically growing factor
absent from (4.17) as well as having a slower exponential decay rate. Figure 4.5 shows
a comparison between (4.18) and the computed solution branches from Figure 4.1.

4.2. Limiting behavior for α → ∞. Turning to the limit of large α, to
balance the αH term in (4.1a) as α → ∞, the solution must have large gradients,
with d/dη = O(α1/4). We employ a change of variables to write the solution as

H(η) = A(z), η = Lz,(4.19)
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Fig. 4.6. Log-log plots of the solution branches in the (L,α) parameter plane: (left) solutions
of (PA) with asymptotic regimes for L → ∞ and α → ∞ connected at “bends” by (4.26), and (right)
solution branches for (PA) (4.1) (solid curves) and (PB) (4.27) (dashed curves).

with 0 ≤ z ≤ 1. The limit α → ∞ suggests that L ∼ γ/α1/4, where γ is a positive
constant. Equation (4.1a) then takes the form

A− 1

γ4
A′′′′ =

1

4α
zA′.(4.20)

Writing A(z) as a regular perturbation series, A = A0(z)+α−1A1(z)+O(α−2), yields
the leading-order problem

A′′′′
0 − γ4A0 = 0, A0(0) = A′

0(0) = 0, A0(1) = A′
0(1) = 0.(4.21)

This is a fourth-order linear self-adjoint eigenvalue problem. Two linearly independent
solutions of (4.21) that satisfy the boundary conditions at z = 0 are

Aa(z) = cosh(γz) − cos(γz), Ab(z) = eγz − sin(γz) − cos(γz).(4.22)

Using these, we can write the solution satisfying the boundary condition A0(1) = 0
as

A0(z) = C[Aa(z)/Aa(1) −Ab(z)/Ab(1)],(4.23)

where C is a normalization constant. Finally, imposing the remaining boundary condi-
tion, A′

0(1) = 0, yields the condition cos(γ) cosh(γ) = 1. This transcendental equation
has an infinite number of positive solutions, and for large γ the values approach the
asymptotic form for m → ∞,

γ
m

∼ [m + 3
2 ]π,(4.24)

where m is a nonnegative integer (m = 0, 1, 2, . . .). Consequently, for any fixed value
of m, we obtain an estimate for the solutions of (PA) as

H(η) ∼ A0(η/L), αm ∼
(
[m + 3

2 ]π/L
)4

, L → 0.(4.25)

The index m gives the number of sign changes of the nearly periodic solutions (see the
m = 0, 1, 2 solutions in Figure 4.3(left)). As seen in (4.20), the decay of the oscillations
is a weak effect in the limit α → ∞ as it enters at next order. In this regime, the index
m parametrizes the solution branches in the (L,α) plane, as shown in Figure 4.6(left).
In contrast, for L → ∞ we found very different limiting behavior, α → ᾱq, (4.12).
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The boundary between these two asymptotic regimes can be estimated by determining
where (4.18) yields O(1) corrections to α as L → ∞. The dominant balance of the
algebraic powers in (4.18) as ᾱ → ∞ yields the estimate

α = O(L4/3), L → ∞,(4.26)

for the location of the overlap region where (4.12) and (4.25) must match together;
see Figure 4.6(left).

4.3. The boundary value problem (PB). Now consider the boundary value
problem (PB) for n = 0, where the H ′(L) = 0 condition in (4.1) is replaced by
H ′′′(L) = 0:

αH + 1
4ηH

′ −H ′′′′ = 0, 0 ≤ η ≤ L,(4.27a)

H(0) = H ′(0) = 0, H(L) = H ′′′(L) = 0.(4.27b)

As in the case of (4.1), we expect this problem to produce continuous families of
solutions on curves in the (L,α) parameter plane. The analysis of the solutions of
(4.27) closely follows the results given above for (PA), and so we omit most of the
details. For the limit α → ∞, the solutions are given by

H(η) ∼ A0(η/L), αm ∼ ([m + 1]π/L)4, L → 0,(4.28)

for m = 0, 1, 2, . . .. Note that these solution branches for (PB) alternate in the plane
with (4.25) for α → ∞, as shown in Figure 4.6(right). Since the results of the analysis
given in section 4.1.1 are independent of the details of the boundary conditions at
η = L, they also apply to the solutions of (PB). That is, for L → ∞, the solutions of
(4.27) also approach ᾱ given by (4.12), but the details of the oscillatory corrections
(4.18) will be somewhat different (see Figure 4.6(right)).

4.4. The structure of the set of dipole similarity solutions. We now com-
bine what has been learned about the structures of subproblems (PA), (PB) to ob-
tain the similarity solutions of (P). The dipole solutions are given by the isolated
intersection points of the solution branches of the two subproblems, as shown in Fig-
ure 4.6(right) and Figure 4.7.

We note that there are no intersections for L → 0 and large α. This is because
the branches given by (4.25) and (4.28) are uniformly spaced in this case. Recalling
that (4.25) and (4.28) were obtained in the limit where (4.1a) reduced to a formally
self-adjoint equation, we can attribute the more complicated structure of the solution
branches for moderate values of α,L to the influence of non–self-adjoint effects. In
particular, at finite α, these branches are observed either (i) to connect to an adjacent
branch, corresponding to solutions with one more (or one less) sign change, to form a
loop1 with L bounded from above, or (ii) to extend to L → ∞ by connecting through a
bend to one of the branches approaching the first-kind half-line solutions specified by
(4.12). In the latter case, from (4.13), the sequence of compactly supported solutions
with m sign-changes approaches the half-line solutions, with the size of the support
behaving like L = O(m3/4) as m → ∞.

1With the number of sign changes becoming degenerate, as one zero occurs at η = L at the
minimum of the loop, where dα/dL = 0.
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Fig. 4.7. Dipole similarity solutions (solid dots) shown in the (L,α) parameter plane as de-
termined by points on the branches of the linear subproblem (PA) (curves) (4.1) where the flux at
the interface, H′′′(L), vanishes. The four solutions enclosed in the boxed region will be considered
further in section 5.3.

In the loop case, we can show that there must be at least one dipole solution
on each loop. Consider a loop for (PA) with solutions given by (4.25) for L → 0.
Depending on m, the flux at the interface for small L is either positive or negative
along a branch, with

H ′′′(L) ∼ 1
2 (−1)me−(m+ 3

2 )π, L → 0.(4.29)

Since the flux is continuous on a (PA) loop and the sign of the flux on consecutive
branches is opposite, there must be at least one zero of the flux on each loop, and
the result follows. Figure 4.7 shows the dipole solutions marked as solid dots on the
(PA) solution branches. Recalling the interpretation of the index m as the number
of sign changes of H(η), this figure indicates one solution for m = 0 (the unique
nonnegative solution), no solution for m = 1, one solution for m = 2, two solutions
for m = 3, and so on.2 In contrast to this partially ordered set of solutions, for
self-adjoint problems, we would expect exactly one solution for each value of m. The
nonexistence or nonuniqueness of solutions with m sign changes is an interesting result
of the non–self-adjoint structure of this problem.

5. Limiting behavior for n → 0. Having completely analyzed the linear
problem, we build upon it to describe the nonlinear problem for small n. Similar to
the “slightly nonlinear” limit used in [22], we express the nonlinear mobility coefficient
in (2.3a) as

|H|n = en ln |H| ∼ 1 + n ln |H| + O(n2),(5.1)

this expansion being valid everywhere that |H| � e−1/n, that is, everywhere except
exponentially narrow boundary layers at zeros of the solution. Careful analysis is
required to fully resolve the local structure there [37], but this will not be crucial in
the current problem. Substituting (5.1) into (4.1a) yields the problem

αH + 1
4ηH

′ −H ′′′′ = n
[

1
4αηH

′ + (ln |H|H ′′′)
′
]

+ O(n2).(5.2)

We consider two limits of this problem to describe the influence of weak nonlinearity
on the solutions for n → 0.

2Observe that there is one solution for m = 4, two for m = 5, and three for m = 6. We will see
that the numbers of solutions also depends on n.
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Fig. 5.1. Shifts of the solution curves in the (L,α) plane for n → 0: (left) the shift to the ᾱ
values for n → 0, accurately predicted by (5.7); (right) the first solution loop for n = 0 (solid curve)
and the corresponding curve for n = 0.1, 0.2 (dashed curves). The shift of the curve for large α is
accurately predicted by (5.12).

5.1. Weakly nonlinear solutions on the half-line. Building on the results
from section 4.1.1, we seek solutions for the nonlinear problem on the half-line in the
form of a regular expansion,

H(η) = H0(η) + nH1(η) + O(n2), α = α0 + nα1 + O(n2),(5.3)

where the leading-order solution is H0 = H̄(η), α0 = ᾱ, given by (4.13) and (4.12).
Then, at next order, (5.2) yields

α0H1 + 1
4ηH

′
1 −H ′′′′

1 = 1
4α0ηH

′
0 + (ln |H0|H ′′′

0 )
′ − α1H0.(5.4)

We will focus on determining the eigenvalue correction, α1. To this end, we must
enforce the Fredholm alternative on the right-hand side of (5.4) to yield a solvability
condition. That is, the inner product of the right-hand side with the solution of the
homogeneous adjoint problem must vanish. The linear adjoint problem is

α0Ḡ− 1
4 (ηḠ )′ − Ḡ′′′′ = 0, Ḡ(0) = Ḡ′(0) = 0.(5.5)

Note that we have already made use of the solutions of the adjoint problem in section
3 to compute the critical ᾱ values (3.4). From (3.3), the solutions are the polynomials

{(Ḡ(η); ᾱ)} = {(η2; 3
4 ), (η3; 1), (η2 + 1

360η
6; 7

4 ), . . .}.(5.6)

Hence, for a given half-line solution, the correction to the n = 0 value of ᾱ is

α1 = −
(

1
4 ᾱ

∫ ∞

0

(ηḠ )′H̄ dη +

∫ ∞

0

Ḡ′ ln |H̄|H̄ ′′′ dη

)/∫ ∞

0

ḠH̄ dη.(5.7)

Figure 5.1(left) illustrates the predicted uniform downward shift to the ᾱ0 = 3
4 branch

for n = 0.01, 0.02 with α1 ≈ −0.82.

5.2. Weakly nonlinear solutions for L → 0. Recalling the results of sec-
tion 4.2, we consider this case in terms of the limit α → ∞ with L = γ/α1/4 and

H(η) = A(z), η = γα−1/4z,(5.8)

with 0 ≤ z ≤ 1. We then expand the solution of (5.2) as a perturbation series for
n → 0,

A(z) = A0(z) + nA1(z) + O(n2), γ = γ0 + nγ1 + O(n2).(5.9)
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For α → ∞, at leading order we recover (4.21) with solution (4.23) and γ0 = γ, (4.24).
Similarly, at next order in n,

A′′′′
1 − γ4

0A1 = 4γ1γ
3
0A0 − 1

4γ
4
0zA

′
0 − (ln |A0|A′′′

0 )
′
,(5.10)

where we have simplified the right-hand side using (4.21).
This problem is self-adjoint, and the Fredholm alternative provides a solvability

condition to determine γ1 from the integral of the product of the right-hand side of
(5.10) with A0(z),

γ1 = −γ0

32
− 1

4γ3
0

(∫ 1

0

A′
0 ln |A0|A′′′

0 dz

/∫ 1

0

A2
0 dz

)
,(5.11)

where we have used
∫ 1

0
zAA′ dz = − 1

2

∫ 1

0
A2 dz. Consequently, the asymptotic form

of the eigenvalue curves for the joint limit L → 0 and n → 0 is given by

α ∼ ([γ0 + nγ1]/L)
4
.(5.12)

This analytical prediction agrees very closely with the numerically computed curves
for m = 0 (γ1 ≈ −1.04) and m = 1 (γ1 ≈ −1.81), as shown in Figure 5.1(right).
We note that γ1 < 0 for all m, and hence all of the curves translate to the left as n
increases.

5.3. Computing the solutions of the nonlinear problem. Having estab-
lished the properties of the similarity solutions for n = 0 in section 4 and observing
the continuous dependence of the solutions on n for n → 0, we now seek to cast these
results in a form that will be convenient for the numerical study of the nonlinear
problem. Rescaling the similarity variable so that the solution is defined on a fixed
domain, 0 ≤ z ≤ 1,

H(η) = H(z), η = Lz,(5.13)

the boundary value problem (PA) then takes the form

L4[αH + 1
4 (1 − nα)zH′] − (|H|nH′′′)

′
= 0,(5.14a)

H(0) = H′(0) = 0, H(1) = H′(1) = 0,

∫ 1

0

H2 dz = 1.(5.14b)

Here, the computational domain, 0 ≤ z ≤ 1, is fixed, while L and α both appear in
(5.14a) as eigenvalues. (The complete problem, (5.14) with |H|nH′′′(1) = 0, could
be referred to as a nonlinear double-eigenvalue problem [24].) We solve this system
numerically using Newton–Raphson relaxation for a finite-difference discretization of
the problem. Continuation methods [30] are used to trace the solution branches of
(5.14) and to obtain the dependence of one parameter on the other, say H(z) and L
in terms of α (and, inherently, n). The dipole similarity solutions are then found at
(L,α) values where the no-flux condition at z = 1 is also satisfied. A plot of the decay
exponent α as a function of n for the first few dipole solutions is shown in Figure 5.2.
As expected from (5.3) and (5.12), the figure shows that the n = 0 solutions can
be smoothly continued to nonzero n over finite ranges. Note the strong influence of
n as the two branches of solutions with three zeroes coalesce in a saddle-node-type
bifurcation at a negative value of n ≈ −0.056.
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Fig. 5.2. Numerically computed values of α as a function of n for the first four compactly
supported dipole solutions (highlighted in Figure 4.7 for n = 0) (solid curves), along with ᾱ(n) for
the halfline solutions (dashed curves), as predicted by α ∼ ᾱ + nα1 (5.7) (dotted lines). Dipole
solutions are denoted by their numbers of zeros, m, with two solutions for m = 3 labeled 3a and 3b.

There are various approaches to handling the degeneracy of (1.1) when perform-
ing numerical computations of solutions with sign-changes. The numerical scheme
employed in this paper involved the introduction of a regularization to smooth the
absolute-value function,

|H|n → (H2 + ε2)
n/2

,(5.15)

for a small regularization parameter, ε � 1. Additionally, local analysis for z → 0
and z → 1 carried out in [11, 21] was used to appropriately implement the boundary
conditions (5.14b) for different ranges of n.

6. Numerical simulations of the thin-film evolution equation (1.1). Up
to this point, we have analyzed the dipole similarity solutions as solutions of the
boundary value problem (2.3). We now take the opportunity to examine the role of
these solutions in terms of the dynamics of the nonlinear evolution equation (1.1).

Making use of the regularization (5.15) with ε = 10−4, we consider general nu-
merical solutions of the thin-film equation (1.1) via the regularized evolution equation

∂th = −∂x([h2 + ε2]
n/2

hxxx)(6.1)

on a finite domain, 0 ≤ x ≤ 40, with boundary conditions h = hx = 0 at both
boundaries. Note that this regularization differs from the nonnegativity-preserving
form suggested by Bernis and Friedman [10], frequently used in numerical studies of
(1.1) [18, 19], as we wish to explore what happens when the solutions are allowed to
change sign.

We illustrate different aspects of the dipole solutions within the dynamics of the
thin film equation in the following two numerical simulations, first for n = 1 and then
for n small (n = 0.1).

6.1. Dynamics for n = 1. We consider (6.1) with n = 1 and nonnegative

compactly supported initial data, h(x, 0) = h0(x) ≡ (1 − [x− 5]2)
2

for 4 ≤ x ≤ 6,
and h(x, 0) ≡ 0 elsewhere (see Figure 6.1(upper left)). For initial value problems
for the thin-film equation with n > 0, regions of support are known to vary in time
with finite speed of propagation. Hence, until the support has grown to include the
boundaries x = 0 and x = 40, those respective boundary conditions will not influence
the evolution of the solution. Indeed, this leads to several stages of intermediate
dynamics [2], as follow:
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Fig. 6.1. Profiles at various times from a numerical simulation of (1.1) with n = 1, illustrating
the three stages of self-similar intermediate dynamics: (upper left) pure spreading of the Cauchy-type
solution, (upper right) mixed spreading/draining in the dipole problem, (bottom) pure draining on
the bounded domain.

1. Source-type evolution for the Cauchy problem. For short times, before either
boundary is within the region of support, the solution is effectively expanding
within a homogeneous region of unlimited extent, and hence will take the
form of the source-type similarity solution of the Cauchy problem [9, 13, 14].
This is a first-kind similarity solution with α = β = 1/5 for n = 1 and
h(x, t) = τ−αH(η), with

H(η) = (1 − η2)
2

for |η| ≤ 1, η = (x− x0)/τ
1/5.(6.2)

This solution conserves both
∫
h dx and

∫
xh dx. Note that for convenience

our initial data was selected to be exactly of this form, with x0 = 5 and the
scaled time variable τ = 120t + 1. The similarity solution is stable and acts
as an attractor for more general initial data [14]. This solution expands in a
symmetric manner with respect to x0, and we refer to this dynamical regime
as being pure-spreading. This regime ends when the support extends to the
x = 0 near-boundary (see Figure 6.1(upper left)).

2. Mixed “spreading/draining” behavior for the dipole problem. Once the x = 0
boundary has been reached, the boundary conditions dictate that

∫
h dx is

no longer conserved. Meanwhile, the right-interface for the region of support
continues to expand into the domain; this suggests a transition to the dipole
problem, which can also be described as mixed spreading/draining. A simple
calculation for the first moment for n > 0 shows that

d

dt

(∫ ∞

0

xh dx

)
=

1

2
n(n− 1)

∫ ∞

0

|h|n−2h3
x dx,(6.3)

subject to contributions from boundary terms vanishing. So, for n = 1 the
first moment is a conserved quantity (see [11]). Consequently, we can deter-
mine α = 1/3, β = 1/6 for this special case, and the dipole similarity solution
is of the first kind. This regime ends when the support extends to the x = 40
far-boundary (see Figure 6.1(upper right)).
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Fig. 6.2. Graphs illustrating changes in the self-similar regimes for n = 1: (left) the solid curve
is hmax(t) from the numerical computation, while the dashed lines have slopes −1/5,−1/3, and −1
corresponding to analytic predictions for self-similar pure spreading, mixed spreading/draining, and
pure draining respectively; (right) similarly, the computed and predicted values of x̄. The appropri-
ately scaled/shifted time-variable here is τ = 120t + 1.

3. “Pure draining” behavior on the finite domain. Once the region of support has
extended to the entire domain, the behavior of the solution will be controlled
by the boundary conditions at both edges. The solution approaches a sepa-
rable form

h(x, t) = τ−1H(x− 20),(6.4)

and hence α = 1 and β = 0, as studied in [22, 38]; the symmetry of (6.4) is
apparent in Figure 6.1(bottom).

We note that the transitions between stages that we are outlining also occur for the
analogous porous medium problem, where the origin of the dipole solution is usually
justified by other means (see, for instance, [2]); the equivalent analysis for the one-
dimensional heat equation can be found in [1].

Some comments on the influence of the regularization in (6.1) are necessary. The
solutions of this modified PDE can be hoped to agree with results from the thin-
film equation everywhere that |h| � ε. The regularization is nonnegligible for |h| �
ε, where (6.1) effectively becomes a rescaled version of the n = 0 linear problem.
This can make accurate statements about the edge of the support and details of the
solutions at sign changes obtained from the numerical simulations open to question.
Indeed, the solutions in Figure 6.1(upper left) and (upper right) do become negative
(see also Figure 1.1), and interestingly the dipole solution appears to have only a
single sign change (m = 1) (a solution not present for the n → 0 limit). Furthermore,
for longer times (not shown), when the solution everywhere satisfies |h| � ε, the
evolution will be dominated by the regularization to yield a linear “draining” behavior
(see section 5.1 of [22]). To circumvent these difficulties, we use two measures that
are not sensitive to the regularization to establish the agreement of the simulations
with the analytic predictions given above: (i) the maximum of the solution, hmax(t) =
maxx |h(x, t)|, and (ii) the quantity x̄ =

∫
xh dx/

∫
h dx (see Figure 6.2). The slope of

hmax(t) on a log-log graph gives the decay exponent α; the position of the maximum,
xmax(t), would similarly yield the spreading exponent β.

While the special property of the n = 1 case, provided by the conservation law
(6.3), gives an analytic prediction for the value of α, this means that all similarity
solutions for n = 1 of the form (2.1) are first-kind and will have α = 1/3. Hence plots
of hmax(t) cannot be used to distinguish between different similarity solutions that
may coexist. Our numerical calculations for (2.3) suggest that at least two solutions
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Fig. 6.3. (left) Solution profiles for (6.1) with n = 0.1 starting from the m = 2 dipole profile
H(x); (right) the same profiles rescaled by xmax(t), hmax(t) (seven almost indistinguishable solid
curves) and compared with the compactly supported similarity solution (dots).
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Fig. 6.4. Log-log plots of hmax(t) versus τ = 1 + t for numerical solutions of (6.1) with
n = 0.1 and initial conditions given by self-similar profiles H(x). Comparisons are shown with the
expected decay rates (dashed lines) for the respective dipole similarity solutions: m = 0 (α ≈ 0.5497),
m = 2 (α ≈ 0.6473) (see Figure 6.3), m = 3a (α ≈ 0.6872), m = 3b (α ≈ 0.8001).

(m = 0 (positive), and m = 1 (single sign change)), and maybe more, exist at n = 1;
the stability of these solutions is still an open problem.

We now turn to numerical simulations for n �= 1, where hmax(t) can be used to
provide numerical evidence for the coexistence of multiple stable similarity solutions.

6.2. Coexistence of multiple stable dipole solutions. We consider numer-
ical simulations of (6.1) with n = 0.1 on a sufficiently large domain. For this value of
n we have predictions for the dipole similarity solutions (see Figure 5.2). We use the
compactly supported numerical solutions of (2.3) as the initial conditions for the simu-
lations of (1.1), h0(x) = H(x) for 0 ≤ x ≤ L, and h0 ≡ 0 for x > L, i.e., at t = 0, x = η
with τ = t+ 1. We carry out four such computations for evolutions starting from the
similarity profile for m = 0 (the unique nonnegative solution), m = 2 (the unique two-
sign-change solution), and the two similarity profiles with three sign changes (called
m = 3a and m = 3b in Figure 5.2). Figure 6.3 shows the evolution starting from the
m = 2 profile—the regularization appears to have negligible influence on the collapse
of the rescaled profiles onto the similarity profile. In fact, Figure 6.4 shows that in all
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four of the simulations, the evolution follows the predicted self-similar scalings found
from the dipole similarity solutions. The conclusion suggested by these simulations is
that all of these similarity solutions are observable in the solution dynamics of (1.1)
and are stable with respect to the perturbations introduced by the numerics and the
regularization.

The sense of their “stability” needs to be qualified slightly. The compactly sup-
ported solutions of the similarity solution problem (2.3) do not precisely satisfy (6.1)
on the entire domain due to lack of higher order smoothness at the moving interface.
In fact, the dynamics will include very slow-scale evolution towards one of the ana-
lytic similarity solutions H̄(η) defined on the entire half-line for very long times. This
drift is slightly visible in the plot for m = 0 in Figure 6.4 but has negligible influence
for the higher-order solutions, where the discontinuities at the moving interface are
slightly less pronounced. This behavior is generic for n = 0 and n small with the
regularization (6.1).

7. Discussion. The (L,α) pair for a dipole solution provides information on
both the decay rate of solutions (via (2.1)) and the speed of the interface, i.e., �′(t) ∼
βLτβ−1. The (L,α) parameter plane for n = 0, illustrated in Figure 4.7, indicates
the complexity associated with finding second-kind similarity solutions for (1.1). For
a given value of n, multiple second-kind similarity solutions can be constructed, and
there is no complete natural ordering for the solutions in terms of the number of
sign-changes that they possess. For example, when n = 0, somewhat surprisingly,
no dipole solutions with a single sign-change exist, while it is possible to find two
solutions that change sign three times. This is consistent with the absence of a theory
for higher-order problems analogous to the Sturm–Louiville theory, which yields a
well-ordered set of solutions for second-order problems.
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n + 3/2
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10.10.01

100

10

1

0.1

Fig. 7.1. (left) The decay exponent α for the first few dipole similarity solutions, calculated
from (5.14) over a wide range of n values. The positive (m = 0) solution exists on −3/2 < n < 2,
while the solutions with sign-changes exist on subsets of this interval. (right) A log-log plot of
numerically calculated values for the m = 0 solution (solid curve with dots), illustrating the approach
to α ∼ O([n + 3/2]−1) → ∞ (dashed curve) as n → −3/2+.

Figure 7.1 shows the n-dependence of the decay exponent for the dipole solutions
over a wider range of n. One of the most important features of the figure is that
as n → −3/2+ we lose existence of not only the sign-change solutions, but also the
nonnegative dipole solution. Previous studies of mass-conserving similarity solutions
and separable solutions, of which (6.2) and (6.4) are respectively representative, have
shown that the former is valid down to n = −4, while the latter is applicable as long
as n > 0. As the boundary conditions on the dipole solutions effectively combine
parts of both problems, it is expected that −4 < nc < 0, where nc indicates the value
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of n below which dipole solutions of the form (2.1) no longer exist; the work [11] has
shown that, for large enough negative n, finite time extinction dipole solutions can
be expected. The numerical simulations are extremely compelling in suggesting that
nc = −3/2 (see Figure 7.1(right)), although we do not have any analytical verification
of this hypothesis. The effect of the global conservation law for n = 1, (6.3), is also
clearly seen in Figure 7.1. The self-similar dipole solutions, by definition, satisfy
(6.3) and so have α-exponents which should all approach α = 1/3 as n → 1. The
small discrepancies are a consequence of errors introduced into the simulations by the
regularization (6.1).

We have shown, when n = 0, that there are critical values of α (see (3.4)) for which
first-kind similarity solutions exist featuring an infinite number of sign-changes. These
solutions necessarily have L = ∞, and the results (4.17) and (4.18) yield that for each
first-kind similarity solution there exists a compactly supported, second-kind solution
where |α− ᾱ| < δ for arbitrary δ; the size of the support L → ∞ as δ → 0. This can
lead to difficulties distinguishing sensitive details of the dynamics of solutions.
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Abstract. For the continuum and discrete elastic equations, we derive exact artificial boundary
conditions (ABCs), often referred to as transparent boundary conditions, that can be applied at a
planar interface below which there are no forces. Solution of the elasticity equations can then be
performed using this interface as an artificial boundary, often with greatly reduced computational
effort, but without loss of accuracy. A general solvability requirement is presented for the existence
of an artificial boundary operator for discrete systems (such as discrete elasticity) on an unbounded
(semi-infinite) domain. The solvability requirement is validated by introducing a sum-of-exponentials
ansatz for the solution below the artificial boundary. We also derive a new expression for the total
energy for the system, involving only the region above the artificial boundary. Numerical examples
are provided to confirm and illustrate the accuracy and effectiveness of the results.
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1. Introduction. Many of the boundary value problems arising in applied math-
ematics are formulated on unbounded domains. It is in general a nontrivial task to
solve such problems numerically [6], since the numerical solution naturally requires
boundary conditions at a finite depth in the body.

The main motivation of the present work comes from the numerical simulation of
strain fields in semi-infinite domains. For the strain equations, the use of a physical
boundary condition, such as the zero displacement field at a certain depth, has been
a common practice [21]. On the other hand, due to the long range of elastic interac-
tions, the zero boundary condition must be imposed at considerable depth in order
to accurately compute the strain field [4], which entails large computational cost.

The purpose of this paper is to derive exact artificial boundary conditions (ABCs)
such that the solution on the (bounded) computational domain coincides with the
exact solution on the unbounded domain. Such exact artificial boundary conditions
are oftentimes referred to as transparent boundary conditions (TBCs) [6].

There have been various works on ABCs for a wide range of problems. For exam-
ple, certain ABCs for the Poisson and Helmholtz equations on infinite domains are
investigated in [1] using domain decomposition and Fourier techniques. For general
elliptic problems, approximate ABCs and error estimates are performed within the
finite element framework in [3]. Boundary element methods for homogeneous elasto-
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static and elastodynamic cases, linear elastostatic problems, time dependent heat and
wave equations, and electromagnetic scattering problems are also treated in an exact
manner using the Dirichlet to Neumann boundary condition in [2, 7, 8, 9].

For the elasticity problem, several local and nonlocal artificial boundary condi-
tions are provided in terms of the finite element formulation in [12, 13, 14]. For a
discrete elastic strain model for an epitaxial thin film, ABCs were derived recently
by Russo and Smereka [20] using a formulation that is somewhat different from our
model.

In the present work, we perform an analysis for the equations of both continuum
and discrete elastic models. The discrete elastic equations correspond to an atomistic
strain model introduced in the recent work by Schindler et al. [21]. Although full
details are provided only for a discrete strain model, a general solvability requirement
is formulated, which results in the well-posedness or the solvability of the system in
an infinite domain. This work is a discrete analogue of the work by Hagstrom and
Keller [11]. The solvability requirement is then validated by analyzing the solution on
the exterior domain using a sum-of-exponentials ansatz. This framework, on the one
hand, leads us to derive the abstract ABC operator in the form of a Schur complement
operator and, on the other hand, guides the construction of the explicit ABC operator
for actual implementations. Thanks to the ABC operator, the force balance equation
that needs to be solved in the infinite domain can be posed as a reduced equation
on the bounded domain, whose solution has been shown to coincide with the exact
solution on the full (unbounded) domain. In addition, a new formula is derived for
the total elastic energy of the system, involving only the solution above the artificial
boundary. The latter is particularly important for practical applications such as thin
epitaxial film growth simulations.

The rest of the paper is structured as follows. In section 2, we introduce some
preliminaries and notation to ease the presentation. The ABCs, total energy formula,
and variational principle for continuum elasticity are derived in section 3. In section 4,
we briefly review the discrete elastic strain model and introduce the general solvability
requirement, present an abstract form of the ABC operator, and derive explicit ABCs
for a specific discrete strain model. The total energy formula and the variational
principle for the discrete strain model are also presented. Several illustrative numerical
results are provided in section 5. Conclusions are discussed in section 6. Some details
are saved for the appendix.

2. Preliminaries. Suppose that the domain Ω is a half-infinite body, e.g., Ω =
{(x, y, z) ∈ R3 : z < h(x, y)} for h : R2 �→ R being a bounded function. See Figure 2.1
for a schematic description. The interface Γ2 on which the artificial boundary will be
imposed is illustrated in Figure 2.1. For both the continuum and discrete problems,
the domain Ω is divided into a finite part Ω1 and a semi-infinite part (an exterior
domain) Ω2 = Ω\Ω1. The requirement on the choice of Ω2 is that its boundary Γ2

is planar and normal to the depth variable and that there are no external forces in
Ω2. For the boundary condition for both continuum and discrete elasticity equations,
we assume that the periodic conditions are imposed in x- and y-directions (lateral
directions) and that the Neumann condition (i.e., the variational principle with no
constraint at the boundary) is imposed on the top layer Γ1 unless explicitly stated
otherwise. Use of the Neumann condition is only for simplicity and to ensure that the
problem is well-posed; it does not influence the resulting ABCs.

We use boldface lower case letters for vectors in Rd with d = 2 or 3 and boldface
capital letters for symmetric tensors or square matrices. The differential operator ∂k
denotes the partial derivative with respect to the kth coordinate variable, i.e., ∂/∂xk,
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Ω
Ω

Ω

Γ

Γ

Γ1 1

2

1

2

Fig. 2.1. The domain decomposition: An artificial boundary Γ2 (the horizontal plane) divides
Ω into Ω1 and Ω2. Γ1 is the top boundary (surface) of Ω.

and the operator ∇· is the standard divergence operator defined through

∇· = (∂/∂x, ∂/∂y) · for d = 2,

∇· = (∂/∂x, ∂/∂y, ∂/∂z) · for d = 3.

The notation ∇ denotes the usual gradient operator for d = 2 and d = 3 given,
respectively, as

∇ =

(
∂/∂x
∂/∂y

)
, ∇ =

⎛
⎝ ∂/∂x

∂/∂y
∂/∂z

⎞
⎠ ,

and Δ is the Laplace operator ∇ · ∇.
For two vectors u and v, u · v is the dot product; for a vector v = (vk)k=1,...,d

and a tensor N = (Nkl)k,l=1,...,d, v · N =
∑d

k=1 vkNk�. The magnitude of a vector u
will be denoted by |u| = (u · u)1/2.

Although the letters i, j, k are used for indices, we shall also use ı to denote the
imaginary unit

√
−1, and the complex conjugate of a complex number υ shall be

denoted by υ. Also, for the matrix N, NH and NT denote the complex conjugate
transpose and the real transpose of N, respectively. Finally, we shall use χ to denote
the usual characteristic function that is defined as

χ(x) =

{
1 for x ∈ Ω1,
0 for x /∈ Ω1.

(2.1)

Some other notation will be introduced in each section as necessary.

3. The ABCs for continuum elasticity. In this section, we review the con-
tinuum elastic equations from an energetic viewpoint. We then derive the artificial
boundary (or ABC) operator A, as well as a new expression for the total energy and
a formulation of the force balance equations depending on only the displacement on
and above the interface Γ2 on which the artificial boundary condition is given.

3.1. Continuum elasticity. Continuum elasticity is formulated in terms of a
displacement field u = u(x) = y(x) − x between the equilibrium position x of a
material point and the elastically deformed position y(x) of that point. The strain
tensor S has components defined as Sk� = (∂ku� + ∂�uk)/2 in which uk are the
components of u.

The derivation of the linear elasticity equations can be made via a variational
principle for the total energy E in a domain Ω, namely,

δE = 0.(3.1)
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The total elastic energy E for the linear elasticity is given as follows:

E =

∫
Ω

Edx,(3.2)

where the integrand is the energy density

E =
1

2

∑
k,�

Sk�Tk� − u · f χ,(3.3)

f = (fk) is a body force, and T = (Tk�) is the stress tensor defined, for an isotropic
material, as

Tk� = λδk�
∑
i

Sii + 2τSk�.(3.4)

The parameters λ and τ are the Lamé constants. In the absence of external force on
the boundary Γ1, (3.1) reduces to the classical Navier equations of linear elasticity,
i.e.,

−∇ · T = fχ in Ω,(3.5)

n · T = 0 on Γ1,

where n is the outer unit normal vector.
For linear elasticity with cubic symmetry, the elastic energy density E is the

following:

E =
C11

2

∑
i

S2
ii + 2C44

∑
k �=�

S2
k� + C12

∑
k �=�

SkkS��,(3.6)

where C11, C44, and C12 are the cubic elastic moduli, i.e., the Voigt constants. The
linear elasticity equations with cubic symmetry are

−C11∂k∂kuk − C44

∑
l �=k

∂l∂luk(3.7)

− (C12 + C44)
∑
l �=k

∂k∂lul = fkχ in Ω

for k = 1, . . . , d. Note that the isotropic linear elasticity equations (3.5) can be
recovered from (3.7) by choosing the following Voigt constants:

(C11, C44, C12) = (λ + 2τ, τ, λ).(3.8)

For the study of the ABCs for continuum elasticity, we restrict our attention to
the isotropic linear elasticity, namely, (3.7) with the Voigt constants given in (3.8),
for simplicity. It is easily generalized to the anisotropic case.

3.2. Two dimensional case. In this section, we construct the artificial bound-
ary operator A for the two dimensional case. The main idea is to analytically solve
the force balance equation (3.7) on the exterior domain Ω2 by introducing a sum-of-
exponentials ansatz, which must be modified to include algebraic terms.
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We assume that the solution is periodic in the x-direction with 2π periodicity and
that the interface Γ2 is a line, i.e., Γ2 = {(x, y) ∈ R2 : y = 0}. We first look for a
modal solution u(x, y) for y < 0 as

u(x, y) = û(μ, y) eıμx(3.9)

= û(μ) eβy eıμx =

(
û(μ)
v̂(μ)

)
eβy eıμx.

Since u in (3.9) is the solution to (3.7), for each μ, û(μ) should satisfy the following
linear system:

M(μ, β)û(μ) = 0,

where û(μ) = (û(μ), v̂(μ))T and

M(μ, β) =

(
−(λ + 2τ)μ2 + τβ2 ıμ(λ + τ)β

ıμ(λ + τ)β −τμ2 + (λ + 2τ)β2

)
.

A nontrivial solution can be attained only if

detM(μ, β) = τ(λ + 2τ)(β2 − μ2)2 = 0,(3.10)

which implies that β = ±|μ|. Since the solution u should decay as y → −∞, then
β = |μ| is the proper choice. Note that for μ = 0, the only solution is β = 0, which
corresponds to a trivial solution, the constant displacement field.

We now compute the zero eigenvector for M(μ, |μ|). It is easy to see that the
matrix M(μ, |μ|) has a zero eigenvector given by q1 = (ı, μ/|μ|)T and a generalized
eigenvector q2 = (0,−c/μ)T satisfying M(μ)q1 = 0 and M(μ)q2 = −(λ + 3τ)|μ|q1

with c = (λ + 3τ)/(λ + τ), from which we obtain the general solution to the equation
(3.7) as follows:

û(μ, y) = ((aμ + bμy)q1 + bμq2) eıμx+|μ|y,(3.11)

where

aμ = −û(μ, 0)ı and bμ = −c−1(μv̂0(μ, 0) + ı|μ|û(μ, 0)).(3.12)

From this, we obtain the following simple but important lemma.
Lemma 3.1. A solution to (3.7) on the domain Ω2 with a given boundary value

u0(x) on Γ2 is given by the following:

u(x, y) =
1

2π

∫ 2π

0

G(x− x′, y)u0(x
′)dx′,(3.13)

where G is defined, using c = (λ + 3τ)/(λ + τ), as

G(x− x′, y) =

∞∑
μ=−∞

Gμ(x− x′, y),

Gμ(x− x′, y) =

⎛
⎝ 1 + |μ|

c y −μ
c ıy

−μ
c ıy 1 − |μ|

c y

⎞
⎠ e|μ|y eıμ(x−x′).

This analytic expression for the solution u on the domain Ω2 is used to derive the
ABC operator.
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3.3. The ABC operator for the two dimensional case. In this section,
using Lemma 3.1, we construct the ABC operator. First, consider the expression of
the solution u in the exterior domain Ω2 given in (3.13). By taking the derivative of
u with respect to y, one finds that

∂y(u(x, y)) =
1

2π

∫ 2π

0

∂y(Gμ(x− x′, y))u0(x
′) dx′.(3.14)

Note that the normal component of the stress tensor n · T is given by

n · T =

(
τ(∂yu + ∂xv)

(λ + 2τ)∂yv + λ∂xu

)
,(3.15)

and observe that it can be written in terms of u on the interface Γ2 as follows:

n · T =

∞∑
μ=−∞

1

2π

∫ 2π

0

Aμu0(x
′) dx′,(3.16)

where

Aμ =
2

λ + 3τ

(
τ(λ + 2τ)|μ| τ2ıμ

−τ2ıμ τ(λ + 2τ)|μ|

)
eıμ(x−x′).(3.17)

Define the artificial boundary operator A by the following:

Au0(x) =

∞∑
μ=−∞

1

2π

∫ 2π

0

Aμu0(x
′) dx′.(3.18)

It is interesting to note that the operator A is real and symmetric since Aμ(x−x′) =
AH

μ (x′ − x).

3.4. The ABC operator for the three dimensional case. We now extend
the previous analysis to the three dimensional case by constructing the solution of the
homogeneous linear elasticity problem in a semi-infinite domain, Ω2. Assume that
Γ2 is the plane z = 0. As in the two dimensional case, assume that in the lateral
direction, the solution is periodic with 2π periodicity for both variables, x and y. The
following result is the analogue to Lemma 3.1.

Lemma 3.2. A solution to (3.7) with given boundary data u0(x, y) on the interface
Γ2 is given by the following:

u(x, y, z) =
1

4π2

∫ 2π

0

∫ 2π

0

G(x− x′, y − y′, z)u0(x
′, y′) dx′dy′,(3.19)

where G is defined, using c = (λ + 3τ)/(λ + τ) and d = |(μ, ν)|, as

G(x− x′, y − y′, z)

=
∞∑

μ,ν=−∞

⎛
⎜⎜⎜⎝

1 + μ2

cd
z μν

cd
z −μ

c
ız

μν
cd

z 1 + ν2

cd
z − ν

c
ız

−μ
c
ız − ν

c
ız 1 − d

c
z

⎞
⎟⎟⎟⎠edzeı(μ,ν)·(x−x′,y−y′).
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For the definition of the artificial boundary operator A, note that the normal
component of the stress tensor T is

n · T =

⎛
⎜⎜⎝

μ(∂zu + ∂xw)

μ(∂zv + ∂yw)

(λ + 2τ)∂zw + λ(∂xu + ∂yv)

⎞
⎟⎟⎠ ,(3.20)

where n is the outer unit normal vector to the interface Γ2. It is easy to see that

n · T =

∞∑
μ,ν=−∞

1

4π2

∫ 2π

0

∫ 2π

0

Aμ,νu0(x
′, y′) dx′dy′,(3.21)

where

Aμ,ν =

⎛
⎜⎜⎜⎝

τ
(

μ2

cd
+ d

)
τ μν

cd
2τ2

λ+3τ
ıμ

τ μν
cd

τ
(

ν2

cd
+ d

)
2τ2

λ+3τ
ıν

− 2τ2

λ+3τ
ıμ − 2τ2

λ+3τ
ıν (λ + 2τ)

(
− d

c
+ d

)

⎞
⎟⎟⎟⎠eı(μ,ν)·(x−x′,y−y′).

Define the artificial boundary operator A as follows:

Au0(x, y) =

∞∑
μ,ν=−∞

1

4π2

∫ 2π

0

∫ 2π

0

Aμ,νu0(x
′, y′) dx′dy′.(3.22)

Similarly to the two dimensional case, the operator A is symmetric.

3.5. The total energy and force balance equation. In this section, we find
an alternative total energy formula for (3.2) and also a force balance equation for
(3.5) that involve only the domain Ω1 and Γ2, using the ABC operator constructed
in the previous sections. For convenience, denote u0 to be the displacement field of
u at Γ2.

Write the total elastic energy in Ω in terms of the total energy E1 in Ω1 and the
total energy E2 in Ω2 as follows:

Etotal =
1

2

∫
Ω

S : T dx −
∫

Ω

u · fχdx

=
1

2

{∫
Ω1

S : T dx −
∫

Ω1

u · f dx
}

+
1

2

∫
Ω2

S : T dx

= E1 + E2.

Let L denote the linear elasticity operator:

Lu = τΔu + (λ + τ)∇(∇ · u).

Note that E2 can be written in terms of the boundary data u0(x) on the interface Γ2

as follows:

E2 =
1

2

∫
Ω2

S : T dx

= −1

2

∫
Ω2

u · Lu dx +
1

2

∫
Γ2

u0 · (n · T) dΓ

=
1

2

∫
Γ2

u0 · Au0 dΓ,
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where we use the fact that Lu = 0 in the domain Ω2 and the definition (3.22) of the
artificial boundary operator A.

Consequently, the total energy Etotal in the domain Ω is

Etotal = E1 + E2(3.23)

=
1

2

∫
Ω1

S : T dx −
∫

Ω1

u · f +
1

2

∫
Γ2

u0 · Au0 dΓ.

This is the new formula for the total energy (3.2) that involves only the domain Ω1

and Γ2. Now apply integration by parts to the first term in (3.23) and obtain

Etotal = −1

2

∫
Ω1

u · Lu dx −
∫

Ω1

u · f dx(3.24)

+
1

2

∫
Γ2

u0 · Au0 − u0 · (n · T) dΓ.

Application of the variational principle for the new expression of the total energy
(3.24) results in the following force balance equations, which use the ABC operator
A in the ABC on Γ2:

−Lu = f in Ω1,

n · T = Au0 on Γ2.

4. The ABCs for discrete elasticity. In this section, we study the analogue
of the ABCs for discrete elasticity. In particular, we discuss the solvability (well-
posedness) of the discrete strain model in an unbounded or semi-infinite domain.

It is not trivial to show directly the well-posedness of the discrete strain model in
an infinite domain. As discussed in Hagstrom and Keller [11], the well-posedness can
be derived from a so-called solvability requirement, which is a solvability condition for
the exterior domain problem for which the force term is zero. Generally, the validation
of this solvability requirement is done by introducing a sum-of-exponentials ansatz
for the solution below the artificial boundary. It is difficult, however, to validate this
condition fully in an analytic manner [11] except for simple problems such as the
Laplace equation. Numerical validation is partially used, since an analytic validation
could not be made fully for the current problem of interest.

The importance of the framework developed in this section is that it identifies
how the solvability requirement can be used to show well-posedness of the discrete
equations posed on the unbounded domain, and also clarifies why an appropriate
use of the ABC operator leads to the exact boundary condition. To the best of our
knowledge, it is the first attempt to formulate a general discussion on the solvability
of discrete systems in an infinite domain in terms of solvability requirements. Fur-
thermore, this formal discussion leads to an understanding of the ABC operator as
a Schur complement operator and reveals various properties of the resulting reduced
system on the finite domain. These properties of the reduced system are important
when one attempts to develop an appropriate solver for the reduced system (see the
concluding remark in section 6).

Throughout this section, we assume that the lattice of the discrete strain model
is connected [19]. We begin this section by briefly reviewing the discrete elastic model
introduced in [21].
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4.1. Discrete elasticity. To describe the strain energy at each atom, i =
(i, j, k), introduce the translation operators, T±

k , and the discrete difference opera-
tors, D±

k , D0
k, defined as follows:

T±
k f(i) = f(i ± ek),

D+
k f(i) =

(T+
k − 1)f(i)

h
,

D−
k f(i) =

(1 − T−
k )f(i)

h
,

D0
kf(i) =

(T+
k − T−

k )f(i)

2h
,

where h is the lattice constant and ek is the vector in the kth direction for k = 1, 2, 3
with ‖ek‖ = h. Throughout this paper, we assume the lattice constant h = 1 for
simplicity. We use i for the depth-like index, with −∞ < i ≤ n. Here n is the
maximum height of the material. An ABC is sought at i = 0, assuming that there is
no force for i < 0.

Let u(i) = (uk(i))k=1,...,d be the displacement at the discrete point i relative to
an equilibrium lattice. The discrete strain components defined below ((4.1) and (4.2))
can be used to describe the discrete elastic energy. For k, � = 1, 2, 3 and p, q = ±,

S±
k�(u(i)) = D±

� uk(i),(4.1)

Spq
k� (u(i)) =

1

2
(Dq

�uk(i) + Dp
ku�(i)).(4.2)

The discrete energy density at a point i is then given by

E(i)(u,u) =
∑
k,p

αp
k(S

p
kk(u))2 +

∑
k �=�,p,q

{
2βpq

k� (S
pq
k� (u))2 + γpq

k�S
p
kk(u)Sq

��(u)
}
.

The subsequent discussion uses three constant displacement fields, denoted by 1k

for k = 1, 2, 3, for a constant displacement in the kth component. For convenience,
denote 1 for any constant vector. With some abuse of notation, it is used to denote
a constant vector formed by taking the linear combinations of 1k and 1� with k 
= �.

The elastic constants should be chosen to ensure positivity of the (total) energy
density, as discussed, for example, in [17]. A sufficient condition for the positivity is

min
k,p

αp
k ≥ max

pq
γpq + c(4.3)

for some positive constant c > 0. One consequence of positivity is that rigid body
motions are the only local displacements that entail no internal energy.

A discrete version of the elastic energy density E at a lattice point i = (i, j, k) is
then given as follows:

Etotal = Etotal(U,U) = Ẽ(U,U) − (F,U),(4.4)

where

Ẽ(U,U) =
∑
i

E(i)(u,u),(4.5)

U = (Un, . . . , U1, U0, U−1, . . . )
T ,(4.6)

F = (Fn, . . . , F1, F0, F−1, . . . )
T ,
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where Ui and Fi are the vectors of size N consisting of displacement components u
and force components f at depth i. The total energy formula (4.4) is modified in
section 5.3 to include effects of lattice mismatch. Under traction-free (i.e., Neumann)
boundary conditions on the surface Γ1, the external force vector F must be orthogonal
to any constant vector field. As shown in (5.6) in section 5.3, this is also true for the
effective force due to lattice mismatch in a thin film. Now, due to the boundary
condition, the periodic condition in the lateral direction, and Neumann condition on
the surface Γ1, and from the assumption that the lattice is connected, it follows that

Ẽ(U,U) = 0 ⇐⇒ U = 1;(4.7)

see also Martinsson and Babuska [19] for further discussion on connectivity.
As described in detail in section 4.5, the total energy Etotal has the following

alternative form:

Etotal = Etotal(U,U) =
1

2
(HU,U) − (F,U),(4.8)

where

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

· · · · · · 0 0 0 0 · · ·

· · · Ai+1i+1 Ai+1i 0
. . . 0

...
... Aii+1 Aii Aii−1 0

. . .
...

... 0 Ai−1i Ai−1i−1 Ai−1i−2 0
...

... · · · 0
. . .

. . .
. . .

...

0 · · · · · · · · · . . .
. . .

...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(4.9)

The discrete strain equations are derived from the following optimization problem:

min Etotal = min

(
1

2
(HU,U) − (F,U)

)
.(4.10)

Note that the off-diagonal block matrices satisfy Ai+1i = AT
ii+1 for all i ≤ n. Further-

more, since the material is homogeneous below the artificial boundary, Aii+1 = A−10

and Aii = A00 are independent of i for all i < 0. Both A00 and A−10 are invertible.
In particular, the proof that A−10 is invertible is included in the appendix.

Denote

U =

⎛
⎝ U+

U0

U−

⎞
⎠ and F =

⎛
⎝ F+

F0

0

⎞
⎠ ,(4.11)

in which U− and U+ are vectors consisting of all Ui for i < 0 and i > 0, respectively.
The vector F+ of forces is defined similarly. Correspondingly, write H as follows:

H =

⎛
⎝ AII AT

I0 0
AI0 A00 BT

0 B M

⎞
⎠ ,(4.12)

where AII acts on U+, A00 acts on U0, and M acts on U−.
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An analysis in section 4.2 shows that under an appropriate solvability condition,
the optimization problem (4.10) leads to the force balance equation

HU = F.(4.13)

Moreover, the analysis shows that (4.13) and the optimization problem (4.10) are
well-posed.

Since the displacement u decays as i → −∞, one might expect that the space
�2 would be the appropriate admissible solution space for the optimization problem
(4.10). Coercivity of the operator H fails, however, for the space �2, so that it is diffi-
cult to show the solvability of the problem (4.10) directly. The solvability requirement
of the next section remedies this lack of coercivity.

4.2. The solvability requirement and the general form of the ABC op-
erator. In the region i < 0, i.e., below the artificial boundary, the solution of the
problem (4.10) satisfies

A−10U0 + A00U−1 + AT
−10U−2 = 0,(4.14)

A−10U−1 + A00U−2 + AT
−10U−3 = 0,

A−10U−2 + A00U−3 + AT
−10U−4 = 0,

... .

The solvability condition is phrased in terms of solutions for (4.14) that are decaying
or constant.

Condition 4.1. There exists an invertible matrix C such that for any U0 ∈ RN,
the vector (U0, U−1, U−2, . . . ) with

Ui = CiU0 ∀i ≤ 0(4.15)

(where C0 is the identity matrix) satisfies (4.14). In addition,

CiU0 = U0 ∀i ≤ 0, ∀U0 ∈ span{1k : k = 1, 2, 3} and(4.16)

CiU0 → 0 as i → −∞ ∀U0 ∈ span{1k : k = 1, 2, 3}⊥.(4.17)

Note that the constant displacement field is a trivial solution to (4.14) since it is the
discretization of the differential operator L, which is reflected in the statement (4.16).
The second statement (4.17) says that if U0 is orthogonal to all constant fields, then
the solution decays to 0 at infinity.

Condition 4.1, which is validated in section 4.3, has a number of important con-
sequences, as described in the following subsections.

4.2.1. On the general ABC operator A. The general form of the ABC
operator, under Condition 4.1, is described in this subsection.

Define the following two special vector spaces:

Θ =

{
V = (V−1, V−2, . . . ) : inf

ξ∈R

‖V + ξ1‖�2 < ∞ Ψ(Vi) = 0 ∀i < −1

}
,

where

Ψ(Vi) = A−10Vi+1 + A00Vi + AT
−10Vi−1,(4.18)
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and

Θ∗ = {G = (G−1, 0, . . . , 0, . . . ) : G−1 ∈ RN}.(4.19)

It is clear that both spaces Θ and Θ∗ are finite dimensional. In particular, due to
the constraints (4.18), the space Θ is completely determined by the first two vectors
V−1 and V−2. Due to Condition 4.1, the dimension of the space Θ is at least N; in fact,
as shown below, its dimension is exactly N. By defining ‖V‖Θ =

∑
k=−1,−2 ‖Vk‖�2

as a norm on Θ, the space Θ is a Banach space, as is Θ∗. The following lemma is
simple but important for the subsequent discussion (the proof can be found in the
appendix).

Lemma 4.1. Under Condition 4.1, the matrix M, given as

M =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

A00 AT
−10 0 0 0 · · ·

A−10 A00 AT
−10 0 0

...

0 A−10 A00 AT
−10 0

...
... 0 A−10 A00 · · ·

...
... 0

. . .
. . .

. . .
...

... · · · · · ·
. . .

. . .
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,(4.20)

is an isomorphic mapping from Θ to Θ∗.

Since M is isomorphic, the following equation is solvable:

MU− = G,(4.21)

where

U− = (U−1, U−2, U−3, . . . )
T

and G = (−A−10U0, 0, 0, . . . )
T .

In particular, U− = M−1G. Multiplying both sides of this equation by B = (AT
−10, 0, . . . , 0)

yields the relation

AT
−10U−1 = −BM−1BTU0.(4.22)

The general form of the ABC operator A is defined by

A = BM−1BT .(4.23)

Note that the operator A relates Ui−1 and Ui for i ≤ 0. Since U− belongs to the
space Θ, Ui should decay as i → −∞, unless U0 has a nonzero component that is a
constant vector.

4.2.2. The total energy formula for the system above the artificial
boundary. This section introduces the new energy formula that is a by-product
of the ABC operator.

Since A−10Ui+1 + A00Ui + AT
−10Ui−1 = 0 and Fi = 0 for i < 0, the total energy
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Etotal from (4.8) can be written as follows:

Etotal =
∑
i≥0

1

2
(Ui, (Aii+1Ui+1 + AiiUi + Aii−1Ui−1)) − (Ui, Fi)

=
1

2

(
U0,

(
A01U1 + A00U0 + AT

−10U−1

))
− (U0, F0)

+
∑
i>0

1

2
(Ui, (Aii+1Ui+1 + AiiUi + Aii−1Ui−1)) − (Ui, Fi) .

This formula, however, depends on the displacement field U−1 below the artificial
boundary. To remove this dependence and obtain an energy formula (and a reduced
force balance equation) that involves displacement fields only above the artificial
boundary, use the operator A to obtain the following alternative formula:

Etotal =
1

2
(U0, (A01U1 + (A00 −A)U0)) − (U0, F0)(4.24)

+
∑
i>0

1

2
(Ui, (Aii−1Ui−1 + AiiUi + Aii+1Ui+1)) − (Ui, Fi) .

Note that the energy formula given in (4.24) depends only on the displacement fields
U0 and U+ above the artificial boundary, but it includes the energy in the strain field
below the artificial boundary. In addition, optimization of this formula for the energy
yields the reduced equation on the upper domain with the ABC using the operator
A, as shown in the next subsection.

4.2.3. The force balance equation. Define the following admissible solution
space for the optimization problem (4.10):

V =

{
V = (Vn, . . . , V0, V−1, . . . ) : inf

ξ∈R

‖V + ξ1‖�2 < ∞, Ψ(Vi) = 0 ∀i < 0

}
.

Thanks to Condition 4.1, the force balance equation that results from minimizing the
total energy in its reduced form (4.24) is

Ĥ

(
U+

U0

)
=

(
AII AT

I0

AI0 A00 −A

)(
U+

U0

)
=

(
F+

F0

)
.(4.25)

The reduced form (4.25) of the force balance equation, as well as its properties, is
the main result of this work. Note that (4.25) involves the Schur complement of the
matrix A00 in the original force balance equation (4.13).

The properties of the matrices A and Ĥ are summarized in the following lemma,
whose proof is provided in the appendix.

Lemma 4.2. The matrix A is symmetric and positive definite, the matrix Ĥ is
symmetric and nonnegative definite, and the null space of Ĥ consists of the constant
displacement fields span{1k : k = 1, 2, 3}.

The analysis in this section is performed for the Neumann boundary condition
at the top boundary Γ1, by which we mean that the variational principle (4.10)
involves no constraint on the solution at Γ1. In this case, it is most important to
note that (4.25) is solvable since (F+, F0) belongs to the range of Ĥ; namely, (F+, F0)

is orthogonal to the constant vector fields, which is exactly the null space of Ĥ as
noted in Lemma 4.2. In addition, the solution to (4.25) is determined up to a constant
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vector. However, the additional contribution of the constant vector does not affect the
total energy evaluation since the total energy is invariant with respect to the constant
displacement. Furthermore, use of the Neumann condition is only to simplify the
analysis. It does not affect the ABC operator A, which can be used for any choice of
boundary conditions on the top.

In passing to the next section, we summarize the most important properties of
the ABC operator A, which guide its construction.
P1 The operator A is a symmetric and positive definite matrix mapping RN to RN .
P2 The relation between U−1 and U0 is that U−1 = −(AT

−10)
−1AU0 = CU0.

4.3. Validation of the solvability requirement, Condition 4.1. In this
section, Condition 4.1 is derived by introducing a sum-of-exponentials ansatz. Much
of the derivation, including the most crucial steps, is analytic, but some steps are
based on numerical evidence. In related work on the Laplace equation, Hagstrom and
Keller [11] performed a completely analytic validation of the analogue of Condition
4.1.

The following presentation is mostly based on the thesis of Lee [18] and is similar
to the work by Russo and Smereka [20], which used the palindromic eigenvalue prob-
lem [15, 16]. Although these works did not state a general solvability condition like
Condition 4.1, their analysis is equivalent to a validation of this condition. Through-
out this section, denote F and F−1 to be the discrete forward and backward Fourier
transforms, respectively.

4.3.1. Two dimensional case. The force balance equations at a point (xm, yi) =
(m, i) are

−(Lu)1 = −C11D
+
x D

−
x u− C44D

+
y D

−
y u− (C12 + C44)D

0
yD

0
xv = 0,(4.26)

−(Lu)2 = −C44D
+
x D

−
x v − C11D

+
y D

−
y v − (C12 + C44)D

0
xD

0
yu = 0.

Since the solution is periodic in the x-direction, we introduce the following ansatz:

u(m, i) =
1

Nx

Nx−1∑
μ=0

û(μ, i) e2πıμm/Nx(4.27)

=
1

Nx

Nx−1∑
μ=0

û(μ)γi e2πıμm/Nx ,

where Nx is such that u(m, i) = u(Nx + m, i) for all m.
From (4.27), the force balance equations (4.26) become

P (μ, γ)û(μ, i) =
(
γ2Â−10(μ) + γÂ00(μ) + ÂH

−10(μ)
)
û(μ, i) = 0(4.28)

for μ = 0, 1, . . . , Nx − 1, where

Â−10(μ) =

(
−C44 −ıC12+C44

2
sin(2πμ/Nx)

−ıC12+C44
2

sin(2πμ/Nx) −C11

)
,

Â00(μ) =

(
2C44 + 2C11(1 − cos(2πμ/Nx)) 0

0 2C11 + 2C44(1 − cos(2πμ/Nx))

)
,

and ÂH
−10 is the complex transpose of the matrix Â−10.
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Nontrivial solutions for this system require that

detP (μ, γ) = 0.(4.29)

This is the well-known palindromic eigenvalue problem [15, 16, 20]. Note that for
μ = 0, which corresponds to the constant vector in the Fourier expansion of the
solution ansatz (4.27), the only solution to (4.29) is γ = 1, which corresponds to the
constant solution to (4.14).

For μ 
= 0, (4.29) has four solutions that occur in pairs (γk, γ
−1
k ) for k = 1, 2,

since

det(P (μ, γ)) = 0 ⇐⇒ det(P (μ, γ)) = 0(4.30)

and

P (μ, γ) = γ2P (μ, γ −1).

We then pick a pair of solutions (γ1, γ2) with |γk| > 1 for k = 1, 2, which are the
relevant choices since the corresponding solution is decaying as i → −∞ for μ 
= 0, and
we also pick two linearly independent eigenvectors q1(μ) and q2(μ) that correspond
to γ1 and γ2, respectively [10, 20]; i.e.,

P (μ, γ1)q1(μ) = P (μ, γ2)q2(μ) = 0.(4.31)

It is possible that |γk| = 1 or that γ1 = γ2 and there is a generalized eigenvector,
but these possibilities have not been seen numerically. Indeed, the occurrence of a
generalized eigenvector in the continuous case (cf. section 3.2) does not seem to have
consequences for the discrete case.

We then arrive at the general solution for û(μ, i) given as follows:

û(μ, i) = q1(μ)γi
1 + q2(μ)γi

2.(4.32)

For the zero mode μ = 0, two linearly independent vectors qk(0) are q1 = (1, 0)T

and q2 = (0, 1)T . Note that omitting this mode would make 0 an eigenvalue for the
operator A, but that A should be positive definite as indicated in property P1 in
subsection 4.2.3.

4.3.2. Three dimensional case. As in the two dimensional case, consider the
force balance equations at a point (xm, yn, zi) = (m,n, i):

−(Lu)1 = −C11D
+
x D

−
x u− C44(D

+
y D

−
y u + D+

z D
−
z u)(4.33)

−(C12 + C44)(D
0
yD

0
xv + D0

zD
0
xw)

= 0,

−(Lu)2 = −C11D
+
y D

−
y v − C44(D

+
x D

−
x v + D+

z D
−
z v)

−(C12 + C44)(D
0
yD

0
xu + D0

zD
0
yw)

= 0,

−(Lu)3 = −C11D
+
z D

−
z w − C44(D

+
x D

−
x w + D+

y D
−
y w)

−(C12 + C44)(D
0
zD

0
xu + D0

zD
0
yv)

= 0.
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Introduce the solution ansatz as follows:

u(m,n, i) =
1

NxNy

Nx−1∑
μ=0

Ny−1∑
ν=0

û(μ, ν, i) e(2πıμm)/Nx+(2πıνn)/Ny(4.34)

=
1

NxNy

Nx−1∑
μ=0

Ny−1∑
ν=0

û(μ, ν)γi e(2πıμm)/Nx+(2πıνn)/Ny ,

where Nx and Ny are the periods in x and y for u. From ansatz (4.34), the force
balance equations become

P (μ, ν, γ)û(μ, ν, i)(4.35)

=
(
γ2Â−10(μ, ν) + γÂ00(μ, ν) + ÂH

−10(μ, ν)
)
û(μ, ν, i) = 0

for each μ = 0, 1, . . . , Nx and ν = 0, 1, . . . , Ny, where Â−10 = Â−10(μ, ν) and Â00 =

Â00(μ, ν) are given by

Â−10 =

⎛
⎝ −C44 0 −s1

0 −C44 −s2

−s1 −s2 −C11

⎞
⎠,

Â00 =

⎛
⎝ a11 a12 0

a21 a22 0
0 0 a33

⎞
⎠,

in which

s1 = ı
C12 + C44

2
sin(2πμ/Nx),

s2 = ı
C12 + C44

2
sin(2πν/Ny)

and

a11 = 2C11(1 − cos(2πμ/Nx)) + 2C44(1 − cos(2πν/Ny)) + 2C44,

a12 = −(C12 + C44) sin(2πμ/Nx) sin(2πν/Ny),

a21 = a12,

a22 = 2C44(1 − cos(2πμ/Nx)) + 2C11(1 − cos(2πν/Ny)) + 2C44,

a33 = 2C44(1 − cos(2πμ/Nx)) + 2C44(1 − cos(2πν/Ny)) + 2C11.

A nontrivial solution can be found only if

detP (μ, ν, γ) = 0.(4.36)

As in the two dimensional case, for μ = ν = 0, the only solution is γ = 1, and for
(μ, ν) 
= (0, 0), there are three pairs of eigenvalues, namely (γk, γ

−1
k ) with |γk| > 1

for k = 1, 2, 3, and corresponding eigenvectors qk(μ, ν) that are mutually linearly
independent, from which the general solution can be given as follows:

û(μ, ν, i) = q1(μ, ν)γi
1 + q2(μ, ν)γi

2 + q3(μ, ν)γi
3.(4.37)
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Note that if the three values γk are distinct, then it can be seen directly that there exist
three linearly independent eigenvectors qk(μ, ν) corresponding to the three eigenvalues
γk (see the appendix). Often in our computation, as seen in the work by Russo and
Smereka [20], it happens that γk = γ� with k 
= �. When this happens, it is difficult to
establish analytically the existence of linearly independent eigenvectors; this is always
found to be the case, however, in the numerical computations.

4.4. On the discrete ABC operator A and Condition 4.1. In this section,
the ABC operator A is constructed for the three dimensional case only, since the
two dimensional construction is similar but simpler. We first construct the operator
C that relates Ui−1 and Ui by Ui−1 = CUi, as indicated in P2. We then construct
A = −(AT

−10)C. Finally, we discuss the validation of Condition 4.1.

Note that the Fourier transforms Â−10 and Â00 of A−10 and A00 consist of 3× 3

block matrices Â−10(μ, ν) and Â00(μ, ν). Since the vectors qi(μ, ν) from (4.37) are
mutually independent, define the following mutually orthonormal vectors:

q̃i = ci(qi′ × qi′′),

in which each triple (i, i′, i′′) is a rearrangement of (1, 2, 3) and the constants ci’s are
chosen so that

q̃i · qj = δij for i, j = 1, 2, 3.(4.38)

It follows that

û(μ, ν, k − 1) = C(μ, ν)û(μ, ν, k),(4.39)

in which

C(μ, ν) =

⎛
⎝ q̃T

1

q̃T
2

q̃T
3

⎞
⎠

−1 ⎛
⎝ γ−1

1 q̃T
1

γ−1
2 q̃T

2

γ−1
3 q̃T

3

⎞
⎠ .(4.40)

The matrix C is

C = F−1CF ,(4.41)

in which

C = diag(C(μ, ν))μ=0,...,Nx−1,ν=0,...,Ny−1.(4.42)

To construct the ABC operator A, multiply −ÂH
−10(μ, ν) by C(μ, ν). Note that

A = F−1AF , where A is a diagonal block matrix consisting of the submatrices
A(μ, ν) = −ÂH

−10(μ, ν)C(μ, ν) for μ = 0, . . . , Nx − 1 and ν = 0, . . . , Ny − 1, namely,

A = diag(A(μ, ν))μ=0,...,Nx−1, ν=0,...,Ny−1,(4.43)

and also for both two and three dimensional cases, the operator A = F−1AF is
symmetric and positive definite. It is quite difficult to see this directly from the
Fourier analysis discussed in this section, but it follows from the variational principle
based on the general form of the ABC operator as discussed in section 4.2.
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Finally, Condition 4.1 can be validated from the construction of the matrix C.
For any data U0 ∈ RN which consists of displacement u on the interface i = 0, the
vectors Ui for all i < 0 can be written as follows:

Ui = F−1CiFU0 = CiU0.(4.44)

The matrix C is invertible. It satisfies (4.17), because |γ| > 1 for (μ, ν) 
= 0, while for
(μ, ν) = 0, γ = 1 and the corresponding term in (4.34) has no dependence on m and
n, so that (4.16) is also satisfied. This completes the validation of Condition 4.1.

4.5. Total energy. In this section we derive alternative general energy formulas
that involve a product of stress and strain. Note that in the section 4.2, the energy
and the variational principle are written in terms of displacement times force. For
some applications, such as a heteroepitaxial thin film, as described in section 5.3, it
is much more convenient to write the energy in the form of stress times strain, as in
(4.3).

The analysis of this section relies on the following “summation by parts” formulas:

∑
j≤0

(D+f)jgj = f1g0 −
∑
j≤0

fj(D
−g)j ,(4.45)

∑
j≤0

(D−f)jgj = f0g1 −
∑
j≤0

fj(D
+g)j ,(4.46)

∑
j≤0

(D0f)jgj =
1

2
(f1g0 + f0g1) −

∑
j≤0

fj(D
0g)j ,(4.47)

where D+, D−, and D0 are the forward, backward, and centered finite difference
operators, respectively. The total energy can be decomposed into two parts:

Etotal = Ei≥0 + Ei≤−1,(4.48)

where Ei≥0 =
∑

i≥0 Ei and Ei≤−1 =
∑

i≤−1 Ei, and i = 0 is the layer in which the
ABCs are imposed. Use (4.45)–(4.47) to derive the following relations, in two and
three space dimensions, respectively:

Ei≤−1 =
∑
i1

αv0(D
+
y v)−1 + βu0(D

+
y u)−1(4.49)

+
∑
i1

αv−1(D
−
y v)0 + βu−1(D

−
y u)0

+
∑
i1

[
β(u0(D

0
xv)−1 + u−1(D

0
xv)0)

+ γ
(
v0(D

0
xu)−1 + v−1(D

0
xu)0

)]
−

∑
i1,i≤−1

1

2
ui · (Lui) − ui · fi

and



EXACT ARTIFICIAL BOUNDARY CONDITIONS 1767

Ei≤−1 =
∑
i1,i2

αw0(D
+
z w)−1 + β(u0(D

+
z u)−1 + v0(D

+
z v)−1)(4.50)

+
∑
i1,i2

αw−1(D
−
z w)0 + β(u−1(D

−
z u)0 + v−1(D

−
z v)0)

+
∑
i1,i2

[
β
(
v0(D

0
yw)−1 + v−1(D

0
yw)0 + u0(D

0
xw)−1 + u−1(D

0
xw)0

)
+ γ

(
w0(D

0
yv)−1 + w−1(D

0
yv)0 + w−1(D

0
xu)0 + w0(D

0
xu)−1

)]
−

∑
i1,i2,i≤−1

1

2
ui · (Lui) − ui · fi,

in which L is the operator introduced in (4.26) and (4.33) and fi is the force. In these
formulas, the subscript refers to the depth-like index i.

Due to the assumption that fi = 0 for i ≤ −1, the last terms are zero in both the
two and three dimensional cases. This leads to the following formulas:

Etotal = Ei≥0 +
∑
i1

αv0(D
+
y v)−1 + βu0(D

+
y u)−1(4.51)

+
∑
i1

αv−1(D
−
y v)0 + βu−1(D

−
y u)0

+
∑
i1

[
β(u0(D

0
xv)−1 + u−1(D

0
xv)0)

+ γ
(
v0(D

0
xu)−1 + v−1(D

0
xu)0

)]
in two dimensions and

Etotal = Ei≥0 +
∑
i1,i2

αw0(D
+
z w)−1 + β(u0(D

+
z u)−1 + v0(D

+
z v)−1)(4.52)

+
∑
i1,i2

αw−1(D
−
z w)0 + β(u−1(D

−
z u)0 + v−1(D

−
z v)0)

+
∑
i1,i2

[
β
(
v0(D

0
yw)−1 + v−1(D

0
yw)0 + u0(D

0
xw)−1 + u−1(D

0
xw)0

)
+ γ

(
w0(D

0
yv)−1 + w−1(D

0
yv)0 + w−1(D

0
xu)0 + w0(D

0
xu)−1

)]
in three dimensions. In both (4.51) and (4.52), we replace U−1 by CU0 whenever u−1

appears.
If the ABCs are imposed on the layer i = 0 where there is no force, then the total

energy could be computed by the following new energy formulas that do not involve
U−1 or the operator C:

Etotal = Ei>0 +
∑
i1

αv1(D
+
y v)0 + βu1(D

+
y u)0(4.53)

+
∑
i1

αv0(D
−
y v)1 + βu0(D

−
y u)1

+
∑
i1

[
β(u1(D

0
xv)0 + u0(D

0
xv)1)

+ γ
(
v1(D

0
xu)0 + v0(D

0
xu)1

)]
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in two space dimensions and

Etotal = Ei>0 +
∑
i1,i2

αw1(D
+
z w)0 + β(u1(D

+
z u)0 + v1(D

+
z v)0)(4.54)

+
∑
i1,i2

αw0(D
−
z w)1 + β(u0(D

−
z u)1 + v0(D

−
z v)1)

+
∑
i1,i2

[
β
(
v1(D

0
yw)0 + v0(D

0
yw)1 + u1(D

0
xw)0 + u0(D

0
xw)1

)
+ γ

(
w1(D

0
yv)0 + w0(D

0
yv)1 + w0(D

0
xu)1 + w1(D

0
xu)0

)]
in three space dimensions, respectively. In both (4.53) and (4.54), we replace U−1 by
−(AT

−10)
−1AU0 whenever u−1 appears.

5. Numerical results. In this section, sample computations are performed to
validate and illustrate the ABCs developed in previous sections. Throughout this
section, the elastic constants C11, C12, C44 are assumed to be C11 = 8, C12 = 4, and
C44 = 4 unless explicitly stated otherwise.

5.1. The ABCs for continuum elasticity. This section shows the effective-
ness of the ABCs for continuum elasticity equations (3.7). The Lamé constants are
chosen to be λ = 1 and τ = 1.

The test problem is (3.7) on Ω = [0, 2π)×(−∞, 0) with data on Γ1 = [0, 2π)×{y =
0}. Periodicity is assumed in the lateral direction, and there is no body force; i.e.,
f = 0. The interface Γ2 at which the artificial boundary condition is imposed is the
line [0, 2π) × {y = −1}.

The Dirichlet data given on Γ1 is as follows:

u = (u, v) = (cosx + sin 2x, 0),

for which the exact solution to (3.7) is

(5.1)

u =

((
1 +

y

2

)
cosx ey + (1 + y) sin 2x e2y,

7

2
sinx ey − y cos 2x e2y

)
.

This exact solution is compared to the solution of (3.7) with the exact artificial bound-
ary condition (3.16) on the interface Γ2 and also to the solutions with the following
two alternative boundary conditions:

• The zero Dirichlet boundary condition u(x,−1) = 0.
• The Neumann boundary condition n · T = 0 on y = −1.

Figure 5.1 shows the u-displacement field at the line y = −0.75 for the exact solution,
the solution using ABCs, and the two alternative solutions. Although there is still
error, due to discretization of the continuum equation, it is clear that the solution
obtained with the exact ABCs (3.16) is in good agreement with the analytic solu-
tion (5.1). On the other hand, the solutions obtained with the other two boundary
conditions are in error by about 20%–30% at the peaks.

5.2. The ABCs for discrete elasticity. In this section, we investigate the
ABCs for the discrete elastic equations for both two and three space dimensions with
the Dirichlet data given on the boundary Γ1. As in the continuum case, there are no
external forces, and periodic boundary conditions are imposed in the lateral directions.
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Fig. 5.1. Test of the ABCs for the continuum solution in two space dimensions. Comparison
of the u-displacement field of u = (u, v) given at y = −0.75 for the exact solution (line) and for the
following boundary conditions: ABC (circle), zero-displacement (plus), and Neumann (triangle).
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Fig. 5.2. Test of the exact discrete ABCs in two dimensions: a comparison of the u-
displacement field of u = (u, v) at (x, y) = (x, 3). The boundary Γ1 is at y = 1, and the interface Γ2

is at y = 5 for the exact solution (line) and for the following boundary conditions: ABC (circle),
zero-displacement (plus), and Neumann (triangle).

More precisely, for the two dimensional case, the lattice Ω consists of Nx = 25
layers in the x-direction and Ny = 5 in the y-direction, and the prescribed Dirichlet
boundary condition for u on Γ1 = {y = 1} is

u = (cosx + sin 2x, sinx).(5.2)

For the three dimensional case, the lattice Ω consists of Nx = Ny = 25 layers in the
x- and y-directions and Nz = 4 layers in the z-direction, and the Dirichlet data on
Γ1 = {z = 1} is

u = (cosx + sin 2x, sin y, sinx).(5.3)

Numerical results are plotted in Figures 5.2 and 5.3. For numerical experiments,
the exact ABCs and other approximate boundary conditions are imposed on Γ2 =
{y = 5} for the two dimensional case and Γ2 = {z = 4} for the three dimensional
case, respectively. The results show that the solution with the ABCs is much more
accurate than those from the Dirichlet and Neumann boundary conditions. Indeed,
the accuracy obtained with the ABCs operator is within the round-off error, i.e.,
O(10−14).

5.3. Numerical simulations for thin films. In heteroepitaxial growth, a thin
film of one material (e.g., Ge) is grown on top of a substrate of a second material (e.g.,
Si), with perfect, single crystalline structure in both materials and with the lattice
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Fig. 5.3. Test of the exact discrete ABCs in three dimensions: a comparison of the v-
displacement field of u = (u, v, w) at (x, y, z) = (10, y, 3). The boundary Γ1 is at z = 1, and
the interface Γ2 is at z = 4 for the exact solution (line) and for the following boundary conditions:
ABC (circle), zero-displacement (square), and Neumann (triangle).

structure of the film determined by the substrate. If the lattice constants af and as
for the film and substrate are different (e.g., aGe = 1.04×aSi), then strain is generated
in the film. This strain has important effects on the material structure, as well as on
its electronic properties.

For this system, it is most convenient to define the atomic displacement relative
to a single reference lattice, for example, the equilibrium lattice of the substrate, so
that the displacement u in the film is defined relative to a nonequilibrium reference
lattice. The bond displacement dk± is then

dk±(i) = (dk±1 , dk±2 , dk±3 ) = D±
k u(i) − εekχ,(5.4)

in which ε =
af−as

as
is the relative lattice displacement, and χ is 0 in the substrate

and 1 in the film. The resulting discrete strain equations have a force of size ε along
the film/substrate interface, and the energy has the form

Etotal =
1

2
(HU,U) − (F,U) + G(ε),(5.5)

where

(F,U) =
∑
i

∑
p=±,k=1,2,3

εDp
kukχ.(5.6)

Further details are given, for example, in [5].
In this section, we compare the displacement fields u that are computed with the

ABCs and with zero boundary conditions for a heteroepitaxial thin film. Since the
forces lie on the film/substrate boundary, the artificial boundary can be taken to be
any plane below this interface. Our computational domain is three dimensional with
Γ2 being of size 10 × 10. As in the last section, we denote NC to be the thickness
of the substrate, including Γ2. Note that on the top boundary Γ1, the homogeneous
Neumann boundary condition (no external force) is imposed.

To demonstrate the effectiveness of the ABCs, we first compute the displacement
field u by imposing the ABCs on Γ2 with substrate thickness NC = 1 and take it as
the reference solution. We then compute two displacement fields that are generated
by imposing zero boundary conditions on the bottom boundary with NC = 2 and
NC = 8. For these three solutions, Figure 5.4 shows a comparison of the u component
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u-displacement computed with zero boundary condition with NC = 2 (triangle) and NC = 8 (cross).
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Fig. 5.5. Schematic drawing of quantum dot geometry.

of the displacement vector u = (u, v, w) on the line x = 1 in the second layer from
the top. It is clear that the displacement field computed with the zero boundary
conditions approaches the reference displacement field as the number of substrate
layers increases. In addition (not shown in Figure 5.4), the results from the ABC are
found to be independent (i.e., within round-off error) of the depth at which the ABC
is applied.

5.4. Energy computation. This section presents results to validate the total
energy formulas (4.51) and (4.52) derived in section 4.5. As in the previous section,
NC denotes the number of substrate layers, including Γ2 itself. In addition, EA

denotes the total energy computed by imposing the ABC on Γ2, and EZ denotes the
total energy computed with the zero boundary condition on Γ2.

For computational purposes, we take a geometry corresponding to a periodic
array of quantum dots. A typical geometry is illustrated in Figure 5.5. For two space
dimensions, Γ2 is one dimensional with the material system of size Nx = 128 and the
quantum dot of base size 64. For three space dimensions, Γ2 is two dimensional with
the material system of size Nx = Ny = 10 and the quantum dot of base size 8 × 8.

In order to validate the total energy formulas (4.51) and (4.52), by numerical
computation we show first that the total energy EA does not depend on the thickness
of the substrate NC and second that the total energy EZ obtained by imposing zero
boundary conditions on Γ2 approaches the total energy EA as the thickness of sub-
strates NC increases. These computational results are demonstrated in Figure 5.6, in
which the thickness of the substrate NC varies from NC = 2 to NC = 120 for two
space dimensions and from NC = 2 to NC = 14 for three space dimensions. The units
of the total energy are 1012dyne/cm2.
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Fig. 5.6. Total energies obtained by applying the ABC (circle) and zero boundary condition
(square) as a function of the thickness of substrates for two dimensions (left) (Nx = 128) and three
dimensions (right) (Nx = Ny = 10).

6. Conclusions. In this paper, we have derived the ABCs for continuum and
discrete elasticity equations. A solvability condition has been formulated and vali-
dated, under which the discrete equations in an unbounded domain can be shown to
be well-posed and the reduced force balance equation can be derived. Its solution co-
incides with the exact solution when restricted to the bounded domain. Furthermore,
a new total energy formula has been derived so that it can be computed by using only
the displacement field in the region above the artificial boundary.

These results are currently being used for modeling and simulation of the growth
of thin epitaxial films. By exploiting the symmetry of the resulting force balance
equations in further work, we shall combine the ABCs with a multigrid method to
get an accelerated simulation method for various applications.

Appendix. Several technical lemmas.

Lemma A.1. The matrix A−10 is invertible.

Proof. Observe that

A−10Ui = F−1Â−10F(Ui),(A.1)

where F and F−1 are Fourier and inverse Fourier transformations and Â−10 is a 3×3
(2 × 2 in two space dimensions) block matrix, such that for any given Fourier mode
(μ, ν),

Â−10(μ, ν) =

⎛
⎝ −C44 0 −s1

0 −C44 −s2

−s1 −s2 −C11

⎞
⎠ ,(A.2)

where

s1 = ı
(C12 + C44)

2
sin

(
2πμ

Nx

)
,

s2 = ı
(C12 + C44)

2
sin

(
2πν

Ny

)
.
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The eigenvalues for Â−10(μ, ν) can be obtained by solving the following equation:

det(Â−10(μ, ν) − λI) = −(C44 + λ)
[
(C44 + λ)(C11 + λ) − s2

1 − s2
2

]
(A.3)

= −(C44 + λ)
[
λ2 + (C11 + C44)λ + C11C44

+ sin2(2πμ/Nx)(C12 + C44)
2/4

+ sin2(2πν/Ny)(C12 + C44)
2/4

]
.

Hence, three eigenvalues λ1, λ2, and λ3 are given as follows:

λ1 = − C44,

2λ2 = − (C11 + C44)

+
√

(C11 − C44)2 − (sin2(2πμ/Nx) + sin2(2πν/Ny))(C12 + C44)2,

2λ3 = − (C11 + C44)

−
√

(C11 − C44)2 − (sin2(2πμ/Nx) + sin2(2πν/Ny))(C12 + C44)2.

The eigenvalue with the smallest magnitude is λ2 with sin(2πν/Nx) = sin(2πμ/Ny) =
0, in which case

2λ2 = (−(C11 + C44) + |C11 − C44|) = −2 min(C11, C44).(A.4)

It follows that no eigenvalues can be zero; hence A−10 is invertible. This completes
the proof.

Lemma A.2. For γi 
= γj, the corresponding eigenvectors qi and qj are linearly
independent.

Proof. Consider the linear reformulation of the palindromic eigenvalue problem
(4.30) by introducing x = γy as follows: With P (μ, ν, γ) = γ2Â−10 + γÂ00 + ÂH

−10,(
0 I

−ÂH
−10 −Â00

)(
y
x

)
= γ

(
I 0

0 Â−10

)(
y
x

)
.(A.5)

From the fact that Â−10 is invertible, it is obvious that the eigenvectors qi and qj

that correspond to different eigenvalues γi and γj must be linearly independent.
Lemma A.3. Under Condition 4.1, the matrix M given in (4.20) is an isomorphic

mapping from Θ to Θ∗.
Proof. For V− = (V−1, V−2, . . . )

T ∈ Θ with Vi = CiV0 for i ≤ 0, as in Condition
4.1,

MV− = (−A−10V0, 0, . . . , 0, . . . )
T(A.6)

= G = (G−1, 0, . . . , 0, . . . )
T

if G−1 = −A−10V0. Since A−10 is invertible, this shows that the matrix M is onto.
To show that M is one to one, it is enough to show that MV− = 0 implies V− = 0.

Consider the energy

E− =
∑
i<0

Ei(A.7)

over the space Θ and observe that

(MV−,V−) = Ê−,(A.8)
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in which Ê− is E− for V0 = 0. Therefore, MV− = 0 implies that Ê− = 0. Connectivity
of the lattice and U0 = 0 then imply that Ui = 0 for all i < 0. This shows that the
matrix M is one to one. Therefore, M : Θ �→ Θ∗ is isomorphic.

Proof of Lemma 4.2.
First, we show that A is symmetric. For any U = (0, 0, . . . , 0, U0, U−1, . . . , . . . )

T

and V = (0, 0, . . . , 0, V0, V−1, . . . , . . . )
T that belong to the space V, Condition 4.1

implies that

AT
−10V−1 = −AV0 and AT

−10U−1 = −AU0.(A.9)

Note also that Ẽ(U,V) = Ẽ(V,U); i.e.,

Ẽ(U,V) =
1

2

(
U0,

(
A00V0 + AT

−10V−1

))
(A.10)

=
1

2

(
V0,

(
A00U0 + AT

−10U−1

))
= Ẽ(V,U).

Use (A.9) in (A.11) to obtain

(U0, (A00V0 −AV0)) = (V0, (A00U0 −AU0)) .

Since A00 is symmetric, this implies that (U0,AV0) = (V0,AU0) for all U0, V0 ∈ RN

and therefore, that A is symmetric. The symmetry of the operator A implies that
the matrix Ĥ is symmetric.

Next, we show that A is positive definite since for U0 
= 0 ∈ RN ,

(U0,AU0) = (U0,BM−1BTU0) = (BTU0,M
−1BTU0)

= (MU−,M−1MU−) = (MU−,U−) = Ê− > 0,

where U− is the unique solution of MU− = BTU0. Finally, we show that the matrix
Ĥ is nonnegative definite. First note that Ĥ1 = 0. Furthermore, there is no other
null space for Ĥ, since

Ĥ

(
U+

U0

)
= 0 ⇐⇒ (U0, (A01U1 + (A00 −A)U0))

+
∑
i>0

(Ui, (Aii−1Ui−1 + AiiUi + Aii+1Ui+1)) = 0

⇐⇒ Ẽ(U,U) = 0 with U ∈ V

⇐⇒ U = 1 by connectivity of the lattice.

This completes the proof of Lemma 4.2.
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DYNAMIC BEHAVIOR OF A PACED CARDIAC FIBER∗

JOHN W. CAIN†

Abstract. Consider a typical experimental protocol in which one end of a one-dimensional
fiber of cardiac tissue is periodically stimulated, or paced, resulting in a train of propagating action
potentials. There is evidence that a sudden change in the pacing period can initiate abnormal
cardiac rhythms. In this paper, we analyze how the fiber responds to such a change in a regime
without arrhythmias. In particular, given a fiber length L and a tolerance η, we estimate the number
of beats N = N(η, L) required for the fiber to achieve approximate steady-state in the sense that
spatial variation in the diastolic interval (DI) is bounded by η. We track spatial DI variation using an
infinite sequence of linear integral equations which we derive from a standard kinematic model of wave
propagation. The integral equations can be solved in terms of generalized Laguerre polynomials. We
then estimate N by applying an asymptotic estimate for generalized Laguerre polynomials. We find
that, for fiber lengths characteristic of cardiac tissue, it is often the case that N effectively exhibits
no dependence on L. More exactly, (i) there is a critical fiber length L∗ such that, if L < L∗, the
convergence to steady-state is slowest at the pacing site, and (ii) often, L∗ is substantially larger
than the diameter of the whole heart.

Key words. cardiac fiber, pacing, transient behavior, restitution, kinematic model, generalized
Laguerre polynomials

AMS subject classifications. 92C50, 33C45, 92C30
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1. Introduction. Cardiac cells have the property of excitability: when a stim-
ulus current of sufficient strength is applied to a quiescent cell, the transmembrane
voltage v undergoes a prolonged elevation, called an action potential, before eventually
returning to its resting value. Repeatedly stimulated, or paced, cardiac cells exhibit
sequences of action potentials. By specifying a threshold voltage v = vthr, one may
define the action potential duration (APD) as the amount of time in which v > vthr

during an action potential. The recovery time during which v < vthr between succes-
sive action potentials is called the diastolic interval (DI). As illustrated in Figure 1,
we shall denote the APD following the nth stimulus by An and the subsequent DI by
Dn.

Periodic pacing leads to one of several types of phase-locked responses depending
on the underlying pacing period B. For large B, cells exhibit a 1:1 response in which
every stimulus yields an identical action potential. For smaller B, one sometimes
observes a period-2 response, known as alternans, in which APD and DI values exhibit
beat-to-beat alternation [21, 23, 24, 28, 29]. If B is decreased even further, cells exhibit
a 2:1 response in which only every other stimulus yields an action potential [15, 21, 35].
In what follows, we shall assume that all pacing periods are sufficiently large to ensure
a 1:1 steady-state response.

In spatially extended tissue, neighboring cells are coupled electrically via gap
junctions, allowing action potentials to propagate through the tissue [19, 25]. Below,
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Fig. 1. Voltage trace of several action potentials in a paced cardiac cell.

we shall study the dynamics of a paced cardiac fiber composed of cylindrical cells
joined together in an end-to-end fashion. We assume that voltage exhibits negligible
radial dependence, varying only as a function of a length variable x; that is, the
fiber can be treated as one-dimensional. Moreover, we shall assume that pacing is
performed at one end of the fiber which we identify with x = 0.

Typically, propagation of action potentials in a one-dimensional fiber is modeled
using a reaction-diffusion equation known as the cable equation, which, after non-
dimensionalization, takes the form

∂v

∂t
=

∂2v

∂x2
+ g(v, w).(1)

Here, v = v(x, t) is the transmembrane voltage and w is a vector of various dynamic
variables that are used in modeling the ionic mechanism of the action potential. For
a derivation of the cable equation, see the texts of Plonsey and Barr [25] and Keener
and Sneyd [19]. Examples of studies in which the cable equation is used to model
cardiac dynamics include [5, 6, 7, 18, 22].

Although the cable equation serves as a popular model, we remark that ar-
rhythmias, by nature, concern the timing of excitation and recovery of the cells.
Therefore, it is often desirable to track the progress of propagating action poten-
tials without regard to the structure of the voltage profile. Indeed, many recent
studies [4, 8, 11, 12, 16, 30, 34] have employed kinematic models [19, 27] of wave
propagation in cardiac fibers.

In this paper, we use a kinematic model to investigate how a fiber of length L
responds to a sudden change in the pacing period, say from Bold to Bnew. Changing
the pacing period introduces spatial variation in APD and DI. Our primary goal is
to estimate the number of beats required for the fiber to “adjust” to the new pacing
period, i.e., the number of beats required to reach approximate steady-state in the
sense that spatial variation in DI is small. No previous studies have analyzed the
transient behavior following a change in the pacing period. In the course of solving our
main problem, we shall provide such an analysis. Describing the persistence of spatial
DI variation under such a pacing protocol may lead to an improved understanding of
the mechanisms for initiation of arrhythmias such as discordant alternans [34].

To establish notation, refer to Figure 2, which illustrates both the spatial variation
in DI induced by changing the pacing period from Bold to Bnew < Bold and the
aforementioned convergence to a steady-state. Here, Dn = Dn(x) denotes the nth DI
following the change in the pacing period—in particular, n = 1 corresponds to the
first beat with period Bnew. Figure 2(a) shows Dn(x) for n = 1, . . . , 4 and Figure 2(b)
shows Dn(x) for n = 7, 8. Note that Dn(x) appears to converge pointwise to a constant
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Fig. 2. Spatial variation in DI after changing the pacing period from Bold to Bnew < Bold. (a)
the curves Dn(x) for n = 1, . . . , 4; (b) the curves Dn(x) for n = 7, 8.

D∗
new as n → ∞.

More quantitatively, our main problem may be stated as follows. Let η > 0 be a
given tolerance, and let n and D∗

new be as in the preceding paragraph.

Goal: Estimate the number of beats N = N(η, L) such that |Dn(x) −D∗
new| < η for

all x ∈ [0, L], n ≥ N .

Our analysis shows that, for fibers shorter than a critical length L = L∗, the
convergence is slowest at the pacing site x = 0. In other words, N(η, L) does not
depend on the fiber length L provided that L < L∗. Moreover, we find that L∗ → ∞
as the slope of the restitution curve at DI = D∗

new tends to 1. Hence, N(η, L) is
especially unlikely to exhibit any length dependence as we approach the bifurcation
to alternans.

The remainder of this paper is organized as follows. In section 2, we recall a
kinematic model [19, 27] of wave propagation, which allows us to follow the progress
of each action potential without tracking the complete voltage profile v(x, t). From
the kinematic model, we derive a recursive sequence of linear equations which can
be solved to yield approximations yn(x) of Dn(x) − D∗

new, allowing us to monitor
the convergence to steady-state. As explained in section 3, the functions yn(x) can
be expressed in terms of generalized Laguerre polynomials. The behavior of the
functions yn(x) can be approximated by recalling a large-n asymptotic estimate for
the generalized Laguerre polynomials. This allows us to estimate the maximum of
|yn(x)| on the interval [0, L], thereby leading to an estimate of N(η, L). The estimate
of N(η, L) is given by one of two formulas according to whether L < L∗ or L > L∗.
Section 4 contains a summary and discussion of our results.

2. Derivation of the governing equations. We begin this section with a brief
discussion of the restitution and dispersion curves. We then recall a kinematic model
of action potentials propagating in a paced fiber. From the equations of the kinematic
model, we derive a sequence of linear equations which will allow us to solve the main
problem.

2.1. Restitution and dispersion curves. Cardiac cells exhibit electrical resti-
tution: The steady-state APD at a given pacing period B decreases as B is shortened.
Nolasco and Dahlen [23] were among the first to model restitution with a mapping

An+1 = f(Dn) = f(B −An).(2)
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Guevara et al. [14] later showed that alternans can result from a period-doubling
bifurcation of (2) as the pacing period B is decreased. The function f is called the
restitution function, and its graph is called the restitution curve. The restitution curve
is typically monotone increasing; i.e., more recovery time yields longer excitations.
Many authors (see, for example, [1, 2, 15]) have fit restitution data with exponential
functions of the form

f(DI) = APDmax − ke−DI/τ ,(3)

where APDmax, k, and τ are positive constants. We shall not specify a functional
form for the restitution function but will assume that f has the same qualitative shape
as (3).

Just as APD depends upon the preceding DI, the wave front velocity of an action
potential in a fiber depends upon the preceding (local) DI. This dependence is often
displayed graphically via the dispersion curve, which typically has the same qualitative
shape as the restitution curve. We shall denote the functional form of the dispersion
curve by c(DI).

2.2. Kinematic model of wave propagation. To solve the problem of es-
timating N(η, L), we need only track the progress of action potentials, not their
complete structure. Hence, we shall employ a kinematic model of wave propaga-
tion [19, 27]. In doing so, we implicitly assume that recovery always occurs via a
phase wave [9, 33]; i.e. the wave back of each action potential is not greatly affected
by diffusion. We also adopt the following assumptions, the last two of which are
specific to the pacing protocol described in the introduction:

• (A1) To a reasonable approximation, the tissue does not exhibit memory: As
implicitly assumed in (2), An+1 depends only upon Dn and is not greatly
influenced by the past pacing history. Likewise, the wave front velocity of the
(n + 1)st action potential depends only upon Dn(x), the preceding local DI.

• (A2) The restitution and dispersion curves are monotone increasing.
• (A3) To implement the pacing protocol outlined in the introduction, the

interval between the nth and (n + 1)st stimuli is Bold if n ≤ 0 and Bnew if
n > 0.

• (A4) Prior to the change in the pacing period (i.e., for n ≤ 0), the long-term
pacing with period Bold leads to a 1:1 steady-state response in which DI is a
constant,1 say D∗

old. In particular, D0(x) ≡ D∗
old.

We now recall how to use the information contained in the restitution and dis-
persion curves to track the wave fronts and wave backs of the action potentials. If we
pace one end (say x = 0) of a fiber and plot v(x, t) versus x and t, we obtain a surface
in three-dimensional space. Taking the intersection of this surface with the plane
v = vthr, we generate a sequence of curves which we identify with the wave fronts
and wave backs of the action potentials. Projecting these curves onto the xt plane
yields a schematic space-time plot of the wave fronts and wave backs as illustrated
in Figure 3. Here, φn(x) (resp., βn(x)) denotes the time at which the nth wave front
(resp., wave back) arrives at x, and

CLn(x) = φn+1(x) − φn(x)(4)

1Referring to (2) with B = Bold, note that D∗
old is the unique DI satisfying the equation DI +

f(DI) = Bold.
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Fig. 3. Schematic diagram of wave fronts (solid curves) and wave backs (dashed curves).

is called the cycle length. Since

An(x) = βn(x) − φn(x) and Dn(x) = φn+1(x) − βn(x),(5)

we may also express the cycle length as

CLn(x) = An(x) + Dn(x).(6)

From our assumption that recovery occurs via a phase wave, we may apply the resti-
tution function locally at each x along the fiber:

An(x) = f(Dn−1(x)) (0 ≤ x ≤ L).(7)

The slope of φn(x) is related to the speed of the nth wave front:

dφn

dx
=

1

c(Dn−1(x))
(0 < x < L).(8)

By (6) and (7), the cycle length satisfies an algebraic condition

CLn(x) = Dn(x) + f(Dn−1(x)),(9)

and by (4) and (8), the cycle length also satisfies a differential equation

dCLn

dx
=

1

c(Dn(x))
− 1

c(Dn−1(x))
.(10)

Combining (9) and (10), we obtain a sequence of differential equations involving only
DI values:

d

dx
[Dn(x) + f(Dn−1(x))] = G(Dn(x)) −G(Dn−1(x)),(11)

where

G(DI) =
1

c(DI)
.(12)

From assumption (A3) above, pacing at x = 0 yields the boundary condition

Dn(0) =

{
Bold − f(Dn−1(0)), n ≤ 0,

Bnew − f(Dn−1(0)), n > 0,
(13)
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while assumption (A4) yields an initial condition

D0(x) ≡ D∗
old.(14)

Combining (11), (13), and (14), we obtain a sequence of equations that can be solved
iteratively to determine Dn(x) for n > 0 and 0 ≤ x ≤ L.

2.3. Derivation of the main sequence of equations. To analyze the tran-
sient behavior following the change in the pacing period, we linearize (11), (13) for
n ≥ 0. The resulting sequence of initial value problems (see (16), (17)) leads to our
main sequence of equations (see (23)), which we solve exactly in the next section to
obtain approximations of the functions Dn(x) for n ≥ 0.

To linearize (11), (13) for n ≥ 0, let D∗
new denote the steady-state DI associated

with long-term pacing with period Bnew and let yn(x) denote our approximation of
Dn(x) −D∗

new. By (14), we have

y0(x) = D∗
old −D∗

new,(15)

a constant. For n > 0, the linearization of (11), (13) about D∗
new is given by

d

dx
[yn(x) + αyn−1(x)] = −λ [yn(x) − yn−1(x)] ,(16)

yn(0) = −αyn−1(0) (n > 0),(17)

where

α = f ′(D∗
new)(18)

denotes the slope of the restitution curve evaluated at D∗
new and

−λ = G′(D∗
new).(19)

The negative sign in (19) emphasizes that G(DI) = 1/c(DI) is a monotone decreasing
function, which follows from assumption (A2) in the previous subsection. We remark
that

• α is dimensionless and λ has units of (length)−1;
• in the linearized dynamics, the rate of convergence to steady-state at the
x = 0 boundary is determined by α, the Floquet multiplier [31] of the map
An+1 = f(Bnew −An).

Let us solve (16), (17) for yn(x) in terms of yn−1(x), resulting in a recursive
sequence of equations. Rewriting (16) as

d

dx
[yn(x) + αyn−1(x)] = −λ [yn(x) + αyn−1(x)] + (α + 1)λyn−1(x),(20)

we use eλx as an integrating factor to obtain

d

dx

{
eλx [yn(x) + αyn−1(x)]

}
= (α + 1)λeλxyn−1(x).(21)

Integration yields

eλx [yn(x) + αyn−1(x)] = yn(0) + αyn−1(0) + (α + 1)λ

∫ x

0

eλsyn−1(s) ds.(22)
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Fig. 4. Relative error in using yn(x) to approximate Dn(x) −D∗
new for n = 1, . . . , 4.

Finally, applying boundary condition (17) and rearranging terms, we obtain our main
sequence of equations,

yn(x) = −αyn−1(x) + (α + 1)λ

∫ x

0

e−λ(x−s)yn−1(s) ds (n ≥ 1).(23)

Numerical evidence suggests that solutions of the linearized equations (23) exhibit
good quantitative agreement with solutions of the original nonlinear equations (11)
and (13). Figure 4 shows the relative error |Dn(x)−D∗

new−yn(x)|/Dn(x) versus x for
n = 1, . . . , 4 after shortening the pacing period from Bold = 340 ms to Bnew = 320 ms.
The functions Dn(x) were generated by numerical solution of (11) and (13) with f
and c chosen as in (73) and (74), respectively. The functions yn(x) were generated by
numerical solution of (23) with the same choices for f and c. We remark that these
restitution and dispersion curves provide physiologically realistic APD values and
propagation speeds for mammalian ventricular tissue [1, 13]. Note that the relative
error (at least through four beats) never exceeds 0.012 even at the “un-physiological”
distance of one meter from the stimulus site.

3. Estimating the rate of convergence to steady-state. Equation (23)
allows us to determine yn provided that yn−1 is known. In our case, y0(x) is a constant
since D0(x) ≡ D∗

old. We remark that, due to the simple form of y0(x), the recursive
sequence of equations (23) can be solved exactly by successive substitutions. In doing
so, it is advantageous to introduce some abstract notation (subsections 3.1 and 3.2)
which helps us recognize that solutions of (23) can be expressed in terms of generalized
Laguerre polynomials. Then, by applying a large-n asymptotic approximation of the
Laguerre polynomials, we derive the desired estimate of N(η, L) (see subsections 3.3
and 3.4).

3.1. Step 1: A Volterra integral operator. Motivated by (23), we define an
operator T = −αI +(α+1)λK on the Banach space (C[0, L], ‖ ·‖∞), where I denotes
the identity operator and

(Kψ)(x) =

∫ x

0

e−λ(x−s)ψ(s) ds.(24)
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Then clearly yn = Tyn−1 = Tny0. Our goal is to estimate the rate of convergence2 of
yn = Tny0 to 0. To do so, we exploit the fact that y0 is a constant function; i.e.,

‖Tny0‖∞ = |y0| · ‖Tn1‖∞,(25)

where y0 is a constant. Our main problem can now be stated as

Given any η > 0, determine N = N(η, L) such that(26)

‖Tn1‖∞ <
η

|y0|
for all n > N.

In the next subsection, we derive a formula for the function (Tn1)(x). Later, we will
use asymptotics to learn more about the extrema of this function, using our results
to estimate ‖Tn1‖∞.

3.2. Step 2: Computing powers of the operator T . Recalling that T =
−αI + (α + 1)λK, we may apply the binomial theorem to obtain

(Tnϕ)(x) =

n∑
m=0

(
n

m

)
(−α)n−m(α + 1)mλm(Kmϕ)(x).(27)

Powers of the operator K are straightforward to compute. For m ≥ 1, we find that

(Kmϕ)(x) =

∫ x

0

∫ s1

0

· · ·
∫ sm−1

0

e−λ(x−sm)ϕ(sm) dsm dsm−1 · · · ds1.(28)

Reversing the order of integration, the iterated integral (28) simplifies to a single
integral

(Kmϕ)(x) =

∫ x

0

(x− sm)m−1

(m− 1)!
e−λ(x−sm)ϕ(sm) dsm.(29)

Combining (27) and (29) yields

(Tnϕ)(x) = (−α)nϕ(x) +

∫ x

0

Ψn(x− s) ϕ(s) ds = (−α)nϕ(x) +

∫ x

0

Ψn(s) ϕ(x− s) ds,

(30)

where

Ψn(s) = e−λs
n∑

m=1

(
n

m

)
(−α)n−m(α + 1)mλm sm−1

(m− 1)!
.(31)

It follows that

(Tn1)(x) = (−α)n +

∫ x

0

Ψn(s) ds.(32)

The functions Ψn can be expressed in terms of generalized Laguerre polynomials, a
well-known class of special functions which can be defined as in the following definition
(see Szegő [32]).

2We remark that the trivial estimate ‖yn‖∞ = ‖Tny0‖∞ ≤ ‖T‖n‖y0‖∞ is too weak since ‖T‖
can exceed 1. This is especially true close to the onset of alternans (i.e., as α → 1−), in which case
T is a contraction only for very short fiber lengths. However, it is straightforward [10, 26] to show
that the spectral radius of T is simply α. Hence, if α < 1, then ‖Tny0‖∞ converges to 0 as n → ∞.
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Definition 3.1. Let β > −1 and n ≥ 0. Then the generalized Laguerre polyno-

mial L
(β)
n (x) is defined by

L(β)
n (x) =

n∑
m=0

(
n + β

n−m

)
(−x)m

m!
.(33)

Comparing (31) and (33) with β = 1, it is straightforward to verify that

Ψn(s) = (−α)n−1(α + 1)λ e−λs L
(1)
n−1

(
λ(α + 1)s

α

)
.(34)

By (32) and (34), we have

(Tn1)(x) = (−α)n + (−α)n−1(α + 1)λ

∫ x

0

e−λs L
(1)
n−1

(
λ(α + 1)s

α

)
ds

= (−α)n

(
1 −

∫ λ(α+1)x
α

0

e−
αs

α+1 L
(1)
n−1(s) ds

)
.(35)

3.3. Step 3: Large-n asymptotic estimate of ‖T n1‖∞. In order to estimate
‖Tn1‖∞, we must approximate the integral in (35). To do so, we will make use of an
asymptotic estimate for the generalized Laguerre polynomials. However, because the
estimate we will use is not uniformly valid throughout the region of integration, we
will split the region of integration into two subregions.

The following asymptotic approximation as n → ∞ for the generalized Laguerre
polynomials appears in Szegő [32, p. 199].

Theorem 3.2. Let β > −1 and n → ∞. Then

L(β)
n (x) = π− 1

2 e
x
2 x− β

2 − 1
4 n

β
2 − 1

4

[
cos

(√
4nx− βπ

2
− π

4

)
+ (nx)−

1
2O(1)

]
.(36)

Moreover, given positive constants c and ω, the error term holds uniformly on the
interval cn−1 ≤ x ≤ ω.

Because the asymptotic approximation given by Theorem 3.2 breaks down for x
small, we estimate (35) by splitting the interval of integration into two subintervals.
For the boundary between the two subintervals, we use an approximation of the first

root of L
(1)
n−1. Setting β = 1, note that the first two zeros of the approximation given

by (36) occur when the argument of the cosine term is −π/2 or π/2. The (nx)−1/2

error term influences the location of the first zero of (36) because it is not negligible

for x = O(1/n). Figure 5 suggests that we may approximate3 the first root of L
(1)
n (x)

as the value of x for which the cosine term in (36) is π/2, not −π/2. That is, x = C/n,
where

C =
25π2

64
= 3.8553 . . . .(37)

In what follows, we will use C/(n− 1) as the boundary between the two subintervals
of integration.

3A more precise estimate of x
(β)
1n , the first root of L

(β)
n (x), appears in Szegő [32]:

limn→∞(n x
(β)
1n ) = (j

(β)
1 /2)2 = 3.6705 . . . , where j

(β)
1 = 3.8317 . . . denotes the first positive zero of

the Bessel function Jβ(x).
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Fig. 5. Comparison of the generalized Laguerre polynomial L
(β)
n (x) with the approximation

given by Theorem 3.2 for n = 10 and β = 1. As indicated in the figure, the first two roots of the
approximation (36) occur when the argument of the cosine function is −π/2 or π/2.

To estimate the integral in (35), we write

(38)∫ λ(α+1)x
α

0

e−
αs

α+1 L
(1)
n−1(s) ds =

∫ C
n−1

0

e−
αs

α+1 L
(1)
n−1(s) ds︸ ︷︷ ︸

I1

+

∫ λ(α+1)x
α

C
n−1

e−
αs

α+1 L
(1)
n−1(s) ds.︸ ︷︷ ︸

I2

Our expression for (Tn1)(x) now reads

(Tn1)(x) = (−α)n (1 − I1 − I2) .(39)

Estimating I1. To estimate the integral I1 in (38), we treat the two factors in

the integrand separately. The factor L
(1)
n−1(s) can be approximated by a quadratic

function qn−1(s) by matching L
(1)
n−1(s) and its derivative at s = 0 and using the fact

that L
(1)
n−1(C/(n− 1)) ≈ 0. By algebra, we find that the polynomial

qn−1(s) =
n(n− 1)2

C2

(
C

2
− 1

)
s2 − 1

2
n(n− 1)s + n(40)

approximates the function L
(1)
n−1(s) in the interval [0, C/(n − 1)]. Because the expo-

nential factor in the integrand of I1 is 1+O(1/n) throughout the region of integration,
we neglect this factor and compute

I1 ≈
∫ C

n−1

0

qn−1(s) ds =
2C

3
− C2

12
+ O

(
1

n

)
.(41)

In what follows, we will approximate I1 by

I1 ≈ 2C

3
− C2

12
= 1.3315 . . . .(42)

Estimating I2. Integral I2 in (38) can be approximated by applying Theorem 3.2
with β = 1. Setting

γ =
1 − α

2(1 + α)
,(43)
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we have

I2 ≈ π− 1
2 (n− 1)

1
4

∫ λ(α+1)x
α

C
n−1

s−
3
4 eγs cos

(√
4(n− 1)s− 3π

4

)
ds.(44)

Upon substituting s �→
√
s, (44) becomes

I2 ≈ 2π− 1
2 (n− 1)

1
4

∫ √
λ(α+1)x

α

√
C

n−1

s−
1
2 eγs

2

cos

(√
4(n− 1) · s− 3π

4

)
ds.(45)

Integrating (45) by parts,

(46)

I2 ≈
s−

1
2 eγs

2

sin
(√

4(n− 1) · s− 3π
4

)
√
π(n− 1)

1
4

∣∣∣∣∣∣

√
λ(α+1)x

α

√
C

n−1

− 1
√
π(n− 1)

1
4

∫ √
λ(α+1)x

α

√
C

n−1

(
−1

2
s−

3
2 + 2γs

1
2

)
eγs

2

sin

(√
4(n− 1) · s− 3π

4

)
ds.

At first, the two terms in (46) appear to be of the same order, namely O(n−1/4).
However, for large n the rapid oscillation of the integrand of the volume term leads
to cancellation, and hence the volume term is small relative to the boundary term.
(This can also be seen by integrating by parts a second time.) Thus, we approximate
I2 by retaining only the boundary terms in (46):

I2 ≈ u(x)

(n− 1)
1
4

sin

(√
4λ(α + 1)(n− 1)x

α
− 3π

4

)
(47)

−
(

1

Cπ2

) 1
4

e
C(1−α)

2(1+α)(n−1) sin

(√
4C − 3π

4

)
,

where

u(x) =

(
α

π2λ(α + 1)x

) 1
4

e
λ(1−α)x

2α .(48)

The first term in (47) is bounded by

u(x)

(n− 1)
1
4

,(49)

and, for large n, the second term of (47) is approximately(
1

Cπ2

) 1
4

sin

(√
4C − 3π

4

)
=

(
1

Cπ2

) 1
4

= 0.4026 . . . .(50)

By (39), (42), (49), and (50), we obtain the following approximate upper bound for
|(Tn1)(x)|:

|(Tn1)(x)| � αn

∣∣∣∣1 − 1.3315 + 0.4026 +
u(x)

(n− 1)
1
4

∣∣∣∣
= αn

(
0.0711 +

u(x)

(n− 1)
1
4

)
(n → ∞).(51)
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3.4. Step 4: Estimates for N(η, L). Referring to the definition (48) of u(x),
note that the x−1/4 factor is dominant for small x while the exponential factor is
dominant for large x. Hence, we expect u(x) to have a single extremum—a global
minimum. Letting L∗ denote the x value at which the global minimum of u(x) is
attained (see (53) below), we are led to consider two cases when estimating N(η, L):
the case L < L∗ and the case L > L∗. In the former case, we shall demonstrate that
|(Tn1)(x)| is always maximal at x = 0, indicating that the convergence to steady-state
is slowest at the pacing site. In the latter case, |(Tn1)(x)| is maximal either at x = 0
or near x = L.

To determine L∗, we differentiate u(x) with respect to x:

u′(x) =

(
α

π2λ(α + 1)

) 1
4

e
λ(1−α)x

2α

(
−1

4
x− 5

4 +
λ(1 − α)

2α
x− 1

4

)
.(52)

The unique x value for which u′(x) has a root is

L∗ =
α

2λ(1 − α)
.(53)

With the above considerations in mind, we now derive our estimates for N(η, L).
Case 1. L < L∗. From our preceding remarks, we see that the function (Tn1)(x)

exhibits damped oscillatory behavior for x < L∗. Hence, |(Tn1)(x)| is maximal either
at x = 0 or at the first local extremum of (Tn1)(x). In fact, we shall see that |(Tn1)(x)|
is always maximal at x = 0.

Proposition 3.3. Let x
(1)
1(n−1) denote the first root of L

(1)
n−1(x). Then the first

local extremum of (Tn1)(x) occurs at

xext =
α

λ(α + 1)
x

(1)
1(n−1) ≈

α

λ(α + 1)
· C

n− 1
.(54)

Proof. Differentiating (32) with respect to x, we obtain

(Tn1)′(x) = Ψn(x) = (−α)n−1(α + 1)λ e−λx L
(1)
n−1

(
λ(α + 1)x

α

)
.(55)

The only factor in (55) that can change sign as x varies is L
(1)
n−1. Hence, the first

sign change of Ψn(x) occurs when the L
(1)
n−1 factor has its first root, which occurs at

x = xext. This x value corresponds to the first local extremum of (Tn1)(x).
Equation (35) gives the exact value of |(Tn1)(x)| at the x = 0 boundary, namely

|(Tn1)(0)| = αn.(56)

To estimate the value of (Tn1)(x) at its first local extremum, we refer to (51) and (54).
By (54), we obtain the approximation

u(xext)

(n− 1)
1
4

→
(

1

Cπ2

) 1
4

≈ 0.4026 (n → ∞),(57)

and (51) yields

|(Tn1)(xext)| � (0.0711 + 0.4026) αn (n → ∞).(58)
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Note that the coefficient of αn in (58) is less than 1. Therefore, if L < L∗, we conclude
that the convergence to steady-state is slowest at the x = 0 boundary. That is,

‖Tn1‖∞ = |(Tn1)(0)| = αn.(59)

With η and y0 as in (26), we can now estimate the number of beats required to
reach approximate steady-state:

N1 = N1(η) =
ln(η) − ln |y0|

ln(α)
.(60)

The subscript on N emphasizes that we presently consider the first case, L < L∗.
Note that N1 does not depend upon L, and the convergence to steady-state is slowest
at the pacing site, x = 0.

Case 2. L > L∗. In this case, the function u(x) may achieve its maximum at the
right boundary of the interval [C/(n− 1), L]. By (51),

|(Tn1)(L)| � αn

(
0.0711 +

u(L)

(n− 1)
1
4

)
(n → ∞).(61)

We wish to determine N(η, L) such that

αn

(
0.0711 +

u(L)

(n− 1)
1
4

)
<

η

|y0|
(for all n > N).(62)

Taking logarithms and dividing through by lnα, we obtain

n +
ln
(
0.0711 + u(L)(n− 1)−

1
4

)
lnα

> N1,(63)

where N1 is given by (60) above. Motivated by inequality (63), we define the function

g(n) = n +
ln
(
0.0711 + u(L)(n− 1)−

1
4

)
lnα

−N1(64)

and estimate the value of n for which g(n) has a root. Because N1 is large if η/|y0| � 1,
we use it as an initial guess and calculate

g(N1) =
ln
(
0.0711 + u(L)(N1 − 1)−

1
4

)
lnα

.(65)

An improved estimate for the root of g(n) is then given by

N1 − g(N1) = N1 −
ln
(
0.0711 + u(L)(N1 − 1)−

1
4

)
lnα

.(66)

Comparing (66) with the expression (60), we obtain the desired estimate for N(η, L)
by taking the maximum of these two expressions:

N(η, L) = N1 −

[
ln
(
0.0711 + u(L)(N1 − 1)−

1
4

)]
+

lnα
,(67)
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where

[a]+ =

{
a, a > 0,

0 otherwise.
(68)

In summary, the above approximations demonstrate that |yn(x)| = |y0|·|(Tn1)(x)|
is maximal near the boundaries of the interval [0, L]. The location of the maximum of
|(Tn1)(x)| depends in part on whether the fiber length L exceeds a critical value L∗.
The function (Tn1)(x) exhibits damped oscillatory behavior for x < L∗. Hence, if
L < L∗, we conclude that |(Tn1)(x)| is maximal either at x = 0 or at the first local
extremum of the function (Tn1)(x). Our computations rule out the latter case, and we
find that |(Tn1)(x)| is always maximal at x = 0 if L < L∗. For x > L∗, the function
(Tn1)(x) exhibits oscillations of growing amplitude and, in the worst case scenario,
|(Tn1)(x)| is maximal at x = L. Our estimate of N(η, L) is given by either (60)
or (67) depending on whether L exceeds L∗.

A discussion of the physiological interpretation of the above results is provided in
the next section.

4. Discussion and conclusions. We have described how a paced cardiac fiber
responds when the pacing period is suddenly changed from Bold to Bnew, providing
the first analysis of the transient behavior resulting from such a pacing protocol. We
estimated the number of beats N(η, L) required for the spatial variation in DI to be
small in the sense that

|Dn(x) −D∗
new| < η for all x ∈ [0, L], for all n ≥ N.

The estimate is given by either (60) or (67) depending on whether the fiber length
exceeds the critical value L∗ defined by (53). According to our approximations, for
L < L∗, the convergence to steady-state is slowest at the pacing site and the rate of
convergence is determined by the slope α of the restitution curve evaluated at D∗

new.
To test these predictions, we performed numerical simulations of (11), (13), and

(14) for a range of parameter values. In particular, we used the restitution and
dispersion curves in the appendix (see (73), (74)), varying the parameters (69) within
physiologically reasonable regimes for the mammalian ventricular action potential [1,
13] (e.g., peak conduction velocity of 60±20 cm/sec). We also repeated the numerical
simulations using simple exponential restitution and dispersion curves (see (3)), again
for a range of parameter values. As expected, for short fiber lengths (L < L∗) the
convergence is always slowest at the pacing site, and the transient lasts much longer
as α → 1−. Moreover, the estimate of N(η, L) given by (60) typically provides a very
accurate estimate (within several beats) of the actual number of beats required to
achieve approximate steady-state. Not surprisingly, the estimate given by (60) breaks
down if |Bold −Bnew| is large (on the order of hundreds of milliseconds) or if α is very
close to 1.

For long fibers (L > L∗), the spatial DI profiles generated by numerical sim-
ulations are qualitatively similar to those shown in Figure 2(a)—in particular, the
convergence Dn(x) → D∗

new is slowest at the far end of the fiber. In this case, (67)
typically provides an accurate estimate of N(η, L), with the same notable exceptions
as in the case of short fibers (see preceding paragraph).

We remark that L∗ is often so large that fibers of length L > L∗ are unrealistically
long—on the order of tens of centimeters or even meters. For example, consider the
restitution and dispersion curves in the appendix with parameter values given by (69).
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Using Bnew = 266 ms, one computes that α = 0.900 and λ = 0.127 cm−1, which
by (53) yields a critical fiber length L∗ in excess of 35 cm. Equation (53) suggests
that the critical length blows up as we approach the bifurcation to alternans: L∗ → ∞
as the slope α = f ′(D∗

new) → 1−, a prediction consistent with all of our numerical
simulations. Therefore, N is especially unlikely to exhibit any length dependence if
we are pacing in a regime close to the onset of alternans.

In closing, we remark that extending our results to the case of alternans may
be quite challenging. If α > 1, the operator T no longer has the property that
‖Tnϕ‖∞ → 0 as n → ∞ for all ϕ ∈ C[0, L]. Thus, a similar analysis of the alternans
regime would require a substantially different approach, which we hope to provide in
a future study.

Appendix. Sample restitution and dispersion curves. For the purpose
of numerical simulation, we provide sample formulas for restitution and dispersion
curves (73) and (74) for a particular choice of parameters. Using asymptotics, such
formulas can be derived [4, 20] from the equations of an idealized ionic model [17, 20];
we omit the details here. Below, we measure DI values in ms and we use the following
parameters:

τin = 0.1 ms, τout = 2.4 ms, τopen = 130 ms,(69)

τclose = 150 ms, κ = 10−3 cm2

ms
.

Let

h(DI) = 1 − (1 − hmin) e−DI/τopen(70)

and

V±(DI) =
1

2

(
1 ±

√
1 − hmin

h(DI)

)
,(71)

where

hmin =
4τin

τout
.(72)

Note that h(DI) and V±(DI) are dimensionless. In all numerical simulations, we use
the restitution function

f(DI) = τclose ln

[
h(DI)

hmin

]
(73)

and the dispersion function

c(DI) = max

⎧⎨
⎩
[
1

2
V+(DI) − V−(DI)

]√
2 κ h(DI)

τin
, 0

⎫⎬
⎭ .(74)

Note that f(DI) has units of ms and c(DI) has units of cm/ms.
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CYLINDER BUCKLING: THE MOUNTAIN PASS AS AN
ORGANIZING CENTER∗
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Abstract. We revisit the classical problem of the buckling of a long thin axially compressed
cylindrical shell. By examining the energy landscape of the perfect cylinder, we deduce an estimate
of the sensitivity of the shell to imperfections. Key to obtaining this estimate is the existence of a
mountain pass point for the system. We prove the existence on bounded domains of such solutions
for almost all loads and then numerically compute example mountain pass solutions. Numerically
the mountain pass solution with lowest energy has the form of a single dimple. We interpret these
results and validate the lower bound against some experimental results available in the literature.

Key words. imperfection sensitivity, subcritical bifurcation, single dimple
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1. Introduction.

1.1. Buckling of cylinders under axial loading. A classical problem in struc-
tural engineering is the prediction of the load-carrying capacity of an axially loaded
cylinder. In addition to being a commonly used structural element, the axially loaded
cylinder is the archetype of unstable, imperfection-sensitive buckling, and this has led
to a large body of theoretical and experimental research.

In the decades before and after the Second World War, a central problem was
understanding the large discrepancy between theoretical predictions and experimental
observations, as shown in Figure 1.1. A variety of different explanations has been put
forward, but with the experimental work of Tennyson [30] and the theoretical work
of Almroth [1] it became clear that this discrepancy is mostly due to imperfections
in loading conditions and in the shape of the specimens. Further experimental and
theoretical work by many others has confirmed this conclusion [14, 33, 36].

For near-perfect cylinders, the linear and weakly nonlinear theories (see sec-
tion 1.2) adequately describe the experimental buckling load1 and the deformation
just before failure (see, e.g., [4]). Cylinders used in practical applications, however,
are far too imperfect, and thus the weakly nonlinear theory does not apply. From a
practical point of view, the problem of predicting the failure load is still open.

There is good reason to believe that it will never be possible to accurately predict
failure loads for cylinders that are used in practice. For simple materials, such as
metals, it is believed that current numerical methods can describe the local material
behavior with enough accuracy that correct prediction of the complete behavior of the
cylinder—including its failure—is feasible. This could be achieved provided the geo-
metrical and material imperfections, as well as the loading conditions, are determined

∗Received by the editors July 12, 2005; accepted for publication (in revised form) April 6, 2006;
published electronically August 22, 2006.
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1In this paper the terms “experimental buckling load” and “failure load” are used interchangeably.
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Fig. 1.1. Experimental data from various research groups, all representing failure loads of
axially loaded cylinders. The horizontal axis is the ratio of the cylinder length and the wall thickness;
the vertical axis is the ratio of the failure load and the theoretical critical load as predicted for perfect
cylinders. Note that all tested cylinders fail at loads significantly lower than that predicted by theory;
the latter would correspond to failure load Pfail/Pcr = 1, and in some cases failure occurred at less
than one-fifth of this value. Power-law fitting lines are added to emphasize the dependence of the
failure load on the geometry. The data are from [10, 7, 5].

Pcr

Pimp

perfect

imperfect

end shortening

Fig. 1.2. Illustration of perfect and imperfect bifurcation curves. For the unperturbed system,
the undeformed state (the straight line) is always an equilibrium; this state loses stability at a
bifurcation point at load Pcr, and a curve of nonzero equilibria branches off. Perturbing the system
generically converts the sharp bifurcation into a smooth transition. In the case of the cylinder, the
postbuckling path is strongly unstable, and the perturbed path therefore has a lower limit load of Pimp.

in sufficient detail. The difficulty lies in the qualifier “in sufficient detail,” since an ex-
tremely accurate measurement of the geometric imperfections would be necessary [4],
and in the design phase both the loading conditions and the geometric and material
imperfections in the finalized product are known only in vague terms. Therefore, in
recent decades the attention of theoretical research has turned to characterizing the
failure load in weaker ways, preferably in the form of a lower (safe) bound.

1.2. Characterizing sensitivity to imperfections. Viewed as a bifurcation
problem, the buckling of the cylinder is a subcritical symmetry-breaking pitchfork
bifurcation (Figure 1.2). Generically, imperfections in the structure eliminate the
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bifurcation and round off the branch of solutions,2 resulting in a turning point at a
load Pimp strictly below the critical (bifurcation) load Pcr of the perfect structure. In
an experiment in which the load is slowly increased, the system will fail (i.e., make a
large jump in state space) at load Pimp.

Again, if the imperfections in geometry and loading are fully known, then calcu-
lation of Pimp is a practical rather than a theoretical problem, and we do not address
this problem here. For the more difficult question of characterizing Pimp under incom-
plete information, various strategies have been proposed. A classical line of thought
originates with Koiter [22], in which the imperfections are chosen a priori within cer-
tain finite-dimensional sets. Common choices are the sets spanned by the eigenvector
at the bifurcation point of the perfect structure or by the eigenvectors associated with
the first n bifurcations. This approach might be termed weakly nonlinear, as it is
based on an expansion of the energy close to the bifurcation point, in the directions
suggested by the bifurcation point itself. It gives predictions that are correct if the
imperfections are very small—much smaller than those encountered in practice.

Since the a priori choice of imperfections is a weak point of this method, a natural
step is to optimize over all possible perturbations. Deml and Wunderlich pioneered
this approach, in which a numerical algorithm is used to find a “worst geometric
imperfection” [9]. This “worst imperfection” is defined as that imperfection that pro-
duces a turning point of minimal load. Some constraint on the magnitude of allowable
perturbations is necessary, of course, to prevent the running of a steam roller over the
cylinder being interpreted as an admissible imperfection. The authors of [9] and [35]
first suggest constraining the L∞-norm of the perturbation displacement, but they
immediately replace the L∞-norm with an Lp-norm for computational convenience.

This method has an interesting aspect that is often glossed over in the engineering
literature. By definition, the failure load obtained by this method is a lower bound for
the failure load of all systems that have perturbations of lesser or equal magnitude.
The measure of magnitude is defined by the choice of constraint. Therefore the choice
of constraint on the imperfections is critical, since it implicitly defines a class of
imperfections that produce either the same failure load or a higher one.

1.3. Main results. In this paper we follow a related, but distinct, line of rea-
soning. Instead of studying the actual behavior of imperfect cylinders, we deduce an
estimate of the sensitivity to imperfections from the energy landscape of the perfect
cylinder. The final result is a lower bound on the failure load similar to the above
lower bound, and the approach gives additional insight into the problem.

The key result is the existence of a mountain pass point, an equilibrium state that
is straddled between two valleys in the energy landscape; one valley surrounds the
unbuckled state, and the other contains many buckled, large-deformation states.

This mountain pass point has a number of interesting properties, as follows:

1. It has the appearance of a single-dimple solution, a small buckle in the form of
a single dent (see Figure 1.3(a)). Single-dimple deformations have appeared
in engineering literature in a number of different ways (see section 6), but
a theoretical understanding of this phenomenon is still lacking. Localization
(concentration) of deformation is commonly known to appear in extended
structures [21], and in the cylinder localization in the axial direction has
been studied theoretically and numerically [20, 24, 25]. Whether localization

2Koiter actually used this elimination of a bifurcation point as a definition of “perfect system”
and “perturbed system” [22].



1796 JIŘÍ HORÁK, GABRIEL J. LORD, AND MARK A. PELETIER

(a)

wMP

(b) (c)

V (λ)

(a)

(b)�
���

(c)

F
λ
(w

)

distance in X

(a) . . . V (λ) = Fλ(wMP) ≈ 4.84
(b) . . . Fλ(w) ≈ −15.57
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Fig. 1.3. Part (a) shows a numerical computation of a solution wMP that is a mountain pass
point of the energy Fλ for a load λ = 1.5. We show the graph of the displacement wMP(x, y) as
a function of (x, y) as well as its rendering on a cylinder. At wMP there exist two directions in
the state space X in which the energy Fλ decreases. By perturbing wMP in these directions and
following a gradient flow of Fλ, we move away from wMP. In one direction the dimple shrinks and
disappears (not shown) and in the opposite its direction grows in amplitude and extent ((b) and (c)).

is possible in the tangential direction has been an open problem for some time;
it is interesting that our simulations for the perfect structure show solutions
that are localized in both axial and tangential directions.

2. Like all mountain pass points, this single-dimple solution is unstable, in the
sense that there are directions in state space in which the energy decreases.
In one direction the dimple roughly shrinks and disappears, and in the oppo-
site direction it grows and multiplies (Figures 1.3(b)–(c)). It is remarkable,
however, that our numerical results indicate that the single-dimple solution
has an alternative characterization as a constrained global minimizer (a global
minimizer of the strain energy under prescribed end shortening).

3. The equations can be rescaled so that the only remaining parameters are the
load level and the domain. The geometry of the mountain pass solution we
calculate even appears to be independent of the domain size.

This mountain pass point is central in an estimate of the sensitivity to pertur-
bations. For the system to escape from the neighborhood of the unbuckled state,
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it must possess at least the energy associated with this mountain pass point. The
mountain pass energy level is therefore an indication of the degree of stability of the
unbuckled state. Implicitly it defines a class of perturbations for which the unbuckled
state is stable. This approach is related to the “perturbation-energy” approach first
suggested by Kröplin, Dinkler, and Hillmann [23], Duddeck et al. [11], and Wagen-
huber and Duddeck [32], but differs in some essential points; see the discussion in
section 5.

1.4. Methods. We use both analytical and numerical methods. In section 2
we introduce the von Kármán–Donnell equations, which form the basis of this paper,
and rescale them in an appropriate manner. In section 3 we present the functional
setting that we use, show that the energy functional has the geometry associated
with a mountain pass, and prove the existence of mountain pass points (Lemma 3.6).
There are certain interesting technical issues. By their localized nature, single-dimple
solutions are most naturally defined on an unbounded domain; however, we are only
able to prove existence of mountain pass points on bounded domains, and consequently
we work on finite domains that become large in the limit of thin shells. Similarly,
the noncoercive nature of the energy functional implies that we prove the existence
of mountain pass points for almost all load levels (see Lemma 3.5).

In section 4 we turn to numerical investigation. We use a variety of different
algorithms to find solutions of the discretized von Kármán–Donnell equations. With
a discrete mountain pass algorithm we find solutions that are, by construction, moun-
tain pass points. The solution of Figure 1.3(a) was found in this manner. With a
constrained gradient flow we also find local minima of the strain energy under pre-
scribed end shortening. Some of these solutions appear to coincide with those found
by the discrete mountain pass algorithm, and the mountain pass solutions are stable
under this gradient flow. These observations lead us to conjecture that the global
mountain pass solution is also a global constrained minimizer of the strain energy. By
a constrained version of the discrete mountain pass algorithm, we also find critical
points of higher Morse index.

Section 5 is devoted to an interpretation of these results in the context of imper-
fection sensitivity, as mentioned above, and in section 6 we wrap up with the main
conclusions.

2. The von Kármán–Donnell equations. We consider a cylindrical shell of
radius R, thickness t, Young’s modulus E, and Poisson’s ratio ν that is subject to a
compressive axial force P . In Appendix B we derive the dimensionless von Kármán–
Donnell equations

ε2Δ2w + λ̄wxx − φxx − 2[w, φ] = 0,(2.1)

Δ2φ + [w,w] + wxx = 0,(2.2)

where subscripts x and y denote differentiation with respect to the spatial variables,
the Laplacian Δ is given by Δu = uxx + uyy, and the bracket [·, ·] is defined as

[a, b] =
1

2
axxbyy +

1

2
ayybxx − axybxy.

The function w is the inward radial displacement measured from an unbuckled (fun-
damental) state, φ is the Airy stress function, ε2 = t2(192π4R2(1 − ν2))−1, and the
nondimensional load parameter is given by λ̄ = P (8π3ERt)−1. The unknowns w
and φ are defined on the two-dimensional spatial domain (−�, �)× (−1/2, 1/2), where
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x ∈ (−�, �) is the axial and y ∈ (−1/2, 1/2) is the tangential coordinate. Since the y-
domain (−1/2, 1/2) represents the circumference of the cylinder, the functions w and
φ are periodic in y; at the axial ends x ∈ {−�, �} they satisfy the boundary conditions

wx = (Δw)x = φx = (Δφ)x = 0.

For the experiments that we are interested in, the parameter ε is small, ranging
from 10−2 to 10−4. Here we rescale (2.1)–(2.2) such that the equations themselves
are ε-independent, at the cost of a dependence on ε in the size of the spatial domain.
Set

w �→ εw, φ �→ ε2φ, x �→ ε1/2x, y �→ ε1/2y, λ̄ �→ ελ,(2.3)

so that the equations become

Δ2w + λwxx − φxx − 2 [w, φ] = 0,(2.4)

Δ2φ + [w,w] + wxx = 0.(2.5)

The domain of definition of w and φ is now

Ω := (−�ε−1/2, �ε−1/2) × (− 1
2ε

−1/2, 1
2ε

−1/2),

which expands to R2 as ε → 0. When not indicated otherwise, we choose the aspect
ratio 2� = 1; in section 4.3 we comment on the influence of domain size and aspect
ratio.

The boundary conditions for w and φ now are

w is periodic in y and wx = (Δw)x = 0 at x = ± 1
2ε

−1/2,(2.6a)

φ is periodic in y and φx = (Δφ)x = 0 at x = ± 1
2ε

−1/2.(2.6b)

Equations (2.4)–(2.5) are related to the stored energy E and the average axial
shortening S given by

E(w) :=
1

2

∫
Ω

(
Δw2 + Δφ2

)
and S(w) :=

1

2

∫
Ω

w2
x.(2.7)

Note that the function φ in (2.7) is determined from w by solving (2.5) with boundary
conditions (2.6b); this uniquely defines φ up to an additive constant.

Solutions of (2.4)–(2.5) are stationary points of the total potential

Fλ(w) := E(w) − λS(w).(2.8)

This can be recognized as follows: If we substitute for w the perturbed function
wη := w + ηw̃, then the perturbed Airy stress function φη solves

Δ2φη + [w,w] + 2η[w, w̃] + η2[w̃, w̃] + wxx + ηw̃xx = 0.

Therefore φη = φ + ηφ̃ + O(η2), where the perturbation φ̃ solves

Δ2φ̃ + 2[w, w̃] + w̃xx = 0
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with boundary condition (2.6b). Then

F ′
λ(w) · w̃ =

∫
Ω

[
ΔwΔw̃ + ΔφΔφ̃− λwxw̃x

]

=

∫
Ω

[
ΔwΔw̃ − φ

(
2[w, w̃] + w̃xx

)
− λwxw̃x

]

=

∫
Ω

[
ΔwΔw̃ − w̃

(
2[w, φ] + φxx

)
− λwxw̃x

]
,

and this is a weak formulation of (2.4). Besides being stationary points of Fλ, solutions
of (2.4)–(2.5) are also stationary points of E under the constraint of constant S; in
this case λ is a Lagrange multiplier. We use both properties below.

3. The mountain pass: Overview. We briefly recall the general context of
the Mountain Pass Theorem of Ambrosetti and Rabinowitz [2]. Let I be a functional
defined on a Banach space X, and let w1, w2 be two distinct points in X. Consider
the family Γ of all paths in X connecting w1 and w2 and define

c = inf
γ∈Γ

max
w∈γ

I(w),(3.1)

that is, the infimum of the maxima of the functional I along paths in Γ. If c >
max{I(w1), I(w2)}, then the paths have to cross a “mountain range,” and one may
conjecture that there exists a critical point wMP of I at the level c, called a mountain
pass point.

We will apply this idea to the von Kármán–Donnell equations in the following
way. We take for I the total potential Fλ (see (2.8)) at some fixed value of λ, and for
the end point w1 the origin. We will obtain a mountain pass solution by the following
steps:

MP1. We first show that w1 = 0 is a strict local minimizer, or more precisely,
that there exist 	, α > 0 such that Fλ(w) ≥ α for all w with ‖w‖X = 	
(Lemma 3.1).

MP2. If ε is small enough, then there exists w2 with Fλ(w2) ≤ 0 (Corollary 3.4).
MP3. Given a sequence of paths γn that approximates the infimum in (3.1), we

extract a (Palais–Smale) sequence of points wn ∈ γn, each one close to the
maximum along γn, and show that this sequence converges in an appropriate
manner (Lemmas 3.5 and 3.6).

In this way it follows that there exists a mountain pass critical point w with
Fλ(w) = c, provided that ε is sufficiently small (or that the domain is sufficiently
large). For technical reasons (lack of coerciveness of the functional Fλ) this procedure
can be performed only for almost all 0 < λ < 2 (see Lemma 3.5).

In the rest of this section we detail the steps outlined above.

3.1. Choice of spatial domain. We are interested in mountain pass solutions
of the system of equations (2.4)–(2.5) that are quasi independent of the domain size
ε−1/2, in the sense that they converge to a nontrivial solution on R2 as ε → 0. This
point of view suggests considering the problem on the whole of R2 rather than on a
sequence of domains of increasing size; however, there are two reasons for not doing
this. To start with, the numerical calculations described below are necessarily done
on a bounded domain; more important, for the proof of existence of mountain pass
points, boundedness of the domain is necessary. For these reasons we concentrate on
bounded domains, while keeping the context of the unbounded domain in mind.
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3.2. Functional setting and linearization. We introduce a functional setting
for the functions w that is suggested by the linearization of the stored energy functional
E. Writing φ = φ1 + φ2, where

Δ2φ1 = −wxx and Δ2φ2 = −[w,w],(3.2)

we can expand the energy functional E as

E(w) =
1

2

∫
Ω

Δw2 +
1

2

∫
Ω

Δφ2
1 +

∫
Ω

Δφ1Δφ2 +
1

2

∫
Ω

Δφ2
2.(3.3)

Since φ2 is quadratic in w, the second derivative of E is given by

d2E(0) · u · v =

∫
Ω

ΔuΔv +

∫
Ω

Δφu
1Δφv

1,

where φu,v
1 are obtained from u and v by replacing w with u or v in (3.2) and solving

this equation for φ1 with boundary conditions (2.6b). Inspired by this linearization
of E, we define

X =

{
ψ ∈ H2(Ω) : ψx

(
±1

2
ε−1/2, ·

)
= 0, ψ is periodic in y, and

∫
Ω

ψ = 0

}

with norm

‖w‖2
X =

∫
Ω

(
Δw2 + Δφ2

1

)
,

where φ1 ∈ H2(Ω) is the unique solution of

Δ2φ1 = −wxx, φ1 satisfies (2.6b), and

∫
Ω

φ1 = 0.

This norm is equivalent to the H2-norm on the set X, and with the appropriate inner
product the space X is a Hilbert space.

We now address the requirements of the mountain pass theorem mentioned above
in MP1–MP3.

3.3. The origin is a local minimizer. The norm in X is related in a natural
manner to the shortening S, as demonstrated by the (sharp) estimate

2S(w) =

∫
Ω

w2
x = −

∫
Ω

wwxx =

∫
Ω

wΔ2φ1

=

∫
Ω

ΔwΔφ1 ≤ 1

2

∫
Ω

Δw2 +
1

2

∫
Ω

Δφ2
1 =

1

2
‖w‖2

X .

(3.4)

This inequality strongly suggests that for λ < 2 the origin is a strict local minimum
for the functional Fλ(w) = E(w) − λS(w).

Lemma 3.1. For any λ < 2, there exists 	 > 0 such that

inf
{
Fλ(w) : ‖w‖X = 	

}
> 0.

Proof. Split φ = φ1 + φ2 as in (3.2), and note that the function ∇φ1 is bounded
in L∞ by the Sobolev imbedding {ψ ∈ H3 :

∫
ψ = 0} ↪→ L∞:

‖∇φ1‖2
L∞ ≤ C

∥∥Δ2φ1

∥∥2

L2 = C ‖wxx‖2
L2 .
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The third term on the right-hand side of (3.3) can now be rewritten as∫
Ω

Δφ1Δφ2 =

∫
Ω

φ1[w,w] =

∫
Ω

φ1(wxxwyy − w2
xy) =

∫
Ω

(φ1ywxwxy − φ1xwxwyy),

which we estimate by∣∣∣∣
∫

Ω

Δφ1Δφ2

∣∣∣∣ ≤ 2 ‖∇φ1‖L∞ ‖wx‖L2 ‖Δw‖L2 ≤ C ‖wx‖L2 ‖Δw‖2
L2 ≤ C

√
S(w) ‖w‖2

X .

Since λ < 2, choose 0 < 	 < (2 − λ)/2C and define η = (1/2)(1 − C	 − λ/2) > 0.
Then on the set C = {w : ‖w‖X = 	}, using (3.4), we find that

Fλ(w) = E(w) − λS(w)

≥ 1

2
‖w‖2

X − C
√
S(w) ‖w‖2

X − λS(w)

≥ 	2

2
− C	3 1

2
− λ

	2

4

=
	2

2

(
1 − C	− λ

2

)
= η	2.

This lemma implies that by choosing w1 to be the origin we have shown condition
MP1.

Remark 3.2. Although inequality (3.4) suggests that the origin should be a local
minimizer for any domain Ω, bounded or not, the proof above applies only to bounded
domains. F. Otto has constructed a proof of this result that is valid on any domain
(private communication). Interestingly, this proof uses not only the cubic energy term∫

Ω
Δφ1Δφ2, but also the quartic term

∫
Ω

Δφ2
2, and appears to break down without

this latter term.

3.4. Periodic solutions exist with negative Fλ. To satisfy MP2 we show in
this section that for any λ > 0, functions w ∈ X exist, for which Fλ(w) = E(w) −
λS(w) < 0. To do this we construct a sequence of functions wδ with specific scaling
properties.

Lemma 3.3. There exists a sequence of functions wδ, 1-periodic on R2, such that
as δ → 0,

1.

∫
[−1/2,1/2]2

w2
δx −→ c for some c > 0,

2.

∫
[−1/2,1/2]2

Δw2
δ = O(δ−1)

and

∫
[−1/2,1/2]2

Δφ2
δ = O(δ2−α) for any α > 0.

Here the functions wδ and φδ solve (2.5) with periodic boundary conditions. In ad-
dition, wδ and φδ satisfy boundary conditions (2.6) on the boundary of [−1/2, 1/2]2.

The proof, given in Appendix A, is inspired by the so-called Yoshimura pat-
tern [37], a folding pattern by which a flat sheet of paper, or a cylindrical sheet of
thin material, can be folded into a macroscopically cylindrical structure with zero
Gaussian curvature but locally infinite total curvature (Figure 3.1). The functions
wδ are smoothed versions of the Yoshimura pattern, adapted to the geometrically
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Fig. 3.1. Yoshimura folding pattern.

linear setting of the von Kármán–Donnell equations, and δ measures the width of the
fold.

Corollary 3.4.

1. Fix λ > 0. If ε is sufficiently small, then there exists w ∈ X such that
Fλ(w) < 0.

2. Fix ε sufficiently small. Then there exists λ0(ε) ∈ [0, 2) such that for all
λ > λ0, there exists w ∈ X with Fλ(w) < 0.

Proof. By scaling the functions wδ of Lemma 3.3, the claims can be fulfilled as
follows: Let δ = ε2/3, and set

w̃ε(x, y) = ε−1wε2/3(xε1/2, yε1/2), φ̃ε(x, y) = ε−2φε2/3(xε1/2, yε1/2);

then w̃ε ∈ X, and (2.5) is invariant under this scaling; in addition, choosing α = 1/6,
we obtain

Qε :=

∫
Ωε

[
Δw̃2

ε + Δφ̃2
ε

]
∫

Ωε

w̃2
εx

= O
(
ε1/6

)
as ε → 0.

Therefore limε→0 Qε = 0, proving the first claim. For the second claim, we fix ε such
that Qε < 2; then for all λ > Qε, Fλ(w̃ε) < 0.

3.5. Convergence of selected sequences. For given λ ∈ (0, 2) and for suffi-
ciently small ε > 0, the two previous sections provide two points: the origin w1 = 0
that satisfies MP1, and a point w2 with Fλ(w2) < 0, such that

c(λ) := inf
γ∈Γ

max
w∈γ

Fλ(w) > 0,(3.5)

where Γ is the set of curves connecting 0 and w2,

Γ = {γ ∈ C([0, 1];X) : γ(0) = 0, γ(1) = w2}

(actually, Γ depends on λ through the dependence on w2, but w2 can be taken inde-
pendently of λ in a neighborhood of a given λ ∈ (0, 2)).

We were unable to prove the classical Palais–Smale condition, which reads as
follows:
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For any sequence wn ∈ X such that Fλ(wn) → c and F ′
λ(wn) → 0 in

X ′, there exists a subsequence that converges in X.

The difficulty lies in the lack of coerciveness of the functional Fλ: the quotient
Fλ(w)/ ‖w‖2

X is not bounded away from zero, implying that Palais–Smale sequences
may be unbounded in X.

The “Struwe monotonicity trick” [29] provides a way of proving the boundedness
of Palais–Smale sequences for at least almost all λ ∈ (0, 2). The pertinent observation
is that for fixed w, Fλ(w) is decreasing in λ; consequently, c(λ) is a decreasing function
of λ and therefore differentiable in almost all λ ∈ (0, 2). If γ(t) is the highest point of a
near-optimal curve γ at some λ0, then c′(λ0) should be close to −S(γ(t)). Finiteness
of c′ at λ0 thus implies that near–mountain pass points have bounded S, and this
additional information suffices for the construction of bounded sequences.

Lemma 3.5. Let λ ∈ (0, 2) be such that c′(λ) exists. Then there exists a bounded
Palais–Smale sequence wn, i.e., a sequence satisfying that

1. wn is bounded in X;
2. F ′

λ(wn) → 0 in X ′ and Fλ(wn) → c(λ);
3. there exists a sequence of curves (γn) ⊂ Γ such that wn ∈ γn([0, 1]) and

maxt∈[0,1] Fλ(γn(t)) → c(λ).
In [28] this same argument was used to study mountain pass points for the related

one-dimensional functional

Jλ(u) =

∫
R

{1

2
u′′2 − λ

2
u′2 + F (u)

}
,

where F is a nonnegative double- or single-well potential. The proof of Lemma 3.5
repeats verbatim the proof of [28, Prop. 5], and we omit it here.

Lemma 3.6. The sequence wn given by Lemma 3.5 is compact in X, and a
subsequence converges to a stationary point w ∈ X of Fλ.

Strictly speaking, the stationary point given by this lemma may not be a mountain
pass point itself, in the sense that there may not be a curve γ ∈ Γ of which w is the
highest point. Property 3 of Lemma 3.5, however, states that w has an approximate
mountain pass character.

Proof. We extract a subsequence that converges weakly in X and strongly in H1

and L∞ to a limit w. Defining φ1n and φ2n by (3.2), we find that the right-hand sides
in (3.2) are bounded in L2 and L1, and therefore that φ1n and φ2n converge strongly
(up to extracting a subsequence, which we do without changing notation) in H2 to
functions φ1,2. Both functions φ1,2 are again related to w by (3.2); for φ2 this follows
from remarking that for given ζ ∈ C∞

c (Ω),

lim
n→∞

∫
Ω

ζ[wn, wn] = lim
n→∞

∫
Ω

wn[ζ, wn] =

∫
Ω

w[ζ, w] =

∫
Ω

ζ[w,w],

so that the right-hand side converges in the sense of distributions. Similarly, it follows
from the strong H2-convergence of φn = φ1n + φ2n that

lim
n→∞

∫
Ω

φn[wn, w − wn] = lim
n→∞

∫
Ω

wn[φn, w − wn] = 0.

To show that wn converges strongly in X, note that the derivative F ′
λ(wn) can

be characterized as

F ′
λ(wn) · v =

∫
Ω

ΔwnΔv −
∫

Ω

φn

(
vxx + 2[wn, v]

)
− λ

∫
Ω

wnxvx.
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We now calculate

lim
n→∞

{∫
Ω

Δw2 −
∫

Ω

Δw2
n

}
= lim

n→∞

∫
Ω

ΔwnΔ(w − wn)

= lim
n→∞

{
F ′
λ(wn) · (w − wn) +

∫
Ω

φn

(
(w − wn)xx + 2[wn, w − wn]

)
+ λ

∫
Ω

wnx(w − wn)x

}
= 0.

The strong convergence of wn in X now follows from the uniform convexity of X.

4. Numerical results.

4.1. Description of the algorithm. Our goal in this section is to find, numer-
ically, critical points of Fλ. Although we will focus on mountain pass points described
above and sketch the method used to find them, numerical approximations of other
critical points of Fλ will be shown as well. More details on all the numerical methods
used are given in a companion paper [17].

In order to employ the mountain pass algorithm, we discretize (2.4)–(2.8) using
finite differences. The algorithm was first proposed in [8] for a second-order elliptic
problem in one dimension. It was later used in [18] for a fourth-order problem in two
dimensions.

The main idea of the algorithm is illustrated in Figure 4.1. We take a discretized
path connecting w1 = 0 with a point w2 such that Fλ(w2) < 0. After finding the point
zm at which Fλ is maximal along the path, this point is moved a small distance in
the direction of the steepest descent of Fλ. Thus the path has been deformed and the
maximum of Fλ lowered. This deforming of the path is repeated until the maximum
along the path cannot be lowered any more: a critical point wMP has been reached.

Figure 4.2(a) shows a numerical solution of (2.4)–(2.5) obtained by this algorithm
with λ = 1.1. The graph in each panel shows the radial displacement w as a function

w1

w2

zm

znew
m −∇Fλ(zm)

wMP

X

Fig. 4.1. Deforming the path in the main loop of the mountain pass algorithm: point zm is
moved a small distance in the direction −∇Fλ(zm) and becomes znew

m . This step is repeated until
the mountain pass point wMP is reached.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Fig. 4.2. Numerical solutions found using the (constrained) mountain pass algorithm, con-
strained steepest descent method, and the Newton algorithm. The figures show both the graph of
w(x, y) and its rendering on a cylinder.
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of x and y. Rendered on a cylinder, this solution represents a single dimple, as can
be seen below the graphs.

We restrict our computations to functions that are even about the x- and y-axes,
i.e., to the subspace

S = {ψ ∈ X : ψ(x, y) = ψ(−x, y), ψ(x, y) = ψ(x,−y)},

thus reducing the computational domain Ω to one quarter, e.g., (0, 1
2ε

−1/2)×(0, 1
2ε

−1/2).
The boundary conditions (2.6a) then become

wx = (Δw)x = 0 for x ∈ {0, 1
2ε

−1/2} and wy = (Δw)y = 0 for y ∈ {0, 1
2ε

−1/2}.

This symmetry assumption has many numerical advantages, but on the other hand it
a priori excludes solutions that do not belong to S .

For the mountain pass algorithm, we always use the unbuckled state w1 = 0
as the first end point of the paths. The choice of the second end point w2 has a
nontrivial influence on the solution to which the mountain pass algorithm converges.
Corollary 3.4 guarantees the existence of w2 ∈ S with Fλ(w2) < 0; in the numerical
implementation, however, we found such a w2 by a steepest descent method (rather
than by taking the function constructed in the proof of Lemma 3.3): starting from a
function w0 that has one peak located in the center of the domain Ω, we solved the
initial value problem

d

dt
w(t) = −∇Fλ(w(t)), w(0) = w0,(4.1)

on an interval (0, T ) until Fλ(w(T )) < 0. We then defined w2 = w(T ).

A different choice of w2 (or, more precisely, of the starting point w0 of (4.1)) can
lead to a different solution of the problem, as Figures 4.2(b) and (f) show. Here w0

was chosen to have two peaks with centers on the axes x = 0 and y = 0, respec-
tively. The algorithm then converged to a numerical solution with two dimples in the
circumferential and axial directions, respectively.

Note that the numerical solution wMP selected by the mountain pass algorithm
has the mountain pass property in a certain neighborhood only: there exists a ball
Bρ(wMP) and two points w̃1, w̃2 ∈ Bρ(wMP) such that

Fλ(wMP) = inf
γ∈Γ̃

max
w∈γ

Fλ(w) > max{Fλ(w̃1), Fλ(w̃2)},

where Γ̃ is the set of curves in Bρ(wMP) connecting w̃1 and w̃2. The reason for this
is that the algorithm deforms a certain initial path connecting w1 and w2 which is
fixed. In order to recover the global character, one would need to run the algorithm
for all possible initial paths.

The rest of the numerical solutions shown in Figure 4.2 were obtained under a
prescribed value of shortening S by the constrained steepest descent method and the
constrained mountain pass algorithm [16, 17].

4.2. Calculation of Fλ(wMP). In the preceding sections we showed that

1. for a sufficiently large domain Ω, a function w2 on Ω exists with Fλ(w2) < 0;
2. for each such function w2 and for almost all 0 < λ < 2, a mountain pass

solution wMP = wMP(λ,Ω, w2) exists.
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Different end points w2 may give rise to different mountain pass points, as we have
observed in the numerical experiments described above. We therefore define the
mountain pass energy function V on (0, 2) by

V (λ,Ω) := inf
w2

{
Fλ

(
wMP(λ,Ω, w2)

)
: Fλ(w2) < 0

}
.(4.2)

For a given λ, the value of V (λ,Ω) is the lowest height (or energy level) at which one
may pass from the origin to a point with negative total potential Fλ. We now derive
some of its properties and calculate it numerically.

Lemma 4.1 (properties of V (λ,Ω)).
1. For sufficiently large Ω there exists λ0(Ω) ≥ 0 such that V (λ,Ω) < ∞ for

almost all λ ∈ (λ0, 2).
2. V is a decreasing function of λ.
3. For sufficiently large Ω, there exists c(Ω) > 0 such that

V (λ,Ω) ≤ c(2 − λ)3

for sufficiently small 2 − λ > 0.
Proof. Part 1 is a reformulation of the main result of section 3, making use of

Corollary 3.4. For part 2 we remark that for each fixed w, Fλ(w) is a decreasing
function of λ; the infimum of a set of decreasing functions is again decreasing.

For part 3, let us set

E(w) = E2(w) + E3(w) + E4(w),

where

E2(w) :=
1

2
‖w‖2

X =
1

2

∫
Ω

(
Δw2 + Δφ2

1

)
, E3(w) :=

∫
Ω

Δφ1Δφ2,

and E4(w) :=
1

2

∫
Ω

Δφ2
2,

where φ1 and φ2 are determined from w by (3.2) (see also (3.3)). Note that En has
homogeneity n, i.e., En(μw) = μnEn(w).

A classical result in the engineering literature of cylinder buckling (see, e.g., [20])
states that there exists a periodic function w on R2 such that

E2(w) = 2S(w) and E3(w) + E4(w) < 0.

Here and below we consider the integrals that define En(w) and S(w) as taken over
a single period cell. For sufficiently small 2 − λ > 0 the inequality above gives that
Fλ(w) = (2 − λ)S(w) + E3(w) + E4(w) is negative, implying that w is an admissible
end point w2 for definition (4.2) of V (λ,Ω), and the connecting line segment {μw :
0 ≤ μ ≤ 1} is therefore an admissible curve in Γ. Consequently,

V (λ) ≤ sup
0≤μ≤1

Fλ(μw) = sup
0≤μ≤1

μ2(2 − λ)S(w) + μ3E3(w) + μ4E4(w).

The supremum on the right-hand side is obtained at

μ =
3 |E3(w)|
8E4(w)

{
1 −

√
1 − 32(2 − λ)S(w)E4(w)

9E3(w)2

}

=
2S(w)

3 |E3(w)| (2 − λ) + o(1) as λ → 2,
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Ω = (−a, a) × (−b, b):
(i) . . . a = b = 50
(ii) . . . a = b = 100
(iii) . . . a = 100, b = 200
(iv) . . . a = 200, b = 100
(v) . . . a = b = 200V

(λ
)

λ

‖w
M

P
(λ

)‖
2

λ

Fig. 4.3. Left: The mountain pass energy V (λ,Ω) found numerically for various sizes of domain
Ω. Right: The solid line shows the same computation as on the left, but plotted for the norm of
wMP(λ) squared. The dashed curve was obtained by continuation of the solid curve; the solutions
on the dashed curve do not represent mountain pass points.

(a) (b)

Fig. 4.4. The numerical mountain pass solution wMP of the scaled equations (2.4)–(2.5) for
a given value of λ rendered on two cylinders of the same radius R but a different thickness t:
(a) t/R = 0.003, (b) t/R = 0.04.

implying that the claim holds for periodic functions. The generalization to nonperiodic
functions on large domains Ω (i.e., for small ε) is made by filling the domain with a
large number of periodic cells of the function w and connecting the function smoothly
to the boundary of Ω.

Figure 4.3 shows graphs of the mountain pass energy V (λ,Ω) computed for various
sizes of domain Ω. For each domain, the mountain pass algorithm was employed
to compute wMP for several values of λ. These mountain pass solutions were then
continued in λ using numerical path following.

4.3. Influence of the domain. The localized nature of the solutions calculated
above suggests that they should be independent of domain size, in the sense that
for a sequence of domains of increasing size the solutions converge (for instance,
pointwise on compact subsets). Such a convergence would also imply convergence of
the associated energy levels. Similarly, we would expect that the aspect ratio of the
domain is of little importance in the limit of large domains.

We have tested these hypotheses by computing mountain pass solutions on do-
mains of different sizes and aspect ratios. Generally solutions on different domains
compare well; the maximal difference between the second derivatives of w is two or
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three orders of magnitude smaller than the supremum norm of the same derivative
(the details of this comparison are given in [17]).

Here we include only a calculation of the mountain pass energy level V (λ,Ω) for
different aspect ratios and sizes of domain Ω (see Figure 4.3).

The comparison of solutions computed on different domains and their respective
energies suggests that for each λ we are indeed dealing with a single, localized function
defined on R2, of which our computed solutions are finite-domain adaptations. In the
rest of this paper we adopt this point of view, and consequently we will write V (λ)
instead of V (λ,Ω).

A consequence of this point of view is that dimples in cylinders with different
geometric parameters are mapped to the same rescaled solution, or equivalently, that
the same single-dimple solution of (2.4)–(2.5) corresponds to differently sized dimples
on an actual cylinder, as a function of the parameters (see Figure 4.4).

5. Interpretation: Imperfection sensitivity. We now turn to the relevance
of the mountain pass in the context of a loading problem. This relevance can be
best understood in the context of imperfections in the loading conditions (rather than
geometric imperfections) such as in the case of a (small) lateral loading.

Under a small lateral load, an equilibrium w0, which is a local minimum of the
functional Fλ, may be perturbed into an equilibrium w̃0 of a perturbed functional F̃λ.
Since w0 is a local minimum, Fλ(w̃0) > Fλ(w0); i.e., with respect to the unperturbed
system, w̃0 has a higher total potential than w0. The level of Fλ that is reached is a
measure of the magnitude of the imperfection—a different measure than is commonly
used, but one that has distinct advantages.

By definition, the number V (λ) is the lowest energy level at which it is possible
to move between the basins of attraction of w1 and w2 (Figure 5.1). If the loading
imperfection is interpreted, as above, as a mechanism capable of maintaining the
system at a higher energy level than that of the neighboring fundamental minimizer,
then the number V (λ) is critical: as long as the imperfection is so small that the
energy is never raised by more than V (λ), the new stationary point will be part of the
same basin of attraction as w1. For larger imperfections, however, it becomes possible
to leave the fundamental basin of attraction, resulting in a large jump in state space.

V (λ)

w1

Fλ

w2

Fig. 5.1. In order to leave the basin of attraction of w1, the surplus energy should exceed V (λ).

This line of reasoning provides a natural measure of the size of imperfections,
namely, the maximal increase in energy (in the perfect structure) that an imperfec-
tion can achieve. It also provides a natural measure of the stability of the unbuckled
state, since a higher mountain pass energy level implies a larger class of loading imper-
fections under which the state remains in the fundamental basin of attraction. This
observation allows us to connect systems with different geometrical characteristics
and compare their relative sensitivity to imperfections.
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5.1. Calibrating the mountain pass energy. Comparing cylinders of varying
geometries requires a common measure of imperfection sensitivity. It is not a priori
clear which measure to take; e.g., one might consider either the mountain pass en-
ergy itself or the average spatial density of this energy, which will result in different
comparisons for cylinders of different wall volumes. Here we choose to rescale the
mountain pass energy level by the other energy level present in the loaded cylinder,
i.e., the energy that is stored in the homogeneous compression of the unbuckled shell.

This calculation can be done in two slightly different ways. The first and most
straightforward is to rescale the dimensional mountain pass energy (see (B.11) and
(2.3)),

64π6EtR2ε3V (λ) =
Et4

8(3(1 − ν2))3/2R
V (λ),

by the elastic strain energy stored in the full length of the compressed cylinder of
length L,

L

4πERt
P 2 =

πt3EL

12(1 − ν2)R
λ2,

to give an energy ratio, or a rescaled mountain pass energy level,

α =
1

2π
√

3(1 − ν2)

t

L

V (λ)

λ2
.(5.1)

From this expression and the calculation shown in Figure 4.3, curves may be drawn
in a plot of load versus the ratio L/t (see Figure 5.2). Note that to obtain this figure
from Figure 4.3 the curve V (λ) was fitted to extend the range of λ. Figure 5.2 shows
the following two remarkable features:

Pfail/Pcr

L/t

0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Donnell (steel)

Power law fit : y=1.03x−0.176

Donnell (brass)
Power law fit : y=0.511x−0.0879

Bridget et al
Power law fit : y=0.373x−0.00504

Ballerstedt & Wagner
Power law fit : y=4.22x−0.374

Vmp fit with α=1,
Vmp fit with α=0.1

Fig. 5.2. Shown are the same data as in Figure 1.1, with the addition of two curves of constant
α = 1, α = 0.1, where α is given in (5.1). Note that the load at which the mountain pass energy
equals the stored energy in the prebuckled cylinder (α = 1) appears to be a lower bound on the data.
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1. The general trend of the constant-α curves is very similar to the trend of the
experimental data.

2. The α = 1 curve, which indicates the load at which the mountain pass energy
equals the stored energy in the prebuckled cylinder, appears to be a lower
bound on the data.

One may also consider an alternative way of rescaling energy. The cylinder is
a long structure, and it is not clear to what extent the length of the structure is
relevant for the imperfection sensitivity. It may be reasonable to compare the energy
of the mountain pass with the stored energy contained in a representative section of
the cylinder; the radius R provides a natural length scale for such a representative
section.

Similar to Figure 5.2, Figure 5.3 presents curves of constant β, where β is the
ratio of mountain pass energy to stored energy in a section of length 2πR:

β =
1

4π2
√

3(1 − ν2)

t

R

V (λ)

λ2
.(5.2)

Once again, to obtain Figure 5.3 we fitted V (λ) from Figure 4.3 to extend the range
of λ.

Pfail/Pcr

R/t
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0
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Donnell (steel)

Power law fit : y=2.53x−0.358

Donnell (brass)
Power law fit : y=1.61x−0.297

Bridget et al
Power law fit : y=1.93x−0.279

Ballerstedt & Wagner
Power law fit : y=3.2x−0.318

Vmp fit with β=1,
Vmp fit with β=0.1

Fig. 5.3. Experimental data and fit to Vmp with β = 1 and β = 0.1 in (5.2). Again, the load at
which the mountain pass energy equals the stored energy in a representative portion of the prebuckled
cylinder (β = 1) appears to be a lower bound on the data.

6. Discussion and conclusions. The mathematical results and their interpre-
tation in the context of a loading problem have brought about a number of new and
improved insights.

6.1. The cylinder has doubly localized solutions. The subcritical nature of
the bifurcation in Figure 1.2 strongly suggests that equilibria exist with deformation
localized to a small portion of the cylinder length. In [20, 24, 25] such solutions
are indeed calculated numerically and investigated analytically; these solutions are
periodic around the cylinder and have exponential decay in the axial direction.
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The localization in the axial direction demonstrated by these solutions is consis-
tent with results on simpler systems, such as the laterally supported strut [21, 26].
The behavior of the cylinder in the tangential direction is not as well understood. The
lack of localization in the simply supported flat plate [13] suggests that the cylinder
should also prefer tangentially delocalized solutions, as do most of the experiments.
The single- and multiple-dimple solutions of this paper, however, clearly demonstrate
that doubly localized solutions do exist, and that some of these can be stable under
constrained shortening.

6.2. The mountain pass is a single-dimple solution. The fact that the
mountain pass solution exists follows essentially from two features, the local mini-
mality of the unbuckled state and the existence of a large-deflection state of lower
energy. The former is a simple consequence3 of the subcritical load level, but the
latter is based on an essential property of the cylinder: for a sequence of cylinders
for which R/t → ∞, the nondimensionalized load-carrying capacity (the highest load
at which the unbuckled state is not only a local but also a global energy minimizer)
decreases to zero. This property was demonstrated implicitly by Hoff, Madsen, and
Mayers [15], and Lemma 3.3 provides a simplified proof of this result and a simple
sequence of functions that illustrates the property.

However, the fact that the mountain pass solution is localized, and even is the
most localized solution that is possible—a single dimple—is interesting in its own
right and provides a complementary view of the discussion of localization above. A
different way of formulating this result is that “creating the first dimple is the major
obstacle”; afterwards one may increase the size of the dimple and add further dimples
without ever returning to the same high energy level. In itself this interpretation
points to a relationship between single dimples and imperfection sensitivity.

6.3. Single dimples in other contexts. Interestingly, single dimples have
appeared in the literature in a number of seemingly unrelated ways:

• In the celebrated high-speed camera images of Eßlinger [12], the first visible
deformation is a single, well-developed dimple halfway between the ends of
the cylinder. New dimples quickly appear next to this first dimple, and the
deformation then spreads around the cylinder in an axial direction. It is
remarkable, though, that the first visible deformation is a single dimple.

• Some of the “worst” imperfections calculated by Deml and Wunderlich [9]
and Wunderlich and Albertin [35] are in the form of a single dimple; as the
load decreases, the dimple contracts and becomes even more concentrated.

• Hühne et al. [19] assert that single dimples are also realistic and stimulating
imperfections in the sense of [34].

• Zhu, Mandal, and Calladine [38] base their analysis of the scaling behavior
of the experimental buckling load on the behavior of a single dimple in other
structural situations (such as the point-loaded cylinder and the sphere under
uniform external pressure).

Note that the single-dimple appearances above are of three different types. Eß-
linger’s dimple is an experimental observation; the dimples of Wunderlich and cowork-
ers and of Hühne et al. are geometric imperfection profiles; and the dimples studied
by Zhu, Mandal, and Calladine are only analogies, since they are solutions of different
problems.

3On a finite domain this consequence is indeed simple; on an infinite domain it appears that not
only the third-order term but also the fourth-order term in the energy has to be taken into account,
as remarked in section 3.
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w1

w2

w3

w4

Fig. 6.1. While a local algorithm for finding a critical point may settle on a minor critical
point such as w3, the mountain pass algorithm, by its global setup, will converge to the essential
obstacle w4.

6.4. Scale-invariance of the localized solutions. It is an interesting obser-
vation that the von Kármán–Donnell equations can be rescaled to depend only on
the (rescaled) load level. For localized solutions, for which the boundary plays no
role of importance, this implies that the set of solutions reduces to a one-parameter
family. This not only allows for efficient computation of the behavior of such solutions
but also gives interesting insight into the relationship between dimples in cylinders of
varying geometry (see, e.g., Figure 4.4).

Naturally the scale-invariance is expected to break upon replacing the von Kár-
mán–Donnell equations with a different (probably more detailed) shell model. None-
theless, it may be reasonably expected that much of the understanding of the rela-
tionship between cylinders of different geometries remains roughly correct.

We certainly also expect that the large-scale geometry of the energy landscape
does not depend on the specific model of the cylinder. Using a discrete mountain pass
algorithm to find mountain pass points therefore does not depend on the von Kármán–
Donnell equations and should give similar results regardless of which shell model is
used.

6.5. Connection with sensitivity to imperfections and “perturbation
energy.” Kröplin, Dinkler, and Hillmann [23]; Duddeck et al. [11]; and Wagenhuber
and Duddeck [32] were the first to suggest an estimate of the stability of the unbuckled
state in terms of the ratio of a “perturbation energy” (Störenergie) to the prebuckling
energy. In early papers [23, 11] the perturbations are still fixed rather than deter-
mined, but from both the introduction and the final results in [32] it may be deduced
that an optimization is done over all perturbations (although this is simultaneously
contradicted on page 333 of [32]). Unfortunately, these papers do not provide enough
details for determining exactly what the authors calculate.

There is one aspect in which our method can clearly be seen to differ from these
earlier approaches. The discrete mountain pass algorithm takes into account global
features of the energy landscape and provides a global measure of the separation bar-
rier between two states that lie far apart. This is different from the papers mentioned
above, in which the method uses only local information (reflected, for instance, in
the assumption that the equilibria in question lie on the same bifurcation branch).
This difference is illustrated in Figure 6.1, where a local analysis might find stationary
point w2, but the mountain pass algorithm will find the more important obstacle w4.

Appendix A. Proof of Lemma 3.3. Lemma 3.3 states that there exists a
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sequence of functions wδ, 1-periodic on R2, such that∫
[−1/2,1/2]2

w2
δx ∼ 1,

∫
[−1/2,1/2]2

Δw2
δ = O(δ−1),(A.1)

and

∫
[−1/2,1/2]2

Δφ2
δ = O(δ2−α) as δ → 0

for any α > 0. Here the function φδ solves (2.5) with periodic boundary conditions.
In addition, wδ and φδ satisfy (2.6) on the boundary of [−1/2, 1/2]2.

The proof consists of three parts. In the first part we construct the functions wδ;
in the second part we study the symmetry properties and the support of the right-
hand side of (2.5); and in the third part we show that this sequence has the asserted
scaling.

A.1. Construction of wδ. Let fδ be given by

f ′′
ε (s) =

⎧⎨
⎩

1

4δ
, dist(s,Z) < δ,

0 otherwise,
with fδ(0) = f ′

δ(0) = 0.

Note that f is even and that f(1) = 1/4. Define

wδ(x, y) = fδ(y + x) + fδ(y − x) − 1

2
fδ(2x) − 1

2
y2.

We shall drop the subscript δ and simply write w and f .
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Fig. A.1. The functions f and −w; on the right the plotting area is slightly larger than one
period.

The function w is periodic on R2 with period 1 in each direction. To show this,
we prove that the first two derivatives match up on opposite sides of [−1/2, 1/2] ×
[−1/2, 1/2] as follows:

• By the symmetry of f , the function w is even in both x and y. Consequently w
takes the same values on (1/2, y) and (−1/2, y); the same holds for (x,±1/2).

• For the comparison of the first derivatives, we calculate∫ 1/2

−1/2

wxx(x, y) dx =

∫ 1/2

−1/2

f ′′(y + x) dx

+

∫ 1/2

−1/2

f ′′(y − x) dx− 2

∫ 1/2

−1/2

f ′′(2x) dx = 0,
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implying that wx(−1/2, y) = wx(1/2, y); by the symmetry of w it follows that
wx(−1/2, y) = wx(1/2, y) = 0. Similarly, using the definition of fδ we find
that∫ 1/2

−1/2

wyy(x, y) dy =

∫ 1/2

−1/2

f ′′(y + x) dy +

∫ 1/2

−1/2

f ′′(y − x) dy − 1 = 0,

implying that wy(x,−1/2) = wy(x, 1/2) = 0.
Periodicity on R2 then follows from the remark that all second derivatives of w are
periodic with period 1 in x and y.

A.2. Support, symmetry, and boundary conditions. Next we investigate
the right-hand side of (2.5). We find

[w,w] + wxx =
{
(f ′′(y + x) + f ′′(y − x) − 2f ′′(2x))(f ′′(y + x) + f ′′(y − x) − 1)

− (f ′′(y + x) − f ′′(y − x))2
}

+ (f ′′(y + x) + f ′′(y − x) − 2f ′′(2x))

= 4f ′′(y + x)f ′′(y − x) − 2f ′′(2x)(f ′′(y + x) + f ′′(y − x)).

This expression has a zero integral over [−1/2, 1/2]2. This follows from the periodicity
of w, ∫ 1/2

−1/2

∫ 1/2

−1/2

wxxwyy dxdy =

∫ 1/2

−1/2

∫ 1/2

−1/2

w2
xy dxdy,(A.2)

by partial integration. More is true, however; we analyze the support of [w,w] +wxx

in [−1/2, 1/2]2 in more detail.
The value of f ′′ is either (4δ)−1 or zero; in order to determine [w,w] + wxx it

is therefore sufficient to calculate the measures of the pairwise intersections of the
supports of f ′′(y + x), f ′′(y − x), and f ′′(2x) as follows:

• The intersection of the supports of f ′′(y+x) and f ′′(y−x) has total area 4δ2

(see Figure A.2).
• The intersection of the supports of f ′′(y + x) and f ′′(2x) also has total area

4δ2 (see Figure A.3).
Since the support of [w,w]+wxx is concentrated on a discrete set of points, let us

examine the behavior at one of these points. For small δ the support forms disjoint
sets in [−1/2, 1/2]2, and we can restrict our attention to the origin alone.

If |s| < 1/2, then f ′′
δ (s) can be written as

f ′′
δ (s) =

1

δ
g
(s
δ

)
,

where

g(σ) =

⎧⎨
⎩

1

4
, |σ| < 1,

0 otherwise.

Therefore, as long as |(x, y)| < 1/4, then

4f ′′
δ (y + x)f ′′

δ (y − x) − 2f ′′
δ (2x)(f ′′

δ (y + x) + f ′′
δ (y − x))

=
4

δ2
g

(
y + x

δ

)
g

(
y − x

δ

)
− 2

δ2
g

(
2x

δ

)[
g

(
y + x

δ

)
+ g

(
y − x

δ

)]

=
1

δ2
F
(
δ−1(x, y)

)
,(A.3)
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Fig. A.2. The areas of the black regions add up to 4δ2.

δ

Fig. A.3. The areas of the black regions add up to 4δ2.

where we introduce a new function F , which does not depend on δ, to summarize
the line above. Note that suppF ⊂ [−2, 2]2. Note also that by (A.2) the function F
has zero integral; in addition, since f ′′

δ is even, the function 4f ′′
δ (y + x)f ′′

δ (y − x) −
2f ′′

δ (2x)(f ′′
δ (y + x) + f ′′

δ (y − x)) is also even in x and in y. Therefore∫
R2

xF
(
(x, y)

)
dxdy =

∫
R2

yF
(
(x, y)

)
dxdy = 0.

This property will be used below.
The assertion also states that the functions w and φ satisfy (2.6) on the boundary

of [−1/2, 1/2]2. We first note that w and φ are periodic in the following sense:

w(x± 1/2, y ± 1/2) = w(x, y) and φ(x± 1/2, y ± 1/2) = φ(x, y).(A.4)

For w this is a simple consequence of the functional form of w; for φ it is a conse-
quence of the uniqueness of solutions of (2.5) under periodic boundary conditions.
The periodicity of w and φ in the y-direction in (2.6) then follows from a repeated
application of (A.4). Similarly, the symmetry conditions in x in (2.6) follow from a
combination of the symmetry of w and φ around {y = 0} in combination with (A.4).
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A.3. Scaling properties. We now use the information gathered above to show
that the sequence wδ has the scaling properties of (A.1). All function spaces are on
[−1/2, 1/2]2.

First, f ′
δ remains bounded on bounded sets as δ → 0; therefore

∫
Ω
w2

δx converges
to a finite, positive value. In addition, all second derivatives of wδ remain bounded
in L1, so that

‖Δwδ‖L1 ≤ C.

The second derivative f ′′
δ is bounded by 1/4δ, so that we can estimate

‖Δwδ‖2
L2 ≤ ‖Δwδ‖L1 ‖Δwδ‖L∞ ≤ C

δ
.

Turning to φδ, we start by remarking that [wδ, wδ]+wδxx is bounded in L1, since∫
|(x,y)|<1/4

∣∣[wδ, wδ] + wδxx

∣∣ = 1

δ2

∫
|(x,y)|<2δ

∣∣F (δ−1(x, y)
)∣∣ = O(1).

Since W 2,p ↪→ L∞ for all p > 1, the solution of

Δ2ψ = h

satisfies

‖Δψ‖Lp′ = sup
ζ

∫
Ω

ΔψΔζ

‖Δζ‖Lp

= sup
ζ

∫
Ω
hζ

‖Δζ‖Lp

≤ C ‖h‖L1

‖ζ‖L∞

‖ζ‖W 2,p

≤ C ‖h‖L1 ,

so that

‖φδ‖W 2,p′ ≤ C ‖[wδ, wδ] + wδxx‖L1 ≤ C,

where 1/p + 1/p′ = 1. Using W 2,p′
↪→ C1,1−2/p′

we find

‖φδ‖C1,1−2/p′ ≤ C ‖φδ‖W 2,p′ ≤ C.

Writing, locally at the origin,

φδ(x, y) = φδ(0, 0) + ∇φδ(0, 0) · (x, y) + O
(
|(x, y)|2(1−1/p′))

,

we find, by multiplying (2.5) by φδ and integrating,

‖Δφδ‖2
L2([−1/2,1/2]2) = 2

∫
[−1/4,1/4]2

φδ

{
[wδ, wδ] + wδxx

}
= 2

φδ(0, 0)

δ2

∫
[−1/4,1/4]2

F
(
δ−1(x, y)

)
+ 2

∇φδ(0, 0)

δ2
·
∫

[−1/4,1/4]2
(x, y)F

(
δ−1(x, y)

)
+ O

(
δ2(1−1/p′)

)
= O

(
δ2(1−1/p′)

)
,

since the zeroth and first moments of F are zero. Since p′ may be chosen arbitrarily
large, this estimate concludes the proof.
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Appendix B. Derivation of the von Kármán–Donnell equations. The
common aim of the many elastic shell theories is to approximate three-dimensional
elasticity by a reduced description in which the unknowns are functions of not three
but two spatial variables; see, for example, [6]. For the von Kármán–Donnell cylinder
the central approximation is the director Ansatz, which states that a normal to the
center surface remains normal through deformation. By this Ansatz the displacement
is fully characterized by the displacement vector (u, v, w), a function of the two in-
plane spatial variables x and y, where u, v, and w are the displacements in the axial
(x-), tangential (y-), and radial directions, respectively. Apart from some rescaling,
the function w is the same as the unknown w in the rest of this paper.

In the formulation of section 2 the unknowns u and v are replaced with the Airy
stress function φ, which is derived by minimization with respect to the displacements
u and v for fixed w. This minimization argument is well known in the context of
the von Kármán plate theory and can be found in many textbooks. Determining the
boundary conditions that the function φ satisfies, however, is not straightforward (see
also the discussion in [27]), and it is for this reason that we now describe the argument
in detail. The main goal is to show that the function φ is periodic in the tangential
direction.

B.1. Energy and shortening. All quantities in this appendix are dimensional.
We assume a cylinder of thickness t, length L, and radius R, and we set Ω = [0, L] ×
[0, 2πR]. The stored energy given by [31] is

E1 =
t3E

24(1 − ν2)

∫
Ω

Δw2 +
t

2E

∫
Ω

[
(σ11 + σ22)

2 − 2(1 + ν)(σ11σ22 − σ2
12)
]

for a linear material of Young’s modulus E and Poisson’s ratio ν. Under the assump-
tion of plane stress, the stress and strain tensors are related by

σ =
E

1 − ν2

[
(1 − ν)ε + ν tr ε I

]
=

E

1 − ν2

(
ε11 + νε22 (1 − ν)ε12

(1 − ν)ε12 ε22 + νε11

)
,(B.1)

and under the small-angle approximation the strain tensor can be expressed in the
displacements as

ε =

(
ux + 1

2w
2
x

1
2uy + 1

2vx + 1
2wxwy

1
2uy + 1

2vx + 1
2wxwy vy + 1

2w
2
y − ρw

)
.(B.2)

These choices for the energy and for the stress and strain tensors are very similar
to those for a flat plate. The intrinsic curvature of the cylinder, of magnitude ρ =
1/R, appears only in the last term of ε22, −ρw, which expresses the fact that radial
displacement creates extensional strain in the y-direction.

The average axial shortening is given by

S1 = − 1

2πR

∫ 2πR

0

[
u(L, y) − u(0, y)

]
dy = − 1

2πR

∫
Ω

ux dxdy,

and an equilibrium (u, v, w) at load level P is a stationary point of the total potential
V1 = E1 − PS1.
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B.2. Boundary conditions. At the boundaries y = 0, 2πR it is natural to
assume that u, v, and w are periodic, but at x = 0, L there is a certain amount of
choice.

The boundary conditions on w (see (2.6a)) are

wx = (Δw)x = 0 at x = 0, L,(B.3)

and these conditions signify a fixed angle (wx = 0) and zero radial force ((Δw)x = 0).
They may also be understood as symmetry boundary conditions, as in the case of a
sequence of cylinders stacked on top of each other. For u and v we assume boundary
conditions

uy = 0 and σ12 = 0 at x = 0, L,(B.4)

which signify that the ends of the cylinder are rigid in the x-direction and that there
is no friction between the cylinder and the apparatus holding it. Note that the pair
of boundary conditions σ12 = 0 and (Δw)x = 0 together states that the loading
apparatus exerts only axial forces on the cylinder.

The boundary conditions on w are invariant under the addition of a constant to
w, i.e., under the replacement of w with w + c; for stationary points we may exploit
this fact.

Lemma B.1. If (u, v, w) is a stationary point of E1 − PS1 under boundary
conditions (B.3)–(B.4), then ∫

Ω

σ22 = 0.(B.5)

Proof. Under the replacement w �→ w + c, we have

dσ

dc
= − Eρ

1 − ν2

(
ν 0
0 1

)
,

and therefore

0 =
d

dc
(E1 − PS1)

= − tρ

1 − ν2

∫
Ω

[
(σ11 + σ22)(ν + 1) − (1 + ν)(σ11 + νσ22)

]
= −tρ

∫
Ω

σ22.

B.3. Derivation of the Airy stress function φ. The energy (2.7) and the
Airy stress function φ are derived from the total potential E1 −PS1 by minimization
with respect to the displacements u and v for fixed w. Performing this minimization
on the second term in E1 yields the classical plate equilibrium equations

σ11x + σ12y = 0 and σ12x + σ22y = 0.

Note that the derivative of S1 with respect to u only creates boundary terms. By
applying three times the well-known characterization of divergence-free vector fields
as rotations of scalar fields (see, e.g., [3, Thm. XII.3.5]) we obtain the local existence
of a function φ satisfying

σ11 = Eφyy, σ12 = −Eφxy, and σ22 = Eφxx,(B.6)

where we use the traditional scaling of φ by Young’s modulus.
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B.4. Boundary conditions on φ. The existence of the function φ is the result
of a local differential-geometric argument, and as such gives no reason for φ to be
periodic in y. The following theorem shows that after a normalization transformation,
the function φ can indeed be assumed to be periodic in y, and may be taken to satisfy
the same boundary conditions as the function w.

Theorem B.2. If u, v, and w are periodic in y and satisfy boundary conditions
(B.3)–(B.4), then there exists a function φ that satisfies

σ11 −
1

|Ω|

∫
Ω

σ11 = Eφyy, σ12 = −Eφxy, and σ22 = Eφxx;(B.7)

is periodic in y; and satisfies boundary conditions

φx = (Δφ)x = 0 at x = 0, L.(B.8)

Remark B.3. Mechanically the normalization of φ with
∫

Ω
σ11 means that φ

represents the deviation from the unbuckled in-plane stress state.
Proof. As discussed above, there exists a function φ satisfying (B.6); we will

construct in stages a new function φ̂ which satisfies (B.7) and the boundary conditions.
We first convert condition (B.6) into (B.7). Set

p(x) :=
1

2πR

∫ 2πR

0

φyy(x, y) dy =
1

2πR

[
φy(x, 2πR) − φy(x, 0)

]
.

Since the second derivatives of φ can be expressed in terms of derivatives of u, v, and
w, the second and higher derivatives of φ are automatically periodic in y. Therefore

d

dx
p(x) =

1

2πR

[
φxy(x, 2πR) − φxy(x, 0)

]
= 0,

implying that p is actually independent of x. (A mechanical argument provides the

same result: Etp(x) = t−
∫ 2πR

0
σ11(x, y)dy is the total force applied at a virtual cut

at level x, and mechanical equilibrium implies that this force is independent of x.)
Therefore

|Ω| p = 2πR

∫ L

0

p dx =

∫
Ω

φyy =
1

E

∫
Ω

σ11,

so that the new function

φ̃(x, y) := φ(x, y) − p

2
y2

satisfies (B.7). Note that this implies∫
Ω

φ̃yy = 0.(B.9)

We now turn to the periodicity in the y-direction. It remains to show that φ̃,
φ̃x, and φ̃y are the same at y = 0 and y = 2πR. Again the periodicity of the second
derivatives implies that

d2

dx2

[
φ̃(x, 2πR) − φ̃(x, 0)

]
= φ̃xx(x, 2πR) − φ̃xx(x, 0) = 0,
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so that φ̃(x, 2πR) − φ̃(x, 0) = ax + b for some a, b ∈ R. Defining

φ̂(x, y) := φ̃(x, y) − by

2πR
= φ(x, y) − p

2
y2 − by

2πR
,

the function φ̂ still satisfies (B.7), and

φ̂(x, 2πR) − φ̂(x, 0) = ax.

Finally, we find that

a = φ̂x(0, 2πR) − φ̂x(0, 0) =

∫ 2πR

0

φ̂xy(0, y) dy =
1

E

∫ 2πR

0

σ12(0, y) dy
(B.4)
= 0,

and therefore that φ̂(x, 2πR)−φ̂(x, 0) = 0 for all x. The same follows for φ̂x(x, 2πR)−
φ̂x(x, 0) by differentiation.

To show that φy also matches,

d

dx

[
φ̂y(x, 2πR) − φ̂y(x, 0)

]
=
[
φxy(x, 2πR) − φxy(x, 0)

]
= 0,

and therefore φy(x, 2πR) − φy(x, 0) is constant in x; by (B.9) this constant is zero.

This proves that φ̂ satisfies (B.7) and is periodic in y.
We finally discuss the boundary conditions at x = 0, L, and we follow the line of

reasoning of [27]. By (B.4) and (B.1), ε12 = 0 at x = 0, L, so that by (B.3) and (B.4),

vxy =
∂

∂y
(2ε12 − uy − wxwy) = 0 at x = 0, L.

Therefore

ε22x = vxy + wywxy − ρwx
(B.4)
= 0 at x = 0, L.

Using Eε22 = σ22 − νσ11, we then find

φ̂xxx − νφ̂xyy = φxxx − νφxyy =
1

E

d

dx
(σ22 − νσ11) = ε22x = 0,

and by adding (1 + ν)φ̂xyy = −(1/E)(1 + ν)σ12y = 0 it follows that

(Δφ̂)x = φ̂xxx + φ̂xyy = 0 at x = 0, L,

which proves one part of (B.8).

From φ̂xy = −σ12/E = 0 we find that

φ̂x(0, y) = c0 and φ̂x(L, y) = cL for all y ∈ [0, 2πR].

Writing

2πR(cL − c0) =

∫
Ω

φ̂xx =
1

E

∫
Ω

σ22
(B.5)
= 0

we find that cL = c0. Now the function

φ(x, y) := φ̂(x, y) − c0x = φ(x, y) − p

2
y2 − by

2πR
− c0x
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satisfies (B.7) and (B.8) and is periodic in y. This concludes the proof.
Remark B.4. It is instructive to note that the periodicity of φ is a result of the

specific choice of boundary conditions, and will in fact not hold if different boundary
conditions are taken. For instance, if a tangential shear stress τ is applied at the
cylinder ends (i.e., the cylinder is loaded under torsion), then the coefficient a in the
derivation above will not vanish, and φx will not be periodic in y.

B.5. Putting it all together. By an elementary but lengthy calculation we
find that φ, as provided by Theorem B.2, satisfies the equation

Δ2φ + ρwxx + [w,w] = 0 in Ω,(B.10)

and that the second term in E1 can be written as

tE

2

∫
Ω

[
Δφ2 − 2(1 + ν)[φ, φ]

]
.

By the boundary conditions given by Theorem B.2 the second term vanishes, and the
total stored energy functional can therefore be written as

E2(w) :=
t3E

24(1 − ν2)

∫
Ω

Δw2 +
tE

2

∫
Ω

Δφ2.

Note that this energy is a function of w alone; the function φ in this definition is as-
sumed to be given by (B.10), with the boundary conditions of Theorem B.2. Similarly,
we rewrite the average shortening as

S2(w) := S1(u) = − 1

2πR

∫
Ω

ux

(B.2)
= − 1

2πR

∫
Ω

[
ε11 −

1

2
w2

x

]
(B.1)
= − 1

2πRE

∫
Ω

[
σ11 − νσ22

]
+

1

4πR

∫
Ω

w2
x

(B.7)
= − 1

2πR

∫
Ω

[
φyy − νφxx

]
+

1

4πR

∫
Ω

w2
x

=
1

4πR

∫
Ω

w2
x.

A stationary point w of E2 − PS2 satisfies the Euler equation

t2

12(1 − ν2)
Δ2w +

P

2πREt
wxx − ρφxx − 2[w, φ] = 0,

where again φ is related to w by (B.10). With the nondimensionalization

w = 4π2Rw, φ = 16π4R2 φ, x �→ 2πRx, y �→ 2πR y,

we then obtain (2.4) and (2.5), and the dimensional energy E2 and average shortening
S2 above can be expressed in these variables as

E2 =
π2t3E

6(1 − ν2)

∫
Δw2 + 32π6tER2

∫
Δφ

2
, S2 = 4π3R

∫
w2

x.(B.11)
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[19] C. Hühne, R. Zimmerman, R. Rolfes, and B. Geier, Sensitivities to geometrical and loading
imperfections on buckling of composite cylindrical shells, in Proceedings of the European
Conference on Spacecraft Structures, Materials and Mechanical Testing, Toulouse, 2002.

[20] G. W. Hunt and E. Lucena Neto, Localized buckling in long axially-loaded cylindrical shells,
J. Mech. Phys. Solids, 39 (1991), pp. 881–894.

[21] G. W. Hunt, M. A. Peletier, A. R. Champneys, P. D. Woods, M. A. Wadee, C. J. Budd,

and G. J. Lord, Cellular buckling in long structures, Nonlinear Dynam., 21 (2000), pp.
3–29.

[22] W. T. Koiter, On the Stability of Elastic Equilibrium, Ph.D. thesis, Technische Hogeschool,
Delft (Technological University of Delft), Holland, 1945; English translation issued as Tech.
report NASA-TT-F-10833, NASA Center for Aerospace Information, Hanover, MD, 1967.
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CONVERGENCE OF STRONG SHOCK IN A VAN DER WAALS GAS∗
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Abstract. Strong cylindrical and spherical shock waves, collapsing at the center (or axis) of
symmetry, are studied for a Van der Waals gas. The perturbation technique applied in this paper
provides a global solution to the implosion problem, yielding the results for Guderley’s local self-
similar solution, which is valid only in the vicinity of the center/axis of implosion. The similarity
exponents are found along with the corresponding amplitudes in the vicinity of the shock-collapse.
The flow parameters and the shock trajectory have been computed for different values of the adiabatic
coefficient and the Van der Waals excluded volume.
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1. Introduction. The study of shock waves is motivated by its application in
a variety of fields such as aerodynamics, astrophysics, nuclear science, and plasma
physics, and shock waves generated by spherical and cylindrical pistons in a gas have
received much attention in the past four decades. Converging shock waves have been
a field of growing interest since the early 1940s from both mathematical and physical
points of view. They are one of the means of generating high pressure and high
temperatures at the center/axis of convergence. Applications range from nuclear
weapons to plasmas; in medical science, shock wave lithotripsy is used to treat kidney
stone disease. This work has been motivated by the fact that such shocks are an
essential part of the mechanism responsible for sonoluminescence, that is, the light
which under certain conditions is emitted from a bubble of gas trapped in a liquid
and compressed by incident sound waves.

A theoretical investigation of shock wave behavior near the center of conver-
gence was first done by Guderley in 1942 [1]. We also note the work of Lazarus and
Richtmyer [2], Van Dyke and Guttmann [3], Hafner [4], Wu and Roberts [5], and
Madhumita and Sharma [6] as major contributions towards the investigation of the
implosion problem.

Wu and Roberts have found that for small values of the Van der Waals excluded
volume (b), there is only one branch of similarity solutions that resembles the Guderley
solutions and is well described by the CCW (Chester–Chisnell–Whitham)approximation
[7]; however, for larger values of b, they predict another branch of the solution, which
is distinct from the Guderley-type branch and which cannot be obtained by the CCW
approximation.

In the present paper, we successfully apply the technique of Van Dyke and
Guttmann [3] to the shock implosion problem in a Van der Waals gas, which pro-
vides a global solution to the imploding shock problem. This global solution is valid
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Fig. 1. The spherical piston is initially of radius L. At time t = 0 the piston begins to contract
with a very large constant velocity V , driving ahead of it a spherical shock of radius R(t) collapsing
at the point of implosion O, where R(t) is to be determined.

throughout the flow field almost up to the instant of collapse. From this global so-
lution we are able to extract with good accuracy the Guderley local solution at the
instant of shock collapse; this is in excellent agreement with a solution branch ob-
tained by Wu and Roberts. Wu and Roberts reported that a second solution branch
may exist within the range of the first solution branch, and for certain values of γ
and b the similarity solution may cease to exist; for instance, it is reported that for
γ = 5/3, one solution arises in the range 0 ≤ b ≤ 0.05, while the other solution exists
in the range 0.005 ≤ b ≤ 0.035, and no similarity solution could be obtained in the
range 0.0001 ≤ b ≤ 0.05 for γ = 6/5. The present method does not exhibit any
computational difficulty, enables us to compute successfully the similarity exponent
for all such values of b and γ, and yields only one solution that matches well with the
Guderley solution.

Guderley’s local solution provides us only the first dominant similarity exponent,
but we have found, through this technique, the other similarity exponents and the
corresponding amplitudes.

We consider a spherical or cylindrical piston that is filled with a Van der Waals
gas of constant density. The piston collapses with constant inward speed, greater than
the speed of sound, generating a strong shock wave collapsing at the center/axis of
symmetry; see Figure 1.

Computations are performed to obtain the similarity exponents and the corre-
sponding amplitudes in the vicinity of the shock-collapse. Computations are carried
out for different values of adiabatic coefficient γ and Van der Waals excluded volume
b. Distributions of the flow variables at the rear of the shock wave are presented. The
results are given for cylindrical and spherical fronts propagating into the medium.
Our results match well with those obtained by Wu and Roberts [5] and Guderley’s
method [1].

2. Basic equations with solutions analytic in time. We consider a cylin-
drical or spherical piston of initial radius L and filled with Van der Waals gas. Let
the initial conditions be given by

v = 0, ρ = ρ0, p = p0,(1)

where v, ρ, and p are, respectively, the outward radial velocity, density, and pressure;
ρ0 and p0 are appropriate positive constants. At time t = 0, the container starts to
contract with very large constant velocity V ; this produces a cylindrical or spherical
shock wave whose radius R(t) is to be determined. The equations of one-dimensional
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adiabatic motion of a Van der Waals gas are (Wu and Roberts [5])

∂ρ

∂t
+

∂(ρv)

∂r
+

mρv

r
= 0,(2)

∂v

∂t
+ v

∂v

∂r
+

1

ρ

∂p

∂r
= 0,(3)

∂p

∂t
+ v

∂p

∂r
− γp

ρ(1 − bρ)

(
∂ρ

∂t
+ v

∂ρ

∂r

)
= 0,(4)

where t is the time, r is the distance of the particle from the center of symmetry, b is
the Van der Waals excluded volume, γ is the adiabatic exponent, and m takes values
1 and 2 depending on whether the piston is cylindrical or spherical. The Rankine–
Hugoniot (R-H) conditions just behind the shock wave are given by (Wu and Roberts
[5])

v =
2(1 − b)

(γ + 1)
Ṙ, ρ =

(γ + 1)

(γ − 1 + 2b)
ρ0, p =

2(1 − b)ρ0

(γ + 1)
(Ṙ)2 at r = R(t).(5)

The condition of no flow through the piston yields

v = −V at r = L− V t.(6)

For our convenience we measure the distance x = L − r inward, and let u = −v be
the corresponding inward velocity. Making use of the conical nature of the basic flow,
we introduce a new variable

z =
2

(γ − 1)

( x

V t
− k

)
(7)

that varies from −2(k − 1)/(γ − 1) at the piston to unity at the basic position of the
shock wave, where the constant k is to be determined.

Now we nondimensionalize the variables ρ, u, p, b, x, and t by referring lengths to
L, speed to V , density to ρ0, pressure to ρ0V

2, Van der Waals excluded volume b to
1/ρ0, and time to L/V . Then the differential equations (2), (3), and (4) become(

1 −
(
k +

1

2
(γ − 1)z

)
t

)(
ρ
∂u

∂z
+

(
u− k − 1

2
(γ − 1)z

)
∂ρ

∂z
+

1

2
(γ − 1)t

∂ρ

∂t

)

=
1

2
(γ − 1)mtρu,(8)

ρ

(
u− k − 1

2
(γ − 1)z

)
∂u

∂z
+

1

2
(γ − 1)tρ

∂u

∂t
+

∂p

∂z
= 0,(9)

(
u− k − 1

2
(γ − 1)z

)(
ρ(1 − bρ)

∂p

∂z
− γp

∂ρ

∂z

)
(10)

+
1

2
(γ − 1)t

(
ρ(1 − bρ)

∂p

∂t
− γp

∂ρ

∂t

)
= 0;

the boundary conditions (5) and (6) become

u =
2(1 − b)

γ + 1
Ẋ, ρ =

(γ + 1)

(γ − 1 + 2b)
, p =

2(1 − b)

(γ + 1)
(Ẋ)2(11)
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at z = (2/(γ − 1)) (X/t− k); and

u = 1 at z =
−2(k − 1)

(γ − 1)
.(12)

Assuming that the solution is analytic in time, we expand the unknown position of
the shock wave in a Taylor series as

X(t) =
∞∑

n=1

Xnt
n,(13)

and similarly we expand the flow variables as

u =

∞∑
n=1

Un(z)tn−1, ρ =

∞∑
n=1

Rn(z)tn−1, p =

∞∑
n=1

Pn(z)tn−1.(14)

Substituting (14) into (8), (9), (10) and using (11), (12), (13), we find, on equating
the terms on both the sides which are independent of t,

U1 = 1, R1 =
(γ + 1)

(γ − 1 + 2b)
, P1 =

(γ + 1)

2(1 − b)
,

X1 =
(γ + 1)

2(1 − b)
, k =

2 + b(γ − 1)

2(1 − b)
.(15)

The coefficients U2, R2, and P2 for the second approximation satisfy the following
first-order linear ordinary differential equations:

R1U
′
2 −

(
k − 1 +

1

2
(γ − 1)z

)
R′

2 +
1

2
(γ − 1)R2 =

1

2
(γ − 1)mR1,(16)

1

2
(γ − 1)R1U2 −

(
k − 1 +

1

2
(γ − 1)z

)
R1U

′
2 + P ′

2 = 0,(17)

(γ − 1)

2

(
(1 − bR1)R1P2 − γP1R2

)

−
(
k − 1 +

1

2
(γ − 1)z

)(
(1 − bR1)R1P

′
2 − γP1R

′
2

)
= 0,(18)

where the prime denotes the derivative with respect to the variable z and where U1,
R1, and P1 are given in (15).

The boundary condition (12) on the piston yields

Un(z) = 0 at z =
−2(k − 1)

γ − 1
for n = 2, 3, 4, . . . .(19)

Also the boundary conditions (11) give

U2(1) =
4(1 − b)

(γ + 1)
X2, R2(1) = 0, P2(1) = 4X2.(20)

From (16)–(19) we find that

U ′′
2 (z) = R′′

2 (z) = P ′′
2 (z) = 0,(21)
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which together with the boundary conditions (19) and (20) yields

U2 =
γm

2(2γ − 1)

(
b(γ + 1)

(1 − b)
+ (γ − 1)z

)
,

R2 =
(1 − b)(γ − 1)2 (γ + 1)m

(γ − 1 + 2b)2 (2γ − 1)
(1 − z),

P2 =
γ(γ + 1)(γ − 1 + 2b)m

2(1 − b)2 (2γ − 1)
,(22)

X2 =
γ(γ + 1)(γ − 1 + 2b)m

8(1 − b)2 (2γ − 1)
.

The forms of U2, R2, and P2 suggest that in higher approximations the coefficients
Un, Rn, and Pn are polynomials in z of degree n− 1, of the following form:

Un(z) =

n∑
j=1

Unjz
j−1, Rn(z) =

n∑
j=1

Rnjz
j−1, Pn(z) =

n∑
j=1

Pnjz
j−1.(23)

Substituting these values into the differential equations (8)–(10) and the shock con-
ditions (11), and equating the like powers of z as well as t, we have for the nth
approximation a system of 3n+1 linear algebraic equations in 3n+1 coefficients Unj ,
Rnj , Pnj (j = 1, 2, . . . , n) and Xn; solving the system for the third approximation
we obtain the position of the shock wave

X(t) = t (γ + 1)/[2(1 − b)] + t2mγ(γ + 1)(γ − 1 + 2b)/[8(1 − b)2(2γ − 1)]

+ t3m(γ + 1)(γ − 1 + 2b)[1 + γ3(4 − 21m) − γm + γ2(13m− 9)

+ γ4(12 + 13m) + b(6γ − 20γ2m− 2(m + 1) + γ3(26m− 8))]

/[48(1 − b)3(2γ − 1)2(7γ − 5)] + · · · .(24)

The above result fully recovers the ideal gas (b = 0) case discussed by Van Dyke and
Guttmann [3].

3. Computation of coefficients Xn, Un, Rn, and Pn. We have written
a program using MATHEMATICA to find Xn, Un, Rn, and Pn for n ≥ 3. Table
1 consists of coefficients Xn, where n is between 1 and 44. We have performed the
computations for cylindrical (m = 1) and spherical (m = 2) pistons with adiabatic
coefficient γ = 6/5, 7/5, and 5/3 and with Van der Waals excluded volume b =
0.00006, 0.0004, 0.003, 0.01, 0.05, 0.1, 0.2, and 0.25. Although we have shown the
coefficients rounded up to 15 significant digits, we have carried out all computations
using 32 significant digits. We provide the graphs for the computed values of the flow
variables ρ, u, and p, starting from the piston and extending to the shock before its
collapse and almost up to the instant of collapse; see the figures in section 6.

4. Determination of the radius of convergence. We observe that all the
coefficients found in Table 1 are positive, indicating that the nearest singularity of
the shock position X(t) is positive. We shall investigate whether this is the Guderley
singularity, corresponding to collapse of the shock onto the axis/center. There is
a steady increase in the coefficients, which indicates that the radius of convergence
is less than unity. We obtain this radius of convergence assuming that the nearest
singularity has the form

R(t) = 1 −X(t) = 1 −
∑

Xnt
n ∼ A1

(
1 − t

tc

)α1

as t → tc,(25)
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Table 1

Coefficients Xn in series (13) for the position of shock wave.

n γ = 7/5,m = 2, b = 0.05 γ = 7/5,m = 2, b = 0.25 γ = 5/3,m = 1, b = 0.1
1 1.263157894736842 1.600000000000000 1.481481481481481
2 0.258541089566020 0.746666666666667 0.254752106603959
3 0.282984058072749 1.157925925925926 0.232952155612029
4 0.297254514031253 1.973345808966862 0.241628413821622
5 0.346287950377869 3.793975156923648 0.287682236139467
6 0.450095621010967 7.858055489704435 0.376557168684981
7 0.619867833831531 17.04730147416937 0.523971811959874
8 0.883302887805608 38.25248460415753 0.760931520063466
9 1.294810363112074 88.06648708646051 1.140863116560825
10 1.942296378922512 206.8465365162004 1.753305093348872
11 2.966335408193292 493.6947783445748 2.748153507103557
12 4.596608715830178 1193.969317804952 4.377341945653990
13 7.210481012551941 2919.509564663995 7.066309120004236
14 11.42886787507827 7205.784068093584 11.53688671222373
15 18.27711349478003 17928.08815485652 19.01928838320196
16 29.45533764428738 44916.74824487822 31.61894150826695
17 47.79235369600088 113221.7267883896 52.95313351205065
18 78.00968744834458 286938.8725873484 89.25898997965009
19 128.0112062907959 730683.3403143386 151.3267352842264
20 211.0646531133836 1.868665974467891 × 106 257.8811596017432
21 349.4989923596837 4.797463012661039 × 106 441.5096443797921
22 580.9826547894644 1.235976372907586 × 107 759.0768191918469
23 969.2034915083856 3.194404376452741 × 107 1310.058447571227
24 1622.067138806888 8.280016914921135 × 107 2268.877537744009
25 2722.755803054768 2.151936445394558 × 108 3942.038759268135
26 4582.815424832222 5.606506312830268 × 108 6869.249418002710
27 7733.024164841269 7.319951612955246 × 109 12002.67727977264
28 13079.14069840282 3.830844261311359 × 109 21025.20275517070
29 22169.19843835613 1.004375975806659 × 1010 36916.24995769399
30 37652.79278127936 2.638064893846673 × 1010 64959.16474126197
31 64071.18083168314 6.940800757561001 × 1010 114537.0187267555
32 109217.9678176402 1.829031909760342 × 1011 202337.8355764119
33 186484.9035575728 4.827004102876312 × 1011 358082.1048635953
34 318910.0433006593 1.275673997131769 × 1012 634768.8550780901
35 546170.3804084596 3.375761764298510 × 1012 1.127024565053689 × 106

36 936671.6937018691 8.944197339840730 × 1012 2.003996195125300 × 106

37 1.608469470233142 × 106 2.372567637366618 × 1013 3.568373840198949 × 106

38 2.765501931287699 × 106 6.300514903398902 × 1013 6.362398213749396 × 106

39 4.760392533025991 × 106 1.674898222785370 × 1014 1.135842433844710 × 107

40 8.203389006623327 × 106 4.456895014606242 × 1014 2.030177893358934 × 107

41 1.415147182792444 × 107 1.187097535288542 × 1015 3.632812463622128 × 107

42 2.443686268564865 × 107 3.164684422415196 × 1015 6.507598489969976 × 107

43 4.223808002817224 × 107 8.443953622567328 × 1015 1.166930858348849 × 108

44 7.307327247673245 × 107 2.254838311490953 × 1016 2.094572381224061 × 108

where α1 and A1 are the leading exponent and amplitude, respectively.
Hence,

Xn

Xn−1
∼ 1

tc

(
1 − 1 + α1

n

)
as n → ∞.(26)

We assume that, when n is large, the ratio Xn/Xn−1 approximates the value of
1/tc. We construct a sequence Xn/Xn−1 (n = 35, 36, . . . , 44) and thereafter refine
this estimate of 1/tc by forming a Neville table (Gaunt and Guttmann [8]). Neville’s
algorithm is a recursive procedure in which the given set of data points are interpolated
by a Lagrange polynomial. In our case we fit an rth degree polynomial in 1/n to r+1
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Table 2

The Neville table for estimating 1/tc for m = 2, γ = 7/5, and b = 0.05.

n e0
n Linear Quadratic Cubic Quartic

40 1.72325894 1.79776720 1.79782272 1.79782923 1.79783062
41 1.72507628 1.79776993 1.79782320 1.79782937 1.79783071
42 1.72680715 1.79777249 1.79782365 1.79782951 1.79783083
43 1.72845756 1.79777489 1.79782407 1.79782965 1.79783097
44 1.73003300 1.79777714 1.79782446 1.79782978 1.79783108

Table 3

The Neville table for estimating α1 for m = 2, γ = 7/5, and b = 0.05.

n e0
n Linear Quadratic Cubic Quartic

40 0.65914284 0.66051342 0.66067537 0.66069908 0.66069431
41 0.65917646 0.66052140 0.66067705 0.66069835 0.66069158
42 0.65920866 0.66052888 0.66067850 0.66069734 0.66068783
43 0.65923953 0.66053590 0.66067972 0.66069603 0.66068327
44 0.65926914 0.66054248 0.66068073 0.66069447 0.66067880

Table 4

The Neville table for estimating tc for m = 2, γ = 7/5, and b = 0.05.

n Linear Quadratic Cubic Quartic Quintic
40 0.55623236 0.55622829 0.55622655 0.55622593 0.55622563
41 0.55623215 0.55622815 0.55622649 0.55622589 0.55622560
42 0.55623195 0.55622803 0.55622643 0.55622585 0.55622557
43 0.55623177 0.55622791 0.55622637 0.55622582 0.55622555
44 0.55623159 0.55622781 0.55622632 0.55622578 0.55622553

points e0
n, e

0
n−1, . . . , e

0
n−r. Given a sequence e0

n, we can construct a triangular array
of elements e0

n, where n labels the rows and r = 0, 1, 2, 3, . . . , n the columns. The
elements of the rth column are generated from the (r − 1)th column by using the
formula [8]

ern =
ner−1

n − (n− r)er−1
n−1

r
,(27)

where ern is the intercept on the 1/n = 0 axis of the rth degree curve. Hence, r = 1
corresponds to the linear intercepts, r = 2 to the quadratic intercepts, r = 3 to the
cubic intercepts, and so on. The Neville table so formed provides a refined estimate for
e0
n. For constructing a Neville table for 1/tc, we compute the sequence Xn/Xn−1 (n =

35, 36, . . . , 44) and take this as the initial sequence e0
n; this gives the first column of

Table 2. Then we use (27) to compute the sequence e1
n (n = 35, 36, . . . , 44), and

this forms the second column of Table 2. Again using the sequence e1
n, we construct

the sequence e2
n (n = 35, 36, . . . , 44), and this forms the third column of Table 2. All

other columns of the Neville table are formed similarly, which show that the sequences
e0
n, e

1
n, e

2
n, . . . approach a limiting value of 1/tc. From Tables 2, 3, and 4, the values of

1/tc, α1, and tc for a spherical piston with γ = 7/5 and b = 0.05 are 1.79783, 0.66069,
and 0.556226, respectively, and the corresponding values for an ideal gas (b = 0) are
1.609021, 0.7171, and 0.621496, respectively.

To verify that the nearest singularity of the shock position X(t) corresponds to
collapse of the shock wave onto the axis, we calculate the time t0 for X(t) to reach
unity. We construct a Neville table, Table 4, using these values of t0 as the initial
sequence e0

n. We find from Table 4 that tc = 0.556226. Therefore the values of tc
obtained from Tables 2 and 4 are almost the same. The time of collapse of the shock
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Table 5

Values of tc, the time taken by the shock to collapse.

γ b tc(cylindrical) tc(spherical)
7/5 0.05 0.656381 0.556226
7/5 0.1 0.603085 0.498700
7/5 0.2 0.507272 0.402430
7/5 0.25 0.463878 0.361770
5/3 0.1 0.534592 0.440227
5/3 0.2 0.456106 0.365164

wave for different values of γ, b, and m are listed in Table 5, showing thereby that for
given values of γ and m, increase in b causes tc to decrease.

5. Guderley’s local solution. Ours is a global solution that is valid through-
out the flow field almost up to the instant of collapse. We now extract Guderley’s
local singular behavior, which is valid in the neighborhood of collapse. According to
Guderley’s conjecture, the radius of the shock in the vicinity of collapse is prescribed
by an expansion:

R(t) = 1 −X(t) ∼
∑
j=1

Aj

(
1 − t

tc

)αj

.(28)

Guderley [1] computed only the first exponent α1; the other exponents αj and ampli-
tudes Aj were unknown. Van Dyke and Guttmann [3] calculated all the real exponents
and the corresponding amplitudes for an ideal gas using the method given by Baker
and Hunter [9].

Using our estimates for tc, given in Table 5, we rewrite the series (13) for X(t)
in powers of the new variable τ defined by t = tc[1− exp(−τ)], then multiply the nth
term in (28) by n!, and then finally sum over n to obtain the series for the auxiliary
function

R(τ) =
∑
j=1

Aj

(1 + αjτ)
,(29)

which is meromorphic and has simple poles at τ = −1/αj with corresponding residues
Aj/αj . Quantities αj and Aj are evaluated by forming Pade approximants (Baker
[10]) to R(τ). The [(N−1)/N ] Pade approximant is a rational function approximation
to a Taylor’s series expansion. The idea of Pade approximants is to replace a power
series S(w) by a rational function PN−1(w)/QN (w), where PN−1(w) and QN (w) are
polynomials of degree N − 1 and N , respectively. The coefficients of PN−1(w) and
QN (w) are determined by equating the like powers of w in the equation

S(w) − PN−1(w)

QN (w)
= O(w2N ),

where N can be varied up to 22 at the most, since we have a series (13) with 44
terms; the entire computational work has been carried out using MATHEMATICA.
The exponents (αj) and the amplitudes (Aj) are listed in the Table 6.

6. Results and conclusion. We have found a global solution to the imploding
shock problem in a Van der Waals gas using a technique proposed by Van Dyke and
Guttmann [3]. From this global solution the Guderley’s local solution is extracted at
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Table 6

Similarity exponents and corresponding amplitudes for different m, γ, and b.

γ b m Exponents Amplitudes
7/5 0.05 1 α1 = 0.802926498593542 A1 = 0.976706645353648

α2 = 1.708109679894251 A2 = 0.017363259018156
α3 = 2.905971391360548 A3 = 0.007469693787882

7/5 0.05 2 α1 = 0.661544877048253 A1 = 0.957960578620838
α2 = 1.357267903704529 A2 = 0.029717449271207
α3 = 2.528943256821996 A3 = 0.010409103488760

7/5 0.1 1 α1 = 0.774110465554056 A1 = 0.969168370834679
α2 = 1.484914398015026 A2 = 0.022014927795792

7/5 0.1 2 α1 = 0.596033290273788 A1 = 0.832554002704591
α2 = 0.844650847225558 A2 = 0.141755825214615
α3 = 1.729973633423482 A3 = 0.020534644575970
α4 = 2.636485340516882 A4 = 0.005214793099547

7/5 0.2 1 α1 = 0.728344030222535 A1 = 0.944360829848564
α2 = 0.854013320875237 A2 = 0.030299813597965
α3 = 1.865228830929922 A3 = 0.025341011312357

7/5 0.2 2 α1 = 0.537973817651407 A1 = 0.919138233082343
α2 = 1.104103329053359 A2 = 0.081120376413760
α3 = 2.090398604049229 A3 = 0.009175944106706

7/5 0.25 1 α1 = 0.715770379510055 A1 = 0.981989769804047
α2 = 1.502387377484738 A2 = −0.133407209059492
α3 = 1.584581969860033 A3 = 0.151461717963143

7/5 0.25 2 α1 = 0.507834057982443 A1 = 0.858272687100006
α2 = 0.931959563156305 A2 = 0.126778038058150
α3 = 1.847831095895297 A3 = 0.012312326098207
α4 = 2.845711931806961 A4 = 0.001309688628189

5/3 0.1 1 α1 = 0.779399116466193 A1 = 0.992086393567176
α2 = 2.283144023168935 A2 = 0.006703005432861

5/3 0.1 2 α1 = 0.632769630031156 A1 = 0.985811255634619
α2 = 1.039338542001711 A2 = 0.002857291885896
α3 = 2.251608063705212 A3 = 0.011338631914952

5/3 0.2 1 α1 = 0.751708101570398 A1 = 1.000011462992213
α2 = 1.534154947593532 A2 = −0.012389118761152

5/3 0.2 2 α1 = 0.594130566317584 A1 = 0.998215606732302
α2 = 1.559319200690666 A2 = 0.022661556238679
α3 = 2.804029955386938 A3 = 0.001506304684029

the instant of collapse. Guderley’s local solution provides us only the first dominant
similarity exponent, but we have found, through this technique, the other three less
dominant similarity exponents and the corresponding amplitudes. These similarity
exponents and the corresponding amplitudes are listed in Table 6. The values of the
leading exponents α1 for cylindrical and spherical symmetry for γ = 6/5, 7/5, and
5/3, and for different values of b (0.00006, 0.0004, 0.003, 0.01, 0.05, 0.1, 0.2, and 0.25)
are shown in Table 7; these values compare well with the numerical results obtained
by Wu and Roberts [5] and Guderley [1]. We observe that the present method shows
no evidence of another branch of solutions that arises in the work of Wu and Roberts.
It may be recalled that Wu and Roberts [5] have reported that they were unable to
determine the similarity exponents for γ = 6/5 and the values of b lying in the range
[0.0001, 0.05); indeed, we have successfully obtained the exponents in this range and
compared them with the corresponding exponents found by Guderley’s method in
Table 7. Wu and Roberts also reported that for γ = 5/3 there exists one branch of
solution for b lying in the range [0, 0.05] and another branch of solution for b lying in
the range [0.005, 0.035]; however, the present approach reveals only one solution for
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Table 7

The computed values of the leading similarity exponents and the results obtained by other authors.

γ b m Computed α1 Guderley [1] Wu and Roberts [5]
6/5 0.00006 2 0.757447160385346 0.75700
6/5 0.0004 2 0.7572638179401117 0.756182
6/5 0.01 2 0.7344920172176496 0.733259
7/5 0.05 1 0.8029264985935416 0.802916
7/5 0.05 2 0.661544877048253 0.661411 0.661
7/5 0.1 1 0.774110465554056 0.774049
7/5 0.1 2 0.596033290273788 0.590510
7/5 0.2 1 0.7283440302225347 0.730108
7/5 0.2 2 0.5379738176514068 0.531159
7/5 0.25 1 0.71577037951005527 0.715962
7/5 0.25 2 0.5078340579824431 0.53448 0.534
5/3 0.003 2 0.6864958952645261 0.686495
5/3 0.025 2 0.6697932669755673 0.659800
5/3 0.1 1 0.7793991164661934 0.779357
5/3 0.1 2 0.6327696300311559 0.632929
5/3 0.2 1 0.7517081015703977 0.751790
5/3 0.2 2 0.594130566317583 0.594017
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Fig. 2. Velocity profiles for cylindrical (C) and spherical (S) symmetries. The solid and dashed
curves correspond to the time of collapse t = tc and the time just before collapse t = tbc, respectively.
(a) represents the flow patterns for γ = 7/5, b = 0.1; for the cylindrical (C) symmetry: tc =
0.6031, tbc = 0.58; for the spherical (S) symmetry: tc = 0.4987, tbc = 0.48. (b) represents the flow
patterns for γ = 5/3, b = 0.1; for (C): tc = 0.5346, tbc = 0.52; for (S): tc = 0.4402, tbc = 0.42.
(c) represents the flow patterns for γ = 7/5, b = 0.2; for (C): tc = 0.5073, tbc = 0.48; for
(S): tc = 0.4024, tbc = 0.38. (d) represents the flow patterns for γ = 5/3, b = 0.2; for (C):
tc = 0.4561, tbc = 0.44; for (S): tc = 0.3652, tbc = 0.35.

the above ranges of b and γ.
The flow variables, velocity, density, and pressure are also computed for different

values of γ and b. They are shown in the Figures 2, 3, and 4. We observe from Table
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Fig. 3. Density profiles for cylindrical (C) and spherical (S) symmetries. The solid and dashed
curves correspond to the time of collapse t = tc and the time just before collapse t = tbc, respectively.
(a) represents the flow patterns for γ = 7/5, b = 0.1; for the cylindrical (C) symmetry: tc =
0.6031, tbc = 0.58; for the spherical (S) symmetry: tc = 0.4987, tbc = 0.48; (b) represents the flow
patterns for γ = 5/3, b = 0.1; for C: tc = 0.5346, tbc = 0.52; for S: tc = 0.4402, tbc = 0.42;
(c) represents the flow patterns for γ = 7/5, b = 0.2; for C: tc = 0.5073, tbc = 0.48; for S:
tc = 0.4024, tbc = 0.38; (d) represents the flow patterns for γ = 5/3, b = 0.2; for C: tc =
0.4561, tbc = 0.44; for S: tc = 0.3652, tbc = 0.35.

6 that increase in either of the parameters b or m, or decrease in γ, causes the leading
similarity exponent α1 to decrease and consequently the shock acceleration to increase
as it approaches the center/axis. We also notice that the shock is continuously accel-
erated, since α1 is always less than one; in fact, the shock speed becomes unbounded
as t → tc, but less rapidly than (t − tc)

−1. Figures 2(a)–2(d) and 3(a)–3(d) show
that the velocity decreases monotonically behind the shock as we move towards the
piston, whereas the density increases in the region behind the shock; this is because
of geometrical convergence or area contraction of the shock, which causes velocity to
decrease and density to increase. We also observe from these figures that an increase
in b causes the particle velocity to increase and density to decrease. Figures 4(a)–4(d)
indicate that the gas pressure remains constant in most of the region except in the
vicinity of the front, where it exhibits a maximum; this is due to the fact that the
gas, which is highly compressed by the shock, gets cooled down in the region behind
the shock. It is also observed that an increase in b causes the gas pressure to increase
in the region behind the shock. Table 5 shows that, for given values of γ and m,
an increase in b causes tc to decrease; the results are depicted in Figures 5(a)–5(d),
which show that an increase in b causes the time of shock collapse to decrease, i.e.,
the shock reaches the center/axis much faster with the increase of Van der Waals
excluded volume b.



1836 RAJAN ARORA AND V. D. SHARMA

0.2 0.4 0.6 0.8 1
z

5

10

15

20

25
Pressure

C

S

(a) (γ = 7/5, b = 0.1)

0.2 0.4 0.6 0.8 1
z

2

4

6

8

10

12

14

Pressure

C

S

(b) (γ = 5/3, b = 0.1)

0.2 0.4 0.6 0.8 1
z

10

20

30

40

Pressure

C

S

(c) (γ = 7/5, b = 0.2)

0.2 0.4 0.6 0.8 1
z

5

10

15

20

25
Pressure

C

S

(d) (γ = 5/3, b = 0.2)

Fig. 4. Pressure profiles for cylindrical (C) and spherical (S) symmetries. The solid and
dashed curves correspond to the time of collapse t = tc and the time just before collapse t = tbc,
respectively. (a) represents the flow patterns for γ = 7/5, b = 0.1; for the cylindrical (C) symmetry:
tc = 0.6031, tbc = 0.58; for the spherical (S) symmetry: tc = 0.4987, tbc = 0.48; (b) represents the
flow patterns for γ = 5/3, b = 0.1; for C: tc = 0.5346, tbc = 0.52; for S: tc = 0.4402, tbc = 0.42;
(c) represents the flow patterns for γ = 7/5, b = 0.2; for C: tc = 0.5073, tbc = 0.48; for S:
tc = 0.4024, tbc = 0.38; (d) represents the flow patterns for γ = 5/3, b = 0.2; for C: tc =
0.4561, tbc = 0.44; for S: tc = 0.3652, tbc = 0.35.
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Fig. 5. Shock Trajectory: The solid and dashed curves correspond to b = 0.1 and b = 0.2,
respectively. (a) γ = 7/5, m = 1. (b) γ = 5/3, m = 1. (c) γ = 7/5, m = 2. (d) γ = 5/3, m = 2.

Acknowledgments. We thank the reviewers of this paper for their useful re-
marks.



STRONG SHOCK IN A VAN DER WAALS GAS 1837

REFERENCES

[1] G. Guderley, Starke kugelige und zylindrische Verdichtungsstosse in der Nahe des Kugelmit-
telpunktes bzw der Zylinderachse, Luftfahrtforschung, 19 (1942), pp. 302–312.

[2] R. B. Lazarus and R. D. Richtmyer, Similarity Solutions for Converging Shocks, Los Alamos
Scientific Laboratory Report, LA-6823-MS, Los Alamos, NM, 1977.

[3] M. Van Dyke and A. J. Guttmann, The converging shock wave from a spherical or cylindrical
piston, J. Fluid Mech., 120 (1982), pp. 451–462.

[4] P. Hafner, Strong convergent shock waves near the center of convergence: A power series
solution, SIAM J. Appl. Math., 48 (1988), pp. 1244–1261.

[5] C. C. Wu and P. H. Roberts, Structure and stability of a spherical shock wave in a Van der
Waals gas, Quart. J. Mech. Appl. Math., 49 (1996), pp. 501–543.

[6] G. Madhumita and V. D. Sharma, Propagation of strong converging shock waves in a gas of
variable density, J. Engrg. Math., 46 (2003), pp. 55–68.

[7] G. B. Whitham, Linear and Nonlinear Waves, Wiley-Interscience, New York, 1974.
[8] D. S. Gaunt and A. J. Guttmann, Asymptotic analysis of coefficients, in Phase Transitions

and Critical Phenomena, C. Domb and M. S. Green, eds., Academic, New York, 1974,
vol. 3, pp. 181–243.

[9] G. A. Baker and D. L. Hunter, Methods of series analysis II. Generalized and extended
methods with applications to the Ising model, Phys. Rev., B7 (1973), pp. 3377–3392.

[10] G. A. Baker, The theory and application of the Pade approximant method, in Advances in
Theoretical Physics, K. A. Brueckner, ed., Academic, New York, 1965, vol. 1, pp. 1–58.



SIAM J. APPL. MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 66, No. 6, pp. 1839–1852

ON THE SOLUTION OF LONG’S EQUATION WITH SHEAR∗
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Abstract. Long’s equation describes two dimensional stratified flow over terrain. Its numerical
solutions under various approximations were investigated by many authors under the assumption
that the base flow field is without shear. Special attention was paid to the properties of the gravity
waves that are predicted to be generated as a result. In this paper we address, analytically, the
nature and properties of these solutions when shear is present and derive some constraints on the
possible generation of gravity waves under these circumstances.
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1. Introduction. Long’s equation [1, 2, 3, 4] models the flow of stratified in-
compressible fluid (in the Boussinesq approximation) in two dimensions over ter-
rain. When the base state of the flow (that is, the unperturbed flow field far up-
stream) is without shear, the numerical solutions (in the form of steady lee waves) of
this equation in various settings and approximations were studied by many authors
[5, 6, 7, 8, 9, 10, 11, 12, 13]. The most common approximation in these studies was
to set Brunt–Väisälä frequency to a constant or a step function over the computa-
tional domain. Moreover, the values of the parameters β and μ which appear in this
equation were set to zero. In this (singular) limit the nonlinear terms and one of the
leading second order derivatives in the equation drop out and the equation reduces to
that of a linear harmonic oscillator over a two dimensional domain. Careful studies [8]
showed that these approximations are justified unless wave breaking is present in the
solution [9].

Long’s equation also provides the theoretical framework for the analysis of experi-
mental data [15, 16, 17] under the assumption of shearless base flow. (An assumption
which, in general, is not supported by the data.) An extensive list of references
appears in [18, 19, 20].

An analytic approach to the study of this equation and its solutions was initiated
recently by the author [14]. We showed that for a base flow without shear and under
rather mild restrictions the nonlinear terms in the equation can be simplified. We also
identified the “slow variable” that controls the nonlinear oscillations in this equation
and, using phase averaging approximation, derived a formula for the attenuation of
the stream function perturbation with height. This result is generically related to the
presence of the nonlinear terms in Long’s equation.

The objective of this paper is to study the nature of the solutions to Long’s
equation when shear is present in the base flow and Brunt–Väisälä frequency is a
continuous function of height. Using conditions which depend solely on the base flow
and Brunt–Väisälä frequency we characterize the qualitative nature of the perturba-
tions from the base flow and how their amplitude varies with height. These results

∗Received by the editors March 27, 2005; accepted for publication (in revised form) May 22, 2006;
published electronically August 22, 2006.
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†Department of Mathematical Sciences, Worcester Polytechnic Institute, 100 Institute Road,
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are independent of the actual detailed description of the terrain that caused these
perturbations. Furthermore we derive conditions under which these perturbations
are not oscillatory; i.e., no gravity waves are generated by the flow. To the best of
our knowledge this issue was never considered in the literature before (in the context
of Long’s equation).

The plan of the paper is as follows: In section 2 we present a short review of the
derivation of Long’s equation and the solution of its linearized version. In section 3
we derive constraints on the solutions of this equation in a general setting and in
particular in the presence of shear. In section 4 solutions to this equation with different
shear profiles are studied explicitly. In section 5 we carry out simulations of Long’s
equation for shearless and shear base flows. We end in section 6 with summary and
conclusions.

2. Long’s equation: A short review. In two dimensions (x, z) the flow of a
steady inviscid and incompressible stratified fluid (in the Boussinesq approximation)
is modeled by the following equations:

ux + wz = 0,(2.1)

uρx + wρz = 0,(2.2)

ρ(uux + wuz) = −px,(2.3)

ρ(uwx + wwz) = −pz − ρg,(2.4)

where subscripts indicate differentiation with respect to the indicated variable, u =
(u,w) is the fluid velocity, ρ is its density, p is the pressure, and g is the acceleration
of gravity.

We can nondimensionalize these equations by introducing

x̄ =
x

L
, z̄ =

N0

U0
z, ū =

u

U0
, w̄ =

LN0

U2
0

w,

ρ̄ =
ρ

ρ0
, p̄ =

N0

gU0ρ0
p,(2.5)

where L represents a characteristic length and U0, ρ0 represent, respectively, the free
stream velocity and density. N0 is the characteristic Brunt–Väisälä frequency

N2
0 = − g

ρ0

dρ0

dz
.(2.6)

In these new variables, (2.1)–(2.4) take the following form (for brevity we drop
the bars):

ux + wz = 0,(2.7)

uρx + wρz = 0,(2.8)

βρ(uux + wuz) = −pz,(2.9)

βρ(uwx + wwz) = −μ−2(pz + ρ),(2.10)
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where

β =
N0U0

g
,(2.11)

μ =
U0

N0L
.(2.12)

β is the Boussinesq parameter [13] which controls stratification effects (assuming
U0 �= 0), and μ is the long wave parameter which controls dispersive effects (or the
deviation from the hydrostatic approximation). In the limit μ = 0 the hydrostatic
approximation is fully satisfied [20].

In view of (2.7) we can introduce a stream function ψ so that

u = ψz, w = −ψx.(2.13)

From (2.8) and (2.13) we infer that ρ = ρ(ψ) and (after some algebra) derive the
following equation for ψ [13]:

ψzz + μ2ψxx −N2(ψ)

[
z +

β

2
(ψ2

z + μ2ψ2
x)

]
= G(ψ),(2.14)

where

N2(ψ) = −ρψ
βρ

(2.15)

is the nondimensional Brunt–Väisälä frequency. G(ψ) is some unknown function
which is determined from the base flow, which henceforth we assume to be a function
of z only. To carry out this determination we consider (2.14) at x = −∞ and express
the left-hand side of this equation in terms of ψ only (assuming that disturbances do
not propagate far upstream [19]). Equation (2.14) is referred to as Long’s equation.

For example, if we let

ψ(−∞, z) = z,(2.16)

i.e., consider a shearless base flow with u(−∞, z) = 1, then

G(ψ) = −N2(ψ)

(
ψ +

β

2

)
(2.17)

and (2.14) becomes

ψzz + μ2ψxx −N2(ψ)

[
z − ψ +

β

2
(ψ2

z + μ2ψ2
x − 1)

]
= 0.(2.18)

However, it is evident that different profiles for the base flow at x = −∞ will lead to
different forms of G(ψ) (for examples, see section 4).

For a general base flow in an unbounded domain over topography with shape f(x)
and maximum height H the following boundary conditions are imposed on ψ:

ψ(−∞, z) = ψ0(z),(2.19)

ψ(x, εf(x)) = constant, ε =
HN0

U0
,(2.20)



1842 MAYER HUMI

where the constant in (2.20) is (usually) set to zero. As to the boundary condition on
ψ(∞, z) we observe that Long’s equation contains no dissipation terms and therefore
only radiation boundary conditions can be imposed in this limit. Similarly at z = ∞
it is customary to impose (following [7]) radiation boundary conditions. For the
perturbation from the shearless base flow

φ = ψ − z,(2.21)

(2.18) becomes

φzz − α2φ2
z + μ2(φxx − α2φ2

x) −N2(φ)(βφz − φ) = 0,(2.22)

where

α2 =
N2(ψ)β

2
.(2.23)

Since ψ is set to zero at the bottom topography, the corresponding (approximate)
boundary condition on φ for small ε will be

φ(x, 0) = −εf(x).(2.24)

Thus for small amplitude topography the boundary condition can be applied at z = 0.

In the limits β = 0, μ = 0 and when N(ψ) is a constant whose value over the
domain is N , (2.22) reduces to a linear equation

φzz + N2φ = 0.(2.25)

We observe that the limit β = 0 can be obtained by letting either U0 → 0 or N0 → 0.
In the following we assume that this limit is obtained as U0 → 0 (so that stratification
persists in this limit). The general solution of (2.25) is

φ(x, z) = p(x) cos(Nz) + q(x) sin(Nz),(2.26)

where the functions p(x), q(x) have to be chosen so that the boundary conditions
derived from (2.19), (2.20) and the radiation boundary conditions are satisfied. These
boundary conditions lead in general to an integral equation for p(x) and q(x):

q(x) cos(εNf(x)) + H[q(x)] sin(εNf(x)) = −εf(x),(2.27)

where H[q(x)] is the Hilbert transform of q(x). This equation has to be solved nu-
merically [6, 7].

It is clear from the form of the general solution given by (2.26) that it represents
a wave in the z-direction, and the properties of this wave (under varied physical
conditions) were investigated by the authors mentioned in section 1. It should be
observed, however, that (2.25) is a “singular limit” of Long’s equation, as one of the
leading second order derivatives drops when μ = 0 and the nonlinear terms drop
when β = 0. This approximation and its limitations were considered numerically and
analytically [6, 7, 14] and were found to be justified under the assumption that the
base flow is shearless. It is used in the actual analysis of atmospheric data [16, 17, 18].
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3. Properties of solutions to Long’s equation with shear. In this section
we address the nature and properties of the perturbation from the base flow when
shear is present. To simplify our notation and treatment we set μ = 1 since we can
always scale x as x̄ = x/μ (and drop the bars on x̄). We also assume that

lim
x→−∞

ψ(x, z) = ψ0(z).(3.1)

Long’s equation with shear is then

(ψzz − α2ψ2
z) + (ψxx − α2ψ2

x) −N2(ψ)z = G(ψ),(3.2)

and in the limit x → −∞, G(ψ) must satisfy

G(ψ0) = ψ0
zz −N2(ψ0)

[
z +

β

2
(ψ0

z)
2

]
.(3.3)

To treat the perturbation from the base state we write

ψ(x, z) = ψ0(z) + φ(x, z).(3.4)

Substituting this in (3.2) and linearizing using (3.3) we obtain

∇2φ− 2α2ψ0
zφz − (N2)′(ψ0)zφ−G′(ψ0)φ = 0,(3.5)

where primes denote differentiation with respect to ψ.
Since ψ0 is a function of z only, this equation is separable and we can deduce the

properties of its solution by applying separation of variables. Introducing

φ(x, z) = χ(x)η(z),(3.6)

we obtain

χ(x)xx + λχ(x) = 0(3.7)

and

η(z)zz − 2α2ψ0
zηz − [λ + (N2)′(ψ0)z + G′(ψ0)]η = 0,(3.8)

where λ is the separation of variables constant. Equation (3.8) can be rewritten as

d

dz

(
e−2α2ψ0 d

dz
η(z)

)
−H(z)η = 0,(3.9)

where

H(z) = e−2α2ψ0

[λ + (N2)′(ψ0)z + G′(ψ0)].(3.10)

Equations (3.9)–(3.10) demonstrate that the properties of the perturbation as a func-
tion z depend only on λ (i.e., the wave number in the x direction) and the initial state
of the flow.

To obtain further information about the properties of η we observe that e−2α2ψ0 ≥
0 and it is possible to apply to (3.9) the comparison theorem of Strum and Picone [21].
A direct application of these theorems leads to the following result.
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Assume that on the interval [a, z]

0 < m ≤ e−2α2ψ0 ≤ M,(3.11)

k ≤ H(z) ≤ K.(3.12)

Then the following hold:
1. If 0 < k, the solution of (3.9) is not oscillatory (no waves on the interval [a,z]).
2. If k < 0 and

−π2

(z − a)2
<

k

m
,(3.13)

then the solution of (3.9) is not oscillatory (no waves).
3. A sufficient condition for (3.9) to have an oscillatory solution with n zeros is

that

K

M
≤ −n2π2

(z − a)2
.(3.14)

That is, the wavenumber of the wave will increase as K becomes more negative. We
observe also that the estimate for k depends on the value of λ. As 0 < λ increases, this
estimate for the lower bound of H(z) will increase and when k satisfies the inequality
(3.13), the solution for η will become nonoscillatory (that is, the wave is trapped).
This demonstrates the “coupling” between the horizontal wavenumber of oscillations
and the nature of the solution in the vertical direction.

To obtain further insight into the nature of the solution for η(z) we multiply (3.8)
by η and integrate over [0,z]. Using integration by parts we obtain

[ηη′ − α2ψ0
zη

2]

∣∣∣∣
z

0

=

∫ z

0

{(η′)2 + [α2ψ0
zz + F (z)]η2}dz,(3.15)

where

F (z) =
1

2
[λ + (N2)′(ψ0)z + G′(ψ0)].(3.16)

Assuming that η(0) = 0 (i.e., the amplitude of the perturbation at ground level
is 0), (3.15) can be written as

1

2

dη2

dz
(z) = α2ψ0

z(z)η
2(z) +

∫ z

0

(η′)2dz +

∫ z

0

[α2ψ0
zz + F (z)]η2dz.(3.17)

Hence we conclude that the amplitude of the perturbation will increase with height if

ψ0
z(z) > 0, α2ψ0

zz + F (z) > 0(3.18)

on the interval [0, z].
To proceed we now invoke the (modified) Poincaré inequality on the interval [0, z].

This inequality states that if η is smooth enough and η(0) = 0, then∫ z

0

(η′)2(s)ds ≥ π2

4z2

∫ z

0

η2(s)ds.(3.19)
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(For the proof of this inequality see the appendix.)
To apply this inequality we rewrite (3.15) (assuming η(0) = 0) as

1

2

dη2

dz
(z) ≤ α2ψ0

z(z)η
2(z) +

∫ z

0

(η′)2dz + max[α2ψ0
zz + F (z)]

∫ z

0

η2dz.(3.20)

Using the Poincaré inequality to estimate the integral of η2 yields

1

2

dη2

dz
(z) ≤ α2ψ0

z(z)η
2(z) +

{
1 +

4z2

π2
max[α2ψ0

zz + F (z)]

}∫ z0

0

(η′)2dz.(3.21)

Hence if

ψ0
z < 0,

{
1 +

4z2

π2
max[α2ψ0

zz + F (z)]

}
< 0(3.22)

on the interval [0, z], then the perturbation η will decay with height.
We observe that the conditions (3.18) and (3.22) depend only on the properties

of the base flow and the variation of N2 with height.

3.1. Some special cases.
1. ψ0(z) = z and N = constant.
This is essentially the only case that has been treated in the literature on Long’s

equation. It represents a shearless base state with constant Brunt–Väisälä frequency.
In this case G(ψ) is given by (2.17), and (3.8) reduces to

ηzz − 2α2ηz + (N2 − λ)η = 0,(3.23)

whose solution is [14]

η = Aeα
2z cos(mz + γ),(3.24)

where m =
√

(N2 − λ) and γ is a constant.
2. α = 0.
When α is very small we can neglect the second term in (3.8) which reduces then

to

ηzz = 2F (z)η.(3.25)

Introducing

v =
ηz
η

=
d ln |η|
dz

,(3.26)

this equation becomes

vz + v2 = 2F (z).(3.27)

Hence vz = 2F (z) − v2 ≤ 2F (z). We can conclude therefore that if F (z) < 0, then v

and hence d ln |η|
dz are decreasing with height; i.e., the perturbation is being dissipated.

On the other hand, if F (z) > 0, then v is increasing when 2F (z) − v2 is positive and
decreasing when this quantity is negative, and therefore there will be oscillations in
the amplitude of η.
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4. Some examples with shear. In this section we consider some examples
whose base flow is not shearless and derive explicitly the corresponding equations for
the perturbations. We use then analytic methods to explore the properties of the
solutions to these equations.

4.1. ψ0 = z2, N = constant. For this base flow u = z; that is, u increases
linearly with height. Using (3.3) we find that

G(ψ) = 2 −N2(ψ)[ψ1/2 + 2βψ](4.1)

and Long’s equation (3.2) for ψ (with μ = 1) becomes

(ψzz − α2ψ2
z) + (ψxx − α2ψ2

x) −N2(ψ)z = 2 −N2(ψ)[ψ1/2 + 2βψ].(4.2)

To derive an equation for a perturbation from the base flow, we set ψ = z2 + φ(x, z).
Substituting this in (4.2) and linearizing, we obtain

∇2φ− 4α2z
∂φ

∂z
+

(
N2

2z
+ 4α2

)
φ = 0.(4.3)

This equation is separable, and we can consider three types of solutions:
1. φ(x, z) = e−kxη(z) with k > 0.
2. φ(x, z) = sin(kx)η(z) with k > 0.
3. φ(x, z) = η(z) (that is, a vertical perturbation, k = 0).
In all three cases we obtain for η(z) the following equation:

η′′ − 4α2zη′ +

(
4α2 ± k2 +

N2

2z

)
η = 0.(4.4)

The solution of this equation is given by Heun biconfluent functions [22]. To explore
analytically when the solution η(z) is oscillatory, we rewrite (4.4) in the form

[e−2α2z2

η′]′ +

(
4α2 ± k2 +

N2

2z

)
e−2α2z2

η = 0.(4.5)

This equation has the same form as (3.9), and therefore we can apply the oscillation

theorems of Strum and Picone. In fact, since 0 < e−2α2z2 ≤ 1, oscillations can occur

only if (4α2±k2+ N2

2z ) is positive enough. (See (3.11), (3.12), and (3.14) and note that
there is a minus sign in front of H(z) in (3.9).) This can happen for proper values of
N2 and α2 in cases 1 and 3 above. It can also happen when k is small in the second

case, but 4α2 + N2

2z is large enough. Furthermore, one can show numerically that in
all cases the amplitude of the perturbation grows with height. Thus the perturbation
will always feed on the energy of the base flow. (However, it should be kept in mind
that the amplitude of the perturbation cannot grow indefinitely. Once it violates the
assumptions made to derive Long’s equation and the approximations that led to (4.4),
this solution becomes invalid.)

4.2. G(ψ) = 0, N = constant. In this case, instead of choosing the base flow
and deriving G(ψ) using (3.3), we make the ansatz that G(ψ) = 0 and compute the
corresponding base flow. With this assumption (3.3) becomes

ψ0
zz −N2

[
z +

β

2
(ψ0

z)
2

]
= 0.(4.6)
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Introducing y = ψ0
z , we obtain a Ricatti equation for y(z):

y′ − α2y2 −N2z = 0.(4.7)

This equation can be linearized by the transformation

y(z) = − 1

α2

v(z)′

v(z)
,(4.8)

which leads to

v(z)′′ + α2N2zv(z) = 0.(4.9)

This can be identified as a Bessel equation whose solution is

v(z) = C
√
zJ1/3

(
2

3
Nαz3/2

)
,(4.10)

and hence

ψ0(z) = − 1

α2
ln(|v(z)|).(4.11)

The resulting Long’s equation for this base flow is (3.2) with G(ψ) = 0. This equation

can be linearized by the transformation ξ = e−α2ψ, and we obtain

∇2ξ + N2α2zξ = 0.(4.12)

This equation (for the full flow) is separable, and the nature of the solution will depend
on the separation constant. We distinguish three cases:

1. ξ(x, z) = ξ(z).

In this case ξ satisfies (4.9) and hence ξ is given by (4.10).

2. ξ(x, z) = e−nxη(z), n > 0.

This lead to

η′′ + [N2α2z + n2]η = 0.(4.13)

3. ξ(x, z) = sin(nx)η(z), n > 0.

The equation for η becomes

η′′ + [N2α2z − n2]η = 0.(4.14)

The solution to equations (4.13), (4.14) is given in terms of Airy functions. How-
ever, the qualitative nature of the solution of these equations can be deduced from
the comparison theorems of Strum and Picone [21]. (In this case the function e−2α2ψ0

in (3.9) is replaced by 1, and hence m = M = 1 in (3.11).) Thus for the second
case we have [N2α2z + n2] > 0 and therefore the solution for η will be oscillatory.
Moreover, the wavenumber of the oscillations will increase with height. On the other
hand, for the third case the solution will be nonoscillatory for small z but may become
oscillatory with height, viz. when [N2α2z − n2] becomes positive.
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4.3. ψ0 = − cos(az), N = constant. For this base flow u = a sin(az); that
is, u oscillates with the height.

In this case we obtain for G(ψ) the expression

G(ψ) = −a2ψ −N2

[
π − arccos(ψ)

a
+

βa2

2
(1 − ψ2)

]
.(4.15)

The linearized equation for the perturbation φ(x, z) from the base flow is

∇2φ− 2α2a sin(az)
∂φ

∂z
+

[
a2 + 2α2a2 cos(az) − N2

a sin(az)

]
φ = 0.(4.16)

For a solution of the form φ(x, z) = e−kxη(z) or φ(x, z) = sin(kx)η(z) this yields

[
e2α2cos(az)η′

]′
+ e2α2cos(az)

[
a2 ± k2 + 2α2a2 cos(az) − N2

a sin(az)

]
η = 0.(4.17)

Oscillations in the solution of this equation will occur whenever the expression in the
square brackets of the last term is positive. Since sin(az) takes both positive and

negative values and N2

asin(az) is dominant when az ≈ 0 or az ≈ π, the solution will

exhibit different qualitative behavior in different regions (i.e., oscillatory in some and
nonoscillatory in others).

5. Numerical simulations for shear flow. In previous sections we discussed
from an analytical point of view the impact of shear on the generation of gravity
waves using first order perturbation expansion. To elicit more insight on this issue
we compare numerically in this section the solutions of Long’s equation with and
without shear over the same topography and with the same values of the geophysical
parameters (viz. μ, β, and N2). Without loss of generality we set μ = 1 in the
following (see remark at the beginning of section 3).

The equation for a perturbation from a shearless base flow (without approxima-
tions) is given by (2.22). Similarly the exact equation for the perturbation from pure
shear flow (see section 4.1) is given by

∇2φ− α2
[
4zφz + φ2

z + φ2
x − 4φ

]
+ N2[

√
z2 + φ− z] = 0.(5.1)

To simplify (2.22) and (5.1) we introduce

η = e−α2φ, α �= 0,(5.2)

and observe that

− 1

α2η
ηzz = φzz − α2φ2

z.(5.3)

Substituting this result for the second order derivatives of x and z, (2.22) and
(5.1) transform, respectively, to

∇2η − 2α2ηz + N2η ln η = 0,(5.4)

∇2η + α2

{
−4zηz + η

[
4 ln(η) + N2

(
z −

√
α2z2 − ln(η)

α2

)]}
= 0.(5.5)
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These equations are linear in the derivatives of η and nonlinear only in terms which
contain η itself. This simplifies the numerical algorithm for their solution.

To solve (5.4), (5.5) we implement Newton’s iteration scheme. To this end we
define F (η) as the left-hand side (of each) of these equations and take its Frechet
derivative, i.e., compute

F (η0 + δ) ∼= F (η0) + L(η0)δ + O(δ2),(5.6)

where L(η0) is a linear operator. A short computation using (5.4) yields

L1(η0) = ∇2 + N2

[
(1 + ln η0) − β

∂

∂z

]
.(5.7)

Similarly, for (5.5) we obtain

L2(η0) = ∇2 + α2

⎡
⎣−4z

∂

∂z
+ 4(1 + ln η0) + N2

⎛
⎝z −

√
z2 − ln(η0)

α2
+

1

2α2

√
z2 − ln(η0)

α2

⎞
⎠
⎤
⎦.

(5.8)

To use Newton’s iteration scheme to solve (5.4), (5.5) we now let F (η0 + δ) = 0
in (5.6) with δ = ηm+1 − ηm (where the index m denotes the iteration number).
This leads, respectively, to the following iteration schemes for the solution of these
equations:

L1(ηm)ηm+1 = N2ηm,(5.9)

L2(ηm)ηm+1 =

⎡
⎣4α2 +

N2

2
√
z2 − ln(ηm)

α2

⎤
⎦ ηm.(5.10)

To solve these equations over a finite two dimensional domain [−a, a]× [0, b] with
bottom topography, we used central finite differences with a grid of 151× 101 points.
The (approximate) boundary conditions which were imposed on η in (5.9), (5.10),
respectively, were

η(−a, z) = 1, η(a, z) = 1, η(x, b) = 1, η(x, 0) = eα
2εf(x),(5.11)

η(−a, z) = 1, η(a, z) = 1, η(x, b) = 1, η(x, 0) = eα
2ε2f2(x).(5.12)

To mimic radiation boundary conditions and avoid reflection of the outgoing wave
we used “sponge boundaries” at x = a and z = b (as is done in the NCAR/MM5
mesoscale model [23] and others). The following values of the parameters were used,
respectively, in these simulations:

ε = 0.35, N = 1, β = 4.10−3(5.13)

with topography shape function

f(x) =
1

(1 + x2)3/2
.(5.14)

The convergence criterion for the iterations was max |ηm+1−ηm| ≤ 10−10. Figures
1 and 2 compare the results obtained for the perturbation φ(x, z) by using (5.9) and
(5.10). We see that Figure 1 (for the shearless base flow) displays a clear pattern of
gravity waves. On the other hand, Figure 2 shows that the perturbation from the
shear flow feeds on the energy of the base flow and creates a vortex high above the
topography.
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Fig. 1. Contour plot of α2φ using (5.9) (shearless base flow).
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Fig. 2. Contour plot of α2φ using (5.10) (shear base flow).
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6. Summary and conclusions. We derived in this paper some criteria for the
excitation of gravity waves by a flow over topography using Long’s equation. These
criteria depend on only the nature of the base flow and the variation of N2 with height.
From an operational point of view these criteria will be useful both experimentally
and theoretically. Currently the experimental practice is to ignore the shear in the
base flow and attempt to deduce the quantitative attributes of the gravity waves
using the shearless Long’s equation. This procedure can be refined now by taking this
important feature into account. Our analysis also shows that no simulation of Long’s
equation over actual topography is needed to determine the qualitative nature of the
perturbation that is generated by the topography.

We also demonstrated that in some cases this perturbation will be damped by
the shear, while in other cases the perturbation will grow, feeding on the energy that
is present in the base flow.

Appendix: Poincaré inequality.
Theorem A.1. Let u(x) be a bounded differentiable function on [0, a] with

u(0) = 0; then ∫ a

0

[u′(x)]2dx ≥ π2

4a2

∫ a

0

u2(x)dx.(A.1)

Proof. To prove this inequality we introduce

h(x) =
π

2a
tan

(
π(x− a)

2a

)
.(A.2)

This function satisfies h(a) = 0 and the differential equation

h′ − h2 =
π2

4a2
.(A.3)

We now consider the integral ∫ a

0

[uh + u′]2dx ≥ 0,(A.4)

∫ a

0

[uh + u′]2dx =

∫ a

0

u2h2dx +

∫ a

0

(u′)2dx + 2

∫ a

0

uhu′dx ≥ 0,(A.5)

but ∫ a

0

uu′hdx =
u2h

2

∣∣∣∣
a

0

− 1

2

∫ a

0

u2h′dx

=
1

2
[u2(a)h(a) − u2(0)h(0)] − 1

2

∫ a

0

u2h′dx

= −1

2

∫ a

0

u2h′dx.(A.6)

Hence from (A.5),∫ a

0

(u′)2dx ≥
∫ a

0

u2h′dx−
∫ a

0

u2h2dx =

∫ a

0

u2(h′ − h2)dx =
π2

4a2

∫ a

0

u2dx,(A.7)

which proves the theorem.
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Abstract. We propose stage-structured population models for species whose adult members
are subject to culling, with a view to understanding the culling regimes that are likely to result in
eradication of the species. A purely time-dependent model is proposed in which culling occurs at
particular discrete times, not necessarily equally spaced. Then a reaction-diffusion model is proposed
for a situation in which the adults can diffuse; in this model the culling is continuous in time but
occurs only at particular discrete points in space. Such a model might be appropriate for pheromone
trapping of insects. For both models conditions are obtained that are sufficient for species eradication.
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1. Introduction. Many species are subject to some form of culling. Often this
is for reasons of pest control, and the aim of culling in this case might well be the
localized eradication of the pest. In other situations the reason for culling is simply
to keep numbers under control for the protection of habitats or other species, and
complete eradication is not the aim.

Unlike natural mortality which one might reasonably suppose to occur continu-
ously, the mortality attributable to culling is often more likely to take place only at
certain times. Sometimes these times may be prescribed by law, as in the case of
game bird and wildfowl shooting in the UK, which takes place in prescribed seasons
lasting only a few months. Also, where animals such as deer (which as adults have
no natural predators in the UK or Ireland) are culled for habitat protection, culling
often occurs only at certain times of the year. In the UK, badgers, which are believed
to spread tuberculosis to cattle, are subjected to culling by trapping and shooting,
but again there are restrictions on the timing of the culls in an attempt to reduce
the problem of badger cubs being orphaned and starving to death. Crop spraying as
a way to control insect pests is also a method of control likely to be happening at
certain discrete times (sometimes chosen to coincide with critical stages in the insects’
development).

One might also envisage situations where some form of culling takes place con-
tinuously in time but only at discrete points in space. A good example would be the
trapping system used in Australia to control the blowfly Lucilia cuprina which is a
substantial nuisance to sheep farmers. Female flies lay their eggs in a sheep’s fleece.
The eggs hatch into larvae which feed on the sheep’s damaged skin, creating a wound
that can attract other flies. The larval and pupal stages may total around 14 days
[6]. One approach to controlling the fly populations is by using pesticides, but this
raises concerns regarding pesticide residue on the wool as well as environmental and
occupational health and safety. An alternative is to trap the blowflies using specially
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designed translucent buckets fixed to trees at about the height at which the blowflies
work. Entrance cones allow blowflies to enter but not leave the buckets, which con-
tain a chemical attractant which smells like the blowflies’ food sources—rotting fleece,
carcasses, urine, and feces. Manufacturers of the buckets offer advice regarding where
they should be placed. The second model of the present paper, which we study in
section 3, proposes a possible model for such trapping of blowflies continuously in
time but only at discrete points in a one-dimensional space. The traps in our model
do not have to be equally spaced apart, and neither do they all have to be equally
effective.

The use of impulsive differential equations as models of pest control seems to be a
relatively undeveloped application area. Liu, Zhang, and Chen [8], motivated by the
topic of pest control, proposed and studied a Lotka–Volterra predator prey model with
impulsive effects (but no delay). Their model exhibits complex dynamics including
quasi periodicity and chaos. Models of vaccination are another obvious application
area (Hui and Chen [7]). However, impulsive differential equations, as a topic in their
own right, have received some attention. See, for example, Wu [10] or the book by
Gopalsamy [4]. A number of papers give conditions for existence of periodic solutions
and oscillation properties more generally, but this is not our interest in the present
paper.

Section 2 of this paper analyzes a purely time-dependent model for culling that
occurs only at particular discrete times, while section 3 analyzes a reaction-diffusion
model incorporating culling that is continuous in time but discrete in space.

2. Culling at discrete times. In this section we propose a model for a stage
structured population with two stages: immature and mature, in which births and
naturally occurring deaths occur continuously but culling or trapping occurs only at
certain particular times, namely at times tj with 0 < t1 < t2 < · · · < tj < · · · and
tj → ∞ as j → ∞. At the cull which occurs at time tj a proportion bj of the adult
population is culled, causing a sharp decrease in the population and consequently a
discontinuity in the evolution at time tj .

Let u(t, a) be the density of individuals at time t of age a, and assume that an
individual becomes mature on reaching the age τ . We will assume that the total
number of mature adults um(t), defined by

um(t) =

∫ ∞

τ

u(t, a) da,

obeys an evolution equation of the form

u′
m(t) = u(t, τ) − d(um(t)) −

∞∑
j=1

bjum(t−j )δ(t− tj),(2.1)

where u(t, τ) is the number of individuals of age exactly τ and therefore represents
adult recruitment, −d(um(t)) is naturally occurring deaths, and the last term is the
culling term. It will be assumed that the immatures are governed by the standard
McKendrick–von Foerster model for an age-structured population, namely

∂u

∂t
+

∂u

∂a
= −μu, t > 0, 0 < a < τ,(2.2)

with μ > 0 constant, the initial condition

u(0, a) = u0(a) ≥ 0, a ≥ 0,(2.3)
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and also the assumption that the birth rate u(t, 0) is a function of the total number
of adults so that

u(t, 0) = b(um(t)).(2.4)

For the present section the mathematical assumptions on the death function d(um)
and the birth function b(um) are listed in (2.7) below. As our results are for the
linearized model it is the properties of these functions at low densities that matter
in this paper. Two typical birth functions used in much of the literature seem to
be b(um) = Pume−Aum and b(um) = Pu2

me−Aum , both of which decrease at large
densities due to crowding effects. Note that the second of these has b′(0) = 0, which
is motivated by the fact that in some populations the per capita growth rate at low
densities is very small due to lack of group defense and low mating probability. This
function does not satisfy (2.7) below.

The solution of (2.2) subject to (2.3) and (2.4) is

u(t, a) =

{
u0(a− t) exp(−μt), t < a,
b(um(t− a)) exp(−μa), t > a.

(2.5)

From this expression we see that if t > τ , then

u(t, τ) = exp(−μτ)b(um(t− τ)),

whereas if t < τ , then u(t, τ) = u0(τ − t) exp(−μt). Insertion of these expressions
for u(t, τ) into (2.1) yields one nonautonomous evolution equation valid for times
t ∈ (0, τ) and another autonomous delay equation valid for all times larger than τ .
It is common practice in the literature on these types of models to consider only the
latter equation, but to consider it for all times t > 0 with prescribed initial data on
[−τ, 0]. This is what we shall do in the present paper (model (2.6) below). This
practice does raise certain issues related to initial data, an issue which is discussed in
detail in Bocharov and Hadeler [2]. Strictly speaking, the initial data is prescribed at
time t = 0 only and is just the function u0(a). One should proceed by first solving (2.1)
with u(t, τ) = u0(τ − t) exp(−μt) for t in the interval (0, τ), and then by solving the
delay equation in (2.6) for times t > τ . One can understand from this procedure that
only certain initial data for problem (2.6) is actually related to the original problem.
However, since this paper is concerned mainly with the linearized equations, we do
not feel this will be too much of a concern.

Our model thus takes the form

u′
m(t) = e−μτ b(um(t− τ)) − d(um(t)) −

∞∑
j=1

bjum(t−j )δ(t− tj), t > 0,

um(t) = φ(t) ≥ 0 for t ∈ [−τ, 0); um(0) = u0
m > 0,(2.6)

where μ > 0 represents juvenile mortality, um(t) is the total number of adults at time
t, um(t−j ) is the population just before the impulsive cull at time tj , τ is the maturation
time, bj is the proportion of the mature species trapped or culled at time tj , and δ
denotes the Dirac delta function. In this model b(um(t)) is a function representing
the birth rate of the species, and d(um(t)) is the natural death rate of the mature
species. The e−μτ b(um(t−τ)) term is the rate at which immature individuals become
mature, known as the maturation rate. This term incorporates the delay τ and is
essentially the birth rate τ time units ago, corrected to allow for juvenile mortality.
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Models having the form of (2.6) without impulsive effects have been considered in
detail by Cooke, van den Driessche, and Zou [3].

In the present section we will assume the following:

0 < t1 < t2 < · · · < tj → ∞ as j → ∞,

bj ∈ [0, 1] ∀j = 1, 2, 3, . . . ,

b(0) = 0, b′(0) > 0, b(um) > 0 ∀um > 0,

d(0) = 0, d ∈ C1[0,∞), d(um) > 0 ∀um > 0.

(2.7)

Note that if we integrate the delay equation in (2.6) from t−j to t+j , we obtain

um(t+j ) = um(t−j ) − bjum(t−j ).

As a consequence, model (2.6) can be reformulated as

u′
m(t) = e−μτ b(um(t− τ)) − d(um(t)), t �= tj ,

um(t+j ) = (1 − bj)um(t−j ),(2.8)

um(t) = φ(t) ≥ 0 for t ∈ [−τ, 0); um(0) = u0
m > 0.

The two formulations (2.6) and (2.8) of the model are both useful. For most of the
analysis in this section we shall be concerned only with linearized versions of these
models near the zero solution. The Laplace transform provides a powerful tool for
the investigation of these linearized models, but one has to take careful note of the
fact that the solution um(t) of either (2.6) or the alternative formulation (2.8) will, in
general, be discontinuous at the times tj . The well-known formula

L{u′(t)} = sU − u(0)(2.9)

for the Laplace transform of the derivative of a function assumes the function u(t)
to be continuous for all t > 0. Here, U is the Laplace transform of u, and s is the
transform variable. For a function u(t) which is continuous except for discontinuous
jumps at the times t = tj , the corresponding formula is

L{u′(t)} = sU − u(0) +

∞∑
j=1

e−stj
(
u(t−j ) − u(t+j )

)
.(2.10)

Due care needs to be taken on this issue; otherwise there is a possibility of the dis-
continuities being taken care of twice over, and if this happens incorrect results are
produced by the analysis. Even though the solution of (2.6) will not be continuous, in
the treatment of the linearized equation the Laplace transform of the derivative term
needs to be calculated using the formula (2.9) which assumes continuity. The dis-
continuities in the solution are correctly furnished by the Laplace transform analysis
because of the presence of the Dirac delta function in (2.6). The alternative approach
would be to carry out a Laplace transform analysis of the linearization of (2.8). In
this case the derivative term has to be dealt with using (2.10). It can be shown
that the two approaches yield the same equation for the transformed state variable
and are therefore equivalent. It must be stressed, however, that one has to stick to
one approach or the other. The use of (2.10) in a Laplace transform analysis of the
linearized version of (2.6) produces incorrect results.
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2.1. Positivity. Next, we shall show that solutions of (2.6) or (2.8) enjoy a
positivity preserving property.

Proposition 2.1. Assume (2.7) holds; then the solution um(t) of (2.6), or the
alternative formulation (2.8), satisfies um(t) ≥ 0 for all t > 0.

Proof. The proof is by the method of steps and starts by establishing positivity
for t ∈ (0, τ ]. First note that positivity (in fact, strict positivity) holds if all the bj
are zero. In this case,

u′
m(t) ≥ −d(um(t)) when t ∈ (0, τ ].

By comparison, um(t) ≥ ûm(t) where ûm(t) is the solution of

û′
m(t) = −d(ûm(t)), t ∈ (0, τ ],

satisfying ûm(0) = u0
m > 0. From the assumptions on the function d contained

within (2.7), it follows by Taylor’s theorem that d(ûm(t)) = ûm(t)d′(θ(t)) for some
function θ(t). Therefore the above differential equation for ûm(t) has zero as one of
its solutions and is also of such a form that, given initial data, we are assured of a
unique solution. With ûm(0) > 0 it follows that ûm(t) > 0 for all t > 0; otherwise
uniqueness is violated. Therefore um(t) > 0 for all t ∈ (0, τ ] in the case when the bj
are all zero. From the method of steps it is clear that if the bj are zero, then strict
positivity of um(t) holds for all t > 0.

The case when some or all of the bj are nonzero does not represent a significant
complication. They are all in [0, 1], by (2.7), and so by (2.8) the solution is always
reset from a nonnegative value to a nonnegative value at one of the times tj (note,
however that if one or more of the bj is 1, then the solution is reset to zero at the
corresponding time tj , so strict positivity of solutions cannot be anticipated in this
case). From what we have already shown the solution is certainly strictly positive
before the first impulse time t1, and at time t1 is reset to some nonnegative value. An
argument much like that described in the previous paragraph, but with initial time
t1 rather than 0, then assures us of the nonnegativity of um(t) until the next time t2
at which a resetting occurs, but then the argument just described applies again until
the next time t3 and so on. The proof of Proposition 2.1 is complete.

2.2. Criteria for extinction. Linearizing (2.6) about the steady state um = 0,
we get

u′
m(t) = e−μτ b′(0)um(t− τ) − d′(0)um(t) −

∞∑
j=1

bjum(t−j )δ(t− tj).(2.11)

Integrating from t−j to t+j yields the following alternative formulation for the linearized
equation:

u′
m(t) = e−μτ b′(0)um(t− τ) − d′(0)um(t), t �= tj ,

um(t+j ) = (1 − bj)um(t−j ).
(2.12)

Remark 1. Positivity preservation, Proposition 2.1, also holds for the linearized
problem (2.12).
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2.2.1. The case when e−μτb′(0) < d′(0). In this subsection we will prove
linear stability of the zero solution of (2.8) under the condition e−μτ b′(0) < d′(0). The
ecological interpretation of this condition is that, at low densities, adult recruitment
is insufficient to outweigh naturally occurring deaths. Our result confirms that, as we
would anticipate, under these circumstances the population will still become extinct
when impulsive trapping or culling is introduced whatever the intensity and however
frequent or infrequent the culling occurs.

Theorem 2.2. Let (2.7) hold and assume additionally that

e−μτ b′(0) < d′(0).(2.13)

Then the solution um(t) of the linearized problem (2.12) satisfies um(t) → 0 as t →
∞.

Proof. Applying the Laplace transform

L{u(t)} =

∫ ∞

0

u(t)e−st dt

to (2.12), using formula (2.10) to take care of the anticipated discontinuities in the
solution as explained earlier, and also noting that the Laplace transform of the delay
term can be written as

L{e−μτ b′(0)um(t− τ)} = e−μτ b′(0)

(∫ 0

−τ

um(η)e−s(η+τ)dη + e−sτU

)
,

where U = U(s) is the Laplace transform of um(t), (2.12) gives

[s− e−μτ b′(0)e−sτ + d′(0)]U = um(0) −
∞∑
j=1

e−stj (um(t−j ) − um(t+j ))

+ e−μτ b′(0)

∫ 0

−τ

um(η)e−s(η+τ) dη.

Using the impulse condition from (2.12) to replace um(t+j ), we get

[s− e−μτ b′(0)e−sτ + d′(0)]U = um(0) + e−μτ b′(0)

∫ 0

−τ

um(η)e−s(η+τ)dη

−
∞∑
j=1

e−stj bjum(t−j ).
(2.14)

Now define y(t) by

y′(t) = e−μτ b′(0)y(t− τ) − d′(0)y(t), t > 0,(2.15)

y(t) = 0 for t ∈ [−τ, 0); y(0) = 1,

the continuous analogy of (2.12) without impulses. It is easy to show (similarly to
the proof of Proposition 2.1) that y(t) > 0 for all t > 0.

Applying the Laplace transform to (2.15), and letting Y = Y (s) = L{y(t)}, gives

sY − 1 = e−μτ b′(0)

[∫ 0

−τ

y(ξ)e−s(ξ+τ)dξ + e−sτY

]
− d′(0)Y

so that, since y(t) = 0 for t ∈ [−τ, 0),
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Y =
1

s + d′(0) − e−μτ b′(0)e−sτ
(2.16)

and so

y(t) = L−1

{
1

s + d′(0) − e−μτe−sτ b′(0)

}
.(2.17)

From this it is easy to see that y(t) → 0 as t → ∞. To deduce this conclusion it
suffices (by the inversion formula for Laplace transforms) to show that all the poles of
the function Y (i.e., the zeros of the denominator of (2.16)) are strictly in the left half
of the complex plane. For a contradiction, assume a zero ŝ exists satisfying Re ŝ ≥ 0.
Then

|ŝ + d′(0)| = e−μτ b′(0)|e−ŝτ | = e−μτ b′(0)e−τRe ŝ ≤ e−μτ b′(0)

so that ŝ lies in the closed disk in the complex plane centered at −d′(0) and of radius
e−μτ b′(0). But condition (2.13) implies that this disk is entirely within the open left
half of the complex plane, and this contradicts Re ŝ ≥ 0. Thus y(t) → 0 as t → ∞.

The denominator of the right-hand side of (2.16) appears on the left-hand side
of (2.14). Dividing by this quantity and taking inverse Laplace transforms gives

um(t) = um(0)y(t) + L−1

{
e−μτ b′(0)

∫ 0

−τ
um(η)e−s(η+τ)dη

s + d′(0) − e−μτ b′(0)e−sτ

}

−
∞∑
j=1

bjum(t−j )L−1

{
e−stj

s + d′(0) − e−μτ b′(0)e−sτ

}

= um(0)y(t) + L−1

{
e−μτ b′(0)

∫ 0

−τ
um(η)e−s(η+τ)dη

s + d′(0) − e−μτ b′(0)e−sτ

}

−
∞∑
j=1

bjum(t−j )

∫ t

0

y(t− s)δ(s− tj) ds

= um(0)y(t) + L−1

{
e−μτ b′(0)

∫ 0

−τ
um(η)e−s(η+τ)dη

s + d′(0) − e−μτ b′(0)e−sτ

}

−
∞∑
j=1

bjum(t−j )H(t− tj)y(t− tj),(2.18)

where H(t − tj) is the Heaviside function. In this calculation we have used the
convolution theorem for the Laplace transform.

Our intention is to deduce from this that um(t) → 0 as t → ∞ under condi-
tion (2.13). We already know that y(t) → 0 under this condition. The second term in
the expression (2.18) for um(t) also tends to zero as t → ∞. This is because it is the
inverse Laplace transform of a ratio in which the numerator is an analytic function of
s while the denominator has all of its zeros in Re s < 0 as has already been shown.

From nonnegativity of um(t) for t > 0, and strict positivity of y(t), we know the
sign of the last term in the expression (2.18) for um(t) and so we can write

0 ≤ um(t) ≤ um(0)y(t) + L−1

{
e−μτ b′(0)

∫ 0

−τ
um(η)e−s(η+τ)dη

s + d′(0) − e−μτ b′(0)e−sτ

}
.

Hence um(t) → 0 as t → ∞.
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2.2.2. The case when e−μτb′(0) > d′(0). In this subsection we shall show
that the zero solution of (2.8) can also be asymptotically linearly stable (i.e., the
population will be driven to extinction) in the case when adult recruitment outweighs
deaths at low densities if culling occurs in sufficient measure and with sufficient fre-
quency in the sense to be described below. Note that from the alternative formulation
of the original model (2.8) if the bj ’s are close to 1, then it means that aggressive culling
is taking place and a large majority of the mature species population is wiped out at
each time tj . We can also see that even if the bj ’s were exactly equal to 1 and all
the mature species were wiped out, this would not necessarily cause extinction, be-
cause immatures conceived at a previous time may mature at a later date. However,
it is reasonable to speculate that if the bj ’s are close enough to 1 and culling takes
place sufficiently frequently in some sense, then the population would be driven to
extinction.

For reasons that will become clear later, we need to understand the properties of
the function φ(t) defined by

φ′(t) = e−μτ b′(0)φ(t− τ) − e−μτ b′(0)φ(t),

φ(t) = 0, t ∈ [−τ, 0), φ(0) = 1.
(2.19)

Proposition 2.3. The solution φ(t) of (2.19) is strictly positive for all t > 0
and satisfies

lim
t→∞

φ(t) =
1

1 + e−μτ b′(0)τ
.(2.20)

Consequently, the quantity φ∗ := inft≥0 φ(t) satisfies φ∗ > 0.
Proof. Strict positivity of φ(t) for t > 0 follows from arguments similar to those

in the first part of the proof of Proposition 2.1. Strict positivity together with (2.20)
immediately yields the last statement in the proposition, that φ∗ > 0. Therefore,
it remains to prove only (2.20). Taking the Laplace transform of (2.19) and letting
Φ = Φ(s) denote the Laplace transform of φ, we obtain

sΦ − 1 = e−μτ b′(0)

[ ∫ 0

−τ

φ(ξ)e−s(ξ+τ)dξ + e−sτΦ

]
− e−μτ b′(0)Φ.

Since φ(t) = 0 for t ∈ [−τ, 0),

Φ =
1

s− e−sτe−μτ b′(0) + e−μτ b′(0)

so that

φ(t) = L−1

{
1

s− e−sτe−μτ b′(0) + e−μτ b′(0)

}

=
1

2πi

∫ σ+i∞

σ−i∞

est ds

s− e−sτe−μτ b′(0) + e−μτ b′(0)
(2.21)

in which the integral is the standard Bromwich integral. The quantity σ in (2.21)
can be taken as any real number which strictly exceeds the supremum of the real
parts of the zeros of the denominator in the integrand. In this case we can take any
real σ > 0 as we now explain. Evaluation of the integral (2.21) will be via Cauchy’s
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residue theorem, which requires us to identify the poles of the integrand, i.e., the zeros
of its denominator. By inspection, one of these is clearly s = 0. We claim that the
equation s−e−sτe−μτ b′(0)+e−μτ b′(0) = 0 has no roots satisfying Re s ≥ 0 other than
the root s = 0. Indeed, if Re s ≥ 0, then

|s + e−μτ b′(0)| = e−μτ b′(0)|e−sτ | ≤ e−μτ b′(0)e−τRe s ≤ e−μτ b′(0)

so that s is in the closed disk in C with center −e−μτ b′(0) and radius e−μτ b′(0). But
this disk contains no points s with Re s ≥ 0 apart from s = 0. Therefore the poles
of the integrand in (2.21) consist of the pole at s = 0 (which is easily checked to
be simple) together with the remaining zeros of the integrand’s denominator, all of
which satisfy Re s < 0. Evaluation of (2.21) by Cauchy’s residue theorem gives an
expression of the form

φ(t) =
∑

res

{
est

s− e−sτe−μτ b′(0) + e−μτ b′(0)
, s ∈ P

}
,(2.22)

where P is the set of all roots of s − e−sτe−μτ b′(0) + e−μτ b′(0) = 0. But we know
that the roots of this equation are s = 0 together with other roots, all of which satisfy
Re s < 0. It is well known that for a function f(s) of the form f(s) = h(s)/k(s) with
h(s) and k(s) analytic functions of s, h(a) �= 0, k(a) = 0, and k′(a) �= 0, that the
residue of f(s) at the simple pole s = a is given by res {f(s); s = a} = h(a)/k′(a).
Applying this formula to the calculation of the residue at any s ∈ P with Re s < 0
yields that the residue is an exponentially decaying function of t. Therefore

φ(t) = res

{
est

s− e−sτe−μτ b′(0) + e−μτ b′(0)
, s = 0

}
+ exponentially decaying terms in t

=
1

1 + e−μτ b′(0)τ
+ exponentially decaying terms in t,

and thus (2.20) holds. The proof of Proposition 2.3 is complete.
Remark 2. Although we are assured of the strict positivity of the quantity φ∗

defined in the statement of Proposition 2.3, we point out that φ∗ is not necessarily
equal to the limit in (2.20). It can be shown that the convergence to the limit in (2.20)
will be nonmonotone if e−μτ b′(0)τ is sufficiently large,

Our next main result, Theorem 2.4 below, presents some conditions under which
extinction of the population is predicted. Even though the problem under consid-
eration is the linearized problem (2.12), analysis thereof is difficult. Our method of
analysis involves the use of the Euler–Maclaurin summation formula [1], a technique
for converting sums to integrals or vice versa. We can only retain certain terms in
the use of this formula (those that do not involve the Bernoulli numbers), and as
a consequence the following theorem must be interpreted in an approximate sense.
Nevertheless, it is quite insightful as we will discuss later. We draw the reader’s at-
tention to the function t(·) referred to in the statement of Theorem 2.4 below. This
function is not uniquely defined, but a sensible choice would be one that is piecewise
linear but smoothed at the integers so as to be differentiable. The function t(·) tells
us something about the spacing of the impulse times tj (for example, if its deriva-
tive t′ is very small, then the impulse times are rather close together; under these
circumstances we might expect that extinction would be more likely, and this is what
Theorem 2.4 indeed predicts). Condition (2.23) in the theorem essentially states that
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the impulses must occur sufficiently close together in some sense depending on the
proportion of the species that is removed at each impulse and also, not surprisingly,
on the per capita natural death rate and adult recruitment rate at low densities.

Theorem 2.4. Let (2.7) hold, and let t(ξ) : [0,∞) → [0,∞) be a strictly monoton-
ically increasing differentiable function with the property that t(i) = ti, i = 1, 2, 3, . . . ,
and t(0) = 0. If

e−μτ b′(0) > d′(0)

and

inf
j∈N

{bj − (e−μτ b′(0) − d′(0))t′(j)} > 0,(2.23)

then the solution um(t) of the linearized problem (2.12) satisfies um(t) → 0 as t → ∞
according to an analysis based on the Euler–Maclaurin summation formula.

Proof. It will be convenient to rewrite (2.12) in the form

(2.24)

u′
m(t) = e−μτ b′(0)um(t− τ) − e−μτ b′(0)um(t) + (e−μτ b′(0) − d′(0))um(t), t �= tj ,

um(t+j ) = (1 − bj)um(t−j ).

Taking Laplace transforms of (2.24) and using formula (2.10) gives

(2.25)

(s− e−μτe−sτ b′(0) + e−μτ b′(0))U = um(0) + e−μτe−sτ b′(0)

∫ 0

−τ

e−sξum(ξ) dξ

+(e−μτ b′(0) − d′(0))U −
∞∑
j=1

bjum(t−j )e−stj .

Using (2.21) and taking inverse Laplace transforms of (2.25), we get

um(t) = f(t) + L−1

{
(e−μτ b′(0) − d′(0))U

s− e−μτe−sτ b′(0) + e−μτ b′(0)

}

−
∞∑
j=1

bjum(t−j )L−1

{
e−stj

s− e−μτe−sτ b′(0) + e−μτ b′(0)

}

= f(t) + (e−μτ b′(0) − d′(0))

∫ t

0

φ(t− s)um(s) ds

−
∞∑
j=1

bjum(t−j )

∫ t

0

φ(t− s)δ(s− tj) ds

= f(t) + (e−μτ b′(0) − d′(0))

∫ t

0

φ(t− s)um(s) ds

−
∞∑
j=1

bjum(t−j )φ(t− tj)H(t− tj),(2.26)

where we recall that φ(t) is defined by (2.19), and where

f(t) = um(0)φ(t) + L−1

{
e−μτ b′(0)e−sτ

∫ 0

−τ
e−sξum(ξ)dξ

s− e−μτe−sτ b′(0) + e−μτ b′(0)

}
.(2.27)
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If we substitute t = t−i into (2.26) and let

ui = um(t−i ), fi = f(t−i ),

we obtain, noting that φ(t) is continuous,

ui = fi + (e−μτ b′(0) − d′(0))

∫ ti

0

φ(ti − s)um(s)ds−
i−1∑
j=1

bjujφ(ti − tj)

= fi + (e−μτ b′(0) − d′(0))

∫ i

0

φ(t(i) − t(ξ))um(t(ξ))t′(ξ) dξ −
i−1∑
j=1

bjujφ(ti − tj),

having made the substitution s = t(ξ) in the integral term.

We now convert the integral in the above expression into a sum. This will be
achieved by using a first approximation of the Euler–Maclaurin formula:

∫ n

0

h(k) dk ≈
n−1∑
k=1

hk +
h(0) + h(n)

2
.(2.28)

Applying this, we get

(2.29)

ui = fi + (e−μτ b′(0) − d′(0))

⎛
⎝i−1∑

j=1

φ(ti − tj)ujt
′(j) +

φ(ti)um(0)t′(0) + φ(0)uit
′(i)

2

⎞
⎠

−
i−1∑
j=1

bjujφ(ti − tj).

We now claim that the function f(t) defined by (2.27) above tends to a strictly positive
limit C > 0 as t → ∞ (so that also fi → C as i → ∞). By Proposition 2.3, φ(t)
certainly approaches a strictly positive limit. The second term in the expression for
f(t) does so as well, as can be shown similarly to a contour integral argument discussed
earlier where the singularities were the same: a simple pole at the origin and various
other poles all with strictly negative real part. By the inversion formula for Laplace
transforms and Cauchy’s residue theorem,

L−1

{
e−μτ b′(0)e−sτ

∫ 0

−τ
e−sξum(ξ) dξ

s− e−μτe−sτ b′(0) + e−μτ b′(0)

}

= res

{
e−μτ b′(0)est e−sτ

∫ 0

−τ
e−sξum(ξ) dξ

s− e−μτe−sτ b′(0) + e−μτ b′(0)
, s = 0

}

+ exponentially decreasing terms in t.

Thus

lim
t→∞

L−1

{
e−μτ b′(0)e−sτ

∫ 0

−τ
e−sξum(ξ) dξ

s− e−μτe−sτ b′(0) + e−μτ b′(0)

}
=

e−μτ b′(0)
∫ 0

−τ
um(ξ) dξ

1 + τe−μτ b′(0)
.
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Hence f(t) tends to a limit as t → ∞. Writing (2.29) a different way, and recalling
that φ(0) = 1,

ui

(
1 − (e−μτ b′(0) − d′(0))t′(i)

2

)

=
i−1∑
j=1

ujφ(ti − tj)
[(
e−μτ b′(0) − d′(0)

)
t′(j) − bj

]
+ fi + 1

2 (e−μτ b′(0) − d′(0))φ(ti)um(0)t′(0).

Since fi and φ(ti) both approach limits as i → ∞, there exists C∗ such that the
totality of the last two terms in the above expression is bounded above by C∗ for all
i. Using this fact, and also adding λ

∑i−1
j=1 uj to both sides,

ui

(
1 − (e−μτ b′(0) − d′(0))t′(i)

2

)
+ λ

i−1∑
j=1

uj

≤
i−1∑
j=1

uj

{
λ + φ(ti − tj)

[(
e−μτ b′(0) − d′(0)

)
t′(j) − bj

]}
+ C∗,

with λ > 0 to be chosen. Recall that φ(t) ≥ φ∗ > 0, where φ∗ is defined in the
statement of Proposition 2.3, and note also that the hypotheses of the theorem imply
that (e−μτ b′(0) − d′(0)) t′(j) − bj < 0 for each j. Hence

λ + φ(ti − tj)
[(
e−μτ b′(0) − d′(0)

)
t′(j) − bj

]
≤ λ + φ∗ [(e−μτ b′(0) − d′(0)

)
t′(j) − bj

]
which we should like to be negative for all j. Therefore we choose any λ > 0 such
that

λ ≤ φ∗ inf
j∈N

{
bj −

(
e−μτ b′(0) − d′(0)

)
t′(j)

}
,

which is possible because the infimum is strictly positive by hypothesis. With this
choice of λ we have

ui

(
1 − (e−μτ b′(0) − d′(0))t′(i)

2

)
+ λ

i−1∑
j=1

uj ≤ C∗.

Finally note that (e−μτ b′(0) − d′(0))t′(i) < bi ≤ 1 for each i. Hence

1

2
ui + λ

i−1∑
j=1

uj ≤ ui

(
1 − (e−μτ b′(0) − d′(0))t′(i)

2

)
+ λ

i−1∑
j=1

uj ≤ C∗.

This is true for all i, and furthermore ui ≥ 0 for each i. Hence
∑∞

j=1 uj < ∞, and so
ui → 0 as i → ∞. The proof is complete.

3. Culling at discrete points in space. Up to now we have examined a purely
time-dependent model in which the culling occurs only at specific times. The present
section will examine a reaction-diffusion model for the situation in which the adults
(but not the juveniles) can move around in a random way and where culling occurs
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continuously in time but only at specific points xj in a one-dimensional infinite spatial
domain x ∈ (−∞,∞). The equation we will analyze is

∂um

∂t
(x, t) = D

∂2um

∂x2
(x, t) + e−μτ b(um(x, t− τ)) − d(um(x, t))

−
∞∑

j=−∞
Bjum(xj , t)δ(x− xj),

um(x, t) = φ(x, t) ≥ 0 for (x, t) ∈ (−∞,∞) × [−τ, 0]

with φ(·, t) ∈ L2 for each t ∈ [−τ, 0] and um(x, 0) �≡ 0.

(3.1)

Model (3.1) is only appropriate if the juvenile members do not diffuse. This is because
we are using the same derivation for the adult recruitment term e−μτ b(um(x, t− τ))
as was used to derive model (2.6). However, if the juveniles diffuse, then a diffusion
term would have to be added to (2.2) with the consequence that the solution of the
latter would no longer be (2.5). Thus, our model (3.1) is for the case when only the
adults diffuse. Fortunately, this assumption is quite realistic in many species. For
example, in many insect species the juveniles are larvae and move very little or not
at all. Locust larvae attach themselves to tree roots and do not move at all, whereas
adult locusts can move great distances. The blowfly Lucilia cuprina larvae live in
sheep and might move a little in the sense of being carried about by their host sheep
within a farm, but it is only the adults that can move great distances and thereby
transfer infestations from farm to farm.

Situations in which the juveniles do move appreciably can be studied too. As
previously noted, one would need to add to (2.2) a term representing the mobility of
the juveniles, with the consequence that instead of (3.1) we would have an equation
containing a spatial nonlocality caused by the mobility of the juveniles. Such equations
have been studied extensively in recent years; see, for example, So, Wu, and Zou [9]
or the recent survey article by Gourley and Wu [5].

The quantities Bj , j = 0,±1,±2, . . . , in (3.1) have a somewhat different ecological
interpretation to the corresponding quantities bj in model (2.6). The quantity Bj is
not the proportion removed at xj but rather is a measure of the culling effort at that
location (as will become clear in the next paragraph) and can be any nonnegative
number. It is reasonable to anticipate that if the Bj ’s are large, then the population
would become extinct if either the xj ’s are sufficiently close together or the diffusivity
D is sufficiently large. This is because in the limiting case when the Bj ’s are all
infinite, one can imagine that the problem effectively would decompose into infinitely
many uncoupled problems each consisting of the partial differential equation in (3.1)
on the finite domain consisting of the interval between two adjacent culling locations,
subject to homogeneous Dirichlet boundary conditions.

The positioning of the delta function in (3.1) is such that the solution um(x, t)
will be continuous in x, but its derivative ∂um/∂x will not. If we integrate (3.1) from
x−
j to x+

j , the result is

D

[(
∂um

∂x

)
x+
j

−
(
∂um

∂x

)
x−
j

]
= Bjum(xj , t).(3.2)

Keeping in mind that the Laplacian representation for diffusion comes about from
using the formula J = −D∂um/∂x for the flux J(x, t) (defined as the net rate at
which individuals cross x in the positive x direction), then if we imagine the do-
main to be broken up into subdomains defined by the culling locations, (3.2) has the
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interpretation that individuals that leave the subdomain [xj , xj+1] at xj do so either
by being culled at xj , or by entering the adjacent subdomain [xj−1, xj ]. The culling
effort at xj is Bj , and the culling yield at this location is Bjum(xj , t) per unit time,
i.e., proportional to the density at xj . This leads us to expect that (3.1) should have
a positivity preserving property, which is what we shall prove next. For the analysis
of the present section, assumption (2.7) will be replaced by the following:

· · · < x−2 < x−1 < x0 < x1 < x2 < · · ·
with xn → ∞ and x−n → −∞ as n → ∞,

Bj ≥ 0 ∀j = 0,±1,±2, . . . ,

b(0) = 0, b′(0) > 0, b(um) > 0 ∀um > 0,

d(0) = 0, d ∈ C1[0,∞), d′(0) > 0, d(um) > 0 ∀um > 0.

(3.3)

Proposition 3.1. Let (3.3) hold. Then all solutions of (3.1) which decay to zero
as |x| → ∞ for all t ≥ 0 remain nonnegative for all t > 0.

Proof. Let us make a C1 extension to the definition of the death function to
um < 0 by defining d(um) = d′(0)um when um < 0. Then d ∈ C1(R). Let us first
prove nonnegativity of um(x, t) for t ∈ (0, τ ] only. The proof is by contradiction.
Suppose um goes negative on this time interval. Since um(±∞, t) = 0, um(x, t) must
then attain a negative global minimum on the set (x, t) ∈ (−∞,∞) × (0, τ ]. Let us
first consider the possibility that the minimum is attained at a point (x∗, t∗) where x∗

is not one of the culling sites xj . Then x∗ is in some open interval throughout which
the delta function in (3.1) is inactive. Thus, um(x∗, t∗) < 0, um,xx(x∗, t∗) ≥ 0, and
um,t(x

∗, t∗) ≤ 0 (noting that the minimum could be at a point with t∗ = τ). Since
t∗ − τ ≤ 0, the adult recruitment term in (3.1) is nonnegative at (x∗, t∗). Using our
extension of the death function to um < 0, it follows that

∂um

∂t
(x∗, t∗)︸ ︷︷ ︸
≤0

= D
∂2um

∂x2
(x∗, t∗)︸ ︷︷ ︸

≥0

+e−μτ b(um(x∗, t∗ − τ))︸ ︷︷ ︸
≥0

−d′(0)um(x∗, t∗)︸ ︷︷ ︸
<0

,

which is a contradiction. Now suppose that the negative global minimum is attained
at a point (x∗, t∗) where x∗ is one of the xj . The delta function is active, and the
above argument fails. As a function of x, the function um(x, t) must now show cusp-
like behavior, with um(x∗, t∗) < 0, um,x(x∗−, t∗) ≤ 0, and um,x(x∗+, t∗) ≥ 0 (if, for
example, the second of these were violated, then, for x just larger than x∗, um(x, t∗)
would be below um(x∗, t∗), contradicting (x∗, t∗) being the global minimum). Using
this information in (3.2) at time t∗ gives

D

(
∂um

∂x

)
x∗+︸ ︷︷ ︸

≥0

−D

(
∂um

∂x

)
x∗−︸ ︷︷ ︸

≤0

= Bj um(x∗, t∗)︸ ︷︷ ︸
<0

,

a contradiction. Thus um(x, t) ≥ 0 for times t ∈ (0, τ ]. By the method of steps,
um(x, t) ≥ 0 for all t > 0, and the proof is complete.

The linearization of (3.1) about the zero solution is

∂um

∂t
(x, t) = D

∂2um

∂x2
(x, t) + e−μτ b′(0)um(x, t− τ) − d′(0)um(x, t)

−
∞∑

j=−∞
Bjum(xj , t)δ(x− xj).(3.4)
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We will prove the following theorem giving conditions under which it is predicted that
extinction will result. The quantity Binf defined below embodies information on the
spacing of the culling locations. The analysis uses the Euler–Maclaurin summation
formula and therefore has to be interpreted in an approximate sense.

Theorem 3.2. Let (3.3) hold. Let X(ξ) : R → R be a strictly monotonically
increasing differentiable function with the property that X(j) = xj for each j ∈ Z,
and let B(ξ) : R → [0,∞) be the piecewise linear function such that B(j) = Bj for
all j ∈ Z. If

e−μτ b′(0) < d′(0) + Binf ,(3.5)

where

Binf = inf
y∈R

{
B(y)

X ′(y)

}
,

then, provided the derivative of the function ξ → B(ξ)u2
m(X(ξ), t) is not too high,

the solution um(x, t) of the linearized problem (3.4) satisfies um(x, t) → 0 in L2 as
t → ∞, according to an analysis based on the Euler–Maclaurin summation formula.

Proof. First note the following alternative formula for Binf :

Binf = inf
y∈R

{
B(X−1(y))(X−1)′(y)

}
.(3.6)

We multiply (3.4) by um(x, t) and then integrate with respect to x over (−∞,∞). As
in the previous section, care needs to be taken to ensure that the effect of the delta
function is not taken care of twice over. One approach (the approach we shall adopt)
is to remove the last term in (3.4) and account for its presence in the way we treat the
Laplacian term, using (3.2). The Laplacian term will be dealt with via integration by
parts, and (3.2) will be used to take account of the effect of the discontinuities in the
spatial derivative of um, thereby fully accounting for the effect of the delta function
in (3.4). In fact,

D

∫ ∞

−∞
um

∂2um

∂x2
dx

= D
∞∑

j=−∞

∫ xj

xj−1

um
∂2um

∂x2
dx

= D

∞∑
j=−∞

(
um(xj , t)

∂um

∂x
(x−

j , t) − um(xj−1, t)
∂um

∂x
(x+

j−1, t) −
∫ xj

xj−1

(
∂um

∂x

)2

dx

)

=

∞∑
j=−∞

(
−Bju

2
m(xj , t) + Dum(xj , t)

∂um

∂x
(x+

j , t) −Dum(xj−1, t)
∂um

∂x
(x+

j−1, t)

−D

∫ xj

xj−1

(
∂um

∂x

)2

dx

)
using (3.2)

= −
∞∑

j=−∞
Bju

2
m(xj , t) −D

∫ ∞

−∞

(
∂um

∂x

)2

dx
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since a telescoping series is involved. Therefore (3.4) becomes

1

2

d

dt
‖um(t)‖2 = −D

∫ ∞

−∞

(
∂um

∂x

)2

dx + e−μτ b′(0)

∫ ∞

−∞
um(x, t)um(x, t− τ) dx

− d′(0)‖um(t)‖2 −
∞∑

j=−∞
Bju

2
m(xj , t),(3.7)

where

‖um(t)‖ = ‖um(·, t)‖ =

(∫ ∞

−∞
u2
m(x, t) dx

) 1
2

.

For compactness of notation, where um(x, t) appears under a norm we shall write it
simply as um(t). Our aim is to show convergence of um(x, t) to zero in L2, i.e., that
‖um(t)‖ → 0 as t → ∞. From (3.7) it follows that

‖um(t)‖ d

dt
‖um(t)‖ ≤ e−μτ b′(0)‖um(t)‖‖um(t− τ)‖ − d′(0)‖um(t)‖2

−
∞∑

j=−∞
Bju

2
m(xj , t),(3.8)

where we used the Cauchy–Schwarz inequality on the delay term.
Euler–Maclaurin summation can be used to approximate the last term in (3.8) as

∞∑
j=−∞

Bju
2
m(xj , t) ≈

∫ ∞

−∞
B(ξ)u2

m(X(ξ), t) dξ

which, on making the substitution y = X(ξ), becomes∫ ∞

−∞
B(X−1(y))u2

m(y, t)(X−1)′(y) dy(3.9)

≥ inf
y∈R

{
B(X−1(y))(X−1)′(y)

}
‖um(t)‖2(3.10)

= Binf‖um(t)‖2

by the alternative formula (3.6) for Binf . Using this estimate in (3.8) and dividing
through by ‖um(t)‖, we get

d

dt
‖um(t)‖ ≤ e−μτ b′(0)‖um(t− τ)‖ − (d′(0) + Binf) ‖um(t)‖.(3.11)

From this, we can conclude (using similar methods to those discussed earlier) that
‖um(t)‖ → 0 as t → ∞ if

d′(0) + Binf > e−μτ b′(0),(3.12)

which holds by hypothesis. The proof is complete.
The quantity Binf has the interpretation of being an infimum culling rate per unit

density per unit length, and (3.5) states that it must exceed the adult recruitment
rate minus the natural death rate, per unit density per unit length, at low densities.
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Let us discuss the situations in which the Euler–Maclaurin summation as used
here might lose its ability to predict accurate results. Essentially, we are assuming
that the derivative of the function ξ → B(ξ)u2

m(X(ξ), t) is not too high, and one
situation in which this assumption might lose its validity is if the culling is aggressive
but the culling sites are spaced far apart. Very aggressive culling would result in the
population being effectively zero at the actual culling sites, but if these are far apart
(or if there is very low diffusion), there is no reason why the species should not survive
within at least some of the (now decoupled) subdomains [xj , xj+1], essentially since
individuals would be unlikely to wander into a culling site. This can be investigated
by solving (3.4) (without the summation term) on the domain x ∈ (xj , xj+1) subject
to homogeneous Dirichlet boundary conditions. Trial solutions of the form

um(x, t) = eλt sin

{
nπ(x− xj)

xj+1 − xj

}
, n = 1, 2, 3, . . . ,

exist whenever

λ +
Dn2π2

(xj+1 − xj)2
+ d′(0) = b′(0)e−μτe−λτ ,(3.13)

which is another transcendental equation for λ that can be tackled using ideas similar
to those presented earlier. Specifically it is possible to show that if

e−μτ b′(0) < d′(0) +
Dπ2

(xj+1 − xj)2
,

then all roots λ of (3.13) satisfy Reλ < 0 for every n = 1, 2, 3, . . . , giving a condition
for extinction of the species inhabiting [xj , xj+1], in this case of intensive culling at
sites spaced far apart. This condition says that, at low densities, adult recruitment
is not sufficient to offset deaths together with losses at the ends of the domain where
culling is occurring. If the above condition is reversed, then one can show that (3.13)
(with n = 1) has a real positive root λ, so that the species can survive in the subdomain
[xj , xj+1].

4. Discussion. For the purely time-dependent model the most important result
we have proved concerning (2.8) is Theorem 2.4, which addresses the situation when,
at low densities, adult recruitment outweighs natural mortality. In this situation
condition (2.23) essentially describes culling regimes that will result in extinction.
The condition involves the proportions bj removed at the cull times tj , and a function
t(ξ), the derivative of which can be viewed as a measure of the spacing of the cull
times tj .

From condition (2.23) one can make several inferences. If the culling effort is very
small, i.e., at each cull only a small proportion bj of the individuals are removed (which
could still vary from cull to cull), then no matter how small this effort is, provided
infj∈N bj > 0, extinction can still result if the culling occurs sufficiently frequently in
the sense that t′(j) is sufficiently small for each j. A period of more aggressive culling
(i.e., larger bj for several consecutive j) can result in extinction even when the culls
are less frequent. An obvious particular case is that in which the culls are equally
spaced in time; i.e., tj = jT for j = 1, 2, 3, . . . and some constant T > 0, and the
same proportion b∗ is removed at each cull. In this case the only obvious choice for
the function t(ξ) is t(ξ) = Tξ, and thus condition (2.23) can be put in the form

e−μτ b′(0) < d′(0) +
b∗

T
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which says that, at low densities, the per capita death rate plus the proportion culled
per unit time is too high to be compensated for by adult recruitment. Thus, the
condition makes sense and is what we would expect in this particular case of a fixed
proportion being culled at equally spaced culling times.

Condition (2.23) fails if even just one of the bj is zero; i.e., there is a “cull,”
which we might call a zero cull, at which no animals are killed. However, provided
only a finite number of the bj are zero, there will exist a time beyond which all culls
are “proper” culls (i.e., culls with bj > 0), and one could shift the origin of time
appropriately so that in condition (2.23) the infimum would be taken starting at the
first proper cull having no subsequent zero culls. More interesting is the possibility
of infinitely many zero culls. Mathematically, the most obvious solution is to remove
them by relabelling the sequence tj (i.e., passing to a subsequence of the original).
This would, however, have the effect of changing the interpolating function t(ξ) and in
particular of increasing its derivative so that (2.23) would be less likely to hold. The
outcome is that the population is less likely to be driven to extinction as expected.

For the model of section 3, which attempts to study culling continuously in time
but at discrete points in space, one can draw inferences analogous to those above for
the time-dependent model. The condition in Theorem 3.2 predicts extinction if the
culling effort as described by the function B(y) is sufficiently large in a sense that also
involves the spacing apart of the culling sites (as described by the function X(y)) as
we would anticipate. If the culling sites are close together, then X will have a small
derivative and so Binf is more likely to be large enough to satisfy (3.5).
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RAY SOLUTION OF A SINGULARLY PERTURBED ELLIPTIC PDE
WITH APPLICATIONS TO COMMUNICATIONS NETWORKS∗
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Abstract. We analyze a second order, linear, elliptic PDE with mixed boundary conditions.
This problem arose as a limiting case of a Markov-modulated queueing model for data handling
switches in communications networks. We use singular perturbation methods to analyze the problem.
In particular we use the ray method to solve the PDE in the limit where convection dominates
diffusion. We show that there are both interior and boundary caustics, as well as a cusp point where
two caustics meet, an internal layer, boundary layers, and a corner layer. Our analysis leads to
approximate formulas for the queue length (or buffer content) distribution at the switch.
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1. Introduction. In a model proposed by Anick, Mitra, and Sondhi [1], a buffer
receives messages from N statistically independent and identical information sources,
which asynchronously alternate between exponentially distributed periods in the “on”
and “off” states. While “on,” a source transmits data at unit rate. The buffer depletes
through an output channel, with a given maximum rate of transmission C. The rate
at which a source turns “on” is equal to λ, and the “off” rate is μ. If C < N , the
buffer may be nonempty, and the condition λ

λ+μN < C is needed for stability. This

simply says that the mean number of “on” sources (each transmitting data at unit
rate) must be less than the total transmission capacity of the channel. This model is

analyzed exactly in [1], and the asymptotic limit N → ∞, with C
N = λ

λ+μ +O
(
N− 1

2

)
,

is studied in [21]. This limit is referred to as “heavy traffic.”
Analyzing the steady state joint probability distribution of the number of active

sources and the buffer content involves solving a system of N linear ODEs. In heavy
traffic this can be simplified to a backward-forward parabolic PDE of the type in (1.2).
This model has the disadvantage of treating the buffer content as a deterministic fluid.

These types of fluid models have received much recent attention in the literature.
They have been used as models of production lines with multiple stages [29], statisti-
cal multiplexers in asynchronous transfer mode (ATM) networks [25, 26, 30], packet
speech multiplexers [31], buffer storage in manufacturing models [32], buffer memory
in store-and-forward systems [15], and voice packet communications systems [8].

Among the main quantities of interest in fluid models are tail probabilities, i.e.,
the probability that the fluid or buffer level exceeds some prescribed large value.
These were studied in [10, 27, 22]. The tail probabilities can be used to estimate loss
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of information (of say, voice) on packet switched models. The tail behavior may be
computed via the type of asymptotic analysis presented here.

A modification of the basic model in [1], which allows for service variability, is
as follows. Again there are N independent and identical sources. When a source is
“on” it generates a Poisson arrival stream to a queue. In the “off” state no arrivals
are generated. The service time distribution is allowed to be general. The model just
described may be called a Markov-modulated M/G/1 queue.

In [20] it is shown that the joint steady state distribution of the number of active
sources, the queue length, and the elapsed service time of the customer currently
being served satisfies a complicated system of integro-differential equations. In the
heavy traffic limit, where N → ∞ and the average arrival rate is close to the mean
service rate, this system may be approximated by the following BVP:

Dfyy + (c− ξ)fy + fξξ + (ξf)ξ = 0, 0 < y < ∞, −∞ < ξ < ∞,

Dfy(0, ξ) + (c− ξ)f(0, ξ) = 0, −∞ < ξ < ∞,(1.1) ∫ ∞

−∞

∫ ∞

0

f(y, ξ)dydξ = 1.

Here the variable y is related to the queue length, ξ corresponds to a scaled measure
of the number of “on” sources above their mean value, c > 0 is the normalized excess
of the service rate over the mean arrival rate, and D > 0 measures variability effects
in the service time distribution.

The exact solution to (1.1) was analyzed in [20]. It is not completely explicit and
involves finding one eigenvector of an infinite matrix, whose elements are complicated
expressions involving Laguerre functions. This (infinite!) eigenvector must be com-
puted numerically. In the same paper the limit D → ∞ was considered. Now the
matrix becomes diagonally dominant, and much more explicit results can be obtained.

The (highly singular) limit D → 0 was studied in [9], resulting in a very compli-
cated asymptotic solution involving contour integrals of parabolic cylinder and Airy
functions. When D = 0 we see that the problem (1.1) degenerates into a parabolic
one that is forward parabolic for ξ > c and backward parabolic for ξ < c:

(c− ξ)�y + �ξξ + (ξ�)ξ = 0, 0 < y < ∞, −∞ < ξ < ∞,

�(0, ξ) = 0, c < ξ,(1.2) ∫ ∞

−∞
�(∞, ξ)dξ = 1.

Now � is a density in ξ and a distribution in y. The problem (1.2) corresponds to
the heavy traffic limit of the fluid model in [1]. Knessl and Morrison [21] derived the
exact solution of (1.2). The limit c → ∞ was studied in [22] by using the saddle point
method and in [23] by using the ray method [18].

The study of backward-forward parabolic PDEs goes back to [12], and more re-
cent analyses appear in [3, 4, 5, 11, 19]. Such problems arise in a wide variety of
applications, such as counter-current separators [14], mean exit times [13], the Milne
problem of statistical physics [6], neutron transport theory [16], and diffusion in spa-
tially varying convection fields [17]. The interesting mathematical feature of these
problems is that the initial (or boundary) conditions can be imposed only where the
PDE is forward parabolic. This “half-boundary condition” makes these problems
difficult to analyze.
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In this paper we will solve (1.1) asymptotically in the limit c → ∞ by using the
ray method, the boundary layer method, and asymptotic matching [7]. In doing so,
we shall analyze no fewer than seven different scales, and one more will be briefly
discussed in the conclusion section. The asymptotic structure of (1.1) proves much
more complicated than that of (1.2) in the same limit [23].

To analyze (1.1) for large c, it is convenient to introduce the new variables η = ξ/c
and x = y/c and the small parameter ε = c−2. Then (1.1) becomes the following
problem for F (x, η) = ε−1f(y, ξ):

ε(DFxx + Fηη) + (1 − η)Fx + ηFη + F = 0, x ≥ 0, −∞ < η < ∞,

DεFx(0, η) + (1 − η)F (0, η) = 0, −∞ < η < ∞,(1.3) ∫ ∞

−∞

∫ ∞

0

F (x, η)dxdη = 1.

The boundary condition together with the normalization condition implies that the
marginal distribution in η is the Gaussian∫ ∞

0

F (x, η)dx =
1√
2πε

exp

(
−η2

2ε

)
.(1.4)

An important quantity to compute is the marginal distribution in the x variable, i.e.,

M(x) =

∫ ∞

−∞
F (x, η)dη.(1.5)

In section 2 we consider the case when x is close to 0 and η < 1; this will be very
useful to match with other asymptotic solutions. Section 3 is dedicated to using the
ray method to analyze (1.3) for ε → 0 with x, η fixed. This yields asymptotic solutions
in two main regions separated by the curve x = η − ln(η) − 1, η > 1. We also derive

boundary layer solutions for x = O(ε
2
3 ) and η > 1, x = O(ε) and η > 1, a corner layer

solution in the neighborhood of the point (0, 1), and in section 4 a transition layer
solution along x = η− ln(η)−1. We show that all the solutions asymptotically match
to each other in the appropriate limits and also agree with the approximation found
in section 2. In section 5 we summarize and discuss the main results. In section 6 we
check the identity (1.4) for F (x, η) and compute the marginal distribution in x.

2. An expansion for small x. To solve (1.3) for ε small, we will first consider
the scaling x = O(ε). Thus we introduce the variable v = x/ε and convert (1.3) into
the problem

DFvv + (1 − η)Fv + ε(ηFη + F ) + ε2Fηη = 0, v ≥ 0, −∞ < η < ∞,

DFv(0, η) + (1 − η)F (0, η) = 0, −∞ < η < ∞,(2.1) ∫ ∞

−∞

∫ ∞

0

F (v, η)dvdη =
1

ε
.

On this scale (1.4) transforms to

∫ ∞

0

F (v, η)dv =
ε−

3
2

√
2π

exp

(
−η2

2ε

)
.(2.2)

We consider solutions to (2.1) which have the asymptotic form
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F (v, η) ∼ ε−
3
2

√
2π

exp

(
−η2

2ε

)[
F (0)(v, η) +

√
εF (1)(v, η) + O(ε)

]
.(2.3)

Substituting (2.3) into (2.1) and equating the coefficients of like powers of ε we get
to leading order the equation

DF (0)
vv + (1 − η)F (0)

v = 0(2.4)

with boundary condition

DF (0)
v (0, η) + (1 − η)F (0)(0, η) = 0, −∞ < η < ∞.(2.5)

Solving for F (0)(v, η) and taking into account (2.2) we have obtained the following
proposition.

Proposition 2.1. For x = vε = O(ε), (1.3) has the asymptotic solution to
leading order

F (v, η) ∼ ε−
3
2

1 − η

D
√

2π
exp

[
−η2

2ε
− (1 − η)v

D

]
, η < 1.(2.6)

We see that for η = η
√
ε, η = O(1), the solution decouples into a Gaussian in η

times an exponential function of v,

F (v, η) ∼ ε−
3
2

1√
2π

exp

{
−η2

2

}
× 1

D
exp

{
− v

D

}
.(2.7)

Such a decoupling was also observed in [20], where (1.3) was analyzed in the limit
D → ∞ with c fixed. The cases where x is small and η > 1 or η ≈ 1 are treated in
subsections 3.6 and 3.7.

3. The ray expansion. Now we consider solutions of (1.3) which have the
asymptotic form

F (x, η) ∼ εν1 exp

[
1

ε
Ψ(x, η)

]
K(x, η).(3.1)

We substitute (3.1) into (1.3) and equate the coefficients of the lowest power of ε to
get the eikonal equation for Ψ,

D (Ψx)
2

+ (Ψη)
2

+ η (Ψη − Ψx) + Ψx = 0, Ψx(0, η) =
η − 1

D
.(3.2)

Equating the coefficients of the next power of ε yields the transport equation for K,

DKΨxx + Kx + 2DKxΨx + KΨηη + ηKη + 2KηΨη − ηKx + K = 0, Kx(0, η) = 0.

3.1. The rays. We solve (3.2) by introducing the characteristic curves or rays
[x(t), η(t)], written in terms of a parameter t. We first consider rays starting from the
η-axis, and impose the initial conditions [x(0), η(0)] = [0, s]. The characteristic ODEs
for (3.2) are

dx

dt
= −2DΨx + η − 1, x(0) = 0,

dη

dt
= −2Ψη − η, η(0) = s,(3.3)

dΨx

dt
= 0,

dΨη

dt
= Ψη − Ψx,

dΨ

dt
= Ψx

dx

dt
+ Ψη

dη

dt
= −D (Ψx)

2 − (Ψη)
2
.
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From (2.6) we note that Ψ(0, η) = −η2/2, which implies that Ψ [x(0), η(0)] = Ψ(0, s) =
−s2/2.

Setting Ψx(0, s) = A, Ψη(0, s) = B and solving (3.3) yields

x = (A−B)et − (A + B + s)e−t − (2DA + 2A + 1)t + 2B + s,

η = (A−B)et + (A + B + s)e−t − 2A,

Ψx = A, Ψη = (B −A)et + A,(3.4)

Ψ = −1

2
(A−B)2e2t + 2A(A−B)et −A2(D + 1)t + AB − 3

2
A2 +

1

2
B2 − s2

2
.

The constants A,B can be determined by evaluating the eikonal equation (3.2) at
x = 0 (corresponding to t = 0), and also using the boundary condition from (1.3).
This yields A = s−1

D and B = −s or B = 0. To decide which value of B is the right
one, we take the derivative of Ψ with respect to s at t = 0,

−s =
d

ds
Ψ(0, s) = A

d

ds
x(0, s) + B

d

ds
η(0, s) = B.(3.5)

Replacing A,B in (3.4) we get

x = et − 1 − t− (D + 1)(2t− et) + D + e−t

D
(s− 1),

η = et +
e−t + (D + 1)et − 2

D
(s− 1),(3.6)

Ψ = −1

2
e2t +

2et − (D + 1)e2t − 1

D
(s− 1)

+
−1 + [4et − 2(t + 1)](D + 1) − e2t(D + 1)2

2D2
(s− 1)2.

For t ≥ 0 and each value of s, the first two equations in (3.6) determine a ray in
the (x, η)-plane, which starts from (0, s) at t = 0. For s = 1 and s = 1

D+1 , we can
eliminate t from (3.6) and obtain the explicit expressions

x = X0(η) = η − ln(η) − 1, s = 1, η ≥ 1,(3.7)

x =
1

D + 1
− η − ln(2 − η −Dη), s =

1

D + 1
,

1

D + 1
≤ η <

2

D + 1
.

For s > 1
D+1 , we have both x(t) and η(t) increasing for t > 0. For s = 1

D+1 , x(t)

increases and η(t) is asymptotic to 2
D+1 .

For s < 1
D+1 the rays “turn around” and return to x = 0 for some t∗ > 0, with

x(t∗) = 0, η(t∗) < s. The maximum value in x reached by the ray occurs at t = txmax:

txmax = ln

[
−2sD + D + 2 − 2s +

√
D (4s2D − 4sD − 8s + 4s2 + D + 4)

2(1 − s−Ds)

]
.

For 0 < s < 1
D+1 the ray reaches its maximum in η at t = tη max:

tη max =
1

2
ln

[
1 − s

1 − s−Ds

]
, η (tη max) = 2

1 −D

s
+

2s + 2D − 2 − s2D − sD2

s
√

(1 − s) (1 − s−Ds)
.

For s ≤ 0, η(t) decreases for 0 < t < t∗.
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Fig. 3.1. A sketch of the rays in Region I for D = 1.

Solving for s in the η-equation (3.6) yields

s =
e−t + et − 2 + Dη

e−t + (D + 1)et − 2
,(3.8)

and solving in the x-equation gives

s =
−et + e−t + Dt + 2t−Dx

−Det − et + e−t + 2Dt + 2t + D
.(3.9)

Equating (3.8) and (3.9) we get the implicit equation R ≡ 0 for the rays, where

R(x, η, t) =
[
e−t + (D + 1)et − 2

]
x + (3 −Dη − t−Dt− η)et + (1 + t + η)e−t

− 4 − 2t + Dη + 2tη + 2Dηt.

We sketch several of the rays in Figure 3.1. They fill Region I, defined as

Region I ≡ {x > X0 = η − ln(η) − 1, η > 1} ∪ {x > 0, η ≤ 1} .(3.10)

3.2. Caustics and cusps. The Jacobian of the transformation in (3.6) from
Cartesian to ray coordinates is

J =
dx

dt

dη

ds
− dx

ds

dη

dt
=

[
2(t− 2)(s− 1)D−2 + (−2t− 5s + 4ts + 2)D−1 − s + 2ts + 1

]
et

+
[
−2(t + 2)(s− 1)D−2 + (2t− 2ts + 2 − 3s)D−1

]
e−t + 8(s− 1)D−2 + 4(2s− 1)D−1.

When J = 0 we can solve for s as a function of t, S0 = s |J=0:

S0 =
(−2D −D2 − 4 + 2Dt + 2t)e2t + 4(D + 2)et − 2(2 + D + Dt + t)

(−D2 − 5D − 4 + 2t + 4Dt + 2tD2)e2t + 8(D + 1)et − 3D − 4 − 2t− 2Dt
.

(3.11)

The equation for the caustic(s), i.e., the points in the (x, η)-plane at which the
Jacobian is zero, can be given in parametric form. We replace s by S0 in the equation
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Fig. 3.2. A sketch of the caustic curves for D = 1.

of the rays, and let xca = x(t, S0), ηca = η(t, S0):

xca =
[
−(D + 1)2e3t + (2D2t2 − 3tD + D2t + 2t2 − 4t + D2 + 4t2D + 6D + 8)e2t

− 2(3D + 7)et − e−t + 2(D + 1)t2 + (3D + 4)t + 2(D + 4)
]

/
[
(2D2t + 4Dt− 4 + 2t−D2 − 5D)e2t + 8(D + 1)et − (3D + 4) − 2(D + 1)t

]
,

(3.12)

ηca =
−(D + 1)2e3t + 2(2tD + 2t + 2D − 1)e2t + 2(4 − 2t− 2tD −D)et + e−t − 6

(2D2t + 4Dt− 4 + 2t−D2 − 5D)e2t + 8(D + 1)et − (3D + 4) − 2(D + 1)t
.

(3.13)

In Figure 3.2 we sketch the caustic curves for D = 1. There is also a cusp where
the two caustics meet. Our numerical studies show that the basic structure (i.e., the
two caustics coming together as a cusp) occurs for all D > 0.

Outside the caustic region, the correspondence between (t, s) and (x, η) is one-
to-one. When we are exactly on the caustic curves, the correspondence is two-to-one,
and inside the region bounded by the two caustics it is three-to-one. In Figure 3.3
we sketch more densely the rays for D = 1 to indicate this correspondence. The
evaluation of (3.1) near caustics and cusps is discussed in more detail in section 5.

3.3. The transport equation. Now we shall solve the transport equation by
using (3.3) to write it as an ODE along a ray:

dK

dt
= (DΨxx + Ψηη + 1)K.(3.14)

After some algebra, we can show that

DΨxx + Ψηη + 1 =
1

2
− 1

2J

dJ

dt
,(3.15)

and hence

K(x, η) = k(s)
e

t
2

√
J
.(3.16)
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Fig. 3.3. A sketch of the rays in Region I for D = 1.

To determine k(s) we evaluate the previous result at t = 0, K(0, s) = k(s) 1√
1−s

.

Using the approximation (2.6) and the fact that s = η at t = 0, we get

k(s) =
1√
2πD

(1 − s)
3
2 , s < 1, and ν1 = −3

2
.(3.17)

The same result can be obtained by using the BC Kx(0, η) = 0 and fixing the
multiplicative constant by normalization. So far we have determined Ψ and K only
for s < 1. Thus we divide the half-plane x ≥ 0, −∞ < η < ∞, into two parts.
The portion filled by the rays for s < 1 we call Region I, and the remainder of the
half-plane we call Region II. The latter is a shadow of the rays (see also Figure 3.1).

To summarize, we have established the following proposition.
Proposition 3.1. The solution of (1.3) in Region I is asymptotically given by

F (x, η) ∼ ε−
3
2K(x, η) exp

[
1

ε
Ψ(x, η)

]
,(3.18)

where

K(x, η) =
1√
2π

(1 − s)
3
2

e
t
2√

J(t, s)
,(3.19)

Ψ(x, η) = −1

2
e2t +

2et − (D + 1)e2t − 1

D
(s− 1)

+
−1 + [4et − 2(t + 1)](D + 1) − e2t(D + 1)2

2D2
(s− 1)2,

(x, η) is related to (t, s) by (3.6), and J(t, s) is defined by (3.11).

3.4. Region II. For this region, we consider solutions of (1.3) which have the
asymptotic form

F (x, η) ∼ εν2 exp

[
1

ε
Φ(x, η) +

1

ε
1
3

Γ(x, η)

]
L(x, η).(3.20)
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The term ε−
1
3 Γ(x, η) in the exponent must be included in order for the expansion to

asymptotically match those valid for small x and η > 1, which we construct later.
It follows that Φ satisfies (3.2), L satisfies the transport equation, and for Γ we

get the following PDE:

(η − 1 − 2DΦx)Γx − (2Φη + η)Γη = 0,(3.21)

which is equivalent to dΓ
dτ = 0. Thus we conclude that Γ is a function of σ only and

write Γ(x, η) = Γ(σ). Here (τ, σ) are the new parameters for the ray which apply in
Region II. Thus a ray starts at τ = 0 from η = σ > 1 and enters the domain for
τ > 0.

The solutions of the characteristic equations are

x = (b− a)eτ + (a + b− σ)e−τ + [2a(D + 1) − 1]τ − 2b + σ,

η = (b− a)eτ − (a + b− σ)e−τ + 2a,

Φx = −a, Φη = (a− b)eτ − a,(3.22)

Φ = −a2(D + 1)τ + 2a (a− b) (eτ − 1) − 1

2
(a− b)

2 (
e2τ − 1

)
+ Φ0(σ).

Here Φ0(σ) is the value of Φ at τ = 0, which corresponds to the η-axis for η > 1.

Since from the result for Region I dx
dt = (s−1)

D = 0 for s = 1, we impose the

condition dx
dτ (0, σ) = 0 for all σ > 1. This means that the boundary x = 0 will be a

caustic curve for η > 1. Then a has the value

a(σ) =
1 − σ

2D
.(3.23)

Evaluating (3.2) at x = 0 we get

Da2 + b2 + σ(b− a) + a.(3.24)

Using (3.23) in (3.24) and solving for b we find that

b =
σ

2
±

√
β(σ)

2
√
D

, β(σ) = Dσ2 + (σ − 1)
2
.(3.25)

For small τ we get from (3.22) and (3.23) that x ∼
(
b − σ

2

)
τ2, τ → 0, and this

implies that the solution b = σ
2 −

√
β(σ)

2
√
D

must be rejected, in order that the rays enter

the domain x ≥ 0 as τ increases. Hence,

b(σ) =
σ

2
+

√
β(σ)

2
√
D

.(3.26)

To find Φ0(σ) we impose the continuity condition Φ0(1) = Ψ(0, 1) = − 1
2 . Since

d

dσ
Φ(0, σ) = −a

d

dσ
x(0, σ) − b

d

dσ
η(0, σ) = −b,(3.27)

we conclude that

Φ0(σ) = −1

2
−
∫ σ

1

b (u) du = −1

4
− σ2

4
− 1

4
√
D

{(
σ − 1

D + 1

)√
β(σ)

+
D

(D + 1)
3
2

arcsinh

[
(D + 1)σ − 1√

D

]
− D

3
2σ

(D + 1)
− D

(D + 1)
3
2

arcsinh
(√

D
)}

.(3.28)
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As before, the transport equation can be solved to obtain

L(τ, σ) = L0(σ)
e

τ
2√
J̃
,(3.29)

where

J̃ =
dx

dτ

dη

dσ
− dx

dσ

dη

dτ
=

{[
−σ + 1 +

1

2
τ(σ − 1)

]
D−2 +

[
1

2

√
β(σ)(τ − 1)

]
D− 3

2

+

(
−σ − 1

2
τ + τσ

)
D−1 +

1

2
τ
√
β(σ)D− 1

2 +
1

2
τσ

}
eτ

+

{(
1

2
τ + 1

)
(1 − σ)D−2 +

[
1

2

√
β(σ)(τ + 1)

]
D− 3

2

+

(
−σ +

1

2
τ − τσ

)
D−1 +

1

2
τ
√
β(σ)D− 1

2 − 1

2
τσ

}
e−τ + 2(σ − 1)D−2 + 2σD−1.

In Region II, J̃ = 0 only for τ = 0. To determine L0(σ) and Γ(σ) we shall analyze the
problem for small x, and we will find that not one but two boundary layer expansions
are needed to satisfy the boundary conditions (1.3) in this region.

3.5. Approximation for x = O(ε
2
3 ), η > 1 (inner solution). We introduce

the stretched variable μ = ε−
2
3x and transform (1.3) into

(1 − η)Fμ + ε
1
3DFμμ + ε

2
3 (ηFη + F ) + ε

5
3Fηη = 0.(3.30)

We represent F in the asymptotic form

F ∼ εν3 exp

{
ε−1Φ0(η) + ε−

1
3

[
η − 1

2D
μ + Γ (η)

]}[
R0(μ, η) + ε

1
3R1(μ, η)

]
,(3.31)

which, when inserted into (3.30), gives the following PDEs for R0, R1:

2D2 ∂
2R0

∂μ2
+ [2Φ′

0(η) + η] [2DΓ′(η) + μ]R0 = 0,(3.32)

2D2 ∂
2R1

∂μ2
+ [2Φ′

0(η) + η] [2DΓ′(η) + μ]R1

+ 2D

{
[2Φ′

0(η) + η]
∂R0

∂η
+ [Φ′′

0(η) + 1]R0

}
= 0.

Solving (3.32), we get

R0 = C1(η)Ai
{

2−
1
3D− 5

6β (η)
1
6 [μ + 2DΓ′(η)]

}
,(3.33)

where Ai(·) denotes the Airy function and β (η) is given by (3.25). Using (3.33) and
solving for R1, we obtain

R1 =
1

24
2

2
3D

1
6β(η)−

5
6C1(η)β

′(η)μ2Ai(μ) + [2Dβ(η)]
1
3 C1(η)Γ

′′(η)μAi(μ) + C2(η)Ai(μ)

+

{
2

2
3 [Dβ(η)]

1
6 C ′

1(η) − 2−
1
3D

2
3β(η)−

1
3C1(η) +

1

3
2

2
3D

1
6β(η)−

5
6α(η)C1(η)

}
Ai′(μ)

(3.34)
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with

μ = 2−
1
3D− 5

6β (η)
1
6 [μ + 2DΓ′(η)] , α(η) = (D + 1) η − 1.(3.35)

The function C1(η) will be determined below. This solution can’t satisfy the
boundary condition (1.3), and thus we require another boundary layer expansion,

where x = o(ε
2
3 ).

3.6. Approximation for x = O(ε), η > 1 (inner-inner solution). We
introduce the variable v = x/ε and transform (1.3) to

DFvv + (1 − η)Fv + ε(ηFη + F ) + ε2Fηη = 0, DFv(0, η) + (1 − η)F (0, η) = 0.

(3.36)

We seek solutions of the form

F ∼ εν4 exp

{
1

ε
Φ0(η) +

1

ε
1
3

Γ(η) +
1

2

η − 1

D
v

}
W (v, η).(3.37)

Using (3.37) in (3.36) and taking into account that

Φ′
0(η) = −b(η) = −

⎛
⎝η

2
+

√
Dη2 + (η − 1)

2

2
√
D

⎞
⎠(3.38)

yields

DWvv + (1 − η)Wv + Φ′
0(η) [Φ′

0(η) + η]W = 0, 2DWv(0, η) + (1 − η)W (0, η) = 0,

whose general solution is

W (v, η) = w(η)

[
1

2D
(η − 1)v + 1

]
.(3.39)

The next step will be finding a corner layer solution valid in a neighborhood of
the point (0, 1) that matches to both the approximation (2.6) and the inner-inner
solution. This will allow us to determine ν4 and w(η) explicitly.

3.7. Corner layer. Let us first write F (x, η) = εν5 exp
(
−η2

2ε

)
G(x, η), which

transforms (1.3) into

DεGxx − ηGη + εGηη + (1 − η)Gx = 0, DεGx(0, η) + (1 − η)G(0, η) = 0.(3.40)

Then we introduce the stretched variables μ = ε−
2
3x and γ = ε−

1
3 (η − 1), and (3.40)

becomes

ε
2
3Gγγ − ε

1
3 γGγ + DGμμ − γGμ −Gγ = 0, DGμ(0, γ) − γG(0, γ) = 0.(3.41)

To leading order G(μ, γ) ∼ G(μ, γ), where

DGμμ − γGμ −Gγ = 0, DGμ(0, γ) − γG(0, γ) = 0.(3.42)

The solution to (3.42) matches to (2.6) (with μ = 0) if

εν5G(0, γ) ∼ 1 − η√
2πD

ε−
3
2 = − γ√

2πD
ε−

7
6 , γ → −∞,(3.43)
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so that ν5 = − 7
6 . In [24] an explicit solution to (3.42) and (3.43) was obtained, with

G(μ, γ) =
exp

{
1
ε

[
μγ
2D − γ3

12D

]}
√

2π2
1
3D

2
3

1

2πi

∫
Br

exp
{

2−
2
3D− 1

3 γλ
} Ai

(
λ + 2−

1
3D− 2

3μ
)

[Ai (λ)]
2 dλ,

where Br is a vertical contour in the complex λ-plane on which Re(λ) ≥ 0 and Ai(·)
is the Airy function.

By combining the preceding results we have, on the corner scale,

F (x, η) ∼ ε−
7
6 exp {ΨC(μ, γ)}LC(μ, γ) ≡ F̃ (μ, γ),

ΨC(μ, γ) = −η2

2ε
+

μγ

2D
− γ3

12D
,(3.44)

LC(μ, γ) =
1√

2π2
1
3D

2
3

1

2πi

∫
Br

exp
{

2−
2
3D− 1

3 γλ
} Ai

(
λ + 2−

1
3D− 2

3μ
)

[Ai (λ)]
2 dλ,

where μ = ε−
2
3x and γ = ε−

1
3 (η − 1).

In [24, Theorem 4] several asymptotic expansions for a function closely related
to (3.44) were obtained. We use these results in the following sections in order to
match the different solutions that we have found so far and determine the unknown
functions and constants.

3.8. Matching the solution in Region II and the inner solution. From
(3.22) we get the local inversion between (τ, σ) and (x, η) for x → 0:

τ ∼
√

2D
1
4β(η)−

1
4x

1
2 +

2

3

α(η)

β(η)
x +

√
2

36
β(η)−

7
4D− 1

4 [14β(η) + 11Dβ(η) − 20D]x
3
2 ,

(3.45)

σ ∼ η −
√

2D
1
4β(η)−

1
4x

1
2 +

1

3

α(η)√
Dβ(η)

x +

√
2

36
β(η)−

5
4D− 3

4 [10β(η) + Dβ(η) − 4D]x
3
2 .

Using (3.45) in (3.29), we obtain

L ∼ L0(η)2
− 1

4

[
D

β(η)

] 1
8

x− 1
4 + O(x

1
4 ), x → 0.(3.46)

Expanding (3.33) for μ → ∞ yields

R0 ∼ C1(η)β(η)−
1
24 2−

11
12D

5
24

1√
π
μ− 1

4 exp

[
−
√

2

3
β(η)

1
4D− 5

4μ
3
2 −

√
2β(η)

1
4D− 1

4 Γ′(η)μ
1
2

]
.

Using the above in (3.31) yields the expansion of F in (3.31) as μ → ∞. By expanding
Φ(x, η) for small x we see that the exponential parts match automatically, and the
matching of the algebraic factors implies that

εν2L0(η)2
− 1

4

[
D

β(η)

] 1
8

x− 1
4 = εν3C1(η)D

5
24β(η)−

1
24 2−

11
12

1√
π
μ− 1

4 .(3.47)

Hence, we have ν2 = ν3 + 1
6 and

L0(η) = C1(η)D
1
12β(η)

1
12 2−

2
3

1√
π
.(3.48)
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3.9. Matching the inner and inner-inner solutions. We take the limit
μ → 0 in (3.33) and (3.34) to get

R0 ∼ C1(η)

{
Ai

[
2

2
3D

1
6β (η)

1
6 Γ′(η)

]
+

1

2
2

2
3D− 5

6β (η)
1
6 Ai′

[
2

2
3D

1
6β (η)

1
6 Γ′(η)

]
μ

}(3.49)

and

R1 ∼
[

1

6

√
D

β(η)
C1(η)β

′(η) (Γ′(η))
2

+ C2(η) + 2
√

Dβ(η)C1(η)Γ
′′(η)Γ′(η)

]

× Ai
[
2

2
3D

1
6β(η)

1
6 Γ′(η)

]
(3.50)

+ 2
2
3

[
D

1
6β(η)

1
6C ′

1(η) −
1

2
D

2
3β(η)−

1
3C1(η) +

1

3
D

1
6C1(η)αβ

− 5
6

]

× Ai′
[
2

2
3D

1
6β(η)

1
6 Γ′(η)

]
.

In order to complete the matching with the inner-inner solution, we must have

εν4 W (v, η)|v→∞ ∼ εν3

[
R0(μ, η) + ε

1
3R1(μ, η)

]
μ→0

.(3.51)

From (3.39), (3.49), and (3.50), we conclude that ν3 + 1
3 = ν4, and

Ai
[
2

2
3D

1
6β (η)

1
6 Γ′(η)

]
= 0,(3.52)

C1(η)
1

2
2

2
3D− 5

6β (η)
1
6 Ai′

[
2

2
3D

1
6β (η)

1
6 Γ′(η)

]
= w(η)

1

2D
(η − 1),(3.53)

w(η) = 2
2
3

[
D

1
6β (η)

1
6 C ′

1 (η) − 1

2
D

2
3β(η)−

1
3C1(η) +

1

3
D

1
6C1(η)αβ

− 5
6

]

× Ai′
[
2

2
3D

1
6β(η)

1
6 Γ′(η)

]
.

If we denote by r0 the smallest (in absolute value) of the roots of Ai, i.e.,

r0 = max {z : Ai(z) = 0} � −2.33810741,(3.54)

then we have from (3.52) that

Γ′(η) = 2−
2
3D− 1

6β (η)
− 1

6 r0.(3.55)

From (3.53)–(3.55) we obtain an ODE for C1(η),

C ′
1(η) +

[
1

4

α (η)

Dβ (η)
− 1

4
√
Dβ (η)

− 1

6

α (η)

β(η)
− 1

η − 1

]
C1(η) = 0,(3.56)

and a relation between C1(η) and w(η),

w(η) =
1

η − 1
C1(η)2

2
3D

1
6β (η)

1
6 Ai′(r0), η > 1.(3.57)

The solution of (3.56) is

C1(η) = k0(η − 1)β (η)
− 1

6

[
α (η)√
D + 1

+
√

β (η)

] √
D

2
√

D+1

(3.58)

with k0 a constant to be determined.
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3.10. Matching the corner and Region II solutions. From [24, Theorem
4(iv)] we have

(3.59)

F̃ (μ, γ) ∼ ε−
7
6LII(μ, γ) exp {ΨII(μ, γ)} , LII(μ, γ) = D− 5

6
1

π

1[
Ai′(r0)

]2 2−
29
12 γμ− 1

4 ,

ΨII(μ, γ) = − 1

2ε
η2 − 1

12D
γ3 +

1

2D
μγ − 1

3D

√
2μ

3
2 +

1

2
2

1
3D− 1

3 r0γ − 2−
1
6D− 1

3 r0
√
μ

(3.60)

which are valid when μ and γ → ∞, with γ −√
μ → ∞.

Combining (3.46), (3.48), and (3.58), we have

L ∼ k02
− 11

12
1√
π

[
D√
D + 1

+
√
D

] √
D

2
√

D+1

(η − 1)x− 1
4 , x → 0,(3.61)

which agrees with (3.59) if

k0 = D− 5
6

1√
π

1[
Ai′(r0)

]2 2−
3
2

[
D√
D + 1

+
√
D

]− √
D

2
√

D+1

.(3.62)

Since in Region II F (x, η) ∼ εν2 exp
[
ε−1Φ(x, η) + ε−

1
3 Γ(x, η)

]
L(x, η), we must

have ν2 = − 4
3 . We use (3.45) in (3.22), (3.28), and (3.55) and find that, as (x, η) →

(0, 1),

Φ(x, η) ∼ −1

2
− (η − 1) − 1

2
(η − 1)2 − 1

12D
(η − 1)3 +

1

2D
x(η − 1) − 1

3D

√
2x

3
2 ,

Γ(σ) ∼ Γ(1) +
1

2
2

1
3D− 1

3 r0(η − 1) − 2−
1
6D− 1

3 r0

√
x,

and from (3.60) we conclude that Γ(1) = 0.

We have now determined all the unknown functions from the previous sections
and summarize them below:

L(x, η) = D− 3
4 (σ − 1)

1

π
2−

5
2β (σ)

− 1
12

[
α (σ) +

√
β (σ) (D + 1)

D +
√

D(D + 1)

] √
D

2
√

D+1

(3.63)

× 1[
Ai′(r0)

]2

e
τ
2√
J̃
,

Γ(σ) = 2−
2
3D− 1

6 r0

∫ σ

1

β (u)
− 1

6 du,(3.64)

R0(μ, η) = (η − 1)D− 5
6

1√
π

2−
3
2β(η)−

1
6

[
α(η) +

√
β(η)(D + 1)

D +
√

D(D + 1)

] √
D

2
√

D+1

(3.65)

×
Ai

[
2−

1
3D− 5

6β(η)
1
6μ + r0

]
[
Ai′(r0)

]2 ,
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W (v, η) = 2−
5
6

1√
π
D− 2

3

[
α(η) +

√
β(η)(D + 1)

D +
√

D(D + 1)

] √
D

2
√

D+1

(3.66)

× 1

Ai′(r0)

[
1

2D
(η − 1)v + 1

]
.

With (3.63) and (3.64) we have completely determined the ray expansion in Re-

gion II, with (3.65) we have the inner solution (for x = O(ε
2
3 ) and η > 1), and with

(3.66) we have the inner-inner solution (for x = O(ε) and η > 1). We have also shown
that ν2 = − 4

3 , ν3 = − 3
2 , and ν4 = − 7

6 .

4. Transition layer. Finally, we shall find the boundary layer solution near the
curve x = X0(η) defined by (3.7), which separates Regions I and II. We introduce

the stretched variable ω = (x−X0)ε
− 1

3 , and (1.3) becomes

−2η2(η − 1)Fω + η2(ηFη + F )ε
1
3 + βFωωε

2
3 − [2η(η − 1)Fωη + Fω] ε + η2Fηηε

4
3 = 0.

(4.1)

When s = 1 (σ = 1), t = ln(η) (τ = ln(η)), and we have

j = J [ln(η), 1] = 2

(
1 +

1

D

)
ln (η) η +

1

D

(
4 − 3η − 1

η

)
= 2J̃ [ln(η), 1] = 2j1.(4.2)

Since

Ψ ∼ −1

2
η2 − η

2Dj
(x−X0)

2, x → X0,(4.3)

we should look for solutions of the form

F ∼ εν6 exp

{
− 1

2ε
η2 − η

2Dj
ω2ε−

1
3

}
Υ(ω, η).(4.4)

Using (4.4) in (4.1) yields for Υ the equation

2D2j2ωβ(η)Υw + η2D3j3Υη + β(η)
[
D2j2 − 2ω3(η − 1)

]
Υ = 0,(4.5)

whose general solution is

Υ(ω, η) = g

(
ηω

Dj

)√
η

Dj
exp

{
− ω3

2ηD3j3

[
(2η − 1)

(
2Dη2 + 2η2 − 2η + 1

)]}
,(4.6)

where g is a function still unknown. It will be determined in the next section by
matching with the corner solution.

4.1. Matching the corner and transition layer solutions. Let us first in-
troduce the new variable Ω defined by

Ω =
1

(2D)
1
3

(
μ− 1

2
γ2

)
1

γ
.(4.7)

From [24, Theorem 4(ii)] we have the following result for μ, γ → ∞, Ω fixed:

ε−
7
6 e

η2

2ε F (μ, γ) ∼ ε−
7
6

2
5
6

4π
√
Dγ

℘(Ω) exp

{
Ω3

6
− 1

4
γΩ22

2
3D− 1

3

}
,(4.8)
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where

℘(Ω) =
1

2πi

∫
Br

e−λΩ[
Ai

(
2

1
3λ

)]2 dλ.(4.9)

The following properties of ℘(Ω) are established in [24]:

℘(0) = 2−
1
3 , ℘(Ω) ∼ Ω

3
2
√
π2−

5
6 exp

{
−Ω3

24

}
, Ω → ∞,

℘(Ω) ∼ − Ω2−
2
3[

Ai′(r0)
]2 exp

{
−2−

1
3 r0Ω

}
, Ω → −∞.

In order to match with (4.6), we first note that

ω ∼ (2D)
1
3 (η − 1)Ω, η → 1.(4.10)

Thus, the right-hand side of (4.4) behaves as

εν6g
[
(2D)

− 2
3 Ω

] 1√
2D(η − 1)

exp

{
−1

8

2D + 1

D2
Ω3 − 1

4
Ω22

2
3D− 1

3 (η − 1)ε−
1
3

}

= εν6g
[
(2D)

− 2
3 Ω

] 1

ε
1
6

√
2Dγ

exp

{
−1

8

2D + 1

D2
Ω3 − 1

4
Ω22

2
3D− 1

3 γ

}
.

Comparing the above with (4.8), we must have ν6 = −1 and

g
[
(2D)

− 2
3 Ω

]
= exp

{
Ω3

6
+

1

8

2D + 1

D2
Ω3

}
1

π
2−

2
3℘(Ω),(4.11)

which implies that

g(Z) = exp

{
Z3

6

(
4D2 + 6D + 3

)} 1

π
2−

2
3℘

[
(2D)

2
3 Z

]
.(4.12)

We conclude by writing the complete transition layer solution in (4.4):

(4.13)

F ∼ 1

επ
2−

2
3

√
η

Dj
℘

[
2

2
3

D
1
3

ηω

j

]
exp

{
−η2

2ε
− η

2Djε
1
3

ω2 +
1

6

(
4D2 + 6D + 3

)( ηω

Dj

)3

− ω3

2ηD3j3

[
(2η − 1)

(
2Dη2 + 2η2 − 2η + 1

)]}
≡ ε−1LX0

(ω, η) exp {ΨX0
(ω, η; ε)} .

We can show that (4.13) matches to both of the solutions in Regions I and II.

5. Multivaluedness of the ray expansion. In that part of Region I outside
the caustic region (cf. Figure 3.2) the mapping between (t, s) and (x, η) is one-to-
one, and K and Ψ are unambiguously determined by the formulas in Proposition 3.1.
Inside the caustic region the mapping is three-to-one, and we should rewrite (3.1) as

ε−
3
2

[
K1 exp

(
1

ε
Ψ1

)
+ K2 exp

(
1

ε
Ψ2

)
+ K3 exp

(
1

ε
Ψ3

)]
,
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where Ψj and Kj correspond to the three different values of (t, s) leading to the same
(x, η). When t = 0 let us define the starting points on the η-axis of these three rays
by the ordering s1 < s2 < s3, where sj corresponds to Ψj and Kj . We denote the
two caustics by C+ and C− and the cusp where they meet as (xc, ηc). Note that the
cusp location depends only on D.

The curve C+ has η → −∞ as x → ∞, while C− reaches the η-axis at some
critical point (0, η∗) where again η∗ = η∗(D). We have verified numerically that along
C+ we have s1 = s2, Ψ1 = Ψ2, and K1,K2 develop singularities. However, here Ψ3 >
Ψ1 = Ψ2 and K3 remains finite. Thus we have F ∼ ε−

3
2K1 exp

(
1
εΨ1

)
on and near

C+. Similarly, along C− we have s2 = s3, Ψ2 = Ψ3, and K2,K3 develop singularities.
But Ψ1 > Ψ2 = Ψ3, and K1 remains finite. Thus the result in Proposition 3.1
remains valid near the caustics, except near the cusp point where all three Ψj are
approximately equal. Here the expansion in Proposition 3.1 breaks down.

Our preliminary results suggest that a new expansion must be constructed near
the cusp with the scaling

x− xc = O(
√
ε), η − ηc −Ac(x− xc) = O(ε

3
4 ).

Here Ac is the slope at which both C+ and C− hit the cusp. We have thus far not
been able to complete this analysis. We also note that while the expansion near the
cusp presents an interesting problem in asymptotics, it is not needed for computing
the marginal distribution M(x) (1.5), which is the most important quantity from the
point of view of applications, and which we calculate in the next section.

6. Marginal distributions. The last “piece of the puzzle” is to verify that (1.4)
is satisfied, and also to compute the marginal distribution M(x) in (1.5).

We evaluate the integral in (1.4) for ε → 0. For η < 1, F (x, η) is concentrated
near x = 0, and the result follows from the approximation (2.6). The cases η > 1 and
η ≈ 1 will be considered below.

6.1. η > 1. In this region F (x, η) is concentrated near x = X0, and using (4.13)
and (4.10) we have

F ∼ exp

{
−η2

2ε
− η

2Djε
1
3

ω2

}
1

επ
2−

2
3

√
η

Dj
℘(0)

= exp

{
−η2

2ε
− η

2Djε
(x−X0)

2

}
1

2πε

√
η

Dj
, x → X0,

and hence, by Laplace’s method,∫ ∞

0

F (x, η)dx ∼
∫ ∞

−∞
exp

{
−η2

2ε
− η

2Djε
(x−X0)

2

}
1

2πε

√
η

Dj
dx =

1√
2πε

exp

(
−η2

2ε

)
.

This verifies (1.4) (at least asymptotically as ε → 0) for η > 1.

6.2. η ≈ 1. For η → 1 and x small we use the corner layer expansion, i.e.,

F (x, η) ∼ ε−
7
6

1√
2π2

1
3D

2
3

exp

{
−η2

2ε
+

γμ

2D
− γ3

12D

}

× 1

2πi

∫
Br

exp
{

2−
2
3D− 1

3 γλ
} Ai

(
λ + 2−

1
3D− 2

3μ
)

[Ai (λ)]
2 dλ,
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where x = με
2
3 and η − 1 = γε

1
3 . In the local variable μ, (1.4) becomes∫ ∞

0

F (x, η)dμ = ε−
7
6

1√
2π

exp

{
−η2

2ε

}
;(6.1)

thus we have to show that

Λ(γ) = 2
1
3D

2
3 exp

{
γ3

12D

}
,(6.2)

where

Λ(γ) =

∫ ∞

0

1

2πi

∫
Br

exp
{( μ

2D
+ 2−

2
3D− 1

3λ
)
γ
} Ai

(
λ + 2−

1
3D− 2

3μ
)

[Ai (λ)]
2 dλdμ

= 2
1
3D

2
3

1

2πi

∫
Br

∫ ∞+iIm(λ)

λ

exp
{

2−
2
3D− 1

3 γρ
} Ai (ρ)

[Ai (λ)]
2 dρdλ.(6.3)

Taking the derivative of Λ and using [2] Ai′′ (ρ) = ρAi (ρ) yields

Λ′(γ) = 2
1
3D

2
3

1

2πi

∫
Br

∫ ∞+iIm(λ)

λ

2−
2
3D− 1

3 ρ exp
{

2−
2
3D− 1

3 γρ
} Ai (ρ)

[Ai (λ)]
2 dρdλ(6.4)

= 2−
1
3D

1
3

1

2πi

∫
Br

∫ ∞+iIm(λ)

λ

exp
{

2−
2
3D− 1

3 γρ
} Ai′′ (ρ)

[Ai (λ)]
2 dρdλ.

Two integrations by parts give

∫ ∞+iIm(λ)

λ

exp
{

2−
2
3D− 1

3 γρ
}

Ai′′ (ρ) dρ

= [Ai (λ)]
2 d

dλ

[
exp

{
2−

2
3D− 1

3 γλ
} 1

Ai (λ)

]

+
(
2−

2
3D− 1

3 γ
)2

∫ ∞+iIm(λ)

λ

exp
{

2−
2
3D− 1

3 γρ
}

Ai (ρ) dρ,

which, when used in (6.4), leads to the differential equation

Λ′(γ) =
1

4D
γ2Λ(γ).(6.5)

Solving (6.5) yields

Λ(γ) = Λ0 exp

{
γ3

12D

}
,(6.6)

where Λ0 is a constant. To determine Λ0, we let γ → −∞ in (6.3). Expanding the
double integral by a combination of the Laplace and saddle point methods leads to

Λ(γ) ∼ D
2
3 2

1
3 exp

{
γ3

12D

}
, γ → −∞.(6.7)

Comparing this to (6.6) we obtain Λ0 = D
2
3 2

1
3 , which verifies (6.2).
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6.3. The marginal distribution M(x). To evaluate (1.5) by Laplace’s meth-
od, we find where Ψ and Φ are maximal as functions of η. We thus examine the
equations Ψη = 0 and Φη = 0. We recall from (3.22) that Φη = (a − b)eτ − a. The
equation Φη = 0 then reads

eτ =

√
D(σ − 1)

√
D(σ − 1) + D

3
2σ + D

√
Dσ2 + (σ − 1)

2
< 1 for all D > 0, σ > 1.

We conclude that there is no solution to Φη = 0 for τ > 0, and hence Φη < 0 in
Region II.

From (3.4), Ψη = (A−B)et −A, and consequently

Ψη = 0 ⇔ t = ln

[
1 − s

1 − (D + 1)s

]
,(6.8)

which, when used in (3.6), yields

Ψη = 0 ⇔ x = X1(η), 0 ≤ η <
1

D + 1
,

X1(η) = −2η − 1

D
(2Dη −D + 2η − 2) ln

[
1 − η

1 − (D + 1)η

]
.(6.9)

The equation x = X1(η) implicitly defines η as a function of x, η = E(x). We
introduce the function Ψ1(x) ≡ Ψ [x,E(x)] and from (3.6) we get

Ψ1(x) =
E(x) [1 − E(x)]

D
+

D + 1

D2
[1 − E(x)]

2
ln

[
1 − (D + 1)E(x)

1 − E(x)

]
.(6.10)

From the defining equation

−2E(x) +
1

D
[2(D + 1)E(x) −D − 2] ln

[
1 − (D + 1)E(x)

1 − E(x)

]
= x,(6.11)

we obtain the asymptotic results

E(x) ∼ x

D
− 1

2

x2

D
+

1

6

D − 4

D2
x3, x → 0,(6.12)

E(x) ∼ 1

D + 1
− D

(D + 1)2
exp

(
−x− 2

D + 1

)
, x → ∞.

Use of Laplace’s method to evaluate the integral in (1.5) as ε → 0 yields

M(x) ∼ ε−
3
2K [x,E(x)]

√
2π

1√
−ε−1Ψηη [x,E(x)]

exp

{
1

ε
Ψ1(x)

}
,(6.13)

and from (3.6), after some algebra, we have

M(x) ∼ ε−1 [1 − E(x)]
2

√
Δ

exp

{
1

ε
Ψ1(x)

}
,

Δ =
2 [1 − (D + 1)E(x)] [1 − E(x)] [x + 2E(x)] (D + 1)D

2(D + 1)E(x) −D − 2

+ D
[
D + 2E(x) − 2(D + 1)E(x)2

]
.
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We can get more explicit results if x is either small or large, using (6.12). We
obtain

M(x) ∼ ε−1 1

D

(
1 − x

D

)
exp

{
1

ε

(
− x

D
+

x2

2D2

)}
, x → 0,

M(x) ∼ ε−1

[
D

(1 + D)2
+

2D + 1

D(1 + D)2
exp

(
−x− 2

D + 1

)]

× exp

[
−1

ε

(
x

1 + D
+

1

(1 + D)2

)]
, x → ∞.

(6.14)

The first result in (6.14) shows that M(x) is concentrated in the range x = O(ε), and
the second result is consistent with the spectral solution to (1.3) obtained in [20].

7. Discussion and numerical studies. As discussed in the introduction, a
numerical method for solving (1.1) (or (1.3)) appears in [20]. However, it becomes
very difficult to apply when c is large. Furthermore, the present asymptotic analysis
yields a great deal of information about the model, as described below.

We recall that x represents a (scaled) queue length or buffer level, while η is a
measure of the input to the queue above some mean value. As long as η < 1, the
server has sufficient time to process the input, and no queue develops.

Our analysis first showed that if |η| is small (i.e., the input flow is near its average
value) and the buffer is also scaled to be small, the buffer and input processes decouple,
and the distribution becomes Gaussian in η and exponential in x. But if η and/or x
are not small, we obtain very different behaviors.

For example, given a fixed η < 1, we showed that the conditional buffer content
is exponentially distributed, with mean D/(1 − η) (cf. (2.6)). This shows that if the
input is below the maximum processing capacity, the buffer will tend to be small. But
if η > 1, our analysis shows that the buffer content is approximately x = X0(η) =
η−ln(η)−1, with a Gaussian spread about this value. The transition from small buffers
with exponential spread to large buffers with Gaussian spread occurs for (x, η) ≈ (0, 1)
(more precisely, x = O(ε2/3), η − 1 = O(ε1/3)). Thus, given a fixed η ≈ 1 we obtain
intermediate sized buffers, with the conditional buffer distribution now involving a
contour integral of the Airy function (cf. (3.44)).

Our results also show that given a buffer level x > 0, the level of the input
process is most likely to be η = E(x), with E(x) defined in (6.11). We also obtained
the marginal distribution of the buffer level asymptotically, and our approximation is
valid both for x small (where most mass concentrates) as well as x = O(1) (the tail).
Getting an accurate approximation to the latter is important in applications, since
this can be used to estimate loss rates.

Next, we discuss the numerical accuracy of our asymptotic approximations. We
use the numerical method in [20] to calculate F (x, η) in (1.3) as a spectral expansion.
We take D = 1 and c = 5, so that ε = .04. In Figure 7.1 we plot the “surface” F (x, η)
obtained by the numerical method and compare this to our approximation in (3.18).
We take the range −1 < η < 1 and 0 < x < 0.3. The figure shows that the surfaces
are quite similar, and that our analysis correctly predicts the “ridge” at η = E(x),
along which F is maximal in x, for fixed η.

In Figure 7.2 we plot the numerical and asymptotic values of F (0, η) for −0.3 <
η < 0.2. This corresponds to the distribution of the input level if we are given an
empty buffer. The asymptotic and numerical results lead to nearly indistinguishable
curves. Also, our analysis correctly predicts that the maximum of F (0, η) occurs
at a value η < 0, and correctly predicts the skewness, or deviation from Gaussian
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Fig. 7.1. A sketch of the “surface” F (x, η).
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Fig. 7.2. A comparison of the numerical (solid curve) and asymptotic (ooo) values of F (0, η).



1892 DIEGO DOMINICI AND CHARLES KNESSL

0

5

10

15

20

25

0.05 0.1 0.15 0.2 0.25 0.3

x

(a)

0

2e–05

4e–05

6e–05

8e–05

0.0001

0.00012

0.6 0.7 0.8 0.9 1

x

(b)

Fig. 7.3. A comparison of the numerical (solid curve) and asymptotic (ooo) values of M(x).

behavior. Indeed, (2.6) shows that the maximum should be at η ∼ −ε = −.04, while
the numerics yields −.036782659.

In Figure 7.3(a) we plot the exact and numerical marginal buffer distributions in
the range x ∈ [0, 0.3]. Note that our approximation is M(x) in (6.14), that M(0) =
c2 = ε−1 exactly, and that M(x) is quite concentrated near x = 0. Again we see that
the asymptotic and numerical curves nearly coincide. Finally, we plot in Figure 7.3(b)
asymptotic and numerical values of M(x) for x in the range [0.6, 1]. This shows that
the asymptotic formula also accurately estimates the tail of the distribution.

Thus, we have shown that the asymptotic analysis yields both highly accurate
approximations and qualitative insights about the joint, marginal, and conditional
distributions of the input level and buffer processes.
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[5] M. S. Baouendi and P. Grisvard, Sur une équation d’évolution changeant de type, J. Funct.
Anal., 2 (1968), pp. 352–367.

[6] C. Bardos, R. E. Caflisch, and B. Nicolaenko, The Milne and Kramers problems for
the Boltzmann equation of a hard sphere gas, Comm. Pure Appl. Math., 39 (1986), pp.
323–352.

[7] C. M. Bender and S. A. Orzag, Advanced Mathematical Methods for Scientists and Engi-
neers, McGraw-Hill, New York, 1978.

[8] J. N. Daigle and J. D. Langford, Models for analysis of packet voice communication systems,
IEEE J. Selected Areas Commun., 4 (1986), pp. 847–855.

[9] D. Dominici and C. Knessl, A small elliptic perturbation of a backward-forward parabolic
problem with applications to stochastic models, Appl. Math. Lett., 17 (2004), pp. 535–542.

[10] N. G. Duffield, Conditioned asymptotics for tail probabilities in large multiplexers, Perform.
Eval., 31 (1998), pp. 281–300.

[11] M. Freidlin and H. Weinberger, On a backward-forward parabolic equation and its regular-
ization, J. Differential Equations, 105 (1993), pp. 264–295.
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SUPPRESSION OF THE DIRICHLET EIGENVALUES
OF A COATED BODY∗

STEVE ROSENCRANS† AND XUEFENG WANG†

Abstract. We consider the problem of protecting from overheating the interiors of anisotropic-
ally heat-conducting bodies whose boundaries are maintained at a high temperature. The bodies are
composites consisting of a thin anisotropic insulating coating surrounding an isotropically conducting
interior (e.g., a space shuttle painted with an insulator). This anisotropy is a common feature of the
nanocomposite materials used as insulators. Denote by A the thermal tensor (matrix) of the coated
body and consider the Dirichlet eigenvalues of the elliptic operator u �→ −∇ · (A∇u) on the coated
body. The eigenfuction expansion of the interior temperature shows that small eigenvalues favor
insulation of the interior. This is the motivation for studying the idealized mathematical problem
of suppression of the Dirichlet eigenvalues. Suppose A is a constant matrix A on the coating. The
focus of this paper is estimation of the elliptic eigenvalues and qualitative description of the eigen-
functions using only the eigenvalues of A, the scalar conductivity of the uncoated body, and certain
scalar characteristics of the geometry of the uncoated body. We study the effect of small matrix
eigenvalues, small thickness of the coating, and their interplay. If the thermal tensor of the coating is
spatially varying and optimally configured so that the minimum eigenvalue has eigenvector normal
to the body at all boundary points of the body (and remains equal to that normal vector at each
point in the coating on the straight line in that normal direction), only that minimum eigenvalue
need be small. A by-product is a new characterization of the first positive Neumann eigenvalue in
terms of a sequence of second Dirichlet eigenvalues.

Key words. nanocomposite, Dirichlet eigenvalue, anisotropic heat conduction, thermal tensor,
thermal management, insulation, reinforcement

AMS subject classifications. 35J05, 35J20, 80A20, 80M30, 80M40

DOI. 10.1137/040621181

1. Introduction: Suppression of Dirichlet eigenvalues. In this paper we
consider the problem of protecting interior subregions of anisotropically heat-conduct-
ing bodies whose boundaries are maintained at a high temperature. If A = (aij) is
the thermal tensor of the conducting medium (i.e., the matrix of thermal diffusion
coefficients, assumed symmetric, positive-definite), then heat flow is isotropic (the
same in all directions) if and only if A is invariant under all coordinate rotations,
which is equivalent to A = kI for a scalar coefficient k (I is the identity matrix).
Every thermal tensor not of this form is associated with anisotropic heat conduction.
Currently, good insulators can be created by proper designing of nanocomposite ma-
terials,1 which, at the macroscale, commonly exhibit such anisotropy. When isotropic
nanoscale (for example, periodic) structure is averaged out by the process of homog-
enization (see [2] for the periodic case), the resulting effective diffusion is generally
anisotropic. See the paper [6] of Zheng et al. for a calculation of the thermal tensor
explicitly showing its dependence on nanostructural parameters (volume fraction of
inclusion, orientation, and the like).
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1For example, nanoclay platelets are added to traditional polymers to enhance thermal, mechan-

ical, or gas permeability properties.
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We consider composites consisting of a (thin) nanocoating surrounding an isotrop-
ically conducting interior requiring protection (e.g., a space shuttle painted with a
nanoinsulator).

The temperature T (t,x) in the body Ω satisfies the heat equation

(1)

⎧⎪⎨
⎪⎩
Tt = ∇ · (A∇T ), x ∈ Ω, t > 0,

T = T0(x), x ∈ Ω, t = 0,

T = H, x ∈ ∂Ω, t > 0,

where T0 is the initial temperature distribution and H is some positive constant (tem-
perature) that is large compared to the values of T0. The evolution of the temperature
T is obtained from the its expansion in Dirichlet eigenfunctions of the elliptic operator
u → −∇ · (A∇u),

(2)

{
∇ · (A∇u) + λu = 0 in Ω,

u = 0 on ∂Ω.

Let λ1 be the principal (i.e., smallest) Dirichlet eigenvalue and φ1 the positive (in the
interior) normalized (

∫
φ2

1 = 1) principal eigenfunction. Let (λm, φm), m = 2, 3, . . .
be the higher eigenvalues and normalized eigenfunctions, λ1 < λ2 ≤ λ3 ≤ · · · , where
the eigenvalues are repeated according to their geometric multiplicity. Then

(3) T −H =
∑
m≥1

e−λmtφn(x)

∫
Ω

φn(x′) (T0(x
′) −H) dx′.

Thus T (x, t) eventually converges to H as t → ∞. To protect the interior from
overheating, we want to slow down this process; i.e., we desire that for a long period
of time T not diverge too far from its initial value T0. To achieve this, the following
considerations are important:

(i) Even though λi → ∞ as i → ∞, we can make T (x, t) remain close to T0(x)
for a long period of time by making λi as small as possible for as many i as
possible.

(ii) Thus the first thing to do is to make the principal eigenvalue λ1 small. Indeed,
for t large enough (t � 1/λ2), T −H is well approximated by the first term,

(4) T −H ≈ e−λ1tφ1(x)

∫
Ω

φ1(x
′) (T0(x

′) −H) dx′;

therefore small values of λ1 favor insulation of the interior.
(iii) The shape of the principal eigenfunction φ1(x) indicates what part of Ω is

well protected. Large values of φ1 in some subdomain can mitigate the over-
heating, by compensating to some extent for insufficiently small λ1, because
the small exponential e−λ1t is multiplied by φ1. Small values of φ1 tend to
encourage overheating.

(iv) The shapes of the higher eigenmodes φi(x) help us to understand the evolu-
tion more completely: For example, if many higher eigenmodes are small in
a subdomain Ω′ of Ω, then (4) is valid in Ω′ for t not necessarily large.

We emphasize that having small λi’s is not enough to prevent overheating. This
is elucidated by an example in section 2.2.

In most of this paper we suppose that the thermal tensor A is a constant matrix
A on the coating. One certainly expects the coating to be a better insulator if all
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eigenvalues of the matrix A are small. This is confirmed and quantified by estimation
of the elliptic eigenvalues and qualitative description of the eigenfunctions using only
the eigenvalues of the thermal tensor (matrix) A of the coating, the scalar conductivity
of the coated body, and certain scalar characteristics of the geometry of the coated
body. We study in detail the effect of small matrix eigenvalues, small thickness of the
coating, and their interplay.

If the thermal tensor of the coating varies spatially, i.e., A = A(x), its eigenvalues
and their eigenvectors vary from point to point in the coating. The optimum configu-
ration of coating relative to body would be that in which the smallest eigenvalue has
an eigenvector normal to the body boundary. In this case we prove some of the same
results as for a constant thermal tensor, assuming only that the smallest eigenvalue
is small. The magnitude of the other eigenvalues is not significant. See section 3.3.

For discussions of the issue of how to design the nanostructure (of the coating
material) so that its thermal tensor has small eigenvalues, see [5].

If an elastic body is reinforced by a hard coating, or shell, the very same spectral
problem (2) occurs; the eigenvalues are related to vibration frequencies, and the pur-
pose of the coating is the reduction of the frequencies. After completion of our work
we became aware of Friedman’s interesting 1980 paper [3] in this context. His concern
is suppression of the principal eigenvalue. In section 1.1 we compare our results with
his. An overall technical difference is that Friedman’s proofs need estimates on the
second derivatives of eigenfunctions; we use only estimates of the H1 norm, which are
easily obtained via variational characterization of the eigenvalues. We note that we
measure thickness of the coating in the normal direction from the body whereas [3]
measures thickness using the conormal direction determined by (what is here called)
the thermal tensor of the coating.

1.1. Summary of our results. We consider a region Ω1 composed of some
isotropically conducting material protected by an external insulator coating Ω2 with
thermal tensor (aij). See Figure 1.

Let A(x) = (aij(x)) (the thermal tensor of the composite material, i.e., the coated
body) be a 3 × 3 or 2 × 2 thermal tensor, x ∈ Ω = Ω1 ∪ Ω2:

(5) A(x) = (aij(x)) =

{
kIn×n, x ∈ Ω1,

(aij)n×n, x ∈ Ω2,

where k > 0 is the constant thermal conductivity of the body occupying Ω1, (aij) is
a constant positive-definite matrix (n = 2 or n = 3), and I is the identity matrix.
Denote by σ1, σ2, . . . , σn the eigenvalues of the thermal tensor of the coating. Let
the largest and smallest be denoted by σmax and σmin. After an appropriate rotation
of coordinates (in two dimensions (2D) or three dimensions (3D)) the tensor (aij)
and hence also (aij(x)) are diagonalized. From now on we work in this principal
coordinate system.

Here follows a sketch, not complete, of our results.
Coating fixed, not thin. (In [3] this is called “thick reinforcement.”) Suppose the

thermal tensor of the coating depends on a small parameter ε in such a way that
for some constants σ1, . . . , σn, σi ∼ εσi as ε ↓ 0. Then there exist αm(Ω), m ≥ 1,
such that the Dirichlet eigenvalues λm ∼ εαm(Ω) as ε ↓ 0, m ≥ 1. The principal
eigenfunction is close to a plateau over the body. The {αm(Ω)} are characterized as
eigenvalues of a Rayleigh quotient in a certain Hilbert space. See Theorems 1 and 2.
Thus the evolution varies uniformly according to a slow time εt. The paper [3] has
the result for m = 1 but with a different characterization of α1.
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Ω1

Ω 2

Fig. 1. The completely coated body is the domain Ω = Ω2 ∪ Ω1, the coating is the open set
Ω2, the uncoated body Ω1 is a proper subdomain of the coated body, and the distance between ∂Ω1

and ∂Ω is positive. The uncoated body may have holes, also protected. Thus the coating Ω2 may be
disconnected.

Section 2.2 has some comments on incompletely coated bodies.

All σi = o(δ). Suppose the thickness of the coating is δ, that as δ ↓ 0 all eigen-
values of the thermal tensor of the coating are o(δ), and that σmax/σmin is bounded.
Then λ1 = o(1) as δ ↓ 0: For small enough δ,

|∂Ω1|
|Ω1|

σmin

δ
(1 + o(1)) ≤ λ1 ≤ |∂Ω1|

|Ω1|
σmax

δ
(1 + o(1)).

Moreover, the normalized positive principal eigenfunction φ1 converges to the constant
1/
√
|Ω| strongly in L2(Ω1) as δ ↓ 0. See Theorems 3 and 4. The paper [3] has this

result in terms of the “conormal” thickness δ′ rather than δ, with a more complicated
proof.2 Our Theorem 3 actually implies the upper bound without assuming σmax =
o(δ). Theorems 6 and 7 generalize the above results to the optimally aligned case.

All σi = o(δ2). Assume σmax/σmin is bounded as δ ↓ 0. If the σi are very
small, i.e., all σi = o(δ2), then the higher eigenvalues are all O(σmax/δ

2) = o(1) while
λ1 = O(σmax/δ) = o(δ) as δ ↓ 0. The normalized higher eigenfunctions converge
to zero strongly in L2(Ω1). See Theorem 9. In this case, changes occur very slowly
until eventually (4) holds and thereafter the changes are even slower. Theorem 11
generalizes this to the optimally aligned case.

All σi = o(δ) while all σi/δ
2 → ∞. If, on the other hand, all the σi are small

but not very small, i.e., σi = o(δ) while all σi/δ
2 → ∞ as δ ↓ 0, then λ1 = o(1) while

λ2 → kμ2 as δ ↓ 0, where μ2 is the first positive Neumann eigenvalue of −Δ on Ω1. So
we have a new interpretation of the first positive Neumann eigenvalue in terms of a
sequence of second Dirichlet eigenvalues. See Theorem 8. In this case (4) is accurate
after an O(1) time, after which changes are slow. Theorem 10 generalizes this to the
optimally aligned case.

Thermal tensor of coating scaled by βδ′ for some constant β, and conormal thick-
ness δ′ ↓ 0. It is shown in [3] that λ1 converges to a certain (conormal) Robin
eigenvalue. We did not treat this case.

2The paper [3] allows more general elliptic operators, including first-order terms, in the coating
and the body. If the body operator has no such terms and if the coating operator is multiplied by a
scalar μ = o(δ′), then it is shown in [3] that λ1δ′/μ → |∂Ω1|/|Ω1|.
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2. Fixed coating. In this section the coating Ω2 is fixed. In section 2.1 we
assume that the body is completely coated; see Figure 1. In section 2.2 we briefly
consider how our results change for incompletely coated bodies.

Suppose that the anisotropic thermal tensor (aij) depends on a small parameter
ε, 0 < ε < 1. From now on write φ as φε.

2.1. Completely coated bodies.
Theorem 1. Assume the body Ω1 is completely coated, as explained in the caption

to Figure 1, and assume the eigenvalues σ1, σ2, . . . , σn of the thermal tensor of the
coating satisfy

(6) σi = εσi + o(ε) as ε ↓ 0, i = 1, . . . , n,

for some positive σ1, . . . , σn.
(i) As ε ↓ 0

λ1(Ω) = εα1(Ω) + o(ε),

and in the L2(Ω)-sense the normalized positive principal eigenfunction satis-
fies

φε
1 = φ0

1 + o(1),

where

(7)

⎧⎪⎨
⎪⎩

0 < α1(Ω) = inf
u∈H,u �≡0

∫
Ω
σ1u

2
x1

+ · · · + σnu
2
xn∫

Ω
u2

,

H :=
{
u ∈ H1

0 (Ω)|u is constant on Ω1

}
and φ0

1 is the unique minimizer of (7) with
∫

Ω
(φ0

1)
2 = 1 and φ0

1 > 0 on Ω.
(Thus the shape of φε

1 is close to a plateau over Ω1.)

(ii) α1(Ω) is less than the principal (smallest) eigenvalue λ̃(Ω2) of the Dirichlet
problem

(8)

{
σ1ux1x1

+ · · · + σnuxnxn
+ λu = 0, x ∈ Ω2,

u = 0, x ∈ ∂Ω2.

Remark 1. By rescaling k in (5) to be 1 we see that the small “o” terms are
uniformly small over k if k is bounded away from zero.

Proof of Theorem 1. Step 1. The set H introduced in the statement of the theorem
is a Hilbert subspace of H1

0 (Ω). By the Banach theorem and the Kondrachov compact
imbedding, H ↪→ L2(Ω), α1(Ω) is achieved by a minimizer φ0

1 ∈ H with φ0
1 ≥ 0 and∫

Ω

(
φ0

1

)2
= 1. In fact, any minimizer must be of one sign. The Euler–Lagrange

equation is

(9)

∫
Ω

σ1

(
φ0

1

)
x1

vx1 + · · · + σn

(
φ0

1

)
xn

vxn − α1(Ω)φ0
1v = 0 for all v ∈ H.

In particular (by taking v ∈ H1
0 (Ω2) ⊂ H1

0 (Ω)), we have

(10)

⎧⎪⎨
⎪⎩
σ1

(
φ0

1

)
x1x1

+ · · · + σn

(
φ0

1

)
xnxn

+ α1(Ω)φ0
1 = 0, x ∈ Ω2,

φ0
1 = 0, x ∈ ∂Ω,

φ0
1 = const = C0 ≥ 0, x ∈ ∂Ω1.
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We claim that C0 > 0. Multiplying both sides of (10) by v ∈ H we have

(11) 0 =

∫
Ω2

σ1φ
0
1x1

vx1 + · · · + σnφ
0
1xn

vxn − α1(Ω)φ0v

−
∫
∂Ω1

(
σ1φ

0
1x1

ν1 + · · · + σnφ
0
1xn

νn
)
v,

where ν is the outer normal of Ω2 on ∂Ω1. Now subtract (9) from (11):

∫
Ω1

α1(Ω)φ0
1v −

∫
∂Ω1

(
σ1φ

0
1x1

ν1 + · · · + σnφ
0
1xn

νn
)
v = 0.

Since v|∂Ω1
= const for v ∈ H, we have

(12)

∫
Ω1

α1(Ω)φ0
1 =

∫
∂Ω1

(
σ1φ

0
1x1

ν1 + · · · + σnφ
0
1xn

νn
)
.

If φ0
1|∂Ω1 = 0, then by the Hopf boundary point lemma (recall φ0

1 ≥ 0 in Ω) we have
that the integrand on the right-hand side of (12) is negative. On the other hand,
since φ0

1|Ω1 is constant, φ0
1|Ω1 = 0 if φ0

1|∂Ω1 = 0. We have reached a contradiction and
thus φ0

1|∂Ω1 > 0.

Step 2. We prove lim supε↓0 λ1(Ω)/ε ≤ α1(Ω). By the variational characteriza-
tion3

λ1(Ω) = inf
u∈H1

0 (Ω),u �≡0

∫
Ω
aij(x)uxi

uxj∫
Ω
u2

≤

∫
Ω
aij(x)

(
φ0

1

)
xi

(
φ0

1

)
xj∫

Ω
(φ0

1)
2

= ε

∫
Ω

(σ1 + o(1))
(
φ0

1

)2

x1
+ · · · + (σn + o(1))

(
φ0

1

)2

xn
.

(Note ∇φ0
1 = 0 in Ω1.) This completes Step 2.

Step 3. By Step 2 we have

(13) O(ε) = k

∫
Ω

|∇φε
1|2 + ε

∫
Ω2

(σ1 + o(1)) (φε
1)

2
x1

+ · · · + (σn + o(1)) (φε
1)

2
xn

.

Thus φε
1 is bounded in H1

0 (Ω) as ε ↓ 0. So for each sequence ε ↓ 0 there exists a

subsequence (still denoted by ε) such that φε
1 → φ̃0

1 ∈ H1
0 (Ω) and strongly in L2(Ω).

In particular φ̃0
1 ≥ 0 and

∫
Ω

(
φ̃0

1

)2

= 1. By (13) we easily see φ̃0
1 is constant on Ω1.

3Here and henceforth we use the summation convention.
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Thus φ̃0
1 ∈ H and

lim inf
ε↓0

λ1(Ω)

ε
≥ lim inf

ε↓0

∫
Ω2

(σ1 + o(1)) (φε
1)

2
x1

+ · · · + (σn + o(1)) (φε
1)

2
xn

≥
∫

Ω2

σ1

(
φ̃0

1

)2

x1

+ · · · + σn

(
φ̃0

1

)2

xn

=

∫
Ω2

σ1

(
φ̃0

1

)2

x1

+ · · · + σn

(
φ̃0

1

)2

xn∫
Ω

(
φ̃0

1

)2

≥ α1(Ω).

This and Step 2 imply limε↓0 λ1(Ω)/ε = α1(Ω). The above arguments also show that

φ̃0
1 is a minimizer of α1(Ω).

Step 4. We show that α1(Ω) < λ̃(Ω2). Let ψ be an eigenfunction of (8) corre-

sponding to λ̃(Ω2), with ψ > 0 on Ω2. That is, (8) holds with u = ψ and λ = λ̃(Ω2).
Multiplying it by φ0

1 and integrating by parts, we have

−
∫

Ω2

σ1ψx1
φ0

1x1
+ · · · + σnψxn

φ0
1xn

+

∫
∂Ω1

φ0
1 (σ1ψx1

ν1 + · · · + σnψxn
νn)

+ λ̃(Ω2)

∫
Ω2

ψφ0
1 = 0.

(14)

In (9) take v = ψ and then add (9) to (14). We then have(
λ̃(Ω2) − α1(Ω)

)∫
Ω2

ψφ0
1 +

∫
∂Ω1

φ0
1 (σ1ψx1ν1 + · · · + σnψxnνn) = 0.

The Hopf boundary point lemma applied to ψ and the fact that φ0
1|∂Ω1 > 0 imply

λ̃(Ω2) − α1(Ω) > 0.
Step 5. We prove the uniqueness of the minimizer for α1(Ω). We just need to

show φ0
1 = φ̃0

1. As in Step 1, we have φ̃0
1

∣∣
∂Ω1

> 0. Since both φ̃0
1

∣∣
∂Ω1

and φ0
1

∣∣
∂Ω1

are

constants, there is a constant μ such that (φ̃0
1 + μφ0

1)
∣∣
∂Ω1

= 0. Define θ = φ̃0
1 + μφ0

1.
Then θ satisfies ⎧⎪⎪⎪⎨

⎪⎪⎪⎩
σ1θx1x1

+ · · · + σnθxnxn
+ α1(Ω)θ = 0, x ∈ Ω2,

θ = 0, x ∈ ∂Ω2,

θ = 0, x ∈ Ω1,

θ ∈ H.

If θ �≡ 0, then α1(Ω) is an eigenvalue of (8). This contradicts Step 4. The uniqueness
is proved.

(The subsequence of ε’s that was found in Step 2 is actually not needed. By the
uniqueness of the minimizer, φε → φ0 strongly in L2(Ω), λ(Ω)/ε → α1(Ω), without
passing to a subsequence.)

We next prove that all higher eigenvalues λm(Ω) are of order O(ε); in fact we
shall give first-order expansions in ε for λm(Ω) as well as φε

m. Before doing so we
discuss eigenvalues of the Rayleigh quotient (7) in the space H:

I(u) =

∫
Ω
σ1u

2
x1

+ · · · + σnu
2
xn∫

Ω
u2

.
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The eigenvalue problem associated to I(u) in H is∫
Ω

σ1ux1vx1 + · · · + σnuxnvxn = α

∫
Ω

uv for all v ∈ H.

If this equation has a nontrivial solution u ∈ H for some α, then α is called an eigen-
value of I(u) on H, and u is a corresponding eigenfunction. (If H were replaced by
H1

0 (Ω), then we would have the classical Dirichlet eigenvalue problem.) By standard
variational arguments (using among other things the compact imbedding H ↪→ L2(Ω);
see [4] for the Dirichlet case) we have that

(i) all the eigenvalues of I(u) on H form an unbounded sequence

α1(Ω) < α2(Ω) ≤ α3(Ω) ≤ · · · → ∞;

(ii) corresponding to each αm(Ω), there exists a normalized eigenfunction satis-
fying the orthogonality condition

(15)

∫
Ω

φ0
mφ0

l = 0 =

∫
Ω

σ1

(
φ0
m

)
x1

(
φ0
l

)
x1

+· · ·+σn

(
φ0
m

)
xn

(
φ0
l

)
xn

, m �= l;

(iii) α1(Ω) is described as in Theorem 1 and the other eigenvalues can be charac-
terized variationally as

αm(Ω) = inf
u∈H∫

Ω
uφ0

l =0, 1≤l≤m−1

I(u);

(iv) each eigenvalue is repeated according to its geometric multiplicity.
Theorem 2. Assume the conditions of Theorem 1. Then as ε ↓ 0, λm(Ω) =

εαm(Ω) + o(ε), and in the L2-sense, after passing to a subsequence, φε
m → φ̃0

m, m =

1, 2, . . . , where φ̃0
m is a normalized eigenfunction corresponding to αm(Ω).

Proof. Step 1. We prove lim supε↓0 λm(Ω)/ε ≤ αm(Ω). Let

Vm = span{φ0
1, . . . , φ

0
m} ⊂ H.

By the Poincaré principle (see, for example, [1, p. 97]),

λm(Ω) ≤ max
u∈Vm

∫
Ω
aij(x)uxi

uxj∫
Ω
u2

= ε max
u∈Vm

∫
Ω
(σ1 + o(1))u2

x1
+ · · · + (σn + o(1))u2

xn∫
Ω
u2

(note that ∇u = 0 in Ω1)

= ε(αm(Ω) + o(1)).

In the last equation, we used (15) and the elementary fact

(16)
a1 + · · · + an
b1 + · · · + bn

≤ max

{
a1

b1
, . . . ,

an
bn

}
for positive a’s and b’s.

Step 2. We prove lim infε↓0 λm(Ω)/ε ≥ αm(Ω). For m = 1 this has been proved
in Theorem 1. For m = 2, arguing as in Step 3 of Theorem 1, we have that, after

passing to a subsequence, φε
2 → some φ̃0

2, where φ̃0
2 satisfies

φ̃0
2 ∈ H,

∫
Ω

(
φ̃0

2

)2

= 1,

∫
Ω

φ0
1φ̃

0
2 = 0;
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1Ω

Ω2

Fig. 2. Incompletely coated body.

thus

lim inf
ε↓0

λ2(Ω)

ε
≥ lim inf

ε↓0

∫
Ω2

(σ1 + o(1)) (φε
2)

2
x1

+ · · · + (σn + o(1)) (φε
2)

2
xn

≥
∫

Ω2

σ1

(
φ̃0

2

)2

x1

+ · · · + σn

(
φ̃0

2

)2

xn

= I(φ̃0
2)

≥ α2(Ω).

This and Step 1 imply that limε↓0 λ2(Ω)/ε = α2(Ω) and that φ̃0
2 is an eigenfunction

corresponding to α2(Ω). Repeating the above argument, we complete the proof of the
theorem.

2.2. Incompletely coated bodies. In case Ω2 does not completely coat Ω1

(see Figure 2), we can show, for fixed k > 0,

(17) λ1(Ω) = ελ̃(Ω2) + o(ε), ε ↓ 0

(λ̃(Ω2) is defined as in part (2) of Theorem 1), and in the L2(Ω)-sense

(18) φε
1 = φ0 + o(1),

where φ0 on Ω2 is the normalized eigenfunction corresponding to λ̃(Ω2) and φ0 is
understood as being zero on Ω1. This can be proved by slightly modifying the proof
of Theorem 1. One might be tempted to conclude, on the basis of (17), that even an
incomplete coating will protect the body: The principal Dirichlet eigenvalue remains
small if ε is small enough.4 It is, however, physically obvious that the coating ought to
be complete and that incomplete coating is unsatisfactory. The mathematical resolu-
tion has to do with the issue raised in item (iii) of section 1: By (18) the eigenfunction
is small on the body, and hence the body is not protected from overheating.

In addition to (18), the size of φε
1 on Ω1 can also be estimated more explicitly in

terms of ε as follows. On Ω1, we have

Δφε
1 = −λ1(Ω)

k
φε

1 ,

and so ‖Δφε
1‖L2(Ω1) = O(ε/k). On the other hand,

O(ε) = λ1(Ω) ≥ k

∫
Ω1

|∇φε
1|2 ≥ kμ(Ω1)

∫
Ω1

(φε
1)

2,

4Although if the coating is a tiny bump on the body, the coefficient of ε is very large.
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where μ(Ω1) is the first eigenvalue of −Δ with Dirichlet boundary conditions on
∂Ω1\∂Ω2, and Neumann on ∂Ω1∩∂Ω2 (assumed nonempty). Thus ‖φε

1‖L2 = O(
√

ε/k).
By interior and boundary elliptic estimates, we infer

‖φε
1‖H2(K) = O(

√
ε/k),

where K is any subdomain of Ω1 with dist(K, ∂Ω2) > 0. By the Sobolev imbedding
H2(K) ⊂ L∞(K) (in 2D or 3D), ‖φε

1‖L∞(K) = O(
√

ε/k).

3. How thin can the coating Ω2 be?. In this section, we assume that the
coating Ω2 has uniform thickness δ. In the intended applications, δ is much smaller
than the length scale of the protected body Ω1. We wish to find conditions that keep
λ1(Ω) small, while keeping Ω2 as thin as possible. (If the coating is too thin, it can’t
insulate well. We will quantify this.)

Let n(p) be the unit outward normal vector field of ∂Ω1 at point p. For any small
positive δ, define a mapping F as follows:

F : (p, τ) ∈ ∂Ω1 × [−δ, δ] → (x1, . . . , xn) ∈ Rn, n > 1,

(x1, . . . , xn) = F (p, τ) = p + τn(p).

If δ is small enough,

δ × (maximum of the principal curvatures of ∂Ω1) < 1

and perhaps smaller, then F is a diffeomorphism. We shall assume this throughout
this section. We take

(19) Ω2 = F (∂Ω1 × (0, δ)),

and thus the thickness of Ω2 is δ.

3.1. Upper bounds for λ1(Ω).
Theorem 3. For any thermal diffusion coefficient k > 0 (see (5))

λ1(Ω) ≤

⎧⎪⎪⎨
⎪⎪⎩

σmax

δ|Ω1|

(
|∂Ω1| − δ

(
πχ(∂Ω1)

2
+

|∂Ω1|2
3|Ω1|

)
+ O(δ2)

)
in 2D

σmax

δ|Ω1|

(
|∂Ω1| − δ

(
H +

|∂Ω1|2
3|Ω1|

)
+ O(δ2)

)
in 3D,

where σmax is the largest of the eigenvalues of the thermal tensor of the coating Ω2,
H (in 3D) is the integral of the mean curvature of ∂Ω1 over ∂Ω1, and χ(∂Ω1) =
2(1− the number of holes in Ω1) is the Euler characteristic of ∂Ω1.

Remark 2. Thus to keep λ1(Ω) small, we just need to have σmax/δ small. We
emphasize that these upper bounds are independent of k (they apply even when the
coated body is a near perfect conductor, k → ∞), and in 2D, of the geometry of
Ω1. (In 2D, the upper bound depends only on the topology of Ω1 and the relative
magnitudes of |∂Ω1| and |Ω1|.) In 3D, the upper bound is more geometry-dependent
but still only in a global way.

Proof. By the variational characterization,

λ1(Ω) = inf
u∈H1

0 (Ω),u �≡0

∫
Ω
aij(x)uxiuxj∫

Ω
u2

,
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where (aij) is the thermal tensor of the composite; see (5).
We take

φ(x1, x2, x3) =

{
1 − τ

δ
, 0 ≤ τ ≤ δ, p ∈ ∂Ω1,

1 otherwise,

where we have used the coordinates introduced in (19). Then

(20) λ1(Ω) ≤ σmax

∫
Ω2

|∇φ|2∫
Ω
φ2

.

To compute this Rayleigh-type quotient in the three-dimensional case we need to
use a convenient coordinate system. For every q ∈ ∂Ω1, parametrize ∂Ω1 near q by
p = p(u, v) (u, v real) such that on ∂Ω1 the curves u → p(u, v) and v → p(u, v) are
curves of principal curvature of ∂Ω1 with speed equal to 1:⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

|∂p/∂u| = 1,

|∂p/∂v| = 1,

∂p/∂u ⊥ ∂p/∂v,

(∂/∂u)n(p(u, v)) = −k1(p(u, v))(∂/∂u)p(u, v),

(∂/∂v)n(p(u, v)) = −k2(p(u, v))(∂/∂u)p(u, v).

Here k1 and k2 are principal curvatures of ∂Ω1 (with the convention that they are
positive if Ω1 is convex).

Then the surface element on ∂Ω1 is given by

dSp =

∣∣∣∣∂p∂u × ∂p

∂v

∣∣∣∣ du dv = du dv.

The volume element on Ω2 is

dx1 dx2 dx3 =
∣∣∣ (∂F

∂u
× ∂F

∂v

)
· ∂F
∂τ

∣∣∣ du dv dτ
=

∣∣ ((pu + τnu) × (pv + τnv)) · n
∣∣ du dv dτ

=
∣∣ [(1 − τk1(p))pu × (1 − τk2(p))pv] · n

∣∣ du dv dτ
=

∣∣(1 − τk1(p))(1 − τk2(p))
∣∣ du dv dτ

= (1 − τk1(p))(1 − τk2(p)) dSp dτ

=
(
τ2G(p) − 2τH(p) + 1

)
dSp dτ,

where G(p) = k1k2 is the Gauss curvature and H(p) is the mean curvature of ∂Ω1.
By the chain rule, ∂φ/∂u = ∇(x1,x2,x3)φ · ∂F

∂u = (1 − τk1(p))∇(x1,x2,x3)φ · pu and
also ∂φ/∂v = (1 − τk2(p))∇(x1,x2,x3)φ · pv and ∂φ/∂τ = ∇(x1,x2,x3)φ · n. Thus

∣∣∇(x1,x2,x3)φ
∣∣2 = φ2

τ +
φ2
u

(1 − τk1)2
+

φ2
v

(1 − τk2)2
.

Now we go back to (20) to compute∫
Ω2

∣∣∇(x1,x2,x3)φ
∣∣2 =

∫ δ

0

∫
∂Ω1

φ2
τ (τ

2G(p) − 2τH(p) + 1) dSp dτ

=
1

δ2

∫ δ

0

∫
∂Ω1

(
τ2G(p) − 2τH(p) + 1

)
dSp dτ.
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Introducing H =
∫
∂Ω1

H(p) dSp and using the Gauss–Bonnet theorem
∫
∂Ω1

G(p)dSp =

2πχ(∂Ω1), we have∫
Ω2

∣∣∇(x1,x2,x3)φ
∣∣2 =

1

δ2

∫ δ

0

(
2πχ(∂Ω1)τ

2 − 2τH + |∂Ω1|
)
dτ

=
1

δ

[
|∂Ω1| − δH +

2πχ(∂Ω1)δ
2

3

]

while ∫
Ω

φ2 = |Ω1| +
∫ δ

0

(
1 − τ

δ

)2

(|∂Ω1| − 2Hτ + 2πχ(∂Ω1)τ
2) dτ

= |Ω1| +
|∂Ω1|δ

3
+ O(δ2).

When the quotient is assembled, and expanded for small δ, the result is the theorem
in the three-dimensional case.

In the two-dimensional case we simply parametrize the curve ∂Ω1 by the arclength
variable s (so u = s). In the computation of the Rayleigh quotient, set G(p) = 0 and
2H(p) = K(p), the curvature of ∂Ω1. In 2D the Gauss–Bonnet theorem is reduced to∫
∂Ω1

K(p) ds = πχ(∂Ω1). We now have

∫
Ω

|∇φ|2 =
1

δ2

∫ δ

0

(|∂Ω1| − πχ(∂Ω1)τ) dτ

=
1

δ

(
|∂Ω1| −

πχ(∂Ω1)δ

2

)

and ∫
Ω

φ2 = |Ω1| +
∫ δ

0

(
1 − τ

δ

)2

(|∂Ω1| − πχ(∂Ω1)τ) dτ

= |Ω1| +
|∂Ω1|δ

3
+ O(δ2).

The two-dimensional inequality of the theorem now follows from assembling the quo-
tient and expanding for small δ.

3.2. Theorem 3 is sharp. We now show that Theorem 3 is sharp. This is
accomplished by studying the situation in which δ ↓ 0 and k and the thermal tensor
are allowed to vary with δ. As mentioned previously, the upper bound for λ1(Ω) in
Theorem 3 is universal : It is valid even when k → ∞. The point of allowing the
thermal tensor to vary with δ is to identify exactly the scaling relationships among δ,
k, and the thermal tensor in determining the size of λ1(Ω).

Theorem 4. Let σmax and σmin be the largest and smallest of the eigenvalues of
the thermal tensor of the coating Ω2. Assume that as δ ↓ 0

(21)
σmax

δk
→ 0

(k > 0 is the thermal diffusion coefficient of the uncoated body) and

(22)
σmax

σmin
is bounded.
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Then

(23) lim inf
δ↓0

λ1(Ω)δ

σmin
≥ |∂Ω1|

|Ω1|
.

Moreover, the normalized eigenfunction φ1 corresponding to λ1(Ω) converges to
1/
√
|Ω1| strongly in L2(Ω1) and C2

loc(Ω1) as δ ↓ 0.
Proof. Step 1. Let

(24) λδ = inf
u∈H1

0 (Ω),u �≡0

k
∫

Ω1
|∇u|2 + σmin

∫
Ω2

|∇u|2∫
Ω
u2

.

Then λ1(Ω) ≥ λδ. Denote by φδ the normalized (
∫

Ω
(φδ)2 = 1) minimizer of (24). It

is positive on Ω and is the weak solution of{∑
(a(x)ui)i + λδu = 0 in Ω,

u = 0 on ∂Ω,

where ui ≡ ∂u/∂xi and

a(x) =

{
k in Ω1,

σmin in Ω2.

By the De Giorgi–Nash estimates (see [4, Theorem 8.29]), φδ is Hölder-continuous
throughout Ω. Since

Δφδ = −λδ

k
φδ in Ω1

with λδ/k ≤ λ1(Ω)/k ≤ O(σmax

δk ) = o(1) (by Theorem 3 and (21)), we have, by the
interior elliptic estimates and a bootstrap argument, that φδ is compact in C2

loc(Ω1)
as δ ↓ 0.

Step 2. Since
∫

Ω1
|∇φδ|2 ≤ λδ/k → 0 as δ ↓ 0, we have that, after passing to a

subsequence of δ ↓ 0,

(25) φδ → some constant m, weakly in H1(Ω1) and strongly in L2(Ω1).

Because φδ is compact in C2
loc(Ω1) as δ ↓ 0, we also have

(26) φδ → m in C2
loc(Ω1) as δ ↓ 0

after possibly passing to yet another subsequence.
By Lemma 5 and (22),

∫
Ω2

(φδ)2 ≤ O(δ2)

∫
Ω2

|∇φδ|2 ≤ O

(
δ2

σmin

)
λδ ≤ O

(
δ2σmax

σminδ

)
→ 0 as δ ↓ 0.

Thus

1 =

∫
Ω

(φδ)2 =

∫
Ω1

m2 + o(1) as δ ↓ 0
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and hence

(27) m =
1√
|Ω1|

.

The proof that the eigenfunction φ1 converges to 1/
√

|Ω1| is similar.
Step 3. We now show

(28) lim
δ↓0

∫
∂Ω1

φδ = m|∂Ω1|.

Near ∂Ω1 think of φδ as a function of τ and p ∈ ∂Ω1 through the dependence φδ =
φδ(F (p, τ)). Fix a small δ0 > 0. Then

∣∣φδ(−δ0, p) − φδ(0, p)
∣∣ =

∣∣∣∣∣
∫ −δ0

0

∂φδ

∂τ
dτ

∣∣∣∣∣ ≤
(∫ 0

−δ0

(
∂φδ

∂τ

)2

dτ

)1/2

δ
1/2
0

and thus∫
∂Ω1

(
φδ(−δ0, p) − φδ(0, p)

)2
dSp ≤ δ0

∫
∂Ω1

∫ 0

−δ0

(
∂φδ

∂τ

)2

dτ dSp

≤ δ0

1 −O(δ0)

∫
∂Ω1

∫ 0

−δ0

(
∂φδ

∂τ

)2 (
1 − 2τH(p) + τ2G(p)

)
dτ dSp

≤ δ0

1 −O(δ0)

∫
F (∂Ω1×(−δ0,0))

∣∣∇(x1,x2,x3)φ
δ
∣∣2 dx dy dz

→ 0 as δ ↓ 0.

Thus

lim
δ↓0

∫
∂Ω1

φδ(0, p) dSp = lim
δ↓0

∫
∂Ω1

φδ(−δ0, p) dSp

= m|∂Ω1| by (26).

Step 4.∫
∂Ω1

φδ(0, p) dSp =

∫
∂Ω1

(
φδ(0, p) − φδ(δ, p)

)
dSp

=

∫
∂Ω1

∫ 0

δ

∂φδ

∂τ
dτ dSp

≤
(∫

∂Ω1

∫ δ

0

(
∂φδ

∂τ

)2

dτ dSp

)1/2

(δ|∂Ω1|)1/2
,

which implies(∫
∂Ω1

φδ(0, p) dSp

)2

≤ δ|∂Ω1|
∫
∂Ω1

∫ δ

0

(
∂φδ

∂τ

)2

dτ dSp

≤ δ|∂Ω1|
1 −O(δ)

∫
∂Ω1

∫ δ

0

(
∂φδ

∂τ

)2 (
1 − 2τH(p) + τ2G(p)

)
dτ dSp

≤ δ|∂Ω1|
1 −O(δ)

∫
Ω2

∣∣∇(x1,x2,x3)φ
δ
∣∣2 dx1 dx2 dx3

≤ δ|∂Ω1|
1 −O(δ)

λδ

σmin
.
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Consequently,

lim inf
δ↓0

δλδ

σmin
≥ (m|∂Ω1|)2

|∂Ω1|
=

|∂Ω1|
|Ω1|

.

Lemma 5. For all small δ > 0 and φ ∈ H1(Ω2) with φ = 0 on the outer boundary
of Ω2, ∫

Ω2

|∇φ|2 ≥
π2

(
1 − 2δHmax + δ2Gmin

)
4δ2

(
1 − 2δH−

min + δ2Gmax

) ∫
Ω2

φ2,

where Hmax ≡ maxp∈∂Ω1 H(p), H−
min ≡ min (0,minp∈∂Ω1 H(p)) and Gmax and Gmin

are the maximum and minimum of G on ∂Ω1. In 2D, G(p) ≡ 0 and 2H(p) is under-
stood as K(p).

Proof. The smallest eigenvalue of −d2/dx2 on (0, δ) with Neumann condition on

the left and Dirichlet on the right is π2

4δ2 . Thus

∫ δ

0

(
∂φ(τ, p)

∂τ

)2

dτ ≥ π2

4δ2

∫ δ

0

φ2(τ, p) dτ,

which implies

1

1 − 2δHmax + δ2Gmin

∫
∂Ω1

∫ δ

0

(
∂φ

∂τ

)2 (
1 − 2τH(p) + τ2G(p)

)
dτ dSp

≥ π2

4δ2

∫
∂Ω1

∫ δ

0
φ2(τ, p)

(
1 − 2τH(p) + τ2G(p)

)
dτ dSp

1 − 2δH−
min + δ2Gmax

.

Now the conclusion follows from the fact that the integral on the left is less than or
equal to

∫
Ω2

|∇φ|2.

3.3. Optimally aligned coating. If the thermal tensor of the coating varies
spatially, i.e., aij = aij(x), then it is possible for the principal Dirichlet eigenvalue to
be small, as in Theorem 2, even if not all the eigenvalues of this thermal tensor are
small. We call the coating optimally aligned if the smallest of the eigenvalues has, at
each boundary point of the coated body, eigenvector normal to the boundary (and
this persists into the coating; see below). Only that eigenvalue needs to be controlled
(assumed small everywhere); the size of the others is irrelevant. An example is the
two-dimensional disk of radius 1− δ coated by an annulus of thickness δ, the annulus
having thermal tensor

(29) A =

(
εx2 + y2 xy(−1 + ε)

xy(−1 + ε) x2 + εy2

)
.

The eigenvalues are x2 + y2 and ε(x2 + y2) with eigenvectors angular and radial,
respectively.

Theorem 6. Suppose for all p ∈ ∂Ω1 and all points x = p+ τn(p) (τ > 0) in Ω2

the smallest eigenvalue σop
min(x) of aij(x) has eigenvector n(p). Let

σop
min = max

x∈Ω2

σop
min(x).
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Then

λ1(Ω) ≤

⎧⎪⎪⎨
⎪⎪⎩

σop
min

δ|Ω1|

(
|∂Ω1| − δ

(
πχ(∂Ω1)

2
+

|∂Ω1|2
3|Ω1|

)
+ O(δ2)

)
in 2D,

σop
min

δ|Ω1|

(
|∂Ω1| − δ

(
H +

|∂Ω1|2
3|Ω1|

)
+ O(δ2)

)
in 3D.

Proof. The proof is a slight modification of that of Theorem 3. Using the same

test function φ and observing that ∇φ(x1, x2, x3) = ∂φ
∂τ n(p) = −n(p)

δ is an eigenvector
of aij(x) corresponding to σop

min(x), we have

λ1(Ω) ≤
∫

Ω2
aij(x)φxi

φxj∫
Ω
φ2

=

∫
Ω2

σop
min(x)|∇φ|2∫

Ω
φ2

≤ σop
min

δ2

∫
Ω2

1∫
Ω
φ2

.

The remaining calculations will be the same as in the proof of Theorem 3.
Theorem 7. Let

σop
min = min

x∈Ω2

σop
min(x).

If

lim
δ↓0

σop
min

δk
= 0 and

σop
min

σop
min

is bounded,

then

lim inf
δ↓0

λ1(Ω)δ

σop
min

≥ |∂Ω1|
|Ω1|

,

and the normalized eigenfunction φ1 corresponding to λ1(Ω) converges to 1/
√

| Ω1 |
(strongly in L2(Ω1) and C2

loc(Ω1)) as δ ↓ 0.
Proof. The proof is the same as the proof of Theorem 4 but with σmin → σop

min,
σmax → σop

min, and “Theorem 3” → “Theorem 6.”

4. Estimation of higher eigenpairs. A fuller understanding of the long-time
behavior (i.e., of the accuracy of the truncated eigenfunction expansion approxima-
tion) can be achieved by estimating the higher eigenpairs λm(Ω), φδ

m(x), m ≥ 2. A
by-product is a new characterization of the first positive Neumann eigenvalue as the
limit of a sequence of second Dirichlet eigenvalues.

4.1. The case in which all eigenvalues of the thermal tensor are small.
Theorem 8. Assume the conditions of Theorem 4 with k > 0 fixed. Suppose also

that

(30)
δ2

σmin
↓ 0 as δ ↓ 0.
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Then

lim
δ↓0

λ2(Ω) = kμ2(Ω1),

where μ2(Ω1) is the first positive eigenvalue of the Neumann eigenproblem

(31)

⎧⎨
⎩

Δu + μu = 0 in Ω1,
∂u

∂n
= 0 on ∂Ω1, n the unit outward normal to ∂Ω1.

Moreover, after passing to a subsequence the normalized eigenfunction φδ
2 correspond-

ing to λ2(Ω) converges to a normalized eigenfunction ψ0
2 associated to μ2(Ω1) strongly

in L2(Ω1) and C2
loc(Ω1).

Proof. Step 1. We prove lim supδ↓0 λ2(Ω) ≤ kμ2(Ω1). Recall the Poincaré princi-
ple

(32) λ2(Ω) = min
dimV2=2

max
u∈V2

∫
Ω
aij(x)uiuj dx∫

Ω
u2 dx

,

where the minimum is taken over all two-dimensional subspaces V2 of H1
0 (Ω). Let

ψ0 be a fixed normalized eigenfunction associated to μ2(Ω1). Since ψ0 ∈ C2(Ω1)
we can extend it so that ψ0 ∈ C2(Rn). Let φδ

1 be the normalized eigenfunction
corresponding to λ1(Ω). In (32) take V2 = span{φδ

1, φψ
0}, where φ is as defined in

the proof of Theorem 3. For any u ∈ V2 write u = c1φ
δ
1 + c2φψ

0, where c1 and c2 are
constants. Now by (32)

λ2 ≤ max
u∈V2

∫
Ω
aij(x)uiuj dx∫

Ω
u2 dx

(33)

≤ max
(c1,c2)∈R2

c2
1 (λ1(Ω) + A) + c2

2(B + A)

c2
1(1 −D) + c2

2(C −D)
,

where

A =

∣∣∣∣
∫

Ω

aij(x)(φδ
1)xi(φψ

0)xj

∣∣∣∣
≤

(∫
Ω

aij(x)(φδ
1)xi(φ

δ
1)xj

)1/2 (∫
Ω

aij(x)(φψ0)xi
(φψ0)xj

)1/2

=
√
λ1(Ω)

√
B;

B =

∫
Ω

aij(x)(φψ0)xi
(φψ0)xj

= k

∫
Ω1

|∇ψ0|2 +

∫
Ω2

aij(φxiψ
0 + φψ0

xi
)(φxjψ

0 + φψ0
xj

)

≤ k

∫
Ω1

|∇ψ0|2 + 2

∫
Ω2

aijφxiφxj (ψ
0)2 + 2

∫
Ω2

aijψ
0
xi
ψ0
xj
φ2

≤ kμ2(Ω1) + O

(
σmax

δ

)
+ O(δ);

C =

∫
Ω

(φψ0)2
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=

∫
Ω1

(ψ0)2 +

∫
Ω2

(φψ0)2 ≥ 1;

D =

∣∣∣∣
∫

Ω

φδ
1φψ

0

∣∣∣∣
≤

∣∣∣∣
∫

Ω1

φδ
1ψ

0

∣∣∣∣ +

∣∣∣∣
∫

Ω2

φδ
1φψ

0

∣∣∣∣
≤

∣∣∣∣∣
∫

Ω1

(
φδ

1 −
1√
|Ω1|

)
ψ0

∣∣∣∣∣ +

(∫
Ω2

(ψ0)2

)1/2 (∫
Ω

(φδ
1)

2

)1/2

≤

⎛
⎝∫

Ω2

(
φδ

1 −
1√
|Ω1|

)2
⎞
⎠

1/2 (∫
Ω1

(ψ0)2

)1/2

+

(∫
Ω2

(ψ0)2

)1/2

= o(1) + O(
√
δ) (by Theorem 4).

These estimates, the fact that λ1(Ω) = O(σmax/δ), and (33) imply

λ2(Ω) ≤ c2
1o(1) + c2

2 (kμ2(Ω1) + o(1))

c2
1(1 − o(1)) + c2

2(1 − o(1))
.

From the elementary inequality a+b
c+d ≤ max

(
a
c ,

b
d

)
for positive a, b, c, d we infer

λ2(Ω) ≤ max

(
o(1)

1 − o(1)
,
kμ2(Ω1) + o(1)

1 − o(1)

)
.

Step 2. We prove lim infδ↓0 λ2(Ω) ≥ kμ2(Ω1). Observe that

λ2(Ω) ≥ k

∫
Ω1

|∇φδ
2|2 + σmin

∫
Ω2

|∇φδ
2|2,

where
∫

Ω
(φδ

2)
2 = 1 and

∫
Ω
φδ

1φ
δ
2 = 0. In particular φδ

2 is bounded in H1(Ω1), and

hence after passing to a subsequence, φδ
2 → someψ0

2 weakly in H1(Ω1) and strongly
in L2(Ω1). Applying interior elliptic estimates to Δφδ

2 + λ2(Ω)φδ
2 = 0, we also have

φδ
2 → ψ0

2 in C2
loc(Ω1). From this it follows that

(34) lim inf
δ↓0

λ2(Ω) ≥ k

∫
Ω1

|∇ψ0
2 |2

and that

0 = lim
δ↓0

∫
Ω

φδ
1φ

δ
2

= lim
δ↓0

(∫
Ω1

+

∫
Ω2

)
φδ

1φ
δ
2

=

∫
Ω1

1√
|Ω1|

ψ0
2 + lim

δ↓0

(
O

(
δσmax

σmin

))1/2

(by Theorem 4 and its proof)

=

∫
Ω1

1√
|Ω1|

ψ0
2 ;

i.e.,

(35)

∫
Ω1

ψ0
2 = 0.



EIGENVALUES OF A COATED BODY 1913

Moreover, by Lemma 5, we have

∫
Ω2

(
φδ

2

)2 ≤ O(δ2)

∫
Ω2

|∇φδ
2|2 = O

(
δ2

σmin

)
λ2(Ω) = o(1)

and thus

1 = lim
δ↓0

(∫
Ω1

(
φδ

2

)2
+

∫
Ω2

(
φδ

2

)2
)

=

∫
Ω1

(
ψ0

2

)2
.

Now this and (35) imply

μ2(Ω) = inf∫
Ω1

u=0

∫
Ω1

|∇u|2∫
Ω1

u2
≤

∫
Ω1

|∇ψ0
2 |2∫

Ω1
(ψ0

2)
2 =

∫
Ω1

|∇ψ0
2 |2.

This and (34) yield the desired conclusion.

Step 3. Combining Steps 1 and 2 we have

lim
δ↓0

λ2(Ω) = kμ2(Ω1).

The arguments in Step 2 show that ψ0
2 is a normalized eigenfunction corresponding

to μ2(Ω1).

Theorem 9.

(i) For any k > 0 (see (5)) and m = 2, 3, . . . ,

λm(Ω) ≤

⎧⎪⎪⎨
⎪⎪⎩

σmaxm
2π2

δ2

(
1 +

δπ

|∂Ω1|
|χ(∂Ω1)| + O(δ2)

)
in 2D,

σmaxm
2π2

δ2

(
1 +

2δ

|∂Ω1|
|H| + O(δ2)

)
in 3D.

In particular, if

(36)
σmax

δ2
→ 0

(
⇐⇒ δ2

σmax
→ ∞

)
as δ ↓ 0,

then λm(Ω) → 0 as δ ↓ 0 uniformly in k > 0.
(ii) Fix k > 0 and assume (36) and (22). Then the normalized eigenfunction φδ

m

corresponding to λm(Ω) converges to zero strongly in L2(Ω1) and C2
loc(Ω1) as

δ ↓ 0, m ≥ 2.
(iii) Under the same conditions as in part (ii) above, there exists a positive constant

C such that

λ2(Ω) ≥ C
σmax

δ2
.

Thus for m ≥ 2 each λm(Ω) is of order σmax/δ
2, while λ1(Ω) is of order

σmax/δ.
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Proof of (i). Fix w ∈ H1
0 (Ω2) ⊂ H1

0 (Ω), which depends only on τ ∈ [0, δ]. We
compute the Rayleigh quotient∫

Ω
aij(x)wiwj dx∫

Ω
w2 dx

≤
σmax

∫
Ω2

|∇w|2 dx∫
Ω2

w2 dx

= σmax

∫ δ

0

∫
∂Ω1

w2
τ

(
τ2G(p) − 2τH(p) + 1

)
dSp dτ∫ δ

0

∫
∂Ω1

w2 (τ2G(p) − 2τH(p) + 1) dSp dτ

≤ σmax

(
|∂Ω1| − 2δmin(0, H) + O(δ2)

) ∫ δ

0
w2

τ dτ(
|∂Ω1| − 2δmax(0, H) + O(δ2)

) ∫ δ

0
w2 dτ

= σmax

(
1 +

2δ|H|
|∂Ω1|

+ O(δ2)

) ∫ δ

0
w2

τ dτ∫ δ

0
w2 dτ

.

Take an m-dimensional subspace of H1
0 (Ω2) ⊂ H1

0 (Ω):

Vm = span

{
sin

πτ

δ
, sin

2πτ

δ
, . . . , sin

mπτ

δ

}
.

Then by the Poincaré principle

λm(Ω) ≤ max
w∈Vm

∫
Ω
aij(x)wiwj dx∫

Ω
w2 dx

≤ σmax

(
1 +

2δ|H|
|∂Ω1|

+ O(δ2)

)
max
w∈Vm

∫ δ

0
w2

τ dτ∫ δ

0
w2 dτ

= σmax

(
1 +

2δ|H|
|∂Ω1|

+ O(δ2)

)
m2π2

δ2
.

Proof of (ii). By Theorem 4 and its proof, φδ
1 (the normalized eigenfunction

corresponding to λ1(Ω)) and φδ
m satisfy

φδ
1 → 1√

|Ω1|
and φδ

m → constant Cm strongly in L2(Ω1) and C2
loc(Ω1)

as δ ↓ 0. On the other hand,

0 =

∫
Ω

φδ
1φ

δ
m =

∫
Ω1

φδ
1φ

δ
m +

∫
Ω2

φδ
1φ

δ
m,

while ∫
Ω1

φδ
1φ

δ
m → Cm|Ω1|√

|Ω1|

and

∣∣∣ ∫
Ω2

φδ
1φ

δ
m

∣∣∣ ≤ (∫
Ω2

(
φδ

1

)2
)1/2 (∫

Ω

(
φδ
m

)2
)1/2

= O

(
σmaxδ

σmin

)
→ 0.

Thus Cm = 0.
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Proof of (iii). Suppose there exists a sequence δ ↓ 0 such that

(37)
δ2λ2(Ω)

σmax
→ 0.

Observe that

1 =

∫
Ω

(
φδ

2

)2

=

∫
Ω1

(
φδ

2

)2
+

∫
Ω2

(
φδ

2

)2

= o(1) + O(δ2)

∫
Ω2

|∇φδ
2|2 by (ii) and Lemma 5

≤ o(1) +
O(δ2)

σmin
λ2(Ω)

= o(1) + O(1)
δ2λ2(Ω)

σmax

= o(1) by (37),

which is a contradiction.

4.2. The optimally aligned case.
Theorem 10. Let all the conditions of Theorem 7 hold with thermal conductivity

coefficient k > 0 (see (5)) fixed. Assume also that

δ2

σop
min

→ 0 as δ ↓ 0.

Then limδ↓0 λ2(Ω) = kμ2(Ω1) and after passing to a subsequence limδ↓0 ψ
δ
2 = φ0

2 in
L2(Ω1) and C2

loc(Ω1).
Proof. We slightly modify the proof of Theorem 8. The first modification oc-

curs in the estimate for B, where we use the fact that ∇φ is an eigenvector of
(aij(x)) associated with eigenvalue σop

min(x), and hence “O(σmax/δ)” can be replaced
by “O(σop

min/δ).” The term “O(δ)” is kept unchanged because aij(x) is bounded
on Ω2. The other modifications are obvious ones: “Theorem 4” → “Theorem 7,”
σmin → σop

min, and σmax → σop
min.

Theorem 11.

(i) For any thermal diffusion constant k > 0 (see (5)) and m = 2, 3, . . . ,

λm(Ω) ≤

⎧⎪⎪⎨
⎪⎪⎩

σop
minm

2π2

δ2

(
1 +

δπ

|∂Ω1|
|χ(Ω1)| + O(δ2)

)
in 2D,

σop
minm

2π2

δ2

(
1 +

2δ|H|
|∂Ω1|

+ O(δ2)

)
in 3D.

In particular, if

(38) σop
min/δ

2 → 0 as δ ↓ 0,

then λm(Ω) → 0 as δ ↓ 0, uniformly for k > 0.
(ii) Fix k > 0 and assume (38) and that σop

min/σ
op
min is bounded. Then φδ

m → 0
strongly in L2(Ω1) and C2

loc(Ω1) as δ ↓ 0.
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(iii) Under the conditions in part (ii), there exists a positive constant c such that
cσop

min/δ
2 ≤ λ2(Ω).

Proof. Modify the proof of Theorem 9 with the same obvious changes listed in
the proof of Theorem 10. The key observation is that if w = w(τ), then in Ω2, ∇w is
an eigenvector of aij(x) associated to σmin(x).
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CORRIGENDUM: SUPPRESSION OF THE DIRICHLET
EIGENVALUES OF A COATED BODY∗

STEVE ROSENCRANS† AND XUEFENG WANG†

Abstract. In our paper [SIAM J. Appl. Math., 66 (2006), pp. 1895–1916] there are several
mistakes in signs in the statements of Theorems 3 and 6.

Key words. nanocomposite, Dirichlet eigenvalue, anisotropic heat conduction, thermal tensor,
thermal management, insulation, reinforcement
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In the upper bounds on λ1(Ω) stated in Theorems 3 and 6, there should be “−”
signs in front of π and H.

On page 1905 all “−” signs in front of the principal curvatures k1 and k2 should
be changed to “+” signs. This leads to some obvious minor changes in the rest of
the proof of Theorem 3 and the statement and proof of Lemma 5. The speed of the
curves of principal curvature are 1 only at q, and so the six equations following “speed
equal to 1” hold only at q.

These corrections necessitate only the above-mentioned changes in the statements
of Theorems 3 and 6. The statements of all the other theorems remain unchanged.
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RETURN MAP CHARACTERIZATIONS FOR A MODEL OF
BURSTING WITH TWO SLOW VARIABLES∗

ROGER E. GRIFFITHS† AND MARK PERNAROWSKI‡

Abstract. Various physiological systems display bursting electrical activity (BEA). There exist
numerous three-variable models to describe this behavior. However, higher-dimensional models with
two slow processes have recently been used to explain qualitative features of the BEA of some
experimentally observed systems [T. Chay and D. Cook, Math. Biosci., 90 (1988), pp. 139–153;
P. Smolen and J. Keizer, J. Memb. Biol., 127 (1992), pp. 9–19; R. Bertram et al., Biophys. J., 79
(2000), pp. 2880–2892; R. Bertram et al.,, Biophys. J., 68 (1995), pp. 2323–2332; J. Keizer and
P. Smolen, Proc. Nat. Acad. Sci. USA, 88 (1991), pp. 3897–3901]. In this paper we present a model
with two slow and two fast variables. For some parameter values the system has stable equilibria,
while for other values there exist bursting solutions. Singular perturbation methods are used to define
a one-dimensional return map, wherein fixed points correspond to singular bursting solutions. We
analytically demonstrate that bursting solutions may exist even with a combination of activating and
inactivating slow processes. We also demonstrate that for different parameters, bursting solutions
may coexist with stable equilibria. Hence small variations in the initial conditions may drastically
affect the dynamics.

Key words. bursting, return map, singular perturbation solutions

AMS subject classifications. 34A, 34C15, 34C29, 34D15, 34E15

DOI. 10.1137/050635201

1. Introduction. Bursting electrical activity (BEA) is a phenomenon in which
the membrane potential of a cell goes through a succession of alternating active (spik-
ing) and silent states (cf. Figure 1.1). Such patterns of electrical activity were first
observed experimentally in the electrical activity of the Aplysia R-15 neuron [52, 1].
Biophysical mechanisms of bursting in the pancreatic β-cell were proposed by Atwater
et al. [2], which were later used by Chay and Keizer [15] to create the first “minimal”
mathematical model based on the Hodgkin–Huxley model. Since then, there have
been a large number of β-cell models [14, 27, 31, 46, 32, 13, 49] and other cellular
models exhibiting bursting behavior [18, 26, 56, 55, 8, 33].

Most mathematical models of BEA are variants of the Hodgkin–Huxley model [29]
of the squid giant axon. Generically, these models make up a set of (dimensional)
differential equations,

Cm
dv

dt
= −

∑
X

IX(v, z),(1.1)

dzi
dt

=
(zi∞(v) − zi)

τi(v)
, i = 1, 2, . . . , n,(1.2)

where t is time, v is the transmembrane potential, and zi are typically channel ac-
tivation (resp., inactivation) variables. In some instances, zi may be concentrations
of regulatory chemicals. Regardless, all such models have a current balance equation

∗Received by the editors July 5, 2005; accepted for publication (in revised form) May 10, 2006;
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Fig. 1.1. Some examples of bursting, with their classification type indicated. Here voltage v is
plotted against time t.

such as (1.1), where Cm is the cell’s total capacitance and IX are currents (of type
X, i.e., voltage-gated calcium) thought to be relevant to the particular cell being
examined. In models of BEA, the time constants τi often have greatly different mag-
nitudes. Thus, from a modeling (resp., mathematical) perspective, bursting depends
on processes with distinctly different time scales, typically termed fast and slow. The
fast processes remain in quasi-steady state except for the rapid transitions between
states, while the slow processes modulate the fast dynamics between the silent and
active states.

The nonlinearities essential in biophysical models of bursting such as (1.1)–(1.2)
make any form of analysis difficult. Consequently, phenomenological models have
often been used to explore issues related to bursting (see Hindmarsh and Rose [28],
Pernarowski [36], Baer, Rinzel, and Carrillo [3]). Regardless of what type of model is
studied, the vast majority of models involve multiple time scales and can be written
as a system of the form

dx

dt
= f(x, y) , x ∈ R2,(1.3)

dy

dt
= εg(x, y) , y ∈ RK ,(1.4)

where ε � 1 is a small parameter. Cast in this form, x are fast variables, while y are
slow variables.

Many models of BEA consisting of one slow variable (K = 1) have been studied.
The goals of such studies have varied. Some studies use numerical methods to simulate
postulated models to explain cell mechanisms. Such is the case in numerous studies of
the insulin-secreting pancreatic β-cell [15, 12, 46, 45, 43, 17, 44]. In other studies, the
goal has been to use singular perturbation ideas and methods to classify the different
type of oscillations which can arise from such systems. Such classification studies
originated with work by Rinzel [41] and were subsequently continued by others [36, 4,
16, 30]. Lastly, other studies have focused on proving the existence of periodic bursting
orbits. For instance, Terman [53] formalized the singular perturbation construction.
Interest in such fast-slow systems with one slow variable has even spawned studies of
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topological-based proof techniques [24].
Other models of BEA have more than one slow variable [14, 49, 5, 32, 6, 40]. In

some recent studies, bursting cycles have been characterized using two-dimensional
maps to aid in the construction of singular solutions [51, 9]. In other recent works,
one-dimensional maps have been used to explore bifurcations in systems with one slow
variable [34]. In all of these works, periodic bursting cycles equate to fixed points of
the map, making the use of the map construct simplistically elegant. Despite such
recent uses of maps to describe bursting cycles, explicit singular perturbation and
numerical constructions of the maps for models exhibiting bursting remain scant.

In this paper we study a phenomenological model of bursting with two slow vari-
ables. As in previous works, singular perturbation methods are used here to define a
return map to describe the bursting cycle. Unlike previous analyses of models having
two slow and two fast variables, our return map is one-dimensional. Also, because the
model is simple, many of the perturbation calculations can be performed analytically.
The goal of this work is three-fold: (1) to outline new analytical and numerical tech-
niques for such singular constructions; (2) to analytically demonstrate that bursting
solutions can exist even when the slow processes are activating and inactivating; and
(3) to demonstrate that bursting solutions can coexist with stable equilibria. The
latter result, for example, can be used to explain why some isolated pancreatic β-cells
burst while others do not [50]. The implications and importance of these results are
discussed in the conclusion.

In section 2, the model is introduced and its leading-order fast, slow, and averaged
fast subsystems are defined. Since the model is an extension of a previously studied
model [36, 37, 16], stability analyses related to the fast subsystem are referenced. A
detailed multiple scales averaging calculation used to derive the averaged fast sub-
system in section 2 is included in an appendix. This derivation is a multivariable
generalization of the single slow variable derivation presented in [39].

As each of the slow and averaged fast subsystems is two-dimensional, each de-
fines a two-dimensional map between the transition curves1 between the silent and
active phases. These maps and their dimensionality reduction are carefully defined
in section 3. Singular bursting solutions are determined by the fixed points of the
composition φ of these maps.

When the time constants τi, i = 1, 2, of the slow variables are equal, a transforma-
tion is used in section 4 to demonstrate that the model dynamics can be described by
a single slow variable. As a consequence, singular bursting solutions exist even if one
slow variable is activating and the other is inactivating. Furthermore, we show that
the map φ defined in section 3 can be computed explicitly. However, when the time
constants τi are not equal, these analyses do not apply. For this case, a numerical
method for computing φ is developed and implemented in section 5. The method uses
AUTO [19] to solve two one-parameter families of boundary value problems whose
solutions can then be used to construct φ.

Lastly, in section 6, we present numerical simulations which demonstrate that for
certain parameter values the model exhibits bistability between stable equilibria and
bursting solutions. There, this dynamic is shown to relate to the domains of the maps
used to construct the singular bursting solutions.

1Saddle-node and homoclinic bifurcation curves of the fast subsystem.
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2. Model and subsystem definitions. In this paper we will study the follow-
ing two slow variable models:

du

dt
= F(u, z) =

(
f(u) − w − x− γy
g(u) − w

)
,(2.1)

dz

dt
= εG(u, z) = ε

⎛
⎝ h1(u)−x

τ1

h2(u)−y
τ2

⎞
⎠ ,(2.2)

where 0 < ε � 1, u = (u,w)T are fast variables and z = (x, y)T are slow variables.
In the model, τ1, τ2, and γ are constants; the equations

f(u) = −a

3
u3 + aμu2 + (1 − a(μ2 − η2))u ,(2.3)

g(u) =
(
1 − a

3

)
u3 + aμu2 − (2 + a(μ2 − η2))u− 3(2.4)

are the same functions used in [36, 37], and (a, μ, η) are parameters. The complicated
form of the polynomials f and g is due in part to their derivation from a Liénard
form in Pernarowski [37]. An advantage of the Liénard form is the availability of the
Melnikov theory to analytically approximate homoclinic bifurcation points [39, 36].
Also, as shall be seen in the next section, the location of the fast subsystem equilibria
does not depend on (a, μ, η). We mention these facts here for reference purposes only,
and will not need them in subsequent analysis.

Finally,

hi(u) = βi(u− αi), i = 1, 2,(2.5)

where αi and βi are also constants.
In this model u should be interpreted as the membrane potential, whereas w is a

fast conductance and x, y are slow conductances for gating channels of the same ion.
Hereafter we shall refer to (2.1)–(2.2) as (FULL). Lastly, we note that throughout
this paper the notation ˙( ) will be used to denote differentiation in t, as in u̇ = du

dt .
In the next few sections the fast subsystem (FS), slow subsystem (SS) and aver-

aged fast subsystem (AFS) associated with (FULL) will be defined. These preliminary
definitions will be needed to accurately define the return map in section 3.

2.1. (FS) dynamics. On the fast t time scale the dynamics of (FULL) is gov-
erned by the (FS) obtained by letting ε = 0,

du

dt
= f(u) − w − z , z ≡ x + γy ,(2.6)

dw

dt
= g(u) − w ,(2.7)

with the slow variables x and y treated as parameters and combined as shown above.
In Figure 2.1 we show a numerically generated (FS) bifurcation diagram in z = x+γy.
The projection of the equilibria of (FS) onto the (u, z)-plane yields a Z-shaped curve

z = G(u) ≡ f(u) − g(u) = −u3 + 3u + 3.(2.8)

Note here that despite the dependence of f and g on the fast parameter set λf =
(a, μ, η), G depends on no parameters. For the remainder of this paper we fix these
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Fig. 2.1. (FS) bifurcation diagram for (2.6)–(2.7) when λf = (a, η, μ) =
(

1
4
, 3

4
, 3

2

)
with a burst-

ing solution superimposed. Other parameter values for this illustration are β = 4, α = −0.954, ε =
0.0025.

fast-parameter values at (a, μ, η) =
(

1
4 ,

3
4 ,

3
2

)
; for details on fast parameter selection,

see [36].
In Figure 2.1, solid lines on the z = G(u) equilibria curve indicate stable equilibria,

whereas the dashed portion indicates unstable equilibria. Equilibria on the lower
branch are stable nodes, whereas equilibria on the middle branch are saddle points.
The stability of the steady states on the upper branch changes at a supercritical
Hopf bifurcation at z = zHB. Though Figure 2.1 was computed numerically using
XPPAUT [21], the aforementioned stabilities and bifurcations were proven analytically
in [36]. Stable periodic orbits (the dark, thick lines) emanate from the Hopf point and
terminate at a homoclinic bifurcation on the middle branch at z = zHC. The upper
and lower portions indicate the extreme values of u on the limit cycles of the (FS).
Saddle-node bifurcations are indicated at z = z− and z = z+. Note that the (FS) has
a region of bistability, where stable lower branch equilibria and periodic orbits coexist
for z ∈ (z−, zHC). In later sections we will make reference to the values u+, u−, uHC

as the u value at which the upper saddle-node, lower saddle-node, and homoclinic
bifurcations occur, respectively. Also, as indicated in Figure 2.1, when we refer to
uHC we mean the u value on the middle branch when z = zHC.

The (FS) bifurcation diagram in z described above is identical to that of the
one slow variable model discussed in [37]. In that model, z evolves according to the
differential equation

dz

dt
= ε(h(u) − z),(2.9)

where h(u) = β(u−α); α and β are parameters; and β > 0. Collectively, (2.6), (2.7),
and (2.9) define the one slow variable model in [37]. Before we examine bursting
solutions of (FULL), we briefly describe a bursting cycle of the aforementioned one
slow variable model for comparison. Toward this end, the z (slow) nullcline associated
with (2.9) is superimposed on the (FS) bifurcation diagram in Figure 2.1 (dashed line
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passing through the middle branch of the Z curve). Here we have used the slow
parameter values (α, β) = (−0.954, 4).

In this example with β > 0, ż is negative only below the nullcline. Thus, z slowly
increases above the nullcline and decreases below it. Keeping this in mind, a bursting
solution of the one slow variable model (2.6), (2.7), (2.9) is superimposed on the (FS)
bifurcation diagram in Figure 2.1. In what is often referred to as the “silent phase,”
trajectories lie close to the lower branch of equilibria. Since ż < 0 on the lower branch,
trajectories move to the left until bistability is lost at the saddle-node bifurcation point
(z−, u−). As z decreases below z−, trajectories are then attracted to the (FS) limit
cycles, initiating the “active phase” marked by high-frequency oscillations. In the
active phase, ż > 0 so that solutions slowly drift to the right until bistability is lost
at the homoclinic bifurcation point at z = zHC. Trajectories are then attracted to the
lower branch, initiating the silent phase again.

This explanation of the resulting “square wave” bursting cycle was given by Rinzel
in [41], where he classified several other types of bursting cycles depending on their
fast (and slow) subsystem structure. In a later classification scheme [4], the cycle
depicted in Figure 2.1 is known as type I bursting. In a subsequent and more extensive
classification scheme [30], the same cycle is described as a “fold/homoclinic burster”;
its name is due to the fact that the silent phase ends via a fold bifurcation and the
active phase terminates via a saddle homoclinic orbit bifurcation.

Though the (FS) of (FULL) is identical to that of the one slow variable model
just discussed, in (FULL) the slow variables x and y do not evolve according to (2.9)
but by (2.2). Instead, silent phase trajectories of (FULL) are attracted to the stable
manifold

SL = {(u,w, x, y) : x + γy = G(u), w = g(u), u < u−},(2.10)

formed by the lower branch equilibria of the (FS). In contrast to the single slow
variable model, this is a two-dimensional manifold in R4, making the preceding ex-
planation of the bursting cycle using (2.9) inapplicable. Later, we shall make use of
the fact that bursting cycles of (FULL) are conveniently described by projecting them
onto the (x, y)-plane. Toward this end, we define the projection P (SL) of SL onto the
(x, y)-plane as

SL = {(x, y) : x + γy = G(u), u < u−}.(2.11)

The reason we distinguish SL from SL is that later it will become easier to visualize
trajectories on SL rather than on SL. We note, for instance, that equilibria of (FULL)
truly exist only on SL.

2.2. (SS) dynamics. In this section we define the (SS) of (FULL). Using the
(slow time) transformation τ = εt in (FULL) and then setting ε = 0 results in the
system

z = x + γy = G(u),(2.12)

w = g(u),(2.13)

dx

dτ
=

h1(u) − x

τ1
,(2.14)

dy

dτ
=

h2(u) − y

τ2
.(2.15)
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Collectively, (2.12)–(2.15) define the (SS) of (FULL) as long as u < u−. Solutions of
(2.12)–(2.15) yield trajectories on SL which are leading-order approximations to the
silent phase of (FULL).

Equations (2.12)–(2.13) are algebraic conditions which ensure the (SS) flow re-
mains on SL. Rewritten, this condition is equivalent to the cubic

u3 − 3u− 3 + z = 0.(2.16)

Roots of (2.16) can be explicitly computed. Here we use the trigonometric form of
these roots discussed in [7]. Since the root associated with SL has u < u−, it is readily
verified that on the lower branch of the (FS),

u = uLB(z) =

⎧⎪⎨
⎪⎩

2 cos
(

1
3 arccos

(
3−z

2

)
+ 2π

3

)
, 1 ≤ z ≤ 5,

−2 cosh

(
1
3 ln

(
z−3

2 +

√(
z−3

2

)2 − 1

))
, z > 5.

(2.17)

This allows one to rewrite (2.14)–(2.15) as

dx

dτ
= F1(x, y) ≡

β1(uLB(z) − α1) − x

τ1
,(2.18)

dy

dτ
= F2(x, y) ≡

β2(uLB(z) − α2) − y

τ2
.(2.19)

Solutions of (2.18)–(2.19) are leading-order silent phase approximations of (FULL)
projected onto the (x, y)-plane when initial conditions are close to SL. In section 3,
system (2.18)–(2.19) will be used to define the portion of the map needed to describe
the dynamics of (FULL) in the silent phase.

At this point we also note that the (FS) and the (SS) depend on different param-
eters. For future reference, we define the fast parameter set λf as those parameters
which occur explicitly in the (FS) but not in the (SS). In this case, λf = (a, η, μ). In a
similar fashion, we define the slow parameter set λs as those parameters which occur
explicitly in the (SS) but not in the (FS). For (FULL), λs = (β1, β2, α1, α2, τ1, τ2).

2.3. (AFS). In this section we define the (AFS) associated with (FULL). Like
the (SS), the (AFS) is a leading-order approximation for the x and y components
of (FULL) valid for slow times τ = O(1). In contrast to the (SS), the (AFS) is
an approximation valid only for initial conditions near the (FS) limit cycles.2 The
details of the expansions, assumptions, and multiple scales procedure used to derive
the (AFS) are included in the appendix. Here we merely summarize the relevant
points.

Defining the set

SA = {(x, y) : zHB < x + γy < zHC},(2.20)

we note from Figure 2.1 that the (FS) has a stable T (z)-periodic limit cycle (u,w) =
Ω(t, z) for every (x, y) ∈ SA. Here the limit cycle Ω(t, z) and its associated period T

2Since the averaging is performed over these (FS) limit cycles, we named the system the “averaged
fast subsystem.” This naming scheme was chosen to avoid confusion were the averaging performed
over periodic orbits lying near the slow manifold of the (SS). Indeed, in [25], the (SS) is shown to
possess Hopf bifurcations for some parameter values. An exploration of averaged slow subsystems
near such Hopf points is not done in this paper.
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are functions of z = x + γy alone. If we define the average

û(z) ≡ 1

T (z)

∫ T (z)

0

Ω1(η, z)dη,(2.21)

where Ω(t, z) = (Ω1(t, z),Ω2(t, z)), and take advantage of the linearity of hi(u), i =
1, 2, in u, the (AFS) of (FULL) is

dx

dτ
= Ĝ1(x, y) =

h1(û(x + γy)) − x

τ1
,(2.22)

dy

dτ
= Ĝ2(x, y) =

h2(û(x + γy)) − y

τ2
.(2.23)

For initial conditions sufficiently close to Ω, solutions of (2.22)–(2.23) are leading-
order asymptotic approximations of (x, y) in (FULL) for times τ = O(1) as long as
(x(τ), y(τ)) ∈ SA. In the singular limit, bistability of the (FS) is lost when z = zHC,
at which point a transition to the silent phase occurs.

Subsequently, we will need to perform computations using the (AFS). For these
calculations we used AUTO [19] to compute û(z) for a range of z values. These values
are shown in Figure 2.2, where they are compared to an approximating function ûa(z)
of the form

ûa(z) = uHC + a0 (zHC − z)
1
p + a1 (zHC − z) .(2.24)

  0.4   0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

  0.4

  0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

_

_

_ _

z

û

Fig. 2.2. û(z) plotted as AUTO-generated data along with the approximating function ûa(z).
û(z) is u averaged over the limit cycles Ω(t, z). The AUTO-generated data are plotted as *’s and
the superimposed curve is the approximating function ûa(z) defined in (2.24).
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As can be seen in Figure 2.2, for the choice (p, a0, a1) = (8, 1.378, 0.260), û(z) and
ûa(z) are almost indistinguishable over the active phase range z− < z < zHC. Here
z− = 1 and (zHC, uHC) � (1.70633,−0.46466) were estimated using AUTO. We note
that (2.24) may be viewed as a two term asymptotic expansion for û(z). However, we
currently have no theoretical explanation as to why ûa(z) approximates û(z) so well.

We conclude this section with a numerical example showing how well the (AFS)
approximates (FULL) in the active phase. In Figure 2.3, an active phase trajectory of
(FULL) projected into the (x, y)-plane is shown together with a solution of the (AFS)
with the same initial conditions. Superimposed is the line x + γy = zHC, labeled
as ΓHC in the figures. On this line the (FS) has a homoclinic bifurcation. For the
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Fig. 2.3. Both figures show an active phase trajectory of (FULL) projected into the
(x, y)-plane along with the (AFS) approximation using (2.24), λs = (β1, β2, α1, α2, τ1, τ2) =
(4,−1,−1,−0.7, 1, 0.5), and ε = 0.0025. A shows the entire active phase, whereas in B we have
enlarged the region near the jump to the silent phase at the homoclinic bifurcation of the (FS). The
lines ΓHC and Γ− are defined in (3.1), (3.2), respectively.
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(x, y) values above ΓHC the (FS) does not have periodic orbits. Thus, for those values
the (AFS) is undefined. Moreover, to leading order, as trajectories of (FULL) cross
above ΓHC, a rapid transition back to the silent phase occurs. Analogous transitions
of (FULL) from the silent phase into the active phase would occur as trajectories
traverse below the line x+ γy = z−. This line, labeled as Γ−, is also superimposed in
the figures purely for reference purposes and represents the (x, y) pairs for which the
(FS) has a saddle-node bifurcation. A more complete discussion of these transition
curves and their relevance to an overall bursting cycle is relegated to the next section,
where the return maps for the leading dynamics are defined. Here, the point is
simply to illustrate just how well the (AFS) using (2.24) approximates (FULL) in the
active phase. In this particular example, parameter values were chosen so that the
projected active phase solution of (FULL) extended over a wide range of z = x + γy
for which the (FS) has limit cycles. The figures illustrate that the projected trajectory
(x(t), y(t)) of (FULL) is very well approximated by the (AFS) trajectories over just
such a large range of z values. Indeed, even in the enlargement shown in Figure 2.3B,
the trajectories remain very close in the region between Γ− and ΓHC, where the (FS)
is bistable.

3. Definition of the return map. We define a bursting solution of (FULL) as a
trajectory which both is periodic and traverses the active and silent phases once during
each period. By a singular bursting solution of (FULL) we mean a bursting solution
whose leading-order approximation consists of a silent phase portion approximated
by the (SS), an active phase portion approximated by the (AFS), and two rapid
transitions between each phase at z = z− and z = zHC, as illustrated in Figure 2.1.

The return map we construct to describe singular bursting solutions of (FULL) is
actually the composition of two maps, as illustrated in Figure 3.1. One map accounts
for the silent phase and the other for the active phase. The silent phase portion of
the singular solution is constructed from a trajectory γ̃x(τ) of the (SS) which starts
at X = (x, y) on the curve

ΓHC = {(x, y) : x + γy = zHC} ⊂ SA(3.1)

Γ− ΓHC

X

X̂ =

(
x̂
ŷ

)

X̃ =

(
x̃
ỹ

) SL

SA

γ̂

γ̃

Fig. 3.1. Illustration of the return map definition for singular bursting solutions. Illustration
SL is shown on bottom with a trajectory of the (SS) γ̃ beginning at X = (x, y) ∈ ΓHC. After a fast

transition to SA on the top, the (AFS) trajectory γ̂ is shown to terminate at X̂ ∈ ΓHC.
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and terminates at X̃ on

Γ− = {(x, y) : x + γy = z−} ⊂ SA(3.2)

after time Ts. When such transitions occur, this defines a map Φ̃ : ΓHC → Γ− such

that X̃ = Φ̃(X).
Similarly, the active phase portion is constructed from a trajectory γ̂x(τ) of the

(AFS) which starts at X̃ on the lower saddle-node curve Γ− and terminates at X̂
on the curve ΓHC, which forms a boundary of SA. This transition defines a map
Φ̂ : Γ− → ΓHC such that X̂ = Φ̂(X̃).

The composition of these two maps may be written as Φ : ΓHC → ΓHC, X = (x, y),

Φ(X) =
(
Φ̂ ◦ Φ̃

)
(X).(3.3)

Given these definitions, there is then a 1-1 correspondence between singular bursting
solutions and fixed points of Φ.

At this point we also remark that Φ̃ and Φ̂ are, technically, maps from R
2 into

R
2, but they have restricted domains, i.e., ΓHC ⊂ R

2 for Φ̃. Clearly such domain
restrictions are not needed. For instance, one could have defined Φ̂ as the flow function
associated with the (SS) defined on DΦ = {(x, y) : x + γy > z−}. Although such a
definition has much theoretical appeal, our subsequent dimensionality reduction below
is slightly more transparent using the domain restrictions.

A feature we use to our advantage is that y is a function of x on both Γ− and ΓHC—

specifically, on Γ−: y = z−−x
γ and on ΓHC: y = zHC−x

γ . As such, Φ̂ reduces to a one-

dimensional map φ̂ : R → R, φ̂(x0) = x̂(Ta), where Ta is the active phase duration.

Here x̂0 = φ̂(x0) is the x-coordinate of an (AFS) trajectory, where bistability is lost
at z = zHC and a transition to the silent phase occurs. Adopting this convention, the
domain of the map φ̂ can be written

D(φ̂) = {x ∈ R | ∃Ta < ∞ � γ̂x(Ta) ∩ ΓHC �= ∅},

where ∅ is the empty set.
An analogous one-dimensional map for the (SS) may be defined. Again exploiting

the functional relationship of x and y on ΓHC and Γ−, we define the map φ̃ : R → R

with domain

D(φ̃) = {x ∈ R | ∃Ts < ∞ � γ̃x(Ts) ∩ Γ− �= ∅},

where Ts is the silent phase duration.
Then, as with the map Φ, there is a 1-1 correspondence of singular bursting

solutions and fixed points x̄ of the map

φ(x) = (φ̂ ◦ φ̃)(x), x ∈ D(φ) = {x ∈ R | x ∈ D(φ̃) , φ̃(x) ∈ D(φ̂)}.

Domain issues associated with the map are complicated, but some will be ad-
dressed in section 6. If R(φ̂) is the range of φ̂, then, given our previous definitions,

the set W ≡ R(φ̂) ∩ D(φ̃) could be empty, equal to D(φ̃), or a (nonempty) strict

subset of D(φ̃). In the next section we show that for a subset of slow parameter space,
singular bursting solutions exist and W is nonempty. The case when W is a strict
subset of D(φ̃) relates to bistability between bursting solutions and stable equilibria
on SL. This will be discussed in section 6.
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4. Degenerate case. In this section we examine a degenerate case of (FULL),
where the time constants τ1 and τ2 are equal. In this degenerate case, (FULL) is
shown to have a three-dimensional manifold on which (for certain parameter values)
bursting solutions exist. Furthermore, we explicitly compute the maps defined in
the previous section and the fixed point of φ associated with the singular bursting
solution.

We accomplish these goals using the following linear transformation of the slow
variables:

p = Az + b =

[
a11 a12

1 γ

](
x
y

)
+

(
b1

0

)
, z = (x, y)T ,(4.1)

where p = (p, z)T are the new slow variables, z = x+γy are as before, and a11, a12, b1

are to be determined. Since z is one of the new variables, the new (FS) of the
transformed (FULL) will depend solely on z. Assuming a11γ − a12 �= 0 so that A is
invertible, (4.1) and (2.2) imply

dp

dt
= εAG

(
u,A−1(p − b)

)
.(4.2)

Since G(u, z) depends linearly on u, x, and y, (4.2) can be equivalently written as

dp

dt
=

[
η11 η12 η13

η21 η22 η23

]⎛⎝ u
z
p

⎞
⎠ +

(
ζ1

ζ2

)
(4.3)

for appropriate definitions of ηij , ζi. To ensure that the new differential equation for
z does not depend explicitly on p, we require that η23 = 0. Since calculations reveal

η23 =
γ(τ1 − τ2)

τ1τ2 detA
,

the new slow variable p will be decoupled from the resulting (u,w, z) system only if
τ1 = τ2 (which is precisely how we defined the degenerate case).

By assuming τ1 = τ2, the choice

a11 = 1 , a12 = −β1τ2

β2τ1
, b1 = β1(α1 − α2) + 1(4.4)

then results in the transformed system

du

dt
= f(u) − w − z,(4.5)

dw

dt
= g(u) − w,(4.6)

dz

dt
= ε

H(u) − z

τ1
,(4.7)

dp

dt
= ε

1 − p

τ1
,(4.8)
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where

H(u) = β∗(u− α∗),(4.9)

β∗ = β1 + γβ2,(4.10)

α∗ =
β1α1 + γβ2α2

β1 + γβ2
.(4.11)

As claimed, we see that the variable p is decoupled from the rest of the system
(4.5)–(4.7), showing the reduction of (FULL) to a one slow variable model (4.5)–(4.7).
Furthermore, we see in (4.8) that as t → ∞, p → 1. In other words, p = 1 is a globally
stable three-dimensional manifold on which the dynamics are determined by (4.5)–
(4.7). Given (4.1) and (4.4), this implies that the projected trajectories of (FULL)
are attracted to the line

y =
β2

β1
x + β2(α1 − α2)(4.12)

in the (x, y)-plane.
By comparing (4.7) to (2.9) and making the identification (β, α) = (β∗, α∗), it

is evident that on p = 1 there exist (β∗, α∗) with β∗ > 0 such that (FULL) has
bursting solutions. This assures us, in this degenerate case, that for some subset of
slow parameter space there must exist a fixed point x̄ for the return map φ(x).

We illustrate one such bursting solution and fixed point in Figure 4.1. There,
XPPAUT [21] was used to numerically integrate (FULL) for the degenerate case
λs = (β1, β2, α1, α2, τ1, τ2) = (3, 0.5,−1,−3, 1, 1) with γ = 0.7. In Figure 4.1A we
see square-wave bursting in the u versus t time trace for this run. In Figure 4.1B
we see how the projected trajectory is attracted to the line y = β2

β1
x + β2(α1 − α2),

indicated as p = 1. Also superimposed in Figure 4.1B are the two curves Γ− and ΓHC.
Lastly, we note that for this run, since β1 > 0 and β2 > 0, both x and y are activation
variables. Given (4.10), it is clear that the signs of βi need not be the same for β∗ to
be positive. Thus, in the degenerate case, combinations of activating and inactivating
variables can result in bursting solutions.

4.1. Explicit construction of φ in the degenerate case. In this section we
find an explicit formula for the map φ in the degenerate case. We do this by separately
deriving φ̃ and φ̂, after which a direct composition yields φ.

First, we determine the silent phase duration Ts. Differentiating (2.12) and using
(4.7),

dz

dτ
= G′(u)

du

dτ
=

H(u) −G(u)

τ1
.

Integrating this result,

∫ u−

uHC

G′(u)

H(u) −G(u)
du =

∫ Ts

0

1

τ1
dτ,

one may solve for

Ts = τ1

∫ u−

uHC

G′(u)

H(u) −G(u)
du.(4.13)
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Fig. 4.1. Illustration of the attraction of projected trajectories to p = 1 in the degenerate case.
A shows u versus t for this run. In B we see the compression of trajectories projected into the
(x, y)-plane to the line y = β2

β1
x + β2(α1 − α2). Parameter values for the run are listed in the text.

This is the time taken by a projected (SS) trajectory to traverse from Xn ∈ ΓHC to
Xn+1 ∈ Γ−, as illustrated in Figure 4.2. Also shown is the line p = 1, to which
such trajectories are attracted, and the p coordinates pn and pn+1 on ΓHC and Γ−,
respectively.

Having found Ts, we integrate (4.8) in the slow time τ ,∫ pn+1

pn

1

1 − p
dp =

∫ Ts

0

1

τ1
dτ,



RETURN MAP CHARACTERIZATIONS 1931

Γ−
ΓHC

(xn, yn) = Xn

Xn+1 = (xn+1, yn+1)

pn

pn+1

p = 1

x

y

Fig. 4.2. Projected trajectories on SL associated with φ̃, the degenerate τ1 = τ2 case.

and find that

ln

∣∣∣∣ 1 − pn
1 − pn+1

∣∣∣∣ =
Ts

τ1
.(4.14)

However, (4.8) guarantees that 1 − pn and 1 − pn+1 have the same sign, so we may
drop the absolute values sign in (4.14) and solve for pn+1:

pn+1 = 1 − (1 − pn) e
−Ts
τ1 .(4.15)

To convert this expression back into our original (x, y)-coordinate system, we note
that by using τ1 = τ2 and (4.4) in (4.1) one finds

p = P̄ (x, y) = x− β1

β2
y + β1(α1 − α2) + 1.(4.16)

Thus, (4.15) becomes

P̄

(
xn+1,

z− − xn+1

γ

)
= 1 −

(
1 − P̄

(
xn,

zHC − xn

γ

))
e

−Ts
τ1 ,(4.17)

which when solved for xn+1 allows us to finally obtain

xn+1 = φ̃(xn) = e
−Ts
τ1 xn + bs,(4.18)

where

bs = B̄(Ts, z−, zHC) ≡

(
1 − e

−Ts
τ1

)
β1β2γ(α2 − α1) + β1

(
z− − zHCe

−Ts
τ1

)
β1 + γβ2

.(4.19)

In a fashion analogous to the derivation of φ̃, we compute φ̂ by integrating (4.8)
over the active phase duration Ta. A leading-order value for Ta can be computed
by integrating the averaged fast subsystem corresponding to the transformed system
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(4.5)–(4.8). Applying the method of averaging to system (4.5)–(4.8), one finds its
associated (AFS) is

dz

dτ
=

Ĥ(z) − z

τ1
,(4.20)

dp

dτ
=

1 − p

τ1
,(4.21)

where

Ĥ(z) = H(û(z)) = β∗(û(z) − α∗),(4.22)

and û(z) is as defined in (2.21).
In order to compute the active phase duration Ta, we integrate (4.20) as follows:∫ zHC

z−

dz

Ĥ(z) − z
=

∫ Ta

0

1

τ1
dτ,

and then solve for Ta to find

Ta = τ1

∫ zHC

z−

dz

Ĥ(z) − z
.(4.23)

We let pn be the p coordinate of an (AFS) trajectory with initial conditions
(xn, yn) ∈ Γ−. Similarly, we define pn+1 to be the p-coordinate of the (AFS) trajectory
as it leaves the active phase at (xn+1, yn+1) ∈ ΓHC. Then, integrating (4.21),∫ pn+1

pn

1

1 − p
dp =

∫ Ta

0

1

τ1
dτ,

and proceeding exactly as we did in (4.14)–(4.17) while using the value of Ta from
(4.23), we find

xn+1 = φ̂(xn) = e
−Ta
τ1 xn + ba , ba = B̄(Ta, zHC, z−),(4.24)

where the function B̄ was defined in (4.19). Also, since φ(x) = φ̂(φ̃(x)), (4.18) and
(4.24) imply

φ(x) = e
−(Ts+Ta)

τ1 x + bas ,(4.25)

where bas = e
−Ta
τ1 bs + ba.

From this expression, the fixed point x̄ of φ is easily computed as

x̄ =
bas

1 − e
−(Ts+Ta)

τ1

.(4.26)

It should be noted that the dependence of x̄ on the active and silent durations in (4.26)
is misleading. As can be seen in Figure 4.1, the fixed point can also be computed
as that x value, where the line p = 1 intersects ΓHC. Using (4.16), this value can be
found by solving P̄ (x, y) = 1 and x + γy = zHC for x to find

x̄ =
γβ1β2(α2 − α1) + β1zHC

β1 + γβ2
=

γβ1β2(α2 − α1) + β1zHC

β∗ .(4.27)

However, given the previous definitions, it is readily verified that (4.26) indeed sim-
plifies to (4.27).
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To conclude this section we make some observations about the dependence of
the map φ on the (activation/inactivation) parameters β1 and β2. As was pointed
out earlier, β1 and β2 need not be of the same sign for φ to have the fixed point
calculated in (4.27). The issue here is, what degrees of activation and inactivation
can lead to such degenerate bursting solutions? Since (4.8) has no dependence on
these parameters, the answer to this question is equivalent to knowing the parameter
sets (α∗, β∗) for which (4.5)–(4.7) has bursting solutions. A complete description of
the set B of (α∗, β∗) pairs for which such bursting solutions exist is complex but well
studied. For instance, for an appropriate β∗ > 0, as α∗ is varied the system makes a
transition from bursting to continuous spiking via a complex sequence of bifurcations
[54]. However, one can glean a few simple results from the explicit expressions for x̄
and φ(x).

For example, when β∗ < 0, system (4.5)–(4.7) typically does not have a bursting
solution. Now suppose β∗ is initially positive and β1 < 0 (inactivation) is decreased
while β2 > 0 (activation) and αk, k = 1, 2 are held fixed. Given (4.10) and (4.27), one
then sees that β∗ → 0+ and |x̄| → ∞. Alternately, as inactivation increases (with
other parameters fixed), the fixed point of the map φ will increase in magnitude.

Lastly, we emphasize that other limiting cases may be possible since (α∗, β∗)
depend on all β1, β2, α1, and α2. However, from (4.25),

|φ′(x̄)| = e
−(Ts+Ta)

τ1 < 1

implies that no such limiting cases in the degenerate case can involve a destabilization
of the fixed point x̄. Moreover, the singular bursting solutions are always stable (in
this degenerate case).

5. Numerically approximating φ in the nondegenerate case. In the non-
degenerate case when τ1 �= τ2, explicit formulas for φ̂ and φ̃ remain elusive. In this
section we outline a continuation technique for approximating these maps numerically.
The technique requires recasting the map values as boundary conditions in two point
boundary value problems which are homotopic to simpler problems whose solutions
are known.

To be specific, the map φ̃ for the slow flow on SL is computed as a solution of the
following boundary value problem:

dx

dτ
= Tf1(x, y, λ) = T (−(1 − λ)x + λF1(x, y)),(5.1)

dy

dτ
= Tf2(x, y, λ) = T (−(1 − λ)y + λF2(x, y)),(5.2)

x(0) = x0,(5.3)

y(0) = (zHC − x0)/γ,(5.4)

x(1) = xf ,(5.5)

y(1) = (z− − xf )/γ,(5.6)

where the vector field F = (F1, F2) is that of the (SS) in (2.18)–(2.19), T is a constant,
λ is a homotopy parameter, and f(x, y, λ) ≡ (f1, f2). The boundary conditions (5.3)–
(5.4) imply (x(0), y(0)) ∈ ΓHC. Similarly, (5.5)–(5.6) imply (x(1), y(1)) ∈ Γ−. Thus,
solutions of this boundary value problem describe trajectories which start on ΓHC and
terminate on Γ−. When λ = 1, f(x, y, 1) = F(x, y), so that xf = φ̃(x0) providing



1934 ROGER E. GRIFFITHS AND MARK PERNAROWSKI

Γ−
ΓHC

x

y

(x0, y0)

(xf , yf )

Ts(x0)

xf = φ̃(x0)

Fig. 5.1. An illustration of φ̃ and the (SS) projected into the (x, y)-plane.

T = Ts, the silent phase duration. A diagram illustrating this λ = 1 case is shown in
Figure 5.1.

When λ = 0, the solution of (5.1)–(5.6) is known explicitly:

x(τ) = x0e
−τT , y(τ) =

zHC − x0

γ
e−τT , T = ln

(
zHC

z−

)
, xf = x0e

−T .

AUTO [19, 20] was then used to numerically continue this known solution to the λ = 1
case while letting the three parameters (λ, xf , T ) vary. Then, keeping λ = 1 fixed,
(x0, xf , T ) are allowed to vary in a subsequent run over a prescribed range of initial

x values x0. Given Figure 5.1, the resulting xf values are φ̃(x0), and T is the silent
phase duration Ts.

Results of these calculations are illustrated in Figures 5.2(a) and 5.2(b). There,

φ̃(x) is illustrated for the two-parameter sets listed in Table 5.1. For the (+,+) case
(Figures 5.2(a), (c), (e)) where βi > 0, both x and y model activating variables in
(FULL). In an analogous fashion, the (+,−) case (Figures 5.2(b), (d), (f)) models
the competing effect of activating and inactivating variables. Superimposed on the
figures is the line y = x as a point of reference. As a note, however, the fixed points
of φ̃(x) do not correspond to bursting solutions of (FULL).

The technique for generating φ̂ from the (AFS) is similar. One first defines the
boundary value problem

dx

dτ
= Tg1(x, y, λ) = T

(
x(1 − λ) + λĜ1(x, y)

)
,(5.7)

dy

dτ
= Tg2(x, y, λ) = T

(
λĜ2(x, y)

)
,(5.8)

x(0) = x0,(5.9)

y(0) = (z− − x0)/γ,(5.10)

x(1) = xf ,(5.11)

y(1) = (zHC − xf )/γ,(5.12)
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Table 5.1

Standard parameter sets.

β1 α1 β2 α2 γ τ1 τ2

(+,+) 3 −1 0.5 −3 0.7 0.9 1
(+,−) 4 −1 −1 −0.7 1 1 0.3
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Fig. 5.2. Maps φ̃, φ̂, and φ(x) generated numerically using AUTO. Shown are φ̃(x), φ̂(x), and
φ(x) for a range of initial x values; the (+,+) case is shown in a, c, e; the (+,−) case in b, d, f.
Parameter values for each computation are tabulated in Table 5.1.
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where the vector field Ĝ = (Ĝ1, Ĝ2) is that defined in (2.22)–(2.23), and g(x, y, λ) ≡
(g1, g2). As before, g(x, y, 1) = Ĝ(x, y) implies xf = φ̂(x0) when T is the active phase
duration Ta.

However, the problem (5.7)–(5.12) differs from (5.1)–(5.6) in an essential way. In
the former, the vector field g(x, y, 0) = (x, 0) was chosen to match the flow direction
of the (AFS) from Γ− to ΓHC. In contrast, the flow direction of f(x, y, 0) = (−x,−y)
was chosen so that trajectories starting on ΓHC would terminate on Γ−. The choice
of initial (λ = 0) vector fields is not unique. Here we have chosen simple ones which
retain the flow directionality of each subsystem and whose analytic solution is known.
For the choice g(x, y, 0) = (x, 0), the exact initial solution is

x(τ) = x0e
τT , y(τ) =

z− − x0

γ
, T = ln

(
zHC − z− + x0

x0

)
, xf = x0e

T .

In an analogous fashion, AUTO was used to continue this solution in λ and then in
x0 to generate the map xf = φ̂(x0). In all these runs the approximation (2.24) of
û(z) was used.

Fig. 5.3. Verification of the fixed point x̄ = φ(x̄) obtained in the map composition illustrated in
Figure 5.2. The two figures on the left are the (+,+) case and the two on the right are the (+,−)
case. In A we see the projection of two trajectories of (FULL) into the (x, y)-plane appearing to
compress toward the superimposed line p = 1. In C we have enlarged the region of interest about
the map fixed point x̄ ≈ 0.905. Also shown in A and C are the curves Γ− and ΓHC. In B we also
see the projection of two trajectories of (FULL) into the (x, y)-plane, but in the (+,−) case. The
two projected trajectories wind onto a cycle in the (x, y)-plane. In D we are able to discern the map
fixed point of x̄ ≈ 2.61.
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Results of the calculations for φ̂ and the respective compositions φ = φ̂ ◦ φ̃ are
shown in Figure 5.2 for the same parameter values used to compute φ̃. The latter
compositions were computed by numerically composing the data which generated φ̂
and φ̃. Superimposed on the graphs of φ(x) is the line y = x to indicate the location
of the fixed point x̄ corresponding to bursting solutions of (FULL). The interpolated
values of the fixed points found in this manner were x̄ ≈ 0.905 and x̄ ≈ 2.58 for the
(+,+) and (+,−) cases, respectively.

To separately verify these fixed point values, (FULL) was numerically integrated
in Figure 5.3 over many silent and active phase cycles for the parameter values in
Table 5.1. As can be seen, the projections of these solutions ultimately approach a
periodic orbit, and the fixed point values computed from these figures closely agree
with those computed from Figure 5.2. In all, these numerical results suggest that
singular bursting solutions persist for nondegenerate parameter values. In the (+,+)
case shown in Figure 5.3A, the parameter set is “nearly” degenerate and the projected
bursting solution lies near the line p = 1. In contrast, the bursting cycle in the (+,−)
(activation/inactivation) case does not lie near the p = 1 line. In fact, the projected
active and silent phase trajectories of that (+,−) case are nearly tangent to the
transition curves ΓHC and Γ−. From this observation, one might conjecture that
bursting solutions do not persist for all parameter values. For example, the presence
of a strongly attractive equilibria of (FULL) on SL might significantly alter the (SS)
flow to the point that trajectories may not be attracted to a bursting solution. These
issues are explored in the next section.

6. A bistable case. In this section we demonstrate numerically that system
(FULL) can exhibit bistability between bursting solutions and equilibria on SL. Just
such an example is illustrated in Figure 6.1. Slow parameters λs were chosen so that
(FULL) had a stable fixed point Xe on the lower branch SL (see [25] for a detailed
treatment of how to determine equilibria location and stability dependence on λs).
In Figure 6.1B the u component of a bursting solution resulting from a particular set
of initial conditions is shown. The projection of this solution onto the xy-plane is
shown in Figure 6.1A. However, by choosing initial conditions near SL in the basin of
attraction of Xe, the solution of (FULL) is shown to approach Xe in Figures 6.1C, D.
The projection of the bursting solution in Figure 6.1A is also shown in Figure 6.1C
for comparison.

For the bistability demonstrated in Figure 6.1 to occur, a few things must hap-
pen simultaneously. Minimally, (FULL) must have a stable equilibrium Xe on SL.
However, even if parameters are chosen so that Xe ∈ SL, it is not immediately clear
if Xe will be stable or if the map φ can simultaneously have a stable fixed point. In
this section, we shall give a brief synopsis of some issues regarding these points. First,
we address issues concerning equilibria stability and location. Later, we determine
some necessary conditions that map domains and ranges must satisfy for this type of
bistability to occur.

The equilibria Xe of (FULL) have coordinates Xe = (ū, w̄, x̄, ȳ) where, given
(2.8), ū are roots of

Δ(u) = −G(u) + h1(u) + γh2(u) = u3 + au + b,(6.1)

where

a = β1 + γβ2 − 3,(6.2)

b = −(α1β1 + γα2β2 + 3),(6.3)
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Fig. 6.1. Numerical illustration of bistability. In both simulations the slow parameters were
λs = (β1, β2, α1, α2, τ1, τ2) = (4,−3,−1,−0.5, 1, 0.3). A and C are projections of the solutions of
(FULL) for different initial conditions. B and D show the corresponding u(t) component in each
simulation.

and w̄ = g(ū), x̄ = h1(ū), and ȳ = h2(ū). From this we note that Xe ∈ SL only if
(a, b) is an element of the parameter space:

DL = {(a, b) : b = −ua− u3, u < u− = −1}.

Thus, DL can be characterized as the union of all those lines in the (a, b)-plane having
slope −u and that intercept −u3 with u < u−. We note, however, that even if the slow
parameters λs are chosen so that (a, b) ∈ DL, (FULL) may have other equilibria (see
[25] for a detailed treatment of how to determine equilibria numbers and locations).
Moreover, if equilibria occur on the upper branch (u > u+) near the limit cycles
of the (FS), it is possible that the (AFS) itself can have a fixed point. With the
dynamics of the (AFS) changed, bursting solutions may no longer be possible. Thus,
when searching a parameter space for the type of bistability described in this section,
it is reasonable to restrict oneself to seeking parameters for which (FULL) has a
unique equilibrium on SL. Given the cubic form of Δ(u), (FULL) will have a unique
equilibrium Xe ∈ SL if and only if (a, b) ∈ DL and the discriminant

DΔ =
b2

4
+

a3

27
> 0.(6.4)

Next, we address the stability of the (unique) equilibrium Xe ∈ SL. Toward

this end, we define P (λ) as the characteristic polynomial of the Jacobian D�F(Xe) of
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(FULL) at Xe with roots λ of P being the eigenvalues. Similarly, we define P0(λ) as
the characteristic polynomial of the Jacobian of the (FS). Using these definitions and
the expansion

λ = λ0 + ελ1 + ε2λ2 + · · ·

in P (λ), one finds

P (λ) = λ2
0P0(λ0) + εP1(λ0, λ1) + ε2P2(λ0, λ1, λ2) + O(ε3),(6.5)

where for the moment we do not explicitly state the functions P0, P1, P2. Since (FULL)
has two fast variables and two slow variables, two of the eigenvalues λ = O(1), while
the remaining two eigenvalues λ = O(ε). For Xe to be stable we require all four
eigenvalues to have �e(λ) < 0. Clearly, if Xe ∈ SL, the two O(1) eigenvalues have
�e(λ) < 0 since such λ’s equal λ0 to leading order and the roots λ0 �= 0 of P0 are
the same eigenvalues as in the (FS). Thus, it suffices to examine the O(ε) eigenvalues,
whose expansions have λ0 = 0.

For the λ0 = 0 case, it is easily verified that

P1(0, λ1) = 0 ∀λ1.

So the “small” O(ε) eigenvalues associated with the (SS) require examining the O(ε2)
term in (6.5). Explicit calculations reveal

P2(0, λ1, λ2) = Q(λ1) ≡ q2λ
2
1 + q1λ1 + q0,(6.6)

where the coefficients of Q in (6.6) are given by

q2 = −G′(ū),(6.7)

q1 =
β1τ2 + γβ2τ1 −G′(ū)(τ1 + τ2)

τ1τ2
,(6.8)

q0 =
β1 + γβ2 −G′(ū)

τ1τ2
.(6.9)

Notice that there is no dependence on λ2 in P2(0, λ1, λ2), and that Q is quadratic in
λ1. Also, for the remainder of this section we drop the overbar notation on u.

The leading term λ1 of these small eigenvalues is determined as the roots of Q in
(6.6):

λ±
1 =

−q1 ±
√
q2
1 − 4q2q0

2q2
.(6.10)

Since u < u− = −1 on SL, the quantity G′(u) = −3u2 + 3 is negative on SL and

Xe ∈ SL ⇒ q2 > 0.(6.11)

This result and the signs of the coefficients (q1, q0), based on the signs of the activation
parameters3 (β1, β2), are organized in Table 6.1 and are discussed in the following text.
Given the signs of the coefficients qi, we are then able to determine the stability of
SL equilibria. Throughout, recall 0 < γ, 0 < τi, i = 1, 2, and (6.11), i.e., q2 > 0.

3Recall that x is a slow activation variable if β1 > 0 and is a slow inactivation variable if β1 < 0.
Analogous remarks hold for y and β2.
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Table 6.1

Stability dependence of the equilibria Xe ∈ SL on the activation/inactivation parameters
(β1, β2), where (q2, q1, q0) are the coefficients of the quadratic Q(λ) defined in (6.6). In the “Case”
column, (+,−) indicates the respective signs of β1 and β2. In the other columns, +/− indicates that
both signs of the column quantity are possible. In both the (+,−) and (−,+) cases, the equilibria
Xe can undergo a Hopf bifurcation, and thus may be stable or unstable.

Case sign(q2) sign(q1) sign(q0) Equilibria Xe

(+,+) + + + stable

(−,−) +
+ + stable

+/− − saddle
(+,−) + +/− +/− Hopf bifurcation possible
(−,+) + +/− +/− Hopf bifurcation possible

When (β1, β2) = (+,+), i.e., both are positive, one sees immediately that q1 > 0
and q0 > 0 as well. As such, any SL equilibria in this case will be stable, as noted in
Table 6.1.

When (β1, β2) = (−,−), it is possible for q0 to be positive or negative. To
understand this case we first note from (6.1) that

Δ′(u) = −G′(u) + (β1 + γβ2).(6.12)

If q0 > 0, then G′(u) < β1 + γβ2, and we may conclude Δ′(u) > 0. Rewriting q1 in
terms of Δ(u), we find

q1 =
Δ′(u)

τ1
+

Δ′(u)

τ2
− γβ2

τ1
− β1

τ2
.(6.13)

We now see that if (β1, β2) = (−,−) and q0 > 0, then q1 > 0 so that Xe ∈ SL are
stable.

If (β1, β2) = (−,−) and q0 < 0, then q1 may be positive or negative. Moreover,
in this case,

√
q2
1 − 4q2q0 > |q1| so that λ±

1 are both real and have opposite signs.
Then, Xe has a one-dimensional unstable manifold and a three-dimensional stable
manifold. We list such unstable equilibria Xe of (FULL) in Table 6.1 as “saddles”
since the associated equilibria (x̄, ȳ) of the (SS) will be saddles.

Finally, we consider the (β1, β2) = (+,−) and (β1, β2) = (−,+) cases together. It
is not hard to see in that restrictions on the sign of q0 do not place similar restrictions
on the sign of q1; any sign is possible. Thus, λ±

1 may be complex conjugate pairs, and
transverse crossings of the imaginary axis could be possible. We do not discuss the
details of this here but merely note that Xe may be stable or unstable and that Hopf
bifurcations of such equilibria are possible (see [25] for a detailed treatment).

At this stage we summarize some of the previous results. First, to ensure there is a
unique equilibria Xe ∈ SL, slow parameters must be chosen so that (a, b) ∈ DL while
simultaneously satisfying (6.4). The stability of such equilibria will largely depend
on the sign of the activation/inactivation parameters (β1, β2). This dependence is
summarized in Table 6.1. In Figure 6.1, the slow parameters were chosen to satisfy
these conditions in the (β1, β2) = (+,−) case. Moreover, in this case λ±

1 were complex
conjugates to create the spiral motion depicted in Figure 6.1C. We do not exclude the
possibility of bistability for the other cases in Table 6.1. Even if this issue is resolved,
it does not address issues concerning the simultaneous coexistence of a stable fixed
point of the map φ needed to ensure the existence of a stable bursting solution. To
address this latter issue, we examine the map domains and ranges defined in previous
sections.
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Γ− ΓHC

SL

SA

X̃

Fig. 6.2. Illustration of bistability between bursting solutions and stable equilibria of (FULL).

One solution illustrated has an initial condition X̃ ∈ SA in the active phase but with Φ̂(X̃) in the
basin of attraction of an equilibria of (FULL) on SL. Also shown is a bursting cycle associated with
the fixed point of Φ.

First, we note that Figure 6.2 illustrates the simulations shown in Figure 6.1. In
the following discussion we assume the domain D(φ̂) = R, whereas D(φ̃) is a proper
subset of R. While shortly it will become evident that the latter is necessary for
bistability, we acknowledge that the former assumption is not. For example, for other
parameter values the (AFS) may itself have a stable fixed point. For simplicity, we
assume this is not the case in the following discussion.

For the system to exhibit the bistability illustrated in Figure 6.2, some trajectories
of the (SS) originating along ΓHC must be attracted to the equilibria Xe on SL. Since

D(φ̃) consists only of initial x-coordinates for which the (SS) trajectories starting on

ΓHC reach Γ−, we conclude that in the bistable case, D(φ̃) must be a proper subset
of R.

Now, consider an initial condition where X̃ = (x0, y0) ∈ Γ− and the fast variables
are sufficiently near the (FS) limit cycle Ω(t, z0), z0 = x0 + γy0. To leading order,
the resulting trajectory γ

X̃
will traverse the active phase as described by the (AFS).

Since x0 ∈ D(φ̂), γ
X̃

will eventually reach ΓHC and exit to the silent phase. Such

a trajectory will enter the silent phase at an x-coordinate φ̂(x0) ∈ R(φ̂).4 The next

issue is whether φ̂(x0) ∈ D(φ̃). If φ̂(x0) ∈ D(φ̃), then the trajectory starting in the
active phase will eventually traverse the entire slow manifold and make a transition
back to the active phase. The set of x values on the slow manifold for which this
is possible is the previously discussed set W = R(φ̂) ∩D(φ̃). Since D(φ̃) must be a
proper subset of R in the bistable case, it follows that W must also necessarily be a
proper subset of R. The next issue is whether W is equal to or is a proper subset
of D(φ̃). Clearly, W �= D(φ̃); if it were, no (AFS) trajectory making a transition into
the silent phase would ever be in the basin of attraction of the equilibria Xe on SL,
and bistability would not be possible. To summarize, two necessary conditions for the
system to exhibit bistability are

D(φ̃) ⊂ R, W = R(φ̂) ∩D(φ̃) ⊂ D(φ̃),

with the understanding that the inclusions are proper.

4The range R(φ̂) of φ̂.
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To conclude this section we remark that the above conditions, though necessary,
may not be sufficient for bistability. For example, even if φ̂(x0) ∈ D(φ̃), in the next

iterate it may be that (φ̂ ◦ φ̃ ◦ φ̂)(x0) /∈ D(φ̃)—in which case the trajectory would
eventually be attracted to the equilibria Xe. To completely resolve these types of
details, accurate estimations of the map domains and ranges are paramount. We do
not make such estimates in this paper, but some progress toward resolving these issues
is presented in [25].

7. Conclusion and discussion. In this paper we have shown how singular
approximations of bursting solutions of a model with two slow variables can be iden-
tified with fixed points of a one-dimensional map. When the time constants of the slow
variables are equal (the degenerate case), the map and fixed point can be computed
explicitly. Such a calculation is possible because, in that case, the system decouples
under a simple transformation. Furthermore, from the transformed system (4.5)–(4.8)
it was deduced that the original model has singular bursting solutions even if the slow
variables are activating (β1 > 0) and inactivating (β2 < 0). In other studies both slow
variables were inhibitory [51]. It was also shown that as inactivation was increased
in this degenerate case, the magnitude of the fixed point x̄ increased. Further, given
the negative slope of the curve ΓHC, as x̄ increases the associated ȳ value decreases.
Insofar as the model studied in this paper is homotopic to other two slow variable
models exhibiting bursting, the (x̄, ȳ) would represent the extreme values of the slow
regulatory variables (i.e., calcium concentration, channel activation variable) at the
start of the silent phase. Thus, experimentally, if the slow regulatory variables have
similar time constants, one might expect to see these extreme values increase and
decrease inversely as inactivation of one process is increased. However, independent
of the levels of activation and inactivation, no bifurcations of the bursting solution
through a destabilization of the map fixed point are possible in the degenerate case.
Moreover, as previously noted, the singular bursting solutions are always stable in
this degenerate case.

In the more generic nondegenerate case when the time constants of the slow vari-
ables are not equal, it was demonstrated in section 5 how the maps used to determine
bursting solutions can be computed by solving two one-parameter families of boundary
value problems. There, AUTO [19] was used to homotope from known solutions to a
solution which describes trajectories of the (SS) and the (AFS) of the original model.
The methods described in section 5 would be substantially faster than using multiple
integrations of (FULL) to compute the Poincaré return maps. Moreover, since AUTO
automatically detects a variety of bifurcations, the aforementioned methods would be
far better suited for numerical studies of bifurcations of bursting solutions in systems
with two slow variables.

Some of the numerical techniques presented in section 5 might be adaptable to
other models of bursting. For instance, in other models, slow subsystems can often
be computed explicitly so that system (5.1)–(5.2) can be coded. However, in models
such as (1.1)–(1.2), saddle-node and homoclinic bifurcation points of the associated
fast subsystems are not known explicitly. Thus, it may not be possible to explicitly
code boundary conditions such as (5.4) and (5.6). One possible resolution to this
difficulty is to augment (5.1)–(5.6) with the (FS) of the model. It should be noted
that similar issues would arise when attempting to code (5.7)–(5.12) in other models.
In addition to the aformentioned issues, the vector field of the (AFS) of other models
is not explicitly known. However, this issue can be circumvented by first calculating
averaged quantities over a grid of slow variable values. Then, intermediate values can
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be computed using interpolation from this tabulated data within the AUTO code.
In [25] such a method was implemented to determine φ̂ for the model defined in this
paper.

Of additional importance is the bistability between bursting solutions and equi-
libria of (FULL) demonstrated in section 6. This is a fundamentally new type of
bistability. In two variable neuron models, such as the FitzHugh–Nagumo model
[23, 35], one variable is often slow and the other fast. The resulting (FS) exhibits
bistability between equilibria. Bistability in the (FS) of three variable models ex-
hibiting bursting is typically between stable equilibria and planar limit cycles. Such
is the case in the (FS) of the model studied here. Even this type of bistability should
be contrasted with bistability between stable periodic solutions such as that studied
by Canavier et al. [10, 11]. Shilnikov, Calabrese, and Cymbalyuk [47] have also exam-
ined bistability between bursting solutions and (tonic) periodic solutions in a neuronal
model with one slow variable. In this study, the bistability discussed in section 6 is
between equilibria and (four-dimensional) bursting solutions. Regarding (FULL) as
a model of neural activity, this type of bistability suggests some interesting potential
neural dynamics. For instance, certain perturbations could switch the neural activ-
ity between bursting modes and quiescent modes. Since bursting typically acts on a
time scale an order of magnitude larger than tonic spiking, this might have functional
relevance in regulating physiological processes on time scales of the order of many
bursts.

The former type of bistability is also of interest as it relates to the issue of why
some isolated pancreatic β-cells burst while others do not [50]. Bursting electrical
activity is observed in β-cells that are still intact in the islets [42]. At elevated tem-
peratures (e.g., 30◦ C), bursting is also observed in β-cells that are isolated from the
islets [48]. Yet, in other experiments at room temperature, isolated β-cells exhibit
irregular spiking but do not burst [22]. Some researchers have discussed how the fun-
damental stochasticity of the β-cells might explain these different behaviors [42]. In
other studies [37, 38], cell heterogeneity and diffusive coupling was a premise used to
explain this experimental fact. There it was shown that if collections of cells with a
stable equilibria were diffusively coupled to collections of bursting cells, the coupled
system could burst synchronously. However, this explanation used a model with a
sole slow variable. Since most recent models of β-cell electrical activity have two
or more slow variables, it now appears that cell bistability might also play a role.
For instance, if for some parameter sets these newer models exhibit the same sort of
bistability demonstrated in section 6, then the experimental preparation could play a
role. Some extracted cells may not burst merely because those preparations have slow
variable values in the basin of attraction of the stable equilibria on SL. Moreover, if
the latter basin of attraction were sufficiently large, then even noise would not affect
the result. Alternately, the sporadic spiking of “nonbursters” might be due to the
noise (or channel stochasticity) being sufficiently large so that the (SS) trajectories
traverse close to the basin of attraction of the equilibria Xe. When properly exploring
such ideas using a model, the size of the map domains become especially important.
Also, in this case, the analytical and numerical tools developed in this paper may be
particularly useful.

We note, however, that it is not known if the more recent β-cell models can
exhibit such bistability for other parameter values. Additionally, we currently have
no systematic way of determining such parameter sets. For the model used in this
paper, some advances in solving this latter problem are presented in [25]. Although
it is not too difficult to determine parameter sets where (FULL) has stable equilibria
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on SL, it is difficult to determine a subset of such a parameter space where the model
simultaneously exhibits bursting. As mentioned previously, the latter is intimately
connected with domain issues of the maps φ̃ and φ̂, which requires knowledge of
certain global information about the slow and averaged fast subsystems.

The bistability discussed in section 6 also presents some other interesting model-
ing possibilities. For instance, if collections of such cells are coupled, then aggregate
behavior would depend greatly on initial conditions. In reaction diffusion systems
where bistability is between equilibria, traveling wave phenomena are ubiquitous.
If the bistability is between equilibria and bursting solutions, the question arises if
wavefronts separating such behaviors are possible. Even if no such (stable) wave
phenomena exist, it is not known if strongly coupled aggregates exhibit bistable syn-
chronous solutions. For instance, synchronous (monostable) solutions are present in
heterogeneous collections of cells which are diffusively coupled with strong coupling
[38].

Lastly, the approximation of the average quantity û(z) in (2.24) is of some math-
ematical interest. In Figure 2.2, the functions ûa(z) and û(z) are shown to be very
close over a wide range of z. This closeness suggests that (2.24) is a two term asymp-
totic approximation of the average û(z). If this is the case, we are unaware of a
systematic (analytical) method for estimating the parameters p, a0, and a1 in that
approximation. Moreover, we are not aware how robust this approximation is when
fast parameter values are altered. In Figure 2.2 the fast parameters are fixed and
the comparison is over different values of z. Regardless, such approximation methods
would be of interest, as they might apply to the more complicated Hodgkin–Huxley
based models with two fast variables. For instance, were such methods available and
the dependence of a0 on fast parameters derivable, then it would be easier to predict
how things such as the active phase duration might depend on fast conductances and
other biological quantities.

Appendix. Here we use a multiple scales procedure to derive the (AFS) sum-
marized in section 2.3. We assume that the (FS) has T (z)-periodic solutions Ω(t, z)
which satisfy

dΩ

dt
= F(Ω, z) ∀z ∈ SA .(A.1)

We seek an asymptotic approximation of (2.1)–(2.2) valid to O(ε) for t = O( 1
ε ).

Toward that end, we assume an expansion of the form

u(t) = U(s, τ, ε) = U0(s, τ) + εU1(s, τ) + O(ε2) ,(A.2)

z(t) = Z(s, τ, ε) = Z0(s, τ) + εZ1(s, τ) + O(ε2) ,(A.3)

where τ is a slow time,

τ = εt,(A.4)

and the strained (fast) time s is defined by

ds

dt
= ω(τ)(A.5)

for a function ω as yet to be determined.
As with other multiple scales methods, it is possible to choose an appropriate ω

so that U0 is 1-periodic in s. In addition to the aforementioned periodicity, we want
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our leading-order approximation U0(s, τ) close to u(t) for times τ = O(1). With U0

and Z0 suitably determined, we also require Ui(s, τ) and Zi(s, τ) to be 1-periodic in
s for i = 0, 1, 2, . . . . The periodicity of Ui and Zi in s ensures the functions U , Z are
bounded in s, so that, for instance, |U − U0| = O(ε) for τ = O(1).

Using these definitions, the time derivatives of U(s, τ, ε) are

dU

dt
= ω

∂U

∂s
+ ε

∂U

∂τ
,(A.6)

d2U

dt2
= ω2 ∂

2U

∂s2
+ 2εω

∂2U

∂s∂τ
+ ε

∂ω

∂τ

∂U

∂s
+ ε2 ∂

2U

∂τ2
,(A.7)

with similar expressions for Z(s, τ, ε).
Expanding F(u, z) about (U0, Z0) gives

F(u, z) = F(U0, Z0) + εDuF(U0, Z0)U1 + εDzF(U0, Z0)Z1 + O(ε2) ,(A.8)

where, for F = (F1, F2)
T ,

DuF =

[
∂F1

∂u
∂F1

∂w

∂F2

∂u
∂F2

∂w

]
,(A.9)

and in a similar fashion, DzF is the Jacobian of F in z.
Putting this all together, (2.1)–(2.2) become

ω
∂U0

∂s
+ ε

(
∂U0

∂τ
+ ω

∂U1

∂s

)
= F(0) + ε

(
DuF

(0)U1 + DzF
(0)Z1

)
+ O(ε2) ,(A.10)

ω
∂Z0

∂s
+ ε

(
∂Z0

∂τ
+ ω

∂Z1

∂s

)
= εG(U0, Z0) + O(ε2) ,(A.11)

where the superscript(0) in (A.10) means evaluated at (U0, Z0). These equations can
be written as a system of partial differential equations. The O(1) terms from (A.10)–
(A.11) are

ω
∂U0

∂s
= F(U0, Z0) ,(A.12)

∂Z0

∂s
= 0 ,(A.13)

and the O(ε) terms,

∂U0

∂τ
+ ω

∂U1

∂s
= DuF(U0, Z0)U1 + DzF(U0, Z0)Z1 ,(A.14)

∂Z0

∂τ
+ ω

∂Z1

∂s
= G(U0, Z0) .(A.15)

From (A.13) it is evident that Z0 does not depend on s. Henceforth, we write Z0 =
Z0(τ).

Since Ω(s, z) is T (z)-periodic in s, then Ω(Ts, z) is 1-periodic in s. Letting ψ(τ)
be a slowly varying phase, then

U0(s, τ) = Ω(sT (Z0(τ)) + ψ(τ), Z0(τ))(A.16)
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will also be a 1-periodic function of s. Moreover, since Ω solves (A.1), the U0 defined
in (A.16) also solves (A.12), provided we choose

ω(τ) =
1

T (Z0(τ))
.(A.17)

With this choice of ω the strained time s is completely defined in terms of the original
time t via (A.5) once Z0(τ) has been determined. Although a subsequent determina-
tion of the dependence of U0 on t additionally depends on the slowly varying phase
ψ, it will shortly be shown that the leading-order evolution of Z0 does not depend on
ψ.

We now turn our attention to the Z equation. The requirement that Z1 be 1-
periodic in s helps us derive necessary conditions for Z0. Integrating (A.15) over
s ∈ (0, 1), we get

∫ 1

0

G(U0(s, τ), Z0(τ))ds =

∫ 1

0

(
∂Z0

∂τ
+ ω(τ)

∂Z1

∂s
(s, τ)

)
ds(A.18)

=
∂Z0

∂τ
+ ω(τ)[Z1(1, τ) − Z1(0, τ)] .(A.19)

Thus, choosing Z0 as a solution to

∂Z0

∂τ
=

∫ 1

0

G(U0(s, τ), Z0(τ))ds =

∫ 1

0

G (Ω(sT (Z0) + ψ(τ)), Z0) ds(A.20)

implies Z1(1, τ) = Z1(0, τ) for all τ . This in itself does not prove that Z1 is periodic
in s. However, one need only note that (A.15) is invariant under the transformation
s → s+ψ̄ to make this inference. Using this transformation, the preceding integration
of (A.15) would then imply Z1(1 + ψ̄, τ) = Z1(ψ̄, τ) for an arbitrary ψ̄, from which
one concludes that if Z0 solves (A.20), then Z1 is 1-periodic in s.

Lastly, as mentioned previously, the slowly varying phase ψ is not needed to
determine the dependence of Z0 on τ . In order to show this, we introduce the change
of coordinates η = sT (Z0) + ψ(τ) to rewrite (A.20) as

∂Z0

∂τ
=

1

T

∫ T+ψ

ψ

G(Ω(η, Z0), Z0)dη .(A.21)

Since G(Ω(η, Z0), Z0) is T (Z0)-periodic in η, we have

∂Z0

∂τ
=

1

T

∫ T

0

G(Ω(η, Z0), Z0)dη ≡ Ĝ(Z0) ,(A.22)

showing that the value of the integral does not depend on ψ(τ). The right-hand
equality in (A.22) has been added to emphasize that there is no explicit dependence

on τ in Ĝ. Also, in summary, we may now conclude that if

dZ0

dτ
= Ĝ(Z0) ,(A.23)

then Z1 is 1-periodic in s so that |Z − Z0| = O(ε) for τ = O(1). Given the definition
of G and the linearity of hi(u) in u, we see that (A.23) written out in component
form is precisely (2.22)–(2.23).
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SURFACE TENSION-DRIVEN FLOW IN A SLENDER WEDGE∗

J. BILLINGHAM†

Abstract. We consider an inviscid fluid, initially at rest inside a wedge, bounded by one free
surface and one solid surface. When t = 0, we allow the contact angle to change discontinuously,
which leads the free surface to recoil under the action of surface tension. As noted by Keller and
Miksis [SIAM J. Appl. Math., 43 (1983), pp. 268–277], a similarity scaling is available, with lengths
scaling like t2/3. We consider the situation when the wedge is slender, with angle ε � 1, and the
contact angle changes from ε to λε. The leading order asymptotic problem for λ = O(1), a pair of
nonlinear ordinary differential equations, was considered by King [Quart. J. Mech. Appl. Math., 44
(1991), pp. 173–192], numerically for λ = O(1) and asymptotically for |λ − 1| � 1. In this paper,
we begin by considering this system when 1 � λ � ε−1, and use Kuzmak’s method to construct
the asymptotic solution. When λ = O(ε−1), the slope of the free surface becomes of O(1), and it is
no longer possible to reduce the problem to ordinary differential equations alone. However, we can
approach this problem in a similar manner, even though the underlying oscillator is the solution of
a nonlinear boundary value problem for Laplace’s equation, and construct an asymptotic solution.
In fact, the solution takes the form of a modulated set of waves on fluid of finite depth, with the
underlying analytical solution given by Kinnersley [J. Fluid Mech., 77 (1976), pp. 229–241]. The case
λε = 90◦ is the solution for the inviscid recoil of a wedge of fluid with two free surfaces and semiangle
ε � 1, which was discussed by Billingham and King [J. Fluid Mech., 533 (2005), pp. 193–221]. We
also show that no non-self-intersecting solution is available for λε > 90◦ as ε → 0, and compare our
asymptotic solutions with numerical, boundary integral solutions of the full, nonlinear free boundary
problem.

Key words. fluid mechanics, surface tension, moving contact line, similarity solution, Kuzmak’s
method, boundary integral method
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DOI. 10.1137/05064655X

1. Introduction. In this paper, we study the response of a wedge of inviscid
fluid, initially at rest, bounded by a free surface and a solid surface, to a discon-
tinuous change in the contact angle that it makes with the solid surface. Such a
change could be brought about by, for example, an abrupt change in temperature
or chemical composition. For a viscous fluid, modelling the motion of this contact
line is complicated by the force singularity at the contact line associated with the no
slip boundary condition (Dussan and Davis (1974)). Although it is possible to make
progress by modifying the no slip boundary condition (Cox (1986)), some unresolved
issues remain (see Shikhmurzaev (1997) for a review). However, at sufficiently large
times, the solution is likely to asymptote to the inviscid similarity form discussed
in this paper, as has been demonstrated in comparable problems (see, for example,
Billingham (1999), Billingham and King (2005)).

Inviscid, surface tension-driven flow in a fluid wedge was first studied by Keller
and Miksis (1983), who noted that a similarity solution, with lengths scaling like
t2/3, is available. These scalings have since been used by many other authors to
study related problems, for example, Lawrie (1990), Lawrie and King (1994), King
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(1991), Billingham and King (1995), King, Billingham, and Popple (1999), Decent
and King (2001), Keller, Milewski, and Vanden-Broeck (2000, 2002), and Sierou and
Lister (2004). Such flows are also relevant to situations where bodies of fluid rupture
and recoil under the action of surface tension. Indeed, for a contact angle of 90◦, by
symmetry, the problem that we study here is equivalent to the recoil of a wedge of
fluid with two free surfaces.

We begin our analysis in section 2, where we derive the nonlinear free boundary
problem that governs similarity solutions of the initial value problem. In section 3,
we discuss the one-dimensional approximation to the solution that is possible when
the new contact angle is sufficiently small. This was first studied by King (1991). We
show that if the new contact angle is small, but much larger than the wedge angle, it
is possible to construct a solution using Kuzmak’s method. The free surface is then a
slowly varying nonlinear oscillator. In section 4, we consider the solution when the new
contact angle is of O(1). In this case, we can still use Kuzmak’s method to solve the
problem, but the underlying nonlinear oscillator is the solution of a two-dimensional,
nonlinear free boundary problem. We are able to make progress because this free
boundary problem has a family of analytical solutions, which was first studied in the
context of capillary waves on fluid of finite depth by Kinnersley (1976). We also show
that, for ε sufficiently small, non-self-intersecting solutions exist only if the contact
angle is less than 90◦. In section 5, we make a comparison between the asymptotic
solution and numerical solutions of the full problem obtained using the boundary
integral method.

2. Similarity solution of the initial value problem. We consider the two-
dimensional flow of an inviscid fluid, initially at rest inside a wedge of angle ε, as
shown in Figure 2.1. The fluid is bounded by a solid surface at y = 0, while its other
surface is free and subject to a constant, uniform surface tension, σ. We denote by D
the domain that contains the fluid. Since the flow is initially irrotational, it remains
irrotational, and we can describe the flow using a velocity potential φ, with the fluid
velocity given by u = ∇φ. The potential satisfies Laplace’s equation

∇2φ = 0 in D.(2.1)

The kinematic and dynamic boundary conditions are

∂ys
∂t

=
∂φ

∂y
− ∂φ

∂x

∂ys
∂x

at y = ys(x, t),(2.2)

∂φ

∂t
+

1

2
|∇φ|2 =

σ

ρ

∂2ys
∂x2

{
1 +

(
∂ys
∂x

)2
}3/2

at y = ys(x, t).(2.3)

There is no normal flux through the solid surface so that

∂φ

∂y
= 0 at y = 0.(2.4)

The contact angle condition is

∂ys
∂x

= tan(λε) at y = 0, x = xc(t).(2.5)
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y = y
s
(x,t)

φ = φ(x,y,t)

y

x

D

ε
λ ε

Fig. 2.1. The initial geometry (broken line) and subsequent recoil.

The fluid is at rest in the far field so that

φ(x, y, t) → 0 as x2 + y2 → ∞.(2.6)

The initial conditions are

φ = 0, ys = x tan ε when t = 0.(2.7)

There is no geometrical lengthscale in this problem, and the only dimensional
quantities involved are ρ and σ. As noted by Keller and Miksis (1983), dimensional
analysis shows that we can define the independent similarity variables

x̄ =
ρ1/3x

σ1/3t2/3
, ȳ =

ρ1/3y

σ1/3t2/3
,(2.8)

and look for a solution of the form

φ̄ =
ρ2/3φ

σ2/3t1/3
≡ φ̄(x̄, ȳ), ȳs =

ρ1/3ys
σ1/3t2/3

≡ ȳs(x̄).(2.9)

In terms of these similarity variables, the initial value problem (2.1)–(2.6) becomes
the boundary value problem

∇2φ̄ = 0 for 0 < ȳ < ȳs(x̄), x̄ > x̄c,(2.10)

1

3
φ̄− 2

3

(
x̄
∂φ̄

∂x̄
+ ȳ

∂φ̄

∂ȳ

)
+

1

2

∣∣∇φ̄
∣∣2 =

ȳ′′s

(1 + ȳ′s
2)

3/2
at ȳ = ȳs,(2.11)

∂φ̄

∂ȳ
+

2

3
x̄ȳ′s −

2

3
ȳs −

∂φ̄

∂x̄
ȳ′s = 0 at ȳ = ȳs,(2.12)

∂φ̄

∂ȳ
= 0 at ȳ = 0(2.13)

subject to

ȳ′s = tan(λε) at x̄ = x̄c,(2.14)

ȳs − x̄ tan ε → 0 as x̄ → ∞,(2.15)

φ̄ → 0 as x̄2 + ȳ2 → ∞,(2.16)

where a prime denotes d/dx̄ and x̄c is a constant to be determined.
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3. The one-dimensional slender wedge limit, ε � 1, λ = O(1). King
(1991) showed that an appropriate scaling in the limit of a slender wedge, ε � 1, with
a small change in the contact angle, λ = O(1), is

x̄ = ε1/3ξ, ȳ = ε4/3η, φ̄ = ε2/3Φ, ȳs = ε4/3Y.(3.1)

In terms of these variables, (2.10)–(2.16) become

ε2
∂2Φ

∂ξ2
+

∂2Φ

∂η2
= 0 for 0 < η < Y (ξ), ξ > ξc,(3.2)

1

3
Φ − 2

3

(
ξ
∂Φ

∂ξ
+ η

∂Φ

∂η

)
+

1

2

{(
∂Φ

∂ξ

)2

+
1

ε2

(
∂Φ

∂η

)2
}

=
Y ′′

(1 + ε2Y ′2)
3/2

at η = Y ,(3.3)

1

ε2
∂Φ

∂η
+

2

3
ξY ′ − 2

3
Y − ∂Φ

∂ξ
Y ′ = 0 at η = Y ,(3.4)

∂Φ

∂η
= 0 at η = 0(3.5)

subject to

Y ′ =
1

ε
tan(λε) at ξ = ξc,(3.6)

Y − ξ
tan ε

ε
→ 0 as ξ → ∞,(3.7)

Φ → 0 as ξ2 + ε2η2 → ∞.(3.8)

We make the expansions

Φ = Φ0 + ε2Φ2 + O(ε4), Y = Y0 + O(ε2)

and substitute into (3.2)–(3.8). King (1991) showed that Φ0 ≡ Φ0(ξ) and Φ2 =
− 1

2η
2Φ′′

0 +D(ξ). The leading order problem is then a nonlinear boundary value prob-
lem for Φ0(ξ) and Y0(ξ). In order to formulate this problem on a known domain, we

define ξ̂ = ξ − ξc, and the resulting coupled, nonlinear ordinary differential equations
are

1

3
Φ0 −

2

3

(
ξ̂ + ξc

)
Φ′

0 +
1

2
Φ′

0
2 − Y ′′

0 = 0,(3.9)

− (Y0Φ
′
0)

′
+

2

3

(
ξ̂ + ξc

)
Y ′

0 − 2

3
Y0 = 0,(3.10)
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to be solved for ξ̂ > 0 subject to

Y0(0) = 0, Y ′
0(0) = λ,(3.11)

Y0 − ξ̂ − ξc → 0, Φ0 → 0 as ξ̂ → ∞,(3.12)

where a prime now denotes d/dξ̂.
King (1991) examined the far field solution of (3.9) and (3.10) and showed that

Φ0 ∼ F

ξ̂2
exp

(
4iξ̂3/2

9C1/2

)
, Y0 ∼ Cξ̂ + ξc +

G

ξ̂3/2
exp

(
4iξ̂3/2

9C1/2

)
as ξ̂ → ∞,(3.13)

and, to satisfy (3.12), C = 1. The far field solution therefore consists of decaying
capillary waves. King (1991) demonstrated that there is a weak nonuniformity in

the far field solution when ηξ̂1/2 = O(ε−1) and the flow becomes two-dimensional.

Rescaling into a region with ξ̂, η = O(ε−2/3) then completes the solution structure.
We will not consider the detailed structure of the two-dimensional flow here but refer
the interested reader to King (1991).

3.1. Numerical solution. We can solve (3.9) and (3.10) subject to (3.11) and
(3.12) numerically using the MATLAB routine bvp4c, which uses an adaptive grid-

ding method. Since we know that Φ0 = 0, Y0 = ξ̂, and ξc = 0 when λ = 1, it
is straightforward to use continuation to find the solution for λ > 1. However, we
did find it convenient to first make the transformation Y0 �→ λ4/3Y0, Φ0 �→ λ2/3Φ0,
ξ̂ �→ λ1/3ξ̂, ξc �→ λ1/3ξc, which leaves (3.9)–(3.12) unchanged, except that the first

relation in (3.12) becomes Y0 − λ−1(ξ̂ + ξc) → 0 as ξ̂ → ∞. This allowed us to find a
numerical solution up to λ ≈ 105, a somewhat larger value than was possible for the
system in its original form. Note that it is tempting to suggest that, when λ 
 1,
we simply need to look for a solution with Y0 → 0 as ξ̂ → ∞. However, the far field
behavior, (3.13), shows that no such solution exists, since we cannot take C = 0.

Figure 3.1 shows the solution for various values of λ. As λ increases, both the
amplitude and the frequency of the oscillations of the free surface increase, as does the
size of the potential, Φ0. Figure 3.2 shows the numerical solution for λ = 100, along
with the asymptotic solution for its envelope, which we will determine in section 3.2.
Figure 3.3 shows the numerically calculated behavior of the position of the contact
line, ξc, as a function of λ. Also shown is the asymptotic behavior for |λ − 1| � 1,
ξc ∼ 0.80755(λ − 1), determined by King (1991), and the asymptotic behavior for
λ 
 1, which we shall determine in section 3.2.

3.2. Asymptotic solution for λ � 1. The numerical solutions presented
above suggest that the asymptotic solution for λ 
 1 takes the form of a large
amplitude oscillation of the free surface, varying slowly over a long lengthscale. This
suggests that we can find the solution using Kuzmak’s method (see, for example,
Bourland and Haberman (1988), and King, Billingham, and Otto (2003)), which is a
version of the method of multiple scales that works for nonlinear oscillators.

By looking for an asymptotic balance, we find that appropriate scaled variables
are

Y0 = λ2/3Ȳ (ψ,X), Φ0 = λ4/3Φ̂(X) + λ1/3Φ̄(ψ,X), ξ̂ = λ−1/3ξ̄, ξc = λ2/3ξ̄c,

(3.14)
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Fig. 3.1. The numerical solution for λ = 2, 10, and 25.
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Fig. 3.2. The numerical solution for λ = 100, along with the asymptotic solution for the
envelope of Y0 and the leading order behavior of Φ0.

where X = λ−1ξ̄ is a slow space variable and ψ = λθ(X) + p(X) is a fast space
variable, with θ(0) = p(0) = 0. Note that

d

dξ̄
=
{
ω(X) + λ−1p′(X)

} ∂

∂ψ
+ λ−1 ∂

∂X
,

where ω(X) ≡ θ′(X) = O(1) is the frequency of the underlying oscillatory solution,
which we will choose so that the solution has unit period in terms of the fast variable,
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Fig. 3.3. The position of the contact line, ξc, determined numerically for λ > 1, along with the
asymptotic estimates for |λ− 1| � 1 and λ � 1.

ψ. The function p(X) = O(1) is the phase. In terms of these variables, (3.9)–(3.12)
become

1

3

(
Φ̂ + λ−1Φ̄

)
− 2

3

(
ξ̄c + X

){(
ω + λ−1p′

)
Φ̄ψ + Φ̂′ + λ−1Φ̄X

}

+
1

2

{(
ω + λ−1p′

)
Φ̄ψ + Φ̂′ + λ−1Φ̄X

}2

(3.15)

−
{(
ω+λ−1p′

)2
Ȳψψ + 2λ−1

(
ω+λ−1p′

)
ȲψX +λ−2ȲXX +λ−1

(
ω′ +λ−1p′′

)
Ȳψ

}
= 0,

−Ȳ
{(

ω + λ−1p′
)2

Φ̄ψψ + 2λ−1
(
ω + λ−1p′

)
Φ̄ψX

+λ−1
(
Φ̂′′ + λ−1Φ̄XX

)
+ λ−1

(
ω′ + λ−1p′′

)
Φ̄ψ

}
(3.16)

−
{(

ω + λ−1p′
)
Ȳψ + λ−1ȲX

}{(
ω + λ−1p′

)
Φ̄ψ + Φ̂′ + λ−1Φ̄X

}

+
2

3

(
ξ̄c + X

) {(
ω + λ−1p′

)
Ȳψ + λ−1ȲX

}
− 2

3
λ−1Ȳ = 0,

to be solved for ξ̄ > 0, X > 0 subject to

Ȳ (0, 0) = 0, (ω(0) + λ−1p′(0))Ȳψ(0, 0) + λ−1ȲX(0, 0) = 1,(3.17)
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Ȳ − ξ̄ − ξ̄c → 0, Φ̂ + λ−1Φ̄ → 0 as ξ̄ → ∞.(3.18)

We now expand

Ȳ = Ȳ0 + λ−1Ȳ1 + O(λ−2), Φ̄ = Φ̄0 + λ−1Φ̄1 + O(λ−2), ξ̄c = ξ̄c0 + λ−1ξ̄c1 + O(λ−2).

As we shall see, we can find the leading order solution up to some unknown functions
of X by solving the equations at leading order but must consider secularity conditions
for the equations at O(λ−1) to determine the slow time behavior of the leading order
solution, with the exception of the phase, p(X). In order to determine the slow drift
in the phase, we would have to solve at O(λ−1) and determine a secularity condition
from the equations at O(λ−2). This proves to be intractable, and we will not address
this issue here. The strategy for finding p(X) is described in King, Billingham, and
Otto (2003) for a simple model problem.

3.2.1. Solution at leading order. At leading order, (3.15) and (3.16) give

−ω2Ȳ0Φ̄0ψψ − ωȲ0ψ

(
ωΦ̄0ψ + Φ̂′

)
+

2

3

(
ξ̄c0 + X

)
ωȲ0ψ = 0,(3.19)

1

3
Φ̂ − 2

3

(
ξ̄c0 + X

) (
ωΦ̄0ψ + Φ̂′

)
+

1

2

(
ωΦ̄0ψ + Φ̂′

)2

− ω2Ȳ0ψψ = 0.(3.20)

We can integrate (3.19) once to give

ωΦ̄0ψ = −Φ̂′ +
2

3

(
ξ̄c0 + X

)
− d0(X)

Ȳ0
,(3.21)

where d0(X) is to be determined. As we shall see, Ȳ0 is a periodic function of ψ,
whose period we normalize to unity by an appropriate choice of ω(X). In order that
Φ̄0 remains bounded as ψ → ∞ (the secularity condition), we must choose

Φ̂′ =
2

3

(
ξ̄c0 + X

)
− d0(X)

(
1

Ȳ0

)
,(3.22)

where an overbar indicates the mean value over the unit period of the oscillation,

f(ψ) ≡
∫ 1

0

f(ψ) dψ.

Substituting (3.22) into (3.21) gives

ωΦ̄0ψ = d0(X)

{(
1

Ȳ0

)
− 1

Ȳ0

}
.(3.23)

Now that we have an expression for Φ̄0, we can substitute this into (3.20) to give

ω2Ȳ0ψψ − 1

3
Φ̂ +

2

9

(
ξ̄c0 + X

)2 − d2
0

2Ȳ 2
0

= 0.(3.24)

We can integrate this equation once and write the result as

Ȳ 2
0ψ =

1

ω2

{
4

9

(
ξ̄c0 + X

)2 − 2

3
Φ̂

} (
Ȳ+ − Ȳ0

) (
Ȳ0 − Ȳ−

)
Ȳ0

,(3.25)
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where Ȳ+(X) and Ȳ−(X) are related by

Ȳ+Ȳ− =
d2

0

4
9

(
ξ̄c0 + X

)2 − 2
3 Φ̂

.(3.26)

It is clear from the form of (3.25) that Ȳ0 is an oscillatory function of ψ and varies
between Ȳ− and Ȳ+ > Ȳ−. In fact, we can integrate (3.25) and write the solution
for the first half-period of the oscillation in implicit form as (see Byrd and Friedman
(1954))

1

ω

{
4

9

(
ξ̄c0 + X

)2 − 2

3
Φ̂

}1/2

ψ

= 2
√
Ȳ+

{
E

(√
1 − Ȳ−

Ȳ+

)
− E

(
sin−1

(√
Ȳ+ − Ȳ0

Ȳ+ − Ȳ−

)
;

√
1 − Ȳ−

Ȳ+

)}
,(3.27)

where E is the incomplete elliptic integral of the second kind, and E is the complete
elliptic integral of the second kind. We can now choose ω(X) so that the period of
this oscillation is unity, which gives

ω(X) =

{
4
9

(
ξ̄c0 + X

)2 − 2
3 Φ̂
}1/2

4Ȳ
1/2
+ E

(
(1 −R)1/2

) ,(3.28)

where R ≡ Ȳ−/Ȳ+. We also note that, now that we know Ȳ0, exact integral formulas
given in Byrd and Friedman (1954) show that(

1

Ȳ0

)
=

1

Ȳ+

K
(
(1 −R)1/2

)
E
(
(1 −R)1/2

) ,(3.29)

Ȳ0 =
1

3
Ȳ+

{
2 (1 + R) −R

K
(
(1 −R)1/2

)
E
(
(1 −R)1/2

)
}
,(3.30)

where K is the complete elliptic integral of the first kind.
Note that, for a given value of the slow time variable, X, Ȳ0 is an even, periodic

function with unit period and Ȳ0ψ = 0 at ψ = 0. At first sight, this makes it impossible
to satisfy the leading order initial condition, given by (3.17) as Ȳ0 = 0, ω(0)Ȳ0ψ = 1
at ψ = X = 0. However, this is only the case if d0(0) > 0. We can see from (3.24)
that if d0(0) = 0, Ȳ0 is quadratic in ψ, and we can satisfy these initial conditions. A
closer examination of the behavior as X → 0 leads to the conditions

d0 ∼ 8X

9
{

4
9 ξ̄

2
c0 − 2

3 Φ̂(0)
} , Ȳ− ∼ d2

0, Ȳ+ → 1
4
9 ξ̄

2
c0 − 2

3 Φ̂(0)
as X → 0.(3.31)

We should also consider what happens as X → ∞. Since (3.18) shows that Ȳ0 ∼
X + ξ̄c0, we must have Ȳ+ ∼ Ȳ− ∼ X + ξ̄c0. Then (3.26) and (3.28) show that

d0 ∼ 2

3

(
X + ξ̄c0

)2
, ω ∼ 1

3π

(
X + ξ̄c0

)1/2
as X → ∞.(3.32)
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This means that θ(X) ∼ 2
(
X + ξ̄c0

)3/2
/9π and hence that

Ȳ0 ∼ ξ̄c0 + X +
1

2

(
Ȳ+ − Ȳ−

)
cos

{
4λ

9

(
X + ξ̄c0

)3/2
+ p′

}
.

This is consistent with (3.13) and shows that we should find

Ȳ+ − Ȳ− = O((ξ̄c + X)−3/2) for X 
 1.(3.33)

We will confirm this later.

3.2.2. Secularity conditions at O(λ−1). At O(λ−1), (3.16) again leads to an
equation that we can integrate once, to find that

ωΦ̄1ψ = −Φ̄0X +
d0Ȳ1

Ȳ 2
0

+
d1

Ȳ0

+
1

ωȲ0

(
d′0ψ − 4

3
Z̄0

)
− p′

ω

{
2

3

(
ξ̄c0 + X

)
− Φ̂′

}
+

2

3
ξ̄c1,(3.34)

where d1(X) is a function of integration and

Z̄0 =

∫ ψ

0

Ȳ0(ψ̂,X) dψ̂.

In order that Φ̄1 remains bounded as ψ → ∞, we require

d′0 =
4

3
Ȳ0.(3.35)

Equation (3.15) at O(λ−1), after using (3.34) to eliminate Φ̄1, gives

ω2Ȳ1ψψ +
d2

0Ȳ1

Ȳ 3
0

= −2ωp′Ȳ0ψψ − 2ωȲ0ψX − ω′Ȳ0ψ +
1

3
Φ̄0

+
d0

ωȲ 2
0

(
d0p

′ − ωd1 −
4

3
Ȳ0ψ +

4

3
Z̄0

)
− 4

9
ξ̄c1

(
ξ̄c0 + X

)
.(3.36)

Since Ȳ1 = Ȳ0ψ is a solution of this equation, the secularity condition is that the
integral over one period of Ȳ0ψ times the right-hand side should be zero. Taking into
account the parity of the various terms on the right-hand side, this means that∫ 1

0

Ȳ0ψ

{
−2ωȲ0ψX − ω′Ȳ0ψ +

1

3
Φ̄0 −

4d0

3ωȲ 2
0

(
Ȳ0ψ − Z̄0

)}
dψ = 0.(3.37)

After integration by parts, making use of (3.35), we find that

d

dX

∫ 1

0

ωȲ 2
0ψ dψ =

5d0

3ω

{
1 − Ȳ0

(
1

Ȳ0

)}
.(3.38)
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From (3.27), we have

∫ 1

0

ωȲ 2
0ψ dψ =

25/2Ȳ
3/2
+

3

{
2

9

(
ξ̄c0 + X

)2 − 1

3
Φ̂

}1/2 {
(1 + R)E

(
(1 −R)1/2

)

−2RK
(
(1 −R)1/2

)}
.(3.39)

Now, making use of (3.22), (3.26), (3.28), (3.35), (3.38), and (3.39), we find, after
considerable manipulation, that we can obtain ordinary differential equations for Φ̂,
R, and d0:

Φ̂′ =
2

3

(
ξ̄c0 + X

)
−
√
R

K((1 −R)1/2)

E((1 −R)1/2)

{
4

9

(
ξ̄c0 + X

)2 − 2

3
Φ̂

}1/2

,(3.40)

R′ = −
4
(
ξ̄c0 + X

)
27
{

4
9

(
ξ̄c0 + X

)2 − 2
3 Φ̂
} R

1 −R

{
1 + R− 2R

K((1 −R)1/2)

E((1 −R)1/2)

}

− 2
√
R

9
{

4
9

(
ξ̄c0 + X

)2 − 2
3 Φ̂
}1/2

1

1 −R

{
R (1 + R)

K((1 −R)1/2)

E((1 −R)1/2)
− 2

(
4R2 − 7R + 4

)}
,

(3.41)

d′0 =
4d0

9R1/2
{

4
9

(
ξ̄c0 + X

)2 − 2
3 Φ̂
}1/2

{
2 (1 + R) −R

K((1 −R)1/2)

E((1 −R)1/2)

}
.(3.42)

Note that, although (3.42) is not coupled to (3.40) and (3.41), it is convenient to
consider all three equations together. Equations (3.40)–(3.42) are to be solved subject
to

R ∼ 64X2

81
{

4
9 ξ̄

2
c0 − 2

3 Φ̂(0)
} , d0 ∼ 8X

9
{

4
9 ξ̄

2
c0 − 2

3 Φ̂(0)
} as X → 0,(3.43)

R → 1, Φ̂ → 0, d0 ∼ 2

3

(
ξ̄c0 + X

)2
as X → ∞.(3.44)

It is now helpful to make this system autonomous by the transformation

Φ̂ =
(
ξ̄c0 + X

)2
Φ̃(s), R = R̃(s), d0 = d̃0(s), s = log

(
1 +

X

ξ̄c0

)
,

which gives

dΦ̃

ds
= −2Φ̃ +

2

3
−
√

R̃
K((1 − R̃)1/2)

E((1 − R̃)1/2)

(
4

9
− 2

3
Φ̃

)1/2

,(3.45)
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dR̃

ds
= − 4

27
(

4
9 − 2

3 Φ̃
) R̃

1 − R̃

{
1 + R̃− 2R̃

K((1 − R̃)1/2)

E((1 − R̃)1/2)

}

− 2
√
R̃

9
(

4
9 − 2

3 Φ̃
)1/2

1

1 − R̃

{
R̃
(
1 + R̃

) K((1 − R̃)1/2)

E((1 − R̃)1/2)
− 2

(
4R̃2 − 7R̃ + 4

)}
,(3.46)

dd̃0

ds
=

4d̃0

9R̃1/2
(

4
9 − 2

3 Φ̃
)1/2

{
2
(
1 + R̃

)
− R̃

K((1 − R̃)1/2)

E((1 − R̃)1/2)

}
,(3.47)

R̃ ∼ 64s2

81
{

4
9 − 2

3 Φ̃(0)
} , d̃0 ∼ 8s

9ξ̄c0

{
4
9 − 2

3 Φ̃(0)
} as s → 0,(3.48)

R̃ → 1, Φ̃ = o(e−2s), d̃0 ∼ 2

3
ξ̄ 2
c0e

2s as s → ∞.(3.49)

As R̃ → 1 and Φ̃ → 0, the linearized equations for R̃ and Φ̃ are

dR̃

ds
∼ −5

2

(
R̃− 1

)
,

dΦ̃

ds
∼ −3

2
Φ̃.

First, we note that this means that R = O((ξ̄c0 + X)−5/2) for X 
 1, consistent
with (3.33). Second, the point (0, 1) in the (Φ̃, R̃)-phase plane is a stable node,
and locally all solutions have Φ̃ = O(e−3s/2) as s → ∞, with the exception of the
solution associated with the eigenvector in the R̃-direction. Condition (3.49) shows
that this is the solution we require. It is straightforward to determine this solution
numerically and find where the solution meets the Φ̃-axis. We used the routine ode45
in MATLAB, which is an implementation of the fifth order Runge–Kutta method
with adaptive stepping. We obtain Φ̃(0) ≈ −0.1939. If we then define d̄0 = ξ̄c0d̃0, we
find that d̄0 also satisfies (3.47) and that

d̄0 ∼ 8s

9
{

4
9 − 2

3 Φ̃(0)
} as s → 0, d̄0 ∼ 2

3
ξ̄ 3
c0e

2s as s → ∞.(3.50)

It is again straightforward to solve numerically for R̃, Φ̃, and d̄0 subject to (3.48) and
(3.50), integrating forward until d̄0 is large, and then determine from the behavior of
d̄0 as s → ∞ that ξ̄c0 ≈ 0.8231 from (3.50) when s 
 1. Figure 3.3 confirms that
ξc ∼ ξ̄c0λ

1/3 as λ → ∞. Figure 3.4 shows how R, Φ̂, and d0 vary with s. It is now
straightforward to calculate Ȳ+ and Ȳ− from (3.26). These provide an envelope for the
solution and are shown in Figure 3.2 to be in excellent agreement with the numerical
solution of the full problem when λ = 100. Figure 3.2 also shows that the asymptotic
solution for Φ̂(X) is in good agreement with the numerical solution. Note that the
oscillatory part of Φ0 has amplitude of O(λ−1) smaller than the slowly varying part
and is given by λ−1Φ̄. Figure 3.5 shows a direct comparison of the numerical and
asymptotic solutions for λ = 100. The agreement is good in terms of the amplitude,
as we would expect from the results shown in Figure 3.2, but we can see a slow drift
of the phase as ξ increases. This is because we have taken p(X) = 0 in the definition
of the fast space variable. As discussed earlier, to determine p(X) we would need to
solve completely at O(λ−1) and examine the secularity condition at O(λ−2), which is
not tractable.
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Fig. 3.5. The numerical and asymptotic solutions for λ = 100.

4. The fully nonlinear slender wedge limit, ε � 1, λ = O(ε−1). We
expect the asymptotic solution that we constructed in the previous section to remain
valid for λ = o(ε−1). When λ = O(ε−1), the slope of the free surface is λε = O(1)
at the contact line, so we would not expect to be able to reduce the problem to a set
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of ordinary differential equations. We define λ̄ = λε = O(1) for ε � 1. The scaled
variables (3.1) and (3.14) then suggest that we define new scaled variables

x̄ = ε−1/3ξ̃c + ε2/3ξ̃, ȳ = ε2/3η̃, ȳs = ε2/3Ỹ , φ̄ = ε−2/3Φ0 + ε1/3Φ̃.(4.1)

Apart from the large shift of the origin, the spatial scalings are those given by King
(1991) for the far field of the problem with λ = O(1). Indeed, we can think of
λ = O(ε−1) as the limit in which the two-dimensional flow in the far field becomes
comparable with the one-dimensional flow in the near field and the new scalings (4.1)
emerge.

4.1. The underlying periodic solution. Although we will be using Kuzmak’s
method to solve the problem in terms of the variables (4.1) for ε � 1, it will make
things clearer if we study the underlying periodic solution first. For the moment, we
assume that Φ0 is a constant, but we will see later that it is a function of the slow
variable.

At leading order, a solution of wavelength L in the ξ̃-direction satisfies

∇2Φ̃ = 0 for 0 < η̃ < Ỹ , 0 < ξ̃ < L,(4.2)

1

3
Φ0 −

2

3
ξ̃c
∂Φ̃

∂ξ̃
+

1

2
|∇Φ̃|2 =

Ỹ ′′

(1 + Ỹ ′2)3/2
at η̃ = Ỹ for 0 < ξ̃ < L,(4.3)

∂Φ̃

∂η̃
+

2

3
ξ̃cỸ

′ − ∂Φ̃

∂ξ̃
Ỹ ′ = 0 at η̃ = Ỹ for 0 < ξ̃ < L,(4.4)

∂Φ̃

∂η̃
= 0 at η̃ = 0 for 0 < ξ̃ < L.(4.5)

If we now subtract off a uniform flow in the ξ̃-direction by defining

Φ̃ = Φ̄ +
2

3
ξ̃cξ̃ + P,(4.6)

where P is an arbitrary constant (later, a function of the slow variable), (4.2)–(4.5)
become

∇2Φ̄ = 0 for 0 < η̃ < Ỹ , 0 < ξ̃ < L,(4.7)

1

2
|∇Φ̄|2 =

1

2
c2 +

Ỹ ′′

(1 + Ỹ ′2)3/2
at η̃ = Ỹ for 0 < ξ̃ < L,(4.8)

∂Φ̄

∂η̃
− ∂Φ̄

∂ξ̃
Ỹ ′ = 0 at η̃ = Ỹ for 0 < ξ̃ < L,(4.9)

∂Φ̄

∂η̃
= 0 at η̃ = 0 for 0 < ξ̃ < L,(4.10)
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where c =
√

4
9 ξ̃

2
c − 2

3Φ0. Equation (4.8) is the standard Bernoulli equation, and (4.9)

is the equation for no flux through the free surface. We have therefore reduced the
system to that of periodic capillary waves on a finite layer of fluid with wavespeed c.
A similar approach was used by Billingham and King (2005) for the related problem
of flow external to a thin, wedge-shaped void, although the resulting equations had
no solution. We have more success here, since there exists a remarkable analytical
solution describing capillary waves on fluid of finite depth first elucidated by Kinner-
sley (1976), building on the work of Crapper (1957), and put into a more systematic
framework using complex variable theory by Crowdy (1999). As we shall see when we
use Kuzmak’s method, the solution of the fully nonlinear wedge problem can there-
fore be described in terms of capillary waves on fluid of finite depth, modulated in
wavelength and amplitude on a long lengthscale.

Case I described by Kinnersley (1976) is the solution of relevance to us. The
detailed investigation of this case given in Kinnersley (1976) spares us a lot of hard
work, since each of the three limiting cases that he studied is one that we need to
understand for our purposes. The solution is given implicitly in terms of Jacobian
elliptic functions as

ξ̃ =
snB cdB

c2

{
2k(1 − k2) sdφndφ

dnψ + k cdφ
+ (1 − k2)φ− 2E(φ) + 2k2 snφ cdφ

}
,(4.11)

η̃ =
snB cdB

c2

{
2(1 − k2) snψ cnψ

dnψ + k cdφ
+ (1 + k2)ψ − 2E(ψ)

}
,(4.12)

where φ = AΦ̄, ψ = AΨ + B, Ψ is the streamfunction, A ≡ c/(1 − k2) snB cdB,
and B and k parameterize the solution. Note that we have adopted the convention
used by Kinnersley (1976), that snφ ≡ sn(φ, k), snψ ≡ sn(ψ,

√
1 − k2), snB ≡

sn(B,
√

1 − k2), and similarly for the other Jacobian elliptic functions, and

E(φ) ≡ E
(
sin−1 ( snφ) ; k

)
, E(B) ≡ E

(
sin−1 ( snB) ;

√
1 − k2

)
.

It is a feature of the solution that each streamline represents a possible position
of the free surface. We will take the free surface to be given by the streamline with
ψ = B. At the solid surface, η̃ = 0, we have ψ = 0. This solution has period 4K(k)
in terms of φ, which gives the wavelength as

L =
4 snB cdB

c2

{
2E(k) − (1 − k2)K(k)

}
.

We also note that the peak-to-trough amplitude of the solution is

a =
4k snB sdB

c2
,(4.13)

and the height of the wave, given by the depth of water at the trough, is

h =
snB cdB

c2

{
2 scB( dnB − k) + (1 + k2)B − 2E(B)

}
.(4.14)

Figure 4.1(a) shows the streamlines for B = 2 and k = 0.25 over a single wave-
length (−4K(k) ≤ φ ≤ 0). Note that for larger values of B, the free surface becomes
self-intersecting and does not represent a valid solution.
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Fig. 4.1. Some solutions given by (4.11) and (4.12), all with c = 1. The free surface and bulk
streamlines, each of which is also a possible position of the free surface, are shown.

4.2. Limiting cases. We need to understand the behavior of the solution in
each of the three limits k → 0, k → 1, and B → 0. Fortunately, these are precisely
the limits studied by Kinnersley (1976), so we will briefly summarize his results here.

4.2.1. The linear capillary wave limit, k → 0. As k → 0 with B = O(1),
the solution takes the form of small amplitude capillary waves. The free surface is
given by

Y ∼ tanhB

c2

{
B − 2k sinhB cos

(
c2ξ̃

tanhB

)}
,

with

L ∼ 2π tanhB

c2
, a ∼ 4k tanhB sinhB

c2
, h ∼ B tanhB

c2
.

This form of the solution will appear in the far field when we use Kumak’s method.

4.2.2. The “string of beads” limit, k → 1. As k → 1, the solution takes the
form of a sequence of “beads” of fluid bounded by segments of ellipses, as shown in
Figure 4.1(b), connected by small inner “neck” regions, with size of O((1 − k)2), as
shown in Figure 4.1(c). We will not repeat the analysis of these two regions presented
by Kinnersley (1976), but note that, at leading order, the free surface in the outer
region (the “beads”) is given by(

2ξ̃

L

)2

=

(
1 − η̃

a

)(
1 +

η̃

a
tan2 B

)
,

with

a ∼ 4 sin2 B

c2
, L ∼ 8 sinB cosB

c2
.

This form of solution allows us to satisfy the contact angle boundary condition when
we use Kuzmak’s method. In particular, the free surface makes an angle 2B with
the ξ̃-axis, and a non-self-intersecting solution exists only for B ≤ π/4, with the free
surface becoming semicircular when B = π/4. This is a point of some significance, to
which we shall return later.
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4.2.3. The shallow water limit, B → 0. As B → 0,

L ∼ 4B

c2

(
2E(k) − (1 − k2)K(k)

)
, a ∼ 4B2k

c2
, h ∼ B2(1 − k)2

c2
,

and the free surface is given by

ξ̃ ∼ B

c2

{
(1 − k2)φ− 2E(φ) + 2k snφ

}
,(4.15)

Y ∼ B2

c2
( dnφ− k cnφ)

2
.(4.16)

We can see that, although a and h tend to zero as B → 0, a/h ∼ 4k/(1− k)2 = O(1),
so that the slope is finite. This is the limit corresponding to shallow water theory.
More importantly for us, this is the limit in which we should recover the solution
(3.27) for λ = O(1) that we constructed in section 3, which takes the form of a single
equation. This suggests that we should be able to reduce (4.15) and (4.16) to the
same form. We can do this using a Landen transformation, as suggested by Crowdy
(1999). The identities

dnφ− k cnφ ≡ (1 − k) nd

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
,

snφ ≡ 2

1 + k
sn

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
cn

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
nd

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
,

2E(φ) − (1 − k2)φ + 2k snφ ≡ 2(1 + k)E

(
sin−1

{
sn

(
1

2
(1 + k)φ;

2k1/2

1 + k

)}
;
2k1/2

1 + k

)
,

which follow from the Landen transformation (see Byrd and Friedman (1954)), show
that

ξ̃ ∼ B

c2

{
8k

1 + k
sn

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
cn

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
nd

(
1

2
(1 + k)φ;

2k1/2

1 + k

)

−2(1 + k)E

(
sin−1

{
sn

(
1

2
(1 + k)φ;

2k1/2

1 + k

)}
;
2k1/2

1 + k

)}
,

Ỹ ∼ B2

c2
(1 − k)2 nd2

(
1

2
(1 + k)φ;

2k1/2

1 + k

)
.

This allows us to eliminate φ and obtain

ξ̃ ∼ 2

c

⎧⎨
⎩
√

(Ỹ − Ỹ−)(Ỹ+ − Ỹ )

Ỹ
− Ỹ

1/2
+ E

{
sin−1

(
Ỹ

1/2
+ (Ỹ − Ỹ−)1/2

Ỹ 1/2(Ỹ+ − Ỹ−)1/2

)
;

√
1 − Ỹ−

Ỹ+

}⎫⎬
⎭ ,

where

Ỹ+ =
B2

c2
(1 + k)2, Ỹ− =

B2

c2
(1 − k)2



1966 J. BILLINGHAM

are the maximum and minimum values of Ỹ . Finally, the addition formula (117.0.1)
in Byrd and Friedman (1954) shows that

ξ̃ ∼ −
2Ỹ

1/2
+

c2

[
E

(√
1 − Ỹ−

Ỹ+

)
− E

{
sin−1

(√
Ỹ+ − Ỹ

Ỹ+ − Ỹ−

)
;

√
1 − Ỹ−

Ỹ+

}]
.

This has the same form as (3.27), the solution for λ = O(1), with the minus sign
arising because we have taken φ < 0 here.

4.3. Solution using Kuzmak’s method. We define slow and fast space vari-
ables as

X = εξ̃, x = ε−1θ(X) + p(X), y = η̃, p(0) = θ(0) = 0.

We have used x and y to tidy up our notation, and these should not be confused with
the original variables x and y. We seek a solution of the form

Y = Y (x,X), Φ0 = Φ0(X), Φ̃ = Φ̃(x, y,X),

where we have dropped the tildes from the spatial variables, again for notational
convenience. In terms of these variables, (2.10)–(2.16) become, after first using (4.1),

(ω + εp′)2 ∂
2Φ̃

∂x2
+

∂2Φ̃

∂y2
+ 2ε(ω + εp′)

∂2Φ̃

∂x∂X

+ ε(ω′ + εp′′)
∂Φ̃

∂x
+ ε2

∂2Φ̃

∂X2
+ εΦ′′

0 = 0 for x > 0, 0 < y < Y ,(4.17)

1

3
(Φ0 + εΦ̃) − 2

3

[
(ξc + X)

{
(ω + εp′)

∂Φ̃

∂x
+ ε

∂Φ̃

∂X
+ Φ′

0

}
+ εy

∂Φ̃

∂y

]

+
1

2

⎡
⎣
(
∂Φ̃

∂y

)2

+

{
(ω + εp′)

∂Φ̃

∂x
+ ε

∂Φ̃

∂X
+ Φ′

0

}2
⎤
⎦

=

[
1 +

{
(ω + εp′)

∂Y

∂x
+ ε

∂Y

∂X

}2
]−3/2

(4.18)

×
[
(ω + εp′)2 ∂

2Y

∂x2
+ 2ε(ω + εp′)

∂2Y

∂x∂X
+ ε(ω′+ εp′′)

∂Y

∂x
+ ε2

∂2Y

∂X2

]
at y = Y for x> 0,

∂Φ̃

∂y
+

2

3
(ξc + X)

{
(ω + εp′)

∂Y

∂x
+ ε

∂Y

∂X

}
− 2

3
εY
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−
{

(ω + εp′)
∂Y

∂x
+ ε

∂Y

∂X

}{
(ω + εp′)

∂Φ̃

∂x
+ ε

∂Φ̃

∂X
+ Φ′

0

}
= 0 at y = Y for x > 0,

(4.19)

∂Φ̃

∂y
= 0 at y = 0 for x > 0,(4.20)

where ω(X) ≡ θ′(X), subject to

Y (0, 0) = 0, (ω(0) + εp′(0))
∂Y

∂x
(0, 0) + ε

∂Y

∂X
(0, 0) = tan λ̄,(4.21)

Y − tan ε

ε
(ξc + X) → 0, Φ0 + εΦ̃ → 0 as X → ∞.(4.22)

We now expand

Φ̃ = Φ̃1(x, y,X) + εΦ̃2(x, y,X) + O(ε2), Y = Y1(x,X) + εY2(x,X) + O(ε2),

ξc = ξc0 + εξc1 + O(ε2), P = P1(X) + εP2(X) + O(ε2),

where P (X) appears in the transformation (4.6). At leading order, we obtain equa-
tions governing the underlying periodic solution that we discussed in the previous
section, but here x is scaled with ω. The solution is

x

ω
=

snB cdB

c2

{
2k(1 − k2) sdφndφ

dnψ + k cdφ
+ (1 − k2)φ− 2E(φ) + 2k2 snφ cdφ

}
,(4.23)

y =
snB cdB

c2

{
2(1 − k2) snψ cnψ

dnψ + k cdφ
+ (1 + k2)ψ − 2E(ψ)

}
,(4.24)

where φ = AΦ̄1, ψ = AΨ+B, A = c/(1−k2) snB cdB, c(X) =
√

4
9 (ξc0 + X)2 − 2

3Φ0,

and B(X) and k(X) vary on the slow lengthscale. We have also used (4.6) so that

Φ̃1 = Φ̄1 +
1

ω

{
2

3
(ξc0 + X) − Φ′

0

}
x + P1(X).(4.25)

In order that this solution has unit wavelength, we choose

ω(X) =
4
9 (ξc0 + X)2 − 2

3Φ0

4 snB cdB {2E(k) − (1 − k2)K(k)} .(4.26)

In order to satisfy the contact angle condition, the solution must take the “string
of beads” form discussed in section 4.2.2 so that

k → 1, B → 1

2
λ̄ as X → 0.(4.27)

In the far field, the amplitude of the disturbance of the free surface must decay to zero;
thus we need the linear capillary wave form of the solution, discussed in section 4.2.1,
so that

Φ0 → 0, k → 0, B ∼ 4

9
(ξc0 + X)3 as X → ∞.(4.28)
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4.3.1. Secularity conditions. We now have the functional form of the leading
order solution but still need to find the ordinary differential equations that determine
Φ0(X), k(X), B(X), and the eigenvalue, ξc0. This is the same situation that arose in
section 3, and we proceed in the same manner to determine secularity conditions.

Now, Φ̃1 must be periodic and not grow linearly with x. Since Φ̄1 changes by
−4K(k)/A over a period, (4.25) shows that the first secularity condition is

1

ω

{
2

3
(ξc0 + X) − Φ′

0

}
− 4K(k)(1 − k2) snB cdB

c
= 0.

From the definitions of c(X) and ω(X), this gives the ordinary differential equation
for Φ0,

Φ′
0 =

2

3
(ξc0 + X) −

K(k)(1 − k2)
√

4
9 (ξc0 + X)2 − 2

3Φ0

2E(k) − (1 − k2)K(k)
.(4.29)

In the limit B → 0, we can show that (4.29) reduces to (3.40) by using a Gauss
transformation (Byrd and Friedman (1954)).

In order to obtain the two remaining secularity conditions, we need to consider
the problem at O(ε). Over one wavelength of the leading order solution, the field
equation and boundary conditions can be written in the form

∇2Φ̃2 = F (x, y,X) for 0 < x̄ <
1

ω
, 0 < y < Y1,(4.30)

L1(Φ̃2, Ȳ2) ≡
∂Φ̃2

∂s
− 1

∂Φ̄1/∂x̄

∂

∂s

(
∂Y2/∂s

1 + (∂Y1/∂x̄)
2

)

− ∂

∂y

⎧⎨
⎩
√(

∂Φ̄1

∂x̄

)2

+

(
∂Φ̄1

∂y

)2
⎫⎬
⎭Y2 = g(s,X) at y = Y1 for 0 < x̄ <

1

ω
,(4.31)

L2(Φ̃2, Ȳ2) ≡ n · ∇Φ̃2 −
∂

∂s

(
Y2

∂Φ̄1

∂x̄

)
= f(s,X) at y = Y1 for 0 < x̄ <

1

ω
,(4.32)

L3(Φ̃2, Ȳ2) ≡
∂Φ̃2

∂y
= 0 at y = 0 for 0 < x̄ <

1

ω
,(4.33)

where x̄ ≡ x/ω, n is the outward unit normal at the boundary, and s measures arc
length along the free surface. The forcing functions F , f , and g are, recalling the
definition (4.25) of Φ̃1,

F (x̄, y,X) ≡ −2p′

ω

∂2Φ̃1

∂x̄2
− 2

∂2Φ̃1

∂x̄∂X
− ω′

ω

∂Φ̃1

∂x̄
− Φ′′

0 ,(4.34)

f(s,X) ≡
{

1 +

(
∂Y1

∂x̄

)2
}−1/2{

∂Φ̄1

∂x̄

(
p′

ω

∂Y1

∂x̄
+

∂Y1

∂X

)
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−2

3
ξc1

∂Y1

∂x̄
+

2

3
Y1 +

∂Y1

∂x̄

(
p′

ω

∂Φ̃1

∂x̄
+

∂Φ̃1

∂X

)}
,(4.35)

g(s,X) ≡ − 1

∂Φ̄1/∂x̄

{
1 +

(
∂Y1

∂x̄

)2
}−1/2

⎡
⎣− 1

3
Φ̃1 −

∂Φ̄1

∂x̄

(
p′

ω

∂Φ̃1

∂x̄
+

∂Φ̃1

∂X

)

+
2

3
ξc1

(
∂Φ̃1

∂x̄
+ Φ′

0

)
+

2

3
Y1

∂Φ̃1

∂y
− 3

∂Y1

∂x̄

∂2Y1

∂x̄2

(
p′

ω

∂Y1

∂x̄
+

∂Y1

∂X

){
1 +

(
∂Y1

∂x̄

)2
}−5/2

(4.36)

+

(
2
p′

ω

∂2Y1

∂x̄2
+ 2

∂2Y1

∂x̄∂X
+

ω′

ω

∂Y1

∂x̄

){
1 +

(
∂Y1

∂x̄

)2
}−3/2

⎤
⎦ .

Now, let Φ̃2 = G(x̄, y,X), Y2 = H(x̄, y,X) be a solution of the unforced problem,
∇2G = 0, L1(G,H) = L2(G,H) = L3(G,H) = 0. Green’s theorem shows that∫ ∫

D

(
G∇2Φ̃2 − Φ̃2∇2G

)
dA ≡

∫
∂D

(
Gn · ∇Φ̃2 − Φ̃2 n · ∇G

)
ds,

where D is the domain of solution and ∂D its boundary. Using (4.30)–(4.33) and
integrating by parts twice, we arrive at∫ ∫

D

GF (x̄, y,X) dx̄ dy =

∫ l

0

{
Gf(s,X) −H

∂Φ̄1

∂x̄
g(s,X)

}
ds,

where l is the length of the free surface.
One obvious solution of the unforced problem is G = 1, H = 0, which gives∫ ∫

D

F (x̄, y,X) dx̄ dy =

∫ l

0

f(s,X) ds.(4.37)

Another solution, as we would expect since these equations govern the correction to
the leading order solution, is G = ∂Φ̄1/∂x̄, H = ∂Y1/∂x̄, which gives∫ ∫

D

∂Φ̄1

∂x̄
F (x̄, y,X) dx̄ dy =

∫ l

0

{
∂Φ̄1

∂x̄
f(s,X) − ∂Y1

∂x̄

∂Φ̄1

∂x̄
g(s,X)

}
ds.(4.38)

As we shall see, (4.37) and (4.38) provide us with the two remaining ordinary differ-
ential equations for k(X) and B(X).

If we substitute (4.34) and (4.35) into (4.37) and use the fact that Φ̃1 is odd
and Y1 even in x̄, noting that we are able to reduce the double integral to a surface
integral, we arrive at

d

dX

∫ 1

0

ωY1
∂Φ̄1

∂x
dx = −4

3

∫ 1

0

Y1 dx.(4.39)

This is consistent with the solution that we constructed in section 3, since, using the
current notation, d0 ≡ −ωY1∂Φ̄1/∂x, which we recall is a function of X alone for
λ̄ � 1, so that (4.39) is equivalent to (3.35).
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Similarly, (4.38) leads to

d

dX

∫ ∫
D

ω

(
∂Φ̄1

∂x

)2

dx dy =

[
ω′

ω

{
2

3
(ξc0 + X) − Φ′

0

}
− 7

3
+ Φ′′

0

] ∫ 1

0

Y1
∂Φ̄1

∂x
dx

−
∫ 1

0

∂Y1

∂x

⎡
⎣2

3
ω2Y1

∂Φ̄1

∂x

∂Y1

∂x
− 3ω3 ∂Y1

∂x

∂2Y1

∂x2

∂Y1

∂X

{
1 + ω2

(
∂Y1

∂x

)2
}−5/2

(4.40)

+

(
2ω

∂2Y1

∂x∂X
+ ω′ ∂Y1

∂x

){
1 + ω2

(
∂Y1

∂x

)2
}−3/2

⎤
⎦ dx− 1

3ω

{
2

3
(ξc0 + X) − Φ′

0

}∫ 1

0

Y1 dx.

We can show that this is consistent with (3.38) by first noting that when B � 1
(which corresponds to λ̄ � 1), Y1 = O(B2), Φ̄1 = O(B), and ω = O(B−1), so that
(4.40) becomes

d

dX

∫ ∫
D

ω

(
∂Φ̄1

∂x

)2

dx dy ∼
[
ω′

ω

{
2

3
(ξc0 + X) − Φ′

0

}
− 7

3
+ Φ′′

0

] ∫ 1

0

Y1
∂Φ̄1

∂x
dx

−
∫ 1

0

∂Y1

∂x

[
2ω

∂2Y1

∂x∂X
+ ω′ ∂Y1

∂x

]
dx− 1

3ω

{
2

3
(ξc0 + X) − Φ′

0

}∫ 1

0

Y1 dx.

From the definition of d0, we find that

d

dX

∫ ∫
D

ω

(
∂Φ̄1

∂x

)2

dx dy ∼ d

dX

∫ 1

0

ωY1

(
∂Φ̄1

∂x

)2

dx ∼ − d

dX

(
d0

∫ 1

0

∂Φ̄1

∂x
dx

)

∼ 4

3ω

{
2

3
(ξc0 + X) − Φ′

0

}∫ 1

0

Y1 dx +
ω′

ω
Y1

∂Φ̄1

∂x

{
2

3
(ξc0 + X) − Φ′

0

}
− Y1

∂Φ̄1

∂x

(
2

3
− Φ′′

0

)
,

and combining these equations gives

d

dX

∫ 1

0

{
ω

(
∂Y1

∂x

)2
}
dx ∼ 5d0

3ω

[
1 − 1

d0

{
2

3
(ξc0 + X) − Φ′

0

}∫ 1

0

Y1 dx

]
.

Equation (3.22) then gives us (3.38), as required.
In order to determine k′ and B′ from (4.39) and (4.40), we need to use the

solution (4.23) and (4.24) for Φ̄1 and Y1. The resulting integrals can be evaluated
only numerically. We must also be very careful in evaluating the derivatives, since
(4.23) and (4.24) give x and y as functions of Φ̄ and Ψ. For example, after integrating
(4.39) by parts and noting that φ = −4K(k) at x = 1 and φ = 0 at x = 0, we can
write

−
∫ 0

−4K(k)

{
ω

A

∂Y1

∂X

∣∣∣∣
x

− d

dX

(ω
A

)
φ

∂Y1

∂φ

∣∣∣∣
X

− ω

A

∂φ

∂X

∣∣∣∣
x

∂Y1

∂φ

∣∣∣∣
X

+
4

3
Y1

∂x1

∂φ

∣∣∣∣
X

}
dφ

= 4
d

dX

(
K(k)ω

A

)
,
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where x1(φ,X) is the value of x on the free surface and the subscripts to the derivative
indicate the variable to be held constant. We then use

∂φ

∂X

∣∣∣∣
x

= − ∂x1

∂X

∣∣∣∣
φ

/
∂x1

∂φ

∣∣∣∣
X

,
∂Y1

∂X

∣∣∣∣
x

=
∂Y1

∂X

∣∣∣∣
φ

− ∂x1

∂X

∣∣∣∣
φ

∂Y1

∂φ

∣∣∣∣
X

/
∂x1

∂φ

∣∣∣∣
X

,

∂φ

∂x

∣∣∣∣
X

=
∂x1

∂φ

∣∣∣∣
X

/{
ω2

(
∂Y1

∂φ

∣∣∣∣
X

)2

+

(
∂x1

∂φ

∣∣∣∣
X

)2
}

to write the derivatives in a form for which we can use (4.23) and (4.24), and rewrite
the X-derivatives using

∂

∂X

∣∣∣∣
φ

= k′
∂

∂k

∣∣∣∣
φ,B,c

+ B′ ∂

∂B

∣∣∣∣
φ,k,c

+ c′
∂

∂c

∣∣∣∣
φ,k,B

,

noting that

c′ = c−1

{
2

9
(ξc0 + X) +

4K(k)ω

3A

}
.

In this way, we can write (4.39) as a linear equation in k′ and B′. A similar but
algebraically more complicated procedure reduces (4.40) to a linear equation, and we
can thereby extract k′ and B′.

We used Mathematica to determine the integrands and simplify them as far as
possible. It is worth noting that Mathematica is not very good at simplifying expres-
sions involving Jacobian elliptic functions. We found that an effective strategy was
to delete the definitions of all the Jacobian elliptic functions except sn and cn, and
teach Mathematica that sn2(u; k) + cn2(u; k) ≡ 1. Once the integrands had been
simplified, we then replaced obvious expressions (e.g.,

√
1 − k2 sn2(u; k) = dn(u; k)),

and cut and pasted the integrands, which run to several printed pages, into MATLAB.
In this way, we could write a routine to evaluate Φ′

0, k
′, and B′ as functions of Φ0,

k, B, and X, using quadl and dblquad to evaluate the necessary single and double
integrals. Note that our knowledge of the asymptotic behavior of (4.39) and (4.40) as
B → 0 proved invaluable in debugging the code.

In order to find the solution, we must solve a nonlinear eigenvalue problem, with
Φ0(0) and ξc0 the two eigenvalues. In this case, there is no convenient transformation
that will make the equations autonomous. We solve the three ordinary differential
equations for Φ0, k, and B with the MATLAB routine ode45. The initial conditions
are given by (4.27), and the conditions (4.28) must be satisfied as X → ∞. We
find that the solution automatically satisfies k → 0 as X → ∞. However, there is a
problem when k � 1, since both (4.39) and (4.40) give the leading order equation

B′ =
B tanhB

(
c′ + 4

3

)
c (tanhB + B sech2B)

,(4.41)

with the equation for k′ given by the O(k2) correction. This means that our method
of calculating k′ becomes very inaccurate when k is small. However, when k � 1, the
solution takes the form of small amplitude capillary waves on a flat free surface. We
do not, therefore, need to calculate the amplitude of these waves, for which we would
need to know k, in order to determine whether the solution satisfies (4.28). We simply
need to solve (4.29) and (4.41) once k becomes sufficiently small (we used k < 10−3).
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We determined the eigenvalues Φ0(0) and ξc0 using a shooting method and New-
tonian iteration, which typically converged after one cycle, calculating the Jacobian
by finite differences. We used the asymptotic solution

Φ0(0) ∼ −0.1314λ̄4/3, ξc0 ∼ 0.8231λ̄2/3 as λ̄ → 0(4.42)

as the initial guess for λ̄ � 1, and then continuation for larger values of λ̄, scaling the
previous values with λ̄4/3 and λ̄2/3, respectively, to improve the rate of convergence.
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Fig. 4.2. The position of the tip of the wedge for ε � 1 and λ̄ = O(1) (solid line) and λ̄ � 1
(broken line).

Figure 4.2 shows the leading order asymptotic estimate of the position of the tip
of the wedge, ξc0, both for λ̄ = O(1), as calculated using Kuzmak’s method described
above, and for λ̄ � 1, as given by (4.42). We can see that there is little difference
between these two curves and that they are in excellent agreement with each other
for contact angles less than about 30◦.

5. Boundary integral solutions. We would now like to compare the asymp-
totic solution that we have constructed for λ̄ = O(1) and ε � 1 with the solution of
the full problem. In order to solve the full nonlinear boundary value problem given
by (2.10)–(2.16) numerically, we use the boundary integral method.

5.1. Numerical method. The approach that we have used is a development
of the method described in Billingham and King (2005), and we refer the interested
reader to this paper for full details. The free surface was discretized using straight line
elements and lies at (x, y) = (X(s), Y (s)), where s is arc length. For the boundary
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integral equation, the potential, φ̄, was assumed to vary linearly along each element,
and the integral along each element then calculated analytically. The arc length
equation, X2

s + Y 2
s = 1, was evaluated on each element using central differences.

Derivatives in the dynamic boundary condition (2.11) were evaluated using a four-
point finite difference approximation. The resulting system of nonlinear algebraic
equations was solved using Newton’s method and continuation, reusing the Jacobian
as often as possible. We started with ε = λ̄, for which the solution is Y = X tan ε,
φ̄ = 0, and gradually decreased ε, using the known solution as the initial estimate of
the new solution.

In contrast to the method used by Billingham and King (2005), we have intro-
duced two new features. First, we have been able to calculate the Jacobian used in
Newton’s method analytically, which speeds up our calculations to the point where
the LU decomposition of the Jacobian is the most costly step of the algorithm. Sec-
ond, we used adaptive gridding, increasing the density of grid points close to the high
curvature, “neck” regions of the solution. For each new value of ε, we changed the
length of the element at the first five local minima of the free surface to be small
enough to resolve the local curvature, and allowed the element length to grow slowly
with distance from each “neck,” up to a maximum of 0.01. For s > 10, we allowed
the length of the elements to gradually increase to 0.25, and extended the domain of
solution to s = 15.

In this manner we were able to compute solutions until the maximum curvature
was about 200. We were unable to resolve more highly curved solutions with the
computing resources available to us. However, we note from our asymptotic solution
that for 1 − k � 1, the “neck” region (see Figure 4.1) has size of O((1 − k)2) and
therefore curvature of O((1−k)−2). At the first “neck,” 1−k = O(ε) for ε � 1, so that
the curvature is of O(ε−2) and therefore, in terms of the original variable, which we
use to calculate the numerical solution, the curvature is of O(ε−8/3). The minimum
element length must therefore scale with ε8/3 as ε → 0. Moreover, as ε decreases, the
number of “necks” at which the curvature is high and scales in the same manner is
of O(ε−1). That we struggle to resolve this highly multiscale solution numerically is
therefore not surprising and suggests that our asymptotic method is the correct way
to attack the problem.

5.2. Comparison of numerical and asymptotic solutions. Figure 5.1 shows
the position of the free surface and the potential at the free surface for λ̄ = 45◦ and
ε = 0.0105. This is the smallest value of ε for which we could obtain a numerical
solution. Recall that the leading order asymptotic solution for φ̄, shown here, is
a smoothly increasing function; the oscillatory part is given by the next term in the
asymptotic expansion. We note that the agreement between the asymptotic prediction
and numerical calculation of the position of the tip of the wedge and the free surface
and potential close to the tip is not perfect, although the period and amplitude are
reasonably well predicted.

Figure 5.2 shows the same functions for λ̄ = 90◦. Since this corresponds to the
case of a recoiling wedge with two free surfaces, we have also plotted the reflection of y
in the x-axis. It is easy to see that the region next to the tip is approximately circular
and that successive “beads” are approximately elliptical, as predicted. However, the
disagreement between numerical and asymptotic solutions is more marked in this
case, although, again, the amplitude and period of the oscillations are reasonably well
predicted.

We can go some way to explaining this discrepancy by noting that ε is unlikely to
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Fig. 5.1. The position of the free surface and the potential at the free surface calculated nu-
merically for λ̄ = 45◦ and ε = 0.0105. Also shown is the asymptotic prediction for ε � 1 and
λ̄ = O(1).
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Fig. 5.2. The position of the free surface and the potential at the free surface calculated nu-
merically for λ̄ = 90◦ and ε = 0.0344. Also shown is the asymptotic prediction for ε � 1 and
λ̄ = O(1).

be small enough to produce good agreement. Note, in particular, that the oscillations
in the potential at the free surface shown in Figure 5.2 are of an amplitude comparable
to the mean value—an indication that the asymptotic form has yet to be reached.
However, there is a very curious feature of these solutions that is rather harder to
explain. Figure 5.3 shows the position of the tip of the wedge, X(0), as a function
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Fig. 5.3. The position of the tip of the wedge calculated numerically for λ̄ = 45◦ and 90◦ (solid
lines). Also shown are the asymptotic predictions for ε � 1 and λ̄ = O(1) (broken lines) and λ̄ � 1
(dotted lines).

of ε for λ̄ = 45◦ and 90◦. Although X(0) appears to asymptote to a multiple of
ε−1/3 as expected, it is the leading order estimate that comes from the asymptotic
analysis presented in section 3, valid for λ̄ � 1, namely 0.8231λ̄2/3ε−1/3, that is in best
agreement with the numerical solution. As we can see from Figure 4.2, the leading
order estimate of the coefficient valid for λ̄ = O(1) is slightly larger than 0.8231λ̄2/3.
This is all the more puzzling because the asymptotic solution for λ̄ � 1, although
we have not shown it here, bears no resemblance to the numerical solution, except
that the position of its tip accurately predicts the numerically calculated position. If
our numerical solution of the full problem is correct and there is some error in our
asymptotic analysis when λ̄ = O(1), it is hard to see how the correct asymptotic
position of the tip of the wedge could be of the similarity form, scaling with λ̄, for
all λ̄ ≤ 90◦. Conversely, it is hard to see how an error in our implementation of
the numerical solution of the full problem could result in this similarity form for
the position of the tip of the wedge. For the moment, our best explanation is that,
for smaller ε than we can at present access numerically, the numerical solution will
start to approach the asymptotic solution, although we cannot say that this is a fully
satisfactory explanation.

Finally, we note that another prediction of our analysis is that there is no asymp-
totic solution for any λ̄ > 90◦ for sufficiently small ε. This can be confirmed by solving
the full problem numerically for a moderately small value of ε. Figure 5.4 shows some
numerical solutions of the full problem with ε = 5◦. As λ̄ increases, the first two



1976 J. BILLINGHAM

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

x

y

λ = 119.3o

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

x

y

λ = 90o

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7
0

0.5

x

y

λ = 105o

Fig. 5.4. The position of the free surface calculated numerically for various λ̄ and ε = 5◦.

“beads” approach each other and meet when λ̄ = λ̄c ≈ 119.3◦, so that the free surface
becomes self-intersecting. This raises the interesting question of what happens in the
initial value problem when λ̄ > λ̄c, since no self-similar solution is available. The
likely answer is that the problem can be regularized by the inclusion of the effect of
viscosity at small times, and that a sequence of pinch-off events will occur as the flow
develops. A similar problem is investigated in Billingham and King (2005), where the
arguments that lead to this conclusion are presented.

6. Conclusions. In this paper, we have shown how Kuzmak’s method can be
used to analyze the response of a slender wedge of inviscid fluid to an abrupt change in
contact angle. When the contact angle is of O(1), although the underlying nonlinear
oscillator is a nonlinear free boundary problem, we found that we could still make
analytical progress. There are two related problems that may be amenable to this
type of analysis.

First, the axisymmetric recoil of a slender cone of inviscid fluid bears many resem-
blances to the equivalent two-dimensional problem. However, there are two important
differences. The first is that in the two-dimensional problem, the contact angle is a
natural continuation parameter to move from a simple known solution to the required
solution. No such parameter exists for the axisymmetric problem, since there is no
equivalent of the moving contact line problem. The second difference is that, as far
as we know, there is no axisymmetric equivalent of Kinnersley’s analytical solution
for the underlying nonlinear oscillator. The solution of the underlying axisymmetric
nonlinear problem would therefore have to be obtained numerically, along with all of
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the derivatives required for the secularity conditions. Although these solutions can be
determined using the boundary integral method, this significantly increases the com-
putational complexity of the problem. Some progress on the axisymmetric problem
has been made using a one-dimensional approximation (Decent and King (2001)).

Second, it would be of interest to study the two-fluid version of the two-dimensional
problem. In common with the axisymmetric problem, there is the difficulty that, again
as far as we know, there exists no two-fluid version of Kinnersley’s analytical solu-
tion. Moreover, it is not obvious how to modify the asymptotic scalings used here
to accomodate the presence of an outer fluid. The two-fluid problem can be thought
of as a combination of a recoiling slender void, described by Billingham and King
(2005), and the problem we have studied here. Both the axisymmetric and two-fluid
problems represent significant challenges in asymptotic analysis.
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CONVECTION EFFECTS IN THIN REACTION ZONES:
APPLICATIONS TO BIACORE∗

DAVID A. EDWARDS†

Abstract. Surface-volume reactions occur in many physical systems such as biological and
industrial processes. Though traditionally modeled as a surface, the reaction zone is usually a thin
layer (often a gel) abutting a flowing fluid or gas. Therefore, one would expect a more realistic
model for the reacting zone to include the effects of transport in the gel. In this paper we examine
the BIAcore, a device for measuring rate constants which has this geometry. To explain anomalous
measurements from the device, it has been proposed that some flow penetrates into the dextran
(gel) layer, thus enhancing transport. To analyze the reversible kinetics, asymptotic and singular
perturbation techniques are used, yielding linear and nonlinear integrodifferential equations. Explicit
and asymptotic solutions are constructed for cases motivated by experimental design. The results
indicate that such flow penetration effects are bound to be negligible in surface-volume reactions,
regardless of the flow model used.

Key words. asymptotic expansions, BIAcore, biochemical reactions, integrodifferential equa-
tions, reaction zone, singular perturbations

AMS subject classifications. 35B25, 35C20, 35K57, 45J05, 80A30, 92C45
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1. Introduction. In many physical systems, so-called “surface-volume” reac-
tions occur. In the simplest model, one reactant (herein called the receptor) is confined
to a two-dimensional surface, while the other (the ligand) floats free in (a possibly
stirred) solution, and the reaction occurs only when the ligand interacts with the sur-
face. However, since the receptors are three-dimensional molecules, they either form
or are embedded in a thin reaction zone (such as a gel) near the surface. Given that
many of these systems occur in the presence of an active flow, it is natural to inquire
into the effects of the flow on the reaction zones.

Models of this type are applicable to various industries. The creation of alginate
gel in the food industry is enhanced by the addition of a convective flow of reactant
[27]. In bubble reactors, gas reacts with the liquid which impinges on the bubble
surfaces [19]. Corrosive processes occur in such geometries [13]. Inorganic material
synthesis can be enhanced if the templates are immersed in flow, rather than fixed-
batch, reactors [20]. In high-pressure continuous-flow fixed-bed reactors, gels are
introduced at the reaction surface to minimize hydrodynamics effects [14]. Harmful
blood clots form when platelets adhere to foreign objects in the presence of blood flow
[12]. Various biological processes ensue when ligands floating in the bloodstream bind
to cell receptors which occupy a thin reaction zone about the cell membrane [11].

1.1. The BIAcore. For the purposes of this paper, we focus on the BIAcore,
which is a surface plasmon resonance (SPR) device for measuring rate constants. The
configuration of the BIAcore is described in great detail elsewhere [16], [17], [18],
[26]. For the purposes of this manuscript, we may consider the BIAcore to consist

∗Received by the editors December 31, 2004; accepted for publication (in revised form) June 6,
2006; published electronically September 26, 2006. This work was supported by National Institute
for General Medical Sciences grant 1R01GM067244-01.

http://www.siam.org/journals/siap/66-6/62183.html
†Department of Mathematical Sciences, University of Delaware, Newark, DE 19716-2553

(edwards@math.udel.edu).

1978



CONVECTION IN THIN REACTION ZONES: BIACORE 1979

unbound

ligand

Hf

dextran layer (length L)

bound

complex

parabolic flow

dextran

layer

(height Hg)

evanescent

wave

unbound

receptor

magnified view of 

area in small 

circle

x̃

ỹ

Fig. 1.1. Schematic of BIAcore device. The coordinate system has its origin at the intersection
of the ỹ-axis and the dextran-flow interface.

of a rectangular channel through which the ligand is convected in standard two-
dimensional Poiseuille flow from x̃ = 0, the inlet position (see Figure 1.1). Receptors
are embedded in a thin dextran gel attached to the ceiling of the channel. Hence this
device can serve as a representative of many physical systems of the type described
above.

As the ligand diffuses to receptor sites, the binding process is measured by an
evanescent wave that tracks mass changes in the dextran gel, as described more fully
in section 6. This sensogram data is then transferred to a regression program which es-
timates the rate constants. During recent years, mathematical models of the BIAcore
have become increasingly more sophisticated, treating many facets of its transport
processes, including depletion of the free-flowing ligand along the channel [2], [3], [8],
[21], [22]; diffusion in the gel [5], [25], [30], [31]; and signal decay associated with the
measuring wave [6], [18], [25]. However, discrepancies still occur between measure-
ments and simulations using the most sophisticated models [16], [24], [29].

To explain some anomalous observations, Witz [29] proposed that some of the
buffer flow in the channel penetrates into the dextran gel, thus enhancing transport.
In [7], Edwards formulated a mathematical model for this flow and analyzed it in the
case where the reacting zone is treated as a surface. Now we shall treat the reaction
zone as a layer.

As a first approximation, we model the dextran gel as a viscous fluid; others have
treated it as a polymer brush [29]. We show that the physical parameter measuring
penetration is Hr = Hg/Hf , the ratio of the heights of the gel and bulk flow regions. To
leading order the flow adds a local depletion term to the mass action law for the bound
state. When the Damköhler number Da is small, we obtain detailed expressions for
the effect of penetration on the measurements. When Da = O(1) a nonlinear integral
equation results, but the rate constants can easily be estimated using short-time
asymptotics. We consider not only association, but also dissociation experiments.
We also include the effect of evanescent wave decay in the measurement device.
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All of our results indicate that flow penetration effects are very small. Such a
conclusion arises from the geometry of the device, rather than from the model chosen
for the dextran. Since the gel layer is so narrow compared to the rest of the device,
velocities there will be small, no matter the actual transport model used. Clearly this
result can be extended to the other physical systems described above.

2. Preliminaries. We consider the BIAcore to be divided into two regions, as
shown in Figure 1.1: the open channel (the region 0 ≤ ỹ ≤ Hf , where the subscript
“f” stands for “flow”) and the dextran gel layer (the region −Hg ≤ ỹ ≤ 0, where the
subscript “g” stands for “gel”). We are interested in only that portion of the dextran
layer which has length L, and so we take both regions to have 0 ≤ x̃ ≤ L.

2.1. Velocity profiles. The Reynolds number is small [7], so the flow in the
channel is described by a simple one-dimensional laminar model. On the other hand,
the dextran is a gel, and any true description of the flow therein would be quite
complicated. For instance, Witz [29] considers the gel to be a polymer brush. For the
purposes of this paper, we treat it merely as a very viscous fluid. This will necessarily
misstate some quantitative features of the flow, but we shall show that such errors
are negligible when analyzing sensogram data.

For simplicity, we introduce the following scalings for ỹ and the velocity field ṽ:

yf =
ỹ

Hf
, vf(yf) =

ṽf(ỹ)

Vf
, Vf =

ΔpH2
f

2μfL
, yg =

ỹ

Hg
, vg(yg) =

ṽg(ỹ)

Vg
,(2.1a)

Vg =
Hr

μr
Vf , Hr =

Hg

Hf
, μr =

μg

μf
,(2.1b)

where μ is the bulk viscosity, V is the characteristic velocity in each region, and Δp
is the (constant) pressure differential, which can be related to the known flow rate.
Here (and throughout), if the same symbol appears both with and without tildes, the
symbol with a tilde has dimensions, while the symbol without a tilde is dimensionless.

In (2.1b) the subscript “r” refers to “ratio,” and we will use it in the same way
(gel to flow) throughout. Using these scalings, it can be shown [7] that with suitable
boundary and interface conditions, the velocity profiles are given by

vf(yf) = 1 − y2
f +

(yf − 1)(μr − H2
r )

Hr + μr
,(2.2a)

vg(yg) = Hr(1 − y2
g) +

(yg + 1)(μr − H2
r )

Hr + μr
.(2.2b)

Since solid dextran corresponds to μr = ∞, we might consider μr as a large
parameter to use in a perturbation approach. However, we can solve our problem for
any μr if we choose Hr � 1, as motivated by its value in Table 4.1 below. Since Hr is
simply a geometric parameter, such a choice will extend our results to other physical
systems with thin reaction zones.

In the limit of small Hr, (2.2b) becomes a nearly linear profile, corresponding to
flow driven largely by shear from the bulk interface. Though using a more complicated
polymer brush model for the gel leads to exponential and Bessel-function velocity
profiles, these also reduce to linear profiles for small Hr [29]. Thus the two approaches
are equivalent with a proper choice of μr.
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2.2. Transport in the flow. In the flow, the ligand (concentration C̃f) travels
both by convection and diffusion. However, the Peclét number in the flow, defined as

Pef =
H2

f /D̃f

L/Vf
=

characteristic diffusion time in flow

characteristic convection time in flow
,(2.3)

is large (for a typical value, see Table 4.1 below). Here D̃f is the molecular diffusion
coefficient of the ligand in the flow. Hence one needs consider only the thin Lévêque
boundary layer near ỹ = 0 [3], which motivates the following scalings:

x =
x̃

L
, y = Pe

1/3
f yf , t = k̃onCut̃, C̃f(x̃, ỹ, t̃) = Cu[1 − DaCf(x, y, t)],(2.4)

where k̃on is the association rate constant and Cu is the ligand concentration entering
the device, which is used to create the dimensionless ligand concentration Cf . Note
that with our choice of scalings, the reaction time scale is the one of interest.

Here Da is the Damköhler number

Da =
k̃onR̃T

D̃f/(HfPe
−1/3
f )

=
reaction “velocity”

diffusion “velocity” in boundary layer
,(2.5)

where R̃T is the area density of receptor sites in the device. Da, which measures the
effect of transport on the chemical reaction, characterizes the size of ligand depletion
induced by the reaction, as shown in (2.4). Since Pef ∝ Vf , Da = 0 corresponds to the
case of infinitely fast flow where no depletion occurs. Most experiments are designed
so that Da is small; hence the choice of scaling in (2.4) makes Cf a perturbation.

With these scalings, it can be shown [7] that the governing equations for Cf are

∂2Cf

∂y2
= (v0 + v1y)

∂Cf

∂x
, Cf(0, y, t) = 0, Cf(x,∞, t) = 0,(2.6a)

v0 ≡ vf(0)Pe
1/3
f =

HrPe
1/3
f (Hr + 1)

Hr + μr
, v1 ≡ v′

f(0) =
μr − H2

r

Hr + μr
.(2.6b)

The scaling of v0 in (2.6b) is chosen so that our results transition smoothly to the
solid dextran case in the limit of large μr.

For the size of the transport processes to be comparable, the length scale in the
Lévêque boundary layer in the fluid (where convection and diffusion balance) should
be on the order of that in the gel. This implies that

Hg = O(HfPe
−1/3
f ) =⇒ Hr = O(Pe

−1/3
f ).(2.7)

Such a scaling makes v0 into an O(1) quantity as long as we treat μr as O(1). Equation
(2.7) also motivates the choice of Hr as a small parameter, since Pef � 1. Unfortu-

nately, (2.7) is rather a weak bound. From Table 4.1 below we have that Hr � Pe
−1/3
f ,

and so velocities in the gel will be comparatively small. Again, this result will hold
for other systems with similar geometries.

To solve for Cf , we use Laplace transforms (denoted with a hat) in the x-direction.
To understand the gel dynamics, we need the value of Ĉf only at the flow-gel interface
y = 0. In particular, it can be shown [7] that Ĉf satisfies

Ĉf(0, t) =
Ai(s1/3v0/v

2/3
1 )

(sv1)1/3 Ai′(s1/3v0/v
2/3
1 )

∂Ĉf

∂y
(0, t).(2.8)
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3. Dynamics in the dextran layer.

3.1. Transport. In the dextran gel, the reaction occurs only inside the pores,
so it is the concentration of ligand per fluid volume that is important. To convert to
this quantity, we simply divide C̃g, the concentration of ligand in the gel matrix, by
the volume fraction φ of pores in the gel. (φ is also called the partition coefficient.)
Motivated by this reasoning and (2.4), we choose the following scaling for C̃g:

C̃g(x̃, ỹ, t̃) = φCu[1 − DaCg(x, yg, t)].(3.1a)

Because the dextran layer is often treated as a surface, R̃T is usually quoted as an
area concentration. To convert this to a volume concentration, we simply divide by
the width of the layer Hg, and hence we have an appropriate scaling for B̃:

Bg(x, yg, t) =
Hg

R̃T

B̃g(x̃, ỹ, t̃).(3.1b)

Though the receptor density may initially be nonuniform [15], [23], for now we take
it to be uniform, since the error introduced from such an assumption is small [9].

In the dextran gel, the ligand travels both by convection and diffusion. Its evo-
lution is also affected by binding. Since the concentration of available receptors is
so much greater than the ligand concentration [5], the ∂Cg/∂t term in the transport
equation may be neglected. Moreover, Hg � L, and so diffusion in the x-direction
can be neglected.

Lastly, the Peclet number in the gel is given by

Peg =
H2

g/D̃g

L/Vg
=

H3
r

μr

D̃f

D̃g

Pef =
1

μr

D̃f

D̃g

O(v3
0),(3.2)

where we have used (2.1) and (2.7). Here D̃g is the diffusion constant in the dextran
gel. The analysis in [7], which considers the case of a surface reaction, contains terms
only up to O(v0). The same sort of analysis will hold here (as shown below), and thus
we may ignore convection in the ligand transport equation. Physically, the small size
of Peg in (3.2) shows that diffusion is the dominant transport process in the layer,
not convection. Thus the dominant effect of flow penetration is a slip condition on
the bulk flow.

Hence the leading-order dimensionless ligand transport equation is given by

∂2Cg

∂y2
g

= −D
∂B

∂t
,(3.3a)

D =
D̃f/(HfPe

−1/3
f )

φD̃g/Hg

=
diffusion velocity in diffusive boundary layer

diffusion velocity in dextran
.(3.3b)

We solve (3.3a) by writing our solution as the sum of a particular solution Ap and a
homogeneous solution Ah, as follows:

Cg(x, yg, t) = −DAp(x, yg, t) + Ah(x, yg, t),(3.4)

where Ap satisfies

∂2Ap

∂y2
g

=
∂B

∂t
,

∂Ap

∂yg
(x,−1, t) = 0, Ap(x, 0, t) = 0.(3.5)
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The homogeneous problem is most easily solved in Laplace transform space. Solv-
ing the homogeneous form of the operator in (3.3a) subject to a no-flux condition at
the channel wall y = −1, we determine that Âh is a function of t only. At the flow-
gel interface, the flux and ligand concentration per fluid volume must be continuous.
Combining these conditions with (2.8) and using the transform of (3.4), we obtain

Âh(t) = − Ai(s1/3v0/v
2/3
1 )

(sv1)1/3 Ai′(s1/3v0/v
2/3
1 )

∂Âp

∂yg
(0, t).(3.6)

Since we cannot invert (3.6) in closed form, we use the fact that we consider the
dextran to be a very viscous fluid, so v0 → 0. Formally, there are two ways to justify
this from (2.6b). The first, physically intuitive, reasoning is to say that μr → ∞. The
second, more consistent from a mathematical point of view, is to take Hr → 0. Then
expanding (3.6) to leading two orders in v0 and inverting, we obtain the following:

Ah(x, t) =
1

(3v1)1/3Γ(2/3)

∫ x

0

∂Ap

∂yg
(x− ξ, 0, t)

dξ

ξ2/3
− v0

v1

∂Ap

∂yg
(x, 0, t) + O(v2

0).(3.7)

Note from (3.5) that

∂Ap

∂yg
(x, 0, t) =

∫ 0

−1

∂B

∂t
dyg;

in other words, the derivative is simply the average rate of binding in the layer at fixed
x. Thus the integral term in (3.7) has an elegant physical interpretation, namely that
the deficit in the ligand concentration at position x is the accumulation of the reaction
that has occurred upstream. The effect of the slip velocity is to introduce the local
reaction into the computation of the ligand deficit through the second term in (3.7).

When expanding (3.6) to obtain the expansion in (3.7), we tacitly assumed that
s1/3v0 � 1. However, Laplace transform theory states that small x corresponds to
large s, so this assumption does not hold in the limit of small x. Fortunately, the
BIAcore returns measurements not of B, but of its average over the entire layer and
some scanning range xmin ≤ x ≤ xmax:

B̄(t) =
1

xmax − xmin

∫ xmax

xmin

∫ 0

−1

B(x, yg, t) dyg dx,(3.8)

where xmin is bounded away from zero. Since x = 0 is out of the scanning range, we
may confidently use our results to analyze sensogram data.

3.2. Reaction. The bound state evolves according to a standard bimolecular
mass action law. Using the scalings in (2.4) and (3.1) leads to the dimensionless form

∂B

∂t
= (1 − B)(1 − DaCg) − KB, K =

k̃off

k̃onCu

,(3.9a)

B(x, yg, 0) = Bi,(3.9b)

where k̃off is the dissociation rate constant and K is the dimensionless affinity con-
stant. Though the theory can handle general initial conditions for B, in practice the
initial condition is always spatially uniform. For an association experiment, initially
there is no bound state. For a dissociation experiment, we start with the steady state
of (3.9a), which will be shown to be a constant.
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Since Ap depends on ∂B/∂t, substitution of (3.4) and (3.7) into (3.9a) would
yield a nonlinear integrodifferential equation, and an exact solution would have to
be obtained numerically. However, asymptotic results can be derived in physically
relevant regimes.

4. Small Da results. Equation (3.9a) shows that Da = 0 corresponds to the
well-mixed case where there is no depletion. When designing experiments, scientists
strive to keep Da as small as possible to minimize transport effects [28]. Therefore,
we now specialize to the case of small Da by introducing the following expansion:

B(x, yg, t) = B0(x, yg, t) + DaB1(x, yg, t) + o(Da).(4.1)

4.1. Association experiment. We begin by considering an association experi-
ment as described in section 3. If we substitute (4.1) into (3.9), we find to leading order
that the ligand concentration does not contribute. Hence we are in the well-mixed
case, the solution of which is given by

B0(x, yg, t) =
1 − e−αt

α
+ Bie

−αt = B̄0(t),(4.2)

which leads to the following expression for Ap:

Ap =
dB0

dt

yg(yg + 2)

2
.(4.3)

Since Ap is independent of x, it is simple to use (4.3) in (3.7) and compute that

Ah(x, t) =
dB0

dt
h(x), h(x) =

32/3x1/3

v
1/3
1 Γ(2/3)

− v0

v1
.(4.4)

The value of Ah(x, t) in (4.4) is exactly the value of Cf(x, 0, t) obtained if the reacting
zone is treated as (instead of a layer) a two-dimensional surface at x = 0. In that
case, D = 0, and hence there is no contribution from Ap in (3.4).

Substituting (4.3) and (4.4) into (3.4), we obtain

Cg(x, yg, t) =
dB0

dt
hg(x, yg), hg(x, yg) =

[
−D

yg(yg + 2)

2
+ h(x)

]
.(4.5)

Thus, as in [5], the effects of the variables x and y decouple. We also note that (4.3) is
exactly the same as in [5], which considered the no-penetration case. Hence the effect
of flow penetration appears only in the homogeneous part. Since the velocity in the
layer is negligible at this order, the flow simply provides a slip condition for the bulk,
which then couples to the receptor layer through the flow-gel interface conditions.

Substituting (4.2) and (4.5) into the next order of our expansion of (3.9) and
solving, we have the following:

B1 =

[
(e−αt − 1)χ

α
− Kt

]
χe−αt

α
hg(x, yg).(4.6)

Then averaging, we obtain

B̄1 =
χe−αt

α

[
(e−αt − 1)χ

α
− Kt

]
h̄g, h̄g =

D

3
+ h̄.(4.7)
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Table 4.1

Parameter values for Figures 4.1 and 4.2.

Parameter Value Parameter Value

Bi 0 Pef 3.72 × 102

CT (mol/cm3) 10−11 t 10−3 t̃/s
D 1.20 × 10−1 xmax 7.92 × 10−1

Da 10−1 xmin 2.08 × 10−1

Hr 2 × 10−3 α 2
K 1 χ 1

k̃on(cm3mol−1s−1) 108

0

0.0005

0.001

0.0015

0.002

500 1000 1500 2000 2500

difference

t̃

Fig. 4.1. Absolute difference between (4.7) with μr = ∞ (solid dextran) and μr finite for
(in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Association
experiment.

Aficionados of perturbation theory will note the term in (4.7) proportional to te−αt,
similar to a secularity in a two-timing exercise. As t → ∞, B0 = O(1) and DaB1 �
B0, so from an experimental standpoint, this is not a problem. However, it can be
shown [3], [8] that a multiple-scale expansion is formally required. Though we could
construct such an expansion for this case, it will not be illuminating.

We use the parameters listed in Table 4.1 to plot our solutions. The parameter
values are from [7], with the exception of the value for D, which is from [6].

Figure 4.1 shows the effect of μr on B̄1 plotted against the dimensional time t̃ (in
seconds) for various values of μr. We use the dimensional time in order to compare
better with sensogram data. Note that in every case the difference is quite small due
to the low value of Hr. In particular, even the error for μr = 1 (corresponding to
the absence of a dextran layer) is only O(Hr). In addition, the difference is positive;
that is, allowing the flow to penetrate into the dextran layer enhances the association
process. Since Hr is a geometrical parameter, this order estimate holds for other
physical systems of this type.
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Fig. 4.2. Absolute difference between effective rate constant solution B̄ of (4.8) with μr = ∞
(solid dextran) and μr finite for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference
is about 0.04%. Association experiment.

In Figure 4.1 (and throughout this manuscript) we graph the absolute difference
because it is that difference which will be measured by the device and plotted on the
sensogram. Obviously small differences will be masked by the underlying noise in any
experiment. However, for comparison purposes and to extend our results to other
physical systems, we also compute the relative difference. The case with μr = ∞,
graphed in Figure 1 of [5], shows that B1 is on the order of 0.2, so the differences
shown in Figure 4.1 are on the order of 1%. (Note this is the difference in B̄1, not in
the whole solution, which would include the much greater contribution from B̄0.)

These results may be stated more simply in the context of an effective rate con-
stant (ERC) equation, as outlined in [5], [8], and [21]. Substituting (4.5) into (3.9a),
we have

∂B

∂t
= (1 − B)

[
1 − Da

dB0

dt
hg(x)

]
− KB + O(Da2),

which we may rearrange and average to obtain

dB̄

dt
=

1 − αB̄

1 + Da(1 − B̄)h̄g
+ O(Da2).(4.8)

Equation (4.8) is an ODE for B̄, the actual sensogram data produced by the BIAcore,
and hence the solution requires no postprocessing averaging step. Equation (4.8) is in
the form obtained previously [5], albeit with a different value of h̄. This is consistent
with [4], where it is shown that if B0 is spatially uniform, the ERC approximation is
robust to any geometry or flow.

Figure 4.2 shows the effect of μr on our ERC solution. The absolute error here
is an order of magnitude smaller than that in Figure 4.1. This is because Figure 4.1
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shows errors in B̄1, which have to be multiplied by Da (0.1 in our graphs) to obtain
the error in the full solution as shown in Figure 4.2. The relative error here is around
0.1%, as can be seen by comparison with the full solution in Figure 1 of [8]. As before,
flow penetration enhances the association process.

4.2. Dissociation experiment. A typical BIAcore experimental run begins
with an association experiment run to completion. At this stage, pure buffer solution
(inlet concentration zero) is injected into the device, initiating the dissociation process.
This second experiment then provides additional data for rate constant estimation.

The initial condition for this phase of the experiment is the steady state of (3.9a).
Since there is no flux of ligand through the exterior wall, one finds from (3.3a) that
the steady state of Cg must be a constant. By using continuity arguments at the
interface, one finds that this constant must be zero. Thus the steady state of (3.9a)
is

Bs = α−1,(4.9)

where the subscript “s” refers to “steady state.” Since (4.9) provides the initial con-
dition for the dissociation problem, we are justified in always taking a constant initial
condition for B.

With no ligand injected into the device, the equation analogous to (3.9a) becomes

∂B

∂t
= (1 − B)(−DaCg) − KB.(4.10)

Thus in this case Cg ≤ 0. The analysis proceeds in a manner analogous to the
association experiment; the relevant results are given by

B0(x, t) = B̄0(t) =
e−Kt

α
,(4.11a)

B̄1 =
K

α

(
t +

e−Kt − 1

Kα

)
h̄ge

−Kt,(4.11b)

where h̄g is given in (4.7). The same secularity problem appears with more obvious
effects, since in the dissociation experiment the second term in the expansion can
become larger than the first. Again, we restrict ourselves to the case where Dat =
O(1), since constructing the multiple-scale expansion is not illuminating.

With the inlet value 1 absent from the concentration term in (4.10), the expression
analogous to (4.8) is given by

dB̄

dt
=

−KB̄

1 + Da(1 − B̄)h̄g
+ O(Da2),(4.12)

as in [5].

5. Moderate Da results. Since Cg depends on B, (3.9a) is nonlinear if Da =
O(1). Thus to obtain analytic solutions we resort to short-time asymptotics by as-
suming a solution of the form

B(x, yg, t) = Bi + β(x, yg)t + o(t), Ap(x, yg, t) = Ap,1(x, yg) + o(1),(5.1a)

Ah(x, t) = Ah,1(x) + o(1).(5.1b)
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5.1. Association experiment. Substituting (5.1) into (3.4), (3.9a), and (3.5),
we have, to leading order in t,

Cg = −DAp,1 + Ah,1,

β = (1 − Bi)[1 − Da(−DAp,1 + Ah,1)] − KBi,(5.2a)

∂2Ap,1

∂y2
g

= β,
∂Ap,1

∂yg
(x,−1) = 0, Ap,1(x, 0) = 0.(5.2b)

Since (5.2a) is linear, it is most convenient to work in Laplace transform space. The
relationship between Âh,1 and dÂp,1/dyg(0) is exactly the same as in the transform
of (3.7). Upon substituting that expression into the transform of (5.2) and solving,
we obtain a form for Âp,1 that depends explicitly on dÂp,1/dyg(0). Some algebraic
manipulation eliminates the unknown from our solution, yielding

Âp,1 = − χ

λ2
aras

[
1 − cosh λa(ya + 1)

cosh λa

](
1 +

ν
1/3
a

s1/3

)−1

,(5.3)

ra = 1 − (1 − Bi)Da
v0

v1

tanhλa

λa
, λ2

a = DDa(1 − Bi),(5.4a)

νa =
1

3v1

{
Γ(2/3)

Γ(1/3)

[
1

Da(1 − Bi)

λa

tanhλa
− v0

v1

]}−3

,(5.4b)

where the subscript “a” denotes “association.” We have written (5.4b) in a form where
the correction due to v0 can be easily seen. Recall that in deriving this form, we have
already taken an asymptotic limit for small v0. Thus, we should expect that (5.3) will
hold only for those Da where the first bracketed term is much larger than the second.

To simplify the interpretation of the data, we write the average (3.8) in dimen-
sional form with the aid of (2.4):

B̄(t̃) ∼ Bi + St̃, t̃ → 0,

S =
k̃onCu{I[β;xmax] − I[β;xmin]}

xmax − xmin
,(5.5a)

I[β;x] ≡
∫ x

0

∫ 0

−1

β(ξ, yg) dyg dξ.(5.5b)

Substituting (5.3) into the Laplace transform of (5.2b) and inverting, we have

I[β;x] =
χe−νax

νara

[
eνax − 1 −

∣∣∣∣P
(

4

3
,−νax

)∣∣∣∣ +

∣∣∣∣P
(

5

3
,−νax

)∣∣∣∣
]

tanhλa

λa
,(5.6a)

where P is the normalized lower incomplete gamma function whose definition is [1]

P
(m

3
,−νax

)
=

γ(m/3,−νax)

Γ(m/3)
.(5.6b)

In the limit that D → 0, λa → 0 and (5.6a) reduces to the result in the surface
reaction case [7].

To estimate the rate constants from an experiment, we first run the association
experiment to steady state. This will yield an estimate for α, and hence K, from
(4.9). To calculate k̃on, we use the linear fit S from our short-time data in (5.5a) to
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Table 5.1

Parameter values for Figures 5.1 and 5.2.

Parameter Value Parameter Value

D̃f (cm2/s) 2.8 × 10−7 L (cm) 2.4 × 10−1

D̃g (cm2/s) 3.36 × 10−8 RT (mol/cm2) 10−12

k̃off (s−1) 8.9 × 10−3 φ 1

obtain k̃on. Since Da also depends on k̃on, the relationship between S and k̃on is not
a simple linear one. Using our estimates for K and k̃on together, we may calculate
k̃off .

We may asymptotically determine the behavior of S for small k̃on, which corre-
sponds to small k. For small k, ra → 1, λa → 0, and νa → 0, so we have

S ∼ k̃onCuχ, k̃on → 0.(5.7)

Equation (5.7) merely shows that if there is no forward reaction (k̃on = 0), then there
will be no change in the bound concentration from the initial state (S = 0).

At the other extreme, we cannot ascertain the behavior in the case that k → ∞
due to the form of (5.4b). As k increases, so will Da, thus eventually causing the
assumed ordering in (5.4b) to be violated. Essentially, because of the faster reaction,
we cannot simply take the first-order convection correction; we must include additional
terms in our analysis.

Since tanhλa < 1, we can still satisfy our ordering if we replace tanhλa with 1
for simplicity. By doing so, we may construct a specific bound using the parameters
in Table 5.1 (which come from [6] and [7]). The bound is calculated to be

k � 232μ2
r ,(5.8)

which is quadratic in μr—a much less restrictive bound than the linear bound in the
surface reaction case [7].

5.2. Dissociation experiment. For the dissociation case, the initial condition
is the steady state from the association problem, given in (4.9). In addition, the
leading-order concentration is now 0, not 1. Essentially, only the parameters in the
problem have changed, not the general structure. Therefore, the solution process
follows as before, and our expression for I is

I[β;x] = −Ke−νdx

ανdrd

[
eνdx − 1 −

∣∣∣∣P
(

4

3
,−νdx

)∣∣∣∣ +

∣∣∣∣P
(

5

3
,−νdx

)∣∣∣∣
]

tanhλd

λd
,

(5.9)

λ2
d = DDa

(
K

α

)
, rd = 1 −

(
K

α

)
Da

v0

v1

tanhλd

λd
,(5.10a)

νd =
1

3v1

{
Γ(2/3)

Γ(1/3)

[
1

Da(K/α)

λd

tanhλd
− v0

v1

]}−3

,(5.10b)

where the subscript “d” refers to “dissociation.” Similar to the previous subsection,
in the limit that D → 0, our results reduce to the surface reaction case in [7].

Using our new initial condition, we write our average as

B̄(t) ∼ 1

α
+ St̃, t̃ → 0,
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Fig. 5.1. Thick line: S versus log10 k, keeping k̃off fixed. Thin line: large-k asymptote. Disso-
ciation experiment, v0 = 0.

where S is defined in (5.5a). Note from (5.9) that the slope is now negative, as
expected for our dissociation problem.

We carefully analyze the behavior of S with respect to k, beginning with the case
where v0 = 0. In [5], the author kept K fixed and varied k̃on, which necessitated
(tacitly) varying k̃off . In contrast, here we wish to keep k̃off fixed, which means that
K will vary as k̃on does. This approach was taken in the study of flow penetration
on the surface reaction case [7]. The value chosen for k̃off is listed in Table 5.1 and
comes from [7].

In order to visualize the relationship between S and k̃on, in Figure 5.1 we construct
a curve using the parameters in Table 5.1 with μr = ∞ (the solid dextran case). For
convenience, we define the new variable

k = 10−9k̃on
mol · s
cm3

.(5.11)

Since we take Bi = 0 for the association case, χ = 1 and the solution is independent
of K. It can be shown that the only qualitative difference between the graph here
and with K fixed is in the asymptotes. (See [7] for a related discussion of the layer
reaction case.)

For the small-k̃on asymptote, we first note from (5.10) that as k̃on → 0, λd → 0,
which causes the λd contribution to disappear, as in the previous subsection. In
addition, rd → 1 and νd → 0. Thus we have that

S ∼ −k̃onCu, k̃on → 0.(5.12)

Note that (5.12) holds regardless of the value of v0.
For the large-k̃on asymptote, we must restrict ourselves to the case with no flow:
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Fig. 5.2. Absolute difference between S with μr = ∞ (solid dextran) and μr finite versus log10 k
for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Dissociation
experiment.

v0 = 0 and v1 = 1, so rd = 1. First, it is convenient to estimate λd in this limit:

lim
k̃on→∞

λd ≡ λ∞ =

(
R̃THg

φD̃g

k̃off

Cu

)1/2

.(5.13a)

In addition, we may use (5.10b) to calculate ν∞ for this case:

ν∞ =
1

3Pef

[
Γ(1/3)

Γ(2/3)

R̃THf

D̃f

k̃off

Cu

tanhλ∞
λ∞

]3

, v0 = 0.(5.13b)

Equations (5.13) illustrate a key difference between our analysis and that of [5].
In that work, K was kept fixed, so λd was unbounded as k̃on → ∞. This simplified
I[β;x] greatly, leading to a relatively simple result. In our case, the asymptote has no
convenient closed-form solution, but upon substituting (5.13) into (5.6a) and (5.5a),
we obtain S = −2.20 × 10−3, which is exactly the asymptote in Figure 5.1.

Now that we have a baseline result for comparison, we next vary the viscosity
ratio μr. Again we must preserve the assumed size ordering in (5.10b). Substituting
our parameters into the above, we have

4.74 × 10−1 � 16.2μr,(5.14)

which is simply a bound on μr that is always satisfied experimentally. Thus our
expressions do not break down for large k as in the association case.

In Figure 5.2 we examine the effect of varying viscosity on the short-time asymp-
tote S. As expected, the corrections are again small. The decrement to S increases
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with decreasing μr, as lower μr means more convective transport, which enhances
dissociation. By examining Figure 5.1, we see that the relative difference is about
1%.

6. Evanescent wave effects. The way in which an SPR device like the BIAcore
measures binding is quite involved; here we present a brief summary. As binding
occurs in the gel, the gel’s index of refraction changes. A polarized light beam is
aimed at the sensor surface at various angles. A sharp decrease in reflectivity is noted
for a certain incidence angle, which can be related to the index of refraction and
hence the binding. Since the strength of the evanescent wave (electric field) decays
as it penetrates into the gel, the effect of binding on signal decays further from the
surface ỹ = −Hg [10], [18].

By using a simple exponential decay model for the signal, we obtain the following
result for the average B̄, which replaces (3.8):

B̄(t; δ) =
δ

(1 − e−δ)(xmax − xmin)

∫ xmax

xmin

∫ 0

−1

e−δ(yg+1)B(x, yg, t) dyg dx, δ =
Hg

Hw
,

(6.1)

where Hw is the characteristic decay length of the wave. Here we include δ explicitly
in the notation for B̄ to indicate that we are including wave effects.

The only change to our work from previous sections is the calculation of averages.
Since the leading-order solutions are independent of yg, their averages do not change
with the decaying signal strength.

6.1. Results for small Da. We begin by examining the small Da case. Using
our averaging scheme in (6.1) to average hg as given in (4.5) yields

h̄g(t; δ) = D
δ2 + 2[(δ + 1)e−δ − 1]

2δ2(1 − e−δ)
+ h̄.(6.2)

It can be shown [6] that the term multiplying D is bounded between 1/3 (as in (4.7))
and 1/2; hence we expect the effect of the evanescent wave layer to be minimal. In
order to plot some curves to verify this, we choose a typical decay length Hw from
[25] and a typical gel width from [31]:

Hw = 9.5 × 10−6 cm, Hg = 10−5 cm =⇒ δ = 1.05.(6.3)

As a näıve first approach, we might try to create a graph similar to Figure 4.1
to illustrate the changes of varying viscosity. However, we note from (4.4) and (6.2)
that the only term involving μr is h̄ (through the v0 term). Hence the D term will
always vanish when calculating

B̄1(μr = ∞) − B̄1(μr �= ∞),

as in Figure 4.1. Since the D term includes the effect of decay, a graph of the above
quantity will be the same whether or not decay is included.

The ERC solution does not have the unusual property described above, so to
include the wave decay we substitute (6.2) into (4.8). In Figure 6.1 we plot the
difference between the no-flow and viscous-flow cases of the ERC solution, including
the wave decay. The graph is virtually indistinguishable from its analogue Figure 4.2,
so the effect of decay is slight and the relative error is again around 0.04%.
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Fig. 6.1. Difference between wave decay effective rate constant solution B̄ of (4.8) (using (6.1)
and (6.2)) with μr = ∞ (solid dextran) and μr finite for (in decreasing order of thickness) μr = 1,
10, 100. Relative difference is about 0.04%. Association experiment.

For the dissociation experiment, the analysis is exactly analogous. The only
difference is that rather than substituting (6.2) into (4.8), we substitute it into (4.12).

6.2. Results for moderate Da. The wave decay effect is more pronounced in
the moderate Da case, in some cases leading to nonunique parameter estimates for
the same data [6]. Proceeding in a manner analogous to (5.6a), we find that including
the decay yields

I[β;x] =
χe−νax

2raνa cosh λa

[
eνax − 1 −

∣∣∣∣P
(

4

3
,−νax

)∣∣∣∣ +

∣∣∣∣P
(

5

3
,−νax

)∣∣∣∣
]

×
[
e(λa−δ) − 1

λa − δ
− e−(λa+δ) − 1

λa + δ

]
δ

1 − e−δ
.(6.4)

Note that the x-dependence is unchanged since the decay operates only in the y-
direction.

Upon taking the limit for small k̃on, the fact that λa → 0 forces all the δ terms
in the last line of (6.4) to cancel. Thus (5.7) still holds. This is because in this limit,
the reaction is so slow that all transport effects are unimportant. Thus the binding
will be uniform, and the wave decay cannot be discerned.

We demonstrate our results for varying μr in Figure 6.2. Since this is an asso-
ciation graph, the relevant restriction on k is given by (5.8), so the graphs end for
different values of k. As before, the addition to S increases with decreasing μr, as
lower μr means more convective transport, which enhances association. The actual
value of S is essentially the negative of that shown in Figure 6.3, as can be seen from
Figure 3 in [5]; hence the relative difference is about 1%.
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Fig. 6.2. Absolute difference between S with μr = ∞ (solid dextran) and μr finite versus log10 k
for (in decreasing order of thickness) μr = 1, 10, 100. Relative difference is about 1%. Association
experiment, decay included.
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Fig. 6.3. Thick line: S versus log10 k, keeping k̃off fixed. Thin line: large-k asymptote. Disso-
ciation experiment, v0 = 0, wave decay considered.
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For the dissociation case, the arguments are similar. The equation analogous to
(5.9) is

I[β;x] = − Ke−νdx

2αrdνd cosh λd

[
eνdx − 1 −

∣∣∣∣P
(

4

3
,−νdx

)∣∣∣∣ +

∣∣∣∣P
(

5

3
,−νdx

)∣∣∣∣
]

×
[
e(λd−δ) − 1

λd − δ
− e−(λd+δ) − 1

λd + δ

]
δ

1 − e−δ
.(6.5)

As for the case without wave decay, earlier studies of the moderate Da case have
kept K fixed and varied k̃on [6]. Thus, as in the previous subsection, in Figure 6.3 we
present a demonstration graph to show what happens when we keep k̃off fixed instead.
Again, the main difference lies in the asymptotes.

As above, when taking the limit for small k̃on, the δ terms cancel. Thus the ex-
pression (5.12) for the small-k̃on asymptote still holds. For the large-k̃on asymptote in
the no-flow case, we must use the expressions in (5.13). Substituting these parameters
and our value of δ into (6.5) and (5.5a), we obtain S = −2.18×10−3, which is exactly
the asymptote in Figure 6.3.

Lastly, we vary the viscosity ratio μr in Figure 6.4. Note that the corrections are
again small and negative, as convection enhances dissociation. As in Figure 5.4, there
are no restrictions on k because (5.14) is always satisfied. Therefore, our graphs go all
the way to the right. Comparison with Figure 6.3 shows that the relative difference
is again around 1%.

7. Conclusions. To explain BIAcore data that did not fit the traditional models,
Witz [29] proposed that buffer flow from the channel penetrates into the dextran gel
layer, enhancing transport. We have formulated a new model to include this effect.
The key dimensionless parameter in this study is the small parameter Hr, which
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measures the ratio of the widths of the gel and flow and hence characterizes the size
of the velocity v0 within the dextran gel. Its effect can be most readily seen in (3.7),
where the slip condition at the flow-gel interface introduces a local depletion term
that augments the integral depletion term from the no-flow case.

Since (3.9a) is a nonlinear equation, we obtained analytical results by introducing
experimentally relevant simplifications. Most experiments are designed to have Da �
1 to minimize transport effects, so we calculated the O(Da) correction to the standard
well-mixed case. The only effect of penetration is to introduce an additional term in
h(x), as defined in (4.4). We derived not only solution profiles for B, but also an ERC
equation which can be used to fit sensogram data directly.

Some experiments cannot be designed such that Da � 1, so we analyzed the
moderate Da case by considering the short-time slope of the sensogram data. Cor-
rections due to flow penetration appeared only in the parameter definitions in (5.4)
and (5.10); the rest of the theory is the same as in the no-flow case [5]. The nature
of our small-v0 expansion dictated that we could not construct results for the case
where Da → ∞; however, such conditions do not occur experimentally.

As in the small Da case, we examined both the association and dissociation phases
of an experiment, providing (when possible) both the large- and small-k̃on behavior
of the short-time slope. In order to obtain results more consistent with experimental
practice, we kept k̃off fixed, in contrast to [5]. However, any differences between the
papers were minor. In addition, since the inherent decay in the evanescent measuring
wave affects only the averaging, not the transport, it was a simple matter to recast
our previous results in this context.

In this manuscript we studied convection by modeling the dextran gel as a viscous
fluid, though others have used more realistic polymer brush models [29]. Despite the
simplicity of our model, the small thickness of the gel layer indicates that more realistic
models will not produce qualitative changes in our results. We thus conclude that
flow penetration effects are not likely to explain anomalous BIAcore measurements,
and other effects, such as steric hindrance effects or conformational changes, should
be investigated instead.

Moreover, since the size of the penetration effects are dictated by geometry, rather
than properties of the gel, flow, or reactants, these insights can be extended to many
similar physical systems. In particular, one may use gels and other compounds in
reacting zones to reduce the size of hydrodynamic convective effects (as in [14]).

Acknowledgments. Portions of this manuscript were prepared during sabbati-
cal stays at the Mathematical Biosciences Institute at The Ohio State University and
the University of Maryland, Baltimore County.
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Abstract. In this paper, we develop nonlinear constitutive equations and resulting system mod-
els quantifying the nonlinear and hysteretic field-displacement relations inherent to lead zirconate
titanate (PZT) devices employed in atomic force microscope stage mechanisms. We focus specif-
ically on PZT rods utilizing d33 motion and PZT shells driven in d31 regimes, but the modeling
framework is sufficiently general to accommodate a variety of drive geometries. In the first step of
the model development, lattice-level energy relations are combined with stochastic homogenization
techniques to construct nonlinear constitutive relations which accommodate the hysteresis inherent
to ferroelectric compounds. Second, these constitutive relations are employed in classical rod and
shell relations to construct system models appropriate for presently employed nanopositioner designs.
The capability of the models for quantifying the frequency-dependent hysteresis inherent to the PZT
stages is illustrated through comparison with experimental data.
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1. Introduction. Stage mechanisms employing the ferroelectric material lead
zirconate titanate (PZT) have played a fundamental role in scanning tunneling mi-
croscope (STM) and atomic force microscope (AFM) design since their inception due
to the high set point accuracy, large dynamic range, and relatively small temperature
sensitivity exhibited by the compounds [14]. To illustrate, consider the prototypical
AFM design depicted in Figure 1. To ascertain the three-dimensional (3-D) surface
structure of a sample, it is moved laterally along a predetermined x-y grid by a PZT-
driven stage. The response of a highly flexible microcantilever to changing atomic
surface forces is monitored by a reflected laser beam measured via a photodiode,
and forces corresponding to the cantilever displacement changes are determined via
Hooke’s law. A feedback law is used to determine voltages to a transverse PZT stage
which produces displacements in the z-direction to maintain constant forces. A com-
plete scan in this manner provides a surface image of the compounds. Additionally,
PZT actuators are often used to drive the microcantilevers at resonance to achieve the
tapping mode operation used to reduce damage to specimens. The reader is referred
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Fig. 1. (a) Configuration of a prototypical AFM, and (b) surface image determined by one
lateral sweep.
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Fig. 2. Actuator configurations employed for sample positioning in AFM: (a) stacked actuators
employed as x- and y-stages, and (b) cylindrical PZT transducer.

to [11, 13, 14] for additional details regarding AFM applications and design.
Two representative stage designs are depicted in Figure 2. The first employs

stacked PZT actuators utilizing d33 electromechanical motion to achieve longitudinal
positioning along the prespecified x-y grid. A second stage provides the transverse mo-
tion required to ascertain the sample topography. Rod models with linear and nonlin-
ear electromechanical input relations are constructed to quantify the PZT transducer
dynamics in this design. The second geometry employs a cylindrical shell—with half
poled d33 to provide horizontal (x-y) motion and half poled d31 for vertical (z) motion,
as depicted in Figure 2(b)—to enhance vibration isolation and reduce hysteresis and
constitutive nonlinearities. Thin shell models are developed to characterize this stage
design.

To illustrate issues which must be addressed by models, field-displacement data
from the stacked actuator depicted in Figure 2(a) is plotted in Figures 3 and 4. The
data in Figure 3 was collected at 0.1 Hz and illustrates the nested, hysteretic relation
between input fields and generated displacements in a nearly quasi-static regime.
The data in Figure 4 was collected at frequencies ranging from 0.279 Hz to 27.9 Hz
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Fig. 3. Nested minor loops in 0.1 Hz field-displacement data from a stacked PZT stage of the
type depicted Figure 2(a).
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Fig. 4. Frequency-dependent field-displacement behavior of a stacked PZT stage of the type
depicted in Figure 2(a): sample rates of (a) 0.279 Hz, (b) 5.58 Hz, and (c) 27.9 Hz.

to illustrate the frequency-dependence of the hysteresis as well as certain dynamic
effects.

At low frequencies, the inherent hysteresis can be accommodated through pro-
portional-integral-derivative (PID) or robust control designs [7, 8, 22, 29]. However,
at the higher frequencies required for applications including real-time monitoring of
biological processes (e.g., protein unfolding), comprehensive product diagnostics, and
single electron spin detection [28, 40], increasing noise-to-data ratios and diminishing
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high-pass characteristics of control filters preclude a sole reliance on feedback laws to
eliminate hysteresis.

Alternatively, it is illustrated in [20, 21] that use of charge- or current-controlled
amplifiers can essentially eliminate hysteresis. However, this mode of operation can be
prohibitively expensive when compared with the more commonly employed voltage-
controlled amplifiers, and current control is ineffective if maintaining DC offsets, as
is the case when the x-stage of an AFM is held in a fixed position while a sweep is
performed with the y-stage.

The need to significantly increase scanning speeds with general amplifiers moti-
vates the development of models and model-based control designs which accommo-
date the frequency-dependent hysteresis inherent to the PZT actuators employed in
the AFM stages. As detailed in [30], there exist a number of general approaches and
frameworks for quantifying the constitutive nonlinearities and hysteresis in the general
class of ferroelectric materials which encompass PZT. These include phenomenological
macroscopic models [24], Preisach models [12, 27], domain wall models [33, 34], mi-
cromechanical models [6, 18, 19], mesoscopic energy relations [5, 17], and homogenized
energy models [32, 39]. Within the context of AFM design, Croft, Shed, and Devasia
[7] have employed a combination of a viscoelastic creep model and nonlinear Preisach
representation to compensate for hysteresis and creep in an AFM stage, whereas a do-
main wall model was employed in [35] for the characterization of hysteresis in certain
stage constructs. Primary requirements for nonlinear hysteresis models for the PZT
actuators in an AFM are (i) flexibility with regard to frequency-dependent hysteresis
effects (the frameworks of [7, 35] are limited in this regard), (ii) exact or approxi-
mate invertibility for linear control design, and (iii) sufficient efficiency for real-time
implementation at the speeds required for present and future applications.

In this paper, we develop AFM transducer models, based on a homogenized energy
framework for characterizing hysteresis and constitutive nonlinearities in ferroelectric
materials, which meet these criteria. In section 2, we summarize the framework devel-
oped in [15, 31, 37, 38, 39] for quantifying hysteresis in the field-polarization relation
and develop constitutive equations which characterize the elastic and electromechan-
ical behavior of the PZT material. These constitutive relations are employed in sec-
tion 3 to construct rod and shell models for the stages depicted in Figure 2, and the
well-posedness of the models is established in section 4. Numerical approximation
techniques for the transducer models are summarized in section 5, and the capability
of the framework to quantify the biased and frequency-dependent hysteresis behavior
of the transducers is illustrated in section 6 through a comparison with the experi-
mental data plotted in Figures 2 and 3.

To place this framework in perspective, we briefly summarize the manner in which
it compares and contrasts with previous models. As illustrated in [30, 36], the ho-
mogenized energy framework provides an energy basis for certain extended Preisach
models. However, it also differs in five fundamental ways, and these are detailed in
Remark 4 in section 2.4, following the model development. The domain wall model
employed in the constitutive relations of [35] is efficient for characterizing hysteresis
when inputs are known a priori. As detailed in [30], however, it does not guarantee
the closure of biased minor loops in quasi-static regimes, nor does it provide the ca-
pability for including frequency-dependent effects due to thermal activation or creep.
Hence the present framework, which automatically incorporates these mechanisms,
provides significantly more flexibility for the range of operating regimes required for
present and future atomic force microscopy applications. Certain preliminary aspects
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of the model are presented in [16], which includes the rod model with initial model
validation as a prelude for open loop control design. The present work significantly
extends that modeling framework through the unified consideration of rod and shell
geometries with extensive experimental validation and the presentation of analysis to
establish model well-posedness.

The capability of the framework for characterizing frequency-dependent effects,
and hence achieving criterion (i), is illustrated in section 6. With regard to criteria
(ii) and (iii), the construction and experimental implementation of model inverses to
linearize the nonlinear dynamics is demonstrated in [16]. Hence the models provide
a framework for characterizing the hysteresis and nonlinear dynamics inherent to
PZT-based nanopositioners in a manner which promotes stage and control design.

2. Constitutive relations. In this section, we summarize the development of
constitutive relations which quantify the nonlinear and hysteretic map between input
fields E and stresses σ and the polarization P and strains ε generated in ferroelec-
tric materials. These relations are developed in three steps. In the first, Helmholtz
and Gibbs energy relations are constructed at the lattice level to quantify the local
dependence of P and ε on E and σ for regimes in which relaxation due to thermal
processes is either negligible or significant. In the second step of the development, ma-
terial nonhomogeneities, polycrystallinity, and variable field effects are incorporated
through the assumption that certain material properties are manifestations of under-
lying distributions rather than constants. Stochastic homogenization in this manner
yields macroscopic models which quantify the bulk hysteretic E-P behavior measured
in ferroelectric materials. Finally, necessary conditions associated with minimization
of the Gibbs energy are invoked to obtain 1-D and 2-D constitutive relations quanti-
fying the elastic and electromechanical behavior of the transducer materials.

2.1. Helmholtz and Gibbs energy relations. As detailed in [39], an appro-
priate Helmholtz energy relation is

ψ(P, ε) = ψP (P ) +
1

2
Y ε2 − a1εP − a2εP

2,(1)

where the component

ψP (P ) =

⎧⎪⎪⎨
⎪⎪⎩

1
2η(P + PR)2, P ≤ −PI ,
1
2η(P − PR)2, P ≥ PI ,

1
2η(PI − PR)

(
P 2

PI
− PR

)
, |P | < PI ,

quantifies the internal energy due to dipole processes. As shown in Figure 5, PI is the
positive inflection point that delineates the transition between stable and unstable
regions, P0 denotes the unstable equilibrium, and PR is the value of P at which
the positive local minimum of ψ occurs. The parameter η is the reciprocal of the
slope of the E-P relation after switching occurs. The second term on the right-hand
side of (1) quantifies the elastic energy, whereas the third and fourth terms quantify
electromechanical coupling effects. Here Y denotes the Young’s modulus, and a1 and
a2 are electromechanical coupling coefficients.

The Gibbs energy relation

G(E, σ, P, ε) = ψP (P ) +
1

2
Y ε2 − a1εP − a2εP

2 − EP − σε(2)
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Fig. 5. (a) Helmholtz energy ψ and Gibbs energy G for σ = 0 and increasing fields E. (b) Switch
in the local polarization P that occurs as E is increased beyond the local coercive field Ec given by
(4) in the absence of thermal activation.

incorporates the elastic work σε and electromechanical work EP . This provides the
functional that is minimized or balanced with the relative thermal energy to provide
local E-P relations and global electromechanical constitutive equations. The reader
is referred to [30, 32] for details regarding the manner in which the Gibbs energy
incorporates the dependent variables ε and P in terms of the independent variables
σ and E.

2.2. Polarization kernel—Negligible thermal activation. For operating
regimes in which relaxation or creep due to thermal processes is negligible, the local
E-P relation is determined from the equilibrium conditions

∂G

∂P
= 0,

∂2G

∂P 2
> 0.

For the piecewise quadratic functional (2), this yields a polarization kernel of the form

P (E) =
E

η − 2a2ε
+ δ

PRη + δa1ε

η − 2a2ε
,(3)

where δ = 1 for positively oriented dipoles and δ = −1 for those having negative
orientation. To specify δ, and hence P , in terms of the initial dipole configurations
and previous switches, we let δ0 = ±1 designate the initial dipole orientation and let

Ec = η(PR − PI)(4)

define the local coercive field at which the negative well ceases to exist and hence a
dipole switch occurs. The local polarization is then given by

[P (E;Ec, δ0)](t) =

⎧⎪⎪⎨
⎪⎪⎩

E
η−2a2ε

+ δ0
PRη+δ0a1ε

η−2a2ε
, τ = ∅,

E(t)−PRη+a1ε
η−2a2ε

, τ �= ∅, E(max τ) = −Ec,

E(t)+PRη+a1ε
η−2a2ε

, τ �= ∅, E(max τ) = Ec.

(5)
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Here ∅ denotes the empty set, and the set of transition times is designated by

τ = {t ∈ (0, tf ] |E(t) = −Ec or E(t) = Ec},

where tf denotes the final time under consideration.
Remark 1. For the drive levels employed for nanopositioning, the stress effects

on the polarization are typically negligible, which motivates taking ε = 0 in (3) and
(5). Hence the relations

P (E) =
1

η
E + PRδ

or

[P (E;Ec, δ0)](t) =

⎧⎪⎪⎨
⎪⎪⎩

E(t)
η + PRδ0, τ = ∅,

E(t)
η − PR, τ �= ∅, E(max τ) = −Ec,

E(t)
η + PR, τ �= ∅, E(max τ) = Ec,

(6)

are usually employed when characterizing AFM stages.

2.3. Polarization kernel—Thermal activation. If thermal relaxation or creep
is significant, the Gibbs energy G and relative thermal energy kT/V are balanced
through the Boltzmann relation

μ(G) = Ce−GV/kT .(7)

Here k is Boltzmann’s constant, V denotes a reference volume chosen to ensure physi-
cal relaxation behavior, and C is chosen to ensure integration to unity for the complete
set of admissible inputs. As detailed in [30, 39], this yields the local polarization re-
lation

P = x+ 〈P+〉 + x− 〈P−〉 .(8)

The fractions x+ and x− of positively and negatively oriented dipoles are quantified
by the differential equations

ẋ+ = −p+−x+ + p−+x−,

ẋ− = −p−+x− + p+−x+,

which can be simplified to

ẋ+ = −p+−x+ + p−+(1 − x+)

through the identity

ẋ+ + ẋ− = 1.

The expected polarizations due to positively and negatively oriented dipoles are

〈P+〉 =

∫∞
PI

Pe−G(E,P )V/kT dP∫∞
PI

e−G(E,P )V/kT dP
, 〈P−〉 =

∫ −PI

−∞ Pe−G(E,P )V/kT dP∫ −PI

−∞ e−G(E,P )V/kT dP
,(9)
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Fig. 6. Hysteron provided by (a) the relation (6) with negligible thermal relaxation, and (b) the
relation (8), which incorporates relaxation mechanisms.

where the denominator results from the evaluation of C in (7). The likelihoods of
switching from positive to negative, and conversely, are given by

p+− =
1

T (T )

∫ PI

PI−ε
e−G(E,P )V/kT dP∫∞

PI−ε
e−G(E,P )V/kT dP

, p−+ =
1

T (T )

∫ −PI+ε

−PI
e−G(E,P )V/kT dP∫ −PI+ε

−∞ e−G(E,P )V/kT dP
,

(10)

where ε is taken to be a small positive constant. The relaxation time T is the reciprocal
of the frequency at which dipoles attempt to switch. It is proven in [30, 39] that P
given by (8) converges to the local polarization (6) in the limit kT/V → 0 of negligible
thermal activation.

Remark 2. When constructing the expected polarization relations (9) and likeli-
hoods (10), we use the notation G(E,P ) to indicate that we take ε = σ = 0 in (2) in
accordance with the assumption that stress effects on the polarization are negligible at
the drive levels employed in AFM stages. This approximation is employed only when
defining the stress-independent polarization, and the full expression (2) is employed
when constructing elastic constitutive relations in section 2.5.

2.4. Macroscopic polarization model. The local polarization relations (6)
and (8) exhibit the behavior depicted in Figure 6 and provide reasonable charac-
terization of the E-P behavior of certain single crystal compounds. However, to
incorporate the effects of material and stress nonhomogeneities, polycrystallinity, and
variable effective fields Ee = E + EI , we assume that the interaction field EI and lo-
cal coercive field Ec given by (4) are manifestations of underlying distributions rather
than constants. If we designate the associated densities by ν1 and ν2, the macroscopic
field-polarization behavior is quantified by the relation

[P (E)](t) =

∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ;Ec, ξ)](t) dEI dEc,(11)

where the kernel P is given by (6) or (8).
As detailed in [30, 32], the densities ν1 and ν2 are assumed to satisfy the physical

criteria

(i) ν1(x) defined for x > 0,

(ii) ν2(−x) = ν2(x),

(iii) |ν1(x)| ≤ c1e
−a1x,

|ν2(x)| ≤ c2e
−a2|x|

(12)
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for positive c1, a1, c2, a2. The restricted domain in (i) reflects the fact that the coercive
field Ec is positive, whereas the symmetry enforced in the interaction field through (ii)
yields the symmetry observed in low-field Rayleigh loops. Hypothesis (iii) incorporates
the physical observation that the coercive and interaction fields decay as a function
of distance, and guarantees that integration against the piecewise linear kernel yields
finite polarization values.

2.4.1. Model implementation. Approximation of (11) through Gaussian quad-
rature techniques yields the approximate relation

[P (E)](t) =

Ni∑
i=1

Nj∑
j=1

ν1(Eci)ν2(EIj )[P (EIj + E;Eci , ξj)](t)viwj ,(13)

where EIj , Eci denote the abscissas associated with respective quadrature formulae
and vi, wj are the respective weights—e.g., see [30]. Highly efficient algorithms for
implementing the approximate polarization model (13) with the kernel (6) for the case
of negligible thermal activation can be found in [30, 39]. Algorithms for implementing
the model with the thermally active kernel (8) are presented in [4]. MATLAB code for
both cases can be accessed at the website http://www.siam.org/books/fr32 associated
with [30].

2.4.2. Density estimation. Techniques for identifying the densities ν1 and ν2

are illustrated in [30, 32]. For certain applications, reasonable accuracy is provided
by a priori functions satisfying the physical criteria (12) and having a small number
of parameters to be estimated through least squares fits to data—e.g., variances and
means in normal and lognormal relations. For more general applications requiring high
accuracy for a wide range of operating conditions, the Ni + Nj discretized density
values ν1(Eci) and ν2(EIj ) can be estimated through the least squares techniques
detailed in [30, 32].

Remark 3. From the perspective of both numerical and experimental implemen-
tation and the establishment of the well-posedness of resulting transducer models, it is
important to quantify the regularity between input fields and the polization predicted
by (11). In the appendix, it is established that P given by (11) is continuous with
respect to E.

Remark 4. The formulation of the model as a superposition of kernels bears
some resemblance to Preisach models, and it is illustrated in [30, 36] that the frame-
work provides an energy basis for certain extended Preisach formulations. However,
the energy framework differs from the classical Preisach model, characterized by the
properties of deletion and congruency, in five aspects which prove crucial for actuator
characterization and model-based control design. (i) For certain density choices, pa-
rameters can be correlated with attributes of the data to facilitate model construction
and updating. (ii) The incorporation of relative thermal energy provides the thermal
activation mechanisms required to characterize relaxation and creep. (iii) Stress and
temperature-dependencies (e.g., see [1, 26]) are incorporated into the kernel rather
than weights, as is the case for Preisach models, which eliminates the necessity of
vector-valued lookup tables. (iv) Derivation of the kernels using Ising theory yields
hysterons which accommodate measured noncongruencies and avoids the input or
output-dependent densities associated with Preisach models. (v) The framework au-
tomatically incorporates low-field reversible behavior without the extensions required
by Preisach theory.
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2.5. Constitutive relations. To obtain elastic constitutive relations, the equi-
librium condition

∂G

∂ε
= 0

is invoked to obtain

σ = Y ε− a1P − a2P
2,

which reduces to Hooke’s law when P = 0. To incorporate internal damping, we
posit that in the absence of electromechanical effects, stress is proportional to a linear
combination of strain and strain rate (the Kelvin–Voigt damping hypothesis). Finally,
we note that the PZT stage mechanisms are poled and hence operate about the
remanence polarization P = PR rather than the depoled state P = 0. (The remanence
polarization is that which remains when the applied field is reduced to zero following
positive saturation.) When combined with the polarization model (11), this yields
the 1-D constitutive relations

σ = Y ε + Cε̇− a1(P − PR) − a2(P − PR)2,

[P (E)](t) =

∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ;Ec, ξ)](t) dEI dEc,

(14)

where C is the Kelvin–Voigt damping coefficient. These relations are employed when
constructing rod models to characterize the hysteretic dynamics shown in Figures 3
and 4 for the stacked actuators employed in the stage construction depicted in Fig-
ure 2(a).

The constitutive behavior of the PZT shell depicted in Figure 2(b) differs from
that of the rod in two fundamental aspects: (i) the longitudinal actuation is due to
d31 rather than d33 electromechanical coupling mechanisms and (ii) longitudinal and
circumferential stresses and strains are coupled due to the curvature. To designate
the coupled material behavior, we let εx, σx and εθ, σθ denote the normal strains and
stresses in the longitudinal and circumferential directions, respectively, and we denote
shear strains and stresses by εxθ and σxθ. Finally, we let ν denote the Poisson ratio
for the material. The resulting 2-D constitutive relations

σx =
Y

1 − ν2
(εx + νεθ) +

C

1 − ν2
(ε̇x + νε̇θ) −

1

1 − ν

[
a1(P − PR) + a2(P − PR)2

]
,

σθ =
Y

1 − ν2
(εθ + νεx) +

C

1 − ν2
(ε̇θ + νε̇x) − 1

1 − ν

[
a1(P − PR) + a2(P − PR)2

]
,

σxθ =
Y

2(1 + ν)
εxθ +

C

2(1 + ν)
ε̇xθ,

[P (E)](t) =

∫ ∞

0

∫ ∞

−∞
ν1(Ec)ν2(EI)[P (E + EI ;Ec, ξ)](t) dEI dEc

(15)

are employed when constructing transducer models for cylindrical nanopositioning
stages.
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3. Transducer models for stacked and cylindrical AFM stages. We now
employ the 1-D constitutive relation (14) and 2-D relation (15) to construct models
for the stacked and cylindrical AFM stages depicted in Figure 2. For the stacked
actuator, we consider two frameworks: (i) a distributed PDE model, which quanti-
fies displacements along the rod length as a function of the input field, and (ii) a
lumped model, which exploits the assumption of uniform stresses and fields along
the rod length to motivate an ODE quantifying displacements only at the rod end.
A comparison between characterization capabilities provided by the two frameworks
is provided in section 6. For the cylindrical shell design, we summarize a Donnell–
Mushtari model which quantifies vertical motion provided by the z-component of the
stage depicted in Figure 2(b).

3.1. Rod model for the stacked actuator.

3.1.1. Distributed rod model. We consider first the development of a dis-
tributed rod model which quantifies the displacement u(t, x) along the rod length. In
accordance with present stage design, one end of the rod is assumed fixed, while the
other encounters resistance due to the connecting mechanisms, as depicted in Figure 7.
We assume that this latter contribution can be modeled as a damped elastic system
with mass m�, stiffness k�, and damping coefficient c�. The density, cross-sectional
area, and length of the rod are denoted by ρ,A, and , and, in accordance with (14),
the Young’s modulus and Kelvin–Voigt damping parameter are denoted by Y and C.

Force balancing yields the relation

ρA
∂2u

∂t2
=

∂N
∂x

,(16)

where the resultant N =
∫
A
σdA is given by

N = Y A
∂u

∂x
+ CA

∂2u

∂x∂t
− a1[P (E) − PR] − a2[P (E) − PR]2,

once the linear relation ε = ∂u
∂x is employed for the strains in (14). The nonlinear and

hysteretic map between input fields E and the polarization P is specified by (11).
The fixed-end condition yields u(t, 0) = 0, and balancing forces at x =  yields the
energy dissipating end condition

N(t, ) = −k�u(t, ) − c�
∂u

∂t
(t, ) −m�

∂2u

∂t2
(t, ).

Finally, initial conditions are taken to be u(0, x) = u0(x) and ∂u
∂t (0, x) = u1(x). This

provides a strong formulation of the stacked actuator model.
To define a weak or variational form of the model which is appropriate for well-

posedness analysis, approximation, or control design, states z = (u(·), u()) are con-

x= 0 x= l

l

l

l

u

k
m

c

Fig. 7. Rod of length � and cross-sectional area A with a fixed end at x = 0 and energy
dissipating boundary conditions at x = �.



MODEL DEVELOPMENT FOR ATOMIC FORCE MICROSCOPY 2009

sidered in the state space X = L2(0, ) × R with the inner product

〈Φ1,Φ2〉X =

∫ �

0

ρAφ1φ2dx + m�ϕ1ϕ2,(17)

where Φ1 = (φ1, ϕ1),Φ2 = (φ2, ϕ2) with ϕ1 = φ1(), ϕ2 = φ1(). The space of test
functions is taken to be

V =
{
Φ = (φ, ϕ) ∈ X |φ ∈ H1(0, ), φ(0) = 0, φ() = ϕ

}
with the inner product

〈Φ1,Φ2〉V =

∫ �

0

Y Aφ′
1φ

′
2dx + k�ϕ1ϕ2.(18)

Multiplication by φ ∈ H1
0 (0, ) = {φ ∈ H1(0, ) |φ(0) = 0} and integration by parts

in space yields the weak model formulation∫ �

0

ρA
∂2u

∂t2
φdx +

∫ �

0

[
Y A

∂u

∂x
+ CA

∂2u

∂x∂t

]
dφ

dx
dx

=

∫ �

0

fφdx + A
[
a1(P − PR) + a2(P − PR)2

]∫ �

0

dφ

dx
dx

−
[
k�u(t, ) + c�

∂u

∂t
(t, ) + m�

∂2u

∂t2
(t, )

]
φ(),

(19)

which must be satisfied for all φ ∈ V .

3.1.2. Lumped rod model. The assumption that fields and stresses are uni-
form along the rod length motivates the conclusion that strains (relative displace-
ments) also exhibit negligible x-dependence. Since the position of the sample is dic-
tated by the position of the rod tip at x = , this motivates the development of a
lumped model which quantifies u�(t) = u(t, ).

From the assumption of uniform strains along the rod length, we take

ε(t) =
u�(t)



in (14). Balancing the forces σA for the rod with those of the restoring mechanism
yields the lumped model

ρA
d2u�

dt2
(t) +

CA



du�

dt
(t) +

Y A


u�(t) = −m�

d2u�

dt2
(t) − c�

du�

dt
(t) − ku�(t)

+ Aa1[P (E(t)) − PR] + Aa2[P (E(t)) − PR]2

or, equivalently,

m
d2u�

dt2
(t) + c

du�

dt
(t) + ku�(t) = ã1[P (E(t)) − PR] + ã2[P (E(t)) − PR]2,(20)

where

m = ρA + m�, c =
CA


+ c�, k =

Y A


+ k�, ã1 = Aa1, ã2 = Aa2,(21)
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x= l
h

u
v

w

x=0

Fig. 8. Orientation of the shell geometry used when quantifying the longitudinal, circumferen-
tial, and transverse displacements u, v, and w.

and the initial conditions are u�(0) = u0 and du�

dt (0) = u1. The polarization P is
specified by the model (11) or discretized model (13).

The model can also be written as the first-order system

�̇u�(t) = A�u�(t) + �P(E(t)),

�u�(0) = �u0,
(22)

where �u�(t) = [u�(t), u̇�(t)]
T , �u�(0) = [u0, u1]

T and

A =

[
0 1

−k/m −c/m

]
,

�P(E(t)) =
1

m

[
ã1(P (E(t)) − PR) + ã2(P (E(t)) − PR)2

] [ 0
1

]
.

3.2. Cylindrical shell model. To quantify the dynamics of the cylindrical
stage depicted in Figure 2(b), we construct a linear shell model with nonlinear inputs
quantified by the 2-D constitutive relation (15). We focus on the actuator employed
for transverse displacements since real-time control of this component is required to
maintain constant forces between the sample and microcantilever. The mass of the
shell employed for horizontal translation is combined with the mass of the sample to
provide an inertial force acting on the free end of the vertical actuator.

For modeling purposes, we assume that the shell has length , thickness h, and
radius R. The axial direction is specified along the x-axis, and the longitudinal,
circumferential, and transverse displacements are respectively denoted by u, v, and
w, as depicted in Figure 8. The density is designated by ρ, and the region occupied
by the reference or middle surface of the shell is specified by Γ0 = [0, ] × [0, 2π].
In accordance with the constitutive relations (15), Y,C, and ν denote the Young’s
modulus, Kelvin–Voigt damping coefficient, and Poisson ratio for the material. We
point out that εx, εθ, and εxθ in (15) denote strains at points throughout the shell
thickness, whereas 2-D shell models are formulated in terms of strains ex, eθ, and exθ
in the reference surface of the shell. The relationship between the two is established
through the assumption that displacements are linear through the shell thickness,
which comprises one of the fundamental tenets of linear shell theory [3, 30].

We consider the case in which the bottom edge of the shell (x = 0) is clamped
and the opposite end (x = ) is acted upon only by the inertial force associated with
the combined mass m of the x-y actuator and the sample.
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As detailed in [3, 30], force and moment balancing yield the Donnell–Mushtari
shell equations

Rρh
∂2u

∂t2
−R

∂Nx

∂x
− ∂Nxθ

∂θ
= 0,

Rρh
∂2v

∂t2
− ∂Nθ

∂θ
−R

∂Nxθ

∂x
= 0,

Rρh
∂2w

∂t2
−R

∂2Mx

∂x2
− 1

R

∂2Mθ

∂θ2
− 2

Mxθ

∂x∂θ
+ Nθ = 0,

(23)

where the force and moment resultants are

Nx =
Y h

1 − ν2
(ex + νeθ) +

Ch

1 − ν2
(ėx + νėθ) −

h

1 − ν
[a1(P − PR) + a2(P − PR)2],

Nθ =
Y h

1 − ν2
(eθ + νex) +

Ch

1 − ν2
(ėθ + νėx) − h

1 − ν
[a1(P − PR) + a2(P − PR)2],

Nxθ =
Y h

2(1 + ν)
exθ +

Ch

2(1 + ν)
ėxθ

(24)

and

Mx =
Y h3

12(1 − ν2)
(κx + νκθ) +

Ch3

12(1 − ν2)
(κ̇x + νκ̇θ),

Mθ =
Y h3

12(1 − ν2)
(κθ + νκx) +

Ch3

12(1 − ν2)
(κ̇θ + νκ̇x),

Mxθ =
Y h3

24(1 + ν)
κxθ +

Ch3

24(1 + ν)
κ̇xθ.

(25)

The midsurface strains and changes in curvature are

ex =
∂u

∂x
, eθ =

1

R

∂v

∂θ
+

w

R
, exθ =

∂v

∂x
+

1

R

∂u

∂θ
,

κx = −∂2w

∂x2
, κθ = − 1

R2

∂2w

∂θ2
, κxθ = − 2

R

∂2w

∂x∂θ
.

(26)

The boundary conditions for the fixed-end at x = 0 are taken to be

u = v = w =
∂w

∂x
= 0,

whereas the conditions

Nx = −m
∂2u

∂t2
, Nxθ +

Mxθ

R
= 0,

Qx +
1

R

∂Mxθ

∂θ
= 0, Mx = 0,
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are employed at x = . The first resultant condition incorporates the inertial force
due to the mass m of the PZT actuator employed for x-y translation along with the
mass of the sample.

To reduce smoothness requirements for approximation and eliminate the Dirac
behavior of external inputs at x = , we also consider a weak formulation of the model.
The state is taken to be z = (u(·, ·), v(·, ·), w(·, ·), u(, ·)) in the state space

X = L2(Ω) × L2(Ω) × L2(Ω) × L2(0, 2π),

where

Ω = [0, ] × [0, 2π]

denotes the shell region. The space of test functions is specified as

V =
{
Φ = (φ1, φ2, φ3, η) ∈ X |φ1 ∈ H1

0 (Ω), φ2 ∈ H1
0 (Ω), φ3 ∈ H2

0 (Ω)
}
,

where η(θ) = φ1(, θ) and

H1
0 (Ω) =

{
φ ∈ H1(Ω) |φ(0, θ) = 0

}
,

H2
0 (Ω) =

{
φ ∈ H2(Ω) |φ(0, θ) = φ′(0, θ) = 0

}
.

(27)

Through either variation principles—e.g., see [3]—or integration by parts, one
obtains the weak formulation of the thin shell model,∫

Ω

{
Rρh

∂2u

∂t2
φ1 + RNx

∂φ1

∂x
+ Nxθ

∂φ1

∂θ

}
dω = 0,

∫
Ω

{
Rρh

∂2v

∂t2
φ2 + Nθ

∂φ2

∂θ
+ RNxθ

∂φ2

∂x

}
dω = 0,

∫
Ω

{
Rρh

∂2w

∂t2
φ3 −RMx

∂2φ3

∂x2
− 2Mxθ

∂2φ3

∂x∂θ
− 1

R
Mθ

∂2φ3

∂θ2
+ Nθφ3

}
dω = 0,

(28)

which must be satisfied for all Φ ∈ V . The resultants are given by (24) and (25) with
midsurface strains and changes in curvature designated in (26).

Remark 5. It is noted that the d31 poling, used to generate vertical motion in the
stage, produces no polarization contributions to the moments. However, transverse
displacements w in the shell model are generated by the Nθ resultant in the w relation,
and hence all three components of the displacement are coupled.

3.3. Frequency-dependent dynamics. One of the requirements of the nano-
positioner models is the capability to characterize the frequency-dependent behavior
shown in Figure 2. This behavior is due to a combination of dielectric losses, thermal
relaxation processes, and elastic and damping properties, and it is incorporated in
the framework in two places. The dielectric losses and relaxation behavior are in-
corporated through the balance of the Gibbs and relative thermal energies via the
Boltzmann relation (7) and subsequent average polarization relations (9) and likeli-
hood expressions (10). Hence this component of the polarization model incorporates
the property that dipole dynamics can lag behind field dynamics as frequencies are
increased. Dynamics associated with inertial, elastic, and internal damping proper-
ties of the actuators are incorporated through the force balances (16) and (23) and
resultant definitions. In combination, this provides the framework with significant
flexibility regarding a range of dynamics operating regimes.
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4. Model well-posedness.

4.1. Rod model. To provide a framework which facilitates the establishment of
criteria that guarantee the existence of a unique solution to the distributed rod model
with nonlinear inputs, we consider a Hilbert space formulation of the weak model
formulation (19) with the state and test function spaces

X = L2(0, ) × R,

V =
{
Φ = (φ, ϕ) ∈ X |φ ∈ H1(0, ), φ(0) = 0, φ() = ϕ

}
and inner products

〈Φ1,Φ2〉X =

∫ �

0

ρAφ1φ2dx + m�ϕ1ϕ2,

〈Φ1,Φ2〉V =

∫ �

0

Y Aφ′
1φ

′
2dx + k�ϕ1ϕ2,

(29)

where Φ1 = (φ1, ϕ1),Φ2 = (φ2, ϕ2) with ϕ1 = φ1(), ϕ2 = φ1().
It is observed that V is densely and continuously embedded in X with |Φ|X ≤

c|Φ|V ; this is expressed by V ↪→ X. Moreover, when one defines conjugate dual
spaces X∗ and V ∗—e.g., V ∗ denotes the linear space of all conjugate linear continuous
functionals on V —two observations are important: (i) X∗ can be identified with X
through the Riesz map and (ii) X∗ ↪→ V ∗. Hence the two spaces comprise what is
termed a Gelfand triple, V ↪→ X ∼= X∗ ↪→ V ∗ with pivot space X and duality pairing
(duality product) 〈·, ·〉V ∗,V . The latter is defined as the extension by continuity of
the inner product 〈·, ·〉X from V ×X to V ∗ ×X. Hence elements v∗ ∈ V ∗ have the
representation v∗(v) = 〈v∗, v〉V ∗,V .

We now define the stiffness and damping sesquilinear forms σi : V × V → C,
i = 1, 2, by

σ1(Φ1,Φ2) = 〈Φ1,Φ2〉V ,

σ2(Φ1,Φ2) =

∫ �

0

CAφ′
1φ

′
2dx + c�ϕ1ϕ2.

(30)

It can be directly verified that the stiffness form satisfies

(H1) |σ1(Φ1,Φ2)| ≤ c1|Φ1|V |Φ2|V for some c1 ∈ R (bounded),

(H2) Reσ1(Φ1,Φ1) ≥ c2|Φ1|2V for some c2 > 0 (V -elliptic),

(H3) σ1(Φ1,Φ2) = σ1(Φ2,Φ1) (symmetric),

for all ψ, φ ∈ V . Moreover, the damping term σ2 satisfies

(H4) |σ2(Φ1,Φ2)| ≤ c3|Φ1|V |Φ2|V for some c3 ∈ R (bounded),

(H5) Reσ2(Φ1,Φ1) ≥ c4|Φ1|2V for some c4 > 0 (V -elliptic).
(31)

The input space is taken to be the Hilbert space U = R, and the input operator
B : U → V ∗ is defined by

〈[B(E)](t),Φ〉V ∗,V =
[
a1(P (E(t)) − PR) + a2(P (E(t)) − PR)2

] ∫ �

0

φ′ dx(32)
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for Φ = (φ, ϕ) with ϕ = φ(). It is observed that B can be expressed as

[B(E)](t) = [b(E)](t) · g, g ∈ V ∗,(33)

where

[b(E)](t) = (P (E(t)) − PR) + a2(P (E(t)) − PR)2,

g(Φ) =

∫ �

0

φ′ dx.
(34)

The model (19) can then be written in the abstract weak formulation

〈ü(t),Φ〉V ∗,V + σ2(u̇(t),Φ) + σ1(u(t),Φ) = 〈[B(E)](t),Φ〉V ∗,V ,

u(0) = u0, u̇(0) = u1,
(35)

for all Φ ∈ V .
Alternatively, one can define the operators Ai ∈ L(V, V ∗), i = 1, 2, by

〈AiΦ1,Φ2〉V ∗,V = σi(Φ1,Φ2)(36)

and formulate the model in operator form as

ü(t) + A2u̇(t) + A1u(t) = [B(E)](t),

u(0) = u0, u̇(0) = u1,
(37)

in the dual space V ∗. This formulation illustrates the analogy between the infinite-
dimensional, strongly damped elastic model and the familiar finite-dimensional rela-
tions (22).

4.1.1. Model well-posedness. As a prelude to establishing the well-posedness
of the beam model with hysteretic E-P relations, we provide a lemma which quantifies
the smoothness of the input operator.

Lemma 1. Consider field inputs E ∈ C[0, T ]. The input operator B defined by
(32) then satisfies

B(E) ∈ L2(0, T ;V ∗).(38)

Proof. In the appendix, we establish that for continuous input fields E the
polarization satisfies P ∈ C[0, T ], which implies that b defined by (34) satisfies
b(·) : C[0, T ] → C[0, T ]. Hence the norm

‖[B(E)](t)‖V ∗ = sup
v∈V

|[b(E)](t) · g(v)|
‖v‖V

exists for each t ∈ [0, T ]. Since ‖[B(E)](t)‖V ∗ = |[b(E)](t)| · ‖g‖V ∗ , it follows that

‖B(E)‖2
L2(0,T ;V ∗) ≤ max

t∈[0,T ]

{
|[b(E)](t)|2

}
· T · ‖g‖2

V ∗ ,

which implies that

B(E) ∈ L2(0, T ;V ∗).
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The well-posedness of the model is established by the following theorem, whose
proof follows directly from Theorem 4.1 of [3] or Theorem 2.1 and Remark 2.1 of [2].

Theorem 2. Let σ1 and σ2 be given by (30), and consider continuous field inputs
E ∈ C[0, T ]. There then exists a unique solution w to (35), or equivalently (37), which
satisfies

u ∈ C(0, T ;V ),

u̇ ∈ C(0, T ;X).

4.2. Shell model. Similar well-posedness results can be obtained for the shell
model (28) through consideration of an analogous Hilbert space formulation of the
model. Details regarding the construction of appropriate inner product spaces, sesqui-
linear forms, and operators can be found in [30, 35].

5. Numerical approximation techniques. To implement the distributed mod-
els for either the rectangular stacked actuator or the cylindrical actuator, it is neces-
sary to develop appropriate approximation techniques to discretize the modeling PDE.
To accomplish this, we consider general Galerkin methods in which basis functions
are comprised of spline or spline-Fourier tensor products. The resulting methods
can accommodate a variety of boundary conditions, are sufficiently accurate to re-
solve fine-scale dynamics, and can be employed for constructing reduced-order proper
orthogonal decomposition approximates for real-time implementation.

5.1. Stacked actuator model. To approximate the weak form of the stacked
actuator model (19), we employ a finite element discretization and a finite differ-
ence discretization in time. The semidiscrete system resulting from the finite element
approximation is appropriate for finite-dimensional continuous time control design,
whereas the fully discrete system is amenable to simulations and control implemen-
tation.

To obtain a semidiscrete system, we consider a uniform partition of [0, ] with
points xj = jh, j = 0, 1, . . . , N , with step size h = /N , where N denotes the
number of subintervals. The spatial basis {φj}Nj=1 is then comprised of linear splines

φj(x) =
1

h

⎧⎪⎨
⎪⎩

(x− xj−1), xj−1 ≤ x < xj ,

(xj+1 − x), xj ≤ x ≤ xj+1,

0, otherwise,

i = 1, . . . , N − 1,

φN (x) =
1

h

{
(x− xN−1), xN−1 ≤ x ≤ xN ,

0, otherwise

(see [25] for details regarding the convergence analysis for the method). The solution
u(t, x) to (19) is subsequently approximated by the expansion

uN (t, x) =

N∑
j=1

uj(t)φj(x) .

Through construction, the approximate solution satisfies the essential boundary con-
dition uN (t, 0) = 0 and can attain arbitrary displacements at x = .
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The projection of the problem (19) onto the finite-dimensional subspace V N yields
the semidiscrete system

ż(t) = Az(t) + A
[
a1(P (t) − PR) + a2(P (t) − PR)2

]
B,

z(0) = z0,
(39)

where z(t) = [u1(t), . . . , uN (t), u̇1(t), . . . , u̇N (t)]T and

A =

[
0 I

−M−1
K −M−1

Q

]
, B =

[
0

M
−1b

]
.(40)

The mass, stiffness, and damping matrices have the components

[M ]ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ �

0

ρAφiφj dx, i �= N or j �= N,

∫ �

0

ρAφiφj dx + m�, i = N and j = N,

[K ]ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ �

0

Y Aφ′
iφ

′
j dx, i �= N or j �= N,

∫ �

0

Y Aφ′
iφ

′
j dx + k�, i = N and j = N,

and

[Q ]ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∫ �

0

cAφ′
iφ

′
j dx, i �= N or j �= N,

∫ �

0

cAφ′
iφ

′
j dx + c�, i = N and j = N ,

and the force vector is defined by

[b ]i =

∫ �

0

φ′
idx.

The system (39) can be employed for finite-dimensional control design. For subse-
quent implementation, we consider a temporal discretization of (39) using a modified
trapezoid rule. For temporal stepsizes Δt, this yields the difference equation

zk+1 = Wzk +
1

2

[
a1P̃ (tk) + a1P̃ (tk+1) + a2P̃

2(tk) + a2P̃
2(tk+1)

]
VB,(41)

where P̃ = P − PR, tj = jΔt, zj approximates z(tj), and

W =

(
I− Δt

2
A

)−1 (
I+

Δt

2
A

)
, V = Δt

(
I− Δt

2
A

)−1

.

This yields an A-stable method requiring moderate storage and providing moderate
accuracy.
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5.2. Cylindrical actuator model. Due to the inherent coupling between lon-
gitudinal, circumferential, and transverse displacements in combination with the 2-D
support of the middle surface, the numerical approximation of the model for the
cylindrical actuator is significantly more complicated than the approximation of the
stacked actuator model. Among the issues which must be addressed when construct-
ing finite element or general Galerkin methods for the shell is the choice of elements
which avoid shear and membrane locking and the maintenance of boundary condi-
tions. We summarize here a spline-based Galerkin method developed in [9] for thin
shells and direct the reader to that source for details regarding the construction of
constituent matrices and convergence properties of the method. Details regarding
the use of this approximation method for LQR (linear quadratic regulator) control of
shells utilizing PZT actuators can be found in [10].

The bases for the u, v, and w displacements are respectively taken to be

Φuk
(θ, x) = eimθφun(x), Φvk

(θ, x) = eimθφvn(x), Φwk
(θ, x) = eimθφwn(x),

where φun , φvn , and φwn are cubic B-splines modified to satisfy the boundary condi-
tions (e.g., see p. 79 of [25]). The approximating subspaces are

V N
u = span {Φuk

}Nu

k=1, V N
v = span {Φvk

}Nv

k=1, V N
w = span {Φwk

}Nw

k=1,

and the approximate displacements are represented by the expansions

uN (t, θ, x) =

Nu∑
k=1

uk(t)Φuk
(θ, x),

vN (t, θ, x) =

Nv∑
k=1

vk(t)Φvk
(θ, x),

wN (t, θ, x) =

Nw∑
k=1

wk(t)Φwk
(θ, x).

(42)

The restriction of the problem (28) to the approximating subspaces and construc-
tion of the forcing vectors subsequently yields the matrix system

żN (t) = Az(t) +
[
a1(P (t) − PR) + a2(P (t) − PR)2

]
B,

z(0) = z0,
(43)

where z = [ϑ(t), ϑ̇(t)]T , with ϑ(t) = [u(t),v(t),w(t)]T , and

A =

[
0 I

−M−1
K −M−1

Q

]
, B =

[
0

M
−1b

]
.

The reader is referred to [9, 30] for details concerning the construction of the mass,
stiffness, and damping matrices M,K, and Q.

6. Model validation.

6.1. Characterization of the stacked actuator. We consider the capability
of the modeling framework for characterizing the dynamics of the stacked actuator
depicted in Figure 2(a). The PZT actuator had a length of  = 2 × 10−2 m and a
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Table 1

Parameters employed in the distributed (PDE) model (19) and lumped (ODE) model (20) for
the stacked actuator.

Distributed model

Parameter ρ Y C m�

value 7600 7 × 1010 5 × 106 4.015

Parameter k� c� a1 a2

value 8.49 × 10−5 440 1.54 × 1011 0

Lumped model

Parameter m k c ã1 ã2

value 4.21 8.75 × 107 1.52 × 105 8.75 × 107 0

square cross-sectional face of width w = 5×10−3 m, so that the cross-sectional area is
A = 2.5×10−5 m2. As illustrated in Figure 7, one end of the actuator was considered
fixed, whereas the other encountered elastic, damping, and inertial effects due to the
attached components of the stage mechanism.

To validate and illustrate properties of the models, we consider three regimes: (i)
end displacements quantified by the lumped model (20) with the thermally inactive
kernel (6) employed in the polarization model (14), (ii) displacements characterized
by the lumped model with the thermally active polarization kernel (8), and (iii) end
displacements quantified by the discretization (41) of the distributed model (19). It is
illustrated that whereas the latter choice incorporates the distributed rod nature of the
device, the fact that fields and stresses are uniform along the rod length implies that
relative displacements are also uniform. A comparison of the ODE and PDE model
predictions at the rod tip (x = ) illustrates that, as a result, the ODE provides a
highly accurate characterization with significantly less computation cost. Hence the
ODE model is advantageous for real-time experimental implementation.

The construction of the models requires the estimation of elastic, damping, and
electromechanical parameters in addition to identification of the densities ν1 and
ν2. The densities were estimated through least squares fits to the data using the
techniques detailed in [30, 32]. The manufacturer specifications ρ = 7600 kg/m3

and Y = 7 × 1010 N/m2 were employed for the density and Young’s modulus, and
remaining parameters were estimated through a least squares fit to the data. The
resulting values are summarized in Table 1. The relation between the rod and spring
parameters is provided by (21).

6.1.1. Lumped model—No thermal activation in polarization relation.
We consider first the characterization of the biased minor loop data shown in Figure 3
and frequency-dependent data from Figure 4 using the lumped model (20) with the
thermally inactive kernel (6) employed in the polarization model (14). It should be
noted that the stage was disassembled between the quasi-static biased minor loop
experiments and the frequency-dependent experiments, which necessitated the rei-
dentification of densities for the two cases.

In the first set of experiments, displacement data measured with an LVDT (linear
variable differential transformer) was collected at a sample rate of 0.1 Hz and four
input field levels to generate a set of biased and nested transducer responses ranging
from nearly linear to hysteretic and nonlinear, as shown in Figures 3 and 9. The
densities ν1 and ν2 and parameters summarized in Table 1 were obtained through
a least squares fit to the full data set comprised of four loops. The resulting model
accurately quantifies both the nest behavior and the hysteresis measured at increasing
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Fig. 9. Characterization of AFM field-displacement behavior at 0.1 Hz using the ODE model
(20) with the thermally inactive kernel (6).

input levels.
In a second set of experiments, data was collected at frequencies ranging from

0.279 Hz to 27.9 Hz, yielding the behavior shown in Figure 4. These experiments
took longer (approximately 30 minutes), which led to slight heating and accompany-
ing changes in the material constitutive behavior. To accommodate these operating
conditions, the data from four frequencies was used to reidentify parameters in the
polarization model, thus yielding the fits shown in Figure 10. It is observed that the
model characterizes the augmented hysteresis arising at higher frequencies but slightly
overpredicts the increase in displacement following field reversal that is due primarily
to inertial effects.

6.1.2. Lumped model—Thermal activation in polarization relation. We
next employ the thermally active kernel (8) in the polarization model to incorporate
relaxation effects. Parameters in the polarization model were again identified through
a least squares fit to the four frequency data sets, thus yielding the model fit shown
in Figure 11. It is observed that use of this more general kernel provides additional
accuracy at higher frequencies. Whereas this improves characterization capabilities,
the added accuracy comes at the cost of decreased efficiency, and the criteria of
accuracy versus efficiency must be balanced when employing the model for real-time
control design, as discussed in [16]. We note that use of the thermally active kernel (8)
is required when characterizing the creep measured when one actuator is held fixed
while a sweep is performed with the other.
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Fig. 10. Characterization of AFM field-displacement behavior using the ODE model (20) with
the thermally inactive kernel (6), with sample rates of (a) 0.279 Hz, (b) 1.12 Hz, (c) 5.58 Hz, and
(d) 27.9 Hz.

6.1.3. Lumped model versus distributed model. It has been observed that
whereas quantification of the physics of the stacked actuator leads to the rod model
(19), the fact that stresses and fields are uniform along the rod length implies that rel-
ative displacements will also be uniform. This motivates consideration of the lumped
model (20), which yielded the fits shown in Figures 10 and 11.

To illustrate the validity of this assumption, the difference between the displace-
ment u(t, ), given by the discretization (41) of (19) with N = 16 basis functions, and
the displacement u�(t), resulting from (20), is plotted in Figure 12. We emphasize
that when constructing the PDE model we employed the parameter values summa-
rized in Table 1, which are consistent with the spring parameters due to the relation
(21). The maximal difference of 5 × 10−10 is five orders of magnitude less than the
micron-level displacements being characterized, thus verifying the validity of the ODE
model in this regime. The accuracy of the ODE model has important ramifications
for control design since the discretized ODE model is significantly more efficient to
implement than the discretized PDE model.

6.2. Characterization of the shell actuator. We discuss here the perfor-
mance of the cylindrical shell model detailed in section 3.2, when discretized using
the Galerkin techniques summarized in section 5.2, for characterizing the longitudinal
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Fig. 11. Characterization of AFM field-displacement behavior using the ODE model (20) with
the thermally active kernel (8), with sample rates of (a) 0.279 Hz, (b) 1.12 Hz, (c) 5.58 Hz, and
(d) 27.9 Hz.
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Fig. 12. Difference between the displacement u(t, �) given by the distributed model (19) and
u�(t) given by the lumped model (20).
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Fig. 13. Characterization of the relation between the field and longitudinal displacements for
the cylindrical actuator depicted in Figures 2(b) and 7.

displacements of the cylindrical PZT shell transducer depicted in Figures 2(b) and 7.
Whereas the cylindrical PZT elements employed in this design are more complex than
the rod elements used in the stage design depicted in Figure 2(a), the overall trans-
ducer is simpler and has the advantage of enhanced vibration isolation and diminished
hysteresis.

The experimental cylindrical transducer had a length of  = 0.0396 m, radius
of R = 0.0056 m, and thickness of h = 0.0015 m. The manufacturer specifications
ρ = 7600 kg/m3 and Y = 7.1×1010 N/m2 were employed for the density and Young’s
modulus, and remaining model parameters were estimated through a least squares fit
to the data.

The longitudinal displacement uN provided by (42) is compared in Figure 13 with
experimental data collected under quasi-static operating conditions. We note that due
to the inherent coupling between the longitudinal, circumferential, and transverse
displacements, u, v, and w in the model (23), the approximate displacements (42) are
also coupled and all are obtained through solution of (43)—we plot only uN since it
corresponds to measured data. For this operating regime, the dynamics were resolved
with eight cubic B-splines in x and seven Fourier elements in θ, so Nu = Nv = Nw =
56.

The nearly linear behavior of the data reflects the low drive levels under con-
sideration. The accurate fit provided by the model illustrates the property that the
hysteretic E-P model (11) yields approximately linear behavior in low drive regimes.
The fidelity of the model further illustrates the accuracy and flexibility of the modeling
framework.

7. Concluding remarks. This characterization framework quantifies both the
approximately linear and hysteretic properties of the PZT device employed in AFM
positioning mechanisms. In the first step of the development, constitutive relations
are constructed through a combination of energy analysis at the lattice level and
stochastic homogenization techniques based on the assumption that certain param-
eters are manifestations of underlying distributions. These relations quantify the
frequency-dependent hysteresis exhibited by the materials for general drive regimes
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while reducing to approximately linear behavior at low drive regimes. In the second
step of the development, these constitutive relations are used to construct lumped
and distributed rod and shell models for the various PZT transducer geometries. The
accuracy of the models is illustrated through comparison with experimental data from
AFM stages.

An important property of the framework is the fact that resulting models can be
approximately inverted with nearly the same efficiency as the forward models [16].
This provides a framework with the capability for providing inverse compensators for
linear control design [22, 23]. The implementation of feedback control designs for high-
speed scanning, using these model-based compensators, is under present investigation.

For either linear control designs employing model inverses or model-based non-
linear control designs, it is crucial that discretized models be implementable in real-
time. For the stacked actuator model, discretization limits are sufficiently small (e.g.,
2N = 32 for the first-order system) to permit efficient implementation with present
hardware. Furthermore, it was demonstrated that lumped models provide sufficient
accuracy for the considered architecture. The behavior of the shell transducer is sig-
nificantly more complex due to the coupling between longitudinal, circumferential
and transverse displacements, and the construction of reduced-order models based on
proper orthogonal decomposition (POD) techniques is under investigation.

Appendix. Continuity of the polarization model. We establish here the
continuity of the homogenized energy model (11),

[P (E)](t) =

∫ ∞

0

∫ ∞

−∞
[P (E + EI ;Ec, ξ)](t)ν1(Ec)ν2(EI) dEI dEc,(44)

as a function of both field and time in the case of negligible thermal activation. The
densities ν1 and ν2 satisfy the conditions (12), and the kernel P has the form

P (E) =
E

η
+ PRδ(E;Ec, EI)

specified in (6).
We first note that there are at most three values at which δ can change sign:

−Ec, Ec, and −Ec ≤ ET ≤ Ec. The third is determined by the initial dipole distri-
bution ξ, as depicted in Figure 14(a), and is typically chosen so that ET = 0 when
E + EI = 0.

P= E
η PR

−

−Ec Ec

P= E
η PR

+

ET −Ec ET Ec

(a)

−1

1
δ

(b)

Fig. 14. (a) Points E+EI = −Ec, Ec, and ET at which δ = ±1 changes sign, and (b) behavior
of δ associated with the initial dipole distribution at E + EI = ET .
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We also note that the decay conditions (12) dictate that ν1 and ν2 satisfy the
relations

|ν2(EI)| ≤ c2,∫ ∞

−∞
ν2(EI)dEI ≤ b2,

∫ ∞

0

ν1(Ec)dEc ≤ b1,

where b1, b2, and c2 are finite constants.
To establish the continuity of P with respect to E, we consider the behavior at field

values E0 and E1, where without loss of generality we take E0 < E1. When integrating
with respect to EI , we decompose the interval (−∞,∞) into seven regions delineated
by the points −Ec, Ec, ET , as shown in Figure 14(a). For this decomposition, we note
that

∣∣P (E1 + EI ;Ec, ξ) − P (E0 + EI ;Ec, ξ)
∣∣ =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1
η (E1 − E0), region excludes

−Ec, Ec, ET ,

1
η (E1 − E0) + 2PR, region includes

−Ec, Ec, ET .

To consolidate notation, we define the integrals

I(a, b) =

∫ b

a

1

η
(E1 − E0)ν2(EI) dEI ,

IPR
(a, b) =

∫ b

a

[
1

η
(E1 − E0) + 2PR

]
ν2(EI) dEI .

It subsequently follows that

|P (E1) − P (E0)| ≤
∫ ∞

0

{|I(−∞,−Ec − E1)| + |IPR
(−Ec − E1,−Ec − E0)|

+ |I(−Ec − E0, ET − E1)| + |IPR
(ET − E1, ET − E0)|

+ |I(ET − E0, Ec − E1)| + |IPR
(Ec − E1, Ec − E0)|

+ |I(Ec − E0,∞)|} ν1(Ec) dEc

≤ (E1 − E0)

∫ ∞

0

{
4c2

η
+ 3b2

[
1

η
(E1 − E0) + 2PR

]}
ν1(Ec) dEc

≤ (E1 − E0)b1

(
4c2

η
+ 3b2

[
1

η
(E1 − E0) + 2PR

])
.

For ε > 0, take

δ = min

⎧⎨
⎩ ε

b1

(
4c2

η + 3b2

[
1
η (E1 − E0) + 2PR

]) , 1
⎫⎬
⎭ .
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Under the assumption that E is continuous in time and E0 = E(t0), E1 = E(t1), for

every δ > 0 there exists δ̃ > 0 such that if |t1 − t0| < δ̃, we are guaranteed that

|E1 −E0| < δ. It follows that if |t1 − t0| < δ̃, the polarization values satisfy the bound

|[P (E)](t1) − [P (E)](t0)| ≤ ε,

thus establishing the continuity of the hysteresis model. This holds for all major and
minor loops. As illustrated in Figure 6, the behavior of the model that incorporates
thermal activation is smoother than the thermally inactive case considered here. For
brevity, we omit the proof of this second case.
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2002, pp. 249–269.

[36] R.C. Smith and S. Seelecke, An energy formulation for Preisach models, Proc. SPIE, Smart
Structures and Materials 2002, 4693, SPIE, Bellingham, WA, 2002, pp. 173–182.

[37] R.C. Smith, S. Seelecke, M.J. Dapino and Z. Ounaies, A unified model for hysteresis
in ferroic materials, in Smart Structures and Materials 2003, Proc. SPIE, 5049, SPIE,
Bellingham, WA, 2003, pp. 88–99.

[38] R.C. Smith, S. Seelecke, M.J. Dapino, and Z. Ounaies, A unified framework for modeling
hysteresis in ferroic materials, J. Mech. Phys. Solids, 54, (2005), pp. 46–85.

[39] R.C. Smith, S. Seelecke, Z. Ounaies, and J. Smith, A free energy model for hysteresis in
ferroelectric materials, J. Intelligent Material Systems Structures, 14 (2003), pp. 719–739.

[40] S.A. Wolf, D.D. Awschalom, R.A. Buhrman, J.M. Daughton, S. von Molnár, M.L.

Chtchelkanova, and D.M. Teger, Spintronics: A spin-based electronics vision for the
future, Science, 294 (2001), pp. 1488–1495.



SIAM J. APPL. MATH. c© 2006 Society for Industrial and Applied Mathematics
Vol. 66, No. 6, pp. 2027–2048

OSCILLATIONS IN A MATURATION MODEL OF BLOOD CELL
PRODUCTION∗

IVANA DROBNJAK† , A. C. FOWLER† , AND MICHAEL C. MACKEY‡

Abstract. We present a mathematical model of blood cell production which describes both the
development of cells through the cell cycle, and the maturation of these cells as they differentiate to
form the various mature blood cell types. The model differs from earlier similar ones by considering
primitive stem cells as a separate population from the differentiating cells, and this formulation
removes an apparent inconsistency in these earlier models. Three different controls are included
in the model: proliferative control of stem cells, proliferative control of differentiating cells, and
peripheral control of stem cell committal rate. It is shown that an increase in sensitivity of these
controls can cause oscillations to occur through their interaction with time delays associated with
proliferation and differentiation, respectively. We show that the characters of these oscillations are
quite distinct and suggest that the model may explain an apparent superposition of fast and slow
oscillations which can occur in cyclical neutropenia.

Key words. maturation, mathematical model, blood cell production, chronic myelogenous
leukemia, delay equation, cyclical neutropenia
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1. Introduction. A number of hematological diseases are characterized by os-
cillations in the circulating density of various types of blood cells. These include
chronic myelogenous leukemia (CML), cyclical neutropenia (CN), polycythemia vera
(PV) and aplastic anemia (AA). Examples of blood cell counts for CML and CN are
shown in Figures 1 and 2.

A review of the clinical data and a discussion of possible mechanisms for the
oscillations are given by Haurie, Dale, and Mackey [10]. These mechanisms focus on
the role of negative feedback control on proliferation and differentiation of blood cells
within the bone marrow, together with time delays due to cell cycling and maturation.
There are consequently a number of different ways in which oscillations can occur,
and one object of mathematical modelling of blood cell development is to understand
which of these effects may be responsible for these oscillations.

Blood cells are produced through a process of differentiation from primitive stem
cells in the bone marrow. These pluripotential stem cells begin to develop along one of
several different cell lineages, forming blast cells which eventually develop through a
number of different stages to form the various kinds of blood cells. The most numerous
are the red blood cells, or erythrocytes, whose normal density in the blood is about
5 × 106 cells μl−1. Their primary function is in transporting oxygen to the tissues.
Platelets are formed by the fragmentation of megakaryocytes, which develop in the
bone marrow. Platelets are present at levels of 5×105 cells μl−1, and their function is
in blood clotting. Finally, there are a number of different white blood cells, the most
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Fig. 1. Oscillations in white blood cell, platelet, and reticulocyte numbers in a patient with
chronic myelogenous leukemia. The units are white blood cells, 105 cells μl−1; platelets, 105 cells
μl−1; reticulocytes, 104 cells μl−1. This research was originally published in Blood. G. Chikkappa
et al. Periodic oscillation of blood leukocytes, platelets, and reticulocytes in a patient with chronic
myelocytic leukemia. Blood. 1976;47:1023–1030. c©the American Society of Hematology.

common of which are neutrophils (5000 cells μl−1) and lymphocytes (2000 cells μl−1),
which form constituent parts of the immune system. The normal levels of these cells
are controlled by a number of mechanisms, and an excess or deficit of the various cell
types defines certain kinds of disease; for example, anemia refers to a low red blood
cell count, below 4 × 106 cells μl−1.

There are a number of features in Figures 1 and 2 which are of note. In CML,
there are regular oscillations in white blood cell counts with a long period ranging
from 40 to 80 days (see Fortin and Mackey [7]). The other cell lines (platelets and
reticulocytes, i.e., erythrocyte precursors) also oscillate in a similar fashion (Figure 1
does not show this well; see Fortin and Mackey [7] for other examples).

A similar observation is true of cyclical neutropenia. Oscillation periods are
on the order of 20 days, during which there is a marked collapse of the neutrophil
count to vanishingly low levels (see Dale and Hammond [4] and Guerry et al. [9]).
Other cell types oscillate, but only the neutrophils appear to oscillate fairly regularly:
Oscillations in other cell types (e.g., red blood cells, platelets, reticulocytes, and
lymphocytes) are marked by irregularity and high frequency noise (see Guerry et
al. [9]). This latter feature is well illustrated in Figure 2.

The purpose of the present paper is to throw some light on these observations
by the study of a model of blood cell proliferation and differentiation. This model
is similar to those of previous authors, particularly that of Mackey and Rudnicki
[13], and describes the stem cell and developing (blast) cell populations as functions
of time, age (time through the proliferative cell cycle), and maturation (stage in
the differentiation process). Fokas, Keller, and Clarkson [6] describe a model with
discrete generations in the development of blast cells, while Mackey and Rudnicki
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Fig. 2. Oscillations in neutrophil, platelet, and reticulocyte numbers in a patient with cyclical
neutropenia. The units are neutrophils, 103 cells μl−1; platelets, 105 cells μl−1; and reticulocytes,
104 cells μl−1. This research was originally published in Blood. C. Haurie, D. C. Dale, and M. C.
Mackey. Cyclical neutropenia and other periodic hematological disorders: A review of mechanisms
and mathematical models. Blood. 1998;92:2629–2640. c©the American Society of Hematology.

[13] develop a corresponding continuous model (i.e., the developmental stage is a
continuous variable).

In this paper we use a continuous model to describe the development of a single cell
lineage following the committal of stem cells. Three separate controls are implemented
in the model, namely the proliferative control of stem cells, the proliferative control of
developing blast cells, and the peripheral control of stem cell committal by circulating
blood cell density. We show that variation of parameters in all three control systems
can cause oscillations, and that the characters of these oscillations are very different.
This allows us some potential insight into the mechanisms that may be operative in
some of these dynamic blood diseases.

2. A model of maturation of blood cell production. We consider all cell
lineages to consist of populations of two types, proliferative and resting phase (cf. Fig-
ure 3). These are denoted p and n, respectively, and are functions of age a (time since
the inception of the proliferative cell cycle) and maturation m (degree of maturation,
measured in maturation units (mat), which could be, for example, cell generation
number). Also, p and n are functions of time t. Thus, we have p = p(t,m, a) and
n = n(t,m, a). The dimensions of p and n are cells age−1 mat−1.

In the cell population, there will be a finite number which are primitive and have
not begun differentiation. These cannot be characterized in terms of p and n at m = 0,
since the latter are cell densities with respect to a and m. The primitive stem cells
are characterized by cell densities p0(t, a) and n0(t, a), such that p0 da and n0 da are
the numbers of primitive stem cells (with m = 0) of age in (a, a + da).
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Fig. 3. Schematic evolution of cells. Each cell ages as it goes through its cell cycle, before
dividing and entering a resting (G0) phase; at the same time, the cells mature. The time-like
variables a (age) and m (maturation) are independent.

The basic model is similar to that described by Mackey and Rudnicki [13]. It has
been analyzed in various versions by Rey and Mackey [16], Crabb, Mackey, and Rey
[3], and Mackey and Rudnicki [14]. However, a particular feature of these previous
models was the assumption of zero maturation rate at maturation state zero. This
leads to some odd behavior, which we believe arises because the model does not
properly identify the role played by primitive stem cells. In our formulation of the
model, we do not make this assumption.

Specifically, Mackey and Rudnicki [13], [14] assumed a model in which the cell
density depended on stage of maturation m, age through the cell cycle a, and time
t. As a consequence, the number of cells of zero age in the cell cycle is zero, as is
the number of cells of zero maturation. As is common in age-structured population
models, the migration of cells away from age zero through the cell cycle is balanced
by a renewal equation, which here takes the form of recruitment from the resting cell
population. However, there is in general no recruitment to the stem cell population at
zero maturation, and as a consequence, the Mackey–Rudnicki model generally leads
to a disappearance of the cells as they migrate down the maturation stage without
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replenishment. In their model, they were able to avoid this unattractive option by
allowing a rate of maturation V (m) which tended to zero as m → 0. The effect of
this assumption is to make the time of maturation infinite, and in addition it causes
strange irregular behavior to occur (see Dyson, Villella-Bresson, and Webb [5]). We
consider that an implication of the lack of recruitment of stem cells is that they
must be represented in the model as a compartment of finite number and therefore
cannot be represented in terms of a density dependent on both m and a. In fact,
consistent with previous models of stem cells (see Mackey [11], [12]), we suppose that
the stem cell population can be represented as a density dependent on a and t only.
This assumption removes the Mackey–Rudnicki awkwardness and does not require an
artificial and unnatural choice (with its artificial consequences) of maturation rate.

The evolution of the system is illustrated schematically in Figure 3. We suppose
that cell mortality occurs at a rate γ (for proliferating cells only), and that cell
maturation occurs continuously at a rate V (for both proliferative and resting phases).
We suppose that both γ and V may depend on maturation stage m, but not on t.
Conservation of proliferative cells then implies

∂p

∂t
+

∂p

∂a
+

∂(V p)

∂m
= −γp,(2.1)

where the units of V are mat d−1 (maturation units per day). We suppose (2.1)
applies during a cycle of length τ (which might depend on m), thus for 0 < a < τ .
For a > τ , the cells in the resting phase satisfy the equation

∂n

∂t
+

∂n

∂a
+

∂(V n)

∂m
= −Rn,(2.2)

which differs from (2.1) by the rate of recruitment R back to the proliferative phase,
where resting cell mortality is taken to be zero. Equation (2.2) applies for a > τ .

At the end of the cell cycle, a = τ , we apply a boundary condition describing the
conversion of p to n. Mackey and Rudnicki [13] allow a very general condition, on the
basis that cells at maturation M can divide to form cells at maturation g(M) ≤ M .
Specifically, this implies 2p[t,M, τ(M)] dM = n[t, g(M), τ{g(M)}] dg. If we write
m = g(M), M = h(m) (thus h = g−1), then this becomes

n[t,m, τ(m)] = 2p[t, h(m), τ{h(m)}]h′(m),(2.3)

where g(m) ≤ m implies h(m) ≥ m.
A boundary condition for p at a = 0 follows from the recruitment condition (the

renewal equation)

p(t,m, 0) = RN(t,m),(2.4)

where we introduce the total resting cell density

N =

∫ ∞

τ

nda.(2.5)

Now we integrate (2.2) from a = τ to a = ∞, taking n → 0 as a → ∞ (which
is necessary if there is a finite number of cells). We suppose that V = V (m) is
independent of a and t, and that R = R(t,m) is independent of a. Then

∂N

∂t
+

∂(V N)

∂m
= −RN + 2p[t, h(m), τ{h(m)}]h′(m),(2.6)
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adopting (2.3).
We need to solve (2.1) for p. We use the method of characteristics and begin

by applying the recruitment condition (2.4). Specifically, we apply the parametric
conditions

t = s, m = μ, a = 0, p = R(s, μ)N(s, μ),(2.7)

valid for s, μ > 0; then the characteristic solution is

a = t− s,

∫ m

μ

dρ

V (ρ)
= t− s,

p = R(s, μ)N(s, μ) exp

[
−
∫ t

s

[γ + V ′(m)] dt

]
.(2.8)

Define a function ν(m, a) by ∫ m

ν

dρ

V (ρ)
= a.(2.9)

Then a = t− s, μ = ν(m, a). Also dt = dm/V (m) on a characteristic; thus for t > a
(and also ν > 0),

p(t,m, a) = R[t− a, ν(m, a)]N [t− a, ν(m, a)] exp

[
−
∫ m

ν(m,a)

{γ + V ′(ρ)} dρ

V (ρ)

]
.

(2.10)

Simplifying and putting a = τ , we have

p(t,m, τ) = R[t− τ, ν(m, τ)]N [t− τ, ν(m, τ)] exp

[
−
∫ m

ν(m,τ)

γ dρ

V (ρ)

]
V [ν(m, τ)]

V (m)

(2.11)

for t > τ and ν > 0. Finally, (2.6) becomes

∂N

∂t
+

∂

∂m
(V N) = −RN

+ 2h′(m)R[t− τ, ν{h(m), τ}]N [t− τ, ν{h(m), τ}]

× exp

[
−
∫ h(m)

ν{h(m),τ}

γ dρ

V (ρ)

]
V [ν{h(m), τ}]

V [h(m)]
.(2.12)

Note that ∫ m

ν(m,τ)

dρ

V (ρ)
≡ τ.(2.13)

It is convenient to define a modified maturation variable ξ by

ξ =

∫ m

0

dρ

V (ρ)
;(2.14)

ξ has units of time, and indeed it is equal to the elapsed time during maturation.
Note that ν > 0 if ξ > τ . The lower limit can be chosen for convenience and allows
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us to fix ξ at some reference point; here we choose this to be the initial maturation
stage (note that this cannot be done if V (0) = 0). Define also

η(ξ) =

∫ h(m)

0

dρ

V (ρ)
(2.15)

(note η ≥ ξ since h ≥ m). Now if

F (m) ≡ f(ξ),(2.16)

then we find

F [h(m)] = f(η),

F [ν{h(m), τ}] = f(η − τ).(2.17)

We change the variable from m to ξ and define

v(ξ) ≡ V (m),

M ≡ NV(2.18)

(note that Mdξ = Ndm, so that M is cell density in terms of the variable ξ; the units
of M are cells d−1). After a little manipulation, we find

∂M

∂t
+

∂M

∂ξ
= −RM + Q,(2.19)

where

Q = 2η′(ξ)R[t− τ, η − τ ]M [t− τ, η − τ ] exp

[
−
∫ η

η−τ

γ dξ

]
,(2.20)

where we write γ, R, and M as dependent on ξ rather than m. This equation applies
if t > τ and η > τ .

In order to find the form of the source term for t < τ or η < τ , we must solve
(2.1) for p using the initial data from m = 0 and t = 0. If, specifically, we have an
initial condition

p = pI(m, a) at t = 0,(2.21)

then after some algebra we find that

Q = 2η′(ξ)pI [η − t, τ − t]v(η − t) exp

[
−
∫ η

η−t

γ dξ

]
, t < τ, η > t.(2.22)

The definition of Q in t > η and η < τ requires consideration of the stem cell
evolution, and we now turn to this. Conservation laws for the stem cell densities p0

and n0 are

∂p0

∂t
+

∂p0

∂a
= −(γ0 + V0)p0,

∂n0

∂t
+

∂n0

∂a
= −(V0 + R0)n0,(2.23)

where V0 is the rate of loss of stem cells to maturation, R0 is the stem cell recruitment
rate from the resting phase, and γ0 is the mortality rate of stem cells in the proliferative



2034 I. DROBNJAK, A. C. FOWLER, AND M. C. MACKEY

phase. We allow R0, V0, and γ0 to depend on t, but we assume they are independent
of a. Note that V0 �= 0, indeed V0 �= V (0), as the units of V0 and V are not even the
same: V has units of mat d−1, while V0 has units of d−1. Note also that p0 and n0

have units of cells age−1 (unlike p and n).
The primitive loss to maturation must balance the source for p and n at m = 0;

thus

V0p0 = (V p)|m=0, V0n0 = (V n)|m=0,(2.24)

and the units are consistent.
Analogously to (2.4) and (2.3), we have

p0(t, 0) = R0(t)N0(t),

n0(t, τ) = 2p0(t, τ),(2.25)

where

N0 =

∫ ∞

τ

n0 da.(2.26)

Integration over a now yields

dN0

dt
= −V0N0 −R0N0 + 2p0|a=τ ,(2.27)

and

(NV )|m=0 = N0V0.(2.28)

In order to find p0 we must solve

∂p0

∂t
+

∂p0

∂a
= −(γ0 + V0)p0(2.29)

with parametric initial conditions

p0 = p00(α), a = α > 0, t = 0,

p0 = R0(s)N0(s), a = 0, t = s > 0.(2.30)

For t > a, the solution is

p0 = R0(t− a)N0(t− a) exp

[
−
∫ t

t−a

[γ0(t
′) + V0(t

′)] dt′
]
,(2.31)

whereas for t < a,

p0 = p00(a− t) exp

[
−
∫ t

0

[γ0(t
′) + V0(t

′)] dt′
]
.(2.32)

Putting a = τ , we find

dN0

dt
= −(R0 + V0)N0 + 2R0(t− τ)N0(t− τ) exp

[
−
∫ t

t−τ

[γ0(t
′) + V0(t

′)] dt′
]
, t > τ,

(2.33)
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which prescribes the control system for N0, analogously to that of Mackey [11]. For
t < τ , the equation for N0 involves the initial condition for p0, and we can equivalently
simply prescribe initial data for N0 there.

Finally, we complete the definition of Q in (2.19) by solving (2.1) using the initial
data on m = 0:

m = 0, a = α > 0, t = s > 0, V (0)p = V0(s)p0(s, α).(2.34)

We find

p(t, ξ, a) =
V0(t− ξ)p0(t− ξ, a− ξ)

v(ξ)
exp

[
−
∫ ξ

0

γ dξ

]
, ξ < a, ξ < t,(2.35)

from which it follows that

Q = 2η′(ξ)V0(t− η)p0[t− η, τ − η] exp

[
−
∫ η

0

γ dξ

]
, t > η, η < τ.(2.36)

Along with (2.20) and (2.22), this completes the definition of Q for t > 0, η > 0 (and
thus ξ > 0). In summary,

Q =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

2η′(ξ)R[t− τ, η − τ ]M [t− τ, η − τ ] exp

[
−
∫ η

η−τ

γ dξ

]
, t > τ, η > τ,

2η′(ξ)pI [η − t, τ − t]v(η − t) exp

[
−
∫ η

η−t

γ dξ

]
, t < τ, η > t,

2η′(ξ)V0(t− η)p0[t− η, τ − η] exp

[
−
∫ η

0

γ dξ

]
, t > η, η < τ.

(2.37)

The two equations (2.33) and (2.19) are coupled through (2.28), which provides
the requisite boundary condition for M at ξ = 0:

M = V0N0 at ξ = 0.(2.38)

We see that by an appropriate consideration of the primitive stem cells, we derive a
coherent model which does not require V (0) = 0.

Many authors (for example, see Rey and Mackey [16] and Dyson, Villella-Bresson,
and Webb [5]) study the differential equation (2.12) for N , under the assumption that
V does tend to zero as m → 0, for example,

V = rm.(2.39)

The reasoning behind this is that, if primitive stem cells mature at a finite rate, then
such cells will be immediately lost to m > 0, which makes no physiological sense,
because the cell population then inexorably disappears. Only by choosing V (0) = 0
can we allow primitive stem cells to endure. In the present version of the model, it is
also possible to allow V (0) = 0; for example, (2.39) would then imply

M → 0 as ξ → −∞.(2.40)

The sensitivity of the solution to this condition has led to the idea that the system
may have unstable and even chaotic solutions (e.g., Crabb, Mackey, and Rey [3]),
because of the degeneracy of the equation at m = 0. Our considerations here suggest
that the requirement that V (0) = 0 is inaccurate, because it does not properly address
the biological question of how the primitive stem cells should be described.
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3. Dimensionless model. How we solve the model depends on the complexity
of our assumptions about γ, R, η, and R0. In the remainder of this paper we will
assume g(m) = m (thus η = ξ) and that γ and γ0 are constant. The equation for the
maturing cells, (2.19), is

∂M

∂t
+

∂M

∂ξ
= −RM + Q,(3.1)

and is a hyperbolic delay partial differential equation. Figure 4 shows the regions
where the different definitions of Q apply. In regions II and segment (a) of region III,
that is, for t < τ and all η = ξ > 0, Q depends on the initial data, either pI (in II)
or p00 (in III(a)). Thus we may equivalently simply choose instead to prescribe M in
0 < t < τ , and this we do. In fact, since ξ is finite, the part of the solution which
depends on this initial data will wash out of the system in a finite time. It is therefore
apparently of little concern.

We therefore confine ourselves to consideration of the definition of Q in regions I
and III(b); with the assumptions we have made, we find that for t > τ ,

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−γτR[t− τ, ξ − τ ]M [t− τ, ξ − τ ], ξ > τ,

2e−γ0(τ−ξ)e−γξ exp

[
−
∫ t−ξ

t−τ

V0(t
′) dt′

]
V0(t− ξ)R0(t− τ)N0(t− τ), ξ < τ.

(3.2)

We thus have to solve (3.1) with (3.2) in t > τ , with the boundary condition (2.38)
on ξ = 0, and prescription of an initial function for M in 0 < t < τ .

A principal issue of focus is how the recruitment rates R and R0 and the committal
rate V0 depend on M , N0, and ξ. There is very little to constrain our choice. In what
follows, we assume R0 = R0(N0) (stem cell proliferation is controlled by stem cell
density). We follow Mackey and Rudnicki [13] in supposing that R depends on the
total differentiating cell population M̄ , where

M̄(t) =

∫ ξF

0

M dξ,(3.3)

with ξF being the time of final maturation,

ξF =

∫ mF

0

dρ

V (ρ)
,(3.4)

and m = mF at full maturity. We suppose that the rate of committal V0 should
depend on the peripheral blood cell count, B, and thus V0 = V0(B). A simple model
for B is

dB

dt
= M |ξF − γBB,(3.5)

where γB is the specific decay rate of the peripheral blood cells, and the source term
M |ξF is the delivery rate to the blood from the maturation phase cells. Peripheral
control models of similar type have been studied by Bernard, Bélair, and Mackey [1].
Assumptions of this type are liable to be important in the evolution of diseases such
as cyclical neutropenia, which is thought to be due to an instability in the peripheral
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t
III

t = τ

η = τ

II

ba

I

η (= ξ)
Fig. 4. Regions of different definitions of Q in (2.37). Regions I, II, and III correspond to

the first, second, and third definitions of Q and their locations of validity in the (t, η) plane. The
vertical dotted line in region III (where Q is defined in terms of p0) separates the region (a), where
(2.32) applies (to the left), from (b), where (2.31) applies (to the right).

control of stem cell committal. In addition, it is likely that other controls affect rate
of apoptosis, maturation rate, cell cycle time, and so on.

The equation for N0 (2.33) now takes the form

Ṅ0 = −[V0 + R0(N0)]N0 + 2e−γ0τR0(N0τ )N0τ exp

[
−
∫ t

t−τ

V0[B(t′)] dt′
]
,(3.6)

where N0τ = N0(t− τ). This is precisely the model of Mackey [11] if V0 is constant,
and it has been studied by Fowler and Mackey [8] in the limit

V0τ � 1,(3.7)

when it is shown that relaxation oscillations will occur for a further parameter μ0 =
[2e−(γ0+V0)τ − 1]/V0τ within a certain O(1) range. (Note that in the notation of
Fowler and Mackey’s model, γ = γ0 +V0, δ = V0.) When such oscillations occur, they
will propagate through the maturing cells; however, we show in this paper that the
resultant amplitude of oscillations of mature blood cells is small unless amplification
also occurs during maturation.

We can write (3.2) in abbreviated form as

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

2e−γτR(M̄τ )Mτ,τ , ξ > τ,

2e−γ0(τ−ξ)e−γξ exp

[
−
∫ t−ξ

t−τ

V0[B(t′)] dt′

]
V0[B(t− ξ)]R0(N0τ )N0τ , ξ < τ,

(3.8)
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where M̄τ = M̄(t− τ), and Mτ,τ = M(t− τ, ξ − τ).
We nondimensionalize the model by following the analysis of Fowler and Mackey

[8], which motivates a choice of scales for the variables as follows:

t, ξ ∼ τ, M ∼ M∗, N0 = N∗
0S, Q ∼ M∗

τ
,

R0 = R∗
0h0, R = R∗h, V0 = V ∗

0 v0, B ∼ M∗

γB
,(3.9)

where R∗
0, R∗, V ∗

0 , N∗
0 , M∗ are determined by the control functions (so that they

are O(1) functions of O(1) variables). For example, Mackey [11] chooses for R0 the
Hill function

R0 =
R∗

0

1 + (N0/θ)
n .(3.10)

In this case, we would choose N∗
0 = θ, and h0 is the Hill function

h0(S) =
1

1 + Sn .(3.11)

The dimensionless stem cell equation is

Ṡ = b0

[
(1 + λ0)h0(S1)S1 exp

(
ε0

{
1 −

∫ t

t−1

v0[B(t′)] dt′
})

− h0S

]
− ε0v0S,

(3.12)

where

ε0 = V ∗
0 τ, λ0 = 2e−(γ0+V ∗

0 )τ − 1, b0 = R∗
0τ.(3.13)

The dimensionless form of (3.8) is

∂M

∂t
+

∂M

∂ξ
= −bh(M̄)M + Q,(3.14)

where

Q =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
b(1 + λ) h(M̄1)M1,1 , ξ > 1,

νb0(1 + λ0) e−αξ exp

[
ε0

{
1 −

∫ t−ξ

t−1

v0[B(t′)] dt′

}]
v0[B(t− ξ)]h0(S1)S1,ξ < 1,

(3.15)

in which

ν =
N∗

0V
∗
0

M∗ , b = R∗τ, λ = 2e−γτ − 1, α = (γ − γ0)τ.(3.16)

This is analogous to the scaling used by Fowler and Mackey [8]. The boundary
condition for M is

M = νv0S at ξ = 0,(3.17)
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and if

M = Mf at ξ = ξf ,(3.18)

then

δḂ = Mf −B,(3.19)

where

δ =
1

γBτ
, ξf =

ξF
τ
.(3.20)

This completes the statement of the dimensionless form of the model.

Parameter values. Equation (3.12) is exactly that studied by Fowler and Mackey
[8] (if v0 ≡ 1). However, their model can also be interpreted as a lumped, or com-
partmentalized, version of (3.14) for the maturing cells. One way of enabling this is
if we make the special assumption that the maturation rate V → 0 as both m → 0
and m → mF , as also assumed by Mackey and Rudnicki [13]. In this case the range
of ξ is (−∞,∞), and we have M → 0 at both limits. Then integration of (3.14) over
ξ again leads to an equation of the form of (3.12). In the present paper we assume
V is finite at m = mF , i.e., the mature blood cells are delivered to the bloodstream
at a finite rate, and this is then the essential difference between the models with and
without maturation.

In estimating the parameters, we follow Fowler and Mackey [8] in choosing τ ∼ 2
d, and we suppose that proliferative control is effected at typical rates R∗ ∼ R∗

0 ∼ 2
d−1. We suppose that apoptosis rates are of order γ ∼ γ0 ∼ 0.2 d−1 and that
committal rates are of order V ∗

0 ∼ 0.05 d−1, and from these we find

b ∼ b0 ∼ 4, λ ∼ λ0 ∼ 0.3, ε0 ∼ 0.1.(3.21)

The parameter α is not independent of the others, as

α = ε0 + ln

(
1 + λ0

1 + λ

)
,(3.22)

and plausibly α ≈ ε0.
The remaining parameters are δ, ν, and ξf . For δ, we assume a half-life (γ−1

B ) of 7
hours, appropriate for neutrophils (but, for example, certainly not for erythrocytes);
then

δ ∼ 0.15.(3.23)

We can get some sense of the size of the remaining parameters ν and ξf by
considering the nature of stem cells. These are difficult to isolate; indeed it is not
yet clear whether genuine stem cells have ever really been isolated. The reason for
this is that there are few of them, and maturing cells will typically undergo about
(or at least) 20 divisions before emerging as mature blood cells. A typical numerical
estimate for the total number of blast cells is 1012 per kg body weight, while for stem
cells, a corresponding estimate is 106 (see Bernard, Bélair, and Mackey [1], Mackey
[12]). If this is the case, then it successively implies that the parameter ν in (3.16)
is very small (≈ 10−6), and therefore also that the maturation time is long. Typical
estimates of ξF ≈ 10–20 days are consistent with values of ξf ≈ 5–10, and in fact the
small parameter ξ−1

f then plays the role corresponding to that of the small parameter
ε in Fowler and Mackey’s [8] analysis.
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Steady state. To elaborate this discussion, we now describe the steady state.
For simplicity, we ignore the distinct definition of Q in ξ < 1 and extend the definition
in ξ > 1 back to ξ = 0. The steady solution of (3.14) and (3.15) is, with v0 = S = 1,

M = νesξ,(3.24)

where s is the unique positive solution of the pair

s = bh(M̄)
[
(1 + λ)e−s − 1

]
,

M̄ =
ν

s

(
esξf − 1

)
.(3.25)

(Uniqueness follows from the fact that M̄ is monotonically increasing with s, hence
h(M̄) is monotonically decreasing with s, and hence bh(M̄) [(1 + λ)e−s − 1] is mono-
tonically decreasing with s, while evidently s is increasing.) We can see that s <
ln(1 + λ), and s will be close to this value if b is large. Note also that by choosing λ0

and ε0 to have certain specific values which depend on λ, b, ν, and ξf , this solution
consistently extends back to ξ = 0, even allowing for the distinct definition of Q in
ξ < 1.

Numerical solutions do confirm the exponential variation of M with ξ. In general,
it is found that M decreases for 0 < ξ < 1, before subsequently increasing.

4. Periodic solutions. We are interested in finding whether periodic solutions
can occur. There are three different controllers in the model, and thus three different
ways in which oscillations can occur: These are described below. We utilize a reference
set of parameters based on the estimates in Fowler and Mackey [8], and these are given
in Table 1. They are those suggested by independent estimate, except that we take
ν = 10−2 rather than 10−6. This is partly for numerical expediency, as smaller values
of ν require larger ξf and thus longer computation times, and also because the value
of ν is not well constrained.

Table 1

The reference parameter values, based on estimates in Fowler and Mackey [8].

Symbol Typical value
n 3
ε0 0.1
λ0 0.3
b0 4
ν 10−2

b 4
λ 0.3
ξf 5
δ 0.2
v∗ 1
v′ 1

We choose the Hill function controller (3.11) for both h and h0; thus

h(M̄) =
1

1 + M̄n , h0(S) =
1

1 + Sn ,(4.1)

and we take the peripheral controller v0 to have the form

v0 = [v∗ − v′B]+,(4.2)
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with default values of the amplitude and slope parameters to be v∗ = v′ = 1. The
choice of a threshold in (4.2) is motivated by the observation that neutrophil popula-
tions can dwindle to zero in cyclical neutropenia, which would appear to require zero
production for sufficiently high blood cell counts.

With this choice of the controller functions and using the default parameters, the
steady state is stable. Instabilities arising from parameter variations are described
below.

Numerical method. We have to solve the two ordinary differential equations
(3.12) and (3.19), and the partial differential equation (3.14). The solution is compli-
cated by the presence of the integral in (3.12). We define

U = S exp

[
ε0

∫ t

v0[B(t′)] dt′
]
,(4.3)

and then S and U satisfy the pair of equations

Ṡ = S

[
U̇

U
− ε0v0

]
,

U̇ = b0 [(1 + λ)eαh0(S1)U1 − h0(S)U ] .(4.4)

On the assumption that S remains bounded, U grows exponentially as U ∼ exp(v0t),
where v0 is the mean of v0. This is likely to cause difficulty in numerical solutions, and
this can be reduced by using the algebraically growing function W = lnU , whence

Ṡ = S
[
Ẇ − ε0v0

]
,

Ẇ = b0

[
(1 + λ)h0(S1)e

α+W1−W − h0(S)
]
.(4.5)

In our numerical solutions, we solve (4.5) using the second order accurate improved
Euler method, and we similarly solve (3.14) along the characteristics ξ − t = η, on
which the function Q takes the form

Q =

⎧⎨
⎩

b(1 + λ)h(M̄1)M1 , ξ > 1,

b0(1 + λ)eα(1−ξ)M0(η)h0(S1) exp [W1 −W (η)] , ξ < 1,
(4.6)

where M0(η) = M(η, 0) and M1 = M1,1, i.e., M delayed by one along the character-
istic.

Accurate solutions are obtained with a time step Δt = Δξ = 0.05, and these are
checked against values Δt = Δξ = 0.02 (which are used to give the figures).

Stem cell oscillations. Oscillations in the primitive stem cell population will
occur for a finite range of the parameter λ0/ε0, as described by Fowler and Mackey
[8], when v0 = 1. For the default values of b0 = 4, n = 3, the approximate range
of instability is 0.5ε0 <∼ λ0 <∼ 1.5ε0, and this is modified in an obvious way when the
peripheral controller alters the value of v0. Figure 5 shows the oscillations which
occur in the stem cell population when λ0 is reduced to 0.05. It is an interesting
fact that these oscillations are hardly manifested in the blood cell population. The
apparent reason for this is that the small value of ν means that oscillations in M0, and
therefore also in Mf , are small because small perturbations propagate stably down
the maturation axis. The blood cell population is therefore stable, and B ≈ Mf .
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Fig. 5. Default parameter values, except that λ0 = 0.05. Stem cell oscillations are induced,

without any significant effect on blood cells.

Proliferation-controlled oscillations. We use the term proliferation-controlled
oscillations to refer to oscillations induced by destabilization of the proliferative feed-
back control function h(M̄). If we compare the stem cell model (3.12) (with v0 = 1)

Ṡ = b0 [(1 + λ0)h0(S1)S1 − h0(S)S] − ε0S(4.7)

with the blast cell model (along the characteristics)

Ṁ = b
[
(1 + λ)h(M̄1)M1,1 − h(M̄)M

]
,(4.8)

it is not difficult to sense that modification of the parameters b or λ may cause the
blast maturation to proceed unstably.

This is what we find if λ is increased to 0.6, and the consequent oscillations are
shown in Figure 6. The steady exponential proliferation of blast cells is unstable,
which causes oscillations to occur in the maturation profile, and these oscillations
propagate along the characteristics, as shown in Figure 7.

The oscillations have period equal to the cell cycling time, equal to one in our
scaled model. A partial understanding of these oscillations is afforded by the obser-
vation that if h is constant and M is periodic with period 2π/ω, then (4.8) admits a
solution

M =
∑
p,q

cpqe
σqξ+ipω(t−ξ),(4.9)

provided that σq satisfies

σ = −A−Ge−σ,(4.10)

where

A = bh, G = −bh(1 + λ).(4.11)
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Fig. 6. Proliferatively controlled oscillations due to increased proliferation. Default parameter
values are used, except that λ = 0.6.
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Fig. 7. Two snapshots of the maturation profile for the numerical solution in Figure 6. An

exponentially growing travelling wave propagates down the maturation axis.

Since λ > 0, we have G + A < 0, and it is straightforward to show that there is
always a single positive root, which can be labelled with q = 0. The others are
complex (conjugates), and are labelled with increasing frequency as q = ±1,±2, etc.
Consideration of these complex roots then shows that for small |G|, Reσq < 0, so that
the effect of the oscillations dies away as the cells mature; this is what happens in
Figure 5. However, for larger |G|, Reσq > 0, and the oscillations grow in amplitude as
the cells mature. This causes M̄ to fluctuate, and thus also h, presumably entraining
the period of the oscillations to that of the delay. This description is consistent with
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Fig. 8. The same graph as in Figure 7, except that a logarithmic scale is used. The exponential

increase with ξ is clearly seen.

what is seen in Figure 7 (see also Figure 8). An approximate criterion for growth of
periodic perturbations with ξ is when G < −[A2 + π2]1/2, i.e.,

λ >∼

[
1 +

( π

bh

)2
]1/2

− 1.(4.12)

Differentiation-controlled oscillations. The final kind of oscillation that we
see is induced by the peripheral control of stem cell committal through the function
v0(B). These are essentially delay induced oscillations, where now the delay involved
is the maturation time. Because we suppose maturation time is large, these are long
period oscillations. They can be caused by increasing the sensitivity of the peripheral
controller, as shown in Figure 9.

To understand the origin of these oscillations, let us suppose that ξf � 1, or
ξF � τ , meaning that the maturation time is significantly longer than the cell cycle
time, or equivalently, that there are a large number of generations in the cell lineage.
Let us define

ε =
1

ξm
,(4.13)

and the slow time and maturation scales

T = εt, X = εξ.(4.14)

We also define μ via

λ = εμ,(4.15)

and suppose that μ = O(1). Essentially we are revisiting the relaxation oscillation
analysis of Fowler and Mackey [8]. The partial differential equation for M takes the
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Fig. 9. Differentiation-controlled oscillations due to enhancement of the peripheral controller

function. Default parameters are used, except that v∗ = v′ = 2.

form

∂M

∂T
+

∂M

∂X
=

b [hε,εMε,ε − hM ]

ε
+ μbhε,εMε,ε,(4.16)

and expanding in a Taylor series, we have

∂[(1 + bh)M ]

∂T
+

∂[(1 + bh)M ]

∂X
≈ μbhM,(4.17)

with the boundary condition (taking S = 1)

M = νv0(B) at X = 0.(4.18)

If we suppose h is constant (it is not, but it is not the dependence of h on M̄
which causes the oscillations), then the solution of this is

M = νv0[B(T −X)] exp

[
μbhX

1 + bh

]
,(4.19)

and the cell efflux at X = 1 (ξ = ξf ) is

M(1) = νav0[B(T − 1)],(4.20)

where the amplification factor a is

a = exp

[
μbh

1 + bh

]
.(4.21)

Therefore the blood cell conservation law (3.19) becomes the delay recruitment model

εδ
dB

dT
= νav0(B1) −B.(4.22)
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This is a standard delay recruitment equation with a unique steady state. Oscillations
will occur as a consequence of instability if there are solutions σ of (4.10), i.e.,

σ = −A−Ge−σ,(4.23)

with positive real part. The values of A and G are

A =
1

εδ
, G =

νa|v′0|
εδ

.(4.24)

Equation (4.23) is well understood; see, for example, Mackey [11] or Murray
[15, pp. 23–26]. It is a transcendental equation with an infinite number of complex
roots which accumulate at the essential singularity at σ = −∞. It follows that the
set of Reσ is bounded above. Consequently, there is an instability criterion which
determines when all the roots σ have negative real part, and this is indicated in Figure
10. The three curves in the figure are given by G = −A, G = exp[−(1 +A)], and the
Hopf bifurcation curve G = G0(A), which is given parametrically by

A = − Ω

tan Ω
, G0 =

Ω

sin Ω
,(4.25)

where Ω ∈ [0, π]. Since G and A are positive, oscillatory instability occurs precisely
if G > G0(A). Since G0 ∼ A as A → ∞, the instability criterion for large A is simply
G >∼ A, i.e.,

ν|v′0| exp

[
μbh

1 + bh

]
> 1.(4.26)

Instability is promoted by increasing |v′0|, for example, as indicated in Figure 9.

5. Conclusions. In this paper we have studied the onset of oscillations in a
model of blood cell production which includes a description of cell cycling and prolif-
eration, and also of differentiation and maturation. The model formulation extends
the work of previous authors by correcting an apparent inconsistency in the descrip-
tion of the primitive stem cell population, and also by including the simultaneous
control of stem cell proliferation, stem cell committal, and blast cell proliferation. All
three controls can cause oscillations for appropriate values of control parameters.

Previous results concerning stem cell oscillations are reproduced (see Figure 5),
but these oscillations are harder to obtain when the parameter ν is small, and in ad-
dition they hardly affect the mature blood cell population without additional desta-
bilization of the blast cell proliferation. The reason for this is that an O(1) oscillation
in the stem cell population causes only an O(ν) oscillation in the blast cell committal
rate, and this amplitude propagates through the differentiating cells. Thus one con-
sequence of stem cell paucity is that any instability in the stem cell population itself
is hardly manifested in the blood cell production. From the point of view of survival
and control, this is, of course, a positive result.

Instability in the proliferation of blast cells due to enhancement of the proliferative
controller h(M̄) causes oscillations which propagate down the maturation axis and
are amplified as they progress. The result of this is shown in Figures 6, 7, and 8.
The oscillations have a period equal to the cell cycling time. The mechanism for these
oscillations appears to be a destabilization of the maturing cell amplification, together
with a type of resonance which ties the period to the delay.



OSCILLATIONS IN BLOOD CELL PRODUCTION 2047

-2

-1

0

1

2

3

4

-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

+,-

+ + -

-,-

+,+ osc, U

osc, S

0

G

A

G (A)

G = -A

Fig. 10. Stability map for (4.23). The plus and minus signs indicate the sign of real values of
the growth rate σ, when these exist. A Hopf bifurcation occurs as G increases through G0(A), and
G0 ≈ A for large A.

0

1

2

3

4

5

400 410 420 430 440 450

S
B

S, B

t
Fig. 11. The effect of switching on all three instability mechanisms. Default parameters are

used, except that v∗ = v′ = 2, λ0 = 0.05, and λ = 0.6.

The final kind of oscillation is induced by enhanced peripheral control, as seen in
Figure 9. Stem cell paucity implies that ν � 1 and, consequently, that ξf � 1, and
thus that the oscillation period (controlled by the delay ξf ) is long. This allows an
approximate reduction of the partial differential delay equation to a simple first order
differential delay equation, which is simply analyzed. In particular, if a threshold
form of peripheral controller is used, blood cell counts can decrease to zero, as can be
the case in cyclical neutropenia.

Finally, and as shown in Figure 11, a combination of all three destabilizing mech-
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anisms can lead to oscillations which operate on both the slow, peripherally controlled
time scale and the fast, proliferatively controlled one. We consider this observation
to be a possible explanation of the apparent fact in Figure 2 that both reticulocytes
and platelets appear to oscillate on a fast as well as a slow time scale. Further study
of this behavior requires the extension of this model to accommodate multiple cell
lineages.
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CELLULAR TRACTION AS AN INVERSE PROBLEM∗

D. AMBROSI†

Abstract. The evaluation of the traction exerted by a cell on a planar substrate is here con-
sidered as an inverse problem: shear stress is calculated on the basis of the measurement of the
deformation of the underlying gel layer. The adjoint problem of the direct two-dimensional plain
stress operator is derived by a suitable minimization requirement. The resulting coupled systems
of elliptic partial differential equations (the direct and the adjoint problem) are solved by a finite
element method and tested against experimental measures of displacement induced by a fibroblast
cell’s traction.
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Introduction. The study of the basic mechanisms of cell migration has greatly
increased in the last few years. Cell locomotion occurs through a very complex interac-
tion that involves, among others processes, actin polymerization, matrix degradation,
chemical signaling, adhesion, and pulling on substrate and fibers [11]. All these in-
gredients occur not only in single cell migration but also in collective morphogenetic
behaviors [15].

When focusing on mechanical aspects only, a major issue is the determination
of the dynamical action of the cells on the environment during migration: the cells
adhere, pull the surrounding matrix, and move. As a cell can have more than one
hundred focal adhesion sites, each with thousands of integrins, it is quite difficult to
obtain a pointwise description of the forces exerted by moving cells on a direct basis.
Nevertheless, the striking improvement of nanotechnology has very recently lead to
direct measurements of cell traction: cells are deposed on a bed of microneedles and, on
the basis of the Young modulus and the moment of inertia, length, and displacement of
the microneedles, one can directly obtain the exerted deflective force [4,14]. However,
these very recent experimental achievements still provide partial information on a
very special configuration only: the resolution of the displacement field is at most the
distance between two microneedles (2 microns), and, more important, this setting is
far from being a natural migration environment.

These kinds of considerations suggests that the dynamics of cell locomotion can
be fruitfully studied as an inverse problem, an idea that dates back to the seminal
paper of Harris, Wild, and Stopak [8]. A thin elastic film over a fluid is deformed
under cell traction in a wrinkled pattern, and the size of the crimps is correlated
to the shear load. Unfortunately, buckling of a thin film is an essentially nonlinear
phenomenon and a quantitative reconstruction of the exerted traction would call for
a nontrivial stability analysis in nonlinear elasticity.

A quantitative methodology was proposed in 1996 by Dembo et al. [3], using pre-
stressed silicone rubber, an approach further improved by Dembo and Wang in 1999
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Fig. 1. The experiment by Dembo and Wang. The cell exerts traction (filled arrows) on the
gel. The beads, solidal with the substrate, move from the former position (continuous-line circle)
to the new one (dashed circles). The difference in these positions gives the displacement of the gel
(open arrows).

[2]; see Figure 1. They deduce the traction exerted by a fibroblast on a polyacrilamide
substrate from the measured displacement of several fluorescent beads merged into
the upper layer of the gel. The gel is soft enough to remain in a linear elasticity
regime, and no wrinkles form. The cellular traction is then computed by maximizing
the total Bayesian likelihood of the markers displacement, predicted on the basis of
the Boussinesq solution for the linear elastic half-plane with pointwise traction.

The same approach (in two spatial dimensions) is followed by Schwarz et al.
[13], who numerically invert the Boussinesq integral operator, thus expressing the
displacement in terms of the traction. They point out the strong dependence of the
solution on small variations in the data, in particular those depending on experimental
uncertainty. They therefore propose a regularization of the original problem according
to the Tichonov method [7].

In this paper the same biomechanical issue studied by Dembo and Wang is ad-
dressed by a different mathematical approach, based on the classical functional anal-
ysis framework due to Lions [10]. On the basis of dimensional arguments, the three-
dimensional elasticity system of equations is first reduced to a two-dimensional one.
The inverse problem is then stated as minimization of the distance between the mea-
sured and the computed displacement under penalization of the force magnitude [12].
Standard derivation of the cost function leads to two sets of elastic-type problems:
the direct and the adjoint. The unknown of the adjoint equation is just the shear
force exerted by the cells we are looking for. The two systems of equations are then
numerically solved by a coupled finite element discretization.

The paper is organized as follows. In section 1 the abstract formulation of the
minimization of a cost functional is stated. The resulting adjoint problem is specified
to the case of linear elasticity with an unknown body force in section 2. The methods
and results of the numerical approximation of the system of equations are illustrated
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in section 3, where the specific force field exerted by a fibroblast on a flat surface is
calculated and qualitatively compared with the numerical results obtained by different
approaches. The appendix details the assumptions that yield a two-dimensional plain
stress system of equations in linear elasticity. Analogies and differences between the
present approach and the ones reported in the relevant literature are discussed in the
concluding remarks of section 4.

1. Abstract formulation. Let V be a Hilbert space equipped with the internal
product (·, ·). Let U ⊂ V , and let U = U0 ⊗ U1 be an orthogonal (nontrivial)
decomposition of U in V . Consider the linear operator A : U → V and the problem

Au = f ,(1.1)

where u ∈ U . We call the direct problem the determination of u ∈ U for a given
f ∈ V . If u ∈ U is given, by straightforward application of the operator A we get an
f ∈ V and, in this sense, we denote u = u(f). This is the inverse problem. Often
only a partial knowledge of u is available. As a member of V , any u ∈ U can be
orthogonally decomposed into two components u = u0 + u1, where u0 ∈ U0 and
u1 ∈ U1. If only the component u0 is known, the association u → f illustrated above
cannot be carried out. Even worse, in general u0 and u1 are not in U , the domain
of the operator A. These reasons make the problem ill-posed and call for a suitably
supplementary condition to determine an optimal f on the basis of a partial knowledge
of u.

Let u0 ∈ U0, and define the projector P : U → U0. We introduce the functional
J : V → R:

J(f) = (Pu(f) − u0,u(f) − u0) + ε(f , f),(1.2)

where ε > 0 is a penalty parameter.
We look for g ∈ Vc such that

J(g) ≤ J(f) ∀f ∈ Vc,(1.3)

where Vc is a convex and closed subset of V . In other words, we look for a value of f
minimizing the distance between u and u0 under penalty of the norm of f .

Taking the Gateaux derivative of J evaluated in g, we obtain the equivalent
condition,

J ′[g](f − g) ≥ 0 ∀f ∈ Vc;(1.4)

that is,

(Pu(g) − u0,u(f) − u(g)) + ε(g, f − g) ≥ 0 ∀f ∈ Vc.(1.5)

Introduce the adjoint problem

A∗p = Pu(g) − u0,(1.6)

where A∗ : V → U0. Using the adjoint problem, (1.5) rewrites to

(p, A (u(f) − u(g))) + ε(g, f − g) ≥ 0 ∀f ∈ Vc(1.7)

or

(p, f − g) + ε(g, f − g) ≥ 0 ∀f ∈ Vc.(1.8)
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Fig. 2. The domain Ω of the elasticity equation contains the subdomain Ωc, the area covered by
the cell and where the force applies: in the figure it is enclosed by the continuous line. The dashed
circles are centered in the beads location, and their collection represents the Ω0 subdomain where
the displacement is known.

Therefore we obtain

g = −1

ε
p,(1.9)

where g ∈ Vc.

2. Linear elasticity. In this section we apply the general theory illustrated
above to the specific problem of the small deformation of a homogeneous elastic body
subject to body forces only. Let u(x) be the displacement vector field, x ∈ Ω ⊂ R3.
Suppose that the displacement is known in a subset Ω0 ⊂ Ω; the target function u0(x)
has support in Ω0. In the problem at hand the force is exerted just on the portion
of the domain where the cell lies; let us call this subdomain Ωc ⊂ Ω (see Figure 2).
The cell actually adheres to the substrate just in specific small regions called focal
adhesion sites, which can be experimentally localized [1]. Nothing prevents restricting
the force support to these areas; this assumption is not applied here just because the
information is missing for the experiment numerically reproduced in the final section.

The linear elasticity operator in strong form is

Au = −μΔu − (μ + λ)∇ (∇ · u) ,(2.1)

where μ and λ are the Lamé constants that characterize the material. The elasticity
problem reads

Au = f , u|∂Ω = 0.(2.2)

The direct problem consists in solving (2.2) for a given force field f ; the inverse
problem is to determine the force that produces a known displacement. Here, as in
all cases of practical interest, the displacement is not known in all the domain Ω,
but just in Ω0. In this case the inverse problem is ill-posed, and uniqueness of the
solution has to be recovered by supplementing one more condition. Note that no issue
of regularization in the sense of smooth dependence on initial data is addressed here
directly: regularity will follow a posteriori.
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After definition of the bilinear form

σ(u,v) = μ

∫
Ω

∇u : ∇v dΩ + (μ + λ)

∫
Ω

(∇ · u) (∇ · v) dΩ, u,v ∈ H1
0 (Ω),(2.3)

the weak form of the problem (2.1) can be stated as follows: for a given function
f ∈ L2(Ω), find the solution u ∈ H1

0 (Ω) such that

σ(u,v) = (f ,v) ∀v ∈ H1
0 (Ω).(2.4)

The unique solution for the given f will be denoted by u(f) [5].
We note that any u ∈ H1

0 (Ω) can be trivially rewritten as u = χ0u + (1 − χ0)u,
where χo is the characteristic function of the Ω0 set. This form provides an orthogonal
decomposition of u as a member of L2(Ω). Therefore we can define the projector P
as follows:

Pu = χou.(2.5)

The mere knowledge of u0 does not allow us to obtain f straightforwardly. We there-
fore define the functional J as

J(f) =

∫
Ω0

|u − u0|2 dV + ε

∫
Ω

|f |2dV(2.6)

=

∫
Ω

(Pu − u0) · (u − u0) dV + ε

∫
Ω

|f |2dV,

where ε is a real positive number. We look for g minimizing J :

J(g) ≤ J(f) ∀f ∈ Vc,(2.7)

where Vc ⊂ L2(Ω) is the space of the finite energy functions with support in Ωc. The
minimization of J accomplishes the minimization of the distance of the solution from
the measured value u0 under penalization of the magnitude of the associated force
field f . The penalty parameter ε balances the two requirements.

The minimum of J occurs in g, where the Gateaux derivative satisfies

J ′[g](f − g) ≥ 0 ∀f ∈ Vc;(2.8)

that is, ∫
Ω

(Pu(g) − u0) · (u(f) − u(g)) dV + ε

∫
Ω

g · (f − g) dV ≥ 0 ∀f ∈ Vc.(2.9)

Introduce the adjoint problem

A∗p = Pu − u0,(2.10)

p|∂Ω = 0.

Because here A is self-adjoint, back-substitution into (2.8) gives∫
Ω

A∗p · (u(f) − u(g)) dV + ε

∫
Ω

g · (f − g) dV ≥ 0 ∀f ∈ Vc(2.11)
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or ∫
Ω

p · (f − g) dV + ε

∫
Ω

g · (f − g) dV ≥ 0 ∀f ∈ Vc,(2.12)

and, finally, one finds the optimal body force in the sense of (2.7):

g = −χc

ε
p,(2.13)

where χc is the characteristic function of the Ωc set. The function g vanishes outside
Ωc because of our characterization of the set of admissible force fields Vc.

3. Numerical methods and results. For the specific application addressed in
the present paper, the general three-dimensional theory illustrated above is restricted
to two dimensions. The three-dimensional elasticity system of equations is approxi-
mated to a two-dimensional plain-stress one by vertical averaging along an effective
thickness (see the appendix). The direct and inverse systems of partial differential
equations deduced in section 2 now rewrite to

−μ̂Δu − (μ̂ + λ̂)∇ (∇ · u) = − χc

ε
p, u|∂Ω = 0,(3.1)

−μ̂Δp − (μ̂ + λ̂)∇ (∇ · p) =χou − u0, p|∂Ω = 0.(3.2)

Equations (3.1) and (3.2) have been discretized by a finite element method using
linear basis functions on an unstructured mesh. The two resulting linear systems are
solved by a global conjugate gradient method, thus avoiding any unnecessary iterative
coupling [12].

The computational domain is a square with side of 100 microns. The effective
Lamé constants are taken from [2], thus resulting in μ̂ = 2100 and λ̂ = 4150 pi-
coNewtons per micrometer. The measured displacement u0 and the cell contour are
obtained from the same paper.

The value of the penalty parameter ε can be suitably chosen when reinterpreting
the system of equations (3.1)–(3.2) as a filter. In fact, suppose for a moment that Ω0 =
Ω under periodic boundary conditions. The amplitude of the Fourier components of
the solution uk, pk satisfies

μ̂k2uk 
− 1

ε
pk,(3.3)

μ̂k2pk 
uk − u0,k ;(3.4)

that is,

uk =
u0,k

1 + εμ̂2k4
.(3.5)

Equation (3.5) points out that the system of equations (3.1)–(3.2) acts as a filter
damping the modes corresponding to wavenumbers � ε−1/4μ̂−1/2. The penalty pa-
rameter used in the calculations illustrated below is ε = 10−6, thus algebraically
damping wavelengths larger than 9 μm.

In Figure 3 a portion of the computational domain is shown: the cell contour,
the displacement of the beads, and the computational mesh are plotted. The cell
contour represents a boundary between internal and external elements. Note that
some nodes of the mesh correspond to the original bead locations, while others do
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Fig. 3. Experimental displacement of the beads merged in the upper layer of the gel, as taken
from [2]. The computational mesh is represented in grey. The mesh satisfies two constraints: it
has a node in every point where displacement has been measured, and a sequence of element sides
coincides with the boundary of the cell. The reference vector at the bottom left corner is 6 microns
long.

not: they have been created for the sake of regularity of the computational grid. The
present approach ensures full flexibility in this respect. According to the notation
introduced in the preceding sections, the cell contour defines Ωc, while the collection
of the elements that have at least one node with measured displacement defines Ω0.
The computed displacement is shown in Figure 4. The mean difference between the
calculated and the measured solution is

1

n

n∑
i=1

√
(ui − u0,i)2 = 8.8 10−2 μm,(3.6)

where the sum runs over all the nodes at which u0 is known. The displacement of
the gel matrix essentially occurs around the cell edge and, secondly, at the tail, as
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Fig. 4. Computed displacement of the gel layer. The reference vector at the bottom left corner
is 6 microns long.

can be observed also in Figure 5, where the magnitude of the displacement field is
represented. The computed force field is plotted in Figure 6. The qualitative behavior
is very near to results shown by Dembo and Wang. The exerted force reaches the
maximum value of some thousands of picoNewtons, corresponding to the remarkable
stress of thousands of Pascals. A striking feature of the plot is that the cell is pulling
both at the edge and at the tail, although the latter with less intensity. This result is
in agreement with [2].

4. Final remarks. In this paper a novel method has been proposed for solv-
ing the inverse problem to obtain forces from displacement of an elastic body. The
statement and functional derivation of a cost function yields two coupled systems of
partial differential equations. The numerical solution of the inverse problem deduces
the force acting on a surface on the basis of a partial knowledge of the deformation.
As a specific application, the method has been applied to obtain a quantitative plot
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Fig. 5. Color map of the magnitude of the computed displacement of the gel layer. The color
scale is in microns.

of the forces exerted by a fibroblast cell on a gel substratum.

The proposed approach is quite general in not assuming a pointwise nature of
the surface force. The direct solution of the elasticity equations makes it possible,
in principle, to apply the proposed methodology to a variety of situations for which
the Boussinesq solution does not apply: for instance, nonhomogeneous substrate or
nonisotropic prestress of the gel.

The deduction of the system of equations from a minimum principle provides a
clear meaning to the regularization procedure, while the statement of the equations in
precise functional spaces ensures the well-posedness of the direct and inverse problems.
Finally, the numerical integration of the equations by a finite element discretization
ensures full geometrical flexibility to account for the complicated contour of a cell or
to operate local mesh refinements suggested by accuracy arguments.

Appendix. Two-dimensional modeling. The extracellular matrix is de-
formed by the traction exerted by the cell, and in principle the strain of the gel can
be predicted solving the force balance equation for an elastic three-dimensional body
with suitable boundary conditions. However, an a priori consideration of the char-
acteristics of the displacement field in the elastic substrate suggests some suitable
simplification of the full three-dimensional model.

As a matter of fact, the substrate layer is very shallow: its horizontal extension
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Fig. 6. Computed force field exerted by the fibroblast on the gel layer. The magnitude of the
reference vector at the bottom left corner corresponds to 103 picoNewtons.

(∼ 1mm) is much larger than the vertical one (∼ 10−100μm). However, this geomet-
rical scale ratio by itself does not allow any estimate of the behavior of the solution
along the vertical direction, a consideration that could be helpful in addressing a
suitable approximate model.

The useful observation is instead that the vertical displacement is very small when
compared to the horizontal one. Let us denote by X and Z the typical scale lengths of
the horizontal and vertical displacements, respectively. The length X is of the order
of the diameter of a cell (∼ 20μm), while Z is to be determined. In the following we
indicate by U and W the typical horizontal and vertical displacements.

The boundary conditions of the three-dimensional force balance equation at the
cell-gel interface read

μ(uz + wx) = τ at z = 0,(A.1)

(μ + λ)wz + λux =0 at z = 0.(A.2)
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As μ ∼ λ, inspection of (A.2) yields that it must be W/Z ∼ U/X. According to the
experimental evidence, the vertical displacement is much smaller than the horizontal
one: U � W . Putting this observation into (A.1), one deduces that |wx|  |uz|,
and therefore the horizontal derivative of the vertical displacement can be neglected
therein.

It follows that to first order the horizontal displacement vanishes in the layer at
the depth Z ∼ μU/τ . In the mentioned experiments

Umax = 6μm, μ =
E

2(1 + ν)
=

E

3
= 2000 pN/μm2, τmax = 104 pN/μm2,

thus yielding Zmax ∼ 1μm, much smaller than the height of the matrigel layer (70μm).
According to the observations above, we adopt a two-dimensional “plain stress” model,
obtained by vertical integration of the three-dimensional equation of the linearized
elasticity along the effective thickness Zmax. Therefore one gets

−μ̂Δu − (μ̂ + λ̂)∇ (∇ · u) = τ ,(A.3)

where τ is the shear stress at the surface. The quantities

μ̂ = Zmax
E

2(1 + ν)
, λ̂ = Zmax

Eν

1 − ν2
(A.4)

are the effective Lamé constants of the two-dimensional model and have the dimension
of force per unit length [3, 9]. It is to be remarked that the above determination of
Zmax is based on dimensional arguments only.

Acknowledgments. The author is indebted to Pierluigi Rozza, Enrico Serra,
and Luigi Preziosi for fruitful discussions about the content of this paper.
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HOMOGENIZATION OF A WIRE PHOTONIC CRYSTAL: THE
CASE OF SMALL VOLUME FRACTION∗
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Abstract. We consider the diffraction of a monochromatic incident electromagnetic field by a
bounded obstacle made of parallel high conducting metallic fibers of finite length which are peri-
odically disposed. Our goal is to study the asymptotics of this three-dimensional Maxwell problem
as the period, the thickness of the rods, and the resistivity are simultaneously small. We solve this
problem in the case where the filling ratio of fibers vanishes but their capacity remains positive. We
find a limit volumic density of current which results in a nonlocal constitutive relation between the
electric and displacement fields. This extends previous results obtained in the polarized case where
a two-dimensional effective local equation was found with a possibly negative effective permittivity.

Key words. Maxwell equations, metamaterials, homogenization, thin structures, two-scale
convergence, capacitary potentials, nonlocal effects
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1. Introduction. Photonic crystals are artificial periodic structures which pos-
sess a photonic band gap: the propagation of electromagnetic waves is impossible in
them over some intervals of frequencies [11]. This phenomenon is very close to that
of the band structure for electrons in natural crystals. Many studies have been de-
voted to dielectric devices, that is, photonic crystals made with a dielectric material.
However, there is a growing interest in metallic crystals, which now form an emerging
field of research, because of their particular behavior in the low-frequency domain,
i.e., their effective properties. One of these properties is the existence of a plasma
frequency for structures made of wires: for frequencies below some cut frequency the
electric field is evanescent in the structure. One of the pioneering studies in this
domain was that of Pendry et al. [20], where the problem was analyzed in terms of
plasmons and the renormalized effective mass of electrons due to their confinement
in very thin wires. This work used a crude model for the metallic properties of the
medium. We have presented in [14] another approach based on a homogenization
method involving Maxwell equations only.

In this paper, we consider the diffraction of a given monochromatic incident elec-
tromagnetic field (wavenumber k0 = 2π

λ ) by a bounded obstacle made of parallel
high conducting metallic fibers of finite length. These fibers of cross section r are
x3-parallel and placed periodically in (x1, x2) (period η) in a cylinder Ω = D× (0, L),
where D denotes a connected bounded open subset of R2. The fibers share the same
conductivity represented by parameter σ.

We are interested in all possible asymptotics of the diffraction problem as the
small parameters η, r, σ−1 tend simultaneously to zero. The situation is well under-
stood in the case where Ω is an infinite cylinder D × R and the incident field is E||
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or H|| polarized: if, for simplicity we take σ = +∞ (perfectly conducting fibers),
the diffraction problem reduces to a scalar Helmholtz equation with homogeneous
Dirichlet (E|| case) or Neumann (H|| case) conditions on a perforated domain. Then
the following results can be proved using the following classical homogenization tech-
niques (see [7, 8, 9] in the case of diffusion equations). Two critical scales of the radius
rη of the scatterers appear to be relevant:

(1) E|| case: log rη ∼ −η−2. Denoting by γ−1 the limit of η2|log rη|, the limit
problem is equivalent to the diffraction by the whole set Ω filled up with a homoge-
neous medium of relative permittivity εeff = 1−2πγ/k2

0. This simple fact has striking
applications, namely the existence of a suitable frequency (called plasma frequency)
under which εeff becomes negative and the field decreases exponentially inside Ω.
When γ is infinite (in particular, when the size of the rods is of order η), the limit
field vanishes and Ω behaves like a perfectly conducting medium. As shown by nu-
merical experiments (see [14]), these behaviors are observed even if the ratio η

λ is not
so small.

(2) H|| case: rη ∼ η. In this case, Ω behaves like a homogeneous medium
whose effective permittivity εeff is greater than 1 through a corrective term which is
computed by solving as usual an elementary periodic Neumann problem on a unit
cell. Additionally, the magnetic field induces a small turning current on the surface of
each small cylinder, which as η → 0 becomes a surface current on the boundary of Ω
(accordingly the magnetic field becomes discontinuous across ∂Ω). In case rη � η (as
was assumed in the E|| case), the equivalent structure is transparent (i.e., εeff = 1).

Insofar as the Maxwell problem can be decomposed into two problems of type E||
and H|| (for instance, if perfectly conducting fibers with infinite length are considered),
we can draw the conclusion that for an intermediate size of rods rη (i.e., rη � η and
γ = +∞, for example rη ∼ η2), the homogenized medium is perfectly reflective for
the vertical component of the electric field, whereas it is transparent for that of the
magnetic field. Hence very strong polarizing properties are obtained at any incidence.

However, when the diffracting domain Ω is bounded, it is no longer possible
to split the original problem into independent problems of type E|| and H||. As a
consequence we have to deal with the full three-dimensional (3D) Maxwell system,
which is mathematically much more involved. In particular we will show that nonlocal
effects appear in the limit as η → 0.

In this paper, we deal only with the case where rη � η, that is, the filling ratio
θη of rods vanishes. The high conductivity is modeled as a stiff parameter depending
on η:

ση =
κ ε0ω

θη
,(1.1)

where κ > 0 is a fixed (dimensionless) constant. Our model includes the case κ = +∞,
which corresponds to infinitely conducting fibers (see Remark 3.4).

Denoting by Tη the union of the rods, the relative permittivity is then defined as
follows:

εη(x) =

{
1 + i

κ

θη
if x ∈ Tη,

1 if x ∈ R3 \ Tη.

Let (Ei, Hi) denote a given incident electromagnetic wave. As it satisfies the harmonic
Maxwell system in the vacuum (that is, curlEi = i ωμ0 H

i, curlHi = −i ωε0 E
i in all
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R
3), it is smooth and solves the homogeneous Helmholtz equation on R3 with wave

number k0.
For every value of the parameter η, the total electromagnetic field (Eη, Hη) is

then characterized as the unique solution of the time harmonic Maxwell system{
curlEη = iωμ0Hη,
curlHη = −iωε0εηEη

(1.2)

such that the diffracted field (Ed
η , H

d
η ) := (Eη − Ei, Hη −Hi) satisfies the so-called

outgoing wave condition at infinity. This condition can be written in the following
way due to Silver and Müller (see [22]):

(Ed
η , H

d
η ) = O

(
1

|x|

)
, ωε0

(
x

|x| ∧ Ed
η

)
− k0H

d
η = o

(
1

|x|

)
.(1.3)

For the existence and the regularity of the solution (Eη, Hη), we refer, for instance,
to [6].

The main mathematical issue of the paper consists in proving that (Eη, Hη) does
converge weakly in (L2

loc(R
3))3 and that the limit is characterized as the unique solu-

tion of a suitable diffraction problem.
It turns out that, like in the E|| case mentioned before (see [14]), the limit equation

will depend on the average capacity of the fibers, which is described by the following
limit:

γ := lim
η→0

(log rη η2)−1.(1.4)

Clearly, assuming that such a limit is finite forces rη � η, so that the fibers seem to
disappear as η → 0. However, it is crucial to record the information on the behavior
of the electric field Eη in the fibers. To that aim, in the same spirit as in [3], we
introduce the rescaled field

Fη = κEη

1Tη

θη
.

This vector function Fη represents the average displacement field in the fibers. It can
be seen (up to a multiplicative constant) as a density of current. We may rewrite the
second equation in (1.2) as

curlHη = −iωε0(Eη + i κFη).(1.5)

We are going to prove that the sequence {Fη} is bounded in L1(Ω) and that its weak
limit F as a vector measure is parallel to the fibers and absolutely continuous with
respect to the Lebesgue measure. Consequently we will write F in the form F = J e3,
where J ∈ L1(Ω) can be seen as an effective density of current.

Assuming that (Eη, Hη) converges weakly to (E,H) in L2
loc, we may write down

the limit Maxwell system in the form{
curlE = iωμ0H,
curlH = −iωε0(E + i Je3).

(1.6)

The fundamental point is to derive a relation between the current density J(x) and
the macroscopic electric field E(x). Our results show evidence of the three following
important features:
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– For 0 < γ < +∞, the constitutive relation found between J and E is nonlocal:
J satisfies on Ω a propagation equation in the vertical direction with a source term
depending on E(x). It is then possible to express J in terms of E3 as an integral of a
suitable kernel with respect to x3 (see (3.5)). Substituting this expression for J into
(1.6) results in a nonlocal homogenized equation for E. This kind of situation has
already been observed in the simpler scalar case of the heat equation (see [3]).

– The boundary condition satisfied by J on the bases of the cylinder Ω is not
a Dirichlet condition as is expected by common knowledge in antenna theory. By a
careful analysis involving the second order derivative of J (in the distributional sense),
it is shown (see Lemma 2.8) that the correct boundary condition is of Neumann type,
i.e., ∂J

∂x3
= 0. In turn J has an internal trace on ∂Ω which balances the jump of the

vertical component of E.
– In our diffraction problem, none of the fields Eη, Hη converges strongly in L2

loc.
The defect of strong convergence is directly related to the dissipation of the system
by Joule’s effect in the fibers.

The paper is organized as follows. In section 2, we fix some notation and prove
some preliminary estimates. In section 3 we state and prove the main convergence
result. In section 4 we apply our results to the case of fibers with infinite length and
present numerical results.

2. Notation and preliminary estimates. We denote by {e1, e2, e3} the canon-
ical basis of R3. We consider a set of e3-parallel fibers of finite length L disposed in
a cylindrical domain Ω := D× ]0, L[, where D is a bounded connected open subset of
R

2 with smooth boundary. We denote the bases of this cylinder D0 := D × {0} and
DL := D × {L}.

For every η > 0, we consider a partition of D into a set of periodically distributed
cells of size η:

Y i
η = (η i1, η i2) +

]
−η

2
,
η

2

[2

, i = (i1, i2) ∈ Iη ⊂ Z2,

where Iη := {i ∈ Z2; Y i
η ⊂ D}.

Given a small parameter rη such that rη � η, we define the following:
– Di

η := two-dimensional (2D) disk centered at (η i1, η i2) of radius rη,

– T i
η := Di

η× ]0, L[, Tη :=
⋃

i∈Iη
T i
η.

The fibers are represented by the set of thin parallel cylinders Tη (see Figure 1)
and are filled up with a metallic medium. This medium is assumed to be homogeneous
with a very high conductivity, which we model through a stiff parameter ση → ∞.
Note that, by the definition of Iη, we have Di

η ⊂ D, so that the fibers do not intersect
the lateral part of the boundary of Ω. The subset Ω\Tη as well as the complement of
Ω is assumed to have the electromagnetic parameters of the vacuum ε0 (permittivity)
and μ0 (permeability). Recall that the wave number of a monochromatic wave of
angular frequency ω is given by

k0 = ω
√
ε0μ0.(2.1)

In order to simplify the mathematical presentation, the permeability will be kept
constant and equal to μ0 in the metal, and the relative permittivity εη is taken as
follows:

εη(x) = 1 if x ∈ Ω \ Tη, εη(x) = 1 + i
ση

ε0ω
if x ∈ Tη.(2.2)
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Fig. 1. Schematic of the diffractive structure.

Clearly the asymptotic behavior of (εη) in L1(Ω) is characterized in terms of the
filling ratio θη by the parameter

κ := lim
η

θη
ση

ωε0
, where θη := π

r2
η

η2
.(2.3)

If 0 ≤ κ < +∞, (εη) is bounded in L1(Ω) and converges weakly star in the sense
of measures to the constant function 1 + iκ. (Notice that the sequence {εη} is not
equi-integrable in L1(Ω) unless κ = 0.)

To simplify we keep constant the mean value of εη over Ω so that

ση =
κωε0

θη
.(2.4)

Now we define a rescaled electric field in the fibers by setting

Fη = κEη

1Tη

θη
.(2.5)

Then taking into account (2.4), the Maxwell system (1.2) can be rewritten as{
curlEη = iωμ0Hη,
curlHη = −iωε0(Eη + i Fη).

(2.6)

From now on, we choose a reference ball B of sufficiently large diameter such that
Ω ⊂⊂ B, and we start our analysis with a sequence (Eη, Hη) solving (2.6) such that

sup
η

∫
B

(|Eη|2 + |Hη|2) dx < +∞.(2.7)
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This estimate will be proved in section 3 in the case when (Eη, Hη) is associated
with the diffraction of some incident wave. Possibly passing to a subsequence, we
may assume that (Eη, Hη) ⇀ (E,H) weakly in L2

loc. It is rather intuitive that the
oscillations of (Eη, Hη) will take place only in a neighborhood of Ω. This fact is
confirmed in a rigorous way as in the following claim.

Lemma 2.1. Let (Eη, Hη) be a solution of (1.2), and assume that (Eη, Hη)
w converges weakly in L2(B) and that (Eη − Ei

η, Hη − Hi
η) satisfies the outgoing

wave condition (1.3) for a suitable sequence of incident waves (Ei
η, H

i
η) converging

uniformly to (Ei, Hi). Then the convergence of (Eη, Hη) holds in C∞(K) for every
compact subset K ⊂ R3 \Ω. Furthermore, the limit field (E,H) solves the Helmholtz
equation in R3 \ Ω, whereas (E − Ei, H −Hi) satisfies (1.3).

Proof. Since εη = 1 is constant in the complement of Ω, we infer from (1.2)
that all the components of the fields Eη and Hη satisfy the Helmholtz equation Δu+
k2

0u = 0 on the open set R3 \ Ω. By the properties of hypoelliptic operators (see,
for example, [21]), the weak convergence of (Eη, Hη) to (E,H) in L2(B) implies its
uniform convergence, as well as that of all its derivatives, on every compact subset
of B \ Ω. We extend this convergence to all R3 \ Ω as follows: we consider a sphere
SR = {|x| = R}, where R is chosen so large that Ω ⊂⊂ {|x| ≤ R} ⊂⊂ B. Then we
apply to the diffracted field (Eηd, Hd

η ) := (Eη −Ei
η, Hη −Hi

η) the following Stratton–
Chu integral identities, which are in fact equivalent to (1.3) (see [6, 22]):

Ed
η(x) =

∫
|y|=r

[
iωμ0 Φ(x− y)

(
y

|y| ∧Hd
η

)
+ ∇Φ(x− y) ∧

(
y

|y| ∧ Ed
η

)]
dσ,

Hd
η (x) =

∫
|y|=r

[
−iωε0 Φ(x− y)

(
y

|y| ∧ Ed
η

)
+ ∇Φ(x− y) ∧

(
y

|y| ∧Hd
η

)]
dσ,

(2.8)

where Φ(x) = eik0x

4πx (recall that ω = k0√
ε0μ0

is the angular frequency) and dσ denotes

the surface integral. Passing to the limit in above relations as η → 0, we extend the
definition of (E,H) outside B and obtain the convergence of (Eη, Hη) to (E,H) in
C∞(K) for every compact subset K ⊂ R

3 \ Ω. Clearly the integral relations (2.8)
will hold for the limit diffracted field (E −Ei, H −Hi), and therefore it satisfies the
Silver–Müller conditions (1.3).

Now we need a precise analysis of the oscillations of the electromagnetic wave
in Ω. To that aim, we use a variant of the double scale convergence (see [1]) in a
framework of periodic varying measures. This notion (introduced in [4, 5]) will allow
us to account simultaneously for the oscillations at scale η and the 3D-1D reduction at
the level of each period (recall that rη � η). Although the oscillations of the system
described above are expected only in the (x1, x2) variables, we will consider periodic
test functions in R3 which oscillate in the directions of the three axes.

We need some further notation: let Q = [−1/2, 1/2[ 3 and let us denote by T
the 3D torus R3/Q. In what follows, Q-periodic functions will be systematically
identified with functions on T. For every d ∈ N, we denote by C∞(T;Rd) the space
of smooth Q-periodic functions from R

3 to Rd, and by (L2
μ(T))d the space of Q-

periodic functions belonging to L2
μ,loc(R

3;Cd). A Q-periodic measure can be seen as

a linear form on the space of continuous periodic functions C0(T) or equivalently as
a Radon measure on Rd such that μ(B + Q) = μ(B) for every Borel subset B ⊂
R

d. Given such a Q-periodic measure, we indicate by μ(x/η) the measure on R3

defined by 〈μ(x/η), ϕ〉 = η3
∫
ϕ(ηy)dμ(y). Notice that the sequence {μ(xη )} converges
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weakly star to the Lebesgue measure on R3 up to the multiplicative constant c =
μ(Q), meaning that limη→0 〈μ(x/η), ϕ〉 = c

∫
R3 ϕdy for every continuous compactly

supported test function ϕ.
Definition 2.2. Let {μη} be a sequence of Q-periodic measures converging

weakly star to μ. Then a sequence {vη} ⊂ L2
μη

(B;Rd) is said to be two-scale con-

vergent to v0 ∈ L2
dx⊗μ(B × T;Rd), and we write vη ⇀⇀ v0 if, for every test function

ϕ ∈ C∞
0 (B; C∞(T;Rd)), the following holds:

lim
η→0

∫
B

vη(x)ϕ

(
x,

x

η

)
dμη

(
x

η

)
=

∫ ∫
B×Q

v0(x, y)ϕ(x, y) dx⊗ dμ(y).(2.9)

The sequence {vη} is said to be two-scale strongly convergent (denoted vη →→ v0) if in
addition

limsup
η→0

∫
B

|vη(x)|2
(
x,

x

η

)
dμη

(
x

η

)
=

∫ ∫
B×Q

|v0(x, y)|2 dx⊗ dμ(y).(2.10)

A straightforward generalization of the results of [4] (see [1] in the case when μη

is the Lebesgue measure) is summarized in the following result.
Proposition 2.3. Let {vη} be a sequence of Borel functions from B to Rd such

that

sup
η

∫
B

|vη|2dμη

(
x

η

)
< +∞.

(i) (compactness) There exists a subsequence {vηk
} and v0 ∈ L2

dx⊗μ(B × T;Rd)
such that vηk

⇀⇀ v0. In addition, the sequence of measures {vημη(
x
η )} is uniformly

bounded in total variation, and vηk
μηk

(x/ηk) converges weakly star to vdx, where
v(x) =

∫
Q
v0(x, y)dμ(y).

(ii) (lower semicontinuity) If vη ⇀⇀ v0, then

liminf
η

∫
B

|vη|2dμη

(
x

η

)
≥

∫ ∫
B×Q

|v0(x, y)|2 dx⊗ dμ(y).

(iii) (weak-strong convergence) Let {vη}, {wη} such that vη ⇀⇀ v0 and wη →→ w0.
Then, for every test function ϕ ∈ C∞

0 (B; C∞(T)), there holds

lim
η→0

∫
B

vη · wη ϕ

(
x,

x

η

)
dμ

(
x

η

)
=

∫ ∫
B×D

v0(x, y) · w0(x, y)ϕ(x, y) dx⊗ dμ(y).

In particular, vη · wημη(
x
η )

∗
⇀ p(x)dx, where p(x) =

∫
Q
v0(x, y) · w0(x, y) dμ(y).

We will apply Proposition 2.3 several times, choosing μη to be

μη(dy) = aη(y)dy, aη(y) :=

{
1 if y /∈ Sη,
κ
θη

if y ∈ Sη,
(2.11)

where Sη denotes the vertical cylinder Sη := {y2
1 + y2

2 ≤ r2
η

η2 , |y3| ≤ 1/2}. It is easy to
check that μη converges weakly star to the periodic measure μ defined by

〈μ, ϕ〉 :=

∫
Q

ϕdy + κ

∫
S0

ϕH1(dy), ϕ ∈ C0(T),(2.12)

H1(dy) being the curvilinear abscissa and S0 = {(0, 0, y3) : −1/2 ≤ y3 ≤ 1/2}.
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The fact that the rescaled vector field F η introduced in (2.5) converges weakly to
a vertical vector field in L2(Ω) is a consequence of the following result.

Proposition 2.4. Let (Eη, Hη) be a solution of (1.2) such that (Eη, Hη)⇀(E,H)
weakly in L2

loc(B;R3). Let μη be defined in (2.11). Then, we have
(i) supη

1
θη

∫
Tη

|Eη|2 dx < +∞;

(ii) there exist suitable subsequences of {Eη}, {εηEη} (still denoted {Eη}, {εηEη})
and an element J ∈ L2(Ω) such that

Eη ⇀⇀ E0(x, y), E0(x, y) =

{
E(x) if (x, y) ∈ B ×Q \ Ω × S0,
J(x)
κ e3 if (x, y) ∈ Ω × S0,

(2.13)

εη Eη ⇀⇀ D0(x, y), D0(x, y) =

{
E(x) if (x, y) ∈ B ×Q \ Ω × S0,

i J(x)
κ e3 if (x, y) ∈ Ω × S0;

(2.14)

(iii) the sequences {Fη} and {εηEη} are bounded in (L1(B))3, and for suitable
subsequences one has

Fη
∗
⇀ J(x) 1Ω(x) e3, εη Eη

∗
⇀ D := E + i J(x) 1Ω(x) e3.(2.15)

Proof. (i) Recalling (2.4) (where κ < +∞), we have to show that Iη := 1
θη

∫
Tη

|Eη|2
remains uniformly bounded. Notice that this quantity represents up to a multiplica-
tive factor the energy dissipated by Joule’s effect. By using Maxwell equations (1.2)
and by integrating by parts (n(x) denotes the exterior normal on ∂B), we derive that∫

∂B

(Eη ∧Hη) · n(x) =

∫
B

(
curlEη ·Hη − curlHη · Eη

)

= iω

∫
B

(
μ0|Hη|2 − ε0|Eη|2

)
− ωε0κ

θη

∫
Tη

|Eη|2.
(2.16)

The left-hand side of (2.16) is well defined, by Lemma 2.1, and converges to
∫
∂B

E∧H.
Therefore by passing to the limit in the real parts of (2.16), we obtain that {Iη} is
uniformly bounded and eventually satisfies the following balance relation:

�
(∫

∂B

E ∧H

)
= −ωε0κ lim

η→0
Iη.(2.17)

(ii) and (iii). By (i), we have the uniform upperbound supη

∫
B
|Eη|2dμη(

x
η ) < +∞.

Therefore, up to a subsequence, we may assume that Eη ⇀⇀ E0, where E0(x, y) is an
element of L2

dx⊗μ(B × T;R3) (see Definition 2.2). In addition, since θη goes to zero,
we have ∫

Tη

|Eη|2dx → 0.(2.18)

From Lemma 2.1 below, we know that the convergence of Eη to E holds with
respect to the uniform norm on every compact subset of B \Ω; it is then easy to check
that E0(x, y) = E(x) for x ∈ B \ Ω.
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We now focus our attention on the set Ω. Due to the particular form of μ given
by (2.12), for x ∈ Ω, we may split E0 as

E0(x, y) = Ẽ0(x, y) if y ∈ Q \ S0, E0(x, y) =
1

κ
J0(x, y) if y ∈ S0,(2.19)

where for a.e. x ∈ Ω, E0(x, ·) and J0(x, ·) are respectively elements of L2(Q) and
L2(S0).

By (2.18), Eη1Tη → 0 strongly in L2(Ω), and the weak limit of {Eη1Ω\Tη
} on Ω

coincides with E. Let us apply Proposition 2.3(iii) with vη = Eη and wη := 1Ω\Tη
. We

clearly have wη →→ w0(x, y) := 1Ω×Q\S0
. Since vηwημη(

x
η ) coincides with Eη1Ω\Tη

dx,
we infer that

E(x) =

∫
Q\S0

E0(x, y)μ(dy) =

∫
Q

Ẽ0(x, y) dy.(2.20)

Now substituting wη with 1−wη, we obtain in a similar way that Eη1Tη μη(
x
η ) (which

by (2.5) coincides with Fη dx) converges weakly star to F (x)dx, where in view of
(2.12) and (2.19),

F (x) = 1Ω(x)

∫
S0

E0(x, y)μ(dy) = 1Ω(x)

∫
S0

J0(x, y)H1(dy).(2.21)

In particular the sequence {Fη} is bounded in L1(Ω).
Eventually we apply Proposition 2.3(iii) with vη = Eη and wη :=

εη
aη

. We find

that wη →→ w0, where w0(x, ·) := 1Q\S0
+ i 1S0 . We deduce that εη Eη ⇀⇀ D0, where

D0(x, y) = Ẽ0(x, y) if y ∈ Q \ S0, E0(x, y) =
i

κ
J0(x, y) if y ∈ S0.(2.22)

Furthermore {εη Eη} is bounded in L1(Ω) and converges weakly star to a limit D(x)
which, according to (2.20), (2.21), and (2.22), is given by

D(x) =

∫
Q

D0(x, y) μ(dy) = E(x) + i F (x).

Summarizing, we have proved the assertions (ii) and (iii) of Proposition 2.3, provided
that we can show that Ẽ0(x, ·) and J0(x, ·) are constants and that J0(x, ·) is e3-
parallel. This is a consequence of the following claims: for Lebesgue almost all x ∈ Ω,
the vector fields Ẽ0(x, ·) and J0(x, ·) defined in (2.19) satisfy as distributions on the
torus:

curly Ẽ0(x, ·) = 0 on Q,(2.23)

divy Ẽ0(x, ·) = 0 on Q \ S0,(2.24)

divy

(
J0(x, ·)δS0

)
= 0 on Q(2.25)

(where in (2.25) δS0
stands for the measure associated with the curvilinear integral

on S0).
Indeed the curl-free condition in (2.23) implies that Ẽ0(x, ·) as an element of

L2(T;R3) reads as Ẽ0(x, ·) = E(x)+∇yw, where w is a periodic potential in W 1,2(Q).
Now by the divergence-free condition (2.24), w is harmonic on Q \ S0, and thus on
the whole cube Q, since the segment S0 has a vanishing capacity in W 1,2 (see, for
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instance, [13, Theorem 3, p. 154]). Then the periodicity condition yields that w is
constant, and thus by (2.20), we have Ẽ0(x, y) = E(x) for almost all y ∈ Q. On the
other hand, by applying (2.25) to test functions of the kind ϕ(y) = β(y3)Ψ(y1, y2),
we deduce that ∫ 1

0

(a β′(s)J0(x, s) · e3 + β(s)J0(x, s) · z) ds = 0,

where a := Ψ(0, 0); the horizontal direction z := ∇Ψ(0, 0) and the function β(s) as
well can be chosen arbitrarily. It is then straightforward to infer that J0(x, ·) is e3-
parallel and constant along S0, and thus of the form given in (2.13) with a suitable
J ∈ L2(Ω).

Proof of claim (2.23). Let us apply again Proposition 2.3(iii) with vη = Eη and

wη := 1Ω\Tη
+

θη
κ 1Tη . As θη → 0, we have wη →→ w0(x, y) := 1Ω×Q\S0

. Therefore, for
every test function Ψ ∈ C∞

0 (Ω; C∞(T;R3)), we have in view of (2.19)

lim
η

∫
Ω

Ψ

(
x,

x

η

)
· Eη dx = lim

η

∫
Ω

Ψ

(
x,

x

η

)
· vη(x) wη(x)μη

(
x

η

)

=

∫ ∫
Ω×(Q\S0)

Ψ(x, y) · V0(x, y) dx⊗ dμ(y)

=

∫ ∫
Ω×Q

Ψ(x, y) · Ẽ0(x, y) dx dy.

(2.26)

By the first Maxwell equation in (1.2) and (2.7), the sequence {curlEη} is bounded
in L2(Ω) and η curlEη → 0 in L2(Ω). Taking Ψ = curly ϕ in (2.26), where ϕ ∈
C∞

0 (Ω; C∞(T;R3)), and integrating by parts, we deduce that

0 = lim
η

∫
Ω

η Eη · curly ϕ

(
x,

x

η

)
= lim

η

∫
Ω

Eη · curl

(
η ϕ

(
x,

x

η

))
dx

= lim
η

∫
O

Eη · (curly ϕ)

(
x,

x

η

)
dx

=

∫ ∫
Ω×Q

Ẽ0(x, y) · curly ϕ(x, y) dx dy.

(2.27)

The conclusion follows from (2.27) by choosing a test function ϕ of the kind ϕ(x, y) =
β(x)ϕ0(y), where β ∈ C∞

0 (Ω) and ϕ0 ∈ C∞
0 (Q;R3), and by localizing with respect

to x.
Proof of claim (2.24). By the second Maxwell equation in (1.2), the vector field

εη Eη is divergence-free. Thus by taking Ψ = ∇yϕ as a test function, where ϕ ∈
C∞

0 (Ω; C∞(T)), we obtain (taking into account (2.22))

0 = lim
η

η

∫
Ω

∇
(
ϕ

(
x,

x

η

))
· εηEη dx = lim

η

∫
Ω

∇yϕ

(
x,

x

η

)
· εηEη dx

=

∫ ∫
Ω×Q

∇yϕ(x, y) ·D0(x, y) dx⊗ dμ(y)

=

∫ ∫
Ω×Q

∇yϕ(x, y) · Ẽ0(x, y) dx dy +

∫ ∫
Ω×S0

∇yϕ(x, y) · J0(x, y) dx⊗H1(dy).

(2.28)
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Choosing ϕ of the kind ϕ(x, y) = β(x)ϕ0(y), where β ∈ C∞
0 (Ω) and ϕ0 is smooth

compactly supported in Q \ S0, we easily recover the condition (2.24).
Proof of claim (2.25). From (2.23), (2.24), we have already deduced that Ẽ0(x, ·)

is constant. Thus the first integral in the last line of (2.28) vanishes, and we are
reduced to

0 =

∫ ∫
Ω×S0

∇yϕ(x, y) · J0(x, y) dx⊗H1(dy),

for every ϕ ∈ C∞
0 (Ω; C∞(T)). The claim follows by localization.

The aim of the end of this section is to recover a relation between J and E. It
turns out that this relation is highly dependent on the parameter γ defined in (1.4).
From now on we assume that

0 < γ := lim
η

(η2|log rη|)−1 < +∞.(2.29)

The borderline cases γ = 0 and γ = +∞ will be discussed in section 3 (see Re-
mark 3.4). We introduce a kind of capacitary potential wη, which renders the tran-
sition between Fη on the fibers and the electric field Eη. Let Yη = (−η/2, η/2)2 and
θη be the filling ratio parameter defined in (2.3). Then there exists a unique solution

wη in W 1,2
0 (Yη) of

1

2πγ
Δwη =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−θ−1
η if |x| ≤ rη,(π

4
− θη

)−1

if rη < |x| ≤ η

2
,

0 otherwise.

(2.30)

From now on we consider the η-periodization of wη on the whole plane, and we
consider wη = wη(x1, x2) as a function on R3. The following lemma shows that wη is
very close to 1 (but nonconstant) on the fibers and also that it converges weakly to 0
in W 1,2

loc .
Lemma 2.5. The function wη(x1, x2) satisfies the following conditions:

wη ⇀ 0 in W 1,2
loc , sup

|x|≤rη

|1 − wη| → 0, |∇wη| ≤ C
rη
θη

,(2.31)

wη ≥ cη on Tη, wη ≤ cη on Ω \ Tη,(2.32)

where C and cη are suitable constants such that C > 0 and cη → 1.
Proof. wη can be computed explicitly as a radial function. For every x ∈

[−η/2, η/2[ 3, we set wη(x) = fη(|x|), where

fη(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−πγ

2θη
r2 + Bη if r < rη,

2γ

1 − 4θη
π

(
r2 − η2

4

)
− Cη log

2r

η
if rη < r < η

2 ,

0 otherwise.

(2.33)

Here the constants Bη and Cη are chosen in such a way that fη and f ′
η are continuous

at r = rη and r = η/2 (in particular, fη(η/2) = f ′
η(η/2) = 0); we find

Cη :=
γη2

1 − 4θη
π

, Bη := − γ

1 − 4θη
π

η2 log rη.
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Set cη = fη(rη). Thanks to (2.29) we clearly have that Bη → 1, Cη → 0, and
cη → 1. Then it is easy to check that wη satisfies all the conditions (2.30), (2.31), and
(2.32).

A consequence of the positivity of γ (see (2.29)) is the following important esti-
mate.

Lemma 2.6. There exists a constant C = C(γ) > 0 such that, for every ϕ ∈
H1(Ω), ∫

Tη

|ϕ|2 ≤ C θη

∫
Ω

(
|ϕ|2 + |∇ϕ|2

)
dx.(2.34)

Proof. By using Fubini’s theorem, it is enough to prove the 2D version of (2.34);
that is, setting Dη :=

⋃
i∈Iη

Di
η,∫

Dη

|ϕ|2 ≤ C θη

∫
D

(
|ϕ|2 + |∇ϕ|2

)
dx ∀ϕ ∈ H1(D).(2.35)

Let us define for every δ > 0 (here Y := (−1/2, 1/2)2)

A(δ) := inf

{∫
Y

|∇ϕ|2 :

∫
Y

ϕdy = 0,

∫
|y|<δ

|ϕ|2 = 1

}
.(2.36)

It turns out that A(δ) tends increasingly to infinity as δ → 0. More precisely we can
prove the following estimate:

liminf
δ→0

A(δ) δ2|log δ| ≥ 2

γ
.(2.37)

Let now fix ϕ ∈ W 1,2(D). We consider the piecewise constant function ϕη on D
defined by setting ϕη = [ϕ]iη on each Y i

η , where [ϕ]iη denotes the mean value of ϕ.
After an easy rescaling of (2.36), we obtain∫

Y i
η

|∇ϕ|2 dx ≥ 1

η2
A

(
rη
η

)∫
Di

η

|ϕ− ϕη|2 dx.

After summing the previous inequality over i ∈ Iη, we derive∫
Dη

|ϕ|2 dx ≤ 2

∫
Dη

|ϕη|2 dx + 2

∫
Dη

|ϕ− ϕη|2 dx

≤ 2
∑
i

([ϕ]iη)
2|Di

η| + 2
η2

A(
rη
η )

∑
i

∫
Y i
η

|∇ϕ|2 dx

≤ 2 θη

∫
D
|ϕ|2 dx + 2

η2

A(
rη
η )

∫
D
|∇ϕ|2 dx.

Recalling (2.3), the estimate (2.35) follows by taking into account (2.37). Thus the
proof of Lemma 2.6 is achieved if we show (2.37).

Proof of claim (2.37). We consider first a competitor ϕ = v(r, θ) in (2.36) such
that v is compactly supported in the ball {r < 1/2}. For almost all θ ∈ [0, 2π), v(·, θ)
belongs to W 1,2

loc (0, 1/2) and vanishes at r = 1/2. Therefore, for every ρ ∈ (0, δ), we
have∫ 1/2

0

∣∣∣∣∂v∂r
∣∣∣∣
2

rdr ≥ inf

{∫ 1/2

ρ

r w′2 dr : w(ρ) = v(ρ, θ), w

(
1

2

)
= 0

}
=

|v(ρ, θ)|2
|log(2ρ)| .



HOMOGENIZATION OF A WIRE PHOTONIC CRYSTAL 2073

Multiplying by ρ|log(2ρ)| and integrating with respect to (ρ, θ) over (0, δ) × (0, 2π),
we derive the following estimate for ϕ = v(r, θ):

∫
Y

|∇ϕ|2 dy ≥
∫
|y|<δ

|ϕ|2 dy∫ δ

0
ρ|log(2ρ)| dρ

=
2 − ◦(δ)
δ2|log(δ)|

∫
|y|<δ

|ϕ|2 dy.(2.38)

Then we conclude (2.37) by contradiction: assume that there exists a sequence {ϕδ}
in H1(Y ) such that∫

Y

|∇ϕδ|2 dy → 0,

∫
Y

ϕδ dy = 0,
1

δ2|log(δ)|

∫
|y|<δ

|ϕδ|2 dy = 1.

Clearly ϕδ converges strongly to 0 in H1(Y ), and for every smooth cut-off function
α ∈ C∞(Y ; [0, 1]) compactly supported in {|y| < 1/2} such that α = 1 in {|y| < 1/4},
the truncated function ϕ̃δ := αϕδ satisfies∫

Y

|∇ϕ̃δ|2 dy → 0,
1

δ2|log(δ)|

∫
|y|<δ

|ϕ̃δ|2 dy → 1.

This is impossible, since ϕ̃δ needs to verify (2.38).

The sequences {E3,ηΔwη}, {E3,η∂xαwη}, and {Eη · ∇wη} are bounded in L1(B).
The next lemma is related to their weak star convergence in the sense of measures
on B.

Lemma 2.7. For every ϕ ∈ C∞
0 (B), there hold

lim
η→0

∫
B

E3,η Δwη ϕdx = 2πγ

∫
Ω

(
E3 −

J

κ

)
ϕdx,(2.39)

lim
η→0

∫
B

E3,η
∂wη

∂xα
ϕdx = 0 for α ∈ {1, 2},(2.40)

lim
η→0

∫
B

Eη · ∇wη ϕdx = −i

∫
Ω

J
∂ϕ

∂x3
dx +

∫
∂Ω

ϕdν,(2.41)

where ν is a suitable bounded Radon measure on ∂Ω.

Here we point out that the third limit, which is achieved a priori for a subsequence,
will be found later to be unique (see the explicit expression of ν given in (2.51)).
Therefore the whole sequence actually converges.

Proof. (i) We write (2.30) as Δwη = 2πγ gη(x) aη(
x
η ), where aη is defined in

(2.11) and gη = gη(x1, x2) is the η-periodization of

gη(x) =

⎧⎪⎨
⎪⎩
−κ−1 if |x′| < rη,

(π4 − θη)
−1 if rη < |x′| < η

2 ,

0 otherwise

(x′ = (x1, x2)).

It is easy to check that gη →→ g0, where

g0(x, y) :=

⎧⎪⎨
⎪⎩
− 1

κ if y ∈ S0,
4
π if 0 ≤ |y| < 1

2 ,

0 otherwise.
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By applying Proposition 2.3(iii) to the pair (Eη, gη e3) and recalling (2.13), we obtain
(2.39) as follows:

lim
η→0

∫
B

E3,η Δwη ϕdx = 2πγ lim
η→0

∫
B

gη e3 · Eη ϕ μη

(
x

η

)

= 2πγ

∫ ∫
B×Q

g0(x, y) e3 · E0(x, y)ϕ(x) dx⊗ dμ(y)

= 2πγ

∫
Ω

(
E3(x) − J(x)

κ

)
ϕ(x) dx.

(ii) Let us prove (2.40). Given ψ = (ψ1, ψ2, 0) a transverse test function in C∞
0 (B),

we multiply the first equation of (2.6) by Ψwη and integrate by parts on B. We obtain

iωμ0

∫
B

Hη · (Ψwη) dx =

∫
B

curlEη · (Ψwη) dx

=

∫
B

Eη · curl(Ψwη) dx

=

∫
B

(Eη · curl Ψ)wη dx +

∫
B

Eη · (∇wη ∧ Ψ) dx.

By the strong convergence of wη to 0 in L2(B), we infer that

0 = lim
η→0

∫
B

Eη · (∇wη ∧ Ψ) dx = lim
η→0

∫
B

Eη ·
(

Ψ2
∂wη

∂x1
− Ψ1

∂wη

∂x2

)
dx,

and hence the conclusion by taking Ψ = (ϕ, 0, 0) or Ψ = (0, ϕ, 0).
(iii) We consider the sequence {Eη · ∇wη}. It is bounded in L1(B) and possibly

passing to a subsequence; we may assume that it converges weakly star to some
bounded measure m on B. By the uniform convergence of Eη on every compact
subset of B \ Ω obtained in Lemma 2.1 and the weak convergence of ∇wη to 0 in
L2(B), we find that m vanishes on B \ Ω and therefore can be written in the form
m = mΩ +ν, where mΩ and ν are Radon measures supported respectively in Ω and in
∂Ω. Then proving (2.41) reduces to showing that, for every test function ϕ compactly
supported in Ω, there holds

〈mΩ, ϕ〉 = lim
η→0

∫
Ω

Eη · ∇wη ϕdx = −i

∫
Ω

J
∂ϕ

∂x3
dx.(2.42)

Let wη denote the truncature of wη defined by setting wη := inf{wη, cη}. Then by
(2.31) we have wη = cη on Tη and ∇wη = 1Ω\Tη

∇wη. Noticing that εηEη = Eη on
Ω \ Tη, we infer that ∫

Ω

Eη · ∇wη ϕdx = Aη + Bη,

Aη :=

∫
Ω

εηEη · ∇wη ϕdx,

Bη :=

∫
Tη

Eη · ∇wη ϕdx.

(2.43)
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Taking into account that εηEη is divergence-free, we may rewrite Aη as

Aη = −
∫

Ω

wηεηEη · ∇ϕdx

= −
∫

Ω\Tη

wηEη · ∇ϕdx− cη

∫
Tη

εηEη · ∇ϕdx.

By (2.15), we know that εηEη1Tη = iκFη does converge weakly star to i J e3. Since
wη → 0 in L2(Ω), cη → 1, we deduce that

lim
η→0

Aη = −i

∫
Ω

J(x)
∂ϕ

∂x3
dx.(2.44)

On the other hand, by the last inequality in (2.31), we have

|Bη| ≤ C
rη
θη

∫
Tη

|Eη| dx = Crη

∫
Ω

|Fη| dx.(2.45)

Since Fη is bounded in L1(Ω), the claim (2.42) follows from (2.43), (2.44), and
(2.45).

Lemma 2.8. Under the assumptions of Proposition 2.4, the current density J
defined in (2.13) belongs to L2(D;W 2,2(0, L)) and satisfies the boundary value problem

{
∂2J
∂x2

3
+ (k2

0 + 2iπγ
κ ) J = 2i π γ E3 on Ω,

∂J
∂x3

= 0 on D0 ∪ DL.
(2.46)

Proof. In order to recover boundary conditions over ∂Ω, we consider a test func-
tion in ϕ ∈ C∞

0 (B) and integrate over all R3. We multiply the second equation of
(2.6) by wη ϕ(x) e3 and integrate by parts to obtain

−i ω ε0

∫
(E3,η + i F3,η)wηϕdx =

∫
curlHη · (wηϕe3) dx

=

∫
Hη · [(∇wη ∧ e3)ϕ + (∇ϕ ∧ ε3)wη] dx.(2.47)

Recalling that, by Lemma 2.5, wη does converge to 0 in L2
loc and is uniformly close

to 1 on the subset Tη, we can identify the limit of the integral in the left-hand member
by applying Proposition 2.4(iii). We are led to

ωε0

∫
Ω

J ϕdx = lim
η→0

Iη, where Iη :=

∫
Hη · (∇wη ∧ −→e3 ) ϕ dx.(2.48)

Now we express Iη in terms of Eη by using the first equation in (2.6). By integrating
once more by parts, we obtain

Iη =
1

iωμ0

∫
Ω

Eη · curl [ϕ (∇wη ∧ e3)] dx

=
1

iωμ0

∫
[Eη · (∇ϕ ∧ (∇wη ∧ e3)) + ϕ curl(∇wη ∧ e3)] .
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Recalling that wη = wη(x1, x2), we compute curl (∇wη ∧ e3) = −Δwη e3. Thus we
may write Iη as the sum of three terms:

Iη =
1

iωμ0

[∫
Eη · ∇wη

(
∂ϕ

∂x3

)
dx−

∫
E3,η Δwη ϕdx−

∫
E3,η ∇wη · ∇ϕdx

]
.

(2.49)

The limits of the three integrals above are deduced from (2.41), (2.39), and (2.40),
respectively. Therefore, by (2.48) and (2.49), we are led to

k2
0

∫
Ω

J ϕdx = −
∫

Ω

J
∂2ϕ

∂x2
3

dx− i

∫
∂Ω

J
∂ϕ

∂x3
dν + 2iπγ

∫
Ω

(
E3 −

J

κ

)
ϕdx,(2.50)

where we have multiplied by ωμ0 and used the relation k2
0 = ε0μ0ω

2. Choosing first
ϕ compactly supported in Ω leads to the propagation equation in (2.46), which is
satisfied in the distributional sense in Ω. Since E3 belongs to L2(Ω), this implies that
J is an element of L2(D;W 2,2(0, L)). Therefore J and ∂J

dx3
have traces on D0 ∪ DL.

Let us denote by jL and j0 respectively the traces of J on DL and D0. Then by
the integration by parts of the volume integrals in (2.50) and by taking into account
(2.46), we are led to

−
∫
DL

(
J
∂ϕ

∂x3
− ∂J

∂x3

)
dσ +

∫
D0

(
J
∂ϕ

∂x3
− ∂J

∂x3
ϕ

)
dσ − i

∫
∂Ω

∂ϕ

∂x3
dν = 0.

Since this relation holds for every ϕ ∈ C∞
0 (B), we derive that

∂J

∂x3
= 0 on D0 ∪ DL and ν = i (jL ΣL − j0 Σ0),(2.51)

with Σ0, ΣL the surface integrals on D0 and DL, respectively.

3. The main homogenization result. Thanks to the results of section 2, we
are now in position to describe asymptotically the diffraction by the fibered structure
depicted in Figure 1. Our main convergence theorem states that passing to the limit
as the period η tends to zero leads to a coupled system of partial differential equations
with suitable transmission conditions on the boundary of the structure.

In the following, (Ei, Hi) denotes a given incident electromagnetic wave. It sat-
isfies the harmonic Maxwell system in the vacuum (i.e., curlEi = i ωμ0 H

i, curlHi =
−i ωε0 E

i in all R3). Recall that he total electromagnetic field (Eη, Hη) is then
completely determined as the unique solution of (1.2) such that the diffracted field
(Ed

η , H
d
η ) := (Eη−Ei, Hη−Hi) satisfies the outgoing wave condition at infinity (1.3).

Theorem 3.1. Let γ and κ be given by (1.4) and (2.3), respectively. Then, as
η → 0, the following convergences hold:

(Eη, Hη) ⇀ (E,H) in L2
loc , Fη := κEη

1Tη

θη

∗
⇀ J(x)−→e3 in (L1(Ω))3,
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where E,H, J are the unique solutions (in the distributional sense) of the system

(3.1)⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

curlE = iωμ0H on R3,

curlH = −iωε0(E + i J 1Ω
−→e3 ) on R3,

∂2J
∂x2

3
+ (k2

0 + 2iπγ
κ ) J = 2iπγ E3 on Ω,

∂J
∂x3

= 0 on D0 ∪ DL,

(E − Ei, H −Hi) satisfies the outgoing wave condition.

Remark 3.2. In view of the improved regularity of (E,H, J) obtained in Lemma 3.5
below, it is possible to split (3.1) into two systems of equations (one on Ω, the other
on R3 \Ω), to which we add suitable transmission conditions along the boundary of Ω:

⎧⎪⎪⎨
⎪⎪⎩

curlE = iωμ0H

curlH = −iωε0(E + i J e3)

∂2J
∂x2

3
+ (k2

0 + 2iπγ
κ ) J = 2iπγ E3

on Ω,(3.2)

{
ΔE + k2

0E = ΔH + k2
0H = 0 on R3 \ Ω,

(E − Ei, H −Hi) satisfies the outgoing wave condition,
(3.3)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

H continuous across ∂Ω,

E continuous across ∂D × (0, L),
∂J
∂x3

= 0 on D0 ∪ DL,

E3 + i J 1Ω e3 continuous across D0 ∪ DL.

(3.4)

Notice that, in (3.4), the continuity has to be understood in the sense of traces in
the related Sobolev spaces (we refer to Duvaut and Lions [12] for further details).
The last condition is a concise rewriting of the continuity of the normal trace of the
divergence-free vector field D := E + i J 1Ω e3.

Remark 3.3. By using the third equation in (3.1) together with the Neumann
condition, it is possible to express J in terms of E3 as follows: let K(s, ·) be, for every
s ∈ (0, L), the solution of the 1D problem

⎧⎨
⎩
y′′ + (k2

0 + 2iπγ
κ ) y = 2iπγ

κ δs,

y′(0) = y′(L) = 0.

Then there holds, for almost every (x1, x2) ∈ D,

J(x1, x2, x3) =

∫ L

0

K(x3, s)E3(s) ds, x3 ∈ (0, L).(3.5)

Substituting this expression into the second equation in (3.1) leads to a nonlocal
constitutive relation between E and the displacement field D := E + i J 1Ω e3.
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Remark 3.4. The limit model is described by the two parameters γ (capacity)
and κ (stiffness). It is clear from (1.4) and (2.3) that these constants can be tuned
at will by playing with the size rη of the fibers and the conductivity coefficient ση.
In other words, any problem of the kind (3.1) can be obtained as a limit as η → 0 of
classical diffraction problems.

To complete the picture, some comments related to the extreme values of κ and γ
are in order. Note that the conclusions we are drawing below are based on heuristical
arguments.

(a) Cases κ = 0 and κ = ∞. Throughout the paper we assumed (1.1) with
κ > 0. If we substitute κ with a sequence κη → 0, it is clear that the fibers disappear
in the limit process so that the structure becomes transparent. In other words, the
conclusions of Theorem 3.1 hold with J = 0. In contrast, when κ = ∞ and if k2

0 is
not an eigenvalue of the Neumann problem on (0, L) (i.e., if k0 /∈ {πn

L : n ∈ N}), we
find a nonvanishing limit current density J , and in (3.1) the propagation equation

satisfied by J becomes ∂2J
∂x2

3
+ k2

0 J = 2iπγE3. Notice also that the dissipation of

energy by Joule’s effect given by (3.6) vanishes. This case will occur either when
considering a sequence κη → ∞ in (1.1) or when starting, for every η, with infinitely
conducting fibers. In the latter situation, (Eη, Hη) vanishes in Tη as well as the
tangential component of the trace of the electric field Eη, whereas the jump of the
tangential component of the magnetic field Hη induces a microscopic current on ∂Tη

which, as η → 0, is responsible for the presence of J .
(b) Cases γ = 0 and γ = ∞. For γ = 0, the source term in the propagation

equation (2.46) disappears. Thus J vanishes, and we are led to the same conclusions
as for κ = 0. If γ = +∞, the strong interaction between fibers and matrix forces the
equality J = κE3. As a consequence, the relation between E and D on Ω remains
local with an effective tensor εeff given by εeff = diag{1, 1, 1 + i κ}. However, E3

inherits the homogeneous Neumann boundary condition of J , and a jump of E3 will
still occur on D0 ∪ DL.

The end of this section is devoted to the proof of Theorem 3.1, which crucially
makes use of the uniqueness of the limit system.

Lemma 3.5.

(i) The solution of (E,H, J) of (3.1), if it exists, is unique and satisfies E ∈
W 1,2

loc (R3 \ D0 ∪ DL), H ∈ W 1,2
loc (R3), and J ∈ L2(D;W 2,2(0, L)).

(ii) Furthermore, denoting by �, � the real and imaginary parts, we have

−�
(∫

∂B

(
E ∧H

)
· n(x)

)
=

ωε0

κ

∫
Ω

|J |2 dx (Joule’s dissipation),(3.6)

lim
η→0

1

θη

∫
Tη

|Eη|2 =
1

κ

∫
Ω

|J |2,(3.7)

(3.8)

lim
η→0

∫
B

(
μ0 |Hη|2 − ε0 |Eη|2

)
=

∫
B

(
μ0 |H|2 − ε0 |E|2

)
− ε0 �

(∫
Ω

JE3

)
.

Proof. (i) Regularity. We begin by noticing that for every open subset O ⊂ R
3

we have the identity (see [12] for a more precise statement including traces)

W 1,2
loc (O;C3) =

{
u ∈ L2

loc(O;C3) : curl u ∈ L2
loc(O), div u ∈ L2

loc(O)
}
.(3.9)

By (3.1), H is divergence-free, and curlH belongs to L2
loc(R

3). Therefore by

(3.9), we have H ∈ W 1,2
loc (R3). From the 1D propagation equation satisfied by J ,
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we infer easily that J belongs to L2(D,W 1,2(0, L)). In particular, the traces j0, jL
of J on the basis belong to L2(DL) and L2(D0), respectively. On the other hand,
curlE ∈ L2

loc(R
3), and from the second equation in (3.1) the distributional divergence

of E as a measure satisfies

divE = − iκ

(
∂J

∂x3
1Ω dx− jL H2 DL + j0 H2 D0

)
.

In particular, the trace of divE on the open set R3 \ (D0 ∪ DL) belongs to L2
loc. It

then follows from (3.9) that E ∈ W 1,2
loc (R3 \ D0 ∪ DL).

Uniqueness. This will be a consequence of (3.6). Indeed, by linearity, we are
reduced to showing that any solution (E,H, J) for (3.1) vanishes over all R3, provided
that (Ei, Hi) is identically 0. In this case, by Silver–Müller radiation conditions, we
know that �

(∫
∂B

E ∧H
)
· n(x) is nonnegative. Then by (3.6), J is identically 0 on

Ω, and (E,H) satisfies the equation Δw + k2
0w = 0 in all R3 and the outgoing wave

condition at infinity. The conclusion E = H = 0 follows classically (see, for example,
[6] or [10]).

(ii) By using the propagation equation for J in (3.1) together with the Neumann
boundary condition, and after integrating by parts with respect to x3, we are led to

−
∫

Ω

∣∣∣∣ ∂J∂x3

∣∣∣∣
2

dx +

∫
Ω

(
k2

0 +
2iπγ

κ

)
|J |2 dx =

∫
Ω

2iπγ E3Jdx.

Thus, taking the imaginary parts,

�
(∫

Ω

E3Jdx

)
=

1

κ

∫
Ω

|J |2 dx.(3.10)

Now from (3.1) we have∫
B

(
curlE ·H − curlH · E

)
dx = iω

∫
B

(
μ0 |H|2 − ε0 |E|2

)
− ωε0

∫
Ω

JE3 dx.

By integrating the left-hand side of the previous equality by parts and by taking into
account (3.10), we deduce (3.6) together with the relation

�
(∫

∂B

E ∧H · n(x)

)
= ω

∫
B

(
μ0 |H|2 − ε0 |E|2

)
− ω ε0 �

(∫
Ω

JE3

)
.(3.11)

In a similar way, from (2.16), we derive that

�
(∫

∂B

(
Eη ∧Hη

)
· n(x)

)
= ω

∫
B

(
μ0 |Hη|2 − ε0 |Eη|2

)
.(3.12)

The convergences (3.7), (3.8) are then a straightforward consequence of (3.6), (3.11)
and of the convergence of the left-hand expression of (3.12) towards

∫
∂B

(
E ∧H

)
·

n(x).
Proof of Theorem 3.1. The proof proceeds in two steps.
Step 1. We assume that the boundedness condition (2.7) is satisfied. Then by

Proposition 2.4, we deduce that there exists a triplet (E,H, J) (L2(B))3× (L2(B))3×
L1(Ω) such that a suitable subsequence of {(Eη, Hη, Fη)} does converge (weakly and
weakly star) to (E,H, J e3). Moreover, by Lemma 2.1, (E,H) can be extended to
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all R3 so that (E,H) solves (3.3) and the convergence (Eη, Hη) → (E,H) holds in
C∞(K) for all compact K ⊂ R

3 \ Ω. Then, by Proposition 2.8, passing to the limit
in (2.6) with the help of Proposition 2.4(iii), we find that (E,H, J) solves the system
(3.1). Owing to the uniqueness property proved in Lemma 3.5, we conclude that the
whole sequence {(Eη, Hη, Fη)} converges and that all the conclusions of Theorem 3.1
hold true.

Step 2. We normalize the electromagnetic fields as follows,

uη :=
Eη

tη
, vη :=

Hη

tη
, wη :=

Fη

tη
, where tη :=

√∫
B

(|Eη|2 + |Hη|2)dx,

and prove (2.7) by contradiction, assuming that tη → +∞. By linearity, the triplet
(uη, vη, wη) satisfies the diffraction problem (2.6) and the outgoing wave condition

with respect to the rescaled incident wave (E
i

tη
, Hi

tη
). As it is bounded in L2(B), we

may apply the conclusions of Theorem 3.1, where we have substituted (Ei, Hi) with

the vanishing limit of (E
i

tη
, Hi

tη
). By the uniqueness property proved in Lemma 3.5, we

find that (uη, vη) ⇀ 0 in L2
loc whereas wη

∗
⇀ 0 in L1(Ω). Furthermore, by the second

assertion of Lemma 3.5, we obtain

lim
η

1

θη

∫
Tη

|uη|2 = 0, lim
η

∫
B

(
μ0 |vη|2 − ε0 |uη|2

)
dx = 0.(3.13)

In particular, recalling that
∫
B

(|uη|2 + |vη|2) = 1, we infer that

lim
η

∫
B

μ0 |vη|2 = lim
η

∫
B

ε0 |vη|2 =
ε0μ0

ε0 + μ0
> 0.

Therefore, in order to find a contradiction, we need only to prove that vη → 0 strongly
in L2(B). To that aim, we consider a bounded open subset B′ ⊃⊃ B and use the
following claim:

wη :=
1

θη
Eη1Tη → 0 strongly in W−1,2(B′).(3.14)

Then by the weak convergence of uη to 0 in L2
loc, we infer that

curl vη = −iωε0 (uη + iwη) → 0 strongly in W−1,2(B′).

Since vη is divergence-free, by the div-curl lemma [23], we deduce that |vη|2 converges
to 0 weakly star in L1(B′). By localizing this convergence with a continuous test
function ϕ ∈ D(B′, [0, 1]) such that ϕ = 1 on B, we arrive at

∫
B
|vη|2 → 0, and hence

the contradiction.
It remains to prove (3.14), which is a consequence of estimate (2.34). Indeed, for

every ϕ ∈ (D(B′))3, we have

∫
B′

wη · ϕdx =
κ

θη

∫
Tη

uη · ϕdx ≤ κ

[
1

θη

∫
Tη

|uη|2 dx
]1/2 [

1

θη

∫
Tη

|ϕ|2 dx
]1/2

≤ C

[
1

θη

∫
Tη

|uη|2 dx
]1/2

‖ϕ‖W 1,2(B′).

The claim (3.14) follows from the left-hand-side convergence statement in (3.13). The
proof of Theorem 3.1 is finished.
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4. Fibers with infinite length and numerical examples. In this section we
sketch the natural extension of our previous results to the case of fibers of infinite
length and present some features of the associated limit model.

4.1. Fibers of infinite length. We wish to model the diffraction by e3-parallel
fibers of infinite length. To that aim, we choose ΩL := D × (−L/2, L/2) to be our
reference obstacle and consider the limit as L → ∞. We expect some limit equations
on the infinite cylinder Ω∞ := D× (−∞,+∞) with suitable transmission conditions.
In fact, there exist many ways to proceed, namely, the following:

(a) First we fix L and pass to the limit as η → 0, exploiting the results of section 3.
Then we pass to the limit as L → ∞.

(b) First we consider for fixed η the diffraction problem associated with Ω∞.
This allows us to reduce the problem to a scalar diffraction problem in dimension
two. Indeed, we may decompose the incident wave by means of a Fourier transform in
x3, and then we look for solutions with a multiplicative x3-dependence in exp(iβx3).
In a second step, we pass to the limit as η → 0.

Of course all intermediate situations between (a) and (b) could also be considered,
that is, taking a length L(η) tending to infinity as η → 0. The case (b) has been
investigated in [14], leading for κ = +∞ to a homogenized medium characterized by
a diagonal effective permittivity tensor with a possibly negative eigenvalue in the x3-
direction. Let us sketch out how the same result can be obtained by following the
strategy (a).

Owing to Theorem 3.1 (see (3.1)), we have to find the equation satisfied by the
limit as L → ∞ of the solution (EL, HL, jL) of

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

curlEL = iωμ0 HL on R3,

curlHL = −iωε0 (EL + iκJL 1ΩL
e3) on R3,

∂2JL

∂x2
3

+ (k2
0 + 2iπγ

κ ) JL = 2iπγEL · e3 on ΩL,

∂JL

∂x3
= 0 on D±L/2,

(EL − Ei, HL −Hi) satisfies the outgoing wave condition.

(4.1)

Let us denote by (E,H, J) such a limit in L2
loc (possibly obtained after extracting a

subsequence). Passing to the limit in the three first equations of (4.1), we are led to

⎧⎪⎪⎨
⎪⎪⎩

curlE = iωμ0 H on R3,

curlH = −iωε0 (E + i J e3) on R3,

∂2J
∂x2

3
+ (k2

0 + 2iπγ
κ ) J = 2iπ γE3 on (−∞,+∞).

(4.2)

The difficult task is now to determine the radiation condition satisfied by (E,H) at
infinity. By Fourier transform with respect to x3, it is possible to reduce to an inci-
dent wave with a multiplicative x3-dependence in exp(iβx3). Then the L2

loc solutions
(E,H, J) of (4.2) can be shown to have the same x3-dependence, and therefore the
solution J of the third equation in (4.2) reads as

J =
2iπ γ

k2
0 − β2 + 2iπγ

κ

E3.(4.3)



2082 GUY BOUCHITTÉ AND DIDIER FELBACQ

Writing Ei
3(x) = ui(x1, x2) exp(iβx3), E3(x) = u(x1, x2) exp(iβx3) and substituting

into (4.2), we obtain that u is solution of the following bidimensional diffraction
problem: {

Δu + (k2
0 ε(x) − β2)u = 0 on R2,
(u− ui) satisfies the outgoing wave condition,

(4.4)

where ε(x) is defined on R2 by

ε(x) =

{
εeff(β) if x ∈ D,
ε0 otherwise,

εeff(β) = 1 − 2πγ

k2
0

[
k2

0 − β2

k2
0 − β2 + 2iπγ

κ

]
,(4.5)

and the outgoing wave condition has to be understood in the sense of Sommerfeld
(see, for instance, [6] or [10]). The magnetic field H and the horizontal components
of E are then deduced in a standard way.

To summarize, we have obtained that, for an off-plane incident wave (described
by an exp(iβx3) dependence), the infinite wire mesh photonic crystal behaves like an
anisotropic homogeneous medium characterized by the effective permittivity tensor
diag

{
1, 1, εeff(β)

}
. The dependence of εeff(β) with respect to β indicates that the limit

behavior is spatially nonlocal: it involves a convolution with respect to the inverse
Fourier transform of εeff(β). However, this effect disappears as κ → ∞. Indeed, we
observe that, for κ = +∞ (infinite conductivity), εeff(β) = 1 − 2πγ

k2
0

is independent of

β. We recover the same results as in [14], where it was pointed out that εeff becomes
negative below a cut-off wave number kp =

√
2πγ.

4.2. Numerical results. In this section, we present some numerical results
obtained for infinitely long and perfectly conducting fibers; that is, the effective per-
mittivity is given by (4.5), where κ = +∞. We consider a stack of ten diffraction
gratings infinite in extent in the horizontal direction. The gratings are made of paral-
lel, infinitely long and perfectly conducting fibers, and the period is denoted by d. The
distance between each grating is equal to d. The radius of the fibers is r = d/200. The
structure is illuminated by a plane wave under normal incidence (see Figure 2) and
linearly polarized in E||; that is, the incident field reads as Ei(y) = e−ik0ye−ik0cte3,
where k0 = 2π/λ, λ is the wavelength, and c is the speed of light in a vacuum. Below
the stack, the electric field can be expanded in a Rayleigh series [18]:

Et(y) = Σnane
−iknye3,(4.6)

where kn =
√
k2

0 − (nπ/d)2, the square root is defined with a cut along iR−, and the
determination

√
−1 = i. The sum in (4.6) splits into two parts: one finite sum for

which kn is real, and an infinite one for which kn is imaginary. The latter corresponds
to evanescent waves, that do not contribute to the far field. The transmitted field is
computed numerically by means of a rigorous modal method [19]. We are interested
in the behavior of the field when the wavelength is large with respect to the period.
In normal incidence and for λ/d > 1 there is only one propagating wave in the finite
sum above, and we plot the function λ → |a0(λ)|2, the curve being given by the
dashed line in Figure 3. It can be seen that for λ/d > 5 the transmission is strongly
damped, corresponding to the forbidden band. In the homogenization result, it is
stated that the structure behaves for large wavelengths as a homogeneous medium
with permittivity εeff(λ) = 1 − 2πγ/k2

0 (because of the polarization we have to make
β = 0 in (4.5)). Our point is now to check numerically to what extent the real structure
can be considered as homogeneous. To that aim we consider a homogeneous slab of
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Fig. 3. Transmitted energy through the device of Figure 2 (dashed line) and through the ho-
mogenized structure (solid line).

height 10d with permittivity εeff illuminated under normal incidence by a plane wave,
i.e., the same set-up as in the case of the heterogeneous structure. Below the slab, the
electric field reads as Et(y) = t(λ)e−ik0y), and we plot the function λ → |t(λ)|2. We
expect a good fit between the curves at least for large wavelengths. One important
parameter here is γ. A direct numerical application of (2.29) gives γ ∼ 0.2, but we
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must stress that this value is obtained as a limit as η tends to 0. The value of γ can
be determined more precisely by studying correctors [16]. A numerical test shows
that the value γ = 0.25 provides an excellent fit between the real transmission and
that obtained from the slab (solid line in Figure 3). This shows that, up to a minor
correction in the numerical value of γ, the homogeneous behavior reproduces very
precisely that of the real device. Moreover, it can be seen in Figure 3 that the curves
coincide for values of the wavelengths that are not very high, i.e., for λ/d > 4.
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Notes in Math. 60, Pitman, Boston, 1982, pp. 98–138.
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cherches Mathématiques 21, Dunod, Paris, 1972.

[13] L. C. Evans and R. F. Gariepy, Measure Theory and Fine Properties of Functions, Stud.
Adv. Math., CRC Press, Boca Raton, FL, 1992.
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TWO-DIMENSIONAL HIGH-ACCURACY SIMULATION OF
RESISTIVITY LOGGING-WHILE-DRILLING (LWD)

MEASUREMENTS USING A SELF-ADAPTIVE GOAL-ORIENTED
hp FINITE ELEMENT METHOD∗

D. PARDO† , L. DEMKOWICZ‡ , C. TORRES-VERDÍN§ , AND M. PASZYNSKI¶

Abstract. We simulate electromagnetic (EM) measurements acquired with a logging-while-
drilling (LWD) instrument in a borehole environment. The measurements are used to assess elec-
trical properties of rock formations. Logging instruments as well as rock formation properties are
assumed to exhibit axial symmetry around the axis of a vertical borehole. The simulations are
performed with a self-adaptive goal-oriented hp-finite element method that delivers exponential con-
vergence rates in terms of the quantity of interest (for example, the difference in the electrical current
measured at two receiver antennas) against the CPU time. Goal-oriented adaptivity allows for ac-
curate approximations of the quantity of interest without the need to obtain an accurate solution
in the entire computational domain. In particular, goal-oriented hp-adaptivity becomes essential to
simulating LWD instruments, since it reduces the computational cost by several orders of magni-
tude with respect to the global energy-norm-based hp-adaptivity. Numerical results illustrate the
efficiency and high accuracy of the method, and provide physical interpretation of resistivity mea-
surements obtained with LWD instruments. These results also describe the advantages of using
magnetic buffers in combination with solenoidal antennas for strengthening the measured EM signal
so that the “signal-to-noise” ratio is minimized.

Key words. hp-finite elements, exponential convergence, goal-oriented adaptivity, computa-
tional electromagnetics, Maxwell’s equations, through casing resistivity tools (TCRT)
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1. Introduction. A plethora of energy-norm-based algorithms intended to gen-
erate optimal grids have been developed throughout recent decades (see, for example,
[10, 23] and references therein) to accurately solve a large class of engineering prob-
lems. However, the energy-norm is a quantity of limited relevance for most engineering
applications, especially when a particular objective is pursued, such as simulating the
electromagnetic response of geophysical resistivity logging instruments in a borehole
environment. In these instruments, the amplitude of the measurement (for example,
the electric field) is typically several orders of magnitude smaller at the receiver an-
tennas than at the transmitter antennas. Thus, small relative errors of the solution
in the energy-norm do not imply small relative errors of the solution at the receiver
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antennas. Indeed, it is not uncommon to construct adaptive grids delivering a relative
error in the energy-norm below 1% while the solution at the receiver antennas still
exhibits a relative error above 1000% (see [18]).

Consequently, in order to accurately simulate logging-while-drilling (LWD) resis-
tivity measurements in this paper, we develop a self-adaptive strategy to approximate
a specific feature of the solution. Refinement strategies of this type are called goal-
oriented adaptive algorithms [16, 22], and are based on minimizing the error of a
prescribed quantity of interest mathematically expressed in terms of a linear func-
tional (see [5, 12, 17, 16, 22, 24] for details).

In this paper, we formulate, implement, and study (both theoretically and nu-
merically) a self-adaptive hp goal-oriented algorithm intended to solve electrodynamic
problems. This algorithm is an extension of the fully automatic (energy-norm-based)
hp-adaptive strategy described in [10, 23], and a continuation of concepts presented
in [19, 25] for elliptic problems.

We apply the self-adaptive hp goal-oriented algorithm to accurately simulate in-
duction LWD instruments in a borehole environment with axial symmetry. These
instruments are widely used by the geophysical logging industry, and their simula-
tion requires resolution of electromagnetic (EM) singularities generated by the LWD
geometry and rock formation materials [28], as well as resolution of high material
contrasts that occur between the mandrel and the borehole.

Other methods for simulation of LWD measurements include the transmission
line matrix method [14], fast Fourier transform [29], and finite differences [26, 13]. In
contrast to previous contributions, here we consider a detailed geometry of the logging
instrument, which requires the resolution of strong singularities in the EM fields, we
account for the finite conductivity of the mandrel, we incorporate magnetic buffers in
both transmitter and receiver antennas, we consider the effect of the magnetic per-
meability of the mandrel, and we provide extremely accurate results with guaranteed
relative error bounds below 0.1% (0.001% if desired). We also consider a high contrast
in conductivity among different layers in the formation, and we present a comparison
between using two and three receiver antennas.

The organization of this paper is as follows. In section 2, we describe the main
characteristics of induction logging instruments. We also describe our problem of
interest, composed of an induction LWD instrument in a borehole environment, and
used for the assessment of the rock formation electrical properties. In section 3,
we introduce Maxwell’s equations, governing the EM phenomena and explaining the
physics of resistivity measurements. We also derive the corresponding variational
formulation for axisymmetric problems. A self-adaptive goal-oriented hp algorithm
for electrodynamic problems is described in section 4. The corresponding details of
implementation are discussed in the same section. Simulations and numerical results
concerning the response of LWD instruments in a borehole environment are shown in
section 5. Section 6 draws the main conclusions and outlines future lines of research.
Finally, in the appendix, we compare numerical results with a semianalytical solution
obtained using Bessel functions for a simplified LWD model problem. The comparison
is intended to verify the code as well as to illustrate the high-accuracy results obtained
with the self-adaptive goal-oriented hp-finite element method (FEM).



hp-FEM: ELECTROMAGNETIC APPLICATIONS 2087

2. Alternate current (AC) logging applications. In this article, we consider
an induction1 LWD instrument operating at 2 MHz. The instrument makes use of
one of the following two types of source antennas/coils:

• solenoidal coils (Figure 1, left panel), and
• toroidal coils (Figure 1, right panel).

Fig. 1. Two coil antennas: a solenoid antenna (left panel) composed of a wire wrapped around
a cylinder, and a toroid antenna (right panel) composed of a wire wrapped around a toroid.

2.1. Induction LWD instruments based on solenoidal coils. For axisym-
metric problems, these logging instruments generate a TMφ field; i.e., the only non-
zero components of the EM fields are Eφ, Hρ, and Hz, where (ρ, φ, z) denote the
cylindrical system of coordinates.

A solenoidal coil (Figure 1) produces an impressed current Jimp that we mathe-
matically describe as

Jimp(r) = φ̂Iδ(ρ− a)δ(z),(2.1)

where I is the electric current measured in Amperes (A), δ is the Dirac’s delta function,
and a is the radius of the solenoid. In the numerical computations, we replace function
δ(ρ− a)δ(z) with an approximate function UF that considers the finite dimensions of
the coil, and such that

∫
UF dρdz = 1.

The analytical electric far-field solution excited by a solenoidal coil of radius a
radiating in homogeneous media is given in terms of the electric field by (see [15])

E = φ̂ωμkIπa2 e
−jkd

4πd

[
1 − j

kd

]
ρ

d
,(2.2)

where k =
√
ω2ε− jωσ is the wave number; j =

√
−1 is the imaginary unit; ω is

angular frequency; ε, μ, and σ stand for dielectric permittivity, magnetic permeability,
and electrical conductivity of the medium, respectively; and d is the distance between
the source coil and the receiver coil.

In order to avoid the dependence upon the dimensions of the solenoid, we impose
a current on the solenoidal coil equal to 1/(πa2)A, i.e., equivalent to that of 1A with a

1Induction logging instruments are characterized by the fact that impressed current Jimp is
divergence-free (i.e., ∇ · Jimp = 0).
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vertical magnetic dipole (VMD). The corresponding far-field solution in homogeneous
media is given by (see [15])

E = φ̂ωμkI
e−jkd

4πd

[
1 − j

kd

]
ρ

d
.(2.3)

Thus, solution (2.3) is independent of the dimensions of the coil.2

2.2. Induction LWD instruments based on toroidal coils. For axisymmet-
ric problems, these logging instruments generate a TEφ field; i.e., the only nonzero
components of the EM fields are Hφ, Eρ, and Ez.

A toroidal coil induces a magnetic current IM in the azimuthal direction. If we
place a toroid of radius a radiating in homogeneous media, the resulting magnetic
far-field is given by (see [15])

H = φ̂(σ + jωε)πa2IM jk
e−jkd

4πd

[
1 − j

kd

]
ρ

d
.(2.4)

In order to avoid the dependence upon the dimensions of the toroid, we impose a
magnetic current on the toroidal coil equal to that induced by a (σ + jωε)A electric
current excitation with a vertical electrical dipole (VED), also known as a Hertzian
dipole. The corresponding magnetic far-field solution in homogeneous media is given
by (see [15])

H = φ̂(σ + jωε)Ijk
e−jkd

4πd

[
1 − j

kd

]
ρ

d
.(2.5)

In this case, IM = I/(πa2).

2.2.1. Goal of the computations. We are interested in simulating the EM
response of an induction LWD instrument in a borehole environment.

For a solenoidal coil, the main objective of our simulation is to compute the first
difference of the voltage between the two receiving coils of radius a divided by the
(vertical) distance Δz between them, i.e.,

V1 − V2

Δz
=

(∮
l1

E(l) dl −
∮
l2

E(l) dl

)
/(Δz) =

2πa

Δz
(E(l1) − E(l2)) ,(2.6)

where l1 and l2 are the first and second receiving coils, respectively, and l1 ∈ l1,
l2 ∈ l2 are two arbitrary points located at the receiving coils. Notice that, due to the
axisymmetry of the electric field, E(lji ) = E(lki ) for all lji , l

k
i ∈ li.

This quantity of interest (first difference of voltage) is widely used in resistivity
logging applications. Indeed, a first-order asymptotic approximation of the electric
field response at low frequencies (Born’s approximation) shows that the voltage at a
receiver coil is proportional to the rock formation resistivity in the proximity of such
a coil (see [15] for details). At higher frequencies (> 20 kHz), asymptotic approx-
imations (see [3] for details) also indicate the dependence of the voltage upon the
rock formation conductivity. Thus, an adequate approximation of the rock formation

2In resistivity logging applications, it is customary to consider solutions that have been divided by
the geometrical factor (also called K-factor) [3], so that results are independent (as much as possible)
of the logging instrument’s geometry. Thus, solutions obtained from different logging instruments
can be readily compared.
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conductivity (which is unknown a priori in practical applications) can be estimated
from the voltage measured at the receiving coils. Computing the first difference of
the voltage between two receivers (rather than the voltage at one receiver) is conve-
nient for improving the vertical resolution of the measurements. This well-known fact
among well-logging practitioners will be illustrated here with numerical experiments.

For a toroidal coil, the main objective of these simulations is to compute the first
difference of the electric current at the two receiving coils of radius a divided by the
(vertical) distance Δz between them, i.e.,

I1 − I2

Δz
=

(∮
l1

H(l) dl −
∮
l2

H(l) dl

)
/(Δz) =

2πa

Δz
(H(l1) − H(l2)) .(2.7)

Notice that the main difference between a toroidal and a solenoidal coil is that
the former generates an impressed magnetic current, while the latter produces an
impressed electric current. This fact leads to the physical consideration that, if the
voltage due to a solenoidal coil is proportional to the rock formation conductivity, then
the electric current enforced by a toroidal coil is also proportional to the rock formation
resistivity. Thus, the selection of the quantity of interest for toroidal coils (first
difference of electric current) is dictated by the physical relation between solenoidal
and toroidal coils and by the previous choice of a quantity of interest for solenoidal
coils (first difference of voltage).

2.3. Description of an LWD instrument in a borehole environment. We
consider an LWD instrument composed of the following axisymmetric materials (all
dimensions are given in cm):

• one transmitter and two receiver coils defined on
1. ΩC1 = {(ρ, φ, z) : 7.1 < ρ < 7.3, −2.5 < z < 2.5},
2. ΩC

2
= {(ρ, φ, z) : 7.1 < ρ < 7.3, 98.75 < z < 101.25}, and,

3. ΩC3
= {(ρ, φ, z) : 7.1 < ρ < 7.3, 113.75 < z < 116.25}, respectively;

• three magnetic buffers with resistivity 104 Ω·m and relative permeability 104,
defined on

1. ΩB1
= {(ρ, φ, z) : 6.675 < ρ < 6.985, −5 < z < 5},

2. ΩB2
= {(ρ, φ, z) : 6.675 < ρ < 6.985, 97.5 < z < 102.5}, and,

3. ΩB3
= {(ρ, φ, z) : 6.675 < ρ < 6.985, 112.5 < z < 117.5}, respectively;

and
• a metallic mandrel with resistivity 10−6 Ω·m defined on ΩM = {(ρ, φ, z) : ρ <

7.6}− ({(ρ, φ, z) : 6.675 < ρ < 7.6, −5 < z < 5} ∪ {(ρ, φ, z) : 6.675 < ρ < 7.6,
97.5 < z < 102.5} ∪ {(ρ, φ, z) : 6.675 < ρ < 7.6, 112.5 < z < 117.5}).

This LWD instrument moves along the vertical direction (z-axis) in a subsurface
borehole environment composed of

• a borehole mud with resistivity 0.1 Ω · m defined on
1. ΩBH = {(ρ, φ, z) : ρ < 10.795} − (∪iΩBi ∪ ΩM ), and

• three formation materials of resistivities 100 Ω · m, 10000 Ω · m, and 1 Ω · m,
defined on

1. ΩM1
= {(ρ, φ, z) : ρ ≥ 10.795, (z < −50 or z > 100)},

2. ΩM2 = {(ρ, φ, z) : ρ ≥ 10.795, −50 ≤ z < 0}, and,
3. ΩM3 = {(ρ, φ, z) : ρ ≥ 10.795, 0 ≤ z ≤ 100}, respectively.

Figure 2 shows the geometry of the described logging instrument and borehole envi-
ronment.

3. Maxwell’s equations. In this section, we first introduce the time-harmonic
Maxwell equations in the frequency domain. They form a set of first-order partial
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Fig. 2. 2D cross section of the geometry of an induction LWD problem composed of a metallic
mandrel, one transmitter and two receiver coils equipped with magnetic buffers, a borehole, and four
layers in the rock formation (with different resistivities). The right panel is an enlarged view of the
geometry (left panel) in the vicinity of the transmitter antenna.

differential equations (PDEs). Then, we describe boundary conditions needed for the
simulation of our logging applications of interest. Finally, we derive a variational
formulation in terms of either the electric or the magnetic field, and we reduce the
dimension of the computational problem by considering axial symmetry.

3.1. Time-harmonic Maxwell equations. Assuming a time-harmonic depen-
dence of the form ejωt, where t denotes time and ω �= 0 is angular frequency, Maxwell’s
equations can be written as⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

∇×H = (σ + jωε)E + Jimp Ampere’s law,

∇×E = −jωμ H − Mimp Faraday’s law,

∇ · (εE) = ρ Gauss’ law of electricity, and

∇ · (μH) = 0 Gauss’ law of magnetism.

(3.1)

Here H and E denote the magnetic and electric fields, respectively; Jimp is a pre-
scribed, impressed electric current density; Mimp is a prescribed, impressed magnetic
current density; ε, μ, and σ stand for dielectric permittivity, magnetic permeability,
and electrical conductivity of the medium, respectively; and ρ denotes the electric
charge distribution. We assume μ �= 0.

The equations described in (3.1) are to be understood in the distributional sense;
i.e., they are satisfied in the classical sense in subdomains of regular material data,
and they also imply appropriate interface conditions across material interfaces.

Energy considerations lead to the assumption that the absolute value of both
electric field E and magnetic field H must be square integrable. According to (3.1)2

and (3.1)4, Mimp is divergence-free.
Maxwell’s equations are not independent. Taking the divergence of Faraday’s law
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yields the Gauss’ law of magnetism. By taking the divergence of Ampere’s law, and
by utilizing Gauss’ electric law, we arrive at the so-called continuity equation,

∇ · (σE) + jωρ + ∇ · Jimp = 0.(3.2)

3.2. Boundary conditions (BCs). There exist a variety of BCs that can be
incorporated into Maxwell’s equations. In the following, we describe those BCs that
are of interest for the logging applications discussed in this paper. At this point, we
are considering general 3D domains. A discussion on boundary terms corresponding
to the axisymmetry condition is postponed to section 3.4.

3.2.1. Perfect electric conductor (PEC). Maxwell’s equations are to be sat-
isfied in the whole space minus domains occupied by a PEC. A PEC is an idealization
of a highly conductive media. Inside a region where σ → ∞, the corresponding elec-
tric field converges to zero3 by applying Ampere’s law. Faraday’s law implies that the
tangential component of the electric field E must remain continuous across material
interfaces in the absence of impressed magnetic surface currents. Consequently, the
tangential component of the electric field must vanish along the PEC boundary, i.e.,

n×E = 0,(3.3)

where n is the unit normal (outward) vector.
Since the electric field vanishes inside a PEC, Faraday’s law implies that the

magnetic field should also vanish inside a PEC in the absence of magnetic currents.
The same Faraday’s law implies that the normal component of the magnetic field
premultiplied by the permeability must remain continuous across material interfaces.
Therefore, the normal component of the magnetic field must vanish along the PEC
boundary, i.e.,

n · H = 0.(3.4)

The tangential component of magnetic field (surface current) and normal com-
ponent of the electric field (surface charge density) need not be zero and may be
determined a posteriori.

3.2.2. Source antennas. Antennas are modeled by prescribing an impressed
volume current Jimp. Using the equivalence principle (see, for example, [11]), we can
replace the original impressed electric volume current Jimp with an equivalent electric
surface current

Jimp
S = [n×H]S ,(3.5)

defined on an arbitrary surface S enclosing the support of Jimp, where [n×H]S denotes
• the jump of n×H across S in the case of an interface condition, or
• simply n×H on S in the case of a boundary condition.

Similarly, an impressed magnetic volume current Mimp can be replaced by the equiv-
alent magnetic surface current

Mimp
S = −[n×E]S,(3.6)

defined on an arbitrary surface S enclosing the support of Mimp.

3This result is true under the physical consideration that impressed volume current Jimp and
σE should remain finite, i.e., 〈Jimp, ψ〉, 〈σE, ψ〉 < ∞ for every test function ψ. See [21] for details.
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3.2.3. Closure of the domain. We consider a bounded computational domain
Ω. A variety of BCs can be imposed on the boundary ∂Ω such that the difference be-
tween solution of such a problem and solution of the original problem defined over R3

is small. For example, it is possible to use an infinite element technique (as described
in [7]) or an absorption-type BC such as a perfect matched layer (PML) [6, 26, 13].
Also, since the EM fields and their derivatives decay exponentially in the presence of
lossy media (nonzero conductivity), we may simply impose a homogeneous Dirichlet
or Neumann BC on the boundary of a sufficiently large computational domain.

In the field of geophysical logging applications, it is customary to impose a homo-
geneous Dirichlet BC on the boundary of a large computational domain (for example,
2–20 meters in each direction from a 2 MHz source antenna in the presence of a
resistive media). We will follow the same approach.

According to the BCs discussed above, we will divide boundary Γ = ∂Ω into the
disjoint union of

• ΓE , where Mimp
ΓE

= −[n×E]ΓE
(with Mimp

ΓE
possibly zero), with

• ΓH , where Jimp
ΓH

= [n×H]ΓH
, (with Jimp

ΓH
possibly zero).

3.3. Variational formulation. From Maxwell’s equations and the BCs de-
scribed above, we derive the corresponding standard variational formulation in terms
of the electric or magnetic field as follows.

First, we notice from Faraday’s law that ∇×E ∈ (L2(Ω))3 if and only if Mimp ∈
(L2(Ω))3. Since our objective is to find a solution E ∈ H(curl; Ω) = {F ∈ (L2(Ω))3 :
∇×F ∈ (L2(Ω))3}, we shall assume in the case of the electric field formulation
(E-formulation) derived below that Mimp ∈ (L2(Ω))3. If the prescribed Mimp /∈
(L2(Ω))3, we may still solve Maxwell’s equations with H(curl)-conforming finite el-
ements for the magnetic field by using the H-formulation (3.3.2), or simply by pre-
scribing an equivalent source M̃imp such that Mimp − M̃imp does not radiate outside
the antenna [27].

Similarly, for the H-formulation, we will assume that Jimp ∈ (L2(Ω))3.

3.3.1. E-formulation. By dividing Faraday’s law by magnetic permeability μ,
multiplying the resulting equation by ∇×F̄, where F ∈ HΓE

(curl; Ω) = {F ∈
H(curl; Ω) : (n×F)|ΓE

= 0 } is an arbitrary test function, and integrating over
the domain Ω, we arrive at the identity

∫
Ω

1

μ
(∇×E) · (∇×F̄)dV = −jω

∫
Ω

H · (∇×F̄)dV −
∫

Ω

1

μ
Mimp · (∇×F̄)dV.(3.7)

Integrating
∫

Ω
H · (∇×F̄) dV by parts, and applying Ampere’s law, we obtain

∫
Ω

H · (∇×F̄) dV =

∫
Ω

(∇×H) · F̄ dV −
∫

ΓH

n×H · F̄t dS

=

∫
Ω

(σ + jωε)E · F̄ dV +

∫
Ω

Jimp · F̄ dV −
∫

ΓH

n×H · F̄t dS.
(3.8)

Ft = F− (F ·n) ·n is the tangential component of vector F on ΓH , and n is the unit
normal outward (with respect to Ω if ΓH ⊂ ∂Ω) vector. Substitution of (3.8) into
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(3.7) and use of (3.5) yields the following variational formulation:⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find E ∈ EΓE
+ HΓE

(curl; Ω) such that∫
Ω

1

μ
(∇×E) · (∇×F̄) dV −

∫
Ω

k2E · F̄ dV = −jω

∫
Ω

Jimp · F̄ dV

+ jω

∫
ΓH

Jimp
ΓH

· F̄t dS −
∫

Ω

1

μ
Mimp · (∇×F̄) dV ∀ F ∈ HΓE

(curl; Ω),

(3.9)

where k2 = ω2ε − jωσ is the wave number and EΓE
is a lift (typically EΓE

= 0) of
the essential BC data EΓE

= −M imp
ΓE

(denoted with the same symbol).
Conversely, we can derive (3.1), (3.3), and (3.5) from variational problem (3.9).

3.3.2. H-formulation. By dividing Ampere’s law by σ+jωε, multiplying the re-
sulting equation by ∇×F̄, where F ∈ HΓH

(curl; Ω) = {F ∈ H(curl; Ω) : (n×F)|ΓH
=

0 } is an arbitrary test function, and integrating over the domain Ω, we arrive at the
identity

−jω

∫
Ω

1

k2
(∇×H) · (∇×F̄)dV =

∫
Ω

E · (∇×F̄) dV

− jω

∫
Ω

1

k2
Jimp · (∇×F̄) dV.

(3.10)

Integrating
∫

Ω
E · (∇×F̄) dV by parts and applying Faraday’s law, we obtain∫

Ω

E · (∇×F̄) dV =

∫
Ω

(∇×E) · F̄ dV −
∫

ΓE

n×E · F̄t dS

= − jω

∫
Ω

μH · F̄ dV −
∫

Ω

Mimp · F̄ dV −
∫

ΓE

n×E · F̄t dS.
(3.11)

Substitution of (3.11) into (3.10) and use of (3.6) yields the following variational
formulation:

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Find H ∈ HΓH
+ HΓH

(curl; Ω) such that∫
Ω

1

σ + jωε
(∇×H) · (∇×F̄)dV + jω

∫
Ω

μH · F̄dV = −
∫

Ω

Mimp · F̄dV

+

∫
ΓE

Mimp
ΓE

· F̄t dS +

∫
Ω

1

σ + jωε
Jimp · (∇×F̄)dV ∀ F ∈ HΓH

(curl; Ω),

(3.12)

where HΓH
is a lift (typically HΓH

= 0) of the essential BC data HΓH
= J imp

ΓH

(denoted with the same symbol).

3.4. Cylindrical coordinates and axisymmetric problems. We consider
cylindrical coordinates (ρ, φ, z). For the geophysical logging applications considered
in this article, we assume that both the logging instrument and the rock formation
properties are axisymmetric (invariant with respect to the azimuthal coordinate φ)
around the axis of the borehole. Under this assumption, we obtain that for any vector
field A = ρ̂Aρ + φ̂Aφ + ẑAz,

∇×A = −ρ̂
∂Aφ

∂z
+ φ̂

(
∂Aρ

∂z
− ∂Az

∂ρ

)
+ ẑ

1

ρ

∂(ρAφ)

∂ρ
.(3.13)
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3.4.1. E-formulation. Next, we consider the space of all test functions F ∈
HD(curl; Ω) such that F = (0, Fφ, 0). According to (3.13),

∇×F = −ρ̂
∂Fφ

∂z
+ ẑ

1

ρ

∂(ρFφ)

∂ρ
.(3.14)

Variational formulation (3.9) reduces to a formulation in terms of the scalar field
Eφ only, namely,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Eφ ∈ Eφ,D + H̃1
D(Ω) such that∫

Ω

1

μ

(
∂Eφ

∂z

∂F̄φ

∂z
+

1

ρ2

∂(ρEφ)

∂ρ

∂(ρF̄φ)

∂ρ

)
dV −

∫
Ω

k2Eφ F̄φ dV

= − jω

∫
Ω

J imp
φ F̄φ dV + jω

∫
ΓN

J imp
φ,ΓN

F̄φ dS

−
∫

Ω

1

μ

[
−M imp

ρ

∂F̄φ

∂z
+ M imp

z

1

ρ

∂(ρF̄φ)

∂ρ

]
dV ∀ Fφ ∈ H̃1

D(Ω),

(3.15)

where H̃1
D(Ω) = {Eφ : (0, Eφ, 0) ∈ HD(curl; Ω)} = {Eφ ∈ L2(Ω) : 1

ρEφ +
∂Eφ

∂ρ ∈
L2(Ω),

∂Eφ

∂z ∈ L2(Ω), Eφ|ΓD
= 0}. Similarly, for a test function F = (Fρ, 0, Fz),

variational problem (3.9) simplifies to⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find E = (Eρ, 0, Ez) ∈ ED + H̃D(curl; Ω) such that∫
Ω

1

μ

(
∂Eρ

∂z
− ∂Ez

∂ρ

)(
∂F̄ρ

∂z
− ∂F̄z

∂ρ

)
dV −

∫
Ω

k2(EρF̄ρ + EzF̄z) dV

= − jω

∫
Ω

J imp
ρ F̄ρ + J imp

z F̄z dV + jω

∫
ΓN

J imp
ρ,ΓN

F̄ρ + J imp
z,ΓN

F̄z dS

−
∫

Ω

1

μ
M imp

φ

[
∂F̄ρ

∂z
− ∂F̄z

∂ρ

]
dV ∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω),

(3.16)

where H̃D(curl; Ω) = {(Eρ, Ez) : E = (Eρ, 0, Ez) ∈ L2(Ω), (∇×E)|φ =
∂Eρ

∂z − ∂Ez

∂ρ ∈
L2(Ω), (n×E)|ΓD

= 0}.
In summary, problem (3.9) decouples into a system of two simpler problems de-

scribed by (3.15) and (3.16).
Remark 1. It has been shown in [4, Lemma 4.9] that space H̃1

D(Ω) can also be
expressed as H̃1

D(Ω) = {Eφ ∈ L2(Ω) : 1
ρEφ ∈ L2(Ω), ∇(ρ,z)Eφ ∈ L2(Ω)}.

3.4.2. H-formulation. Using the same decomposition of test functions (i.e.,
F = (0, Fφ, 0), and F = (Fρ, 0, Fz)) for variational problem (3.12), we arrive at
the following two decoupled variational problems in terms of (0, Hφ, 0) (3.17) and
(Hρ, 0, Hz) (3.18), respectively:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find Hφ ∈ Hφ,D + H̃1
D(Ω) such that∫

Ω

1

σ + jωε

(
∂Hφ

∂z

∂F̄φ

∂z
+

1

ρ2

∂(ρHφ)

∂ρ

∂(ρF̄φ)

∂ρ

)
dV

+ jω

∫
Ω

μHφ F̄φdV = −
∫

Ω

M imp
φ F̄φ dV +

∫
ΓN

M imp
φ,ΓN

F̄φ dS

+

∫
Ω

1

σ + jωε

[
−J imp

ρ

∂F̄φ

∂z
+ J imp

z

1

ρ

∂(ρF̄φ)

∂ρ

]
dV ∀ Fφ ∈ H̃1

D(Ω) .

(3.17)
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⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Find H = (Hρ, 0, Hz) ∈ HD + H̃D(curl; Ω) such that∫
Ω

1

σ + jωε

(
∂Hρ

∂z
− ∂Hz

∂ρ

) (
∂F̄ρ

∂z
− ∂F̄z

∂ρ

)
dV

+ jω

∫
Ω

μ(HρF̄ρ + HzF̄z) dV = −
∫

Ω

M imp
ρ F̄ρ + M imp

z F̄z dV

+

∫
ΓN

M imp
ρ,ΓN

F̄ρ + M imp
z,ΓN

F̄z dS +

∫
Ω

1

σ + jωε
J imp
φ

[
∂F̄ρ

∂z
− ∂F̄z

∂ρ

]
dV

∀ F = (Fρ, 0, Fz) ∈ H̃D(curl; Ω) .

(3.18)

From the formulation of problems (3.15) through (3.18), we remark the following:
• Physically, solutions of problems (3.16) and (3.17) correspond to the TEφ-

mode (i.e., Eφ = 0), and solutions of problems (3.15) and (3.18) correspond
to the TMφ-mode (i.e., Hφ = 0).

• The axis of symmetry is not a boundary of the original 3D problem, and
therefore, a BC should not be needed to solve this problem. Nevertheless, for-
mulations of problems (3.15) through (3.18) require the use of spaces H̃1

D(Ω)
and H̃D(curl; Ω) described above. The former space involves the singular
weight 1

ρ , which implicitly requires a homogeneous Dirichlet BC along the

axis of symmetry. The latter space can be considered as it is (by using 2D
edge elements), and no BC is necessary4 to solve the problem.

4. Self-adaptive goal-oriented hp-FEM. We are interested in solving varia-
tional problems (3.9) and (3.12) (or alternatively, (3.15), (3.16), (3.17), and (3.18)),
which we state here in terms of sesquilinear form b and antilinear form f :

{
Find E ∈ ED + V,

b(E,F) = f(F) ∀F ∈ V ,
(4.1)

where
• ED is a lift of the essential (Dirichlet) BC.
• V is a Hilbert space.
• f ∈ V′ is an antilinear and continuous functional on V.
• b is a sesquilinear form. We have

b(E,F) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

1

μ
(∇×E) · (∇×F̄) dV︸ ︷︷ ︸

aE(E,F)

−
∫

Ω

k2E · F̄ dV︸ ︷︷ ︸
cE(E,F)

E-Form,

∫
Ω

1

k2
(∇×E) · (∇×F̄) dV︸ ︷︷ ︸

aH(E,F)

−
∫

Ω

μE · F̄ dV︸ ︷︷ ︸
cH(E,F)

H-Form,
(4.2)

where sesquilinear forms aE , aH , cE , and cH are Hermitian, continuous, and

4From the computational point of view, this effect can be achieved by artificially adding a ho-
mogeneous natural (Neumann) BC.
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semipositive definite. We define an “energy” inner product on V as

(E,F) :=

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫
Ω

1

μ
(∇×E) · (∇×F̄) dV︸ ︷︷ ︸

aE(E,F)

+

∫
Ω

|k2|E · F̄ dV︸ ︷︷ ︸
cE(E,F)

E-Form,

∫
Ω

1

|k2| (∇×E) · (∇×F̄) dV︸ ︷︷ ︸
aH(E,F)

+

∫
Ω

μE · F̄ dV︸ ︷︷ ︸
cH(E,F)

H-Form,

(4.3)

with the corresponding (energy) norm denoted by ‖E‖. Notice the inclusion
of the material properties in the definition of the norm.

4.1. Representation of the error in the quantity of interest. Given an
hp-FE subspace Vhp ⊂ V, we discretize (4.1) as follows:{

Find Ehp ∈ ED + Vhp,

b(Ehp,Fhp) = f(Fhp) ∀Fhp ∈ Vhp .
(4.4)

The objective of goal-oriented adaptivity is to construct an optimal hp-grid, in the
sense that it minimizes the problem size needed to achieve a given tolerance error for
a given quantity of interest L, with L denoting a linear and continuous functional. By
recalling the linearity of L, we have

Error of interest = L(E) − L(Ehp) = L(E − Ehp) = L(e),(4.5)

where e = E − Ehp denotes the error function. By defining the residual rhp ∈ V′ as
rhp(F) = f(F) − b(Ehp,F) = b(E − Ehp,F) = b(e,F), we look for the solution of the
dual problem: {

Find W̄ ∈ V,

b(F,W) = L(F) ∀F ∈ V.
(4.6)

Problem (4.6) has a unique solution in V. The solution W is usually referred to as
the influence function.

By discretizing (4.6) via, for example, Vhp ⊂ V, we obtain{
Find W̄hp ∈ Vhp,

b(Fhp,Whp) = L(Fhp) ∀Fhp ∈ Vhp .
(4.7)

Definition of the dual problem plus the Galerkin orthogonality for the original
problem imply the final representation formula for the error in the quantity of interest,
namely,

L(e) = b(e,W) = b(e,W − Fhp︸ ︷︷ ︸
ε

) = b̃(e, ε) .

At this point, Fhp ∈ Vhp is arbitrary, and b̃(e, ε) = b(e, ε̄) denotes the bilinear
form corresponding to the original sesquilinear form.

Notice that, in practice, the dual problem is solved not for W but for its complex
conjugate W̄, utilizing the bilinear form and not the sesquilinear form. The linear
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system of equations is factorized only once, and the extra cost of solving (4.7) reduces
to only one backward and one forward substitution (if a direct solver is used).

Once the error in the quantity of interest has been determined in terms of bilinear
form b̃, we wish to obtain a sharp upper bound for |L(e)| that depends upon the mesh
parameters (element size h and order of approximation p) only locally. Then, a self-
adaptive algorithm intended to minimize this bound will be defined.

First, using a procedure similar to the one described in [10], we approximate E and
W with fine grid functions Eh

2 , p+1, Wh
2 , p+1, which have been obtained by solving the

corresponding linear system of equations associated with the finite element subspace
Vh

2 , p+1. In the remainder of this article, E and W will denote the fine grid solutions

of the direct and dual problems (E = Eh
2 , p+1, and W = Wh

2 , p+1, respectively), and

we will restrict ourselves to discrete finite element spaces only.
Next, we bound the error in the quantity of interest by a sum of element contri-

butions. Let bK denote a contribution from element K to sesquilinear form b. It then
follows that

|L(e)| = |b(e, ε)| ≤
∑
K

|bK(e, ε)| ,(4.8)

where summation over K indicates summation over elements.

4.2. Projection-based interpolation operator. Once we have a representa-
tion formula for the error in the quantity of interest in terms of the sum of element
contributions given by (4.8), we wish to express this upper bound in terms of local
quantities, i.e. in terms of quantities that do not vary globally when we modify the
grid locally. For this purpose, we introduce the idea of projection-based interpolation
operators.

First, in order to simplify the notation, we define the following three spaces of
admissible solutions:

• V = HD(curl; Ω),
• V2D = H̃D(curl; Ω), and
• V 1D = H̃1

D(Ω).
The corresponding hp-finite element spaces will be denoted by Vhp, V2D

hp , and V 1D
hp ,

respectively.
At this point, we introduce three projection-based interpolation operators that

have been defined in [9, 8], and used in [10, 23] for the construction of the fully
automatic energy-norm-based hp-adaptive algorithm:

• Πcurl,3D
hp : V −→ Vhp,

• Πcurl,2D
hp : V2D −→ V2D

hp , and

• Π1D
hp : V 1D −→ V 1D

hp .
We shall also consider three Galerkin projection operators:

• Pcurl,3D
hp : V −→ Vhp,

• Pcurl,2D
hp : V2D −→ V2D

hp , and

• P 1D
hp : V 1D −→ V 1D

hp .

To further simplify the notation, we will utilize the unique symbol Πcurl
hp to denote

all projection-based interpolation operators mentioned above. Depending upon the
problem formulation (and corresponding space of admissible solutions), Πcurl

hp should

be understood as Πcurl,3D
hp for problems (3.9) and (3.12), Πcurl,2D

hp for problems (3.16)

and (3.18), or Π1D
hp for problems (3.15) and (3.17). Similarly, we will use the unique
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symbol Pcurl
hp to denote either Pcurl,3D

hp , Pcurl,2D
hp , or P 1D

hp .

We define Ehp = Pcurl
hp E. Equation (4.8) then becomes

|L(e)| ≤
∑
K

|bK(E, ε)| =
∑
K

|bK(E − Πcurl
hp E, ε) + bK(Πcurl

hp E − Pcurl
hp E, ε)| .(4.9)

Given an element K, we conjecture that |bK(Πcurl
hp E − PhpE, ε)| will be negligible

compared to |bK(E − Πcurl
hp E, ε)|. Under this assumption, we conclude that

|L(e)| �
∑
K

|bK(E − Πcurl
hp E, ε)| .(4.10)

In particular, for ε = W − Πcurl
hp W, we have

|L(e)| �
∑
K

|bK(E − Πcurl
hp E,W − Πcurl

hp W)| .(4.11)

By applying the Cauchy–Schwarz inequality, we obtain the next upper bound for
|L(e)|:

|L(e)| �
∑
K

‖ẽ‖K‖ε̃‖K ,(4.12)

where ẽ = E − Πcurl
hp E, ε̃ = W − Πcurl

hp W, and ‖ · ‖K denotes energy-norm ‖ · ‖
restricted to element K.

4.3. Fully automatic goal-oriented hp-refinement algorithm. We de-
scribe an hp self-adaptive algorithm that utilizes the main ideas of the fully auto-
matic (energy-norm-based) hp-adaptive algorithm described in [10, 23]. We start by
recalling the main objective of the self-adaptive (energy-norm-based) hp-refinement
strategy, which consists of solving the following maximization problem:⎧⎪⎪⎨

⎪⎪⎩
Find an optimal h̃p-grid in the following sense:

h̃p = arg max
ĥp

∑
K

‖E − Πcurl
hp E‖2

K − ‖E − Πcurl
ĥp

E‖2
K

ΔN
,

(4.13)

where
• E = Eh

2 , p+1 is the fine grid solution, and

• ΔN > 0 is the increment in the number of unknowns from grid hp to grid ĥp.
Similarly, for goal-oriented hp-adaptivity, we propose the following algorithm

based on estimate (4.12):⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

Find an optimal h̃p-grid in the following sense:

h̃p = arg max
ĥp

∑
K

[
‖E − Πcurl

hp E‖K · ‖W − Πcurl
hp W‖K

ΔN

−
‖E − Πcurl

ĥp
E‖K · ‖W − Πcurl

ĥp
W‖K

ΔN

]
,

(4.14)

where
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• E = Eh
2 , p+1 and W = Wh

2 , p+1 are the fine grid solutions corresponding to

the direct and dual problems, and

• ΔN > 0 is the increment in the number of unknowns from grid hp to grid ĥp.
Implementation of the goal-oriented hp-adaptive algorithm is based on the op-

timization procedure used for energy-norm hp-adaptivity [10, 23], which utilizes a
multistep approach (first optimization of edges, and then optimization of interior de-
grees of freedom). The subspace associated to an optimal finite element grid is always
contained in the subspace associated with the finite element fine grid computed during
the previous step.

4.4. Implementation details. In what follows, we discuss the main implemen-
tation details needed to extend the fully automatic (energy-norm-based) hp-adaptive
algorithm [10, 23] to a fully automatic goal-oriented hp-adaptive algorithm.

1. First, the solution W of the dual problem on the fine grid is necessary. This
goal can be attained either by using a direct (frontal) solver or an iterative
(two-grid) solver (see [18]).

2. Subsequently, we should treat both solutions as satisfying two different PDEs.
We select functions E and W as the solutions of the system of two PDEs.

3. We proceed to redefine the evaluation of the error. The energy-norm error
evaluation of a 2D function is replaced by the product ‖ E − Πcurl

hp E ‖ · ‖
W − Πcurl

hp W ‖.
4. After these simple modifications, the energy-norm-based self-adaptive algo-

rithm may now be utilized as a self-adaptive goal-oriented hp algorithm.

5. Numerical results. In this section, we apply the goal-oriented hp self-adap-
tive strategy described in section 4 to simulate the response of the induction LWD
instrument operating at 2 MHz considered in section 2.3, using formulation (3.15)
for solenoidal coils and (3.17) for toroidal coils. Exactly the same results are ob-
tained with formulations (3.18) and (3.16), respectively, as predicted by the theory.
Thus, formulations (3.18) and (3.16) have been used as an extra verification of the
simulations, and the corresponding results have been omitted in this article to avoid
duplicity.

Figure 3 displays the first vertical difference of the electric field (divided by the
distance between the two receivers) for the described LWD instrument equipped with
solenoidal coils (left and center panel). The right panel corresponds to the computa-
tion of the normalized second vertical difference of the electric field when considering
an extra receiving antenna 15 cm above the second receiving antenna. The three
curves (two for the second vertical difference of the electric field) correspond to

1. the rock formation with no mud-filtrate invasion,
2. the rock formation with a 2 Ω·m 40 cm horizontal mud layer invading the

1 Ω·m rock formation layer, and a 5Ω·m 90cm horizontal mud layer invading
the 10000 Ω·m rock formation layer, and

3. the previous (mud-invaded) rock formation, using a mandrel with relative
magnetic permeability of 100.

For toroidal antennas, we display in Figure 4 the first vertical difference of the mag-
netic field (divided by the distance between the two receivers). The three displayed
curves correspond to the three situations discussed above.

These results illustrate the strong dependence of the LWD response on the rock
formation resistivity. We observe that solenoidal antennas are more sensitive to highly
conductive formations as well as to the electrical permeability of the mandrel, while
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Fig. 3. LWD problem equipped with a solenoidal source. Amplitude (left panel) and phase
(center panel) of the first vertical difference of the electric field (divided by the distance between
receivers) at the receiving coils. The normalized amplitude of the second vertical difference of the
electric field is displayed in the right panel. Results obtained with the self-adaptive goal-oriented
hp-FEM. The spatial distribution of electrical resistivity is also displayed to facilitate the physical
interpretation of results.
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Fig. 4. LWD problem equipped with a toroidal source. Amplitude (left panel) and phase (right
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at the receiving coils. Results obtained with the self-adaptive goal-oriented hp-FEM. The spatial
distribution of electrical resistivity is also displayed to facilitate the physical interpretation of results.
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Fig. 5. LWD problem equipped with a solenoidal source. Results obtained with the self-adaptive
goal-oriented hp-FEM correspond to the use of solenoidal antennas (left panel), and toroidal anten-
nas (right panel). The spatial distribution of electrical resistivity is also displayed to facilitate the
physical interpretation of results.

toroidal antennas are more sensitive to highly resistive formations. We also observe
that the second vertical difference of the electric field is more sensitive to water in-
vasion than the first vertical difference of the electric field (in both conductive and
resistive formations).

Figure 5 illustrates the effect of the magnetic buffers. By removing the magnetic
buffers from the logging instrument’s design, the amplitude of the received signal
decreases by a factor of up to 200 in the case of a solenoidal source. For practical
applications, a strong signal on the receivers is desired to minimize the noise-to-signal
ratio. Thus, it is appropriate to use magnetic buffers in combination with solenoidal
antennas. In contrast, the use of magnetic buffers with toroidal antennas is not
advisable since they weaken the received signal. In both cases, the phase and shape
of the solution is not sensitive to the presence (or not) of magnetic buffers, and the
corresponding results have been omitted.

The solver of linear equations utilized for these simulations is a multifrontal mas-
sively parallel sparse direct solver (MUMPS) [2, 1] running in a single-processor ma-
chine equipped with a Pentium IV 3.0 GHz processor. The total amount of time
utilized by our FEM depends upon the choice of initial grid and the quantity of in-
terest to be computed. Twelve minutes were needed to compute each curve—log—of
Figure 5, composed of 80 points.

The exponential convergence obtained using the self-adaptive goal-oriented hp-
FEM is shown in Figure 6 (left panel), by considering an arbitrary fixed position of
the logging instrument for a solenoid antenna. The final grid delivers a relative error
in the quantity of interest below 0.00001%; i.e., the first 7 significant digits of the
quantity of interest are exact. In Figure 6 (right panel), we display the exponential
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Fig. 6. LWD problem equipped with a solenoidal source. Left panel: convergence behavior
obtained with the self-adaptive goal-oriented hp-FEM shows exponential convergence rates for esti-
mate (4.8) (solid curve) used for optimization. The dashed curve describes the relative error in the
quantity of interest. Right panel: convergence behavior obtained with the self-adaptive energy-norm
hp-FEM shows exponential convergence rates for the energy-norm. The dashed curve describes the
relative error in the quantity of interest.

convergence of the energy-norm-based hp-FEM. The final hp-grid delivers an energy-
norm error below 0.01%. Nevertheless, the quantity of interest still contains a relative
error above 15%.

A final goal-oriented hp-grid delivering a relative error in the quantity of interest
of 0.1% is displayed in Figure 7.

6. Summary and conclusions. We have successfully applied a self-adaptive
goal-oriented hp-FEM algorithm to simulate the axisymmetric response of an induc-
tion LWD instrument in a borehole environment. These simulations would not be
possible with energy-norm adaptive algorithms. Also, the use of hp-FEM provides
the flexibility needed to accurately approximate the solution within the formation
(using the p method) as well as the strong singularities caused by the abrupt geome-
try of the mandrel (using the h method).

Numerical results illustrate the exponential convergence of the method (allow-
ing for high accuracy simulations), the suitability of the presented formulations for
axisymmetric electrodynamic problems, and the main physical characteristics of the
presented induction LWD instrument. These results suggest the use of solenoidal an-
tennas for the assessment of highly conductive rock formation materials, and toroidal
antennas for the assessment of highly resistive materials. Solenoidal antennas should
be used in combination with magnetic buffers to strengthen the measured EM signal,
while the use of magnetic buffers with toroidal antennas should be avoided. Both
types of antennas can be used to study mud-filtrate invasion. Second vertical differ-
ences of electromagnetic fields are more sensitive to mud-filtrate invasion than first
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Fig. 7. LWD instrument equipped with a solenoidal source. Portion (120 cm× 200 cm) of the
final hp-grid. Different shades indicate different polynomial orders of approximation, ranging from
1 (light grey) to 8 (white).

vertical differences.
Since the influence function used by the self-adaptive goal-oriented hp-adaptive

algorithm is approximated via finite elements, the numerical method presented in this
article is problem independent, and it can be applied to 1D, 2D, and 3D finite element
discretizations of H1-, H(curl)-, and H(div)-spaces.

Appendix. A loop-antenna radiating in a homogeneous lossy medium
in the presence of a highly conductive metallic mandrel. In this appendix,
we consider a problem with a known analytical solution. We use this problem as an
additional mechanism to verify the code, as well as to provide comparative results
between analytical and numerical solutions.

We consider a solenoid (or a toroid) of radius a radiating at a frequency of 2 MHz
in a homogeneous lossy medium (with resistivity equal to 1 Ω ·m), in the presence of
an infinitely large cylindrical mandrel (with resistivity equal to 10−6 Ω · m) of radius
b < a. The coil and the mandrel exhibit axial symmetry (see Figure 8).

For a solenoidal coil located at z = 0, the resulting solution for a ≤ ρ ≤ b is given
by [15, 20]

Eφ(ρ, z) =
−ωμ

4πa

∫ ∞

−∞
[J1(kρa) + ΓH

(1)
1 (kρa)]H

(1)
1 (kρρ)e

ikzzdkρ,(A.1)

where Γ = −J1(kρb)/H
(1)
1 (kρb), Jp and H

(1)
p are the Bessel and Hankel functions,

respectively, of the first type of order p, and kz =
√
k2 − k2

ρ.

For a toroidal coil located at z = 0, the resulting solution for a ≤ ρ ≤ b is given
by

Hφ(ρ, z) =
−i

4πa

∫ ∞

−∞
[J1(kρa) + ΓH

(1)
1 (kρa)]H

(1)
1 (kρρ)e

ikzzdkρ,(A.2)
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Fig. 8. Geometry of a loop-antenna radiating in a homogeneous lossy medium in the presence
of a highly conductive metallic mandrel.
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Fig. 9. Solution (electric field) along the vertical axis passing through a solenoid radiating in a
homogeneous medium in the presence of a metallic mandrel. Analytical solution (mandrel is a PEC)
against the numerical solution for different mandrel resistivities (10−7, 10−5, 10−3, and 1 Ω · m)
obtained with the self-adaptive goal-oriented hp-FEM.

where Γ = −J0(kρb)/H
(1)
0 (kρb).

In Figures 9 and 10, we display a comparison between analytical and numerical
results (obtained using the self-adaptive hp goal-oriented algorithm) for the solenoidal
and toroidal coils, respectively. We selected b = 0.0254 cm and a = 0.03048 cm. The
numerical results accurately reproduce the analytical ones, in terms of both amplitude
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Fig. 10. Solution (magnetic field) along a vertical axis passing through a toroid radiating in a
homogeneous medium in the presence of a metallic mandrel. Analytical solution (mandrel is a PEC)
against the numerical solution for different mandrel resistivities (10−7, 10−5, 10−3, and 1 Ω · m)
obtained with the self-adaptive goal-oriented hp-FEM.

and phase.
When considering a solenoid, the logging instrument response using a mandrel of

resistivity 10−5 Ω · m or a PEC mandrel are indistinguishable in terms of amplitude.
A similar situation occurs for a toroid. In terms of phase, induction instruments
equipped with solenoidal coils appear to be more sensitive to the mandrel resistivity
than those equipped with toroidal coils.
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Abstract. We present modeling and analysis of smectic C phases of liquid crystals capable of
sustaining spontaneous polarization. The layered liquid crystals are also assumed to be chiral. We
study minimization of the total energy subject to electrostatic constraints. In order to determine
mathematically and physically relevant boundary conditions, we appeal to the analogy between the
current problem and the vorticity in fluids. We place a special emphasis on the nonlocal and self-
energy effects arising from spontaneous polarization. We discuss examples pertaining to the electric
field created by the liquid crystal in dielectric medium, and also to the possible role of a domain
shape as an energy reduction mechanism.
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1. Introduction. This article analyzes nonlocal electrostatic effects associated
with polarized states of liquid crystals. We assume that the liquid crystals are of
smectic type, possess spontaneous polarization, and may also be chiral. We study
minimization of the total energy in R3, subject to electrostatic constraints.

In smectic liquid crystals, centers of mass of molecules are arranged locally in
one-dimensional layers described by a complex field ψ = ρeiω; level sets of the phase
function ω denote layer locations, with ∇ω being parallel to the layer normal. Nonpar-
allel unit vector fields n and p describe the orientational ordering of biaxial molecules.
Another feature of smectic C phases is that the director n makes a preferred angle α
with the layer normal vector. The angle α is a temperature- and material dependent
quantity ranging typically from 0 to π

4 . We visualize smectic C phases in terms of
cones with axis along the layer normal and semiangle α. The director n is then par-
allel to a generating straight line of the cone. Since the systems that we consider are
ferroelectric, that is, they have spontaneous polarization, we take p to be parallel to
the polarization field P; n corresponds to the uniaxial director measuring the average
alignment of molecular long axes of either rod-like or bent-core molecules [33, 34].
The electrostatic potential ϕ is also a variable of the problem.

Many different types of liquid crystals form smectic C phases (i.e., one-dimensional
layer structures). The earlier low molecular weight liquid crystals labeled as smec-
tic C [25] owe ferroelectricity to the molecular dipoles associated with side chains. In
such cases, the direction of P is determined and tends to be perpendicular to n and
∇ω. (This type of ferroelectricity, known as improper [21], is absent in the smectic A
phase due to n being parallel to ∇ω.) Since the magnitude of the polarization is
usually small, studies of such liquid crystals normally neglect nonlocal electric field
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effects and assign constant values to applied fields. Many of the low molecular weight
smectic C liquid crystals are cholesteric. On the other hand, B2 phases of bent-core
molecule liquid crystals are mostly nonchiral and have large polarization values. In
the B2 phase, the layers have a locally polar C2v symmetry group in the Schoenflies
symbols [40, p. 489]. Although P tends to be perpendicular to n, the plane deter-
mined by these vectors is free to rotate about n. Unlike the case of small molecule
smectics, the B2 phases are not subject to the constraint of P, that is, parallel to
∇ω × n. However, analysis of the latter requires accounting for nonlocal energy.

Throughout this work, we will assume that the liquid crystals are chiral and use
the conventional notation C* to denote such chiral smectic phases. An important
bulk configuration of chiral smectic C phases is that the variables n and p rotate
spatially around the axis of the previously described cone, with n being parallel to a
generating straight line of the cone. This accordingly results in zero net polarization
over a helical pitch. In suppressing the helix by applying an external electric field
or boundary conditions, ferroelectric states with opposite polarization emerge. The
transition between the chiral state and the ferroelectric ones is not regarded as a
typical phase transition; however, it is at the core of device applications of ferroelectric
liquid crystals. Mathematically, we addressed in previous work [27] some stability
properties with respect to boundary conditions and electric fields, in the case that
nonlocal effects are neglected.

The total energy we analyze consists of nematic, smectic, Ginzburg–Landau, elec-
trostatic, and surface contributions. The nematic and smectic free energy densities
follow the forms of Oseen–Frank, de Gennes, and Chen–Lubensky, which penalize
departure from preferred molecular alignment and orientation with respect to the
layers. Other macroscopic theories of smectic C phases can be found in the literature
[23, 33, 37]. Our choice is motivated by the covariant structure of the Lubensky form;
this is quadratic in second order gradients of ψ and especially amenable to treatment
by calculus of variations. We relax the constraint p ⊥ {n,∇ω} and instead incorpo-
rate a penalty energy into the model. The Ginzburg–Landau energy tends to select
a preferred magnitude of the polarization according to temperature and material pa-
rameters. The current energy is appropriate to modeling B2 ferroelectric phases,
provided that we omit the previously mentioned penalty term and chirality.

The electrostatic energy comprises a dielectric and a ferroelectric contribution.
The latter accounts for the energy of self-interaction between the polarization and
its own electric field, as well as the electrostatic energy outside the liquid crystal
domain. So far, this situation is analogous to that of a ferroelectric solid. However,
there are some fundamental differences between these two behaviors. In the solid, the
directions of polarizations are determined by lattice directions; the latter are difficult
to alter using an external field. The “softness” of a liquid crystal allows for changes
in molecular alignments so as to reduce the energy. For instance, in the case of a
liquid crystal located between conducting plates, the distribution of polarization is
such that it gets compensated by free charges in the conductor, inducing a zero electric
field outside. As a result, the nonlocal energy vanishes. Suppressing the helix in the
smectic C* phase is a mechanism of reducing nonlocal energy. In a related work [19],
Khachaturyan showed that a polarized homogeneous state of the nematic phase is
unstable with respect to a slight dipole-dipole interaction, resulting in a symmetry
breaking.

If a B2 liquid crystal is embedded in another liquid, such as its own isotropic
phase, it may actually change its shape so that the nonlocal energy is zero. This gives
a good explanation for the telephone-cord shape observed in many ferroelectric liquid
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crystal filaments [5, 8, 16, 17]. Modeling of static liquid crystal helical filaments can be
found in [2, 36]. Chevron structures with alternating domains of opposite polarization
are also found in some materials [5]. The phenomenon of changing shape to reduce
electrostatic energy has also been observed in thin polarized piezoelectric films (for
example, ZnO nanobelt [20]).

In the current analysis, defects are not included. In particular, we assume that
∇ω is defined everywhere on ∂Ω with possible exceptions on the edges of Ω. This,
in turn, determines the type of the domain occupied by the liquid crystal, and the
nature of boundary conditions on the phase function ω. We make use of analogies
with the geometry of vortex tubes and sheets in fluid mechanics. Indeed, we take
Ω to be a cylinder-like domain analogous to a vortex tube, which has the lateral
surface Σ corresponding to a vortex sheet, and is contained between surfaces S1 and
S2. We deal with two types of boundary conditions on ω: one corresponding to the
layer structure reaching the boundary in a tangential fashion, and the other with
layers being perpendicular to the boundary. The latter correspond to the geometry
of the Clark–Lagerwall effect in ferroelectric displays [4, 14, 39]. We also prescribe
the electrostatic potential on a part of the boundary. These boundary conditions
together with assumptions for the constitutive parameters (see section 3) allow us to
prove existence of minimizers of the total energy by using direct methods of calculus of
variations. One important issue is whether the minimizers thus obtained correspond
to chiral structures or ferroelectric ones. We apply asymptotic analysis to obtain a
classification of minimizers [1].

In [18], Joo and Phillips studied the phase transitions between chiral nematic,
smectic A*, and C* liquid crystals, and carried out extensive stability analyses. Their
work gives a rigorous classification of the energy minimizing phase regimes. Another
important merit of the article is establishing the coercivity of the smectic C* energy
for the first time. For a mathematical analysis of the phase transitions between the
chiral and smectic A* liquid crystals with focus on the analogies of the phase tran-
sition between conductor and superconductor, the reader is referred to [1]. Studies
of periodic ferroelectric and antiferroelectric phases and analysis of time dependent
problems arising in switching have also been carried out by the authors [28]. Experi-
mental treatments and studies of smectic C* liquid crystals including the influence of
an electric field are found in [10, 11, 12, 29, 30, 31]. For structural understanding and
modeling of ferroelectricity, we refer to the books by Goody et al. [13], Lagerwall [21],
Pikin [32], and by Muševič, Blinc, and Žekš [26].

This article is organized as follows. In section 2, we present free energy func-
tions of smectic C* materials with concentration on the polarization and electrostatic
energies. We discuss constraint relaxation and approximations of the electrostatic
energies. In section 3, we prove existence of minimizers and study examples regarding
the relationship between domain shapes and polarizations. We also present two dif-
ferent versions of the variational problem, with one of them corresponding to a liquid
crystal placed between metallic plates. In the other formulation, the liquid crystal is
placed in a dielectric medium, subject to the electric field generated by the material
polarization. In section 4, we carry out asymptotic studies of the minimizers obtained
in section 3 to determine whether they correspond to chiral or ferroelectric structures.
We outline some conclusions in section 5.

2. Free energy functions. We present the energy functional for the smectic
materials to be analyzed. This includes nematic, smectic, Ginzburg–Landau, surface,
and electric contributions. We will also show how they give rise to simple forms found
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in the literature.

Equilibrium configurations of smectic C* liquid crystals occupying a smooth do-
main Ω in R3 are given by quadruples (ψ,n,P,E) of fields, ψ : Ω → C, n : Ω → S2,
P : Ω → R3, and E : R3 → R3, that are critical points of the total energy functional

E(n,P, ψ,E) =

∫
Ω

{FN (n,P,∇n) + FSm(∇n,∇ψ,∇2ψ)

+FP (n,P,∇P,∇ψ)} dx +

∫
∂Ω

FS(n, ν) dS

+

∫
R3

FE(nχΩ,PχΩ,E)dx,(2.1)

subject to Maxwell’s equations

−∇ · D = 0, ∇× E = 0 in Ω,(2.2)

where D is the electric displacement vector, E is the electric field, and the functions
FN , FSm, FE , FS , FP represent the Oseen–Frank, the smectic, the electrostatic, the
surface anchoring [6, p. 99], and the Ginzburg–Landau energy densities, respectively.
χΩ denotes the characteristic function.

2.1. Dielectric, nonlocal, and self-interaction terms. The electrostatic en-
ergy density in R3 [7, 22] is given by1

FE = −1

2

(
(εE · E)χΩ + (E · E)χΩc

)
− (P · E)χΩ,(2.3)

D = εEχΩ + EχΩc + PχΩ,(2.4)

ε = ε⊥I + εan ⊗ n,(2.5)

where ε, ε⊥, and εa represent the susceptibility tensor, dielectric permittivity, and
dielectric anisotropy, respectively.

Note that (2.3) can be written as

FE = −1

2

[
ε⊥|E|2 + εa(n · E)2 + |E|2χΩc

]
− (P · E)χΩ.(2.6)

So, the electrostatic energy is given by

∫
R3

FE dx = − 1

2

∫
Ω

{ε⊥|E|2 + εa(E · n)2} dx

− 1

2

∫
R3−Ω

|E|2 dx −
∫

Ω

P · E dx.(2.7)

The two terms in the last row in (2.7) correspond to the self-interaction and nonlocal
electrostatic energies, respectively. The term in the first row gives the dielectric
contribution.

1We note that the electric displacement D is usually written as D = εEχΩ + EχΩc + 4πP. For
simplicity, we replace 4πP by P.
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2.2. Nematic and smectic free energies. The Oseen–Frank free energy den-
sity is given by

FN = K1(∇ · n)
2

+ K2(n · ∇ × n + τ)
2

+ K3|n × (∇× n) + γP|2

+ (K2 + K4)(tr(∇n)
2 − (∇ · n)

2
),(2.8)

where Ki, i = 1, 2, 3, 4, denote elasticity constants. The scalar τ represents the
chiral pitch of the helical structure of the cholesteric phases [9], and K3γ

2|P|2 is an
intrinsic bending stress [7, p. 384]. Here, γ is a parameter included for the purpose
of dimensionalization; hereafter, we will take γ to be 1. Such a term appears only in
connection with the modeling of the smectic C* since nematics with intrinsic bending
have not been observed. Both quantities result from the loss of mirror symmetry of
the smectic C* phases. The fourth term in FN is a null-Lagrangian; its integral is
determined by n on ∂Ω. The classical Oseen–Frank energy corresponds to the case
that P is zero. Existence and regularity of minimizers for the classical Oseen–Frank
energy were studied by Hardt, Kinderlehrer, and Lin [15].

The free energy density associated with the smectic layering follows the covariant
form presented in [3]:

FSm = D(D2ψ)(D2ψ)∗ + [C||ninj + C⊥(δij − ninj)](Diψ)(Djψ)∗

+ r|ψ|2 +
g

2
|ψ|4,(2.9)

with D ≡ ∇ − iqn, q the modulation wave number of the smectic layer, and r =
a(T − T ∗), a > 0; here T denotes the (constant) temperature of the material and
T ∗ is the transition temperature from nematic to smectic. Model (2.9) yields the
de Gennes model for smectic A* when C|| − C⊥ = 0 and D = 0. The smectic C
phase is characterized by C⊥ < 0. Moreover, C⊥ ≥ 0 in the smectic A*, and C⊥ = 0
characterizes the transition to smectic C. Equivalently, the energy (2.9) can also be
written as follows:

FSm = D|D2ψ|2 + C⊥|Dψ|2 + Ca|n · Dψ|2 + r|ψ|2 +
g

2
|ψ|4.(2.10)

Remark. The first term in (2.9) is obtained from [24] and is a modification of
D⊥(δij −ninj)(δkl−nknl)(DiDj)(DkDl)

∗ in the original Chen–Lubensky model. The
purpose of introducing the new term is to obtain coercivity of the energy. This fact
was first observed in [18].

2.3. Anchoring energy. The anchoring energy is the Rapini–Papoular surface
energy [7, 21] given by

FS = ωn(1 − α0(n · ν)2
)
,(2.11)

where ωn and |α0| < 1 are material constants, and ν denotes the unit normal to the
surface. Note that the surface energy due to the polarization is not explicitly included
in (2.11). In fact, the role of such a surface energy is an approximation to the nonlocal
energy in (2.7), which we explicitly include in the problem.

2.4. Ginzburg–Landau energy with relaxation. The energy associated with
the phase transition to the ferroelectric phases is given by the Ginzburg–Landau
expression [22], a0|P|2 + b0|P|4, where b0 > 0 and a0 = α(T − Tc). Ferroelectric
phases correspond to the case T < Tc.
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In contrast to solids, the direction of polarization in many liquid crystals is de-
termined by the direction n and the layer normal ∇ω. In fact, a symmetry argument
shows that P is perpendicular to both n and ∇ω. For this reason, we express P as
follows [7, p. 384]:

P =

{
|P| ∇ω×n

|∇ω×n| if ∇ω × n �= 0,

0 if ∇ω × n = 0.
(2.12)

Therefore, the Ginzburg–Landau energy with relaxation is given by

FP = B|∇P|2 + a0|P|2 + b0|P|4 +
1

ε2
|(|∇ω × n|)P − |P|(∇ω × n)|2,(2.13)

where B > 0, a0 < 0, b0 > 0, and ε > 0. Here, we note that the last term in
(2.13), 1

ε2 |(|∇ω × n|)P − |P|(∇ω × n)|2, is a penalty term for (2.12), and |∇P|2 is a
regularizing term.

2.5. Electrostatic approximations. The presence of polarization in the sam-
ple causes a point charge density ρp = −∇·P in the bulk, and σ = P·ν, where σ is the
surface density of charges [38]. This will help us interpret the energies

∫
R3−Ω

|E|2 dx
and

∫
Ω

P ·E dx. For this, let us consider the special case that Ω is a ball of radius r0

centered at 0, with the constant surface charge density σ. We calculate the electric
potential ϕ [38] as

ϕ(x) =

{
σr2

0

|x| if |x| > r0,

σr0 if |x| ≤ r0.

Then for |x| > r0 we get

|E(r)| =
σr2

0

r2
,

and hence

∫
R3−Ω

|E|2 dx =

∫ 2π

0

∫ π

0

∫ ∞

r0

σ2r4
0

r2
sinφdr dφ dθ

= r0

∫
∂Ω

(P · ν)2 dS.

This explains why the term
∫
∂Ω

(P · ν)2 dS appears in liquid crystal models [21].

Now, let us consider the self-interaction energy. For our illustration, we consider
the case that εa 
 ε⊥, and we neglect εa in the model. It then follows that the
self-interaction energy is related with the Coulomb energy by

∫
Ω

∫
Ω

∇ · P(x)∇ · P(y)

|x − y| dx dy = −4πε⊥

∫
Ω

P · E dx.

We point out that the Coulomb energy is often approximated by the polar energy∫
Ω
(∇ ·P)2 dx found in the literature [7, 21]. We summarize the total energy involved
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in the electrostatic approximation without an external field as follows:

E(n,P, ψ) =

∫
Ω

{FN + FSm + GP }dx +

∫
∂Ω

GS dS,(2.14)

GS = ωp

(
1 − P · ν

|P|

)
+ ωr

(
1 − (P · ν)2

|P|2

)
(2.15)

+ ωn

(
1 − (n · ν)2

)
,

GP = FP + B1(∇ · P)2.(2.16)

Minimization of the energy (2.14) is studied in previous work [27].

3. Existence of minimizers. In this section, we study the boundary conditions
for smectic C* layer configurations and prove existence of minimizers. We also discuss
applications and provide examples that explain the relationship between domain shape
and ferroelectricity.

Throughout this paper, we assume that the constitutive parameters satisfy

g > 0, q ≥ 0, τ ≥ 0, r < 0, b0 > 0, ωn > 0,(3.1)

D > 0, C⊥ < 0, Ca > 0, c1 ≥ K2 + K4 ≥ c0,(3.2)

K1 ≥ K2 + K4, K3 ≥ K2 + K4, 0 ≥ K4,(3.3)

where c0 and c1 are positive constants. The latter inequalities are necessary conditions
to ensure coercivity of the energy [1].

3.1. Boundary conditions. Let Ω ⊂ R3 be a bounded, cylinder-like domain,
with boundary ∂Ω = Σ∪S1 ∪S2. We assume that the lateral surface Σ is of class C2,
and that S1 and S2 are plane cross sections with unit normal ν1 and ν2, respectively.
Letting ψ = ρeiω, we rewrite FSm as

FSm = D|D2ψ|2 + C⊥|Dψ|2 + Ca|n · Dψ|2 + r|ψ|2 +
g

2
|ψ|4

= D[(Δρ− ρ|∇ω − qn|2)2 + (ρ∇ · (∇ω − qn) + 2∇ρ · (∇ω − qn))2]

+Ca[(∇ρ · n)2 + ρ2(∇ω · n − q)2] + rρ2 +
g

2
ρ4(3.4)

+C⊥
(
|∇ρ|2 + ρ2|∇ω − qn|2

)
.

The following lemma based on Gauss’ theorem motivates the boundary conditions
taken into account.

Lemma 3.1. Let Ω ⊂ R3 be as previously defined. Let f be a smooth scalar
function defined in Ω. Then f satisfies the following identity:∫

Ω

|f |2 dx =

∫
∂Ω

[
∇ · (∇f)(ν · ∇f) − 1

2
∇(|∇f |2) · ν

]
dS

+
∑

i,j=1,2,3

∫
Ω

(∂i∂jf)2 dx.(3.5)

Let k > q be a given constant. We assume that the boundary ∂Ω satisfies either

∇ω · ν = 0 on Σ, ∇ω · νi = k on Si, i = 1, 2,

|∇ω|2 = k2 on Σ ∪ S1 ∪ S2,(3.6)
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Fig. 3.1. A vortex tube: C1 and C2 are the boundary curves of S1 and S2.

or

∇ω · ν = ±k on Σ, ∇ω · νi = 0 on Si, i = 1, 2,

|∇ω|2 = k2 on Σ ∪ S1 ∪ S2.(3.7)

Such relations correspond to smectic layers reaching the boundary in a perpendicular
and tangential fashion, respectively, with a prescribed wave number k. In case of
(3.7), the surface integration in (3.5) becomes ±2k2

∫
Σ
H dS, where H is the mean

curvature. In contrast, with boundary conditions (3.6), the surface integration in
(3.5) is zero.

Remark. The choice of domain and boundary conditions of the problem is moti-
vated by vorticity geometry. Indeed, Ω and Σ play the roles of vortex tube and vortex
sheet, respectively. Moreover, ∇ω is analogous to the fluid vorticity ξ, as in Figure
3.1.

3.2. Existence of minimizers. For simplicity, we restrict ourselves to the case
that ρ is constant (say ρ = 1), that is, no nematic defects are present in the sample,
and rewrite the smectic energy as follows:

FSm = D(Δω − q∇ · n)2 + D

(
|∇ω − qn|2 +

C⊥
2D

)2

+Ca(∇ω · n − q)2 +

(
r +

g

2
− C2

⊥
4D

)
.(3.8)

We also assume that D and E satisfy Maxwell’s equations (2.2). We use an electric
potential ϕ satisfying E = ∇ϕ and impose boundary conditions for ϕ so that (2.2)
reads ⎧⎨

⎩
−∇ · ((ε⊥I + εan ⊗ n)∇ϕ) = ∇ · P in Ω,

ϕ = ϕ0 on Σ,
−
(
(ε⊥I + εan ⊗ n)∇ϕ

)
· ν = P · ν on S1 ∪ S2,

(3.9)

where ϕ0 ∈ H
1
2 (Σ) is prescribed.

Define

X =
{

(n,P) ∈ W 1,2(Ω,S2) ×W 1,2(Ω,R3) : ||P ||∞ ≤ P0

}
,

H = {ω ∈ W 2,2(Ω) | ω satisfies (3.6) or (3.7) on ∂Ω},
H1

ϕ0
= {ϕ ∈ H1(Ω) : ϕ = ϕ0 on Σ},

A∗ = H×X , and

A = A∗ ×H1
ϕ0
,

where P0 is the given polarization saturation constant depending on the material and
temperature. For constant potential ϕ0, the boundary condition ϕ = ϕ0 on Σ can be
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considered as ϕ = ϕ0 in R3 − Ω. In this case, the nonlocal energy
∫
R3−Ω

|E|2 dx is
zero. For simplicity, we will drop the nonlocal energy in E . We then rewrite the total
energy functional E as a sum:

E = W − 1

2

∫
Ω

{ε⊥|∇ϕ|2 + εa(n · ∇ϕ)2 + 2P · ∇ϕ} dx,(3.10)

where

W =

∫
Ω

{FN + FSm + FP } dx +

∫
∂Ω

ωn((1 − α0(n · ν)2) dS.(3.11)

Since we are interested in the case that K2 and K3 are large, we assume that
min{K2,K3} ≥ 8c1 [1]. We note that for all n ∈ W1,2(Ω,S2) the following identities
hold:

tr(∇n)2 = |∇n|2 − |∇ × n|2,
|∇ × n|2 = |n · ∇ × n|2 + |n ×∇× n|2.

Using these identities, we get

FN = (K1 −K2 −K4)(∇ · n)2 + (K2 + K4)|∇n|2 − (K2 + K4)|∇ × n|2

+K2(n · ∇ × n + τ)2 + K3|n ×∇× n + P|2.(3.12)

Now, the following inequalities hold:

K2(n · ∇ × n + τ)2 + K3|n ×∇× n − P|2 − (K2 + K4)|∇ × n|2

≥ 4c1

(
1

2
|n ×∇× n|2 − 2|P|2

)
+ 2c1(n · ∇ × n + τ)2 − (K2 + K4)|∇ × n|2

≥ 2c1|∇ × n + τn|2 − 8c1|P|2 − (K2 + K4)|∇ × n|2

≥ 2c1

(
1

2
|∇ × n|2 − 2τ2

)
− 8c1|P|2 − (K2 + K4)|∇ × n|2

≥ (c1 −K2 −K4)|∇ × n|2 − 4c1(τ
2 + 2|P|2)

≥ −4c1(τ
2 + 2|P|2).(3.13)

It follows from (3.12), (3.13), and Lemma 3.1 that W is bounded below in A∗. There-
fore, we have

M1 ≤ inf
(n,P,ω)∈A∗

W(n,P, ω) < ∞

for some M1 ∈ R.
Now, we rewrite the Oseen–Frank energy in (3.12) as follows:

FN = (K1 −K2 −K4)(∇ · n)2 + (K2 + K4)|∇n|2 −K4

(
n · ∇ × n − τK2

K4

)2

+K

∣∣∣∣n ×∇× n +
K3

K
P

∣∣∣∣
2

+

(
K3 −

K2
3

K

)
|P|2 + τ2

(
K2 −

K2
2

|K4|

)
,

where K = K3 −K2 −K4.
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Let {(nj ,Pj , ωj)} be a minimizing sequence for W. Since |nj | = 1, we get

nj ⇀ n∞ in W 1,2(Ω),

nj → n∞ almost everywhere in Ω, and

Pj ⇀ P∞ in W 1,2(Ω)

as j → ∞. Furthermore, we have

nj ×∇× nj ⇀ n∞ ×∇× n∞ in L2(Ω),

nj · ∇ × nj ⇀ n∞ · ∇ × n∞ in L2(Ω)

as j → ∞. Note that for all j,∫
Ω

|∇ωj |2 dx ≤ 2

∫
Ω

(|∇ωj − qnj |2 + q2) dx, and(3.14) ∫
Ω

|Δωj |2 dx =

∫
Ω

|Δωj − q∇ · nj + q∇ · nj |2 dx

≤ 2

∫
Ω

[
|Δωj − q∇ · nj |2 + q2(∇ · nj)2

]
dx(3.15)

hold. From (3.14), (3.15), and Lemma 3.1, we get

||ωj ||W 2,2(Ω) ≤ R

for some R > 0. Hence, we obtain that

ωj ⇀ ω∞ in W 2,2(Ω), and

∇ωj × nj → ∇ω∞ × n∞ in L2(Ω)

as j → ∞. Using ||a| − |b|| ≤ |a− b| for a and b in R, we show that

∣∣∣(|∇ωj × nj |)Pj − |Pj |(∇ωj × nj)
∣∣∣2 →

∣∣∣(|∇ω∞ × n∞|)P∞ − |P∞|(∇ω∞ × n∞)
∣∣∣2

in L1 as j → ∞.
Since n · ν ∈ H

1
2 (∂Ω) ⊂ L2(∂Ω) with strong topology,

∫
∂Ω

ωn(1 − α0(n · ν)2) dS
is lower semicontinuous. Therefore, W is coercive and weakly lower semicontinuous;
that is,

W(n∞,P∞, ω∞) ≤ lim
j→∞

W(nj ,Pj , ωj).

Therefore we have the following lemma.
Lemma 3.2. Assuming that min{K2,K3} ≥ 8c1, there exists a minimizing triple

(n,P, ω) of the energy functional W in A∗.
Now, we prove existence of minimizers for E in A. For any (n,P, ω) ∈ A∗, by the

fundamental theory of elliptic PDEs (3.9) has a unique solution, which we denote by
Φϕ0

(n,P), and thus Φϕ0
(n,P) is the unique minimizer of the functional −

∫
Ω
FE dx

in H1
ϕ0

. Substituting Φϕ0
(n,P) for ϕ in E , we define E∗ by

E∗(n,P, ω) = E(n,P, ω,Φϕ0(n,P)).



ELECTROSTATIC EFFECTS IN LIQUID CRYSTALS 2117

Let

D(∇ϕ,n) = −(ε⊥I + εan ⊗ n)∇ϕ,(3.16)

A(∇ϕ,n) = [(ε⊥I + εan ⊗ n)∇ϕ] · ∇ϕ.(3.17)

After modifying Theorem 4.1 in [15], we have the following theorem.
Theorem 3.3. A quadruple (n,P, ω, ϕ) is a critical point of E in A subject to

(3.9) if and only if

ϕ = Φϕ0(n,P) and δE∗(n,P, ω) = 0 in A∗.(3.18)

Theorem 3.4. For ϕ0 as above and min{K2,K3} ≥ 8c1, there exists a triple
(n,P, ω) which minimizes E∗ in A∗, and therefore E achieves its minimum in A.

Proof. Let (ñ, P̃, ω̃) be a minimizer of W in A∗. Then

inf
(n,P,ω)∈A∗

E∗(n,P, ω) ≤ E∗(ñ, P̃, ω̃) < ∞.

If ϕ̃ is some fixed W 1,2 extension of ϕ0 to Ω, then for any η > 0,

−2

∫
Ω

FE dx =

∫
Ω

[A(∇Φϕ0(n,P),n) + P · ∇Φϕ0(n,P)] dx

≤
∫

Ω

[A(∇ϕ̃,n) + P · ∇ϕ̃] dx

≤ C(Ω, ϕ0),

for some C(Ω, ϕ0) depending on Ω and ϕ0. Since W is bounded from below, it follows
from the above that E∗ is also bounded below.

Now, choose a minimizing sequence (ni,Pi, ωi) in A∗ and set ϕi = Φϕ0
(ni,Pi).

Using the same computation as in the proof of the previous lemma, we obtain that

nj ⇀ n∞ in W 1,2,

nj → n∞ almost everywhere in Ω,

Pj ⇀ P∞ in W 1,2, and

ωj ⇀ ω∞ in W 2,2

as j → ∞. Since (Pj) converges strongly to P∞ in L2,∫
Ω

Pj · ∇ξ dx →
∫

Ω

P∞ · ∇ξ dx as j → ∞(3.19)

for any ξ ∈ H1(Ω). It follows from (3.9) and (3.19) that (ϕj) converges strongly to
ϕ∞ in H1

ϕ0
.

Since ϕi is the minimizer of −
∫

Ω
FE(ni,Pi,∇ϕ) dx for each fixed ni and Pi, we

have

−
∫

Ω

FE(ni,Pi,∇ϕi) dx ≤ −
∫

Ω

FE(ni,Pi,∇ϕ∞) dx.

By Lebesgue’s theorem, we obtain

lim
i→∞

{
−
∫

Ω

FE(ni,Pi,∇ϕi) dx

}
= −

∫
Ω

FE(n∞,P∞,∇ϕ∞) dx,
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so that

lim sup
i→∞

{
−
∫

Ω

FE(ni,Pi,∇ϕi) dx

}
≤ −

∫
Ω

FE(n∞,P∞,∇ϕ∞) dx.

This implies that

lim inf
i→∞

∫
Ω

FE(ni,Pi,∇ϕi) dx ≥
∫

Ω

FE(n∞,P∞,∇ϕ∞) dx.

Since W is lower semicontinuous, we finally conclude that

E∗(n∞,P∞, ω∞) = inf
(n,P,ω)∈A∗

E∗(n,P, ω).

3.3. Applications. Problems analogous to the model problem of the previous
subsection are often found in applications. Let us discuss two examples. First we
consider the case of a liquid crystal contained in a dielectric liquid medium with free
ions that form a charged layer of density σ on the interface. Letting Ω be a bounded
domain occupied by liquid crystals, we are interested in a minimization problem of
the energy functional (3.10) with an electric potential ϕ ∈ W 1,2(R3), satisfying⎧⎨

⎩
−∇ · ((ε⊥I + εan ⊗ n)∇ϕ) = ∇ · P in Ω,

−Δϕ = 0 in R3 − Ω̄,
−[(ε⊥I + εan ⊗ n)∇ϕ− ε0∇ϕ] · ν = P · ν + σ on ∂Ω,

(3.20)

where ε0 is the dielectric coefficient of the medium.
If ϕ is a solution of (3.20), then ϕ+C is also a solution of (3.20) for any constant C.
Define

V =

{
v ∈ W 1,2(R3);

∫
R3

v dx = 0

}
.

By the standard theory of elliptic PDEs and calculus of variations, for given n,P, the
solution of (3.20) is corresponding to the minimizer of the energy functional F on V

F =
1

2

∫
Ω

[(ε⊥I + εan ⊗ n)∇ϕ] · ∇ϕdx +
1

2

∫
R3−Ω̄

ε0∇ϕ · ∇ϕdx

+

∫
R3

PχΩ · ∇ϕdx +

∫
∂Ω

σϕdS.

Since F is V-elliptic, there exists a unique minimizer ϕ, denoted by Φ(n,P), of F on
V. We substitute ∇Φ(n,P) for E in the electrostatic energy

∫
R3 FE dx. Using similar

arguments as in Theorems 3.3, and 3.4, we obtain the following corollary.
Corollary 3.5. Assume that min{K2,K3} ≥ 8c1. Then there exists a mini-

mizing quadruple (n,P, ω, ϕ) of E on A∗ × V satisfying (3.20).
The second case comes up in device applications. Now the liquid crystal domain

Ω is confined between two conducting plates Ω1 and Ω2. We assume that there is no
free charge in Ω, and we neglect end-effects. In this case, the boundary value problem
is stated as follows: For a given potential ϕ̃, find ϕ satisfying the following conditions:⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∇ · (D(∇ϕ,n)) = ∇ · P in Ω,
−Δϕ = 0 in R3 − Ω ∪ Ω1 ∪ Ω2,(

D(∇ϕ,n) + ∇ϕ
)
· ν = P · ν on ∂Ω ∩ ∂(R3 − Ω ∪ Ω1 ∪ Ω2),

ϕ = ϕi in Ωi for i = 1, 2,
ϕ → 0 as |x| → ∞,

(3.21)
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where D(∇ϕ,n) is defined in (3.16) and ϕi, i = 1, 2, are constant potential functions.
If ϕi is set to zero, ∇ϕ gives the electric field created by the polar distribution. Anal-
ogous boundary value problems for ferroelectric solids are considered in [35]. Since
ϕi, i = 1, 2, are constant, we can consider ϕ = ϕi as Dirichlet boundary conditions
on Ωi.

Let

Ω̃ = R3 − Ω ∪ Ω1 ∪ Ω2.

Then the solution of the problem (3.21) can be sought as the solution ϕ ∈ W 1,2(R3 −
Ω1 ∪ Ω2) satisfying⎧⎪⎪⎪⎨

⎪⎪⎪⎩
∇ · (D(∇ϕ,n)) = ∇ · P in Ω,

−Δϕ = 0 in Ω̃,
ϕ = ϕi on ∂Ωi, i = 1, 2,(

D(∇ϕ,n) + ∇ϕ
)
· ν = P · ν on ∂Ω ∩ ∂Ω̃.

(3.22)

Define

Ṽ = {v ∈ W 1,2(R3 − Ω1 ∪ Ω2); v = ϕi on ∂Ωi, i = 1, 2},

and

F̃ =

∫
Ω

{[(ε⊥I + εan ⊗ n)∇ϕ] · ∇ϕ + P · ∇ϕ} dx +

∫
Ω̃

|∇ϕ|2 dx.

We see that F̃ is Ṽ-elliptic. There exists a unique minimizer ϕ, denoted by Φ(n,P),
of F̃ on Ṽ. Repeating the same arguments as in previous problem, we conclude the
corollary as below.

Corollary 3.6. Assume that min{K2,K3} ≥ 8c1. Then there exists a mini-
mizing quadruple (n,P, ω, ϕ) of E on A∗ × Ṽ satisfying (3.22).

3.4. Shapes and polarization. We close this section with examples to illus-
trate the relationship between the nonlocal energy and the shape of the domain.

Example 1. Uniformly polarized rectilinear cylinder. Let Ω be a cylinder in R3,
x2 + y2 ≤ r2

1, occupied by a smectic C material such that

∇ω = er, n = f(r)er + g(r)eθ, P = P0k.

Let Ω̃ denote a second cylinder, x2 + y2 ≤ r2
2, r1 < r2. Suppose that E is the electric

field on the cylindrical surface ∂Ω̃. Applying Gauss’ theorem to Ω̃, we get∫
∂Ω̃

E · ν dS = 0

since the net charge inside Ω̃ is zero. By symmetry, we observe that |E| is constant
on ∂Ω̃, E · ν = |E|, and thus ∫

R3−Ω

|E|2 dx = 0.

We note that the electric field E due to the polarization may not be zero outside Ω
if the shape is nonsymmetric. For instance, in the case of a bent cylindrical domain,
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Fig. 3.2. A polarized helical filament.

the electric field created by the polarization is not rotationally symmetric. Therefore,
we cannot conclude that |E| is constant on ∂Ω̃ , and so E is, in general, nonzero on
∂Ω̃. In this case, the self energy

∫
R3−Ω

|E|2 dx is also nonzero.
Example 2. Polarized helical filament. In Example 1, we replace Ω by a thin

filament [2],

Ω = {x ∈ R3 : x = C(s) + ξe, s ∈ [0, l], ξ ∈ [0, r], e · T = 0, e · e = 1},

where C : [0, l] → R3 is a smooth curve and T is the unit tangent vector. The domain
Ω is a thin filament and not necessarily a right cylinder, as in Figure 3.2. Let N and
B denote the normal and binormal vectors, respectively, to the curve.

The curve C represents the center curve of the curvilinear cylindrical domain Ω.
We assume that for each s ∈ [0, r] the smectic layer normal is parallel to T, and the
director field n is parallel to the plane determined by T and B, making a constant
tilt angle with T. Accordingly, we set

∇ω = T, n = αT + βB, α2 + β2 = 1, P = −P0N.

Define a coordinate system (s, ξ, θ) so that

eξ = cos θN + sin θB, eθ = − sin θN + cos θB.

Since the net charge in Ω̃ is zero, by Gauss’ theorem∫
∂Ω̃

E · ν dS = 0.

In general, though, we cannot conclude that E is symmetric around the curve C, and
so E may not be zero outside the filament region. Now the question is whether or not
there is a shape such that E = 0 in R3 − Ω. Heuristically, we can view such a shape
as the limiting case of a helical filament as the pitch approaches zero. Note that this
would allow us to recover the symmetry property of the domain and of the electric
field, and conclude that

∫
R3−Ω

|E|2 dx is negligible.

4. Classification of energy minimizers. We apply asymptotic arguments to
determine whether energy minimizers correspond to either helical configurations or
ferroelectric ones. In this section, we consider the energy as in (2.14). We wish to
identify the smectic layer geometry and find parameter conditions leading to helical
director configurations in the bulk with zero average polarization, as well as those giv-
ing homogeneous ferroelectric states. For this, we will consider a rectangular domain
between two parallel plates:

Ω = {x = (x, y, z) : 0 < y, z < L, 0 < x < d},

for fixed 0 < L, 0 < d. Let i, j, and k denote the corresponding orthonormal system
of vectors.



ELECTROSTATIC EFFECTS IN LIQUID CRYSTALS 2121

4.1. Helical energy minimizers. We determine the structure of the energy
minimizers (n, ω,P) when K2 and K3 as well as the smectic coefficients dominate
over the Ginzburg–Landau energy and surface energy parameters, and C⊥ < 0. Such
a situation arises at temperatures below the threshold of the smectic A to smectic C
transition, yielding helical configurations of n and P. It is well known that in the
higher temperature transition from nematic to smectic A, K2 becomes unbounded
and the smectic coefficient C⊥ ≥ 0.

We take the admissible set so that

k = q

√
|C⊥|
2Dq2

+ 1.(4.1)

We consider admissible fields such that n makes a constant angle α with the layer
normal vector ∇ω. We also choose α such that

tanα =

√
|C⊥|
2Dq2

.(4.2)

Specifically, we let⎧⎪⎪⎨
⎪⎪⎩

n0 = (a cos τz
a2 , a sin τz

a2 , c),

a = sinα �= 0, c = cosα �= 0, a2

c2 = |C⊥|
2Dq2 ,

P0 = cτ
a (− sin τz

a2 i + cos τz
a2 j),

ω0 = kz, k = q
c , ν = i.

(4.3)

A simple calculation gives

∇ω0 · n0 = q, ω0 = 0, |∇ω0 − qn0|2 =
|C⊥|
2D

,

∇ · n0 = 0, n0 · ∇ × n0 + τ = 0, |n0 × (∇× n0) + P0| = 0,

∇ · P0 = 0, |∇P0| =
cτ2

a3
, P0 = ∇ω0 × n0.

We observe that the quantity tanα =
√

|C⊥|
2Dq2 is of the order of tan π

6 according to

experimental measurements of the director tilt angle. This, together with available
information on the wave number q in the smectic A phase, allows us to determine the
relative value of the smectic parameters |C⊥| and D.

The total energy corresponding to the fields in (4.3) is given by

E0 = L2d

[
r +

g

2
− C2

⊥
4D

+ (K2 + K4)
τ2

a2
+

c2τ2

a2

(
B
τ2

a4
+ a0 + b0

c2

a2
τ2

)]
+ (2L2 + 4dL)(Cpωp + Crωr + Cnωn),

where Cr, Cp, Cn are expressions involving a, c, q, and τ .
Letting K0 = 1

2 min{K2,K3}, we write the Oseen–Frank energy as follows:

FN = (K2 −K0)(n · ∇ × n + τ)2 + (K3 −K0)|n×∇× n + P|2

+ (K1 −K2 −K4)(∇ · n)2 + (K2 + K4)|∇n|2

+K0|n · ∇ × n + τ |2 + K0|n ×∇× n + P|2 − (K2 + K4)|∇ × n|2.(4.4)
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We invoke the following estimate of the last three terms:

K0(|n · ∇ × n + τ |2 + |n ×∇× n + P|2) − (K2 + K4)|∇ × n|2

≥ −4c1(τ
2 + 2|P|2).

We then obtain the following estimates:∫
∂Ω

GS dS ≥ − [2|ωp| + 2|ωr| + |ωn|(1 + |α|)] (2L2 + 4dL),∫
Ω

(FSm + FN + GP ) dx ≥
[
r +

g

2
−
(
C2

⊥
4D

+
(a0 − 8c1)

2

4b0
+ 4c1τ

2

)]
dL2.

Letting (n,P, ω) denote an energy minimizer, we get

0 ≤ E(n,P, ω) + [2|ωp| + 2|ωr| + |ωn|(1 + |α|)](2L2 + 4dL)

+

[
C2

⊥
4D

+
(a0 − 8c1)

2

4b0
+ 4c1τ

2 − r − g

2

]
dL2

≤ E0 + [2|ωp| + 2|ωr| + |ωn|(1 + |α|)](2L2 + 4dL)

+

[
C2

⊥
4D

+
(a0 − 4c1)

2

4b0
+ 4c1τ

2 − r − g

2

]
dL2 ≡ Ē0.(4.5)

Since |C⊥|
2Dq2 is bounded, we note that the quantity on the right-hand side of the inequal-

ity is independent of D, C⊥, K1, K2, and K3, with the only Ki constants appearing
as the sum K2 +K4. From (4.5) together with (3.12) and (3.13) we get the following
theorem.

Theorem 4.1. Let q > 0, τ > 0 be fixed. Suppose that the constitutive parameters

satisfy assumptions (3.1)–(3.3). Suppose that K2,K3 ≥ 8c1 and 0 < |C⊥|
2Dq2 ≤ 1. If

(n,P, ω) is a minimizer of E, then the following estimates hold:

||(∇ω × n)|P| − P(|∇ω × n|)||22,Ω ≤ ε2Ē0,(4.6)

||∇n||2,Ω ≤ Ē0

K2 + K4
,(4.7)

||n ×∇× n + P||22,Ω ≤ Ē0

min{K2,K3}
,(4.8)

||n · ∇ × n + τ ||22,Ω ≤ Ē0

min{K2,K3}
,(4.9)

∥∥∥∥∥
∣∣∣∣1q∇ω − n

∣∣∣∣
2

− |C⊥|
2Dq2

∥∥∥∥∥
2

2,Ω

≤ Ē0

Dq2
,(4.10)

∥∥∥∥1

q
∇ω · n − 1

∥∥∥∥
2

2,Ω

≤ Ē0

Ca
,(4.11)

||∇P||2,Ω ≤ Ē0

B
.(4.12)

Next, we proceed to take limits in (4.6)–(4.11). We use the following representa-
tion for n:

n = sin θ cosφi + sin θ sinφj + cos θk,



ELECTROSTATIC EFFECTS IN LIQUID CRYSTALS 2123

where φ = φ(x, y, z) and θ = θ(x, y, z) are functions resulting from energy minimiza-
tion.

Theorem 4.2. Suppose that the hypotheses of the previous theorem hold. Then
the energy minimizing fields (n,P, ω) satisfy the following limiting relations:

lim
Ca→∞

∇ω · n = q,(4.13)

lim
|C⊥|→∞

|∇ω| = q

√
|C⊥|
2Dq2

+ 1,(4.14)

lim
ε→0

P = cotατ
k × n

|k × n| , cotα =

√
2Dq2

|C⊥|
,(4.15)

lim
K→∞

(n ×∇× n + P) = 0,(4.16)

lim
K→∞

(n · ∇ × n + τ) = 0,(4.17)

where K = min{K2,K3}. Furthermore, we get

lim
|C⊥|→∞

ω =

(
q

√
|C⊥|
2Dq2

+ 1

)
z,(4.18)

lim
K→∞

n = sinα cos
τ

a2
zi + sinα sin

τ

a2
zj + cosαk.(4.19)

Proof. From the geometry of the domain and the boundary conditions, it follows
that ∇ω = |∇ω|k, which together with (4.10) and (4.11) yields (4.13), (4.14), and
(4.18). It now follows from (4.13) and (4.14) that θ = α is the constant given by (4.2).
These together with (4.6) yield P = |P| k×n

|k×n| . Combining this equation with (4.16)

and (4.17) gives φ = τ
a2 z in (4.19). This also yields (4.15).

Note that from the property limD→∞(ω−q∇·n) = 0 it follows that the limiting
director field has zero divergence, in agreement with (4.19).

4.2. Ferroelectric energy minimizers. In the previous theorem, the elastic-
ity constants K2 and K3 become unbounded with respect to the parameters of the
polarization contribution to the energy. We will show that the ferroelectric configu-
rations,

n = ± sinαj + cosαk, P = ±P0i, P0 =

√
|a0|
b0

,(4.20)

with α the constant in (4.15), are limits of minimizers at the limit of K1 large, and
when the polar coefficients ωp and ωr dominate over the twist and bending elasticity
constants K2 and K3. This situation occurs at temperatures lower than those of the
helical regime. The role of the surface energy is also relevant in such a case.

Next, we take the following set of admissible fields to determine the ferroelectric
limits:

n = ± sinαj + cosαk, P = ±

√
|a0|
b0

i,(4.21)
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with 0 < α < π
2 , and ω as in (4.15) and (4.18), respectively. We find that the energy

E1 corresponding to such fields is

E1 = L2

[(
K2τ

2 +
|a0|
b0

K3

)
d + 2

(
ωp + ωr + ωn −

(
|a0|
b0

)2

ωr − α0ωn sin2 α

)]
.

(4.22)

Replacing E0 with E1, the estimates of Theorem 4.1 hold. These allow us to establish
the following asymptotic limits of minimizers:

∇ · n = 0 as K1 → ∞,(4.23)

|∇ω| = k as |C⊥| → ∞.(4.24)

Letting D → ∞ and taking (4.23) into account, it follows that ω = 0. This together
with the boundary conditions on ∂Ω gives ∇ω = (0, 0, k), with k as in (4.1). Moreover,

letting Ca → ∞ gives cosα = q
k , and P =

√
|a0|
b0

k×n
|k×n| results by letting ε → 0 and

using the expression for ∇ω. By letting ωr → ∞, we get φ = ±π
2 .

We finally make the following remarks:
1. The limiting fields (n,P, ω) given by (4.18) and (4.20) satisfy the Euler–

Lagrange equations with the prescribed boundary conditions.
2. Likewise, (n,P, ω) as in (4.18) and (4.19) solve the Euler–Lagrange equations

at the limit |C⊥| → ∞.

5. Conclusions. We studied modeling of ferroelectric smectic C* liquid crystals
and investigated nonlocal electrostatic effects. We discussed how the proposed model
is consistent with well-known approaches found in the physics literature. We proved
existence of minimizers for the total energy by means of direct methods of calculus of
variations, within the class of fields satisfying physically relevant boundary conditions,
with respect to the layering configuration. We presented examples to illustrate the
relationship between domain shape and reduction of the nonlocal energy. For instance,
we argued that a thin filament may become helical in order to lower the nonlocal
energy. We also studied the asymptotic properties of the energy minimizers as the
parameters of the energy become unbounded upon the temperature reaching transition
values from smectic C* to lower temperature ferroelectric limits.
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[17] A. Jákli, D. Krüerke, and G. G. Nair, Liquid crystal fibers of bent-core molecules, Phys.
Rev. E, 67 (2003), paper 051702.

[18] S. Joo and D. Phillips, The phase transitions between chiral nematic, smectic A*, and C*
liquid crystals, Comm. Math. Phys., to appear.

[19] A. G. Khachaturyan, Development of helical cholesteric structure in a nematic liquid crystal
due to the dipole-dipole interaction, J. Phys. Chem. Solids, 36 (1975), pp. 1055–1061.

[20] X. Y. Kong and Z. L. Wang, Polar-surface dominated ZnO nanobelts and the electrostatic
energy induced nanohelixes, nanosprings, and nanospirals, Appl. Phys. Lett., 84 (2004),
pp. 975–977.

[21] S. T. Lagerwall, Ferroelectric and Antiferroelectric Liquid Crystals, Wiley-VCH, New York,
1999.

[22] L. D. Landau, E. M. Lifshitz, and L. P. Pitaevskii, Electrodynamics of Continuous Media,
Butterworth-Heinemann, Oxford, UK, 1998.

[23] L. Longa, D. Monselesan, and H. R. Trebin, An extension of the Landau-Ginzburg-
de Gennes theory for liquid crystals, Liq. Cryst., 2 (1987), pp. 769–796.

[24] I. Lukyanchuk, Phase transition between the cholesteric and twist grain boundary C phases,
Phys. Rev. E, 57 (1998), pp. 574–581.

[25] R. B. Meyer, L. Liebert, L. Strzelecki, and P. Keller, Ferroelectric liquid crystals, J.
Physique Lettres, 36 (1975), pp. L69–L71.
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A MUMFORD–SHAH LEVEL-SET APPROACH FOR GEOMETRIC
IMAGE REGISTRATION∗

MARC DROSKE† AND WOLFGANG RING‡

Abstract. A new method for nonrigid registration of multimodal images is presented. Due to
the large interdependence of segmentation and registration, the approach is based on simultaneous
segmentation and edge alignment. The two processes are directly coupled and thus benefit from
using complementary information of the entire underlying data set. The approach is formulated as
a bivariate, variational, free discontinuity problem in the Mumford–Shah framework. A geometric
variable describing the contour set and a functional variable which represents the underlying defor-
mation are simultaneously identified. The contour set is represented by a level-set function. We
derive a regularized gradient flow and describe an efficient numerical implementation using finite
element discretization and multigrid techniques. Finally, we illustrate the method in several applica-
tions, such as multimodal intrapatient registration and reconstruction by registration to a reference
object.

Key words. image registration, active contours, level-set method, shape sensitivity analysis,
Mumford–Shah functional
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1. Introduction. We consider the problem of image registration for two given
images which show different or complementary features of the same physical reality.
Typical situations occur if the two images are obtained using different medical sensor-
ing methods applied to the same patient or if the images show the same anatomical
location but are obtained from different patients or from the same patient but at
different times. Generally speaking, the aim of image registration is the assignment
of complementary anatomical, physical, biological, functional, or other information
obtained by different imaging devices to one geometric reference model. To do this,
it is necessary to identify corresponding spatial points in the given image domains.
The spatial equivalence of points in different images is expressed via a transformation
map from one image domain into the other.

The need to register two data sets occurs in various applications, especially in
medicine, geophysics, and computer vision. In the last two decades there has been a
steep increase in the variety as well as the quality of modern (especially medical) imag-
ing technology, thus making a large amount of information, either anatomical (e.g.,
computed tomography (CT), magnetic resonance imaging (MRI), ultrasound, densi-
tometry computed tomography (DXA)) or functional (e.g., functional MRI, positron
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emission tomography (PET, SPECT)), available for routine clinical use. The abil-
ity to combine complementary information provided by different imaging devices has
proved to be of significant benefit to the clinician. For instance, in radiotherapy treat-
ment planning, CT is mainly used, while MRI allows a detailed analysis of the tumor
tissue. For all forms of medical treatment where two or more imaging techniques
are applied to examine a patient, or where images of different patients are compared
and where accurate knowledge about the location of the relevant objects is necessary,
registration is an unavoidable task. One of the most important applications of regis-
tration techniques is in surgery planning guided by complementary imaging devices.
In Figure 3 two different images of the same patient using different types of MRI
scanners are shown. The obtained spatial correspondence (the transformation map)
between the two images is shown below using a nonlinearly distorted mesh as visual-
ization of the transformation. We mention already at this point that we shall present
an approach where features that are present in both images and have a certain type
of geometrical similarity are mapped onto each other. Thus, reference and template
images which have very different intensity distributions but have certain geometrical
features in common can be registered. An example using synthetic multimodal im-
ages (i.e., images which contain very different information but share certain geometric
properties) is presented in Figure 1.

The transformation (the spatial correspondence of like points) itself can also pro-
vide important additional information. A transformation between subsequent images
obtained at a very low temporal resolution can give insight into growth processes of
characteristic objects found in the image. In this context, the variations between sub-
sequent image acquisitions may be substantial, leading to difficulties for differential
approaches such as optical-flow estimation. Furthermore, the resulting transformation
of a registration to a healthy reference dataset may be useful in measuring the extent
of the pathology of the individual patient. Scale-space and multiresolution meth-
ods have become a widely used methodology for variational registration approaches
[21, 35, 36, 46], and a wide range of regularization techniques and similarity measures
are known [26, 39, 43, 45, 47, 62].

Depending on the nature of the underlying input data, the richness of the space
of possible deformations plays an important role. If it is a priori known that the given
multichannel data can be registered by a rigid transformation, the unknowns within
the representation are only the offset and the angle of the rigid transformation. In
that case, regularity of the deformation is automatically guaranteed by the choice of
the space of admissible transformations. In many applications, especially interpatient-
registration, it is, however, of crucial importance to choose a space of transformations
with larger flexibility in order to be able to resolve local variations in fine geometrical
details, offering the possibility of a comprehensive analysis of the deformation field. In
case of medical time series analysis of a single patient, growth processes of pathological
objects such as tumors are of significant interest for diagnosis as well as surgery
planning. In what follows, the computational resolution of the discretization of the
deformation will be the same as the resolution of the input images, thus allowing a
registration of details down to pixel accuracy. However, we want to point out that
different (coarser) spaces of deformations may be incorporated in our approach in a
straightforward manner.

The paper is organized as follows. In section 2 the approach of coupling registra-
tion to segmentation by the Mumford–Shah functional is formulated as a bivariate,
variational, free discontinuity problem. Furthermore, different regularization tech-
niques are discussed. In section 3 we present the necessary shape sensitivity analysis
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using the conceptional framework of shape derivatives. This eventually leads to the
formulation of a gradient flow equation for the given cost functional. To stabilize the
shape gradient method, we propose regularizations for both the descent directions
for the shape variable and the functional variable. This is done in section 4. In
section 5 we will describe the actual algorithm used to compute stationary points of
the variational formulation proposed in section 2. Composite finite elements (CFEs)
as introduced by Hackbusch and Sauter [34] (see also [55, 61]) provide an elegant
approach for the discretization of PDEs on complicated domains and, further, allow
one to circumvent numerical difficulties for problems with discontinuous coefficients,
especially in the context of multigrid solvers. Since we will treat the variational for-
mulation as a shape optimization problem with contours evolving according to the
shape analysis, and—as it turns out—certain elliptic PDEs have to be solved in every
gradient step, we chose the CFE framework to incorporate efficient multigrid solvers.
This is described briefly in section 6. Finally, computational results are presented in
section 7, and a final conclusion is drawn in section 8.

2. Problem formulation. It is the aim of this paper to find a registration
between two given images based on a matching of the edges in the images. In their
pioneering paper, Mumford and Shah [49] introduced the following energy functional:

EMS(u,Γ) = μ

∫
Ω

(u− ud)
2 dx +

∫
Ω\Γ

|∇u|2 dx + αHn−1(Γ),(2.1)

where ud is a given image defined on an open bounded set Ω ⊂ Rn and u is aimed to
be an approximation of ud which should be smooth on Ω \ Γ, where Γ is the set of
potential edges (i.e., subsets of Hausdorff dimension n − 1 located at singularities of
the given image). Here Hn−1 denotes the (n−1)-dimensional Hausdorff measure, and
μ, α are positive weights, which control the balance between data fit, regularization of
the reconstruction u on Ω\Γ, and the length of the contour Γ, respectively. Existence
theory for (2.1) was established after De Giorgi, Carriero, and Leaci [27] proposed
considering the minimization of an equivalent energy depending on u only. In this
formulation, the energy given by an integral over the entire domain Ω and Γ is repre-
sented by Su, the complement set of Lebesgue points of u, i.e., the measure theoretic
discontinuity set of u. It can be proved (cf. Ambrosio, Fusco, Pallara [2, sect. 7.2,
pp. 347–354], Braides [9, sect. 2.4, pp. 36–38]) using compactness in SBV (Ω) and
lower-semicontinuity theorems, that—under mild conditions—there exists a solution
u ∈ SBV (Ω) with Hn−1(Su) < ∞. Here SBV (Ω) denotes the space of special func-
tions of bounded variation, i.e., functions for which Su is a σ-finite (n−1)-dimensional
Borel set. From the numerical point of view, discretizing the singularity set poses a
serious problem. Various approximations of the Mumford–Shah functional have been
introduced and Γ-convergence results have been proved (cf., e.g., [3, 4, 7, 54]). Am-
brosio and Tortorelli [4], for example, proposed a phase-field type regularization and
introduced an auxiliary variable which itself is regularized by an elliptic functional.
Here, we refer to Feng and Prohl [32] for the numerical analysis of the phase-field ap-
proximation. Bourdin and Chambolle [8] proved Γ-convergence of the corresponding
discrete finite element schemes.

The Mumford–Shah model has turned out to be very versatile and has been ex-
tended and applied in various ways [15, 23, 24, 25, 48, 58]. Esedoglu and Shen [30]
suggested an inpainting method based on the Mumford–Shah idea. Further modifica-
tions have been made concerning the data-fit term in the Mumford–Shah functional,
where the simple L2 distance has been replaced by more elaborate data-fit criteria
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[58]. Recently Unal and Slabaugh [59] have introduced a joint regularization and seg-
mentation algorithm using a piecewise constant Mumford–Shah model in the level-set
context which is similar to our approach.

2.1. A Mumford–Shah functional for simultaneous segmentation and
registration. In this paper we shall use a Mumford–Shah idea for simultaneously
finding the singularity sets in two given images and mapping the respective sets (and
with them the two images) onto each other. We do not use a reformulation of the
Mumford–Shah functional in the sense of De Giorgi, Carriero, and Leaci [27]. Instead,
we will discretize the discontinuity set Γ directly by a level-set function. For the
purpose of segmentation and registration we can confine to simple interface sets, which
can be elegantly described and propagated via the level-set approach of Osher and
Sethian [53]. See also the monographs [56, 51] and the collection [52] for comprehensive
introductions to level-set techniques. Level-set methods have been successfully applied
in various geometric segmentation models [18, 12, 13, 41, 58, 44, 51, 60]. In [37]
Hintermüller and Ring have derived a Newton-type regularized optimization algorithm
for minimizing the Mumford–Shah functional by representing Γ by a level-set function.

In our approach to the segmentation-registration problem, the edge sets in the
images are found as minimizers of Mumford–Shah functionals and are mapped onto
each other by the registration mapping Φ. To be more precise, the edge sets are
found in such a way that a level-set encoded contour describes the edge set in the
reference image, and, simultaneously, a transformation of the contour by a regular
deformation matches the edge set of the template image. This is demonstrated in
Figure 1, where only a small part of the edges actually overlap. We emphasize that
this viewpoint is different from splitting this process into successively identifying the
edge sets first and determining the corresponding deformation which maps these sets
onto each other afterwards.

Naturally, the strategy described above would determine the registration map only
on the edge set. Therefore, an energy term acting on Φ is added to the Mumford–Shah
energy to ensure uniqueness for the registration mapping away from the edge set. As
mentioned above, we choose the formulation of the Mumford–Shah energy which is
defined for independent geometric and functional variables as described, e.g., in [5,
section 4.2.1]. In this formulation, the problem of minimizing the Mumford–Shah
functional can be treated as a shape optimization problem and solved numerically
using level-set techniques [16, 18, 17, 37]. More precisely, we consider the functional

(2.2) EMS(Γ,Φ, R, T ) =
1

2

∫
D

|R−R0|2 dx +
μ

2

∫
D\Γ

|∇R|2 dx

+
1

2

∫
D

|T − T0|2 dx +
μ

2

∫
D\ΓΦ

|∇T |2 dx + αHN−1(Γ)

(the additional regularization term on Φ is omitted for the moment). Here D ⊂ R
n

is the domain of definition of the images with n = 2, 3, the data T0 and R0 are
the given template and reference images, Γ ⊂ D is (an approximation of) the edge
set of the given image R0, and ΓΦ = Φ(Γ) is the transformed edge set Γ under the
transformation Φ. Strictly speaking, the term “edge sets of the data images” does
not make sense, since the input images only have to be in L2. When using this term
we mean (approximations of) the measure theoretic discontinuity sets of the SBV
functions R and T which approximate R0 and T0 in the Mumford–Shah sense. In the
following we make the simplifying assumption that Γ = ∂Ω for an open set Ω with
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Fig. 1. Multimodal complementary registration. The two images in the left column of the top
figure show the initial contour Γ in the images R and T , where the initial deformation is the identity.
In the right column the resulting contours, coupled by the deformation, are shown after 75 steps of
the regularized gradient descent. The corresponding transformation is shown in the bottom figure
using a distorted mesh for visualization.

Ω ⊂ D. This assumption is justified if the edge sets in the data are related to object
boundaries as is usually the case in medical data sets.

Let us point out here that different approaches can be used to drive the contour
Γ towards the significant features of the images. A geodesic active contour model as
proposed by Caselles, Kimmel, and Sapiro [14], would, e.g., lead to a coupled energy
of the form

Eac(Γ,Φ) =

∫
Γ

gRdHn−1 + ν

∫
Ω

gR dx +

∫
ΓΦ

gT dHn−1 + ν

∫
Ω

gT dx,(2.3)

where gR and gT are suitable edge detectors for the images R and T . A common
choice is, for example, gI(x) = 1

1+s|∇I|2 , s > 0, with I = R or I = T . The idea

of coupling segmentation with registration has also been proposed by Kapur, Yezzi,
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and Zöllei [40]. So far the described methods depend on the matching of contours.
Yet another approach for the registration of images is the matching of geometrical
descriptors as described in [29]. The identification and subsequent matching of geo-
metrical descriptors other than edges within a Mumford–Shah framework, however,
have not yet been considered.

As already pointed out, the transformation Φ is not uniquely determined by the
functional (2.2). Thus, an additional regularization term Ereg is necessary. Writing
the transformation Φ = id + d with a displacement vector field d : D → R

2, we use
d as the optimization variable instead of Φ. We set

E(Γ,d, R, T ) = EMS(Γ,d, R, T ) + νEreg(d).(2.4)

In the following we will use Φ and d synonymously to denote the transformation.

There are a wide range of different choices of regularization energies in the liter-
ature. Apart from adding a Dirichlet integral, which corresponds to a regularization
as proposed by Horn and Schunk in [38], and anisotropic inhomogeneous regulariza-
tions introduced by Nagel and Enkelmann in [50]—both originally appearing in the
optical-flow context—linearized elastic regularizations are widely used. In [29] Droske
and Rumpf proposed a nonlinear elastic polyconvex regularization energy [19] of the
form

Ereg(d) =

∫
Ω

α‖∇d‖p + β‖Cof ∇d‖q + γ(detd) dx,(2.5)

where γ(s) → ∞ for s → 0,∞. Here Cof A ∈ Rn×n denotes the cofactor matrix of
a matrix A ∈ Rn×n. This approach allows one to utilize injectivity techniques for
elasticity introduced by Ball [6] in order to ensure that the resulting deformation is a
homeomorphism. In the context of aligning feature sets this is particularly important,
since we want the transformed contour ΓΦ to have the same topology as Γ. An
extensive discussion of appropriation regularization terms penalizing the departure
from rigidity in the context of image registration can be found in Keeling and Ring
[42].

At this point of the investigation, the study of different regularization strategies
is not our major objective. For the sake of simplicity we will use the Dirichlet integral

Ereg(d) = ‖d‖2
H1

0(D) =

∫
D

‖∇d‖2 dx(2.6)

as regularization term for the remainder of this paper.

2.2. The reduced functional. The functional (2.4) is quadratic in the variables
R and T . It is therefore possible to minimize E with respect to R and T for fixed Γ
and d by solving a linear optimality system. With this, we can consider the reduced
functional

Ê(Γ,d) = E(Γ,d, R(Γ), T (Γ,d)),(2.7)

where R(Γ) and T (Γ,d) denote the minimizers of (2.4) for fixed Γ and d with respect
to R and T . It is obvious that R(Γ) depends only on Γ, whereas T (Γ,d) depends
also on d via the domain of integration D \ Γd = D \ ΓΦ(d) in the last term in (2.2).
If we specify the functional spaces for the variables R and T as R ∈ H1(D \ Γ) and
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T ∈ H1(D \ Γd), we find R(Γ) and T (Γ,d) as solutions to the system of optimality
conditions 〈

∂E

∂R
,ϕ

〉
(H1(D\Γ))∗,H1(D\Γ)

= 0 for all ϕ ∈ H1(D \ Γ),

〈
∂E

∂T
, ψ

〉
(H1(D\Γd))∗,H1(D\Γd)

= 0 for all ψ ∈ H1(D \ Γd).

(2.8)

This yields

μ

∫
D\Γ

〈∇R(Γ),∇ϕ〉dx +

∫
D\Γ

R(Γ)ϕdx =

∫
D\Γ

R0 ϕdx(2.9)

for all ϕ ∈ H1(D \ Γ) and

μ

∫
D\Γd

〈∇T (Γ,d),∇ψ〉dx +

∫
D\Γd

T (Γ,d)ψ dx =

∫
D\Γd

T0 ψ dx(2.10)

for all ψ ∈ H1(D \ Γd).

3. Sensitivity analysis. In this section we derive the expressions for the deriva-

tives 〈∂Ê∂d , δ〉 and dÊ ((Γ,d), F ). The latter expression denotes the Eulerian derivative

of the functional Ê in the direction of a perturbation vector field of the form F nΓ,
where nΓ is the exterior unit normal vector field to Γ. We assume that Γ = ∂Ω ⊂ D,
and we specify nΓ as being the exterior unit normal vector field with respect to Ω.
See [57, 28] for the concepts of classical shape sensitivity analysis and [37, Appendix
A.1] for a more level-set based derivation of the classical results. We refer also to [11],
where a framework is presented which includes the concept of topological derivative
in the level-set methodology.

3.1. Basic shape derivative formulas. Let us give a brief overview of the
calculus of variations for energies which depend on a geometric variable such as a
subdomain Ω of a fixed domain D or a submanifold Γ of D. For a smooth vector field

V : D → R

n with Ω ⊂ D let us first consider the initial value problem

X ′(t) = 
V (X(t)),(3.1)

X(0) = X0

for X0 ∈ D. The flow Tt : Ω → R
n (with respect to 
V ) is then defined as Tt(x) = X(t),

where X(t) is the solution of (3.1) with X0 = x. For a functional E : E → R and a

fixed perturbation vectorfield 
V , the Eulerian derivative is defined by

dE(Γ; 
V ) = lim
t↘0

E(Tt(Γ)) − E(Γ)

t
(3.2)

provided that the limit exists. Here E ⊂ 2D denotes a suitable set of geometrical
variables. The functional E is said to be shape-differentiable at Γ if the limit exists
for all 
V ∈ B and if dE(Γ) ∈ B′, i.e., dE(Γ) is a bounded linear functional on B,
where B is a Banach space of perturbation vector fields. The analogous definitions
apply to functions E(Ω) depending on open sets, not on submanifolds. We will need
the following result [57, sect. 2.33, p. 115].
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Lemma 1. Let Γ be a C2-hypersurface, and let f ∈ H2
loc(R

n). Then the functional

E(Γ) =

∫
Γ

f dHN−1

is shape-differentiable for any perturbation 
V ∈ C1
0(Rn), and the shape derivative is

given by

dE(Γ; 
V ) =

∫
Γ

(
∇f · 
V + f divΓ


V
)

dHN−1(3.3)

=

∫
Γ

(
∂f

∂nΓ
+ f κ

)

V · nΓ dHN−1,(3.4)

where nΓ denotes the normal to the interface Γ and κ is the additive curvature of Γ.
Definition 1 (material derivative). We consider a family of (sufficiently smooth)

open sets F and suppose that we are given f(Ω) ∈ B(Ω) for each Ω ∈ F , where
B(Ω) is some Banach space of functions on Ω. Let us fix Ω0 ∈ F and suppose that

V ∈ C1

0(Rn,Rn) is given. We set Ωt = Tt(Ω0) and assume that f(Ωt) ∈ B(Ωt). The
limit

ḟ(Ω; 
V ) = lim
t↘0

f(Ωt) ◦ Tt − f(Ω0)

t

is called the (weak) material derivative if it exists in the strong (weak) topology on
B(Ω0).

Definition 2 (shape derivative). If the weak material derivative and the expres-

sion ∇f(Ω) · 
V exist in B(Ω), then we set

f ′(Ω; 
V ) = ḟ(Ω; 
V ) − 〈∇f(Ω), 
V 〉

and call it the shape derivative of f at Ω in direction V .
In the next section we will also need the following result [57, sect. 2.31, p. 112].
Proposition 1. Let f(Ω) be given such that the weak L1-material derivative

ḟ(Ω; 
V ) and the shape derivative f ′(Ω; 
V ) ∈ L1(Ω) exist. Then, the functional

E(Ω) =

∫
Ω

f(Ω,x) dx

is shape-differentiable, and the derivative is given by

dE(Ω; 
V ) =

∫
Ω

f ′(Ω; 
V ) dx +

∫
Γ

f 〈
V ,nΓ〉dHN−1.(3.5)

It can be shown (see [28, sect. 3.3, p. 348]) that the various concepts of (first)
derivatives with respect to a geometric variable depend on the direction of perturba-
tion V only via its projection

F = 〈
V ,nΓ〉(3.6)

onto the normal direction to Γ. We therefore subsequently write dE(Γ;F ) instead of

dE(Γ; 
V ) and likewise for the other types of derivatives.



A MUMFORD–SHAH APPROACH FOR IMAGE REGISTRATION 2135

3.2. The first variation of the energy. In the following, we frequently use
the coordinate transformation x �→ y = Φ(x) = x+d(x) to switch between represen-
tations on the transformed and the original configurations. Finding first variations
of the functional (2.4) with respect to the geometry Γ requires differentiation with
respect to Γ of functionals

∫
Ω
g dx and

∫
Φ(Ω)

hdx, respectively, where ∂Ω ⊂ Γ. For

integrals of the first type, the results of section 3 directly apply. Suppose that Tt(x)

is a flow map which defines a perturbation of Γ with corresponding vector field 
V .
Then the perturbation of ΓΦ is given by the flow map St(y) = Φ(Tt(Φ

−1(y))). The

corresponding perturbation vector field has the form 
W (y) = (∇Φ·
V )(Φ−1(y)). With
this, we can apply the results of section 3 to integrals defined in the transformed con-
figuration. For later use, we recall the following transformation formulas [20, sect. 1.7,
pp. 37–41]:

nΓΦ(y) =
Cof ∇Φ(x) · nΓ(x)

‖Cof ∇Φ(x) · nΓ(x)‖ ,(3.7a)

(3.7b) FΦ := 〈 
W (y),nΓΦ(y)〉 =

det∇Φ(x)

‖Cof ∇Φ(x) · nΓ(x)‖ 〈
V (x),nΓ(x)〉 =
det∇Φ(x)

‖Cof ∇Φ(x) · nΓ(x)‖ F,

∫
ΓΦ

g dHN−1 =

∫
Γ

g ◦ Φ ‖Cof ∇Φ · nΓ‖ dHN−1.(3.7c)

Proposition 1 (see also [57, sect. 2.31, p. 112]) implies that

dÊ ((Γ,d);F ) =
1

2

∫
Γ

(
[[|R(Γ) −R0|2]] + μ[[|∇R(Γ)|2]]

)
F dHN−1(3.8)

+
1

2

∫
ΓΦ

(
[[|T (Γ,d) − T0|2]] | + μ[[|∇T (Γ,d)|2]]

)
FΦ dHN−1

+

〈
∂E

∂R
,R′

F

〉
(H1(D\Γ))∗,H1(D\Γ)

+

〈
∂E

∂T
, T ′

FΦ

〉
(H1(D\ΓΦ))∗,H1(D\ΓΦ)

+

∫
Γ

κF dHN−1,

where [[·]] denotes magnitudes of jump discontinuities across Γ (from inside to outside)
and across ΓΦ, respectively. As above, κ is the additive curvature of Γ, and R′

F and
T ′
FΦ are the shape derivatives of R and T in the direction of the perturbation given

by F and FΦ, respectively.
We give a brief explanation of the terms occurring in (3.8). The integrals which

compose the reduced cost functional (2.7) can be written as sums of integrals over the
individual connected components Ωi of D \ Γ. Thus, the shape sensitivity analysis
of (2.7) can be performed by calculating the sensitivities of integrals over each Ωi

and adding up the results. For each component Ωi of D \ Γ, boundary integrals

of the form
∫
∂Ωi

f 〈
V ,n〉 dHn−1 with appropriate f ’s occur in the respective shape
sensitivities due to Proposition 1. Here the vector n is the exterior normal vector
to ∂Ωi. We have ∂Ωi ⊂ Γ ∪ ∂D and Γ ∪ ∂D = ∪i∂Ωi. Thus, the sum of integrals
over ∂Ωi can be rewritten as an integral over Γ (the contributions on ∂D vanish since
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V |∂D = 0). Since each component of Γ separates two connected components Ωi and
Ωj with opposite exterior normal vectors, the jumps of the respective quantities across
Γ occur in (3.8).

It can be shown (interpreting the integrals in the weak equations (2.9) and (2.10)
as shape functionals and applying Proposition 1; see also [57, sect. 3.2 and 2.29]) that
R′

F is the solution to the inhomogeneous Neumann-type boundary value problems∫
Ω̃

(
μ〈∇R′

F ,∇ϕ〉 + R′
F ϕ

)
dx = −

∫
∂Ω̃

(
μ〈∇ΓRF ,∇Γϕ〉 + (RF −R0)ϕ)F dHN−1

on each connected component Ω̃ of D \Γ and for all ϕ ∈ H1(Ω̃). An elliptic regularity
result then shows that the solution R′

F |Ω̃ ∈ H1(Ω̃) for each connected component Ω̃
of D \Γ and hence R′

F ∈ H1(D \Γ). Analogously we obtain T ′
FΦ

∈ H1(D \ΓΦ). Here
we need to assume that the transformation Φ is sufficiently smooth. Consequently, we
can use R′

F and T ′
FΦ

as test functions in (2.8) to conclude that the terms including the
shape derivatives R′

F and T ′
FΦ

in (3.8) vanish. Transforming all expressions in (3.8)
onto the undeformed configuration (using (3.7)) and replacing Φ by id + d yields

dÊ ((Γ,d);F ) =
1

2

∫
Γ

(
[[|R(Γ) −R0|2]] + μ[[|∇R(Γ)|2]]

)
F dHN−1

+
1

2

∫
Γ

(
[[|T (Γ,d) − T0|2 ◦ (id + d)]]

+ μ [[|∇T (Γ,d)|2 ◦ (id + d)]]
)
|det(I + ∇d)|F dHN−1

+ α

∫
Γ

κF dHN−1.

(3.9)

We now consider variation with respect to the displacement d. The cost functional
depends on d via the domain of integration D \ Γd and implicitly via T (Γ,d). The
perturbation of the geometry has the form Γd+t δ = Γd + t δ(Γ) = Γd + t

(
δ ◦ (id +

d)−1(Γd)
)
. It can be shown [28, Chap. 7] that this perturbation is equivalent to a

perturbation of Γd with the velocity vector field δ ◦ (id + d)−1. We can therefore
apply the results in section 3.1 to obtain〈

∂Ê

∂d
, δ

〉
=

〈
∂E

∂T
, T ′(Γd, δ ◦ (id + d)−1

)〉
(H1(D\Γd))∗,H1(D\Γd)

+
1

2

∫
Γd

(
[[|T (Γ,d) − T0|2]] + μ[[|∇T (Γ,d)|2]]

)
· 〈δ ◦ (id + d)−1,nΓd〉 dHN−1 + ν

〈
∂Ereg

∂d
, δ

〉
.

As above, we argue that T ′(Γd, δ ◦ (id + d)−1
)
∈ H1(D \ Γd), and the first term

vanishes due to (2.8). If the regularization term (2.7) is used, the Fréchet derivative
of Ê with respect to d in direction δ reads as〈

∂Ê

∂d
, δ

〉
=

1

2

∫
Γd

(
[[|T (Γ,d) − T0|2]] + μ[[|∇T (Γ,d)|2]]

)
(3.10)

· 〈δ ◦ (id + d)−1,nΓd〉 dHN−1 + ν

∫
D

∇d : ∇δ dx,
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where “:” stands for the matrix tensor product, i.e., the scalar product corresponding
to the Frobenius norm.

We have not yet specified the function space for the displacement field d. The
natural choice corresponding to the choice of the regularization Ereg would be d ∈
H1

0(D) = H1
0 (D,Rn). For the application of shape sensitivity results, however, we

need more regularity for the transformation Γ �→ (id + d)(Γ). This issue will be
discussed later on when we define updates for the displacement d.

4. Choice of a descent direction. We now address the question of finding an
appropriate descent direction, i.e., a direction δd ∈ H1

0(D) and a scalar function Fd

defined on Γ such that〈
∂Ê

∂d
, δd

〉
< 0 and dÊ ((Γ,d);Fd) < 0.(4.1)

The descent directions δd and Fd are found by minimizing the linear approximations
over the unit spheres of appropriate function spaces in which the admissible directions
are chosen. This idea is closely related to the approach presented in [21, 22], where
the descent direction is determined with respect to a regularizing metric. In our case
the metric is the scalar product of the adequately chosen Hilbert space. We leave the
question of choice of the correct function space for Fd open for the moment and start
with finding a descent direction with respect to d. We say that δd is the direction of
steepest descent for Ê with respect to d and the metric induced by the H1

0(D)-norm
if and only if δd is a solution to the constrained optimization problem

min
δ∈H1

0(D)
‖δ‖

H1
0(D)

=1

〈
∂Ê

∂d
(Γ,d), δ

〉
.(4.2)

Note that
〈
∂Ê
∂d (Γ,d), ·

〉
defines a bounded linear functional on H1

0(D) provided that
d is smooth enough. To solve (4.2), we introduce the Lagrange function

Lf (δ, λf ) =

1

2

∫
Γd

(
[[|T (Γ,d) − T0|2]] + μ[[|∇T (Γ,d)|2]]

)
〈δ ◦ (id + d)−1,nΓd〉 dHN−1

+ ν

∫
D

∇d : ∇δ dx + λf

(∫
D

|∇δ|2 dx − 1

)
.

The optimality system for (4.2) reads as
∂Lf

∂δ (δd, λd) = 0 and
∂Lf

∂λf
(δd, λd) = 0. There-

fore, the direction of steepest descent δd is found as the solution to

(4.3)

∫
D

∇δd : ∇ξ dx = − 1

λf

(
ν

∫
D

∇d : ∇ξ dx

+
1

2

∫
Γd

(
[[|T (Γ,d) − T0|2]] + μ[[|∇T (Γ,d)|2]]

)
〈ξ ◦ (id + d)−1,nΓd〉 dHN−1

)

for all ξ ∈ H1
0(D), where the multiplier λf is chosen such that ‖δd‖H1

0(D) = 1.

Alternatively one might want to allow δd ∈ H1 instead of prescribing homo-
geneous Dirichlet conditions, which can be particularly important in case of large
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translations between the reference and the template image. Then δd is given as the
solution to

(4.4)

∫
D

(
〈δd, ξ〉 + ∇δd : ∇ξ

)
dx = − 1

λf

(
ν

∫
D

∇d : ∇ξ dx

+
1

2

∫
Γd

(
[[|T (Γ,d) − T0|2]] + μ[[|∇T (Γ,d)|2]]

)
〈ξ ◦ (id + d)−1,nΓd〉 dHN−1

)

for all ξ ∈ H1(D).
Application of the transformation rules (3.7c) and (3.7b) to the surface integral

on the right-hand side of (4.3) and (4.4) yields

1

2

∫
Γ

(
[[|T (Γ,d) − T0|2]] + μ[[|∇T (Γ,d)|2]] ◦ (id + d)

)
〈ξ,Cof ∇d · nΓ〉 dHN−1(4.5)

for these terms.
We now make a few comments concerning the regularity of the displacement d.

The update δd which solves (4.3) is a function in H1
0(D) which—in general—does

not possess much additional regularity since the source term is a distribution which
is localized on Γ, thus introducing a singularity δd along Γ. For the above shape
sensitivity results to hold, we require that the displacement be smooth in every step.
To circumvent this difficulty, we can replace δd by a smooth approximation δεd for
the actual update of the transformation. If the approximation is close enough in
the H1

0(D)-norm, the descent property (4.1) will still be satisfied and the theoretical
arguments are justified. In the numerical realization it turns out that smoothing of
the transformation is not necessary.

To find a descent direction for the geometrical variable Γ, we first have to specify
the function space and the corresponding metric for the update direction Fd. By
choosing the update direction δd ∈ H1

0(D), the movement of the transformed geome-
try Γd �→ Γd+tδd corresponds to a movement in normal direction with speed function
given by

Fδd
= 〈δd,nΓd〉 ∈ H

1
2 (Γd).

It is therefore natural to choose the descent direction F also with respect to the H
1
2 -

norm on Γ. This choice should give a good balance between the descents achieved by
moving the geometrical variable Γ and the functional variable d, respectively. More
precisely, we choose the descent direction Fd as the solution to the problem

min
F∈H

1
2 (Γ)

‖F‖
H

1
2 (Γ)

=1

dE
(
(Γ,d), F

)
.(4.6)

We introduce again a Lagrange function

Lg(F, λg) = dÊ ((Γ,d);F ) + λg

(
‖F‖2

H
1
2 (Γ)

− 1

)
.

The optimality system for Fd then has the form

(Fd, G)
H

1
2 (Γ)

= − 1

λg
dÊ ((Γ,d);G)(4.7)
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for all G ∈ H
1
2 (Γ). To evaluate the inner product (·, ·)

H
1
2 (Γ)

we consider the boundary

value problem

−Δv + v = 0 on Ω,

∂v

∂n

∣∣∣
Γ

= H ∈ H− 1
2 (Γ).

(4.8)

Here Ω ⊂ D is chosen such that Γ = ∂Ω. In the level-set context below, Ω can be
chosen as the set of all points with negative function values of the level-set function.
The weak formulation for (4.8) is given by∫

Ω

(
〈∇v,∇ϕ〉 + v ϕ

)
dx =

〈
H,ϕ|Γ

〉
H− 1

2 (Γ),H
1
2 (Γ)

(4.9)

for all ϕ ∈ H1(Ω). We define the Neumann-to-Dirichlet map for the operator −Δ +

id on Ω as the linear operator N : H− 1
2 (Γ) → H

1
2 (Γ), which maps H in (4.8) to

the Dirichlet trace v|Γ of the solution to (4.8). The operator N is invertible with
N−1 given by the composition of the solution operator of the Dirichlet problem with
inhomogeneous boundary conditions and the Neumann trace operator. By the closed
graph theorem, N−1 is bounded; hence N constitutes an isomorphism between the
spaces H− 1

2 (Γ) and H
1
2 (Γ). An inner product on H

1
2 (Γ) can be defined as

(F,G)
H

1
2 (Γ)

= 〈N−1F,G〉
H− 1

2 (Γ),H
1
2 (Γ)

.

With this, we can write (4.7) as

〈N−1Fd, G〉
H− 1

2 (Γ),H
1
2 (Γ)

= − 1

λg
dÊ ((Γ,d);G)

for all G ∈ H
1
2 (Γ). If we use (3.9), we obtain

Fd = − 1

λg
NFg with

Fg =
1

2

(
[[|R(Γ) −R0|2]] + μ[[|∇R(Γ)|2]]

+
(
[[|T (Γ,d) − T0|2 ◦ (id + d)]] + μ[[|∇T (Γ,d)|2 ◦ (id + d)]]

)
|det(I + ∇d)|

)
+ ακ

(4.10)

on Γ.

5. Description of the algorithm. Let us now assemble all the discussed main
building blocks into a regularized shape gradient descent algorithm within the level-set
framework:
Step 1 Choose an initial level-set function u0, choose an initial transformation d0.

Set uc = u0, dc = d0.
Step 2 For the current level-set function uc set Ω = {x ∈ D : uc(x) < 0}, Γ = {x ∈

D : uc(x) = 0}. Solve (2.9) and (2.10) for R and T , respectively, for the
current Γ and dc.

Step 3 Evaluate the expression Fg in (4.10).
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Step 4 Solve the elliptic equation (4.8) with Neumann data given by Fg. Evaluate
the Dirichlet trace to get Fd on Γ.

Step 5 Extend Fd to a function F ext
d which is defined on a narrow band around Γ.

Step 6 Solve (4.3) for δd.
Step 7 Solve the level-set equation

ut + F ext
d |∇u| = 0 with u(·, 0) = uc.

Set the new uc = u(·, τ). Set dc = dc +τδd. Choose the step size τ according
to a line search procedure.

Step 8 Stopping criterion. Else go to Step 2.
The finite element approximations of the functions R and T and the auxiliary

variable v in (4.9) on the irregular domains D \ Γ, D \ Γd, and Ω are done using
composite finite elements (cf. [34]). The transformation vector field d is discretized
using standard finite elements.

5.1. Step 2. Equations (2.9) and (2.10) are solved using CFEs for the solution
of the second order elliptic equations on the variable and irregular domains D \Γ and
D\Γd. The CFE code takes as input the function values of a level-set function, which
defines the variable geometry, on a rectangular grid. For D \ Γ the level-set function
is given by uc. For the transformed geometry D \ Γd a level-set function is given by
ud
c = uc ◦ (id + d)−1. We introduce a triangulation T on D and approximate d by a

piecewise affine transformation on T .

5.2. Step 3. The data Fg are processed further in Step 4 as Neumann boundary
data in (4.8). It follows from (4.9) that the data are used in the form

∫
Γ
Fg ϕn dHN−1

for all finite element basis functions ϕn. Hence, it is useful to determine the values of
Fg on the intersection points of the rectangular finite element grid with Γ.

In Fg the jumps Ri−Re and ∇Ri−∇Re occur, where Ri (interior) is the solution
to (2.9) on Ω and Re (exterior) is the solution to (2.9) on D \Ω. We get the function
values for Ri and Re at the intersection points in a straightforward way from the
respective finite element representations.

5.3. Step 4. In order to calculate Fd in (4.10), we solve

〈∇φCFE
i ,∇φCFE

j 〉L2(Ω1)F̄d,i + 〈φCFE
i , φCFE

j 〉L2(Ω1)F̄d,i = − 1

λg
〈Fg, φi〉L2(∂Ω1),

where φCFE
i denotes the basis functions of the finite element space (cf. section 6), and

F̄d,i denotes the ith component of the vector F̄d, i.e., the coefficient vector of Fd with
respect to the chosen basis.

5.4. Step 5. We now extend Fd given from the discrete contour Γh to a function
F ext
d defined on a neighborhood of Γh by solving the following transport equation:

〈∇F ext
d ,∇dΓ〉 = 0 on Ω and F ext

d = Fd on Γ.(5.1)

Here dΓ denotes the signed distance function to Γ. Note that dΓ and F ext
d can be

computed simultaneously by a modified fast marching method for solving the eikonal
equation |∇d| = 1 (cf. [1] for a description of the algorithm).

5.5. Step 7. The discretization of the level-set equation

∂tu + F ext
d |∇u| = 0 on Ω(5.2)

is carried out using an explicit upwind scheme. In our computations we have applied
a third order accurate ENO-scheme (cf. [51, sect. 3.4, p. 33]).
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6. Composite finite elements and multigrid. In this section we will briefly
describe the spatial discretization of the H1 function spaces on Ωi, which are divided
by the contour Γ, i.e., the zero level-set of u. Furthermore, we outline a multigrid
method for the solution of (2.9), (2.10), (4.3), and (4.9). We use CFEs introduced
by Hackbusch and Sauter [34]. Instead of resolving the Ωi using a retriangulation
or local adaptive refinement, we confine ourselves to a uniform quadrilateral (resp.,

hexahedral) grid T and define the triangulations Ti ⊂ T for Ωi with Ωi ⊆
⋃

T∈Ti
T

by the following overlap condition:

T ∈ Ti ⇐⇒ T ∈ T , T ∩ Ωi �= ∅.(6.1)

Let us denote by Vh(ΩT ) the usual finite element space given by the condition
that for U ∈ Vh(ΩT ), U

∣∣
T

is a multilinear function for each T ∈ T . The corresponding
CFE space is then given by the restriction of the functions in Vh(ΩTi

) to the domain
Ωi, i.e.,

V CFE
h (ΩTi) := {U |Ωi |U ∈ Vh(ΩTi

)}.(6.2)

Hence, a basis (ϕCFE
i )i of V CFE

h is given by ϕCFE
i := ϕi

∣∣
ΩTi

, where (ϕi)i denotes a

basis of the space Vh(ΩTi).
For the assembling of the mass matrix Mi = (

∫
Ωi

ϕCFE
i ϕCFE

j dx)ij and stiffness

matrix Li = (
∫

Ωi
∇ϕCFE

i ∇ϕCFE
j dx)ij we need to apply quadrature rules for functions

on T ∩ Ωi. On each cell T , which is crossed by the zero level-set of u, we generate
on-the-fly a partition of T ∩Ωi into simplices and apply a barycenter quadrature rule
on each simplex.

In order to apply a multigrid method, we generate a sequence of nested CFE
spaces by applying an appropriate coarsening process on the CFE triangulation on
the finest level lmax (Ωlmax

Ti
:= ΩTi

), i.e.,

Ωi ⊂ Ωlmax

Ti
⊂ Ωlmax−1

Ti
⊂ · · · ⊂ Ω0

Ti
,(6.3)

leading to correspondingly nested CFE spaces V CFE
h (Ωl

Ti
), 0 ≤ l ≤ lmax. Prolonga-

tions and restrictions naturally have to be defined with respect to the CFE discretiza-
tion; hence prolongation onto level l is defined by evaluation of the basis functions
ϕCFE,l−1
i for Lagrange nodes on level l. Convergence analysis for multigrid algorithms

using CFEs has been presented by Hackbush and Sauter [34] and Warnke [61], and
we refer to [33] for a comprehensive overview of geometric multigrid methods.

7. Numerical experiments. We have tested our approach in different scenar-
ios. Figure 1 shows a synthetic image pair, which was designed to test the method
in cases where only very little common information is contained in the images. The
rotated shape on the upper left of the top figure is supposed to be fitted into the struc-
ture on the bottom left, which is hence determined only by the four small objects in
the corners of the image. After 75 steps of the gradient descent, a deformation is found
which rotates the propeller-like shape, and the resulting push-forward of the contour
matches quite well to the rounded corners in the second structure in the bottom of
the top figure. Hence this example shows the capability of a model-based inpainting,
where the shape information of the inpainted contour is transformed from a reference
image. Thus, complementary information originating from the first image, which is
not present in the second image, is used for the segmentation of the second image. We
assume that the deviations from the obvious solution of a pure rotation result from
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Fig. 2. Simultaneous segmentation, registration, and denoising of two artificial test images.
The smoothed reconstructions of both images are shown on the right-hand side of the top part of the
figure.

the fact that rigid transformations are not in the kernel of our regularization energy.
We think that the result can be improved using a different regularization method, for
example, a higher order method [46].

Figure 2 shows again the ability of the method to use complementary information
from both images. In this situation, both images are contaminated by noise. The weak
upper edge of the triangle in the second image is found accurately using information
from the first image, where the corresponding edge is rather strong. As a by-product
we also obtain smoothed reference and template images shown on the right-hand side
of Figure 2 (top figure), where the edges detected by the segmentation are strongly
enhanced. Note that the smoothed second image has a clearly recognizable upper
edge.

In Figure 3 we have applied the algorithm to a pair of brain images. The top
row shows a positron density (PD) scan, while the bottom row shows a T1-weighted
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Fig. 3. Top row: Reference image R (PD image of a human brain) and Γ. Bottom row:
Template image T (T1-weighted MR image). The sequence shows the gradient descent for the
iteration numbers 0, 10, 80, and 180. The parameters were chosen as μ = 50, α = 20, ν = 500.
Images from the MPI of Cognitive Neuroscience, Leipzig, Germany.

magnetic resonance image of the same patient. The initial difference of the image pair
consists mainly of a translation of about 8-9 pixels. The algorithm finds the brain
structure in both images well after about 80 steps, and the resulting deformation
consists mainly of a shift enhanced by some minor locally detailed deformations.
This example underlines the practicability of the level-set approach: After a few
steps the initial contour splits into three different components which are henceforth
independently mapped onto the corresponding segments in the template. Note also
that the strong contrast between the brain and the other tissue in the first image
helps to segment the outer brain boundary in the second image, where the contrast
is not very strong and other edges are found in the vicinity of the boundary of the
brain.

The last example in Figure 4 demonstrates the competing effect of the regulariza-
tion and the energy contributions which pull the contour towards the edges. We can
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Fig. 4. Matching a reference to a template with a destroyed region. The image in the bottom row
of the top figure also differs nonrigidly from the image in the top row. The edge set of the reference
is matched onto the contours of the template, where the alignment does not strongly decrease the
regularity of the deformation. The parameters were chosen as μ = 50, α = 200, and ν = 5000. The
bottom image shows the deformation plot.

exploit this in order to map an original reference shape (top row) to a given object,
where the shape is partially corrupted (bottom row). Apart from the destroyed region,
the shapes differ also by a nonrigid deformation plus a translation. This can be well
observed in the second column. Here the deformation is still close to the identity, and
hence the contours are aligning to the edges in the vicinity first until in subsequent
iterations the deformation evolves in such a way that the contours map to the true
edges in both images except on the border of the destroyed region. At this stage,
the regularization dominates and prohibits the contour in the bottom row evolving
towards the “visible” edge and prefers to adopt the contour from the reference image.
This yields a reconstruction of the destroyed shape, which is optimal with respect to
the regularization energy.

In this last example the optimal contours found by the algorithm depend signif-
icantly on the choice of the regularization parameter ν. The results shown in Figure
4 are obtained with a rather large value ν = 5000, i.e., with a strong penalty on the
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rigidity of the transformation Φ. If ν is chosen smaller, both contours become aligned
with the edges in the images, which is only possible with a locally large deformation
in the vicinity of the missing part of the tooth in the template image.

For all examples, the parameter μ does not have much influence on the segmen-
tation and on the obtained transformation. It does, however, influence the character
of the piecewise smooth approximations of the reference and template images R and
T , respectively. Large μ yields approximations which are almost piecewise constant,
whereas small μ allows a larger intensity variation within each segmented component.
Finally, the algorithm seems to be rather insensitive with respect to the choice of the
length parameter α.

8. Discussion. We have presented a level-set based algorithm for simultaenous
segmentation and registration of images by incorporating a Mumford–Shah type en-
ergy on the reference image as well as on the template image, where the contour is
transformed into the template image by a regularized deformation. The work pre-
sented here is motivated by the fact that, given an exact registration of two images of
different modality, edge extraction and segmentation can be enhanced considerably
by combining complementary feature information from both modalities. On the other
hand, the process of registering a pair of images may rely on segmentations and fea-
ture extractions of both images, which often is a very tedious process, especially if,
in some areas, the feature information is very weak. Due to the coupling of the edge
sets by the smooth deformation, the edge in such areas is driven towards its correct
shape.

We have demonstrated a further important application of this method, namely
that this approach may also be used to perform a model-based reconstruction and in-
painting of destroyed regions, without having to explicitly mark the region where the
object is destroyed as long as there are no prominently dominating edges. Although
the results are already very promising, there is still room for further conceptual mod-
elling, e.g., to avoid competition of the broken edge and the reference edge along the
boundary of the destroyed region.

Due to the regularization of the gradient flow, the minimization process has turned
out to be stable and requires only a relatively small number of iterations until con-
vergence. On the other hand, the regularization and necessity of determining the
solutions of the Helmholtz equations in the regions Ω1 and Ω2 make each individual
step rather expensive. In order to make the method efficient we have applied multigrid
techniques which lead to an enormous speed-up of the algorithm.

We have performed all calculations using only the first variations of the energy. In
further studies, one might investigate Levenberg–Marquart (cf. [10]) or pure Newton-
type methods to further accelerate the minimization process.

Acknowledgments. The authors would like to thank Martin Rumpf for many
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ite finite element method. Furthermore, we want to thank Carlo Schaller for many
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Abstract. An analytical version of the discrete-ordinates method (the ADO method) is used to
establish a solution to the temperature-jump problem in the rarefied gas dynamics field. Kinetic mod-
els derived from the linearized Boltzmann equation are used to formulate the problem in the one gas
case and for a binary gas mixture. The gas-surface interaction is described by the Cercignani–Lampis
kernel, which is written in terms of two accommodation coefficients. The solution is found to be very
accurate and fast. Numerical results are presented not only for the temperature-jump coefficient
but also for the density and temperature profiles. In particular, the effect of both accommodation
coefficients on the temperature-jump coefficient is analyzed.
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1. Introduction. The increased interest in research fields related to the devel-
opment of technologies associated with micro-electro-mechanical systems (MEMS)
[1, 2] as well as other micro- and nanoflow applications [3] has brought attention to
the rarefied gas dynamics field [4, 5, 6]. In fact, for these microsystems, where the
characteristic length of the system is of the order of a mean-free path, and the gas
flow is in the transition regime, the Boltzmann equation [7] has to be used in order
to describe correctly the state of the gas. In this case the Knudsen number (Kn),
defined as the ratio of the molecular mean-free path to a characteristic size, is close
to the unity.

For a gas in a moderate state of rarefaction (Kn < 0.1), however, in order to
take into account the rarefaction effects by using simpler models, it is usual to use
the continuum mechanics equations to define the problem of interest, along with the
velocity-slip and temperature-jump boundary conditions [3, 4, 5, 6, 7]. In particular,
for the case of evaluating the temperature distribution in a rarefied gas restricted by a
solid surface, the temperature-jump boundary condition is used to take into account
the noted difference (proportional to the gradient of the temperature in the normal
direction to the wall) between the temperature of the wall and the temperature of
the gas near to the wall. In this way, the temperature-jump boundary condition is
defined in terms of the temperature-jump coefficient [7, 8, 9].

Although the temperature-jump coefficient may be evaluated by solving either
the Boltzmann equation or model equations (derived from the Bolztmann equation
with simplified collision operators) [4, 10] it is usual to find its definition, as derived
by Maxwell, written in terms of the accommodation coefficient of the gas [3]. This
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approach is, according to the literature [11], just an estimation, since it is based on
the assumption that the distribution function does not vary in the Knudsen layer.
In fact, such an approach has been shown [11] to underestimate the value of the
temperature-jump coefficient.

On the other hand, surface effects play a very important role in the analysis of
the temperature in microscales, and so particular attention has to be given to the
definition of the boundary conditions and to the choice of appropriate kernels to
describe the gas-surface interaction [12, 13, 14].

In this work, we present a complete derivation of the solution of the temperature-
jump problem for the one gas case (based on the S-model [15]) and a binary gas
mixture (based on the McCormack model [16]). The solution is developed in terms of
an analytical version of the discrete-ordinates method (the ADO method) [17]. In fact,
the temperature-jump problem has been studied over the years, and previous results
on this problem, based on numerical approaches, can be found in the literature [4, 6,
18, 19, 20, 21, 22, 23, 24]. The ADO method, which has been successfully applied to
derive unified solutions for a wide class of problems in the rarefied gas dynamics field
[25, 26, 27, 28], has been also applied to evaluate the temperature-jump coefficient
[29, 30, 31, 32]. In particular, the ADO solution has been shown to be accurate and
fast, in comparison with numerical based approaches.

Here, in addition to complete the class of problems solved by the ADO method,
based on the kinetic S-model of the linearized Boltzmann equation [28], and to estab-
lish the relation between this formulation and its extension to the binary mixture case
based on the McCormack model [32], we include, for the temperature-jump problem,
a special treatment for the gas-surface interaction: the Cercignani–Lampis kernel [12].
In fact, considering the significance of the surface effect analysis on microflow appli-
cations and the good results obtained by the application of the ADO method to the
solution of problems in this field, this kernel has been included in the treatment of
channel problems by the ADO method [33, 34]. Differently from the commonly used
Maxwell boundary condition [10], the Cercignani–Lampis kernel is defined in terms
of two accommodation coefficients such that a better physical representation of the
surface effects is allowed. In this work, a complete study of the dependence of the
temperature-jump coefficient on different kinetic models as well as on the gas-surface
interaction kernel is then carried out.

In this way, we develop in sections 2 and 3 the basic formulation for the one gas
case, and we describe its ADO solution in section 4. We detail the McCormack model
for a binary gas mixture in sections 5 and 6. In section 7 we present the discrete-
ordinates solution for the mixture. We discuss computational aspects and numerical
results in section 8 before presenting some concluding comments in section 9.

2. A model equation: The one gas case. To start this work, we follow
Williams [10] and consider the steady-state nonlinear Boltzmann equation written, in
a general form, as

v · ∇rf(r,v) = J(f ′, f),(1)

where f(r,v) is the gas atom space and velocity distribution function (f and f ′ are
associated with, respectively, before and after collision distributions) and J is the
collision operator [10]. For the cases weakly far from the equilibrium, it is customary
to write f as

f(r,v) = f0(v)[1 + h(r,v)],(2)
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where h is a perturbation caused, by the presence of the walls, to the absolute
Maxwellian f0(v),

f0(v) = n0(λ0/π)3/2e−λ0v
2

, λ0 = m0/(2kT0).(3)

Here k is the Boltzmann constant, T0 is a reference temperature, m0 is the mass, and
n0 is the equilibrium density of the gas. In this way, if we substitute (2) into (1) and
use, along with properties of the collision operator [9], some physical considerations,
we obtain, for the dimensionless velocity variable

c = v[(m/2kT0)]
1/2,(4)

the linearized Boltzmann equation written in terms of the perturbation function h as
[10, 35]

cy
∂

∂y
h(y, c) + εh(y, c) = επ−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(y, c′)F (c′ : c)dc′xdc′ydc

′
z.

(5)

Here, in addition to the three components of the velocity vector (cx, cy, cz) which are
expressed in dimensionless units, we consider the dimensionless (written in terms of
a mean-free path l) spatial variable y > 0, and

ε = σ2
0n0π

1/2l,(6)

where σ0 is the collision diameter of the gas particles (in the rigid-sphere approxima-
tion).

For rigid spheres, the scattering kernel F (c′ : c) can be expanded in terms of Leg-
endre functions [36]. However, even if we consider a truncated form of this expansion,
the problem of solving the resulting approximation of the linearized Boltzmann equa-
tion is still difficult from a numerical point of view [35]. For this reason, keeping in
mind mathematical properties [7], one seeks to approximate the true kernel by phys-
ically meaningful approximations that can be more easily handled by analytical tools
and numerical algorithms. In this way, the resulting equations are known as “model
(kinetic) equations.” Here we follow Siewert [33] and express the kernel, in (5), such
that two of the well-known constant collision frequency models of the rarefied gas
dynamics are represented:

F (c′ : c) = 1 + 2(c′.c) + (2/3)(c′
2 − 3/2)(c2 − 3/2) + β̂M(c′ : c)(7a)

with

M(c′ : c) = (4/15)(c′.c)(c′
2 − 5/2)(c2 − 5/2),(7b)

where the case β̂ = 0 defines the well-known BGK model equation [37] and the case

β̂ = 1 defines the S-model equation [15]. We note that, for both constant collision
frequency models we use in this work, if we choose a mean-free path based on the
viscosity to evaluate (6), we obtain [28, 35]

ε = εp = 1.(8)



2152 R. F. KNACKFUSS AND L. B. BARICHELLO

On the other hand, if we use a mean-free path based on thermal conductivity to
evaluate (6), we get, respectively, for the BGK and the S-model

ε = εt = 1 and ε = εt = 3/2.(9)

Taking into account the values listed in (8) and (9) we see that the evaluation of εp/εt
for the case of the S-model leads to a correct value for the Prandtl number (equal to
2/3). This aspect is considered an advantage of that model in comparison with the
BGK model.

To complete the formulation of the temperature-jump problem, we write the
boundary condition in terms of the Cercignani–Lampis kernel [12, 33],

h(0, cx, cy, cz) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
h(0, c′x,−c′y, c

′
z)R(c′x,−c′y, c

′
z : cx, cy, cz)dc

′
xdc′zdc

′
y,

(10a)

where

R(c′x, c
′
y, c

′
z : cx, cy, cz) =

2c′y
παnαt(2 − αt)

T (c′x : cx)S(c′y : cy)T (c′z : cz)(10b)

with

T (x : z) = exp

[
− [(1 − αt)z − x]2

αt(2 − αt)

]
(10c)

and

S(x : z) = exp

[
− [(1 − αn)1/2z − x]2

αn

]
Î0

[
2(1 − αn)1/2|xz|

αn

]
.(10d)

For computational purposes, we write

Î0(w) = I0(w)e−w,(11a)

where I0(w) is the modified Bessel function,

I0(w) =
1

2π

∫ 2π

0

ew cosφdφ.(11b)

Differently from the usual case of Maxwell boundary condition [10] defined in terms
of one accommodation coefficient α, where it is assumed that some fraction α of the
particles are reflected diffusely and the rest (1 − α) is reflected specularly, we can
see in (10a) to (10d) that the Cercignani–Lampis kernel is defined in terms of two
accommodation coefficients: αt ∈ [0, 2) the accommodation coefficient of tangential
momentum and αn ∈ [0, 1) the accommodation coefficient of energy corresponding
to the normal component of velocity. The use of more than one accommodation
coefficient allows a better physical representation of the gas-surface interaction. In
the case of the Cercignani–Lampis kernel, that is the case, according to the literature,
mainly for roughness surfaces [24].

Still, to complete the definition of the temperature-jump problem, we have to
specify the behavior of the solution at infinity. We impose the Welander condition [8]

lim
y→∞

d

dy
T (y) = K,(12)
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where K is known and here the temperature perturbation is given, in terms of h as

T (y) =
2

3
π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(y, cx, cy, cz)

(
c2 − 3

2

)
dcxdcydcz.(13)

In solving the temperature-jump problem, in addition to the temperature pertur-
bation already defined, another quantity we seek to compute is the density perturba-
tion

N(y) = π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2h(y, cx, cy, cz)dcxdcydcz.(14)

By looking at the above definitions, (13) and (14), we see that we do not need to
obtain the complete distribution h, but only some related integrals (moments), to
compute those quantities. In this way, in what follows, we develop a procedure in
order to get simpler problems, in terms of those moments, for which we will develop
a solution with the ADO method.

3. A vector formulation–the S-model. In order to develop simpler formula-
tions to evaluate the quantities of interest, we multiply (5) first by

φ1(cx, cz) =
1

π
e−(c2

x+c2
z)(15)

and, in a second step by

φ2(cx, cz) =
1

π
(c2

x + c2
z − 2)e−(c2

x+c2
z),(16)

and, in both cases, we integrate over all cx and cz, such that, if we define

h1(y, ξ) =

∫ ∞

−∞

∫ ∞

−∞
φ1(cx, cz)h(y, cx, cy, cz)dcxdcz,(17)

h2(y, ξ) =

∫ ∞

−∞

∫ ∞

−∞
φ2(cx, cz)h(y, cx, cy, cz)dcxdcz(18)

and introduce the new notation ξ = cy, we find that

ξ
∂

∂y
h1(y, ξ) + εh1(y, ξ) = ε

∫ ∞

−∞
ψ(ξ′)

[
κ11(ξ

′, ξ)h1(y, ξ
′) + κ12(ξ

′, ξ)h2(y, ξ
′)
]
dξ′

(19)

and

ξ
∂

∂y
h2(y, ξ) + εh2(y, ξ) = ε

∫ ∞

−∞
ψ(ξ′)

[
κ21(ξ

′, ξ)h1(y, ξ
′) + κ22(ξ

′, ξ)h2(y, ξ
′)
]
dξ′,

(20)

with

ψ(ξ) = π−1/2e−ξ2

(21)
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and

κ11(ξ
′, ξ) = 1 +

2

3

(
ξ2 − 1

2

)(
ξ′

2 − 1

2

)
+ β̂

[
2ξ′ξ +

4

15

(
ξ′

2 − 3

2

)(
ξ2 − 3

2

)
ξ′ξ

]
,

(22)

κ12(ξ
′, ξ) =

2

3

(
ξ2 − 1

2

)
+ β̂

[(
4

15
ξ2 − 2

5

)
ξξ′
]
,(23)

κ21(ξ
′, ξ) =

2

3

(
ξ′

2 − 1

2

)
+ β̂

[(
4

15
ξ′

2 − 2

5

)
ξξ′
]
,(24)

κ22(ξ
′, ξ) =

2

3
+ β̂

4

15
ξξ′.(25)

The same procedure, initiated in (15) and (16), is applied to the boundary con-
dition, (10a), to define the components h1 and h2 at the boundary, which are written
in the form

h1(0, ξ) =

∫ ∞

0

h1(0,−ξ′)f(ξ′, ξ)dξ′(26)

and

h2(0, ξ) = (1 − αt)
2

∫ ∞

0

h2(0,−ξ′)f(ξ′, ξ)dξ′,(27)

for ξ, ξ′∈ (0,∞) and

f(ξ′, ξ) =
2ξ′

αn
exp

[
− [(1 − αn)1/2ξ − ξ′]2

αn

]
Î0

[
2(1 − αn)

1/2
ξ′ξ

αn

]
.(28)

In this way, we let H(y, ξ) be the vector with components h1(y, ξ) and h2(y, ξ)
and rewrite (19) to (28) in a more appropriate matrix form as

ξ
∂

∂y
H(y, ξ) + εH(y, ξ) = ε

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)H(y, ξ′)dξ′,(29)

for y > 0 and ξ ∈ (−∞,∞). Here we note (21) to (25) and the definitions of

H(y, ξ) =

[
h1(y, ξ)
h2(y, ξ)

]
(30)

and

K(ξ′, ξ) =

[
κ11(ξ

′, ξ) κ12(ξ
′, ξ)

κ21(ξ
′, ξ) κ22(ξ

′, ξ

]
.(31)

In regard to the boundary condition, we write

H(0, ξ) = A

∫ ∞

0

H(0,−ξ′)f(ξ′, ξ)dξ′,(32)
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with

A =

[
1 0
0 (1 − αt)

2

]
,(33)

for ξ, ξ′∈ (0,∞).
Finally, we also use the vector notation to express, respectively, the temperature

and density perturbations, given in (13) and (14), in the form

T (y) =
2

3

∫ ∞

−∞

[
ξ2 − 1/2

1

]T
H(y, ξ)ψ(ξ)dξ(34)

and

N(y) =

[
1
0

]T ∫ ∞

−∞
H(y, ξ)ψ(ξ)dξ.(35)

We now proceed to develop a discrete-ordinates solution for the vector problem.
In what follows we chose to assume the S-model case (β̂ = 1), to which the expression
for the kernel and the development of the solution are more general. Much simpler
expressions can be found for the BGK model, and the work of Barichello and Siewert
[29] can be used to follow that derivation.

4. A discrete-ordinates solution (I). We now seek for a discrete-ordinates
solution of the problem defined by (29) and (32) and the condition given by (12). In
this sense, the analytical discrete-ordinates method we use in this work, the ADO
method [17], is based on a half-range quadrature scheme, and so as a first step we
write (29) in the form

ξ
∂

∂y
H(y, ξ) + εH(y, ξ) = ε

∫ ∞

0

ψ(ξ′)[K(ξ′, ξ)H(y, ξ′) + K(−ξ′, ξ)H(y,−ξ′)]dξ′,

(36)

and we seek solutions of (36) of the form

H(y, ξ) = Φ(ν, ξ) e−yε/ν ,(37)

where the separation constants ν and the elementary (2 × 1 vector) solutions Φ are
to be determined. Substituting (37) into (36) we find that

ε(ν − ξ)Φ(ν, ξ) = εν

∫ ∞

0

ψ(ξ′)[K(ξ′, ξ)Φ(ν, ξ′) + K(−ξ′, ξ)Φ(ν,−ξ′)]dξ′(38)

and

ε(ν + ξ)Φ(ν,−ξ) = εν

∫ ∞

0

ψ(ξ′)[K(ξ′,−ξ)Φ(ν, ξ′) + K(−ξ′,−ξ)Φ(ν,−ξ′)]dξ′.

(39)

Here we note, since

K(ξ′,−ξ) = K(−ξ′, ξ),(40)
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that

Φ(ν, ξ) = Φ(−ν,−ξ).(41)

Continuing our development, we add and subtract (38) and (39), one from the
other, to find that

1

ξ2

[
V(ν, ξ) −

∫ ∞

0

ψ(ξ′)P(ξ′, ξ)V(ν, ξ′)dξ′
]

= λV(ν, ξ)(42)

and

U(ν, ξ) =
ν

ξ

[
V(ν, ξ) −

∫ ∞

0

ψ(ξ′)[K(ξ′, ξ)V(ν, ξ′) − K(−ξ′, ξ)V(ν, ξ′)]dξ′
]
,(43)

where

U(ν, ξ) = Φ(ν, ξ) + Φ(ν,−ξ),(44)

V(ν, ξ) = Φ(ν, ξ) − Φ(ν,−ξ),(45)

and

λ = 1/ν2.(46)

Still, we note that the separation constants ν occur in (±) pairs, and

P(ξ′, ξ) =
ξ

ξ′

[
[K(ξ′, ξ) + K(−ξ′, ξ)] + [K(ξ′, ξ) − K(−ξ′, ξ)]

]

−
∫ ∞

0

ψ(ξ′′)
ξ

ξ′′
[K(ξ′, ξ′′) − K(−ξ′, ξ′′)][K(ξ′′, ξ) + K(−ξ′′, ξ)]dξ′′.(47)

At this point, we introduce a half-range quadrature scheme, in [0,∞), defined by
N nodes {ξk} and weights {ωk}, and rewrite (42) and (43) evaluated at the quadrature
points as

1

ξ2
i

[
V(νj , ξi) −

N∑
k=1

ωkψ(ξk)P(ξk, ξi)V(νj , ξk)

]
= λjV(νj , ξi)(48)

and

U(νj , ξi) =
νj
ξi

[
V(νj , ξi) −

N∑
k=1

ωkψ(ξk)[K(ξk, ξi)V(νj , ξk) − K(−ξk, ξi)V(νj , ξk)]

](49)

for i = 1, 2, . . . , N . Once we solve our eigenvalue problem, defined by (48), we have
the elementary solutions from

Φ(νj , ξi) =
1

2

[
U(νj , ξi) + V(νj , ξi)

]
(50)

and

Φ(νj ,−ξi) =
1

2

[
U(νj , ξi) − V(νj , ξi)

]
.(51)
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In (48) to (51) we use the subscript j to label the eigenvalues. For each j, (50) and
(51) express 2N × 1 vectors.

Here it may be important to make a comment in regard to the eigenvalue problem
defined in (42). In applying the ADO method we have found, for different model
equations and for different classes of problems, specific eigenvalue problems. In most
of those cases the problem is much simpler and expressed in a much more concise
form than in the case of this work. Even the case of diagonal + rank one type matrix
can be mentioned [17, 38]. In fact, for the specific derivation presented above, some
properties of the kernel can also be used to derive a simpler eigenvalue problem, as
shown by Scherer [39]. We chose, however, to keep the derivation as it is, in order to
establish more close connections and analogies with the mixtures case we will present
later on in this text.

Continuing, we consider (50) and (51) along with (46), we take the positive
root νj , and we write the general discrete-ordinates solution to (29) as

H(y,±ξi) =

2N∑
j=1

[AjΦ(νj ,±ξi)e
−yε/νj + BjΦ(νj ,∓ξi)e

yε/νj ],(52)

for i = 1, 2, . . . , N . Here the arbitrary constants are to be determined from the
boundary condition and the imposed condition at infinity. Before doing that, however,
we note that the eigenvalue problem yields two separation constants, say ν1 and ν2,
that become unbounded. Because of this, we rewrite the general solution as

H(y,±ξi) = H∗(y,±ξi) +

2N∑
j=3

[AjΦ(νj ,±ξi)e
−yε/νj + BjΦ(νj ,∓ξi)e

yε/νj ],

(53)

i = 1, 2, . . . , N , where we then introduced, in (53), four linear independent exact
solutions of (29). In other words,

H∗(y, ξ) = A1H1 + A2H2(ξ) + B1H3(ξ) + B2H4(ξ),(54)

where, for the S-model,

H1 =

[
1
0

]
, H2(ξ) =

[
ξ2 − 1/2

1

]
, H3(ξ) =

[
ξ
0

]
,(55)

and

H4(y, ξ) = yG1(ξ) + F1(ξ)(56a)

with

G1(ξ) =

[
ξ2 − 3/2

1

]
(56b)

and

F1(ξ) =
−3ξ

2ε
G1(ξ).(56c)
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In fact, in the process of finding the H4 solution, once that (56b) is an exact solution
of (29), we can follow analogous procedure as the one proposed by Siewert [32], and
we substitute (56a) into (29) to find that

F1(ξ) = −1

ε
ξG1(ξ) +

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)F1(ξ

′)dξ′.(57)

The form of the inhomogeneous term, in (57), as well as the the form of K(ξ′, ξ)
suggest that we look for solutions of the form

F1(ξ) =

3∑
α=0

Pα(ξ)F1,α,(58)

where F1,α are constant vectors and Pα(ξ) are orthogonal polynomials given by

P0(ξ) = 1 , P1(ξ) = ξ , P2(ξ) = ξ2 − 1/2, and P3(ξ) = ξ(ξ2 − 3/2).(59)

Thus, if we first substitute (58) into (57), and then we multiply the equation by
ψ(ξ)Pk(ξ), for k = 0, 1, 2, 3, to finally integrate over all ξ, we obtain an algebraic
system (with 8 equations and rank 6)

3∑
α=0

Pα(ξ)F1,α = −1

ε
ξG1(ξ) +

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)

3∑
α=0

Pα(ξ′)F1,αdξ′,(60)

for which a solution can be found explicitly, as the one given in (56a).
So, at this point we can go back to the issue of determining, in (53), the 4N

arbitrary constants, such that our discrete-ordinates solution will be completely es-
tablished. To start, if we consider the way that the solution is required to diverge
at infinity, we take Bj = 0 for j = 3, 4, . . . , 2N . In addition, when considering the
Welander condition, given by (12) (and noting (34)), we find that

B2 = K.(61)

Still, we note that the solution H1, (55), satisfies the homogeneous boundary condition
given by (32), and so the A1 coefficient cannot be determined from that equation.
However, following previous works [29, 40] we can impose on our solution an additional
normalization condition

lim
y→∞

[
N(y) + T (y)

]
= 0(62)

from where we get that

A2 = −A1.(63)

In this way, we rewrite the general solution, (53), for i = 1, 2, . . . , N , as

H(y,±ξi) = A2G1(±ξi) + B1H3(±ξi) + KH4(y,±ξi) +

2N∑
j=3

AjΦ(νj ,±ξi)e
−yε/νj .

(64)
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To determine the remaining 2N arbitrary constants, we substitute (64) into the
discrete-ordinates version of the boundary condition given by (32)

H(0, ξi) = A

N∑
k=1

ωke
−ξk

2

H(0,−ξk)f(ξk, ξi),(65)

for i = 1, 2, . . . , N . We then obtain the following 2N × 2N linear algebraic system:

A2C
1(ξi) + B1C

2(ξi) +

2N∑
j=3

Aj

{
Φ+(νj) −

N∑
k=1

ωkf(ξk, ξi)A
∗Φ−(νj)

}

= K

{
N∑

k=1

ωkf(ξk, ξi)A
∗B∗(−ξk) − B∗(ξi)

}
,(66)

where the components of the vectors Φ+(νj) and Φ−(νj) are given by (50) and (51),

C1(ξi) =

N∑
k=1

ωkf(ξk, ξi)A
∗R∗(−ξk) − R∗(ξi),(67)

and

C2(ξi) = H∗
3(ξi) −

N∑
k=1

ωkf(ξk, ξi)A
∗H∗

3(−ξk).(68)

Here R∗(ξ) is a 2N × 1 vector where each 2 × 1 component is

R(ξ) = −G1(ξ)(69)

for G1(ξ) defined in (56b); A∗ is a 2N × 2N block diagonal matrix

A∗ = diag
{
A,A, . . . ,A,A

}
(70)

with A given in (33); H∗
3(ξ) and B∗(ξ) are 2N×1 vectors where each 2×1 component

is, respectively, defined in (55) and (56c). In addition, f(ξk, ξi) is defined in (28).
Considering now the quantities we want to evaluate, we substitute (53) into the

discrete-ordinates version of (34) and (35) to write the temperature perturbation

T (y) = Ky + A2 + 2/3

2N∑
j=3

Aj (e−yε/νj )M1(νj)(71)

and the density perturbation

N(y) = −Ky −A2 +

2N∑
j=3

Aj (e−yε/νj )M2(νj),(72)

where M1 and M2 are, respectively, the components of the vector given by

M∗(νj) = π−1/2
N∑

k=1

ωke
−ξk

2

[
ξ2
k − 1/2 1

1 0

]
[Φ(νj , ξk) + Φ(νj ,−ξk)].(73)
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Still, if we look now at the linear component of the temperature perturbation expres-
sion

T ∗(y) = Ky + A2(74)

we can define another quantity of interest, which relates the temperature perturbation
at the wall with the gradient of the temperature, the temperature-jump coefficient ζ,
as

T ∗(0) = ζ
d

dy
T ∗(y)

∣∣∣
y=0

(75)

such that

ζ = A2/K.(76)

To be clear, we note that the normalization constant introduced in (62) does
not affect the temperature-jump coefficient or the temperature perturbation. In fact,
another choice of that constant would change only the density perturbation by the
addition of a constant factor [30].

5. The McCormack model and a mixture of gases. In regard to a binary
gas mixture, in this work we base our discussion on the McCormack model, as in-
troduced by McCormack [16], following an appropriate notation proposed by Siewert
[32]. In this way, to derive the balance equation, we consider the functions hα(x,v) for
the two types of particles (α = 1 and 2) which denote perturbations from Maxwellian
distributions for each species,

fα(y∗,v) = fα,0(v)[1 + hα(y∗,v)],(77)

where

fα,0(v) = nα(λα/π)3/2e−λαv2

, λα = mα/(2kT0).(78)

Here, again, k is the Boltzmann constant, mα is the mass, nα is the equilibrium
density of the αth species, T0 is a reference temperature, y∗ is the spatial variable,
and the vector v, with magnitude v, is the particle velocity with components vx, vy,
and vz. It is found [16] that the balance equation is of the form

cy
∂

∂y∗
hα(y∗, c) + wαγαhα(y∗, c) = wαγαLα{h1, h2}(y∗, c), α = 1, 2,(79)

where c, with magnitude c and components cx, cy, and cz, is now a dimensionless
velocity variable. In obtaining (79), we followed Siewert [32] and expressed the di-
mensionless variable c differently in the two equations: for the case α = 1 we defined
c = w1v, and, analogously, for the case α = 2 we defined c = w2v, where

wα = [mα/(2kT0)]
1/2, α = 1, 2.(80)

Still, in (79), the γα are to be defined later, and the collision operator is written as

Lα{h1, h2}(y∗, c) =
1

π3/2

2∑
β=1

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2hβ(y∗, c′)Kβ,α(c′, c)dc′xdc′ydc

′
z,

(81)
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with the kernels expressed, in a general form, as [32]

Kβ,α = K
(1)
β,α(c′, c) + K

(2)
β,α(c′, c) + K

(3)
β,α(c′, c) + K

(4)
β,α(c′, c), α, β = 1, 2.

(82)

To avoid a heavy notation in the middle of the text, explicit expressions for each of
the components in (82) are listed in Appendix A.

As in the one gas case, in (5), we introduce a dimensionless spatial variable
y = y∗/l0, where now l0 is the mean-free path suggested by Sharipov and Kalempa
[41], based on viscosity, defined as

l0 =
μv0

P0
,(83)

for

v0 =

(
2kT0

m

)1/2

(84)

and

m =
n1m1 + n2m2

n1 + n2
.(85)

In regard to (81), we continue to follow Sharipov and Kalempa [41] and Siewert [32]
and express the viscosity of the mixture in terms of the pressures Pα and the collision
frequencies γα as

μ =
P1

γ1
+

P2

γ2
,(86)

where

Pα

P0
=

nα

n1 + n2
,(87)

γ1 =
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

Ψ2 + ν
(4)
1,2

,(88a)

and

γ2 =
Ψ1Ψ2 − ν

(4)
1,2ν

(4)
2,1

Ψ1 + ν
(4)
2,1

.(88b)

In addition,

Ψ1 = ν
(3)
1,1 − ν

(4)
1,1 + ν

(3)
1,2 ,(89a)

Ψ2 = ν
(3)
2,2 − ν

(4)
2,2 + ν

(3)
2,1 .(89b)

Again, we used above some definitions listed in Appendix A.
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At this point, we introduce [32]

σα = γαωαl0(90)

or, more explicitly,

σα = γα
n1/γ1 + n2/γ2

n1 + n2

(mα

m

)1/2

,(91)

such that, in the next section, we rewrite (79), in order to specifically define the
temperature-jump problem based on the McCormack model, that we want to solve in
this work, including the Cercignani–Lampis kernel.

6. A binary gas mixture. Taking into account the development presented in
the previous section, our starting point is now, analogously to the one gas case, (5),
the kinetic equation for the McCormack model written as

cy
∂

∂y
hα(y, c) + σαhα(y, c) = σαLα{h1, h2}(y, c)(92)

for y > 0, the dimensionless variable (measured in terms of the mean-free path l0),
σα given in (90), and the collision operator defined in (82) and in Appendix A. For
defining the temperature-jump problem, we supplement (92) with boundary condition,
written in terms of the Cercignani–Lampis kernel as

hα(0, cx,−cy, cz) =

∫ ∞

0

∫ ∞

−∞

∫ ∞

−∞
hα(0, c′x, c

′
y, c

′
z)Rα(c′x, c

′
y, c

′
z : cx,−cy, cz)dc

′
xdc′zdc

′
y,

(93)

for cy > 0, all cx, cz, and α = 1, 2. Here

Rα(c′x, c
′
y, c

′
z : cx, cy, cz) =

2c′y
πanαatα(2 − atα)

Tα(c′x : cx)Sα(c′y : cy)Tα(c′z : cz),

(94a)

Tα(x : z) = exp

[
− [(1 − atα)z − x]2

atα(2 − atα)

]
,(94b)

Sα(x : z) = exp

[
− [(1 − anα)1/2z − x]2

anα

]
Î0

[
2(1 − anα)1/2|xz|

anα

]
,(94c)

and Î0(z) is defined as in (11a). In addition, atα are the tangential momentum
accommodation coefficients for each species α (α = 1, 2), and anα are the normal
accommodation coefficients for each species α (α = 1, 2). The formulation of the
temperature-jump problem will be complete with the use of the condition, at infinity,
on the temperature perturbation, as we show later on in this text.

In addition to the temperature perturbation

Tα(y) =
2

3
π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2hα(y, cx, cy, cz)

(
c2 − 3

2

)
dcxdcydcz(95)
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we seek to compute also the density perturbation

Nα(y) = π−3/2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
e−c′2hα(y, cx, cy, cz)dcxdcydcz.(96)

Since we do not have to compute the complete distribution h, as we did for the
one gas case, we develop a simpler formulation, by multiplying successively (92) by
(15) and (16) and defining

g2α−1(y, ξ) =

∫ ∞

−∞

∫ ∞

−∞
φ1(cx, cz)hα(y, cx, ξ, cz)dcxdcz(97)

and

g2α(y, ξ) =

∫ ∞

−∞

∫ ∞

−∞
φ2(cx, cz)hα(y, cx, ξ, cz)dcxdcz,(98)

for α = 1, 2. We then obtain four coupled equations, which we write in a matrix form,
for the components of G(y, ξ) given by (97) and (98),

ξ
∂

∂y
G(y, ξ) + ΣG(y, ξ) = Σ

∫ ∞

−∞
ψ(ξ′)KM (ξ′, ξ)G(y, ξ′)dξ′,(99)

with

Σ = diag{σ1, σ1, σ2, σ2}(100)

and ψ(ξ) given in (21). In regard to (99), we list the elements ki,j(ξ
′, ξ) of the (matrix)

kernel KM (ξ′, ξ) in Appendix B.
To establish the matrix form of the boundary condition, once more, we use the

projections defined by (15) and (16) along with (97) and (98) to obtain, from (93),

G(0, ξ) = D

∫ ∞

0

F(ξ′, ξ)G(0,−ξ)dξ′, ξ > 0,(101)

where

D = diag
{
1, (1 − at1)

2, 1, (1 − at2)
2
}

(102)

and

F(ξ′, ξ) = diag
{
f1(ξ

′, ξ), f1(ξ
′, ξ), f2(ξ

′, ξ), f2(ξ
′, ξ)

}
.(103)

Here

f1(ξ
′, ξ) =

2ξ′

an1
exp

[
− [(1 − an1)

1/2ξ − ξ′]2

an1

]
Î0

[
2(1 − an1)

1/2
ξ′ξ

an1

]
(104)

and

f2(ξ
′, ξ) =

2ξ′

an2
exp

[
− [(1 − an2)

1/2ξ − ξ′]2

an2

]
Î0

[
2(1 − an2)

1/2
ξ′ξ

an2

]
,(105)

for ξ, ξ′ ∈ (0,∞).
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Once we solve the vector problem, we can compute the density and the temper-
ature perturbations, respectively, given by

Nα(y) =

∫ ∞

−∞
ψ(ξ)g2α−1(y, ξ)dξ, α = 1, 2,(106)

and

Tα(y) =
2

3

∫ ∞

−∞
ψ(ξ)

[(
ξ2 − 1

2

)
g2α−1(y, ξ) + g2α(y, ξ)

]
dξ, α = 1, 2,(107)

and we write, in this new notation, the condition imposed to the behavior of the
solution at infinity [32]

lim
y→∞

d

dy
T(y) = K

[
1
1

]
.(108)

Here K is considered known and Tα(y) are the components of the vector T(y).
In the next section we develop a discrete-ordinates solution for the problem defined

by (99) to (108).

7. A discrete-ordinates solution (II). When seeking (4×1) solutions of (99)
in the form

G(y, ξ) = Φ(ν, ξ) e−y/ν(109)

we follow the same steps described in section 4, when dealing with the one gas case.
Then we do not repeat it here, but we write the eigenvalue problem relevant to this
case:

(1/ξ2
i )

[
Σ2V(νj , ξi) −

N∑
k=1

ωkψ(ξk)P(ξk, ξi)V(νj , ξk)

]
= λjV(νj , ξi)(110)

with

U(νj , ξi) = (νj/ξi)Σ

[
V(νj , ξi) −

N∑
k=1

ωkψ(ξk)[KM (ξk, ξi)V(νj , ξk)

−KM (−ξk, ξi)V(νj , ξk)]

]
(111)

for i = 1, 2, . . . , N . Here

P(ξ′, ξ) = (ξ/ξ′)Σ[KM (ξ′, ξ) + KM (−ξ′, ξ)]Σ + Σ2[KM (ξ′, ξ) − KM (−ξ′, ξ)](112)

−
∫ ∞

0

ψ(ξ′′)(ξ/ξ′′)Σ[KM (ξ′′, ξ) + KM (−ξ′′, ξ)]Σ[KM (ξ′, ξ′′) − KM (−ξ′, ξ′′)]dξ′′.

We are also able to get the elementary solutions

Φ(νj , ξi) = (1/2)
[
U(νj , ξi) + V(νj , ξi)

]
(113)

and

Φ(νj ,−ξi) = (1/2)
[
U(νj , ξi) − V(νj , ξi)

]
(114)
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to write the general solution of the problem given by (99) as

G(y,±ξi) =

4N∑
j=1

[AjΦ(νj ,±ξi)e
−y/νj + BjΦ(νj ,∓ξi)e

y/νj ](115)

for i = 1, 2, . . . , N .
As noted in the one gas case, and as usual for conservative problems as these in

the rarefied gas dynamics, we find again some unbounded separation constants: in
this case the number is three. So, we rewrite the previous equation as

G(y,±ξi) = G∗(y,±ξi) +

4N∑
j=4

[AjΦ(νj ,±ξi)e
−y/νj + BjΦ(νj ,∓ξi)e

y/νj ](116)

for i = 1, 2, . . . , N , where

G∗(y, ξ) = A1G1 + A2G2 + A3G3 + B1G4(ξ)(117)

+B2[yH1(ξ) + F1(ξ)] + B3[yH2(ξ) + F2(ξ)]

with the exact solutions of (99) given by [32]

G1 =

⎡
⎢⎢⎣

1
0
0
0

⎤
⎥⎥⎦ , G2 =

⎡
⎢⎢⎣

0
0
1
0

⎤
⎥⎥⎦ ,(118)

G3(ξ) =

⎡
⎢⎢⎣

ξ2 − 1/2
1

ξ2 − 1/2
1

⎤
⎥⎥⎦ and G4(ξ) =

⎡
⎢⎢⎣

rξ
0
ξ
0

⎤
⎥⎥⎦ .(119)

Considering, in addition, the functions

H1(ξ) =

⎡
⎢⎢⎣

−1 + c1(ξ
2 − 1/2)

c1

c1(ξ
2 − 1/2)
c1

⎤
⎥⎥⎦ and H2(ξ) =

⎡
⎢⎢⎣

c2(ξ
2 − 1/2)
c2

−1 + c2(ξ
2 − 1/2)

c2

⎤
⎥⎥⎦

(120)

with

r = (m1/m2)
1/2, c1 = (n1/n), c2 = (n2/n), and n = n1 + n2,(121)

we can then find functions F1(ξ) and F2(ξ) such that

G5(y, ξ) = yH1(ξ) + F1(ξ) and G6(y, ξ) = yH2(ξ) + F2(ξ)(122)

complete the set of exact solutions we are looking for. In general,

Fβ(ξ) = −ξΣ−1Hβ(ξ) +

∫ ∞

−∞
ψ(ξ′)K(ξ′, ξ)Fβ(ξ′)dξ′,(123)
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and, as we did previously in section 4, we write

Fβ(ξ) =

3∑
α=0

Pα(ξ)Fβ,α(124)

to find the components of the vectors Fβ,α required in (124). Here the linear algebraic
system with 16 equations, defined to find those components, is rank deficient (rank
12). Since equations (120) are solutions of (99), we can write [32]

Fβ(ξ) = UβP1(ξ) + VβP3(ξ),(125)

where now the constant vectors Uβ and Vβ are solutions of the (rank 8) linear systems

(I − A∗
1)U1 − C∗

1V1 =
[
(c2/σ1) − (c1/σ1) − (c1/σ2) − (c1/σ2)

]T
,(126)

(I − D∗
1)V1 − B∗

1U1 =
[
− (c1/σ1) 0 − (c1/σ2) 0

]T
(127)

and [
0 0 1 0

]
U1 = 0,(128)

for β = 1. In addition,

(I − A∗
1)U2 − C∗

1V2 =
[
− (c2/σ1) − (c2/σ1) (c1/σ2) − (c2/σ2)

]T
,(129)

(I − D∗
1)V2 − B∗

1U2 =
[
− (c2/σ1) 0 − (c2/σ2) 0

]T
(130)

and [
0 0 1 0

]
U2 = 0,(131)

for β = 2. Here (128) and (131) were made part of the linear system to guarantee a
unique solution. Still, in the above expressions I is the identity matrix, the superscript
T denotes transpose operation, and

A∗
1 = 2

∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)KM (ξ′, ξ)P1(ξ

′)P1(ξ)dξ
′dξ,(132)

B∗
1 = (4/3)

∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)KM (ξ′, ξ)P1(ξ

′)P3(ξ)dξ
′dξ,(133)

C∗
1 = 2

∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)KM (ξ′, ξ)P3(ξ

′)P1(ξ)dξ
′dξ(134)

and

D∗
1 = (4/3)

∫ ∞

−∞

∫ ∞

−∞
ψ(ξ′)ψ(ξ)KM (ξ′, ξ)P3(ξ

′)P3(ξ)dξ
′dξ.(135)
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However, (132) to (135) can be evaluated, by means of the quadrature scheme, such
that we rewrite them (using notation listed in the appendix) in a final form

A∗
1 =

⎡
⎢⎢⎢⎣

1 − η
(1)
1,2 −(1/2)η

(2)
1,2 rη

(1)
1,2 (r3/2)η

(2)
1,2

−(1/2)η
(2)
1,2 (2/5)β1 (r/2)η

(2)
1,2 (2/5)η

(6)
1,2

sη
(1)
2,1 (s3/2)η

(2)
2,1 1 − η

(1)
2,1 −(1/2)η

(2)
2,1

(s/2)η
(2)
2,1 (2/5)η

(6)
2,1 −(1/2)η

(2)
2,1 (2/5)β2

⎤
⎥⎥⎥⎦ ,(136)

B∗
1 =

⎡
⎢⎢⎣

−(1/2)η
(2)
1,2 (2/5)β1 (r/2)η

(2)
1,2 (2/5)η

(6)
1,2

0 0 0 0

(s/2)η
(2)
2,1 (2/5)η

(6)
2,1 −(1/2)η

(2)
2,1 (2/5)β2

0 0 0 0

⎤
⎥⎥⎦ ,(137)

C∗
1 =

⎡
⎢⎢⎢⎣

−(3/4)η
(2)
1,2 0 (3r3/4)η

(2)
1,2 0

(3/5)β1 0 (3/5)η
(6)
1,2 0

(3s3/4)η
(2)
2,1 0 −(3/4)η

(2)
2,1 0

(3/5)η
(6)
2,1 0 (3/5)β2 0

⎤
⎥⎥⎥⎦(138)

and

D∗
1 =

⎡
⎢⎢⎣

(3/5)β1 0 (3/5)η
(6)
1,2 0

0 0 0 0

(3/5)η
(6)
2,1 0 (3/5)β2 0

0 0 0 0

⎤
⎥⎥⎦ .(139)

Thus, looking back to (116), the general discrete-ordinates solution for (99) can
be written as

G(y,±ξi) = G∗(y,±ξi) +

4N∑
j=4

AjΦ(νj ,±ξi)e
−y/νj ,(140)

taking into account that it is not allowed to diverge exponentially as y tends to infinity.
If we use (140) to evaluate (the discrete-ordinates version) (106) and (107) and

we take the asymptotic part (the exponential terms were ignored) of the resulting
expressions, we can write

N∗
1 (y) = A1 −B2y,(141)

N∗
2 (y) = A2 −B3y,(142)

T ∗
1 (y) = A3 + (c1B2 + c2B3)y(143)

and

T ∗
2 (y) = A3 + (c1B2 + c2B3)y.(144)
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But again, as in the one gas case, two of the exact solutions, (118), satisfy the
boundary condition, (101), such that the constants A1 and A2 cannot be determined
from that boundary condition (density perturbations are not uniquely defined). As
we did in the one gas case we make use of the condition given by (108) along with a
normalization condition, similar to (62), to write

A1 = −A3,(145)

A2 = −A3(146)

and

c1B2 + c2B3 = K.(147)

In (147) we choose to write B3 in terms of B2 such that the general solution of the
problem given by (99) is finally written as in (140) with

G∗(y, ξ) = A3R(ξ) + B1G4(ξ) + B2

[
[yH1(ξ) + F1(ξ)] − (c1/c2)[yH2(ξ) + F2(ξ)]

]
+ (K/c2)[yH2(ξ) + F2(ξ)].(148)

Here

R(ξ) =

⎡
⎢⎢⎣

ξ2 − 3/2
1

ξ2 − 3/2
1

⎤
⎥⎥⎦ .(149)

The application of (140) in the discrete ordinates version of the boundary condition

G(0, ξi) = D

N∑
k=1

ωkF(ξk, ξi)G(0,−ξk)(150)

results in the following linear system:

A3C
3(ξi) + B1C

4(ξi) + B2C
5(ξi) +

4N∑
j=4

Aj

{
Φ+(νj) − D∗

N∑
k=1

ωkF
∗(ξk, ξi)Φ−(νj)

}

= K

{
− J∗

1(ξi) + D∗
N∑

k=1

ωkF
∗(ξk, ξi)J

∗
1(−ξk)

}
,(151)

where the components of the vectors Φ+(νj) and Φ−(νj) are given by (113) and (114),

C3(ξi) = R∗(ξi) − D∗
N∑

k=1

ωkF
∗(ξk, ξi)R

∗(−ξk),(152)

C4(ξi) = G∗
4(ξi) − D∗

N∑
k=1

ωkF
∗(ξk, ξi)G

∗
4(−ξk)(153)
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and

C5(ξi) = K∗
1(ξi) − D∗

N∑
k=1

ωkF
∗(ξk, ξi)K

∗
1(−ξk).(154)

Here R∗(ξ) is a 4N ×1 vector where each N component is of the type of (149); K∗
1(ξ)

is a 4N × 1 vector defined by N components of the type

K1(ξ) = F1(ξ) − (c1/c2)F2(ξ),(155)

and J∗
1(ξ) is a 4N × 1 vector where each N component is of the type

J1(ξ) = (1/c2)F2(ξ).(156)

In addition D∗ and F∗(ξk, ξ) are 4N × 4N diagonal matrices defined, looking back to
(102) and (103), by

D∗ = diag
{
D,D, . . . ,D

}
(157)

and

F∗(ξk, ξ) = diag
{
F(ξ1, ξ),F(ξ2, ξ), . . . ,F(ξN , ξ)

}
.(158)

Based on the derivation above we can write the density perturbation vector (two
species) as

N(y) = −
[

A3 + B2y
A3 +

(
K/c2 − (c1/c2)B2

)
y

]
+

4N∑
j=4

Aj e−y/νj M1(νj),(159)

where

M1(νj) = π−1/2
N∑

k=1

ωke
−ξk

2

[
1 0 0 0
0 0 1 0

]
[Φ(νj , ξk) + Φ(νj ,−ξk)].(160)

The components Tα(y), α = 1, 2, define the temperature perturbation vector

T(y) = (A3 + Ky)

[
1
1

]
+

2

3

4N∑
j=4

Aj e−y/νj M2(νj),(161)

where

M2(νj) = π−1/2
N∑

k=1

ωke
−ξk

2

[
ξ2
k − 1/2 1 0 0

0 0 ξ2
k − 1/2 1

]
[Φ(νj , ξk) + Φ(νj ,−ξk)].

(162)

From (161), and taking into account (143) and (144), along with definitions (for each
species) analogous to (75), we define the temperature-jump coefficient

ζ = A3/K,(163)

which we found to be the same for both species of the gas.
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8. Computational aspects and numerical results. To implement the ADO
solution, in order to define the quantities of interest, the first step is to define the
associated quadrature scheme. In this sense, for most of the problems in the rarefied
gas dynamics field that have been solved by this method [25, 26, 27, 28, 29, 30] the
following approach has been shown to be adequate: to map the interval of integra-
tion into the interval [0, 1] and then map the Gauss–Legendre points linearly to this
interval. In general, the expression

u(ξ) = e−ξ(164)

is the one used to map the interval [0,∞) into [0, 1]. After that, the eigenvalue
problem which defines the separation constants and the elementary solutions can be
formulated and solved. Next, the linear systems which define the exact solutions have
to be considered. Continuing, the linear algebraic system for the arbitrary constants
of the general solution is solved and then the quantities of interest are evaluated. In
this way, the algorithm is fast and easy to implement.

The results presented in Tables 1 to 14 (which we believe to be correct for all
digits listed, plus or minus one in the last digit) were obtained with N = 60 quadrature
points for the one gas case and N = 80 quadrature points for the mixtures case (except
for αn = 0.01, where N = 120). For both cases we consider K = 1. The developed
(and not particularly optimized) Fortran code requires around four seconds to yield,
on a 3.0 GHz Pentium 4 machine, all quantities of interest for a general mixture case.

For the one gas case we used ε = εt (according to (8) and (9)), in general,
in order to obtain the numerical results shown (otherwise we added the statement
ε = εp in the table). We also note the notation DS and CL for referring to the use
of, respectively, diffuse-specular and Cercignani–Lampis boundary condition. In fact,
as we have worked on trying to establish a very general and complete comparison
on results for different problems, provided by different model equations, we list in
this work some results we obtained by the ADO method, for the temperature-jump
problem, based on the BGK and S-models with diffuse-specular and Cercignani–
Lampis boundary condition, which were not available.

Continuing, we note that, in Tables 8 to 11, and in the text below, we use the no-
tation anα and atα, for the species α = 1, 2, to refer to the accommodation coefficients,
respectively, of energy and tangential momentum.

In order to generate numerical results, we consider three mixtures cases related
to the following gases: (i) Ne-Ar, (ii) He-Xe and (iii) He-Ar, as follow:

• Ne-Ar: m1 = 20.183, m2 = 39.948, and d2/d1 = 1.406

case I at1 = 0.849, at2 = 0.916, an1 = 0.1, an2 = 0.4

case II at1 = 0.31, at2 = 0.67, an1 = 0.1, an2 = 0.4

case III at1 = 0.849, at2 = 0.916, an1 = 0.082, an2 = 0.222

• He-Xe: m1 = 4.0026, m2 = 131.30, and d2/d1 = 2.226

case IV at1 = 0.20, at2 = 0.95, an1 = 0.01, an2 = 0.7

case V at1 = 0.20, at2 = 0.95, an1 = 0.05, an2 = 0.4

case VI at1 = 0.882, at2 = 1.014, an1 = 0.01, an2 = 0.7

• He-Ar: m1 = 4.0026, m2 = 39.948, and d2/d1 = 1.665

case VII at1 = 0.20, at2 = 0.916, an1 = 0.01, an2 = 0.4

case VIII at1 = 0.882, at2 = 0.91, an1 = 0.01, an2 = 0.4

case IX at1 = 0.20, at2 = 0.916, an1 = 0.01, an2 = 0.222
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The data set used, and listed above, regarding the mass and diameter of the
particles, was reproduced from [32, 41, 42].

In addition, we used experimental data for defining the values of the tangential
momentum accommodation coefficient: cases II, IV, and V were formulated in terms
of data provided by Lord [43]; in cases I, III, and VI, the value of that coefficient was
reproduced from [11], which followed the experimental work of Porodnov et al. [44].
Cases VII to IX were formulated based on the previous cases.

Since, to the best of our knowledge, experimental results for the (normal) energy
accommodation coefficient are not available, we chose numerical values based (order
of magnitude) on the thermal accommodation coefficient of the gases listed above.
We used, in this way, the works of Thomas [45] and Thomas and Lord [46].

The results were tabulated, for the three mixtures, in terms of the molar concen-
tration defined in terms of the first particle as

C =
n1/n2

1 + n1/n2
.(165)

In addition to provide results, which we believe were not available in the liter-
ature, for this problem, based on a more general law for describing the gas-surface
interaction, we have been able to perform many simulations from which we try to
point out some aspects, commented below.

First of all, we think that an important aspect of providing results, based on
models related to the normal energy accommodation coefficient, which may not be
measured, is the possibility of using quantities we are able to evaluate, in connection
with a procedure for estimating parameters [47], in order to estimate that coefficient
numerically. In this sense, we include in Tables 1 to 14, in addition to the temperature-
jump coefficient, results for temperature and density perturbations, for several values
of accommodation coefficients, and for different values of concentration, in the mixture
cases.

In regard to the one gas case, based on the experience with previous analysis for
other classes of problems [28], the fact of getting results for the BGK and S-model
in agreement, in general, in one or two digits (for a choice of the mean-free path),
was, in fact, used as a way of having some confidence in our program. In addition,
we confirm previous observation [32] that both models lead to the same value for
the temperature-jump coefficient but slightly different values for the temperature and
density perturbation; we also simulate (considering n1 = 0, n2 = 0 or m1 = m2 and
d1 = d2) the one gas case, from the McCormack model, and the results agree perfectly
with the S-model, as observed previously [32].

Having used the ADO method, which is an analytical approach to the spatial
variable, to deal with the temperature-jump problem for a wide class of model equa-
tions, in the one gas case, with Cercignani–Lampis and Maxwell boundary condition,
and having compared with available results [48] based on the linearized Boltzmann
equation (LBE), we can say that in general the evaluation of this coefficient is not
sensitive to the model equation to be used (see Table 7); comparisons between results
(see Tables 1 to 5) obtained by the S-model and the LBE show agreement in one to
two digits.

We generate results, showed in Tables 2 to 4, for a small value of αn, which
is, in general, hard to obtain accurately or even very much time consuming, from
numerical approaches, but is consistent, in order of magnitude, with experimental
values available for the total energy accommodation coefficient. It is noted that the



2172 R. F. KNACKFUSS AND L. B. BARICHELLO

Table 1

The temperature-jump coefficient ζ.

α BGK-DS S-DS(ε = εp) S-DS LBE-DS[31]
0.1 2.145012(1) 3.21752(1) 2.14501(1) 2.1349(1)
0.2 1.034747(1) 1.55212(1) 1.03475(1) 1.0251(1)
0.3 6.630514 9.94577 6.63051 6.5396
0.4 4.760333 7.14050 4.76033 4.6745
0.5 3.629125 5.44369 3.62912 3.5485
0.6 2.867615 4.30142 2.86761 2.7922
0.7 2.317534 3.47630 2.31753 2.2474
0.8 1.899741 2.84961 1.89974 1.8349
0.9 1.570264 2.35540 1.57026 1.5108
1.0 1.302716 1.95407 1.30272 1.2486

Table 2

The temperature-jump coefficient ζ, αt = 0.25.

αn BGK-CL S-CL(ε = εp) S-CL S-CL[24] LBE-CL[48]
0.01 9.75601 1.46340(1) 9.75601 — —
0.25 5.78950 8.68426 5.78950 8.684 5.7318
0.5 3.84176 5.76263 3.84176 5.763 3.7707
0.75 2.72408 4.08612 2.72408 4.087 2.6655
1.0 2.00553 3.00830 2.00553 3.009 1.9609

temperature-jump coefficient is very sensitive to the normal energy accommodation
coefficient. In fact, from the cases shown in Figures 1 and 2, it is clear that the
temperature-jump coefficient depends on both accommodation coefficients (the same
is observed for the mixtures cases later on) and the significant variation occurs mainly
when αn and αt are lower than 0.5. In these cases, in comparison with the results
shown in Table 1 based on the Maxwell boundary condition, we see great increase in
the jump values.

In Tables 12 to 14, we present results for the temperature-jump coefficient for the
mixtures cases I to IX described previously in this section. We included the cases of
concentration equal to one (n1 = 1 and n2 = 0) and equal to zero (n1 = 0 and n2 = 1),
which reproduce exactly the results obtained for the one gas case (respectively, gas 1
and gas 2) and that may show how mixing a very small quantity of a different species
can produce significant change in the jump coefficient. In fact, as observed for the case
of Maxwell boundary conditions [32, 42], in Table 13, we note a small decrease on the
value of the coefficient when we simulate the one gas case (species one). It seems that
the (bigger) molecular mass ratio can be a reason for noticing this behavior; however,
the same (decreasing) behavior is observed in Table 14, for the case VIII, and then,
based on comparisons with cases VII and IX, one can also see for the same mixture
the influence of the accommodation coefficients. However, one has to remember that
the real values for αn are unknown, and it has to be considered as a limitation for
more specific conclusions.

Finally, in Figures 3 to 6, we tried to analyze the influence of each one of the
accommodation coefficients, for the mixtures cases, based on cases I to VI. It really
shows that the temperature-jump coefficient depends on both accommodation coeffi-
cients and mainly on the value of αn. In addition, from Figures 4 and 6, the influence
of the mass ratio in the magnitude order of the jump coefficient can be seen.
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Table 3

The temperature-jump coefficient ζ, αt = 0.5.

αn BGK-CL S-CL(ε = εp) S-CL S-CL[24] LBE-CL[48]
0.01 5.66914 8.50371 5.66914 — —
0.25 3.88593 5.82890 3.88593 5.828 3.8696
0.5 2.78041 4.17061 2.78041 4.170 2.7282
0.75 2.05839 3.08759 2.05839 3.088 2.0010
1.0 1.55658 2.33487 1.55658 2.335 1.5015

Table 4

The temperature-jump coefficient ζ, αt = 1.0.

αn BGK-CL S-CL(ε = εp) S-CL S-CL[24] LBE-CL[48]
0.01 4.20852 6.31278 4.20852 — —
0.25 3.04475 4.56713 3.04475 4.567 3.0524
0.5 2.25090 3.37635 2.25090 3.376 2.2161
0.75 1.70032 2.55048 1.70032 2.551 1.6514
1.0 1.30272 1.95407 1.30272 1.954 1.2486

Table 5

Temperature T (y) and density N(y) perturbations, α = 0.5.

S-DS(ε = εp) S-DS BGK-DS[30] LBE-DS[31]
y T (y) N(y) T (y) N(y) T (y) N(y) T (y) N(y)

0.0 4.37396 –4.61156 2.91597 –3.07437 2.91597 –3.07437 2.9250 –3.1153
0.1 4.72063 –4.92495 3.22570 –3.35355 3.18042 –3.31664 3.2342 –3.3647
0.2 4.94416 –5.12484 3.42167 –3.52947 3.36278 –3.48323 3.4238 –3.5257
0.3 5.13250 –5.29421 3.58709 –3.67966 3.52167 –3.62947 3.5831 –3.6654
0.4 5.30131 –5.44717 3.73615 –3.81653 3.66754 –3.76478 3.7268 –3.7944
0.5 5.45733 –5.58965 3.87478 –3.94514 3.80489 –3.89310 3.8605 –3.9167
0.6 5.60422 –5.72479 4.00614 –4.06814 3.93615 –4.01653 3.9874 –4.0345
0.7 5.74424 –5.85449 4.13216 –4.18706 4.06283 –4.13633 4.1093 –4.1491
0.8 5.87889 –5.98001 4.25410 –4.30291 4.18593 –4.25334 4.2275 –4.2612
0.9 6.00921 –6.10220 4.37281 –4.41637 4.30614 –4.36814 4.3428 –4.3715
1.0 6.13600 –6.22170 4.48894 –4.52793 4.42400 –4.48113 4.4558 –4.4802
2.0 7.29393 –7.33511 5.57466 –5.58912 5.52928 –5.55674 5.5196 –5.5251
3.0 8.36200 –8.38367 6.60474 –6.61081 6.57466 –6.58912 – –
4.0 9.39637 –9.40840 7.61737 –7.62010 7.59758 –7.60560 – –
5.0 1.04152(1) –1.04221(1) 8.62318 –8.62448 8.61013 –8.61476 – –
6.0 1.14260(1) –1.14302(1) 9.62601 –9.62665 9.61737 –9.62011 – –
7.0 1.24325(1) –1.24350(1) 1.06274(1) –1.06278(1) 1.06217(1) –1.06234(1) – –
8.0 1.34365(1) –1.34380(1) 1.16282(1) –1.16284(1) 1.16243(1) –1.16254(1) – –
9.0 1.44390(1) –1.44400(1) 1.26286(1) –1.26287(1) 1.26260(1) –1.26267(1) – –

10.0 1.54406(1) –1.54412(1) 1.36288(1) –1.36289(1) 1.36271(1) –1.36275(1) – –
20.0 2.54436(1) –2.54436(1) 2.36291(1) –2.36291(1) 2.36291(1) –2.36291(1) – –
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Table 6

Temperature T (y) and density N(y) perturbations, αt = 0.5, αn = 0.5.

BGK-CL S-CL(ε = εp) S-CL
y T (y) N(y) T (y) N(y) T (y) N(y)

0.0 2.10157 –2.56938 3.15236 –3.85407 2.10157 –2.56938
0.1 2.34143 –2.71400 3.46214 –4.02100 2.38212 –2.72494
0.2 2.51598 –2.83371 3.67398 –4.15056 2.57076 –2.84749
0.3 2.67076 –2.94749 3.85614 –4.27124 2.73298 –2.96295
0.4 2.81423 –3.05829 4.02135 –4.38743 2.88054 –3.07492
0.5 2.95014 –3.16724 4.17520 –4.50085 3.01854 –3.18477
0.6 3.08054 –3.27492 4.32081 –4.61238 3.14976 –3.29315
0.7 3.20674 –3.38167 4.46011 –4.72251 3.27590 –3.40045
0.8 3.32960 –3.48770 4.59441 –4.83155 3.39810 –3.50691
0.9 3.44976 –3.59315 4.72464 –4.93973 3.51717 –3.61267
1.0 3.56767 –3.69812 4.85151 –5.04718 3.63369 –3.71786
2.0 4.67538 –4.73195 6.01307 –6.09793 4.72288 –4.75046
3.0 5.72288 –5.75046 7.08432 –7.12570 5.75467 –5.76525
4.0 6.74708 –6.76147 8.12062 –8.14220 6.76804 –6.77248
5.0 7.76037 –7.76823 9.14056 –9.15235 7.77418 –7.77617
6.0 8.76804 –8.77248 1.01520(1) –1.01587(1) 8.77716 –8.77810
7.0 9.77261 –9.77519 1.11589(1) –1.11628(1) 9.77867 –9.77912
8.0 1.07754(1) –1.07769(1) 1.21631(1) –1.21654(1) 1.07795(1) –1.07797(1)
9.0 1.17772(1) –1.17781(1) 1.31657(1) –1.31671(1) 1.17799(1) –1.17800(1)

10.0 1.27783(1) –1.27788(1) 1.41674(1) –1.41683(1) 1.27801(1) –1.27802(1)
20.0 2.27804(1) –2.27804(1) 2.41705(1) –2.41705(1) 2.27804(1) –2.27804(1)

Table 7

The temperature-jump coefficient ζ, α = 0.5 with Maxwell boundary condition.

Model ζ
BGK 3.629125[30]
Williams 3.435960[30]
Rigid-sphere 3.476180[30]
S (ε = εp) 5.443688
S (ε = εt) 3.629125
LBE 3.5485[31]
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Table 8

Density and temperature perturbations for the mixture Ne-Ar, C = 0.3, at1 = 0.31, an1 = 0.10,
at2 = 0.67, an2 = 0.40, ζ = 5.609842.

y N1(y) N2(y) T1(y) T2(y)
0.0 –6.094582 –5.020045 5.003068 3.628826
0.1 –6.093327 –5.196696 5.221407 4.100402
0.2 –6.114674 –5.343053 5.381062 4.408179
0.3 –6.147316 –5.482370 5.524230 4.664051
0.4 –6.187790 –5.617862 5.658380 4.889534
0.5 –6.234186 –5.750740 5.786684 5.094294
0.6 –6.285266 –5.881609 5.910838 5.283771
0.7 –6.340156 –6.010827 6.031871 5.461415
0.8 –6.398206 –6.138629 6.150460 5.629586
0.9 –6.458912 –6.265184 6.267077 5.789991
1.0 –6.521875 –6.390621 6.382064 5.943908
2.0 –7.225736 –7.600364 7.479400 7.273053
3.0 –7.990690 –8.758942 8.529533 8.421366
4.0 –8.775655 –9.889628 9.558614 9.498200
5.0 –9.567645 –1.100422(1) 1.057641(1) 1.054113(1)
6.0 –1.036200(1) –1.210921(1) 1.158764(1) 1.156635(1)
7.0 –1.115696(1) –1.320832(1) 1.259490(1) 1.258170(1)
8.0 –1.195190(1) –1.430375(1) 1.359967(1) 1.359130(1)
9.0 –1.274662(1) –1.539684(1) 1.460285(1) 1.459745(1)

10.0 –1.354108(1) –1.648842(1) 1.560499(1) 1.560145(1)
20.0 –2.147838(1) –2.738018(1) 2.560967(1) 2.560958(1)

Table 9

Density and temperature perturbations for the mixture Ne-Ar, C = 0.8, at1 = 0.31, an1 = 0.10,
at2 = 0.67, an2 = 0.40, ζ = 8.594219.

y N1(y) N2(y) T1(y) T2(y)
0.0 –8.750733 –7.120369 7.090958 5.242827
0.1 –8.783852 –7.506333 7.459928 6.084367
0.2 –8.835794 –7.786932 7.709797 6.587750
0.3 –8.897839 –8.033746 7.922874 6.982114
0.4 –8.966726 –8.260064 8.114582 7.312956
0.5 –9.040610 –8.471952 8.291754 7.600955
0.6 –9.118298 –8.672914 8.458194 7.857802
0.7 –9.198955 –8.865234 8.616298 8.090910
0.8 –9.281972 –9.050521 8.767701 8.305339
0.9 –9.366890 –9.229963 8.913578 8.504716
1.0 –9.453352 –9.404472 9.054812 8.691742
2.0 –1.036126(1) –1.098707(1) 1.031358(1) 1.018410(1)
3.0 –1.129379(1) –1.242872(1) 1.143514(1) 1.138000(1)
4.0 –1.222722(1) –1.381496(1) 1.249962(1) 1.247343(1)
5.0 –1.315743(1) –1.517507(1) 1.353609(1) 1.352266(1)
6.0 –1.408435(1) –1.652151(1) 1.455762(1) 1.455032(1)
7.0 –1.500869(1) –1.786030(1) 1.557073(1) 1.556658(1)
8.0 –1.593117(1) –1.919461(1) 1.657891(1) 1.657646(1)
9.0 –1.685235(1) –2.052622(1) 1.758410(1) 1.758262(1)

10.0 –1.777263(1) –2.185615(1) 1.858746(1) 1.858654(1)
20.0 –2.695996(1) –3.513052(1) 2.859404(1) 2.859402(1)
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Table 10

Density and temperature perturbations for the mixture He-Xe, C = 0.3, at1 = 0.20, an1 = 0.05,
at2 = 0.95, an2 = 0.40, ζ = 9.208216.

y N1(y) N2(y) T1(y) T2(y)
0.0 –9.859661 –6.752228 8.842905 4.550386
0.1 –9.879711 –6.953128 9.108078 5.171764
0.2 –9.907475 –7.131582 9.294006 5.587051
0.3 –9.940046 –7.306519 9.454962 5.936198
0.4 –9.976171 –7.479783 9.601494 6.246081
0.5 –1.001510(1) –7.651818 9.738338 6.528768
0.6 –1.005634(1) –7.822732 9.868148 6.791054
0.7 –1.009952(1) –7.992533 9.992600 7.037259
0.8 –1.014435(1) –8.161199 1.011283(1) 7.270349
0.9 –1.019063(1) –8.328707 1.022967(1) 7.492473
1.0 –1.023817(1) –8.495034 1.034371(1) 7.705251
2.0 –1.075993(1) –1.009326(1) 1.139936(1) 9.508343
3.0 –1.132934(1) –1.158524(1) 1.239185(1) 1.099113(1)
4.0 –1.192301(1) –1.299418(1) 1.336773(1) 1.231344(1)
5.0 –1.253117(1) –1.434063(1) 1.434089(1) 1.353987(1)
6.0 –1.314884(1) –1.564032(1) 1.531607(1) 1.470376(1)
7.0 –1.377312(1) –1.690495(1) 1.629469(1) 1.582465(1)
8.0 –1.440213(1) –1.814319(1) 1.727694(1) 1.691501(1)
9.0 –1.503463(1) –1.936146(1) 1.826251(1) 1.798316(1)

10.0 –1.566972(1) –2.056457(1) 1.925092(1) 1.903493(1)
20.0 –2.207846(1) –3.225069(1) 2.921173(1) 2.919434(1)

Table 11

Density and temperature perturbations for the mixture He-Xe, C = 0.8, at1 = 0.20, an1 = 0.05,
at2 = 0.95, an2 = 0.40, ζ = 16.699401.

y N1(y) N2(y) T1(y) T2(y)
0.0 –1.683016(1) –1.227521(1) 1.458384(1) 8.714419
0.1 –1.686467(1) –1.286386(1) 1.500194(1) 9.979183
0.2 –1.690923(1) –1.332670(1) 1.528673(1) 1.079195(1)
0.3 –1.696028(1) –1.374765(1) 1.552854(1) 1.145073(1)
0.4 –1.701606(1) –1.414201(1) 1.574502(1) 1.201558(1)
0.5 –1.707549(1) –1.451664(1) 1.594411(1) 1.251425(1)
0.6 –1.713784(1) –1.487549(1) 1.613030(1) 1.296271(1)
0.7 –1.720259(1) –1.522113(1) 1.630641(1) 1.337133(1)
0.8 –1.726932(1) –1.555540(1) 1.647441(1) 1.374735(1)
0.9 –1.733772(1) –1.587970(1) 1.663570(1) 1.409609(1)
1.0 –1.740755(1) –1.619513(1) 1.679132(1) 1.442160(1)
2.0 –1.815177(1) –1.900579(1) 1.815832(1) 1.688453(1)
3.0 –1.893156(1) –2.143660(1) 1.935084(1) 1.861137(1)
4.0 –1.972025(1) –2.366427(1) 2.046522(1) 2.001624(1)
5.0 –2.050975(1) –2.577354(1) 2.153768(1) 2.125641(1)
6.0 –2.129757(1) –2.781055(1) 2.258546(1) 2.240502(1)
7.0 –2.208315(1) –2.980205(1) 2.361789(1) 2.349988(1)
8.0 –2.286658(1) –3.176423(1) 2.464036(1) 2.456193(1)
9.0 –2.364816(1) –3.370713(1) 2.565619(1) 2.560336(1)

10.0 –2.442825(1) –3.563718(1) 2.666750(1) 2.663148(1)
20.0 –3.219264(1) –5.471661(1) 3.669732(1) 3.669609(1)
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Table 12

The temperature-jump coefficient ζ for the mixture Ne-Ar with CL boundary condition.

C case I case II case III
0.00 3.819923 4.165162 4.763477
0.10 4.026792 4.624545 4.884249
0.20 4.229354 5.105370 5.001942
0.30 4.427408 5.609842 5.116410
0.40 4.620807 6.140509 5.227559
0.50 4.809467 6.700354 5.335369
0.60 4.993409 7.292911 5.439917
0.70 5.172797 7.922448 5.541419
0.80 5.348012 8.594219 5.640298
0.90 5.519769 9.314559 5.737289
0.94 5.587756 9.560220 5.775806
1.00 5.689301 1.009305(1) 5.833604

Table 13

The temperature-jump coefficient ζ for the mixture He-Xe with CL boundary condition.

C case IV case V case VI
0.00 2.699092 3.805644 2.694548
0.10 4.980593 5.930889 3.592355
0.20 6.918308 7.665855 4.242706
0.30 8.703196 9.208216 4.776130
0.40 1.043710(1) 1.066110(1) 5.253175
0.50 1.218908(1) 1.209149(1) 5.708463
0.60 1.401600(1) 1.355138(1) 6.165612
0.70 1.596817(1) 1.508366(1) 6.641839
0.80 1.806406(1) 1.669940(1) 7.139433
0.90 2.004926(1) 1.816252(1) 7.558874
0.94 2.041581(1) 1.835065(1) 7.560751
1.00 1.775163(1) 1.577430(1) 6.407679

Table 14

The temperature-jump coefficient ζ for the mixture He-Ar with CL boundary condition.

C case VII case VIII case IX
0.00 3.819923 3.823209 4.763477
0.10 4.830295 4.049216 5.771355
0.20 5.902419 4.287304 6.829256
0.30 7.054171 4.539984 7.953144
0.40 8.305739 4.811649 1.031862(1)
0.50 9.680309 5.101938 1.047218(1)
0.60 1.120361(1) 5.418278 1.188326(1)
0.70 1.286814(1) 5.760482 1.348900(1)
0.80 1.476387(1) 6.118533 1.520249(1)
0.90 1.666506(1) 6.434606 1.690730(1)
0.94 1.731059(1) 6.503639 1.746042(1)
1.00 1.775163(1) 6.407678 1.775163(1)
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Fig. 1. The temperature-jump coefficient: one gas case.

Fig. 2. The temperature-jump coefficient: one gas case.
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Fig. 3. The temperature-jump coefficient: mixture Ne-Ar.

Fig. 4. The temperature-jump coefficient: mixture Ne-Ar.
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Fig. 5. The temperature-jump coefficient: mixture He-Xe.

Fig. 6. The temperature-jump coefficient: mixture He-Xe.
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9. Concluding comments. An analytical version of the discrete-ordinates
method was used to develop a solution for the temperature-jump problem in rarefied
gas dynamics, modeled by the S-model and the McCormack model, for the one gas
and binary gas mixture cases, respectively. The gas-surface interaction was described
by the Cercignani–Lampis boundary condition. The dependence of jump coefficient
on both accommodation coefficients was shown, which points out the importance of
special attention to the description of the gas-surface interaction. The evaluation of
the jump coefficient for a binary mixture of gases shows more significant difference
from the one gas case for a great mass ratio. Once more the discrete-ordinates solution
was found to be very precise.

Appendix A. Basic definitions.
In (82),

K
(1)
1,1(c

′, c) = 1 + {2[1 − η
(1)
1,2] − η

(2)
1,2(c′

2 − 5/2)}c′ · c,(A.1)

K
(2)
1,1(c

′, c) = (2/3)[1 − 2r∗η
(1)
1,2](c′

2 − 3/2)(c2 − 3/2),(A.2)

K
(3)
1,1(c

′, c) = 2�1[(c
′ · c)2 − (1/3)c′

2
c2],(A.3)

K
(4)
1,1(c

′, c) = [(4/5)β1(c
′2 − 5/2) − η

(2)
1,2](c2 − 5/2)c′ · c,(A.4)

K
(1)
2,1(c

′, c) = r{2η(1)
1,2 + η

(2)
1,2[r2(c′

2 − 5/2) + c2 − 5/2]}c′ · c,(A.5)

K
(2)
2,1(c

′, c) = (4/3)r∗η
(1)
1,2(c′

2 − 3/2)(c2 − 3/2),(A.6)

K
(3)
2,1(c

′, c) = 2η
(4)
1,2[(c′ · c)2 − (1/3)c′

2
c2],(A.7)

K
(4)
2,1(c

′, c) = (4/5)η
(6)
1,2(c′

2 − 5/2)(c2 − 5/2)c′ · c,(A.8)

K
(1)
2,2(c
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(1)
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(2)
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K
(2)
2,2(c
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(1)
2,1](c′

2 − 3/2)(c2 − 3/2),(A.10)

K
(3)
2,2(c

′, c) = 2�2[(c
′ · c)2 − (1/3)c′

2
c2],(A.11)

K
(4)
2,2(c

′, c) = [(4/5)β2(c
′2 − 5/2) − η

(2)
2,1](c2 − 5/2)c′ · c,(A.12)

K
(1)
1,2(c
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2,1 + η

(2)
2,1[s2(c′

2 − 5/2) + c2 − 5/2]}c′ · c,(A.13)
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K
(2)
1,2(c

′, c) = (4/3)s∗η
(1)
2,1(c′

2 − 3/2)(c2 − 3/2),(A.14)

K
(3)
1,2(c

′, c) = 2η
(4)
2,1[(c′ · c)2 − (1/3)c′

2
c2](A.15)

and

K
(4)
1,2(c

′, c) = (4/5)η
(6)
2,1(c′

2 − 5/2)(c2 − 5/2)c′ · c.(A.16)

In the definitions above it is used that

r = (m1/m2)
1/2 and s = (m2/m1)

1/2(A.17)

and

r∗ =
r2

1 + r2
and s∗ =

s2

1 + s2
.(A.18)

In addition,
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with

η
(k)
i,j =

ν
(k)
i,j

γi
.(A.23)

Continuing, following McCormack and Siewert’s works [16, 32], we write

ν
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α,β =

16
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ν
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Here

mα,β =
mαmβ

mα + mβ
.(A.30)

Finally, the Ω functions are the Chapman–Cowling integrals [49, 50]

Ωij
α,β =

(j + 1)!

8

[
1 − 1 + (−1)i

2(i + 1)

](
πkT

2mα,β

)1/2

(dα + dβ)2.(A.31)

We note that here d1 and d2 are the diameters of the two types of particles and, as
defined in the text, k is the Boltzmann constant and T0 is a reference temperature.

Appendix B. The elements of the kernel.
We follow Siewert [32] and express the components of the matrix KM (ξ′, ξ) in

(99) as
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AN ASYMPTOTIC ONE-DIMENSIONAL MODEL TO DESCRIBE
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Abstract. This is the third in a series of papers devoted to a model describing tunnel fire
events (see [I. Gasser and J. Struckmeier, Math. Methods Appl. Sci., 25 (2002), pp. 1231–1249] and
[I. Gasser, Math. Methods Appl. Sci., 26 (2003), pp. 1327–1347]). Here the transient behavior of the
model is studied. In particular the stability of stationary solutions is analyzed. A good understanding
of related bifurcation phenomena is obtained (at least numerically). This accelerates progress in the
study of the stability of flow conditions in tunnels during a tunnel fire.
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1. Introduction. Due to some serious fire accidents in the recent past, tunnel
fires have become an interesting topic not only for CFD engineers. In the last few
decades various mathematical models based on a gas-dynamic description of the air
in the tunnel have been proposed. A good overview of the modeling approaches is
given in [BJL, P]. A recent survey of computer codes for tunnel fire simulations can
be found in [OC] (and [F]). In this context the internet platform [FiT] should be
mentioned also.

From a modeling point of view there are mainly three difficult issues:
• very low Mach numbers,
• large temperature differences such that significant heat transport takes place,
• the turbulent character of the flow.

In particular, the combination of the first two points induces a serious problem. The
second point excludes a pure incompressible description (with the standard Boussinesq
approximation for taking buoyancy effects into account). On the other hand, there is
the known problem of fully compressible approaches in the low-Mach-number regime.
Although these facts are known (even in the tunnel-fire literature; see [BJL]), they
are often ignored due to the lack of alternatives.

From an application point of view a detailed knowledge of the three-dimensional
flow is in general not necessary. The main question arising from an application can of-
ten be answered by one-dimensional models. In addition, one-dimensional approaches
have important advantages over higher-dimensional models:

• there are simple ways to describe turbulence,
• numerical simulations are in general not very expensive,
• optimization strategies can be applied and solved in reasonable time.

Here we consider such a one-dimensional model, which was introduced in [GStr].
To our knowledge this is one of the first models derived from underlying fluid dynamics
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equations. The single dimension refers to the longitudinal spatial extension. This
model is derived in such a way that it allows us to combine both a good description
in the low-Mach-number regime and significant heat transport. The results obtained
show that the model seems to reflect the main features of tunnel fires. A good (at
least qualitative) agreement with results from experiments has been obtained (see
[GStr, G4]).

Stationary solutions of the model equation were discussed in [G1]. However, under
some critical conditions the steady flow through the tunnel may become unstable.
Then the transient behavior will become important. The goal of this paper is twofold.
First we study the dynamics of the one-dimensional initial-boundary value problem.
Second we determine stability conditions for the stationary solutions.

The paper is organized as follows. In section 2 we briefly present the model. Then
in section 3 we state the existence theory for the transient problem, and in section 4
we show numerical examples of the dynamics. The stability analysis is presented in
section 5.

2. The model. The model we are going to study here was derived in [GStr]. The
purpose of the model is to describe fire events in a long tunnel. The starting points
are the mass, momentum, and energy balances for a flow of compressible gas (air or
air-smoke mixture) in the tunnel. Due to the small ratio of the diameter d̃ of the
tunnel cross section and the length L̃ of the tunnel, a one-dimensional description can
be applied. In addition, the flow in the tunnel (even with fire) is a typical low-Mach-
number flow. Therefore an asymptotic analysis with respect to low Mach numbers
has been performed. Since in case of fire significant heat sources are involved the
densities cannot be assumed to be constant, and the resulting flow is compressible.

However, in the low-Mach-number limit the flow has characteristic properties of
an incompressible flow (infinite velocity of sound) and of a compressible flow (large
density variations) as well.

We briefly outline the derivation of the model. Let ρ, u, p, T be the dimensionless
density, velocity, pressure, and temperature of the flow in the tunnel, respectively. In
order to distinguish dimensionless quantities from their dimensional counterparts,
the latter are marked by .̃ The thermodynamic coordinates are scaled by their
corresponding values of the ambient air, p̃R, ρ̃R, T̃R, respectively. An appropriate
reference value for the velocities is given by

ũR =
Q̃(γ − 1)

Ãp̃R
,(1)

where Q̃ is the strength of all heat sources (fires) in the tunnel and Ã is the cross
section of the tunnel. The space coordinate x is naturally scaled with the length of the
tunnel L̃, and the time t is scaled with L̃/ũR. The constant γ = c̃p/c̃v is the ratio of the
specific heat capacities for constant pressure and constant volume of air, respectively.
Neglecting viscous stresses and heat conduction in the longitudinal direction, the
continuity equation, equation of motion, and energy equation in dimensionless form
read

ρt + (ρu)x = 0,(2)

ut + uux +

(
1

γM2

)
1

ρ
px = −pdv

u|u|
2

− fd sinα,

(ρT )t + (uρT )x + (γ − 1)pux = qf .
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These have to be supplemented by the equation of state for an ideal gas, p = ρT .
In the equation of motion we have considered the pressure loss pdvu|u|/2 and the

buoyancy force fd sinα. The scaled pressure loss coefficient pdv = L̃/d̃ ξ(Re), where
ξ(Re) is the pressure loss coefficient of a fully developed pipe flow and is a function
of the Reynolds number and the roughness of the pipe wall only. The buoyancy
parameter fd is defined by fd = L̃g̃/ũ2

R, where g̃ is the gravity acceleration. The
Mach number M = ũR/c̃ is the ratio of the reference velocity ũR to the speed of
sound of the reference state c̃2 = γp̃R/ρ̃R.

Typical values corresponding to the above scaling are

γ =
7

5
, c̃ = 341 ms−1, M2 = 8.6 · 10−6, Re = 6.7 · 105, P r = 0.72.(3)

Due to M ≈ 3 · 10−3 we are in the low-Mach-number regime. It is important to note
that the calculated Reynolds number indicates that the flow in the tunnel is turbulent.

The low Mach number is the reason for the above-mentioned difficulties in the
numerical treatment of (2). However, in the present application the Mach number is
always small (in time and in space). Therefore an expansion with respect to a low
Mach number (setting ε = γM2),

p = p0 + εp1 + O(ε2),(4)

is reasonable. This leads to p0 = p0(t). Since the tunnel is an open region, the leading
order pressure (which corresponds to the mean outside pressure) will not change in
time. Therefore p0 = const. Obviously we have p0 = 1 (such that the unscaled leading
order pressure is equal to pr). Then in leading order we have T = 1

ρ .

The leading order equations (in ε) are given by

ρt + uρx = −ρq,(5)

ut + uux +
1

ρ
px = −pdv

u|u|
2

− fd sinα,(6)

ux = q,(7)

with q = q(x, t) as time and space dependent (scaled) heat source. For more details
on the derivation of the model and scaling, see [GStr, G4].

As far as boundary data is concerned we prescribe Dirichlet data for the pressure
p at the entrance and the exit

p(t, 0) = pl(t), p(t, 1) = pr(t) ∀t > 0.(8)

Moreover, assuming no fire at the entrance and exit, we have q = 0 at the boundaries,
and therefore homogenous Neumann conditions for the velocity,

ux(t, 0) = ux(t, 1) = 0 ∀t > 0,(9)

hold. For the density we assume standard inflow boundary conditions

ρ(t, 0) = ρl(t) if u(t, 0) > 0, ρ(t, 1) = ρr(t) if u(t, 1) < 0 ∀t > 0.(10)

Initial data are prescribed for the density and the velocity:

u(0, x) = u0(x), ρ(0, x) = ρ0(x) ∀x ∈ [0, 1].(11)
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Thus, our model consists of (5)–(6), the boundary conditions (8)–(10), and the initial
conditions (11).

A first problem lies in the fact that we have two boundary conditions for the
pressure but only a first derivative of the pressure in the model. There are at least two
ways to resolve this problem. One possibility is to rewrite the model in the following
way [GStr]. Equation (7) is substituted by the x-derived velocity equation (6),

ρt + uρx = −ρq,(12) (
1

ρ
px

)
x

= −pdvq|u| − qxu− q2 − qt − fd cosααx,(13)

ut + uq +
1

ρ
px = −pdv

u|u|
2

− fd sinα.(14)

Thus we have an elliptic equation for the pressure which is consistent with two bound-
ary conditions (for the pressure). This formulation has the advantage that it can be
extended easily to higher dimensions [GST1, GST2, G4].

An alternative reformulation—restricted to one space dimension—is the following.
We eliminate the pressure by multiplying (6) by ρ and integrating over x ∈ [0, 1]. This
gives ∫ 1

0

ρutdx +

∫ 1

0

ρuuxdx + pr − pl = −
∫ 1

0

pdvρ
u|u|
2

dx−
∫ 1

0

fd sinαρdx.(15)

Equation (7) gives

u(x, t) = v(t) +

∫ x

0

q(y, t)dy = v(t) + Q(x, t),(16)

where Q(x, t) is a known function. Then we obtain the system

ρt + (v + Q)ρx = −ρq,(17)

Rvt + Rqv +

∫ 1

0

pdvρ
(v + Q)|v + Q|

2
dx = −RQt+Qq+fd sinα − pr + pl,(18)

for ρ and v, where R, Rq, RQt+Qq+fd sinα denote functionals applied to ρ(x, t) defined
by (for general f)

R(t) =

∫ 1

0

ρ(x, t)dx,(19)

Rf (t) =

∫ 1

0

ρ(x, t)f(x, t)dx.(20)

System (17)–(18) consists of an ordinary differential equation (ODE) for v and a
partial differential equation (PDE) for the density ρ. The only boundary conditions
needed are the inflow conditions (10) for the continuity equation. The conditions
on the pressure appear as parameters in (18). The condition on the velocity (9) is
automatically fulfilled by (16). In this paper we use this last formulation (17)–(18).

3. Global existence and uniqueness. In this section we focus on the global
existence and uniqueness of solutions of (17)–(18) with boundary conditions (10) and
initial conditions (11).

We formulate the following conditions:
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(A1) On the data in the equations:
(i) Let q = q(x, t) ≥ 0 be a smooth function on [0, 1]×[0,∞) with supp q(., t)

⊂ (0, 1) ∀t ∈ [0,∞).
(ii) Let pdv = pdv(x) be a smooth function on [0, 1] with pdv(x) > 0 ∀x ∈

[0, 1].
(iii) Let α = α(x) be a smooth function on [0, 1] with −π

2 < α(x) < π
2

∀x ∈ [0, 1].
(A2) On the boundary data:

(i) Let ρl = ρl(t) > 0 and ρr = ρr(t) > 0 be in C1[0, T ] ∀T > 0.
(ii) Let pl = pl(t) and pr = pr(t) be smooth functions for t ∈ [0,∞).

(A3) On the initial data:
(i) Let u0 = u0(x) = v0 +

∫ x

0
q(y, 0)dy for some constant v0.

(ii) Let ρ0 = ρ0(x) > 0 be a piecewise continuous differentiable function for
x ∈ [0, 1].

Before presenting the main existence result we state a result concerning lower and
upper bounds of the solutions of the continuity equation (17). In the following we use
the notation fmax(T ) = max(x,t)∈[0,1]×[0,T ] f(x, t).

Lemma 3.1. Let (A1)(i) hold. Let T > 0. Then for a given v ∈ C[0, T ] the
continuity equation (17) with initial ρ0 and boundary data (10) has a unique piecewise
continuously differentiable solution ρ on (x, t) ∈ [0, 1] × [0, T ]. It satisfies

0 < ρmin(T ) ≤ ρ(x, t) ≤ ρmax(T ) ∀(x, t) ∈ [0, 1] × [0, T ],(21)

with

ρmin(T ) = min
t∈[0,T ], x∈[0,1]

(ρl(t), ρr(t), ρ0(x)) e−qmax(T ),(22)

ρmax(T ) = max
t∈[0,T ], x∈[0,1]

(ρl(t), ρr(t), ρ0(x)).(23)

We also present the proof since it involves the characteristics on which the main
ideas of the existence analysis are based.

Proof. Consider a time interval [0, T ]. The characteristic curves η = η(t, x0, t0)
for t ∈ [0, T ], x, x0 ∈ [0, 1], are defined by

dη(t, x0, t0)

dt
= u(η(t, x0, t0), t) = v(t) + Q(η(t, x0, t0), t),

⎧⎨
⎩

η(0, x0, 0) = x0,
η(t0, 0, t0) = 0,
η(t0, 1, t0) = 1.

(24)

Given a continuous v = v(t), the right-hand side in (24) is continuous (in η and t) and
Lipschitz-continuous in η. The Lipschitz constant L satisfies L ≤ qmax(T ). Therefore
the characteristic curves are uniquely defined at every point (x, t) and do not intersect.

The continuity equation (17) reads along the characteristics

dρ(η(t, x0, t0), t)

dt
= −q(η(t, x0, t0), t)ρ(η(t, x0, t0), t),(25)

with

ρ(η(0, x0, 0), 0) = ρ0(x0) for 0 < η(t, x0, t0) < 1 ∀t ∈ [0, T ],

ρ(0, t) = ρ(η(t, 0, t), t) = ρl(t) for u(0, t) > 0,

ρ(1, t) = ρ(η(t, 1, t), t) = ρr(t) for u(1, t) < 0.
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The density does not increase along the characteristics; it decreases at most exponen-
tially in the region with nonvanishing heat-source q. This implies the estimates (21),
(22), (23).

Now we state the main global existence result.

Theorem 3.1. Let (A1)–(A3) hold. Then for all T > 0 there exists a unique solu-
tion (ρ, v)—ρ piecewise continuous differentiable in [0, 1]× [0, T ] and v ∈ C1[0, T ]—to
(17)–(18) with boundary conditions (10) and initial conditions (ρ0, v0) from (11).

The idea of the proof is a fixed point argument in the ODE (18). Clearly, in every
step we have to control the coefficients of the ODE (18), which involve the solution
of the PDE (17). Therefore, the proof becomes technical. Details on the proof are
given in [GSte2].

4. The transient behavior. Here we would like to discuss the transient be-
havior of the solutions of our model with respect to the applications. In [G1] the
stationary problem was analyzed. The result was that even in simple (realistic) cases
(and even without fire) multiple (realistic) solutions of the stationary problem may
exist. This depends mainly on the pressure difference at the entrance and exit and
on the slope profile in the tunnel. In addition, numerical simulations indicate that in
some cases more than one of these (multiple) solutions seem to be stable.

Numerical simulations in the transient problem for realistic tunnel examples have
been performed in [G4, GStr] in which data from experiments have been included.
Depending on the initial data, completely different long term behavior can be ob-
served. Therefore, the dynamics of the transient problem is all but trivial. Clearly,
this is of particular interest for the application.

Here we present an example to give an idea of the dynamics of the model (see
Figures 1–3). The example starts with initial data corresponding to a no-fire situation
in a tunnel with slope (see Table 1 for details). The pressure difference induces a
steady downward flow (in Figure 1, downwards means to the left) in the tunnel. Then
(in the time interval t ∈ [10, 15] minutes) a fire of strength Q = 6 MW is ignited in
the middle of the tunnel. Buoyancy forces reduce the driving force of the flow, but
they are too weak to compensate for the external pressure difference, and thus the
flow is still downward. The flow adjusts rapidly to a new stationary state. Below
(in Figure 1, to the left of) the heat source there is a hot air-smoke mixture; above
the fire there is the fresh cold air. Later (in the time interval t ∈ [60, 65] minutes)
the heat production of the fire is increased (8 MW heat source) and the transition
to the corresponding stationary state takes place (slowly). Now the buoyancy forces

Table 1

Data of tunnel and fire.

Length 4 km
Cross section 100 m2

Slope 3%
Pressure loss coefficient ξ 0.0956
Pressure-difference p(L) − p(0) 1013.55 mbar
Pressure-difference due to the altitude 14.4 mbar
Mean initial velocity −5.0 ms−1

Heat source q(x, t) = Q(t)δ(x) Q(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0 MW t < 10 min
linear cont. 10 min < t < 15 min
6MW 15 min < t < 60 min
linear cont. 60 min < t < 65 min
8MW 65 min < t
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Fig. 1. Temperature field (left) and the temperature at three time levels (right) in the transition
between three different stationary states corresponding to the data in Table 1.

acting on the hot air below the fire are strong enough to compensate for the outside
pressure difference, and thus the flow velocity decreases and finally the flow changes
its direction. When the flow velocity tends to zero the enthalpy produced by the fire
is not removed from the fire, and thus the temperature at the fire rises dramatically,
even enhancing the upward buoyancy forces. Then the air starts to flow upward, and
buoyancy accelerates the flow. With the onset of the flow in the upward direction the
fire is cooled again; however, the very hot air/smoke produced during the very slow
flow phase is still in the tunnel. This hot gas induces a large upward buoyancy force,
resulting in a positive velocity overshoot. From the left (lower) end, cold air is sucked
in, and thus the temperature of the fire is cooled, resulting in a cooler hot air-smoke
mixture above the fire, which in turn reduces the buoyancy and the upward velocity.
In Figure 2 we can see the flow velocity. In the right of Figure 2 we observe the
difference between the velocity at the entrance and the exit. This difference depends
on the strength of the heat source and has its maximum value in the final state (8 MW
heat source).

We want to point out the oscillating behavior that occurs as the fire is attaining
the final state. The temperature distribution has a discontinuity due the inversion
of the flow direction. This can be seen best in the contour plots of the temperature
distribution (Figure 3). The flow changes direction shortly after the first particles of
the air, which have been heated by the fire after its strength has been increased, reach
the left end of the tunnel. After the inversion of the flow direction, cold air is sucked
in. Therefore a contact discontinuity between the hot and the fresh cold air forms.
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Fig. 2. Velocity field (left) and the velocity at the entrance (upper curve) and exit (lower
curve) of the tunnel as a function of time (right) in the transition between three stationary states
corresponding to the data in Table 1.
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Obviously, the analysis in section 3 can be applied to such discontinuous solutions.

5. Stability of the stationary solutions. The starting point for the stabil-
ity analysis is (17)–(18). The corresponding stationary problem was studied in [G1].
There the complete solution structure was analyzed. Depending on the data all the
cases—no solution, exactly one solution, and multiple (nonvacuum) solutions—are
possible. Especially from the application point of view it is important to know whether
the solutions of the stationary problem are stable as solutions of the underlying tran-
sient problem. This is the main question in this section.

For this purpose we assume q = q(x) and constant (in time) data ρl, ρr, pl, pr.
Then we linearize (17)–(18) around a solution (ρs, vs) of the stationary problem using

ρ(x, t) = ρs(x) + ρL(x, t), v(t) = vs + vL(t),(26)

and obtain

ρL;t + (vL + Q)ρL;x = −vLρs;x − qρL,(27)

RsvL;t + Rs;q+pdv(vs+Q)vL = −RL;G,(28)

where we use the notation

Rs;f (t) =

∫ 1

0

ρs(x)f(x, t)dx, RL;f (t) =

∫ 1

0

ρL(x, t)f(x, t)dx(29)

and

G(x) = q(x)(vs + Q(x)) + pdv(x)
(vs + Q(x))|vs + Q(x)|

2
+ fd sinα(x).(30)

The strategy is again to “solve” the continuity equation (27) and to evaluate the terms
in (28) where the density is involved. Then one is left with an ODE for the velocity
correction vL only.

We now focus on the case of positive (constant) mass-flux m = ρs(x)(vs +Q(x)).
The case of negative mass-flux can be handled analogously. Remember that solutions
with vanishing mass-flux imply (in case of nonvanishing heat-source) vacuum solutions
which are not of interest in this application (see [G1]).

In case of a stationary solution the characteristic η(t, x0, t0) of the continuity
equation can be written in the form

η(t, x0, t0) = η∗(t− tE(x0, t0)),(31)

where η∗(t) = η(t, 0, 0) and tE(x, t) is the time when the characteristic through x, t
enters the interval (0, 1).

Thus we have

d

dτ
η∗ = vs + Q(η∗), η∗(0) = 0,(32)

tE(x, t) := t−
∫ x

0

dx′

vs + Q(x′)
= t− tl(x).(33)

The time tl(x) is the time a particle needs to move from the entrance of the tunnel
(x = 0) to the position x. Along this characteristic curve the density evolves as

ρL(η∗(t− tE), t) = −
∫ t

tE

vL(τ)ρs;x(η∗(τ − tE)) exp

(
−
∫ t

τ

q(η∗(s− tE)) ds

)
dτ

(34)
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and

ρL(x, t) = −
∫ t

tE(x,t)

vL(τ)ρs;x(η∗(τ − tE(x, t))) exp

(
−
∫ t

τ

q(η(s− tE(t, x))) ds

)
dτ.

(35)

Substituting

z = η∗(s− t + tl(x)), dz = η∗′ ds = (vs + Q(z)) ds(36)

gives

∫ t

τ

q(η(s− tE(t, x))) ds =

∫ η∗(tl(x))=x

η∗(τ−t+tl(x))

q(z)dz

vs + Q(z)
= ln

vs + Q(x)

vs + Q(η(τ − t + tl(x)))

(37)

and

ρL(x, t) = −
∫ t

t0(x,t)

UL(τ)ρx(η(τ − t0(x, t)))
vs + Q(η(τ − t0(x, t)))

vs + Q(x)
dτ

= − 1

vs + Q(x)

∫ tl(x)

0

UL(t− s)J(tl(x) − s)ds(38)

with

J(tl(x) − s) = ρx(η(tl(x) − s))(vs + Q(η(tl(x) − s))).(39)

Then we conclude

−
∫ 1

0

ρL(x, t)G(x) dx =

∫ 1

0

∫ tl(x)

0

U(t− s)
G(x) J(tl(x) − s)

vs + Q(x)
dsdx

=

∫ tl(1)

0

U(t− s)

∫ 1

η(s)

G(x) J(tl(x) − s)

vs + Q(x)
dxds.(40)

We summarize the resulting problem for vL:

d

dt
vL = AvL +

∫ tl(1)

0

vL(t− s)K(s)ds,(41)

A = −
∫ 1

0
ρs(q + ξ|vs + Q|) dx∫ 1

0
ρs dx

< 0,(42)

K(s) =
1∫ 1

0
ρs dx

∫ 1

η(s)

G(x)

vs + Q(x)
J(tl(x) − s) dx.(43)

This is a Volterra integro-differential equation. Before using standard results on such
equations we remark the following.

Remark 5.1.

(i) We have

J(τ) = (vs + Q(η(τ)) ρs;x(η(τ)) = −ρs(η(τ))) q(η(τ)) ≤ 0.(44)
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(ii) G(x) > 0 if α > 0. In this case we have K(s) ≤ 0.
Using Theorem 5.2.1 in [Bu], we can state the following result.
Theorem 5.1. If ∫ tl

0

|K(τ)|dτ < |A|,(45)

then the trivial solution is asymptotically stable.
The proof goes along the lines of Theorem 5.2.1 in [Bu].
Remark 5.2. For appropriately “small” heat sources ||q||1 < c the functions J

and K are such that Theorem 5.1 holds.
Remark 5.3. For the case α ≥ 0 Theorem 5.1 does not take into account the fact

that both A and K have the “good” negative sign. Therefore a stronger result can
be expected.

5.1. Point-sources. For many applications (e.g., when the diameter of the re-
gion where the heat-source is active is small compared to the length of the tunnel) it
might be useful to consider point-sources.

Here we discuss the case of a single point-source located at the position x = xq,
of the form

q(x, t) = qδ(x− xq).(46)

Then we conclude

Q(x, t) = qH(x− xq),(47)

with H the Heavy-side function. We assume a time independent source q, since
the aim is to study the stability of stationary solutions. Integrating the continuity
equation over the support of q(x, t), we obtain that the mass flux ρu is continuous
at xq:

ρs(xq−, t)v = ρs(xq+, t)(v + q) at x = xq.(48)

Then the continuity equation reads as{
ρt + vρx = 0 for x < xq,

ρt + (v + q)ρx = 0 for x > xq.
(49)

Using the continuity of the mass flow at xq, we can evaluate the integral

vRq + RQq =

∫ 1

0

uρ dx = qvρ(xq−)

and obtain the integrated momentum equation

Rvt + qρ−v +

∫ xq

0

pdvρ
v|v|
2

dx +

∫ 1

xq

pdvρ
(v + q)|v + q|

2
dx = −Rfd sinα − pr + pl.

(50)

Focusing again on the case of strictly positive mass fluxes, the stationary solution
is given by

us =

{
vs for x < xq,

vs + q for x > xq,
(51)
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and the stationary density results in

ρs =

{
ρs− = ρ(0) for x < xq,
ρs+ = ρ(0) vs

vs+q for x > xq,
(52)

where vs is a solution of the nonlinear equation

qρ−vs + pdv
ρ−vs

2
(xq|vs| + (1 − xq)|vs + q|)

= ρ−fd

(∫ xq

0

sin(α) dx +
vs

vs + q

∫ 1

xq

sin(α) dx

)
+ pl − pr.

(53)

In order to keep the calculations simple we consider the linearization for a constant
pdv and constant slope profile α. The solutions of the linearized equations are denoted
by a subscript L. The linearized continuity equation reads⎧⎨

⎩
ρL;t + vsρL;x = 0 for x < xq,

vL(t)ρs− + vsρL,− = (vs + q)ρL+ + vLρs+ for x = xq,
ρL;t + (vs + q)ρL;x = 0 for x > xq,

(54)

and the linearized equation (50) becomes

(ρs−xq + ρs+(1 − xq))vL;t + (ρs−q + ρs−pdvvsxq + ρs+pdv(vs + q)(1 − xq))vL

= −pdv
v2
s

2

∫ xq

0

ρLdx− pdv
(vs + q)2

2

∫ 1

xq

ρLdx−
∫ 1

xq

ρLfd sinαdx− ρL−qvs.(55)

The solution of the continuity equation is given by (assuming vanishing density dis-
turbances at the left boundary)

ρL =

{
0 for x < xq,

ρL
(
xq+, t− x−xq

vs+q

)
= ρs−−ρs+

vs+q vL
(
t− x−xq

vs+q

)
for x > xq,

(56)

for t− x−xq

vs+q > 0. Then with ρs− − ρs+ = ρ(0) q
vs+q we obtain

∫ 1

xq

ρLdx = ρ(0)
q

vs + q

∫ 1−xq
vs+q

0

vL(t− s)ds.(57)

Therefore (55) reads

vL;t + avL = b

∫ 1−xq
vs+q

0

vL(t− s)ds,(58)

or with t = τ
1−xq

vs+q , V (τ) = vl(τ
1−xq

vs+q ) we obtain

Vτ + AV = −B

∫ 1

0

V (τ − σ)dσ,

A =
(vs + q)(ρs−q + ρs−pdvvsxq + ρs+pdv(vs + q)(1 − xq))

(1 − xq)(ρs−xq + ρs+(1 − xq))
> 0,

B =
(vs + q)(pdv

(vs+q)2

2 + fd sinα)

(1 − xq)(ρs−xq + ρs+(1 − xq))
.(59)
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unstable

stable
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variation of Δp, fd sinα = −25.
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B

Fig. 4. Stability diagram (detail). Parameter values A, B corresponding to the stationary
solutions of the examples of section 5.2 are also indicated: variation of Δp for fd = 0, dashed line;
variation of Δp for fd sinα = −25, dash-triple-dotted line; variation of fd sinα, dash-dotted line.

In order to find the stable and unstable parameter regions we make the ansatz
V (τ) = eζτ and obtain the characteristic equation

ζ + A + B
1 − eζ

ζ
= 0.(60)

Since we are interested in the location of the change of stability we look for solutions
of (60) with vanishing real part. Thus we set ζ = is with s real, and compare the real
and imaginary parts. This yields a parameterized curve in the A,B plane of the form

A =
s sin s

1 − cos s
, B =

s2

1 − cos s
(61)

(a part of this curve is the upper border of the stable region in Figure 4). When
crossing this curve at s 	= 0, the real part of a pair of complex conjugate eigenvalues
changes sign. Thus we expect a Hopf-bifurcation to occur. It is easy to see that the
integral equation (59) has nontrivial constant solutions if A + B = 0. This second
curve is also indicated in the stability diagram Figure 4 (lower border of the stable
region). Crossing this second curve, a bifurcation of the steady-state solutions is
expected.

Figure 4 is a detail of the stability diagram (depending on the parameter values
A and B). The formulation (60) allows us to reduce the stability analysis to two
parameters A and B. These parameters combine many of the parameters of the model.
The price of the reduction is that the parameters A and B cannot be interpreted easily
from an application point of view.

In Figure 4 some possibilities for varying the original parameters are indicated.
This will be discussed in the next section.

5.2. Numerical analysis. The main purpose here is to study in more detail
the behavior of the solutions when stability is lost. The two examples that follow
correspond to the situation on the upper and the lower borders, respectively, of the
stable region in the stability diagram Figure 4.
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As long as only solutions with positive flow velocities are involved, the density ρ
has its boundary value ρl for x < xq. Thus for solving the continuity equation we
can reduce the domain of the numerical solution to the interval (xq, 1) and use the
interface condition for ρ at xq as an (inflow)-boundary condition. The discretization
of the continuity and integrated momentum equation is just straightforward. We have
used here a second order method.

For the numerical example we have taken pdv = 40, xq = 0.5, α = 0, and q = 1,
and varied Δp = pr − pl. It can be verified that the stationary solution is stable for
Δp < Δp∗ = −0.254 and unstable for Δp > Δp∗. This is in agreement with the linear
stability analysis. The corresponding values of the parameters A and B are indicated
in the stability diagram (Figure 4).

Taking the unstable stationary solution with a small perturbation as the initial
condition, we observe that the transient solution oscillates with increasing amplitude
around the stationary solution until negative velocities are obtained. In no case could
a stable limit cycle with only positive velocities be obtained. This indicates that the
Hopf-bifurcation at Δp = Δp∗ is subcritical.

In order to compute the (unstable) limit cycle we formulate a fixed point problem:
We take the values of the density ρi at the grid points xi = xq + (1− xq)i/N at t = 0
and the period tp as unknowns. Thus the following equations have to be satisfied:

ρ(xi, tp) = ρi, i = 1, . . . , N, and v(tp) = v(0).(62)

The pressure difference Δp and the initial velocity v(0) are prescribed appropriately.
The resulting equations are solved using the NAGLIB routine C05NBF [NAG]. In
the examples given here the number of grid points is N = 100 and 200, respectively.

The minimum and the maximum of the resulting limit cycle are indicated in
Figure 5. Thus a subcritical Hopf-bifurcation is verified. However, the limit cycle
with strictly positive velocity values exists only for a narrow pressure interval. Ne-
glecting the modulus function in the friction term and the positivity of the density,
this unstable limit cycle can be continued to negative velocities.

In order to obtain physically relevant solutions for negative velocities, a more
sophisticated numerical analysis is necessary. Taking a conventional finite volume

minima of stable limit cycles

maxima of stable limit cycles

max. of unstable limit cycles

unstable

stable

min. of unstable limit cycles

sub crit. 
Hopf. bifurcation

−0.01

 0

 0.01

 0.02

 0.03

 0.04

 0.05

−0.3 −0.25 −0.2 −0.15 −0.1 −0.05  0
Δp

v

Fig. 5. Numerical solution for pdv = 40, q = 1, Δx0 = 0.5, uL = 1. The steady-state solution
is stable for Δp < Δp∗. The limit cycles are represented by their maximum and minimum velocities.
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method or finite different scheme for the entire solution interval x ∈ (0, 1) may pro-
duce negative densities. In order to avoid this problem we employ the method of
characteristics. Considering the jump condition of the density at x = xq for nega-
tive values of v which are larger than −q, we conclude that the only possibility of a
nonnegative density is that ρ(xq−) = ρ(xq+) = 0 if −q < v < 0 holds. In that case
the characteristics left of xq point in the negative direction, and thus there will be a
jump discontinuity of the density at a location x0(t) < xq, which moves with the fluid
velocity v(t) left of xq. Thus ρ(x, t) = 0 for x0(t) < x < xq. For 0 < x < x0(t) the
density has the inflow value ρl at x = 0. Thus we construct the following numerical
method: For the domain 0 < x < xq the density distribution is completely described
by x0(t), as long as v > −q. For x > xq we define the characteristics by

d

dt
x̄i(t) = v + q, x̄i(0) = xi = xq + (1 − xq)i/N, ρi = ρ(xi, 0).(63)

Every time a characteristic x̄j(t) leaves the domain of consideration at x = 1 a new
characteristic will be introduced at x = xq, and ρj will be set to ρ(xq+, t), which is
zero if v < 0, or ρ(xq−, t)v/(q + v) if v > 0. Note that ρ(xq−, t) = ρl if x0 = xq, or
ρ(xq−, t) = 0 if x0 < xq.

Employing this method in the case of the unstable stationary solution, the tran-
sient solution tends to a stable limit cycle which has time intervals with negative ve-
locities. In Figure 5 the maximum and minimum values of the limit cycle are shown.
This stable limit cycle connects to the unstable limit cycle where the minimum of the
velocity is zero.

As a second example we consider an inclined tunnel. We assume pdv, xq, and
q have the same values as in the first example. We vary fd sinα and Δp = pr − pl
such that vs = 0.023 is a stationary solution. However, (53) for the stationary flows
has in general more than one solution (as known from [G1]). We compute a second
solution branch, which intersects the first (constant) solution branch when A+B = 0
holds; see Figure 4. The stability parameters A and B for both solution branches are
indicated in the stability diagram, and we observe that at the intersection of the two
branches a stability exchange occurs (Figure 6).

−0.06

−0.04

−0.02

 0

 0.02

 0.04

 0.06

 0.08

 0.1

−30 −28 −26 −24 −22 −20 −18

fd sinα

vs

stable

unstable

Fig. 6. Variation of the buoyancy parameter fd sinα. The pressure Δp is chosen such that
vs = 0.023 is a stationary solution. A second solution branch exists, which intersects the first.
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 0.04
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 0.08

 12.43  12.44  12.45  12.46  12.47  12.48  12.49  12.5  12.51  12.52

Δp

vs

stable

unstable

Fig. 7. Variation of Δp for fd sinα = −25. For Δp less than a critical value, two solution
branches exist.

In the third example we assume fd sinα = −25 fixed and vary Δp. For Δp less
than a limiting value Δpc two solution branches exist. The upper one corresponds to
a stable and the lower one to an unstable solution. At the limiting value Δpc both
solution branches are connected and terminate there (Figure 7).

Thus we have verified by numerical examples that, while crossing the upper limit
of the stability domain, a subcritical Hopf-bifurcation occurs, and while crossing the
lower bound of the stability domain, a bifurcation of stationary solution occurs.

6. Conclusions. We have studied the global dynamics for solutions of model
equations for the description of tunnel fires. Also, the stability of the stationary
solutions has been investigated. We see at least numerically that Hopf-like bifurcations
occur and induce oscillation with large amplitudes and even, most dangerous for fire
fighters, flow reversal can occur. The critical cases can be identified by a relatively
small outside pressure difference. Since the Hopf-bifurcation seems to be subcritical,
the large amplitude limit cycle can be attained even at conditions where the steady-
state solution is still stable. Thus the presented analysis delivers a simple tool for
determining the stability of flow conditions during a tunnel fire.
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Abstract. This note corrects some typos and errors in the paper [S. Ruan and X.-Z. He, SIAM
J. Appl. Math., 58 (1998), pp. 170–192].

Key words. competition, global stability, nutrient recycling

DOI. 10.1137/06065876X

The main error in the paper [1] is that conditions on the matrix B should be
replaced by conditions on the matrix AB at four separate places.

1. On page 177, condition (iii) in Theorem 2.8 should read

(iii) the matrix AB is semipositive definite.

2. On page 182, there were a few typos in Theorem 3.8 and an error in condi-
tion (v). The corrected version of the theorem is as follows.

Theorem 3.8. Assume that

(i) system (3.1) has a positive equilibrium E∗ = (S∗, N∗
1 , N

∗
2 );

(ii) D + Di < mi, biDi < μip(S
∗
i ), i = 1, 2;

(iii) Tf < ∞, T ∗
i = (1/d∗i )

∫∞
0

F (s)[ed
∗
i s − 1] ds < ∞ with d∗i := (D + Di) +∑2

j=1 δijmj, i = 1, 2;

(iv) biDi[(mi +
∑2

j=1 δijN
∗
j )T ∗

i + miTf ]/2 < μi, i = 1, 2;
(v) The matrix AB is semipositive definite, where A = diag(α1, α2) with αi =

[μip(S
∗
i ) − biDi]/mi (i = 1, 2) and B = (bij)2×2, bij ≥ 0 defined by

bij =

{
δii − Tfmi

2[μip(S∗)−biDi]N∗
i

∑2
j=1 bjDjδjimj if i = j,

δij if i �= j.
(3.25)

Then E∗ is global asymptotically stable.

3. On page 186, condition (iii) in Theorem 4.3 should read

(iii) the matrix AB is semipositive definite.

4. On page 188, Theorem 4.6 should read as follows.

Theorem 4.6. Assume that

(i) system (4.11) has a positive equilibrium E∗ = (S∗, N∗
1 , . . . , N

∗
n);

(ii) D + Di < mi, biDi < μip(S
∗
i ), i = 1, 2, . . . , n;

(iii) Tf < ∞, T ∗
i = (1/d∗i )

∫∞
0

F (s)[ed
∗
i s − 1] ds < ∞, i = 1, 2, . . . , n, where

d∗i = (D + Di) +
∑n

j=1 δijmj;

(iv) biDi[(mi +
∑n

j=1 δijN
∗
j )T ∗

i + miTf ]/2 < μi, i = 1, 2, . . . , n;
(v) the matrix AB is semipositive definite, where A = diag(αi)n×n with αi =
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[μip(S
∗
i ) − biDi]/mi (i = 1, . . . , n) and B = (bij)n×n with bij ≥ 0 defined as follows:

bij =

{
δii − Tfmi

2[μip(S∗)−biDi]N∗
i

∑n
j=1 bjDjδjimj if i = j,

δij if i �= j.

Then E∗ is globally asymptotically stable.
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